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Surveying Implicit Solvent Models for Estimating Small
Molecule Absolute Hydration Free Energies

Jennifer L. Knight[a,b] and Charles L. Brooks III*[a,b]

Implicit solvent models are powerful tools in accounting for

the aqueous environment at a fraction of the computational

expense of explicit solvent representations. Here, we compare

the ability of common implicit solvent models (TC, OBC,

OBC2, GBMV, GBMV2, GBSW, GBSW/MS, GBSW/MS2 and

FACTS) to reproduce experimental absolute hydration free

energies for a series of 499 small neutral molecules that are

modeled using AMBER/GAFF parameters and AM1-BCC

charges. Given optimized surface tension coefficients for

scaling the surface area term in the nonpolar contribution,

most implicit solvent models demonstrate reasonable

agreement with extensive explicit solvent simulations (average

difference 1.0–1.7 kcal/mol and R2 ¼ 0.81–0.91) and with

experimental hydration free energies (average unsigned errors

¼ 1.1–1.4 kcal/mol and R2 ¼ 0.66–0.81). Chemical classes of

compounds are identified that need further optimization of

their ligand force field parameters and others that require

improvement in the physical parameters of the implicit

solvent models themselves. More sophisticated nonpolar

models are also likely necessary to more effectively represent

the underlying physics of solvation and take the quality of

hydration free energies estimated from implicit solvent

models to the next level. VC 2011 Wiley Periodicals, Inc. J Comput

Chem 32: 2909–2922, 2011
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Introduction

The accurate calculation of absolute hydration free energies

for small molecules is an important step toward reliably esti-

mating protein–ligand binding affinities.[1] Appropriate repre-

sentation of these hydration free energies can provide a realis-

tic basis for modeling the thermodynamic processes of ligand

desolvation and subsequent ‘‘resolvation’’ by the protein bind-

ing pocket. The quality of these hydration free energies

depends both on thorough sampling methods and on high-

quality force field parameters that describe the intermolecular

and intramolecular interactions throughout the simulations.

Alchemical free energy simulations have been shown to pro-

vide well-converged results for vacuum and explicit solvent

simulations within �0.2 kcal/mol.[2–4] However, these explicit

solvent simulations are generally computationally expensive to

perform given the many degrees of freedom in the system

that need to be explored. Furthermore, to obtain sufficient

overlap in the simulated ensembles, several intermediates

along the alchemical transformation pathways usually need to

be sampled.[5]

Implicit solvent models have been developed as a strategy

for representing the aqueous environment of a solute but at a

fraction of the cost of explicitly modeling individual water mol-

ecules.[6,7] In many implicit solvent models for macromolecules,

the solvent is treated as a uniform high-dielectric environment,

whereas the solute is represented as a low-dielectric region

with a spatial charge distribution. The Poisson equation pro-

vides an exact description of the electrostatic component of

this solute–solvent system without explicitly representing the

degrees of freedom associated with individual water mole-

cules. The numerical solution of the finite-difference Poisson or

Poisson–Boltzman (PB) equation is more computationally effi-

cient than performing explicit solvent simulations but is still

prohibitively expensive for many macromolecular applications.

Generalized Born (GB) models have been developed as a

pairwise approximation to the solution of the Poisson equa-

tion for continuum electrostatic solvation.[8–20] These GB mod-

els depend on efficient strategies to determine the effective

Born radii which quantify the degree of ‘‘buriedness’’ of individ-

ual charges within the macromolecule. The Born radii provide

a correction to Coulomb’s law used to calculate the electro-

static energy associated between each pair of charges. GB

models differ from one another primarily in how the Born radii

are estimated and how the solute volume is defined. Beyond

modeling the electrostatics of hydration, the nonpolar contri-

bution to the solvation free energy for macromolecules is

required for accurate calculations.[21,22] In many current implicit

solvent models for biomolecules, this contribution is estimated

from a solvent-accessible surface area (SASA) term that is

scaled by an effective surface tension parameter.[14,23]
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However, other more sophisticated models for the nonpolar

component of hydration free energies have also been pro-

posed and implemented.[13,14,23–25]

There are two fundamental classes of parameters in GB mod-

els.[26] The first class contains ‘‘numerical parameters,’’ that is, pa-

rameters that are specific to a given GB model and are opti-

mized to reproduce results from corresponding high-resolution

PB calculations. These parameters include solvation free ener-

gies of small model compounds and proteins and the effective

Born radii. The second class includes ‘‘physical parameters,’’ that

is parameters that have well-defined physical meanings, such as

the definition of the dielectric boundary, the intrinsic atomic

radii for defining the boundary location, and the effective sur-

face tension parameters associated with the nonpolar contribu-

tion to hydration free energies. These parameters can be opti-

mized to reproduce high-quality experimental properties. In

some GB models, however, parameters are optimized concur-

rently and so are not neatly separable into these two categories.

Additional factors that influence the quality of simulated hydra-

tion free energies are the force field parameters for the solute,

especially the partial charges assigned to each atom center, as

well as limitations in a given sampling protocol. Given the

speed of modern computers and efficiency of the GB imple-

mentations, sampling limitations can generally be minimal for

calculating small molecule hydration free energies.

Several large-scale studies have been published that have

focused on estimating absolute hydration free energies for

small molecules using a variety of force fields, charge assign-

ment methods, and representations of the solvent environ-

ment. Rizzo et al.[27] calculated hydration free energies for

more than 500 neutral and charged compounds using both a

PB and a GB model (TC model in AMBER) with a SASA nonpo-

lar contribution to investigate the quality of different charge

models for the ligand parameters. For the 460 neutral com-

pounds, the correlation between the PB and GB results for the

single-conformer representations of the molecules were excel-

lent regardless of charge method (R2 ¼ 0.94) and the AM1-

BCC charge assignment strategy provided the best agreement

with experimental hydration free energies with overall average

unsigned errors (AUEs) of 1.36 and 1.38 kcal/mol for the PB

and GB models respectively. Mobley et al.[28] expanded Rizzo

et al.’s database of neutral compounds to include 504 small

molecules and explored the value of explicitly treating

entropic effects and modeling conformational changes in

implicit solvent simulations. In their analysis of small molecule

hydration free energies estimated using single conformers,

multiple conformers or full trajectories, Mobley et al.[28] dem-

onstrated that conformational entropy changes in the solute

can be up to 2.3 kcal/mol upon hydration. Thus, while they

are more time intensive, full trajectories are required for more

accurate hydration free energy estimates. In their study, using

the Generalized AMBER force field (GAFF)[29] with AM1-BCC

partial charges[30,31] the implicit solvent simulations yielded

estimated absolute hydration free energies with RMS errors of

2.0–2.4 kcal/mol and R2 of 0.69–0.77 compared with experi-

ment depending on which AMBER-implemented implicit sol-

vent model was used (PB, TC, OBC2, or GBn). In a subsequent

study, using the TIP3P water model in explicit solvent simula-

tions for the same database of compounds, Mobley et al.

found improved agreement between the calculated and exper-

imental hydration free energies with RMS errors of 1.2 kcal/

mol and an R2 of 0.89.[2]

The quality of the ligand parameters themselves has a signifi-

cant impact on the reliability of the estimated hydration free

energies. A large database of 239 diverse neutral compounds

was recently investigated using different force field parameters

combined with implicit and explicit solvent simulation strat-

egies for calculating hydration free energies.[3,4] All but 18 of

the compounds in this database are also contained in the data-

base that was studied by Mobley et al.[2,28] Shivakumar et al.

originally calculated hydration free energy estimates for these

239 compounds using GAFF and CHARMm-MSI ligand parame-

ters combined with charge assignments from ChelpG, RESP, or

AM1-BCC protocols. Overall, the AM1-BCC charges provided the

best correlation between explicit TIP3P solvent simulations cal-

culated hydration free energies and experimental values with

the GAFF/AM1-BCC (R2 ¼ 0.87) yielding higher quality results

than the CHARMm-MSI/AM1-BCC parameters (R2 ¼ 0.76).[4] In a

more recent study, Shivakumar et al. computed hydration free

energies from explicit solvent simulations using the OPLS-AA

force field and charge parameterization scheme and achieved

even better agreement with experiment (R2 ¼ 0.94).[3]

In the current study, we focus on the quality of the absolute

hydration free energies that are obtained for a large database

of 499 compounds using different implicit solvent models for

a given set of force field parameters and extensive simulation

trajectories. The objective is to identify areas in which the cur-

rent generation of implicit solvent models implemented in

CHARMM and AMBER needs refinement of their parameters in

their quest for higher quality hydration free energy estimates.

In their original articles, each implicit solvent model has dem-

onstrated reasonable agreement between the electrostatic GB

and PB calculations for model compounds. Thus, in this work,

we are focused primarily on the physical parameters, although

we recognize that in some GB models, the physical and nu-

merical parameters are less readily separable from one

another. First, we provide a brief overview of the primary dif-

ferences among the solvent models used in this study. Second,

we present the quality of the calculated hydration free ener-

gies with respect to reproducing experimental values as well

as results from explicit solvent simulations and discuss the sim-

ilarities among the models. Third, we discuss the results in the

context of the chemical classes of compounds that present

challenges to the different implicit solvent models. Finally, we

explore the nature of the contributions of the nonpolar esti-

mator to the quality of the hydration free energy estimates.

Theory

Overview of implicit solvent models

The specifics of each implicit solvent model are already fully

documented in the original papers. Here, we simply highlight

the fundamental differences among the implicit solvent mod-

els that are investigated in this study; Table 1 provides an
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overview of these differences. All models that were studied

decompose the total hydration free energy into an electro-

static component and a nonpolar component. Each model

employs variations of the GB model to approximate the elec-

trostatic contribution to the solvation free energy. The GB for-

malism originally proposed by Still et al. is described by the

equation[9]:

DGGB
elec ¼ � 1

2

1

em
� 1

esolv

� �XN
i¼1

XN
j¼1

qiqjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ij þ aiaj exp r2ij=jaiaj

� �r (1)

where rij is the distance between the charges qi and qj, em and

esolv are the dielectric constants assigned to the solute mole-

cule and solvent, respectively, N is the number of solute

atoms, ai is the effective Born radius for atom i, and j has a

value of 2 in the work of Still et al.[9] and typically is set to 4

or 8. The effective Born radius of each solute atom reflects the

degree of its burial within the molecule and becomes the key

parameter for the calculation of the electrostatic contribution

to the solvation free energy. The effective Born radius for

atom i can be calculated from the atomic electrostatic self-sol-

vation energy in the Born equation (eq. 1):

ai ¼ � 1

2

1

em
� 1

esolv

� �
q2i

GGB
elec;i

(2)

The primary advantage of GB models lies in their ability to

estimate the Born radii by alternative, computationally efficient

means. Here, we focus primarily on volume-based GB models

where the Coulomb field approximation (CFA), which approxi-

mates the electric displacement around an atom by the

Coulomb field, is used to estimate the magnitude of the

Born radius:

1

ai
¼ 1

Ri
� 1

4p

Z
solute

1

r4
dV (3)

where Ri is the intrinsic radius of atom i (the Born radius in

the absence of all other atoms) and is often set equal to the

van der Waals radius and where the second term is the Cou-

lomb field integral which is computed over the volume of the

solute excluding the sphere of radius Ri around atom i. Differ-

ent flavors of GB models use alternative approaches to calcu-

lating and scaling this integral and some include higher order

correction terms to account for limitations in the CFA that

arise from off-center charges and nonspherical volumes of

many systems.

The implicit solvent models explored in this study all ap-

proximate nonpolar contributions to the total hydration free

energy using a SASA term. In traditional MM-PSBA and MM-

GBSA methods, the total molecular SASA is used and the non-

polar contribution is described by:

DGnp ¼ cSASAþ b (4)

where c and b are the surface tension parameter and off-set

values, respectively. For a series of linear alkanes, fitting molec-

ular surface area terms to experimental hydration free energies

yielded values of c ¼ 0.00542 kcal/(mol Å2) and b ¼ 0.92

kcal/mol.[32]

In this study, we also consider an empirical strategy that

was recently developed by Caflisch and coworkers.[33,34] In this

strategy, atomic Born radii and SASAs are calculated from com-

binations of a measure of the volume occupied by the solute

around this atom, Ai, and a measure of the symmetry of distri-

bution of atoms around this atom, Bi. For specific van der

Waals radii, five parameters were optimized to reproduce PB

atomic solvation energy values and four parameters were opti-

mized to estimate atomic SASA.

Implicit solvent models implemented in AMBER

All the methods that are implemented in AMBER[35] are

based on the pairwise descreening formalism for estimating

Born radii that was outlined by Hawkins et al.[16] In the early

GB model of Hawkins, Cramer, and Truhlar (HCT; with param-

eters described by Tsui and Case,[20] TC, igb ¼ 1),[16] the mo-

lecular volume in the Coulomb field integral is estimated

based on the van der Waals sphere of each solute atom and

is parameterized for use with the AMBER force field. How-

ever, this approximation to the molecular volume creates

regions of interstitial high dielectrics that would be too small

Table 1. Summary of the differences among the implicit solvent models investigated in this study.

TC OBC OBC2 GBMV GBMV2 GBSW GBSW/MS GBSW/MS2 FACTS

DGelec; ai
estimate

Three-

parameter

Five-

parameter

Five-

parameter

Two-

parameter;

grid

Five-

parameter;

analytic

Two-

parameter

Two-

parameter

Three-

parameter

Five-

parameter

PB boundary – – – MS MS vdW MS MS vdW

Intrinsic radii Amber6 mbondi2 mbondi2 vdW vdW vdW vdW vdW vdW; polar

H ¼ 1.0 Å

DGnp; SASA LCPO[37] LCPO[37] LCPO[37] SASA-1[11] SASA-1[11] SASA[10] SASA[10] SASA[10] Five-

parameters[34]

The Amber6[20] set is based van der Waals radii estimated by Bondi[45] with optimized radii for hydrogen and phosphorus atoms. The modified Bondi

set 2 (mbondi2) represents the Bondi van der Waals radii with the radius of hydrogen atoms bound to nitrogen increased from 1.2 to 1.3 Å.

MS ¼ molecular surface.

Estimation of Small Molecule Absolute Hydration Free Energies

Journal of Computational Chemistry http://wileyonlinelibrary.com/jcc 2911



to accommodate a solvent molecule. Onufriev, Bashford,

and Case demonstrated how the use of a packing correction

factor, k,

1

ai
¼ 1

Ri
� k
4p

Z
solute

1

r4
dV (5)

could reduce the influence of these spurious high dielectric

regions in the HCT model. An empirical value of k ¼ 1.4 was

shown to provide good agreement between charge–charge

interaction energies calculated with PB and GB.[19] The Onu-

friev, Bashford, and Case models (OBC; igb ¼ 2; OBC2, igb ¼
5)[36], however, use an alternative approach to correct the defi-

ciencies of the GBHCT model for compounds, which have signif-

icant interior regions. In these OBC models, the effective Born

radii are rescaled by empirical parameters that are propor-

tional to the degree of the atom’s burial, as quantified by the

volume integral in eq. 3, such that:

1

ai
¼ 1

Ri � s
� 1

Ri
tanh dW� bW2 þ vW3

� �
(6)

where s ¼ 0.09 Å and W represents:

W ¼ Ri � s

4p

Z
solute

1

r4
dV (7)

where Ri is the van der Waals radius of atom i; and d, b, and v
are dimensionless parameters that were optimized to repro-

duce PB radii. This well-behaved rescaling function has a

‘‘smooth’’ upper bound on Ri as a function of volume integral

to ensure numerical stability. The OBC and OBC2 models differ

by the values of {d,b,v} used in eq. 6 (OBC: d ¼ 0.8, b ¼ 0,

and v ¼ 2.90912; OBC2: d ¼ 1.0, b ¼ 0.8, and v ¼ 4.851). In

the development of the OBC and OBC2 implicit solvent mod-

els, parameters were optimized to ensure agreement between

the GB and corresponding PB calculations as well as with

experimental hydration free energies. SASAs were computed

by the linear combinations of pairwise overlap (LCPO)

algorithm.[37]

Implicit solvent models implemented in CHARMM

Several GB molecular volume (GBMV)[11,12] models are imple-

mented in CHARMM.[38] The first, GBMV, is a two-parameter

grid-based method that uses nearly the same molecular vol-

ume that is used in conventional Poisson calculations and

includes an empirical correction term, DG1
elec, to the Coulomb

field approximation, DG0elec, based on a measure for the devi-

ation from the ideal spherical shape such that:

DGelec;i ¼ DG0
elec;i þ DG1

elec;i (8)

where the effective Born radii are estimated from:

ai ¼ S

1� 1ffiffi
2

p
� �

A4 þ A7

þ D (9)

In this formalism, A4 is related to the Coulomb Field term in

eq. 3 and A7 to the correction term, such that:

A4 ¼ 1

Ri
� 1

4p

Z
solute

1

r4
dV

0
@

1
A (10)

and

A7 ¼ 1

4R4i
� 1

4p

Z
solute

1

r7
dV

0
@

1
A
1=4

(11)

The second GBMV model, GBMV2, is a five-parameter analyti-

cal method in which the molecular volume is constructed

from a superposition of atomic functions. The fundamental

advantage of this analytical approach over the grid representa-

tion is that forces are readily expressed. In GBMV2,

ai ¼ S

C0A4 þ C1A7
þ D (12)

GB with a smooth switching function model (GBSW)[10] allevi-

ates the numerical instability of solvent force calculations aris-

ing from discontinuities in the dielectric boundary by using a

simple polynomial switching function to smooth the dielectric

boundary. In the original GBSW formalism, a van der Waals sur-

face representation replaces the more expensive molecular

surface representation in GBMV. In GBSW, the two parameters

C0 and C1 in eq. 12 (with S ¼ 1 and D ¼ 0) are obtained for

various smoothing lengths, 2w, to reproduce the exact self-sol-

vation free energies from Poisson theory using a van der Waals

definition of the dielectric boundary. With the smooth switch-

ing function, the Coulomb term is described by:

A4 ¼ 1

Ri
� 1

4p

Z
solute

V r; raf gð Þ
r � rij j4 dV

0
@

1
A (13)

and the correction term is described by:

A7 ¼ 1

4R4i
� 1

4p

Z
solute

V r; raf gð Þ
r � rij j7 dV

0
@

1
A
1=4

(14)

where V(r,{ra}) is the solute interior volume and is defined by:

V r; raf gð Þ ¼ 1�
Y
a

H r � raj jð Þ (15)

and where the atomic volume exclusion function, Hi(r), is given by:

H rð Þ ¼
0; r� RPBi �w
1
2þ 3

4w r�RPBi
� �� 1

4w3 r�RPBi
� �3

; RPBi �w< r< RPBi þw
1; r� RPBi þw

8<
:

9=
;

(16)

where {RPB} are the set of atomic radii that are used to define

the dielectric boundary in the PB calculations. Two additional
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parameterizations of the GBSW model were investigated. In

the GBSW/MS model, the adjustable parameters were opti-

mized to reproduce Poisson self-solvation free energies using

the sharp, molecular surface description of the dielectric

boundary.[39] In this case, for w ¼ 0.2 Å, C0 ¼ 1.204 and C1 ¼
0.187 in eq. 12. To reflect the importance of reproducing small

Born radii accurately because they contribute most signifi-

cantly to the electrostatic solvation free energies, GBSW/

MS2[26] was recently parameterized using the equation:

1

ai
¼ C0

0A4þC0
1A7þD0 (17)

where optimal values of C00 ¼ 1.437, C01 ¼ 0.1631, and D0 ¼
�0.0505 were obtained.

The fast analytical continuum treatment of solvation model

(FACTS)[34] is significantly different from the above GB models

in that it does not assume the CFA and does not require the

dielectric boundary between the solvent and solute to be

defined. Instead FACTS is based on the analytical evaluation of

the volume, Ai, and spatial symmetry, Bi, of the solvent that is

displaced from around solute atom i. These two measures are

combined in empirically parameterized equations to approxi-

mate the self-electrostatic energies:

DGFACTS
elec;i ¼ a0 þ a1

1þ e�a2 Aiþb1Biþb2AiBi�a3ð Þ (18)

where ao and a1 are determined by using the limiting cases of

a fully buried and fully exposed atoms, respectively. The other

parameters b1, b2, a2, a3, and Rsphere (which defines the solute

volume considered in calculating Ai and Bi) are optimized for

each van der Waals radius. The self-electrostatic energies then

provide the effective Born radii via eq. 2. Similarly, the SASA is

approximated by:

SASAFACTS
i ¼ c0 þ c1

1þ e�c2 Aiþd1Biþd2AiBi�c3ð Þ ; (19)

and its corresponding parameters are optimized to reproduce

exact SASA values. As the FACTS model only requires the vec-

tors between neighboring atom centers, it is significantly faster

than the corresponding families of GBMV and GBSW calcula-

tions and has been documented to be only four times slower

than vacuum calculations.[34]

Methods

Small molecule database

A large database of 499 small neutral organic compounds has
been studied. The original database was made available from
Mobley et al.[2] which in turn was compiled from molecules
from Rizzo et al.,[27] Guthrie,[40] and their earlier studies.[41,42]

Five duplicate compounds were identified in the original data-
base of 504 compounds and were removed. This database
contains a wide variety of chemical environments that are
commonly encountered in drug design applications, including
saturated and unsaturated hydrocarbons, aromatic and hetero-

cyclic rings, halides, and polar functional groups. Checkmol[43]

was used to classify the functional groups that are represented
in each molecule. Table 2 lists the frequency of each class of

functional groups that is represented in this database. The full
list of ligands that were assigned to each functional group
classification is included in Table S1 of the Supporting
Information.

Small molecule parameterization

AMBER GAFF[29]/AM1-BCC[30,31]parameters and partial charges
for all compounds in the database were obtained directly from
the Supporting Information provided by Mobley et al.,[2] which
used the Merck–Frosst implementation of the AM1-BCC charge
assignments and augmented van der Waals well-depth param-
eters for triple bonded carbon atoms. The AMBER prmtop files
were converted to the corresponding CHARMM topology and
parameter files using the conversion tool AMBER2CHARMM
which will be incorporated into the MMTSB toolset[44](http://
mmtsb.org); prmtop charges were scaled by 332.0522173�1/2

to account for the difference in the charge conversion factors
used in AMBER and CHARMM.[35] Validation of the consistency
between the vacuum energies that are calculated from both
AMBER and CHARMM is provided in the Appendix. In keeping
with the intrinsic radii that are suggested in the Amber man-
ual, Amber6 radii were used for the TC analyses whereas modi-
fied Bondi van der Waals radii[45] (mbondi2) were used for the
OBC and OBC2 analyses. Appropriate radii were incorporated
into the prmtop files using a variation of the AMBER2CHARMM
tool.

Molecular dynamics simulations and analysis

Simulation trajectories were generated for each molecule in
both vacuum and the GBMV2 implicit solvent environment. In-
finite cutoffs were used; covalent bonds involving hydrogen
atoms were restrained using the SHAKE[46]algorithm and the
time step was 1.5 fs. The temperature was maintained near
298 K by coupling all heavy atoms to a Langevin heat bath

Table 2. Functional groups designated by Checkmol[43] and their

frequency of representation in the database of 499 compounds.

Group No. Group No.

Acetal 2 Ether_alkyl 25

Acid 6 Ether_aryl 10

Alcohol 38 Fluoro 10

Aldehyde 19 Halogen 22

Alkane 27 Heterocyclic 48

Alkene 35 Hypervalents 4

Alkyne 6 Iodo 11

Amine 44 Ketone 25

Aromatic 169 Nitro 17

Bromo 21 Nitrogen 2

Ca_amide 10 Orthoester 8

Ca_ester 47 Other 8

Ca_ortho 10 Phenol 33

Carbonitrile 11 Sulfur 4

Chloro_alkyl 31 Thioether 6

Chloro_aryl 20 Thiol 5

Cyclohydrocarbon 9

Ca ¼ carboxylic acid.
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using a frictional coefficient of 10 ps�1. Simulation trajectories
were 10.5 ns in length. Snapshots were saved every 5 ps
throughout the last 10 ns for subsequent free energy analysis.
Simulation trajectories were generated and energy evaluations
associated with the GBMV, GBSW and GBSW/MS, and FACTS
implicit solvent models were obtained using the CHARMM mo-
lecular dynamics package c36a4.[38,47] Energies associated with
the GBSW/MS2 implicit solvent model was obtained using a
modification of CHARMM provided by Chen.[26] Energies calcu-
lated with the TC, OBC and OBC2 implicit solvent models were
obtained for each of the snapshots using the MMTSB utility[44]

enerAMBER.pl. Simulations were analyzed by the Bennett ac-
ceptance ratio method (BAR)[48] using a modified version of
pyMBAR.[49] An analysis of the sensitivity of the results to the
specific Hamiltonian used to generate the trajectory is pro-
vided in Appendix. All simulations and calculations were per-
formed on dual 2.66 GHz Intel Quad Core Xeon CPUs.

Standard parameters in the MMTSB utility enerAMBER.pl
were used but with infinite nonbonded cutoffs for the TC,
OBC, and OBC2 models. The SASA for the nonpolar contribu-
tion to the hydration free energy was calculated using the
LCPO model.[37] The GBMV model used a dodecahedron angu-
lar integration grid, geometric cross-term in the Still equation
and j ¼ 8 in eq. 1; the multiplicative factor, S, and shift, D, of
ai in eq. 12 were 0.9026 and �0.007998, respectively. The
GBMV2 model used a Lebedev angular integration grid with
grid size of 38, geometric cross-term in the Still equation and
j ¼ 8 in eq. 1; the multiplicative factor, S, and shift, D, of ai in
eq. 12 were 0.9085 and �0.102, respectively. For the GBSW
and GBSW/MS calculations, the half smoothing lengths, w,
were 0.3 and 0.2 Å, respectively. The grid spacing in the
lookup table was 1.5 Å and the optimized default values for
the coefficients for the CFA and correction terms were used
(i.e., Co and C1 in eq. 12). The GBMV and GBSW intrinsic radii
were assigned from the van der Waals radii. Default FACTS pa-
rameters were used with infinite nonbonded cutoffs. FACTS
parameters were used that had been optimized for a solute
dielectric constant of 1. van der Waals radii, which had not be
investigated in the original FACTS study, had FACTS parameters
estimated by interpolation or extrapolation from the optimized
FACTS parameters using the ‘‘tavw’’ option in CHARMM. To be
consistent with the FACTS parameterization strategy, polar
hydrogens were assigned van der Waals radii of 1.0 Å.

The nonpolar surface tension coefficient, c, was systemati-
cally varied between 0.0 and 0.07 kcal/(mol Å2) for each
implicit solvent model. The optimal surface tension coefficient
was identified for each implicit solvent model to be the value
of c that minimized the AUE for a test set of compounds. The
test set was comprised of every tenth molecule in the full
dataset sorted by experimental hydration free energies. In
addition, the free energies were evaluated for c ¼ 0.00542
kcal/(mol Å2) with an offset value of b ¼ 0.92 kcal/mol.

Results and Discussion

Overall quality of absolute hydration free energy estimates

across implicit solvent models

Using optimized values of the nonpolar surface tension param-

eters, each of the nine different implicit solvent models per-

forms reasonably well in reproducing experimental hydration

free energies for the database of 499 compounds. The meas-

ures of model quality are summarized in Table 3. Not including

GBSW/MS2, the AUEs for the implicit solvent models range

from 1.1 to 1.4 kcal/mol; the root mean square (RMS) error

varies between 1.5 and 2.1 kcal/mol and the correlation coeffi-

cients lie between R2 ¼ 0.66 and 0.81. About half of the com-

pounds in the database (44–59%) have hydration free energies

that are correctly predicted within 1 kcal/mol of their experi-

mental values. At least three quarters of the compounds (75–

83%) have hydration free energies that are correctly predicted

within 2 kcal/mol and about 90% of the compounds (87–97%)

have hydration free energies that are correctly predicted

within 3 kcal/mol. Among the models explored in this study,

the GBMV, GBMV2, and GBSW models demonstrate the best

overall agreement with experiment. The measures of model

quality are systematically poorer for the GBSW/MS2 models in

which the average unsigned and signed errors are 1.9 and

�1.0 kcal/mol, respectively, the RMS error is 2.5 kcal/mol and

the R2 ¼ 0.684.

All the implicit solvent models also showed reasonable

agreement with the hydration-free energies reported for TIP3P

explicit solvent simulations for the same compounds by Mob-

ley et al.[2] Again, not including the GBSW/MS2 model, the

Table 3. Overall measures of model quality (in kcal/mol) for absolute hydration free energy predictions for trajectories analyzed using different implicit

solvent models and various values for the nonpolar parameters.

Implicit solvent model: TC OBC OBC2 GBMV GBMV2 GBSW GBSW/MS GBSW/MS2 FACTS TIP3P

Opt c kcal/(mol�Å2) 0.01 0.01 0.0075 0.005 0.005 0.01 0.03 0.04 0.005 –

h|Error|i 1.32 1.40 1.42 1.15 1.14 1.20 1.42 1.86 1.25 1.03

hErrori �0.24 �0.68 �0.83 �0.60 �0.50 �0.58 �0.56 �0.98 0.23 0.67

RMS Error 1.88 2.08 2.05 1.61 1.60 1.52 1.87 2.50 1.80 1.26

R2 0.751 0.723 0.710 0.809 0.784 0.788 0.714 0.684 0.663 0.888

% |Error| < 3 kcal/mol 91 89 87 93 94 97 91 83 91 99

% |Error| < 2 kcal/mol 76 77 76 85 84 80 75 62 83 92

% |Error| < 1 kcal/mol 55 53 52 59 58 51 44 37 53 51

Comparison with TIP3P

h|Diff|i 1.33 1.53 1.67 1.40 1.29 1.41 1.54 2.05 1.04

hDiffi �0.91 �1.35 �1.50 �1.27 �1.17 �1.25 �1.23 �1.65 �0.44

R2 0.822 0.856 0.839 0.908 0.911 0.905 0.834 0.794 0.812

Trajectories were generated using CHARMM and the GBMV2 implicit solvent model with no nonpolar contribution. ‘‘Opt c’’ reflects the values of c (b ¼
0 kcal/mol) which yielded the lowest AUE in the test set of compounds. TIP3P values were calculated from Supporting Information in Mobley et al.[2]
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average unsigned and signed differences are <1.7 and 1.5

kcal/mol, respectively. Although the models show comparable

magnitudes of the signed and unsigned differences, the

GBMV, GBMV2, and GBSW models show slightly better correla-

tion with the hydration free energies estimated compared

with explicit solvent simulations (R2 ¼ 0.91) whereas the rest

of the models have R2 < 0.86. Hydration free energies esti-

mated from the GBSW/MS2 model show less agreement with

explicit solvent calculations with unsigned and signed differen-

ces of 2.1 and �1.7 kcal/mol, respectively, and R2 ¼ 0.79. For

this size of dataset, R2 differences of �0.03 are statistically sig-

nificant at the 95% confidence interval level as evaluated by

the Fisher transformation.

These overall results are comparable with what has been

reported by Rizzo et al.[27] and Mobley et al.[28] for implicit sol-

vent simulations for GAFF/AM1-BCC parameterization of these

compounds. Hydration free energies computed for some indi-

vidual compounds are significantly different than those

reported in Mobley et al.[28]; however, these differences are pri-

marily due to the AM1-BCC partial charge assignments. In the

implicit solvent study, the Antechamber[50] preprocessor was

used to assign the charges whereas in the later explicit solvent

study (from which the parameter files were taken for our anal-

ysis) the Merck–Frosst implementation was used. Finally, given

the trends for the GB models that were reported in Mobley

et al.,[28] it is anticipated that the recent GB model, GBn,[18]

would have comparable or slightly degraded performance rela-

tive to the TC and OBC2 models.

Similarities among solvent models

Hydration free energy estimates for individual molecules in the

database are highly correlated for different subsets of implicit

solvent models. Figure 1 shows the correlations between each

pair of implicit solvent models and their correlation with ex-

perimental values as well as results from explicit solvent simu-

lations reported by Mobley et al.[2] The strongest correlations

are observed between the OBC and OBC2 models with R2 ¼
0.996, the GBSW/MS1 and GBSW/MS2 models with R2 ¼ 0.995

and between the GBMV and GBMV2 models with R2 ¼ 0.991.

The unsigned difference between the GBMV models averaged

over all 499 compounds was 0.25 kcal/mol, and the differences

were localized primarily in the hydration free energy estimates

for the acids and alcohols. The unsigned difference between

the OBC and OBC2 models was 0.30 kcal/mol, and individual

differences were dominated by compounds containing hyper-

valent sulfur atoms, phosphate groups, and alkyl chains. The

magnitude of the differences between the GBSW/MS and

GBSW/MS2 models was significantly larger with average

unsigned and RMS differences of 0.66 and 0.90 kcal/mol,

respectively; with these models, the differences were domi-

nated by hydration free energy estimates for alcohols, acids,

esters, and amines. These correlations are not surprising

because the models share basic assumptions in their strategies

for efficiently calculating the Born radii. For example, OBC and

OBC2 use the same set of intrinsic radii (mbondi2) and use the

same functional forms (eqs. 6 and 7) to calculate the Born

radii, albeit with slightly different parameters {d,b,v}; the

GBMV2 model is an analytical representation of the grid-based

GBMV model with the same definitions of the dielectric

boundary and same set of intrinsic radii (van der Waals radii)

as each other. The differences in the individual hydration free

energies observed the highly correlated GBSW/MS and GBSW/

MS2 models presumably arises from the differences in the

functional forms of eqs. 12 and 17 that were used to obtain

the numerical parameters in the respective models.

Targeting chemical classes for further parameter

optimization across all solvent models

The reliability of hydration free energies calculated for individ-

ual compounds is strongly dependent on the functional

groups that are represented in the molecule. The quality is

related to the ligand parameters, especially the atomic partial

charge assignments, as well as the numerical and physical pa-

rameters associated with the implicit solvent model. Here, we

are primarily interested in identifying those classes of com-

pounds that are not modeled reliably and in trying to deci-

pher the underlying cause of the poor quality estimates. The

AUEs for different chemical classes of compounds for the

implicit solvent models are depicted in Figures 2 and 3, and

the list of compounds that were assigned to each class is

included in Supporting Information Table S1. Given the small

differences in hydration free energies estimated using either

GBMV or GBMV2 model and either the OBC or OBC2

model, GBMV and OBC models were omitted from Figures 2

and 3 for clarity.

Only the chemical class of compounds that contain hyperva-

lent sulfur atoms has AUEs > 2 kcal/mol, regardless of which

implicit solvent model is used. The uniformly poor results in

which the AUEs range from 2.8 to 8.4 kcal/mol and average

errors range from �9.1 to �2.8 kcal/mol suggest a problem

with the ligand force field parameters used to model the

hypervalent sulfurs. Although Mobley et al.[2] report improved

hydration free energies for the four molecules that are

assigned to this chemical group based on explicit solvent sim-

ulations (AUE ¼ 2.0 kcal/mol), in another study for a series of

drug-like molecules with the AM1-BCC force field modeled in

explicit solvent, the average errors for compounds that con-

tained hypervalent sulfurs were reported to be �8.1 kcal/

mol.[51] Therefore, it is likely that the errors for the hypervalent

sulfur compounds are predominantly due to limitations in

force field parameters and, as Mobley et al. suggest, specifi-

cally in the GAFF approximation that all sulfur atoms have the

same Lennard–Jones parameters.[51] This approximation may

be further exacerbated in implicit solvent simulations in which

the same intrinsic radii are applied to all sulfur atoms regard-

less of their chemical environment.

Four additional classes of compounds, the aldehydes, car-

boxylic acid esters, nitrogens, and fluorine-containing com-

pounds, each have AUE > 2 kcal/mol for at least four implicit

solvent models. In each case, the explicit solvent simulations

are reported to have AUEs just over 1 kcal/mol. Therefore,

these functional groups appear to be good candidates for
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reparameterization of the ‘‘physical parameters’’ associated

with how they are treated within the implicit solvent models.

One of the primary physical parameters is the set of intrinsic

radii that are used to define the dielectric boundary for com-

puting the Born radii, the degree of burial, of each atom. The

hydration free energies for these compounds are systemati-

cally overestimated relative to experiment suggesting that the

current intrinsic radii are too small and, thus, have charges

that are closer to the surface. These atoms are essentially

more exposed than they should be and, consequently, have

excessively large contributions of the electrostatic component

to the free energy.

For four classes of compounds, the hydration free energies

estimated from implicit solvent simulations are of better qual-

ity than the corresponding reported explicit solvent simula-

tions. In two cases, the discrepancy is associated with a

change in parameters in the implicit solvent simulations.

Improved results from implicit solvent simulations for the

Figure 1. Correlation between calculated absolute hydration free energies for the 499 compounds in the database for all pairs of implicit solvent models.
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alkynes and, to a lesser extent, the carbonitriles arises from

the use of the improved van der Waals parameters suggested

by Mobley et al. for triple-bonded carbon atoms where the

well-depth parameter, e, was augmented from 0.086 to 0.21

kcal/mol. In fact, for TIP3P simulations with the augmented

well-depth parameters, the AUEs improved from 1.9 to 0.5

kcal/mol for the alkynes[2] and so are in good agreement with

the current implicit solvent calculations. The reported explicit

solvent simulation results used the original well-depth parame-

ters. For the thioethers and bromide-containing compounds,

the discrepancy between results from implicit and explicit sol-

vent simulations suggests that there may be a fortuitous

Figure 2. Average unsigned errors in kcal/mol for subsets of the database classified by functional groups present for select implicit solvent models. Chemi-

cal classes are sorted by increasing error in the GBSW/MS2 model. TIP3P values were taken from Supporting Information given by Mobley et al.[2]
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cancellation of error with the implicit solvent calculations for

these groups, or alternatively a mismatch between the interac-

tion energy terms between the TIP3P water model and the

small molecules. Therefore, these latter two functional groups

need further investigation, which is beyond the scope of this

article.

Targeting chemical classes for further optimization in

specific implicit solvent models

Within a given class of compounds, most of the implicit sol-

vent models exhibit a level of quality that is comparable with

at least one other solvent model. For example, for all classes

Figure 3. Differences between hydration free energies estimated from implicit solvent models and explicit solvent simulations in kcal/mol. Chemical classes

are sorted by increasing differences in the OBC2 model. TIP3P values were taken from Supporting Information given by Mobley et al.
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of compounds except the nitrogen and thiol compounds, the

quality of the hydration free energies that are estimated using

the GBMV2 formalism is within 0.2 kcal/mol of that estimated

from at least one other implicit solvent model. By contrast,

hydration free energies estimated using TC, FACTS, and GBSW/

MS2 models show more variability than the other solvent mod-

els. TC models have higher quality results for the alkanes (with

an AUE that is 0.3 kcal/mol lower than the next best implicit sol-

vent model result), but significantly poorer results for the sul-

furs, phenols, ether alkyls, acetals, and thioethers (with AUEs

that are 0.4–1.3 kcal/mol higher than the next poorer implicit

solvent model result). One of the limitations of the TC model

compared with the OBC and OBC2 models is the presence of

spurious high dielectric regions within a molecule associated

with interstitial spaces between atom spheres. These spaces,

which would be physically inaccessible to solvent, lead to inap-

propriately small Born radii and, thus, to systematically larger

electrostatic contributions to the hydration free energy.

Although, in general, this would be a less serious issue for small

molecules with proportionally less burial than for large macro-

molecular systems, it may be contributing to the poorer quality

observed across these classes of compounds.

The FACTS model also shows more extreme behavior among

the implicit solvent models in that, for several classes of com-

pounds, FACTS has substantially better or poorer quality than

any other model. Specifically, the aldehydes, carboxylic acid

esters, ketones, thiols, and iodine-containing compounds are

all modeled with FACTS with AUEs that are 0.3–1.1 kcal/mol

lower than the next best implicit solvent model, whereas the

AUE associated with the FACTS model for the carbonitriles are

0.6 kcal/mol poorer than any other implicit solvent model.

FACTS is one of the most recently developed implicit solvent

models in CHARMM and has only been parameterized for pro-

tein atoms in the param19 and param22 topology files. Cur-

rently, the optimized parameters for intrinsic radii for which

parameters do not exist are extrapolated from those that do

exist. Therefore, specifically parameterizations based on eqs.

18 and 19, for this database of small molecules or a subset of

these compounds, which would reflect greater chemical diver-

sity than is observed in the param22 topology files, would

likely further increase the quality of the hydration free energy

estimates. Given that FACTS is also one of the fastest methods

currently available for estimating solvation free energies, we

believe this would be a very promising avenue to pursue.

Finally, the GBSW/MS2 model exhibits significantly poorer

results than the other implicit solvent models for the hyperva-

lent sulfurs, acids, aldehydes, nitrogens, chloroalkyls, and chlor-

oaryls as well as the bromine-containing compounds with

AUEs 0.4–4.3 kcal/mol higher than the next poorer implicit sol-

vent model. The recent parameterization of the GBSW/MS2

model was specifically targeting small Born radii, that is, atoms

that are on the surface of the molecule, because they will con-

tribute more substantially to the electrostatic energy than their

buried counterparts. As there is relatively little ‘‘burial’’ of

atoms to consider in this database of small molecules, this

study is likely not effectively probing the strength of this

implicit solvent model. Furthermore, efforts for optimizing the

physical parameters for the GBMSW/MS2 models were focused

on reproducing the strengths of pairwise and three-body inter-

actions among polar and nonpolar side-chain analogs and

compounds in explicit solvent simulations and did not include

the chemical diversity that is observed in this database of

compounds. Therefore, more specific parameterization target-

ing this database or a subset of this database would likely

extend the transferability of this implicit solvent model to a

larger chemical palette and likely improve the quality across

more chemical classes.

Effect of nonpolar contributions to quality of overall

hydration free energies

As has been demonstrated in other work, inclusion of a non-

polar contribution is crucial for obtaining accurate estimates of

absolute hydration free energies using implicit solvent mod-

els.[22,52] With no nonpolar contribution to the total hydration

free energy, all models in this study have average signed errors

(DGcalc – DGexpt) between �3.7 and �1.1 kcal/mol; this system-

atic error represents a tendency for molecules to be overstabi-

lized in the implicit solvent environment relative to experi-

ment. Furthermore, a comparison of the electrostatic

contributions to the total hydration free energies modeled

with implicit solvent models in this study and explicit water

simulations reported by Mobley et al.[2] reveals the tendencies

for molecules to be overstabilized in each implicit solvent

model except FACTS relative to the TIP3P results. The compari-

son is summarized in Table 4 and indicates that the GB com-

ponent of the GBMV, GBMV2, GBSW, GBSW/MS, and FACTS

models have the best agreement with the TIP3P electrostatic

Table 4. Overall comparison between the electrostatic contribution of the implicit solvent models and the electrostatic contributions from the TIP3P

simulations reported in the Supporting Information in Mobley et al.[2]

Implicit solvent model TC OBC OBC2 GBMV GBMV2 GBSW GBSW/MS GBSW/MS2 FACTS

h|Diff|i 1.66 2.16 1.75 1.09 0.98 0.53 1.44 2.51 0.71

hDiffi �1.52 �1.97 �1.45 �0.99 �0.89 �0.05 �1.49 �2.50 0.14

RMS Diff 2.25 2.84 2.35 1.47 1.32 0.79 1.86 3.18 1.16

R2 0.837 0.806 0.790 0.925 0.928 0.925 0.915 0.898 0.825

% |Diff| < 3 kcal/mol 85 77 83 94 98 100 91 67 95

% |Diff| < 2 kcal/mol 71 58 69 83 88 97 776 50 93

% |Diff| < 1 kcal/mol 40 27 38 59 62 85 42 22 79

hDiffi ¼ hDGelec(implicit solvent model) – DGelec(TIP3P)i.
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contributions with average and unsigned average differences

of 0.5–1.1 kcal/mol and R2 values greater than 0.825.

In this work, we have used a simplified model, a SASA term

scaled by a surface tension parameter, c, to estimate the non-

polar contribution to the hydration free energy. A linear scan

of the surface tension parameter for each implicit solvent

model identified the ‘‘optimal’’ value for c, that is, the value

that minimized the AUE for a test set of compounds. Figure 4

illustrates the overall quality of the hydration free energy esti-

mates as a function of nonpolar surface tension coefficient

and demonstrates that similar optimal values are obtained

when using either the test set of compounds (Fig. 2; dashed

line, circles) or the full dataset (Fig. 2; solid line, squares).

In all models, accounting for a nonpolar contribution with

this simplified model significantly improves the average signed

errors with respect to experimental hydration free energies,

minimizes the differences with respect to explicit solvent simu-

lations, and increases the percentage of compounds that are

correctly predicted. For all models, except for FACTS, the aver-

age errors decreased to between �1.0 and �0.2 kcal/mol but

still demonstrate the systematic overstabilization of com-

pounds in solvent relative to experiment. Table 5 summarizes

the results for only the electrostatic contribution and for two

other common sets of nonpolar parameters: c ¼ 0.00542 kcal/

(mol Å2) with b ¼ 0.92 kcal/mol; and c ¼ 0.005 kcal/(mol Å2)

with b ¼ 0 kcal/mol.

The ‘‘optimal’’ value of c for each model differed between

the models. GBMV, GBMV2, and FACTS models had relatively

small optimal c values of 0.005 kcal/(mol Å2); TC, OBC, OBC2,

and GBSW models had slightly larger values between 0.0075

and 0.01 kcal/(mol Å2), whereas GBSW/MS and GBSW/MS2 had

relatively large c values of 0.03 and 0.04 kcal/(mol Å2), respec-

tively. The optimal value depends on two factors: the magni-

tude of the SASA term calculated for the given implicit solvent

model as well as the magnitude of the AUE calculated from

the electrostatic contribution alone. The first factor has a phys-

ical meaning, whereas the second can be viewed as a ‘‘fudge

factor’’ that compensates for inadequacies in the electrostatic

contribution of the solvent models themselves. The average

SASA term across all molecules in the database was smallest

for the GBSW, GBSW/MS, and GBSW/MS2 models (<SASA> �
68 Å2), systematically larger for the AMBER-based models

(<SASA> � 253 Å2) and FACTS (<SASA> � 262 Å2) and larg-

est for the GBMV, GBMV2 models (<SASA> � 321 Å2). From

these trends, it is apparent that the relatively small values of c
for GBMV, GBMV2, TC, OBC, and OBC2 are due to their compa-

rably large SASA calculations. By contrast, the small values of c
for the GBSW and FACTS models are due to their relatively

small AUEs for the electrostatic contribution alone. The larger

values for c for the GBSW/MS and GBSW/MS2 models are

related to both the smaller SASA terms combined with larger

errors when only the electrostatic contribution is considered.

Limitations of this simplified model based linear scaling of

the SASA have been demonstrated previously. Mobley et al.’s

study found that while the repulsive and attractive compo-

nents of the nonpolar contribution obtained from TIP3P

Figure 4. Sensitivity of estimated hydration free energies on the surface tension coefficient for each of the implicit solvent models for the test set (dashed

line; circles) and full database (solid line; squares). The test set was comprised of every tenth compound in the database sorted by experimental hydration

free energy.

J. L. Knight and C. L. Brooks

Journal of Computational Chemistry2920 http://wileyonlinelibrary.com/jcc



simulations were correlated with solute surface area or volume

the total nonpolar contribution, which is a small difference

between the two large components showed no correlation

with the solute surface area or volume.[2] Further improve-

ments in the agreement between the calculated and experi-

mental hydration free energies for small molecules could likely

be achieved by adopting atom-specific surface tension param-

eters as proposed by Eisenberg and McLachlan[25] and Scher-

aga and coworkers[23] such that:

DGnp ¼
XN
i¼1

ciSASAi (20)

where the atomic SASAs, SASAi, are scaled by atom-specific

surface tension parameters, ci. In their study, Rizzo et al.[27]

demonstrate that PB/SA and GB/SA calculations with atom-

type-specific optimized surface tension parameters generally

showed improved agreement with experimental hydration free

energies over implicit solvent calculations with the optimal lin-

ear alkane parameters of c ¼ 0.00542 kcal/(mol Å2) and b ¼
0.92 kcal/mol. Interestingly, the attractive and repulsive com-

ponents individually correlate strongly with surface area. How-

ever, it is also likely that fundamentally more sophisticated

nonpolar models will be required to effectively represent the

underlying physics of solvation and significantly improve the

quality of hydration free energies estimates.[6,22,53] Levy and

coworkers have shown promising results by further decompos-

ing the nonpolar contribution to the total free energy into a

component accounting for the cost of cavity formation within

the solvent and a component reflecting the solute–solvent van

der Waals dispersion interactions.[13,24] This strategy likely con-

tributes to the low reported AUEs of 0.6 kcal/mol reported by

Gallicchio et al.[13,24] and Jorgensen et al.[17] for hydration free

energies for series of neutral molecules modeled with the

OPLS-AA force field. Levy and coworkers have also recently

implemented an additional component to the total energy

that models first-solvation shell effects around a solute that

would account, for example, for solute–solvent hydrogen

bonding that is not accurately modeled within a continuum

approximation.[14] Fennel et al. have proposed an alternative

strategy in which explicit solvent simulations are used to pre-

compute the properties of water molecules around a series of

nonpolar solute spheres that exhibit diverse radii and attrac-

tive dispersion interactions and information from the precalcu-

lated table are assembled to approximate the hydration of an

arbitrary solute molecule.[54] This Semi-explicit assembly model

Table 5. Overall measures of model quality (in kcal/mol) for absolute hydration free energy predictions for trajectories analyzed using different implicit

solvent models and common values for the nonpolar parameters.

Implicit solvent model: TC OBC OBC2 GBMV GBMV2 GBSW GBSW/MS GBSW/MS2 FACTS TIP3P

c ¼ 0.005 kcal/(mol�Å2); b ¼ 0.92 kcal/mol

h|Error|i 1.33 1.45 1.31 1.19 1.26 1.06 1.58 2.54 1.68 1.03

hErrori �0.48 �0.91 �0.44 0.45 0.55 0.03 �1.33 �2.43 1.26 0.67

RMS Error 1.93 2.18 1.93 1.56 1.62 1.38 2.09 3.23 2.18 1.26

R2 0.750 0.719 0.708 0.809 0.784 0.796 0.786 0.777 0.663 0.888

% |Error| < 3 kcal/mol 90 88 90 94 93 96 89 67 85 99

% |Error| < 2 kcal/mol 75 74 76 83 82 88 73 49 65 92

% |Error| < 1 kcal/mol 53 54 54 52 48 57 39 22 38 51

Comparison with TIP3P

h|Diff|i 1.44 1.71 1.36 0.78 0.71 0.99 2.09 3.10 1.14

hDiffi �1.15 �1.59 �1.11 �0.22 �0.12 �0.64 �2.00 �3.10 0.58

R2 0.832 0.863 0.842 0.906 0.910 0.912 0.909 0.892 0.809

c ¼ 0.005 kcal/(mol�Å2); b ¼ 0 kcal/mol

h|Error|i 1.81 2.11 1.77 1.15 1.14 1.32 2.33 3.40 1.25 1.03

hErrori �1.50 �1.94 �1.47 �0.60 �0.50 �0.92 �2.28 �3.38 0.23 0.67

RMS Error 2.40 2.78 2.38 1.61 1.60 1.66 2.79 4.00 1.80 1.26

R2 0.750 0.718 0.708 0.809 0.784 0.797 0.786 0.777 0.663 0.888

% |Error| < 3 kcal/mol 81 76 81 93 94 95 75 51 91 99

% |Error| < 2 kcal/mol 67 63 69 85 84 77 45 25 83 92

% |Error| < 1 kcal/mol 33 27 38 59 58 45 15 8 53 51

Comparison with TIP3P

h|Diff|i 2.27 2.66 2.24 1.40 1.29 1.68 2.95 4.05 1.04

hDiffi �2.17 �2.61 �2.14 �1.27 �1.17 �1.59 �2.95 �4.05 �0.44

R2 0.833 0.863 0.843 0.908 0.911 0.913 0.910 0.892 0.812

c ¼ 0 kcal/(mol�Å2); b ¼ 0 kcal/mol

h|Error|i 2.86 3.24 2.82 2.26 2.17 1.52 2.64 3.73 1.60 1.03

hErrori �2.77 �3.21 �2.73 �2.21 �2.10 �1.27 �2.62 �3.72 �1.08 0.67

RMS Error 3.37 3.80 3.34 2.67 2.61 1.87 3.08 4.31 2.12 1.26

R2 0.740 0.706 0.697 0.807 0.778 0.800 0.790 0.781 0.650 0.888

% |Error| < 3 kcal/mol 63 58 67 76 79 93 67 44 92 99

% |Error| < 2 kcal/mol 34 23 34 46 51 73 36 18 69 92

% |Error| < 1 kcal/mol 10 6 10 16 22 36 12 5 38 51

Comparison with TIP3P

h|Diff|i 3.48 3.90 3.46 2.89 2.78 1.99 3.29 4.39 1.88

hDiffi �3.44 �3.88 �3.40 �2.88 �2.78 �1.94 �3.29 �4.39 �1.75

R2 0.835 0.862 0.843 0.923 0.922 0.914 0.912 0.895 0.825
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seems to provide a better description of attractive interactions

and alleviates problems of nonadditivity that is inherent in tra-

ditional SASA-based approaches. Finally, because of the chal-

lenge of representing charge distributions in small molecules

in media with significantly different dielectric properties—for

example, free in aqueous solution and buried within a hydro-

phobic binding pocket—polarizable or fluctuating charge

models[55] may also be required to significantly advance the

quality of hydration free energy estimates across diverse

chemical space.

Conclusions

We have presented a comparison of absolute hydration free ener-

gies that have been calculated for an extensive database of small

neutral molecules using a variety of implicit solvent models.

Given GAFF parameters and AM1-BCC partial charge assignments

for the solutes and using a simplified SASA model for the nonpo-

lar contribution in the implicit solvent models, most of the com-

mon AMBER and CHARMM-implemented implicit solvent models

agree reasonably well with extensive explicit solvent simulations

(average difference 1.0–1.7 kcal/mol and R2 ¼ 0.812–0.911) and

with experimental hydration free energies (AUE ¼ 1.1–1.4 kcal/

mol and R2 ¼ 0.663–0.809). Uniformly poor performance of com-

pounds containing hypervalent

sulfurs suggests a need for fur-

ther optimization of the corre-

sponding sulfur parameters in

the GAFF force field. Other

chemical classes, specifically,

aldehydes, carboxylic acid

esters, thioethers, fluorine, and

bromine-containing com-

pounds, showed poor quality

across many of the implicit sol-

vent models, yet had favorable

hydration free energy esti-

mates using explicit solvent

simulations. Thus, these latter

functional groups are pro-

posed as targets for more

refined optimization of their

associated physical parameters

in the implicit solvent models,

most likely the intrinsic radii

that are used to calculate the

effective Born radii. Inclusion of

the nonpolar estimator signifi-

cantly improves the quality of

the results, but more sophisti-

cated nonpolar models will

also be necessary to effectively

represent the underlying

physics of solvation and take

the quality of hydration free

energies estimated from

implicit solvent models up to

the next level. Given their computational efficiency, implicit sol-

vent models offer a significant practical advantage over explicit

solvent models in simulating macromolecular systems. Therefore,

further studies that focus on protein–ligand binding affinities will

be critical to evaluate the quality of the implicit solvent models in

the context of all-atom macromolecular force fields and to

ensure an appropriate balance between the effective desolvation

cost for a small molecule and the cost associated with desolvat-

ing the binding pocket of the macromolecule that the small mol-

ecule targets in vitro.
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APPENDIX

Validation of Conversion from AMBER to CHARMM Formats

Using snapshots of conformations of each compound in the

database, we demonstrate the excellent agreement between

Figure 5. Comparison between SANDER-calculated energies using the MMTSB utility enerAMBER.pl and energies

calculated using CHARMM for the 499 small molecules in vacuum. (a) Correlation between SANDER and CHARMM

energies (R2 ¼ 1.00). (b) Distribution of total differences between CHARMM- and SANDER-calculated energies.

Figure 6. Correlation between absolute hydration free energies evaluated by (a) GBMV2 or (b) OBC2 from trajec-

tories generated from CHARMM/GBMV2 and SANDER/OBC2 implicit solvent models.

J. L. Knight and C. L. Brooks
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the total energies calculated in vacuum in SANDER using the

MMTSB utilities and those calculated in CHARMM. Figure 5

shows the correlation between the total energies computed in

SANDER and CHARMM as well as the distribution of energy

differences. The largest energy differences are less than 0.12

kcal/mol and arise from compounds containing CN triple

bonds, where the energy difference is localized to the bond

angle component involving the triple bond. This energy contri-

bution will be present in each snapshot of the vacuum and

solvent calculations and so will cancel out when the energies

are subtracted from one another in the BAR analysis; therefore,

we have not adjusted the implementation of either program.

Sensitivity of Results to Trajectory Hamiltonian

To assess the sensitivity of the hydration free energy estimates

for the different implicit solvent models to the GBMV-based

Hamiltonian that was used to generate the trajectories, we gen-

erated new trajectories using the OBC2 implicit solvent model

and re-evaluated the corresponding OBC2 and GBMV2 hydration

free energies. In this case, mbondi intrinsic radii were used in

conjunction with the OBC2 model. Figure 6 demonstrates the

excellent agreement between the calculated hydration free

energies regardless of what Hamiltonian was used to generate

the trajectory. CHARMM/GBMV2-generated and SANDER/OBC2-

generated trajectories give absolute hydration free energies

within 0.1 kcal/mol of one another for all but 23 compounds

when evaluated with GBMV2. The average unsigned difference

is 0.02 kcal/mol and R2 ¼ 0.9995. Similarly, CHARMM/GBMV2-

generated and SANDER/OBC2-generated trajectories give abso-

lute hydration free energies within 0.1 kcal/mol of one another

for all but 41 compounds when evaluated with OBC2. The aver-

age unsigned difference is 0.04 kcal/mol and R2 ¼ 0.9990. In

both cases, the largest deviations were for propanoic acid with a

difference of 0.97 and 1.2 kcal/mol for the GBMV2 and OBC2

hydration free energy estimates, respectively. The most common

functional groups exhibiting sensitivity to the Hamiltonian used

to generate the trajectory were alcohols and acids. Given this

substantial agreement between the results based on trajectories

generated from different implicit solvent models, we used the

GBMV2-generated trajectories for all subsequent analyses.
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