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Summary

The extracellular matrix (ECM) is a highly dynamic net-
work of proteins, glycoproteins, and proteoglycans. Numerous
diseases result from mutation in genes coding for ECM pro-
teins, but only recently it has been reported that mutations in
the fibronectin (FN) gene were associated with a human disor-
der. FN is one of the main components of the ECM. It gener-
ates protein diversity through alternative splicing of a single
pre-mRNA, having at least 20 different isoforms in humans.
The precise function of these protein isoforms has remained
obscure in most cases. Only in the recent few years, it was pos-
sible to shed light on the multiple roles of the alternatively
spliced FN isoforms. This substantial progress was achieved ba-
sically with the knowledge derived from engineered mouse
models bearing subtle mutations in specific FN domains. These
data, together with a recent report associating mutations in the
FN gene to a form of glomerulopathy, clearly show that muta-
tions in constitutive exons or misregulation of alternatively
spliced domains of the FN gene may have nonlethal pathologi-
cal consequences. In this review, we focus on the pathological
consequences of mutations in the FN gene, by connecting the
function of alternatively spliced isoforms of fibronectin to
human diseases. � 2011 IUBMB
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THE EXTRACELLULAR MATRIX AND DISEASE

The extracellular matrix (ECM) is a highly dynamic three-

dimensional network of proteins, glycoproteins, and proteogly-

cans. It provides structural support and anchorage for organs,

tissues, cell layers, and individual cells. The ECM plays essen-

tial roles in fundamental cell processes such as cell growth, cell

migration, polarity, embryogenesis, hemostasis, wound healing,

and maintenance of tissue integrity, by sensing different envi-

ronmental stimuli and providing specific inputs to the surround-

ing cells (1, 2). In addition, the ECM captures a wide range of

cellular growth factors acting as a local reservoir for them.

Changes in the physiological conditions and specific stimuli can

trigger protease activities that cause the local release and activa-

tion of those factors, communicating instructive signals for de-

velopment, tissue homeostasis, and basic cell functions, modify-

ing its composition and ability to exert mechanical forces. ECM

proteins are generally very complex, containing multiple con-

served domains; frequently, inclusion or exclusion of these con-

served domains is controlled by highly regulated alternative

splicing of their pre-mRNAs. These large fibrous multidomain

proteins (collagens, elastins, laminin, tenascin, and fibronectin

(FN), among others) are recognized by specific cellular recep-

tors, mainly belonging to the integrin family.

The critical importance of the ECM is demonstrated by the

occurrence of numerous diseases resulting from mutations in

genes coding for ECM proteins, including collagenopathies

(osteogenesis imperfecta, Ehlers-Danlos syndrome VII, IV,

etc.), skin defects (epidermolysis bullosa, cutis laxa, Ehlers-

Danlos Syndrome I, II, III, etc.), fibrillinopathies (Marfan Syn-

drome, etc.), basement membrane defects, and osteoarthritis (for

a more comprehensive list see ref. 3). In the case of FN, only

very recently it has been reported that mutations in specific FN

domains are the cause of nephropathies with FN deposition (4)

suggesting that some disease forms may be caused by subtle

mutations in previously unexpected genes.
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FN is one of the best-characterized examples of ECM proteins

that has been studied using mouse models generated by gene tar-

geting, bearing conditional, or subtle mutations in different

domains of the gene (5–12). This type of approach remains the

best one to understand the in vivo function of specific gene prod-

ucts. The present review focuses on the knowledge obtained

from these engineered mouse models to understand the role of

FN isoforms in health and pathological processes.

FIBRONECTIN STRUCTURE

FNs are a group of closely related glycoproteins made of two

nearly identical �250 kDa subunits. Monomers, which are linked

together by disulfide bonds near the C-terminus, are made of

repeating units of three different types of homologies: type I, II,

and III (13, 14). Many of these independently folded domains

are present in different ECM proteins supporting the hypothesis

that these structural repeating units might have reassorted among

different genes by exon shuffling during evolution (15). Type III

modules are the most abundant modules in the FN molecule, and

are also found in many different proteins across a wide range of

species, whereas type I modules are found only in vertebrates.

Although there is a single 75-kb gene coding for FN (7), up to

20 different protein variants are observed in humans. Protein di-

versity is obtained by alternative splicing of two type III exons,

called Extra Domains A and B (also EIIIA and EIIIB), and of a

segment connecting two other type III repeats, called type III

connecting segment (IIICS) (Fig. 1). FN is found either as a solu-

ble dimer in plasma, secreted by hepatocytes directly into circula-

tion (plasma FN, or pFN), or deposited as insoluble fibrils in the

ECM of tissues (cellular FN, or cFN). FN found in the ECM is

partially derived from a variety of fibroblast-like surrounding

cells, whereas a fraction is supplied by the plasma. The two FN

isoforms differ in the presence of the EDA and EDB domains:

(a) pFN lacks the alternatively spliced EDA and EDB sequences

and (b) cFN contains variable proportions of these domains. FN

has different functional domains that directly bind it to a variety

of molecules such as fibrin, collagen, and heparin. These domains

participate in the assembly of the ECM, FN fibrillogenesis and

are recognized by cellular receptors, mainly belonging to the

integrin family (Fig. 1). The majority of these domains are con-

stitutively included in the mature FN molecule, such as the RGD

cell-binding domain, which is recognized by the a5b1 integrin.

However, in some cases, their presence and affinity for their

ligands can be regulated by alternative splicing, as discussed

below.

ARE THE EDA AND EDB DOMAINS OF FN
DISPENSABLE DURING EMBRYO DEVELOPMENT?

The in vivo importance of fibronectin was demonstrated by

the drastic consequences observed in engineered FN mouse

strains bearing mutations within different regions of the gene:

(a) null mutation of the FN gene results in early embryonic

lethality (7); (b) replacement of the EDB exon by the neomy-

cin-resistance gene or by a longer exon including the EDB and

flanking exons result in a functional-null genotype with early

embryonic lethality (8); and (c) mutant mice bearing a homozy-

gous mutation in the RGD cell-binding site (RGE) die at em-

bryonic day 10, although the absence of a functional RGD

Figure 1. Fibronectin primary structure. The scheme shows a representation of a fibronectin dimer and its interactions. The different

types of homologies (12 type I, two type II, and 15 type III) are represented. Numbering of type III homologies excludes EDA and

EDB domains. Type I, II, and III domains are constituted of 40, 60, and 90 amino acids, respectively. Constitutive (RGD) and alterna-

tively spliced (LDV), synergy (PHSRN), and EDA (EDGIHEL) cell-binding sites are indicated, together with their integrin receptor

partners (a4b7 integrin recognizes the EDA domain, but the precise aminoacids involved have not been yet determined). EDA and

EDB splicing is similar in all species (either total inclusion or exclusion), whereas that of the IIICS region is species-specific (five var-

iants in humans, three in rodents, and two in chickens). (Modified from ref. 14, with permission from � John Wiley & Sons, Ltd.)
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motif in FN did not compromise assembly of an FN matrix

(11). All these mutants show vascular defects comparable with

defects observed in integrin a5 null embryos (16).

The absence of reports describing mutations in the fibronec-

tin gene in humans and the in vivo results mentioned above

strongly supported the speculation that even minor modifica-

tions in the FN primary sequence might have lethal consequen-

ces. However, recent in vivo data derived from patients with

glomerulopathy with associated FN deposits (4) and from engi-

neered mice suggest that mutations in constitutive exons or mis-

regulation of alternatively spliced domains may have pathologi-

cal nonlethal consequences.

The EDA and EDB FN domains show a very high degree of

homology among vertebrates (14), and are cassette-type exons

which can be independently spliced-in or out from the pre-

mRNA (17). They are very abundant in embryonic stages, sup-

porting the hypothesis that they have an important role during

embryogenesis and in vascular development, cell migration, and

cell differentiation (17, 18). They show a very tight tissue-spe-

cific regulation and expression, their inclusion decreases with

age of the animal, and adult tissues tend to be devoid of these

extra domains (17, 19, 20). Both domains are not expressed in

hepatocytes, but mice engineered to constitutively include the

EDA exon have an 80% reduction in circulating pFN, possible

caused by selective retention and degradation of EDA1 FN by

hepatocytes (21). Similarly, these domains are scarcely

expressed in other adult tissues. They are upregulated in specific

conditions such as tissue repair, tissue fibrosis, angiogenesis,

and cell migration. However, homozygous mutant mice consti-

tutively lacking the EDA or EDB domains (individually), or

constitutively expressing the EDA domain do not show any

degree of embryonic lethality, grow up without any obvious

defect and reproduce normally (6, 9, 12). Therefore, one must

conclude that single deletion (or constitutive inclusion) of the

EDA or EDB domains are not as critical as previously expected

or that, alternatively, other proteins may compensate for the

lack of the specific FN isoforms in the mutant embryos. Simul-

taneous deletion of both EDA and EDB exons from the FN

gene results in embryonic lethality with incomplete penetrance,

displaying multiple embryonic cardiovascular defects (see

below; ref. 5).

THE FIBRONECTIN ISOFORMS PARTICIPATE
IN LYMPHATIC VALVE FORMATION

The similarity of the RGD-to-RGE mutant and alpha5 integ-

rin-null embryonic phenotype (11) to that of FN-null mice (7)

confirmed the direct involvement of FN in vascular morphogen-

esis, suggesting that FN function during this process is mainly

mediated by the a5b1 integrin.

However, the role of FN isoforms in these processes seems

less clear. The evident upregulation of the EDA and EDB exons

during physiological embryonic angiogenesis and tumor angio-

genesis has been documented in several publications (22–24),

encouraging the use of these domains as vascular markers of

solid tumors and metastases (25, 26). In spite of this, a detailed

in vivo analysis of physiological and tumor angiogenesis using

engineered mice lacking either the EDA or the EDB segments

showed no involvement of either domain (individually) in

angiogenesis (6, 9, 12, 27, 28).

In contrast, recent work on a mouse model bearing the simulta-

neous deletion of both EDA and EDB exons from the FN gene (5)

started to shed light on the role of FN isoforms in vascular develop-

ment. In this engineered mouse model, the phenotype showed em-

bryonic lethality at E10.5 with incomplete penetrance, displaying

multiple cardiovascular defects, together with a reduction in the

number of a-SMA positive cells at E9.5. These results support a

role of EDA- and EDB-containing fibronectin isoforms in cardio-

vascular development and suggest the presence of modifier genes

affecting the severity of the phenotype (5). These domains may

have some redundant function, because inclusion of either of them

into the FN molecule is sufficient to attain normal blood vessel de-

velopment. The mechanisms are still unclear but may be related to

a global change in FN conformation necessary to attain enhanced

FN properties, not achievable after the deletion of both the EDA

and the EDB exons.

EDA1 FN was shown to have a direct and crucial role in

lymphatic valve morphogenesis (29) suggesting it may be

involved in primary lymphedema. Deposition of EDA1 FN in

the valve-leaflet ECM and its interaction with a9 integrins are

necessary for normal lymphatic valve formation. Deficiencies in

this interaction, by the absence of either the ligand or the recep-

tor, produce defective valve leaflets unable to avoid pathological

retrograde flow of the lymphatic fluid (29). Consistent with this

observation, a9b1 integrin-deficient mice develop normally, are

viable, and die shortly after birth primarily due to extensive

bilateral chylothoraces occurring with defective lymphatic sys-

tem development (30). These results strongly implicate a9 integ-

rins (an EDA receptor), EDA1 FN, and their interactions as im-

portant contributors to lymphatic development and sufficiency.

The absence of EDA1 FN may also be associated with tho-

racic aortic aneurysm formation in patients with bicuspid aortic

valve (BAV), but not with those having tricuspid aortic valve

(31). Cultured medial cells from BAV did not increase EDA

expression on TGF-b1 stimulus, supporting the hypothesis that

a defect in the regulatory pathway governing FN alternative

splicing in vivo may be associated with the presence of BAV.

However, the molecular causes of these defects are still

unknown and need further analysis.

THE ABSENCE OF THE EDA DOMAIN PREVENTS
TISSUE FIBROSIS: FN-TGF-b1 INTERACTION

The involvement of EDA-containing FN (EDA cFN) in im-

portant pathological processes such as atherosclerosis (12, 32),

lung fibrosis (33, 34), and liver fibrosis (35) has been well

described. Mechanistically, EDA cFN appears to enhance differ-

entiation of lipocytes into a-smooth muscle actin (SMA)-
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expressing myofibroblasts (35). Further work has shown that

TGF-b1, together with EDA cFN, induces the differentiation of

fibroblasts into a-SMA-expressing myofibroblasts (36). The

physiologic relevance of this mechanism has been highlighted

in experimental models of lung fibrosis (34) and allergen-

induced airway fibrosis (37), in which EDA-deficient mice were

unable to generate a-SMA-expressing myofibroblasts at sites of

injury, thereby preventing the development of tissue fibrosis.

Similarly, EDA cFN is involved in the development of athero-

sclerosis, because EDA-null mice develop significantly less ath-

erosclerosis than wild-type (WT) mice (12, 32). Most recently,

investigators have shown that loss of the EDA exon also

improves survival and protects against cardiac dysfunction post-

myocardial infarction in a murine model (38). However, effects

on TGF-b1 expression and/or activity were not assessed in this

manuscript. In total, these observations suggest the importance

of EDA cFN as a permissive substrate for TGF-b1-induced
myofibroblast differentiation, macrophage lipoprotein metabo-

lism, tissue fibrosis, and postmyocardial infarction matrix

remodeling. It is notable that previous studies have shown that

picomolar amounts of active TGF-b1 are capable of driving the

alternative splicing of EDA cFN such that the EDA-containing

isoform is predominantly expressed (39). Thus, TGF-b1 likely

drives myofibroblast activation and subsequent fibrosis via the

production and subsequent signaling of EDA cFN. A general

schematic of the role of EDA cFN in myofibroblast differentia-

tion is presented in Fig. 2.

TGF-b exists in an ECM-bound complex containing TGF-

b, latency-associated peptide (LAP), and latent TGF-b-binding

protein-1 (LTBP-1). TGF-b1 activation, the rate-limiting step

for its bioavailability, results from release of the mature TGF-

b peptide from its LAP (40) due to either proteolytic or con-

formational modifications. For example, both thrombospondin-

1 and the epithelial cell-expressed avb6 integrin are known to

bind LAP to induce conformational changes that release the

mature peptide from complex (40, 41). Similarly, certain pro-

teases like membrane-type 1-matrix metalloproteinase and cer-

tain furin-like enzymes proteolytically result in latent TGF-b
activation (42). Intriguingly, our previous work demonstrates

that although total TGF-b production is equivalent between

EDA-deficient and WT mice, activation of TGF-b appears to

be significantly impaired in EDA-deficient mice (34). The

mechanism(s) behind EDA cFN-regulated TGF-b activation is

currently unclear, but may reflect localization of latent TGF-b
complexes to the ECM. Indeed, data suggest that LTBP-1

requires a fibronectin substrate for binding and localizing

latent TGF-b complexes to the ECM in order for activation

via avb6 integrins (43). EDA-null and WT mice express

equivalent amounts of total fibronectin in their ECM (9), sug-

gesting that perhaps LTBP-1 binds to EDA cFN with greater

affinity than to EDA-lacking FN, or that enhanced stiffness of

EDA cFN compared to EDA-lacking cFN allows for enhanced

TGF-b activation. A graphic representation of TGF-b activa-

tion and a possible role for EDA cFN is shown in Fig. 3.

As mentioned previously, TGF-b1 induces EDA cFN pro-

duction and the two together drive fibroblast activation and

(when unchecked) tissue fibrosis. However, the mechanism(s)

by which this occurs has remained somewhat poorly described.

Figure 2. Role of EDA1FN in lung fibrosis. Fibroblast differentiation into myofibroblasts occurs after tissue injury, which triggers

activation of latent TGF-b into active TGF-b, FN synthesis, and EDA inclusion into FN. A loop is established, because the presence of

EDA1FN itself is necessary to activate latent TGF-b into active TGF-b, which in turn stimulates EDA inclusion into FN. Both the

active forms of TGF-b and EDA1FN are necessary to differentiate fibroblasts into myofibroblasts, which is prevented in the presence

of only EDA-lacking FN in the ECM. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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THE PRO-THROMBOTIC ROLE OF THE
EDA1FN ISOFORM

Among its wide range of functions, FN is also involved in

platelet thrombi formation. It is a ligand of platelet surface

receptors (44) and is covalently crosslinked to fibrin by coagula-

tion factor XIII (for a more comprehensive review see ref. 45).

However, little insight into the role of FN in thrombosis and

hemostasis has been derived from genetic studies in humans,

and the final in vivo demonstration of the role of FN and FN

isoforms in thrombosis and hemostasis was possible only after

the generation of mouse strains bearing specific mutations in

the FN gene. In fact, the stabilization of platelet thrombi by

crosslinking of plasma fibronectin to fibrin clots was definitely

demonstrated in vivo using engineered mouse strains having dif-

ferent pFN concentration (46, 47).

The EDA1 FN isoform is particularly interesting from the

thrombus-formation point of view, because it is normally absent

from plasma, but is present in platelets a granules and is highly

increased in some disease states such as atherosclerosis, pulmo-

nary and acute vascular injury, diabetes, thrombocytopenic pur-

pura, and ischemic stroke (12, 44, 48–51).

Once again, analysis of mice constitutively producing EDA1

FN in plasma provided important information about its function,

revealing a prothrombotic activity of this isoform (52). Homo-

zygous EDA1/1 mice, notwithstanding the fact that they have

only 20–30% of the pFN levels of WT mice (9, 21), showed

accelerated thrombosis in vivo and in vitro at arterial shear rates

when compared to WT mice (52). These results support the hy-

pothesis that secretion of the EDA1 FN prothrombotic isoform

in plasma is negatively selected during evolution. In fact, a

more extended (or activated) fibronectin form in plasma may

have negative consequences such as increased risk of thrombo-

sis, because of augmented exposition of binding sites and con-

sequent increased binding by cellular receptors.

However, hemostatic parameters obtained from EDA1/1

mice are normal, indicating that FN does not alter normal

hemostasis, similar to what is observed in humans. Both mice

and humans present a wide range of FN concentration in plasma

(53) suggesting that platelet thrombus formation is not a simple

function of plasma FN concentration. Whether the observations

in mice are translatable to human patients has yet to be tested;

however, these results strongly suggest that pathological

increases in plasma levels of EDA cFN may be an important

risk factor for thrombosis, especially in the disease states men-

tioned above. Such disease states predispose to vessel thrombo-

sis, and therefore, the conditions of those patients may worsen

because of increased risk of thrombosis caused by elevated

plasma EDA1 FN levels.

Evidence supporting FN as a risk factor for thrombosis has

recently been published. Pecheniuk et al. (54) showed that a

group of patients with idiopathic venous thromboembolism had

elevated plasma FN levels but, unfortunately, the levels of

EDA1 FN were not determined.

RECEPTORS FOR EDA AND EDB cFN

Given that EDA cFN and EDB cFN are capable of directing

various phenotypic behaviors different than EDA- or EDB-

lacking pFN, it is not surprising that these isoforms might bind

and signal via different integrin and nonintegrin receptors

than pFN. As shown in Table 1, cells bind fibronectin through

a variety of cell-surface receptors, including members of the

Figure 3. (A) Proposed mechanism of proteolytic TGF-b activa-

tion. TGF-b is maintained in a latent state by complexing with la-

tency activating peptide (LAP) and latent TGF-b-binding protein-

1 (LTBP-1) on a FN matrix (either without EDA [upper panel] or

with EDA [lower panel]). In the presence of proteases, furin-like

enzymes, and acids (among other stimuli), LAP is cleaved

thereby releasing active TGF-b. (B) Proposed mechanism of

integrin-mediated TGF-b activation. TGF-b again is maintained

in a latent state in complex with LAP and LTBP-1 on a FN ma-

trix. (upper panel) EDA-lacking FN folds into compact forms;

thus, LAP-integrin avb6 ligation under shear force induces matrix

alteration and failure to release active TGF-b. (lower panel) In
contrast, the more rigid, cross-linked EDA1 FN resists the shear

forces of integrin avb6–LAP interactions, resulting in a conforma-

tional shift in LAP and release of active TGF-b. Other mecha-

nisms may be operative as well. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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integrin superfamily. Although a5b1 integrin is considered as

the ‘‘classic’’ fibronectin receptor (55), it does not bind the

EDA domain. Rather, the a4 integrins (a4b1 and a4b7), a9b1
integrin, and the toll-like receptor 4 (TLR4) appear to be

receptors for the EDA domain (14). Although it is thought that

b1 integrins are capable of binding EDB [based on data show-

ing experimentally activated b1 integrins bind various fibronec-

tin type III repeats (56)], no specific EDB receptor has yet

been identified.

The a4 and a9 integrins are not specific for the EDA do-

main; thus, determining the functions of these receptors with

respect to EDA cFN has been difficult. For instance, a4 integ-

rins also bind the variably spliced IIICS of fibronectin (57).

However, data suggest that EDA–a4b1 integrin interactions

may mediate cell adhesion (58) and leukocyte recruitment (59).

Classically, a4b7 integrin is thought to be leukocyte restricted

(60), where it is important for binding mucosal addressin cell

adhesion molecule to effect lymphocyte homing (61). However,

one recent study demonstrates the expression of a4b7 integrin

on lung fibroblasts, which appears to mediate the effects of

EDA cFN in driving myofibroblast differentiation (62). EDA–

a9b1 integrin interactions appear to occur on various epithelial

and endothelial cells, where they mediate cellular migration

(63) and FN matrix assembly (29). Unpublished data also sug-

gest that the interaction between a9 integrin and the FN EDA

domain is important for the development of venous valves in

mice (T. Makinen, personal communication).

TLR4 is the most-recently identified receptor for the EDA do-

main (64). As the first description of the EDA domain activates

TLR4, numerous functions have been ascribed to this interaction

such as arterial remodeling in atherosclerosis (65), induction of

cytotoxic T cell responses following antigen stimulation (66),

stimulation of mast cells (67), and priming of leukotriene synthe-

sis in neutrophils and monocytes (68). Taken together, these data

suggest that EDA1 FN is an important mediator of a number of

inflammatory and other immunologic responses.

SIGNALING MECHANISMS INVOLVED IN
EDA-MEDIATED FIBROBLAST-TO-MYOFIBROBLAST
DIFFERENTIATION

Fibroblast-to-myofibroblast differentiation is a complex pro-

cess by which resting or quiescent fibroblasts acquire features

of smooth muscle cells, including upregulating the contractile

proteins smooth muscle myosin and a-smooth muscle actin, as

well as enhancing ECM protein synthesis (69). Induction of

myofibroblast differentiation by TGF-b is a well-described

event and requires the presence of EDA cFN (62, 70) as well as

adhesive signaling. Previous studies show that in the presence

of TGF-b, lung fibroblasts in suspension do not upregulate

expression of a-SMA (71), suggesting that either mechanical

tension or adhesion signaling through focal adhesions is also

necessary for the myofibroblast phenotype. In fact, both are

likely necessary. For example, activation of focal adhesion ki-

nase (FAK) or suppression of the FAK inhibitor, focal adhesion

kinase-related nonkinase, is required for myofibroblast differen-

tiation (71–73) in part through the upstream effects of protein

kinase C e (PKC-e) and downstream activities of the mitogen-

activated protein kinase pathways. Other evidence implicates

the phosphoinositol-3-kinase (PI3K) pathway in myofibroblast

differentiation, because our lab has shown that inhibition of the

PI3K antagonist phosphatase and tensin homolog on chromo-

some 10 also promotes myofibroblast differentiation in vitro

and in vivo (74). Similarly, mechanotransductive effects on stiff

substrates likely encountered in fibrosing tissues and on plastic

dishes also enhance myofibroblast differentiation through FAK

and other pathways (75). Taken together, these data suggest that

myofibroblast differentiation following TGF-b stimulation relies

heavily on ECM adhesive signaling.

CONCLUDING REMARKS

Targeted mutations in the FN gene have been very informa-

tive about the roles of various FN isoforms in normal and path-

ological situations, although many questions remain unanswered

and need further investigation. Many of these mutations produce

clear phenotypes, supporting the idea that these highly con-

served domains and the mechanisms involved in their regulation

are positively selected in evolution, conferring an adaptive

advantage. However, in some cases the differences were absent

or subtle, or relied on an exogenous stressor or perturbation in

homeostasis to become evident. This indicates that certain gene

mutations are clinically silent until an environmental trigger

induces an alternative phenotype, and argues that genetically

mutated animals should be evaluated under a variety of condi-

tions before concluding that a specific mutation does not pos-

sess a significant phenotype. Moreover, it is generally accepted

that the process of evolution will not retain certain genes or

mutations within genes if no selective advantage is conferred.

Table 1

Known cellular receptors for pFN, EDA cFN, and EDB cFN

Receptor pFN EDA cFN EDB cFN

a3b1

a?b1

a4b1
a5b1*
a8b1 a4b1

Integrin avb1 a4b7
avb3 a9b1
avb6
avb8
avb7
allbb3

Non-integrin Ku TLR4

*Denotes the main fibronectin receptor. a? Denotes the unkown alpha subu-

nit partnering with b1 integrin.
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However, the identification of such defects in the human popu-

lation may be hampered by genetic heterogeneity and by the

presence of modifier genes.

The generation and analysis of new mouse models, together

with a novel approach based in sequencing the genome of

patients suffering from thrombosis, lymphedema, fibrosis, and

other FN-related diseases will certainly provide useful informa-

tion regarding possible involvement of alternative splicing of

FN in disease states.
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