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Foreword by the Editors 

Method o f  Moment Galerkin formulations applied to surfaces 
can involve quite computationally expensive numerical integration 
to evaluate: I t  i s  not uncommon for MOM codes to spend more 
time tilling that factoring (or otherwise solving) the matrices. This 
month’s contribution is from the time o f  our co-Editor, John 

Volakis, at the Universily of Michigan. I t  considers the semi- 
analytic evaluation of thes:e integrals for electromagnetically small 
devices, in particular. RF-MEMS switches, where the fields are 
essentially quasi-static. Such contributions on the ‘‘nitty-gritty” of 
efficient formulations and coding are always extremely welcome! 
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Abstract 

This paper presents a comparison of a new semi-analytical expression with Gaussian-quadrature formulas for the quasi-static 
double-surface potential integrals arising in the boundary integral (BI) models of micron-size objects, such as RF-MEMS 
switches. The integrals considered are the quasi-static Green’s functions for the scalar arid vector potentials, with constant or 
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linear basis functions over triangular subdomains. The examples given illustrate that the new semi-analytical formulations c a n  
achieve significantly higher solution accuracy and are more efficient when compared to the Gaussian-quadrature formulas. 

Keywords: Integration; electrostatic analysis; magnetostatics; Gaussian quadrature; potential integrals 

1. Introduction 

valuations of the integrals involving the Green's function ker- 
ne1 and its denvative are important in the numerical imple- 

mentation of the electric-field integral equations (EFIE) [I-51. 
Over the past decades, many approaches have been presented [ I ,  3, 
5 ,  6, 8, 91 to handle double surface potential integrals, based on 
triangular basis functions. As an extension of [2] and [6] ,  this 
paper presents a semi-analytical method for computing the quasi- 
static double surface potential integrals, arising in the boundary 
integral (BI) models of electrically very small objects and for static 
electromagnetic-field computation. 

E . . ' .  

The present work is motivated by our recent effort to model 
RF-MEMS switches [ 7 ] ,  the typical dimensions of which are 100- 
600 pm in length and 50-150 pm in width. At 2 GHz, these dimen- 
sions correspond to an electrical length of A/lSOO-L/250 and a 

width of L/3000 -A/lOOO, and thus the exponential factor e-/1R 
can be replaced by unity (the quasi-static approximation). In addi- 
tion to modeling RF-MEMS switches, the method can also 
improve the efficiency and accuracy of the solution in static elec- 
tromagnetic problems [3]. The convergence analyses of the 
numerical examples demonstrate that our presented semi-analytical 
method can achieve higher solution accuracy in less computational 
time than the conventional Gaussian-quadrature formulae. 

2. Semi-Analytical Formulation 

Using Galerkin's method and the hasis function defined in 
[7],  the quasi-static integrals required for the evaluation of the 
EFIE matrices have the form 

(4) 

L c r )  

where T and T' represent the areas modified by the source and 
observation triangledpatches [2-51; R = 17 - 7'1 is the distance from 
the Source point, T , in T to an observation point 7 in T ' ;  and N,  
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is the linear (nodal) function equal to unity at the ith node and zero 
at the other two. 

These double surface integrals are commonly evaluated 
numerically via Gaussian-quadrature rules. Our approach is to 
instead replace the inner integrants, I , ( r ) ,  f 2 ( r ) ,  Z3(r), and 
f ( r ) ,  with their analytical expressions in [2] and [6], and thus 
reduce the double surface integrals over T and T' with a single 
surface integral over T. Since [ 5 ]  and [SI provide analytical expres- 
sions of Equations (1)-(4) in the case of T = T ' ,  our focus is on the 
case T f T ' .  

Figures la  - IC illustrate the coordinate transformations from 
the global Cartesian space ( x ,  y.z) to the local reference spaces 

(U,,,,) and (U', Y', w ' )  for the observation and source triangles 
T and T ' ,  respectively. Their corresponding simplex spaces 

Figure la. The observation and source triangles, T and T ' ,  in 
global coordinates ( x , y , z ) .  

Figure lb. The observation and source triangles, T and T ' ,  in 
localcoordinates (U,,,,) and (u',v',w').  

5 4  5' 4 

Figure IC. The observation and source triangles, T and T ' ,  in 
simplex coordinates (q ,< ,< )  and (q',<',c). 
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(q,{,<) and (q',c,<') are also shown. The transformation from 

(x,Y,z) to (s,5,1) is given by 

( 5 )  

where Nl(q,C), N 2 ( q , 5 ) ,  and N 3 ( q , 5 )  are the linear basic func- 
tions: 

(6) 

Also, the two-dimensional transformation from (U,") to (?,I) is 
given by 

where A is the area of triangle T. Corresponding transformations 
for the primed systems follow in a similar manner. 

On replacing (x,y,z) with (q,c,<) and (if,{',<'), the inte- 

As mentioned earlier, of interest are the eyluations of I ,  to I4 
when R is very small, even for elements not sharing an edge. To 
address this issue, we chose here to evaluate the interior integral 
analytically, whereas the outer integral is evaluated using the stan- 
dard Gaussian-quadrature approach. This is referred as our semi- 
analytical evaluation, and the extended analytical details are given 
in the appendix. 
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3. Comparison of  Accuracy and Efficiency 

This section compares the results of evaluating the four inte- 
grals in Equations (1)-(4) using the semi-analytical expressions of 
Equations (12)-(15), as compared to the direct Gaussian-qnadra- 
ture evaluations. Based or.. a FORTRAN implementation of the two 
methods, the comparison$ were made in terms of the computa- 
tional time and the maximum relative error. From [9], it was 
determined that the Gaussian rule Gm,n ( m  = n) was the best 
choice for balancing accuracy and computing time. In the follow- 
ing, the integrals were evaluated over a pair of edge-adjacent ele- 
ments (Figure2a) and a pair of node-adjacent elements (Fig- 
ure Zb), with i = j = 1 for I ,  and 7,. 

Figure 3 shows the comparison of the trpical computational 
times for the four integrals in Equations (8)-( 11). Clearly, the 
semi-analytic formulation saves time, especially as the number of 
integration points increas.:s. For example, with m = n = 40, the 
semi-analytical formulatica required ahout 0.1 second, whereas 

Figure 2a. Edge-adjacent elements. 

Figure 2b. Node-adjacent elements. 

Integr&on Polnl 

Figure 3. The computational time for the semi-analytical and 
Gaussian-quadrature (m I= n )  expressions. 
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Figure 4a. The maximum relative error for the edge-adjacent 

elements I ;  and 7;. The dashed line is the Gaussian quadra- 

ture for II) ; the dashed-doted line is the semi-analytical for 

I; ; the doted line is the Gaussian quadrature for fz'(1) ; the 

solid line is the semi-analytical for Ti(1). 
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Figure Sa. The maximum relative error for the node-adjacent 
elements I,' a n d i i .  The dashed line is the Gaussian quadra- 

ture for I,' ; the dashed-dotted line is the semi-analytical for 

I , ' ;  the dotted line is the Gaussian quadrature for T i ( 1 ) ;  the 

solid line is the semi-analytical for Ti(1). 

Figure 4b. The maximum relative error for the edge-adjacent 
elements 1; and 7;. The dashed line is the Gaussian quadra- 

ture for I,' ; the dashed-dotted line is the semi-analytical for 

I;; The dotted line is the Gaussian quadrature for 4(1); the 

solid line is the semi-analytical for ii(1). 

Figure 5h. The maximum relative error for the node-adjacent 

elements 1; and 7;. The dashed line is the Gaussian quadra- 
ture for I j ( i =  j =  1); the dashed-dotted line is the semi- 
analytical for I j ( i =  j = l ) ;  The dotted line is the Gaussian 

quadrature for c(1); the solid line is the semi-analytical for 

fi(1). 
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Figure 6. The maximum relative error as a function of the dis- 
tance between the source and observation elements, based on 
the semi-analytical expressions. I ; :  solid line; I,’(i = j = I ) :  
dashed line. 

Figure 7. The local geometrical quantities associated with the 
edge aT, of the source triangle T’ situated in the plane 63. The 

observation point for the potential is located at P(u,,v, , ,d).  

Gaussian quadrature took 4 seconds, i.e., 40 times longer. This 
significant time saving with the semi-analytical expressions is 
especially important for the adjacent elements, because they 
require more integration points to achieve convergence. 

Figures 4 and 5 show the comparison of the maximum rela- 
tive errors for the two pairs of triangles. In both cases, the semi- 
analytical formulation converged much faster than the Gaussian- 

quadrature rule. Among the four integrals, ?; and ?: converged 

slower compared to I,’ and 1,’. Also, it is interesting to see that 
I,’ and 7,‘ converged faster than I( and T2’ .  This suggests that 
the linear basis function will generate more accurate matrix ele- 
ments than the constant basis function for nearby elements. As the 
distance between the observation and source triangle elements 
increases, fewer integration points are needed to maintain the 
matrix element accuracy, and this is shown in Figure 6. 

4. Conclusion 

This paper presented a new semi-analytical expression for 
evaluating quasi-static double-surface potential integrals occurring 

in the EFIE. Numerical examples showed that the semi-analytical 
formulae can improve the accuracy and reduce the computing time 
rather dramatically when compared to the standard Gaussian-quad- 
rature rules. 
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6. Appendix 

Analytilcal Expressions 
For ZI, T 2 ,  13, and f4 

Consider the source triangle, T’, with the observation point 
denoted by P ( x , y , z ) ,  a i  shown in Figure7. Using the local 

coordinates (ti,,,,) as defined in Figure7, the expressions in 
Equations (12)-(15) can be written in analytical forms based on [Z] 
and [6]. Here, we consider the case whenP L T‘. Using the nota- 
tion in Figure 7, we have 

3 

i=l 

1 
R T2 ( r )  = JV-dT’ = - r i s g n  (d)p - Ciifii, 

I ,  ( I ) ( i  = 1) 

(17) 
T’ 

-1 u3113-l 
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,via ( i  = 1,2,3) is the value of the ith nodal function evaluated at 

the point (ug,vg), 

Figure 8. The source triangle, T ' ,  with the observation point in 
the local coordinate frame. 

2 
= 1:R: - 1;R; + (Rp) f 2 i .  ( 2 4 ~  

If d = 0 ,  it can be shown that ,L3 = 0 when the Observation point 
lies outside the source triangle domain. This futher simplifies the 
above equations. Substituting Equation (5) into Equations (16)- 
(19), we obtain the analytical formulae for Equations (21)-(24). 

As mentioned in [2]  and [6], when the observation point is on 
an edge of T' or its extension, the second term of Equation (16)'s 
Contribution to ZI vanishes because pp = 0 .  This also applies to 
Equation (18). However, the authors found that the contribution to 
Equations (17) and (19) can not be cancelled, since there is no zero 
term. Below, we develop an expression that overcomes the issue 
regarding the integrals of Equations (17) and (19), which contain 
the gradients. 

Observation Point Outside the Triangle, 
But On a Line Through an 

Edge of the Triangle 

For this case (see Figure E), the observation point, P ,  is 
located at the extension of the source triangle edge ~ P Z .  Follow- 
ing Graglia [6], when the observation point lies at the positive side 
of the edge 4 5 ,  then 

s;=-uo, 

s; = l3 - uo, 

R;=uo, 

R; =uo-13 .  

Substituting Equation (25) into Equation (24), we observe that fZi 

cannot be evaluated, because (R; +Il) / (RT + 1; )  + O/O . Haw. 

ever, when the observation point lies on the negative side of the 
edge plPz, then 

s;=u,,  

s; =I3 + ug , 

R T = u g ,  

R; = l3 +ug 

In this case, fZ3 = ln[(R; +l:)/(R; +I;)] can be readily evalu- 

ated. 

To correct the situation when the observation point is to the 
positive side of one edge of the source triangle, we introduce the 
expression for the function f i ,  . This IS derived from Equation (24) 
by setting 

s;=-uo, 

s; =I3 ~ uo, 

R; = \i(uo -1,)' +A&' , 

where BE represents a small deviation of the observation point, P, 
from the U axis. We deduce that 

a numerical example is given below to validate Equation (27). 
Consider the source triangle 4(62.5,25,0), 6(62.5,25,2), 
4 (62.5,37.5,0). Table 1 lists the comparison between semi- 
analytical expressions and the Gaussian quadratuse formulae at the 
observation points P(62.5,50,0) and P(62.5,0,0) .  In the table, 
we observe that the values for II and I, are unchanged, as 
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Table 1. Edge effects on I ,  - i,. 

(Ignoring 
Equation (27)) 

72 ( r )  I 1 ~ ( r ) ( i = 1 , ~ , 3 )  I & ( r )  ( i  = 1) 

I I I I 5.625173283248-19 I 0.193075004203650 1 1.612329168502E-I9 

0.43258463925731 1.5102713451304E-2 0.149057510492870 5.3719363694576E-3 
0.405076237769955 0.1 343 840 I3754064 I ,21629231 962865 

~~ ~ ~~...... I I Semi-analytic 1 0.61331767925556 I -3108494971540E-2 I 0.192930866318881 I -9.0867068 
-8.69626506514E-4 
-2.23650927677~-2n 

0.43~58463925728 1.5102713451293~-2 
-3.888703382004E-4 
o.onooononoooonooo 

Gaussian 
(7-point) 

P(62.5,0,0) Semi-analytic 0.43258463925731 1.5102713451304E-2 

expected. Also, the values of I ,  and I4 are unchanged for the 

case P(62.5,50,0) .  However, for P(62.5,0,0), the z components 

of and i4are significantly in error, unless the new expression 
for fZ3, Equation (27), is used. 
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