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The effects of electrostatic forces on the distribution of drops in a channel

flow: Two-dimensional oblate drops
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Numerical simulations are used to examine the effect of an electrostatic field on an emulsion of
drops in a channel. The leaky-dielectric theory of Taylor is used to find the electric field, the charge
distribution on the drop surface, and the resulting forces. The Navier-Stokes equations are solved
using a front-tracking/finite-volume technique. Depending on the ratios of conductivity and
permittivity of the drop fluid and the suspending fluid the drops can become oblate or prolate. In
addition to normal forces that deform the drops, tangential forces can induce a fluid motion either
from the poles of the drops to their equator or from the equator to the poles. In this paper we focus
on oblate drops, where both the dielectrophoretic and the electrohydrodynamic interactions of the
drops work together to “fibrate” the emulsion by lining the drops up into columns parallel to the
electric field. When the flow through the channel is slow, the fibers can extend from one wall to the
other. As the flow rate is increased the fibers are broken up and drops accumulate at the channel
walls. For high enough flow rate, when the drop interactions are dominated by the fluid shear, the
drops remain in suspension. Only two-dimensional systems are examined here, but the method can

be used for fully three-dimensional systems as well. © 2005 American Institute of Physics.

[DOL: 10.1063/1.2043147]

I. INTRODUCTION

The behavior of multiphase flow is dominated by buoy-
ancy for a wide range of operational conditions. In micro-
gravity buoyancy is weak and surface tension often becomes
the most significant force. Thus, electrostatic, thermocapil-
lary, and acoustic forces can cause fluid flow and deforma-
tion of a fluid interface. To observe and study the motion of
fluids in the presence of those weak forces, particularly for
systems that are sufficiently large, require a high-quality mi-
crogravity environment that remains stable for a long time.
Since such experiments are difficult and expensive, theoret-
ical analysis is important. Analytical studies are, however,
very limited in terms of geometrical complexities and nu-
merical simulations are therefore the only realistic way of
conducting theoretical studies. Recent progress in direct nu-
merical simulations of multiphase flow, where all the details
of the flow are fully resolved, has now made it possible to
simulate the full unsteady motion of dispersed flows for a
wide range of governing parameters. Such simulations have
been used to examine the collective behavior of homoge-
neous bubbly flows and drops in channel flows. Simulations
including secondary forces have, on the other hand, been
limited to relatively small systems of one or two bubbles and
drops. Here, the motion of an emulsion of drops in a channel
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flow subject to electrostatic forces is examined, using direct
numerical simulations, where the effects of inertia, viscosity,
surface deformation, and electrohydrodynamic stresses are
fully accounted for.

When a drop of one dielectric fluid suspended in a dif-
ferent dielectric fluid is exposed to an external, uniform elec-
tric field, the dielectric mismatch between the fluids induces
a stress at the interface. In the case of perfect dielectrics and
conductors, the electric surface force acts perpendicular to
the surface and points from the fluid of higher dielectric con-
stant to the lower. Changes in the shape of the interface and
surface tension balance these induced electric forces. With
just normal forces at the interface, an isolated drop can only
deform into a prolate spheroidal shape.lf3 However, the ex-
periments of Allan and Mason® showed that an applied elec-
tric field deforms some drops into an oblate shape. The ex-
planation for this effect was given by Taylor,5 who pointed
out that the suspending fluids are not perfect insulators and
that even a small finite conductivity allows charge to accu-
mulate at the interface, resulting in a tangential electrical
stress and motion of the fluid along the drop boundary. The
process results in a flow recirculation inside and outside the
drop; the direction and intensity depend on the electric prop-
erties of both fluids and the strength of the electric field.
Taylor5 proposed a mathematical model to describe the mo-
tion, known as the leaky-dielectric model, and was able to
predict qualitatively the deformation of the drops using a
linear theory. Torza et al.® reported the first quantitative ex-
perimental results on the deformation of single drops but the
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experiments showed considerable discrepancy between the
measured deformations and those predicted by the linear
theory of Taylor. Extending the theory to include higher-
order terms’ did not improve the agreement with observa-
tions. In order to address the difference between previous
experiments and theory, Vizika and Saville® studied the de-
formation of both oblate and prolate single drops in steady
and oscillatory electric fields. They measured directly the
physical properties of the fluids and found a better agreement
between the experimental and analytical results than did
Torza et al.,’ although a large discrepancy persisted in some
cases. In order to explain the differences between the experi-
mental and analytical results several explanations have been
proposed. The most important source of error appears to be
the difficulty in measuring accurately the electric properties
of the fluids, especially the very low conductivities that these
fluids usually have. This seems, in particular, to have been
the case for the experiments done by Torza et al.® Vizika and
Saville® stated that other potential reasons for the discrepan-
cies are inhomogeneity of the electric-field and changes of
the electric field properties close to the surface of the drop.
Although some uncertainty still exists, it seems fair to con-
clude that it is now widely believed that the leaky-dielectric
model correctly accounts for experimental results, although
direct comparisons have only been made for a relatively lim-
ited number of situations and more experiments are still nec-
essary.

The dynamics of particles and drops in a channel, in the
absence of an electric field, has been examined by several
investigators. For one drop or particle, the behavior is rea-
sonably well understood in the limit of zero Reynolds num-
bers. See Ref. 9 for a review. Computations of a single solid
particle in a channel flow have been done by Feng et al."’
and Mortazavi and Trygz,rgvason11 examined the motion of a
deformable drop. Both authors examined finite Reynolds
number flows and generally found good agreement with the-
oretical predictions for spherical particles.lz_14 Both the
drops and the particles did, in particular, generally settle
down approximately half way between the channel centerline
and its wall (the so-called Segre-Silverberg effect). As
the Reynolds number was increased, Mortazavi and
Tryggvason11 found that the droplets did not settle down, but
exhibited periodic oscillations. Numerical studies of suspen-
sions of particles started with Brady and Bossis,'” and Nott
and Brady16 who used Stokesian dynamics to follow the evo-
lution. Zhou and Pozrikidis'’ used a boundary integral
method to follow the motion of many two-dimensional de-
formable drops. Boundary integral simulations of three-
dimensional drops have been done by Loewenberg and
Hinch.'® So far the focus has been nearly exclusively on
Stokes flow where it is generally found that the parabolic
laminar profile for flow without drops is blunted as the drops
move towards the center of the channel. For a recent discus-
sion see Ref. 19. For a review of inertial effects in suspen-
sions in general, see Ref. 20.

While computational studies of electrohydrodynamics of
drops have been limited to one or two drops, a few authors
have simulated numerically the behavior of a suspension of
solid particles in a nonconducting fluid in the presence of an
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electric field, with an emphasis on the bulk properties. The
electrorheology of solid particle suspensions was first studied
by Winslow?' and has been reviewed by, for example, Block
and Kelly,22 Hulsey et al.,”® and Hulsey24 who discuss the
experimental and analytical results. Such suspensions gener-
ally show fibration (or fibrillation) where a polarization of
the particles leads them to line up across the channel. The
formation of fibers generally increases the bulk viscosity of
the suspension greatly. Klingerberg et al.®* used a
molecular-dynamics-like methodology to examine the be-
havior of electrorheological suspensions without and with an
applied shear. In spite of the simplicity of the model, which
neglected local changes in the electric field due to the pres-
ence of the particles, the results showed qualitative and, to
some degree, quantitative agreement with experimental re-
sults. An improved method, based on Stokesian dynamics,
was used by Bonnecaze and Brady27 to examine the effect of
shear, but in the absence of walls.

Arp et al.®® provided a comprehensive review of early
progress in the understanding of the response of suspensions
of both drops and solid particles to electric fields, emphasiz-
ing how the microstructure influenced the bulk properties.
Recent experimental work by Pan and McKinley,29 Kimura
et al.,”* and Ha and Yang31 has helped clarify many aspects
of the behavior of emulsions. These authors have examined
the electrorheological response of emulsions consisting of
several different fluids and observed fiber-like chains of
drops parallel to the electric field. Pan and McKinley29 were
the first authors to measure the shear stresses in an emulsion
for different electric-field strengths and void fractions. They
found that the response of their emulsion—consisting of par-
affin oil and silicone oil—was strongly dependent on which
fluid was the dispersed phase, but the effective viscosity al-
ways increased with an increase of the electric field, an effect
usually referred to as positive electrorheological behavior.
Kimura et al.* presented the results for an emulsion glycol-
dimethylsiloxane. They experimented with different viscos-
ity ratios between the fluids, and found that for drops with a
lower dielectric constant than the suspending fluid, a nega-
tive electrorheological behavior is possible when the viscos-
ity of the continuous phase is much larger than the viscosity
of the drops. They attributed this effect to the fact that when
the drops are suspended the viscosity depends mainly on the
continuous phase, but when the fibers appear the bulk vis-
cosity is dominated by the force needed to break up the fi-
bers, and this force depends on the viscosity of the second
phase. Ha and Yang“ prepared an oil-in-oil emulsion where
not only the viscosity, but also the conductivity ratios, could
be modified. They found a negative electrorheological be-
havior, although this effect was seen for viscosity ratios
higher than unity, and the intensity of the negative elec-
trorheological behavior was much stronger than what was
observed by Kimura et al.®® Their explanation for this phe-
nomenon relies on the electrorotation of the drops due to
electrokinetic effects. In a parallel effort, the group directed
by Orihara has studied the behavior of a polymer blend in a
shear flow, see Refs. 32-35. They studied how the shape and
elongation of the second phase depend on the relative
strength between shear and electric field.
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The first numerical simulation of the effect of electric
fields on a single drop was done by Sherwood®® who used a
boundary integral method to examine the deformation and
breakup of a single drop in the Stokes flow limit. Tsukada
et al.’’ studied the circulation induced inside and outside a
single suspended drop using a Galerkin finite element
method. They found good agreement with Taylor’s analytical
results and their own experiments. In a later paper, Tsukada
et al.”® studied the combined effect of gravity and electrohy-
drodynamical forces. They found that the terminal velocity is
only very slightly modified by the presence of the electric
field but that the electric forces result in the appearance of a
wake behind the drop, even for small Reynolds numbers
(Re<1). Feng and Scott® simulated the deformation of a
single drop in both the Stokes limit and at finite Reynolds
number using a Galerkin finite element methods similar to
that of Tsukada et al.*’® The main conclusion is that for
small deformations, the numerical results agree with the
asymptotic solutions of Taylor.5 However, a large discrep-
ancy appears when the deformation of the drop is large
enough. The two-drop problem has been investigated by
Sozou™ in the limit of negligible drop deformations with no
relative motion between drops. A very comprehensive study
of the axisymmetric interaction of two drops, in the limit of
zero Reynolds number, was done by Baygents et al.M using
a boundary integral technique. They showed that the electro-
hydrodynamically induced flow could significantly modify
the dielectrophoric attraction, either acting with it or against.

The main issue that is addressed by the present work is
the response of an emulsion of drops in a channel when an
electric potential difference is applied between the channel
walls. Before presenting the results for the channel flow, we
show the interaction between two drops and relate them to
the results obtained by Baygents et al.*' This interaction de-
pends on the viscous fluid motion induced by the electric
field and the dielectrophoretic effect resulting from the drops
acting like dipoles.

The drop distribution depends strongly on the dielectric
properties of both fluids. In this paper, we present only re-
sults for two-dimensional flows. The advantage of the two-
dimensional simulations is that it allows us to follow the
long-time drop evolution, without employing very time-
consuming three-dimensional simulations. The influence of
several parameters such as the relation between the electro-
static forces and the shear, the electric-field strength, and the
volume fraction is also quantified.

Il. FORMULATION

The physics governing electrohydrodynamics of multi-
phase flows has been reviewed by several authors including
Melcher and Taylor42 and Saville"”’ who discussed the leaky-
dielectric model proposed by Taylor5 for fluids that have a
small but finite conductivity. Scaling analysis shows that it is
appropriate to assume a quasistatic electrostatic field for a
fairly general class of situations and find the electric poten-
tial ¢ by solving the steady-state conservation of charge
equation
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V.oV ¢=0. (1)

Here o is the electric conductivity and the electric field E is
obtained from the electric potential ¢ by

E=-Vé. (2)

Once the electric field is found, the free charge is obtained by
Gauss’ law:

q=V-¢E. 3)

Here ¢ is the electric permittivity of the fluid. These equa-
tions assume that the materials in both phases have a finite
dielectric coefficient and conductivity.

Following Melcher and Taylor42 the forces acting on the
boundary between both fluids can be obtained from the jump
in the electric stresses. The final result, for the force per unit
volume, is

1 1 de
Felec:qE__(E'E)V8+V(_E'E_P>. (4)
2 2 ap

If o and € are constant in each fluid the force only acts on the
phase boundaries. The first term in Eq. (4) represents the
contribution of free charges to the force and the second term
is due to the polarization force density. The last term results
from changes in the material density, usually called electror-
estriction force density. This term is neglected in the present
work. Perfect dielectric and leaky-dielectric fluids experience
charge polarization when immersed in a uniform, external
electric field. However, leaky-dielectric fluids show an accu-
mulation of charges at the surface that modifies the electric
field. This accumulation of charges, coupled with the tangen-
tial electric stresses, generates tangential forces at the inter-
face that eventually lead to the viscous fluid motion seen for
these fluids.

The fluid flow is governed by the Navier-Stokes equa-
tions,

dpu

7+V-puu:—Vp+(p—p,,)g+V-,LL(Vu+VuT)

+ yf k'm' P(x —x")dA + F .. (5)

Here, u is the velocity, P is the pressure, and p, u, and 7y are
the density, viscosity, and surface tension. The buoyancy
term has been neglected and the only new term is the electric
force F. that is calculated by Eq. (4). The momentum
equation is supplemented by an equation of mass conserva-
tion. If both fluids are incompressible it is

V-u=0. (6)

The numerical method used in this study is the finite-
volume/front-tracking method developed by Unverdi and
Tryggvason.44 A review of the method can be found in Tryg-
gvason et al. 2 along with several validations and examples.
The momentum equation is discretized on a regular stag-
gered grid using second-order, centered finite differences for
the spatial derivatives and a second-order projection time
integration scheme. The continuity equation, combined with
the momentum equation, results in a pressure equation that is
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solved by a multigrid scheme. The charge conservation equa-
tion (1) is discretized using standard-centered differences
and solved by the same multigrid scheme used for the pres-
sure equation. The electric potential is obtained at the center
of the pressure cells and the electrostatic forces [Eq. (4)] can
be found directly at the edges the cells where the velocity is
stored. The electrostatic forces, Eq. (4), are added directly to
the predictor step in the projection method used to integrate
the momentum equations in time.

The most important aspect of numerical methods for so-
lution of multiphase problems is the correct tracking of the
interface. In the front-tracking method the boundary between
the drops and the continuous fluid is represented by con-
nected marker points (the “front”), which are advected by a
velocity interpolated from the fixed grid. Here we used the
interpolation function presented by Peskin®® both to interpo-
late the velocities as well as to distribute surface forces onto
the fixed grid. A few simulations were also done using area
weighting and no major differences were found. If the front
stretches or is compressed too much, new elements are added
or old ones are removed, respectively, in order to maintain an
accurate representation of the interface.

For a Poiseuille flow, if no electrohydrodynamical effect
is included, the drop-laden flow can be completely character-
ized by specifying the Reynolds and the capillary numbers

pP,UH

Re , Ca=—1, (7)
Mo Y

in addition to the density and viscosity ratios, r=p;/p,, N
=,/ w;, respectively, and the void fraction a. Here, the Rey-
nolds and the capillary numbers are defined using the veloc-
ity of the centerline, U, that would result from the applied
pressure gradient if there were no drops. H is the height of
the channel and a is the drop radius. As reference density and
viscosity the properties of the suspending fluid have been
used. When electrostatic effects are included three new di-
mensionless parameters are introduced. The first two are the
ratios of the electric permittivities and conductivities 1/S and
R, defined as 1/S=¢;/e, and R=0;/0,, respectively. The
subscript i refers to the drop phase, while o refers to the
suspending fluid. The third one describes the strength of the
electric field. There are several possible choices for this pa-
rameter, including the inverse of the nondimensional electro-
static force that relates the electrostatic force to the advection
term,

1 Advection term pU? (8)
E" Electric force  S7'g,E2’
and the electric capillary number,
Electric forces  S”'s,E2a
= ; )

‘  Surface tension Y

which relates the electrostatic forces to the surface tension
and helps to predict the deformation of the drops. In these
equations, E, is the uniform electric field that results from
the applied electric potential difference between the walls in
the case of a uniform fluid. For the problem that we are
examining, we want to contrast the behavior with and with-
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out flows, so we need to be able to describe the fluid without
the electric field without reference to the flow velocity. The
Ohnsorge number,

Re Mo

= /= = ” N
VWe  Vyp,a

Oh (10)

allows us to do that. The effect of the electric field on the
drops is then described by the electric capillary number (9)
and the inverse of the nondimensional electrostatic force (8)
to quantify the strength of the flow. Thus, our set of nondi-
mensional numbers is Oh, C, and 1/E". For the study of the
effect of the flow on the motion of the drops, E* is the only
nondimensional number that is changed.

The main assumption in the leaky-dielectric model is
that the electric relaxation is much faster than the convection
of charges by the flow. To measure the relative importance of
those effects the electric Reynolds number (Reg) is defined
as the ratio of the time scale of the charge relaxation and the
time scale of the charge convection by the flow. The resulting
expression is

9(80 + 81‘) (
RCE=
10(o, + o))

R-S'-1 E?
| | )s, (11

C+R1+N)/) p

In the simulations presented here, Rey is low enough so that
charge relaxation can be assumed to be unimportant and the
leaky-dielectric model should be valid. For the worst case
presented in this paper Rep is about 0.0375. Krause and
Chandrateya47 presented an experimental study of the elec-
trorotation of drops and defined an electric-field threshold for
the rotation of the drops caused by electrostatic convection,

52 _ 2M(1+2R)?
threshold — 38iS_1R(R . S—l _ 1) :

(12)

In all our simulations this criteria is satisfied. However, our
highest electric-field strength corresponds to half the thresh-
old value, which means that in the most unfavorable case we
are very close to the limit. An increase in the electric-field
strength or in the conductivity of the fluids would cause elec-
troconvection effects to be relevant, and a conservation equa-
tion for the electric charges would have to be added to the
system.

To render time nondimensional, it is also necessary to
define an electric time scale. Because the viscous fluid mo-
tion depends on the viscosity of the flow and the intensity of
the electric field, we define the following electric time scale:

Y .
sa(si/so)Ei .

Tel (13)

Baygents et al.*" used the leaky-dielectric model to study
the interaction between two leaky-dielectric drops in the
limit of Re—0. They point out that the interaction is the
result of two different effects acting on both drops. There is
an attractive dielectrophoretic force parallel to the electric
field due to the fact that the drops see each other as dipoles in
the far field. This force is proportional to O(a/ r),* where r is
the distance between the centers of the drops. The other force
is either attractive or repulsive and is due to the viscous
circulatory flow induced by the electric stresses. In a similar
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way as the deformation of a single drop, the interaction be-
tween two drops is governed by the competition between
viscous fluid motion and dielectrophoretic effect. Oblate
drops present a more uniform behavior because the viscous
fluid motion always goes from the poles to the equator and
leads to an attractive force in the direction parallel to the
electric field, thus strengthening the dielectrophoretic attrac-
tion. However, the viscous fluid motion for prolate drops can
go from the poles to the equator or from the equator to the
poles. In the latter case the repulsive viscous and the attrac-
tive force oppose each other, resulting in a complex and rich
behavior of prolate drops.

Leaky-dielectric drops interact with walls in qualita-
tively the same way as they do with each other. The viscous
circulation induced by the electric stresses attracts or repels
the approaching drop. Once a drop is attached to a wall, it is
very difficult to break the bond due to the low velocity close
to the walls.

Taylor5 obtained an analytical solution for the viscous
fluid motion in the limit of zero Reynolds number. He found
that the tangential component of the surface velocity, ex-
pressed in spherical coordinates, is

-1 2
u9=—wcos fsin 6. (14)
5(1+N)(R+2)
Thus, the direction of the flow depends on the sign of
R-S~'. When it is positive the flow goes from the equator to
the poles, while when it is negative the flow goes from the
poles to the equator.

The deformation of drops is composed of viscous fluid
motion and deformation caused by the dielectrophoretic ef-
fect. Taylor5 also obtained a discrimination function for a
spherical drop,

<D=S‘1(R2+1)—2+§(SR—1)M, (15)

5 A+1
and determined that if ® is positive the drops are prolate,
while ® is negative for oblate drops. Rhodes et al.*® found a
similar discrimination function for two-dimensional drops
and A=1:

®yy=(R)’>+(R)+1-3-5". (16)

Figure 1 shows the analytical function, ®,4=0, for zero de-
formation of the drops. The abscissa is the ratio between the
dielectric permittivities (57, and the ordinate is the conduc-
tivity ratio (R). The bold line represents the discrimination
function, below it the drops become oblate and above it they
become prolate. The viscous fluid motion goes from the
poles to the equator below the dashed line, and the flow
reverts from the equator to the poles above the dashed line.

lll. RESULTS

A. The deformation of a single drop
and the interaction between two drops

Before we address the interactions of two drops, we dis-
cuss briefly the effect of the electric field on one drop. A
uniform electric field does not move a single isolated drop,
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FIG. 1. Map of expected drop response based on the leaky-dielectric model.
The bold line represents the discrimination function for a two-dimensional
flow. A closed circle marks the case studied in this work, and the open
circles mark other simulated cases.

but the drop deforms and the tangential force on the drop
surface results in fluid motion both inside and outside the
drop. When two drops are placed next to each other, the
induced flow can modify the dielotrophoretic interaction in a
significant way. Figure 2(a) shows the steady-state shape and
streamlines for one two-dimensional drop and Fig. 2(b)
shows the electric potential. Here the conductivity and per-
mittivity ratios are R=2 and S~'=8, respectively. A closed
circle in the S-R plane in Fig. 1 marks the location of this
case. The drop is located in a channel that is periodic in the
horizontal direction and has solid top and bottom boundaries.
An electric potential difference is applied between the top
and the bottom walls. The electric-field strength is quantified
using the electric capillary number because no flow is im-
posed and here C,=1.32. We note that this capillary number
is larger than for most of the rest of the simulations in the
paper to allow for relatively large deformation. The square
computational domain, whose sides are two times the diam-
eter of the drop, is resolved by a 64 grid. The electric
stresses induce a flow at the surface of the drop from the
poles to equator and the drop becomes oblate. The deforma-
tion parameter is defined by

Def=——, (17)
+

where L is the height of the drop (parallel to the electric
field), and D is the diameter (perpendicular to the electric
field). Def is plotted in Fig. 2(c) versus time for the drop in
Fig. 2(a) as well as drops resolved on a 32% grid, a 1287 grid,
and a 2567 grid. While the deformation of the drop computed
on the coarsest grid is significantly smaller than for the finer
grids, the difference between the medium grid (64%) and the
two finer grids (1282 and 2562) is relatively small, suggesting
that the 64 grid produces an essentially fully converged so-
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FIG. 2. (a) Drop deformation and streamlines for a single oblate drop im-
mersed in an electric field. $~'=8.0, R=2.0, and C,=1.32. (b) The electric
field for the drop shown in (a). (c) Resolution test for a single drop. Reso-
lution of the grid: 32X 32 (number of points per undeformed diameter n,
=16), 64X 64 (n;=32), 128 X 128 (n,=64), and 256 X 256 (n,=128).

lution. On this grid, the drop is resolved by 32 points across
the diameter of the undeformed drop. We have simulated the
deformation of several other oblate drops for different S and
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R and find similar results in all cases. We have also simulated
several drops close to where the discrimination function [Eq.
(6)] is 0 and find that the boundary between oblate and pro-
late drops obtained computationally agrees well with analyti-
cal predictions. Other validation tests were done by Che"
who compared results for axisymmetric drops with the pre-
dictions of Feng and Scott.*’ The general conclusion from
her simulations, as well as from our tests, is that 20-30 grid
points per diameter yield accurate results over a wide range
of parameters.

To examine the interaction between drops we have done
several simulations where two drops are initially put close to
each other. Figure 3 shows three frames from a simulation of
the motion of two drops. The properties of the drops are
similar to the case shown in Fig. 2, but the radius is smaller
and C,=0.8. The domain is, however, larger (the sides are
3.33 times the diameter of the original drop) and resolved by
a 1282 grid. The drops are initially located near the center of
the domain, but slightly closer to the bottom wall. The drop
centers are about two-drop diameters apart and on a line at a
45° angle with respect to the electric field. The first frame in
Fig. 3 shows the drops near time zero where the electric field
has set the fluid in motion but the drops have neither moved
nor deformed to any significant degree. In the second frame,
the induced circulation forces the drops to line up parallel to
the electric field, while the distance between them decreases
slightly. The drop closer to the bottom wall has also moved
to the wall as the fluid motion induced at the drop surface
drains the region between the drop and the wall. Once the
drops have lined up, the fluid is drawn out from the region
between them and they form a short fiber attached to the wall
(frame 4). When the drops are close, they also attract each
other because of the dielectrophoretic attraction.

To examine in more detail the interaction of two drops,
we have simulated the motion of several drops for different
initial orientations and the same electrical parameters. In Fig.
4(a) we plot, using a solid line, the vertical separation of the
drops versus the horizontal separation for five different initial
conditions. In three cases, where the initial separation is not
too large, the drops first line up, sometimes first increasing
their separation, and then move together to the wall along a
line parallel to the electric-field lines. In the fourth case the
drops are lined up in the direction of the electric field, but
their initial separation is sufficiently large, so the drop-to-
drop interaction is very weak. The drops therefore move to
the opposite walls. In the last case, the drops are lined up in
a direction perpendicular to the electric field and the drops
are repelled. We have repeated one of these simulations us-
ing coarser and finer grids. The results show that except for
very low resolution the curves are essentially the same. The
conclusion is similar to what was found for the tests using
one drop: when the undeformed drop is represented by
20-30 grid points, a finer grid does not modify the results.
When the resolution is lower, around 15 points per diameter,
the final result does not change, but the film between the
drops drains slightly faster.

In addition to the simulations in Fig. 4(a), which are for
the same parameters as used in Fig. 3, we have done a num-
ber of simulations for other values of S and R that lead to an
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FIG. 3. The drops and streamlines for the interaction between two oblate
drops. S§-1'=8.0, R=2.0, and C.=0.8. Initial distance between the centroids
of the drops is ry=3.0a.

oblate deformation, as well as using a higher E. These cases
are shown in Fig. 1 using open circles. The evolution of the
vertical and horizontal distances, for one particular initial
condition, is plotted in Fig. 4(b) using discontinuous lines,
along with the corresponding results from Fig. 4(a) (solid
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for two-drop interactions. S§-1=8.0, R=2.0, and C,=0.8. (b) The vertical
separation of the drops versus the horizontal separation for two-drop inter-
actions for different combinations of electrical properties.

line). In all cases the results show essentially the same be-
havior, once the time scale is rendered nondimensional. We
note that for the oblate drops studied here, the dielectro-
phoretic attraction at close separations and the attraction in-
duced by the fluid motion both collaborate to line the drops
up along the electric-field lines. For prolate drops, on the
other hand, the viscous fluid motion induces repulsion and
the competition between the fluid-induced repulsion and the
dielectrophoretic attraction can lead to more complex inter-
actions.

B. Drops in channel flow

After examining the flow around a single drop and the
interaction between two drops, we turn to the flow of an
emulsion of drops in a channel. The distribution of drops in
the channel is known to have a major impact on the flow
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FIG. 5. The drops and the streamlines for the interaction of 36 drops in a
Poiseuille flow at four times. S™'=8.0, R=2.0; 1/E"=0.0, C,=0.06, Oh
=0.2, and @=0.36. The flow in the channel is from the left to right.

rate. Here, we examine how the drop distribution changes as
the pressure gradient is increased and the inverse of the non-
dimensional electrostatic force (1/E") is varied from 0 to 25.
This allows us to examine how the relative magnitude of the
electrostatic forces and the fluid shear affects the drop con-
figuration. In these simulations the density and viscosity ra-
tios are 1.0, and the void fraction is 0.36. This is a relatively
high value and has been chosen in order to enhance the drop-
to-drop interaction. Later, this parameter is changed to study
its influence. We start our analysis by using drops with the
same electrical properties as in Sec. III A, where the conduc-
tivity ratio is 2.0, and the permittivity ratio is 8.0. Initially,
the applied pressure gradient is set to O and so that no exter-
nal flow is imposed. The electric capillary number, however,
is decreased to C,=0.06 from Sec. III A, and later it is in-
creased to study the influence of the deformability of the
drops. The Ohnesorge (Oh) number is set to 0.2 and kept
constant throughout all the simulations. Thirty-six drops are
placed in a channel in a regular array that is perturbed by
moving the drops slightly. No droplet coalescence is allowed
here so the number of drops and their size remains constant
throughout the simulation. Periodic conditions are imposed
in the horizontal direction, so the drops that disappear
through the right boundary reappear through the left one. On
the top and the bottom walls, no-slip boundary conditions are
applied and an electrical potential difference is imposed be-
tween the walls.

The drops and the streamlines are shown at three differ-
ent times in Fig. 5 for the no-flow case. As seen in the two-
drop case the drops attract each other in the direction parallel
to the electric field. In the first frame (r"=57.0), some of the
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FIG. 6. The fluid kinetic energy for the simulation shown in Fig. 5.

drops close to the walls are moving to the walls. The drops in
the middle of the channel attract each other and have started
to form pairs or short fibers aligned with the electric field.
The motion of the drops generates some fluid motion, con-
sisting of weak eddies with a diameter of two or three drops.
In the second frame, the droplet pairs have lined up into
longer fibers and some of the fibers have been attached to
droplets on the walls. This evolution continues in the third
frame. In the final frame, all the drops are now part of a fiber
consisting of several drops and essentially all the fibers are
anchored at one wall or the other. One fiber spans the full
distance between the top and the bottom wall. The flow field
remains weak, but the size of the eddies has grown slightly.
If the drops interacted only through dielectrophoric effects,
or if the suspension were composed of solid particles, we
would expect the fluid motion to slow down as the drops
have all arranged themselves into fibers. For oblate drops,
Pan and McKinley29 and Kimura ez al.*® observed the forma-
tion of fibers aligned with the direction of the electric field.
Their photographs were taken before any coalescence pro-
cess occurred and showed a very similar microstructure to
the results of our simulations. In Fig. 6 we plot the kinetic
energy of the fluid (of both the drops and the suspending
fluid) versus time, and while the fluid motion slows down
slightly after the initial rise, it is clearly not going to O since
the induced electrohydrodynamic stresses at the drop surface
keep the fluid in motion, even after the drops stop.

In Fig. 7, where the drops and the streamlines are again
shown at three different times, the flow rate has been in-
creased (1/E"=1.0). In the first frame some of the drops
have been attracted to the walls, while short fibers appear in
the middle of the channel. The fibers are, however, tilted by
the fluid shear. The streamlines show that the velocity is still
close to the initial parabolic profile. In the second frame
more drops have become stuck on the wall and most of the
drops in the middle belong to tilted fibers. While some of the
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FIG. 7. The drops and the streamlines for the interaction of 36 drops in a
Poiseuille flow at four times. S~'=8.0, R=2.0; 1/E*=1.0, C,=0.06, Oh
=0.2, and @=0.36. The flow in the channel is from the left to right.

fibers in the middle are connected to stationary drops on the
walls, it is clear that these fibers are being stretched by the
flow. In the third frame the stretched fibers have broken up
and about half of the drops are in fibers that are connected to
one wall and about half is connected to the other wall. The
center of the channel is essentially free of drops. This pro-
cess continues and eventually the drops pile up close to the
walls. The streamlines show that at the late stage the drops at
the walls are essentially stationary and the flow is confined to
the narrow channel between the layers of drops. Once all the
drops have been deposited on the walls, no further evolution
of the drop distribution occurs and, if coalescence were al-
lowed, we would expect to see a fluid film on each wall.
Figure 8 shows the drop distribution at a late time for
1/E*=25. At this time the flow has reached an approximate
steady-state. The flow rate is high enough so that the elec-
trodynamic interactions are much weaker than the fluid shear
and short fibers are immediately broken up. Drops are also
prevented from sticking to the wall. Kimura et al.® applied a
constant shear to their polymer emulsion. They showed that,
for oblate drops, the application of a strong shear led to the
elongation of the drops and the breakup of the fibers in a
similar fashion to our simulations. When 1/E"=4 the drops
form a layer on the walls, as for the 1/E*=1 case, but the
deposition along the walls occurs at a much slower rate as it
is shown shortly when we present a few quantitative mea-
sures of the evolution. As it was pointed out in Sec. II, if no
electric field is present the Reynolds and capillary numbers
are used to determine the flow. In our cases, and taking the
velocity at the center of the channel as our velocity scale, the

FIG. 8. The drops and the streamlines for the interaction of 36 drops in a
Poiseuille flow at steady state. S~'=8.0, R=2.0; 1/E"=25.0, C,=0.06, Oh
=0.2, and a=0.36. The flow in the channel is from the left to right.

simulations shown here would result in a Reynolds number
ranging from O to 100. The capillary number, for a constant
Oh=0.2, ranges from 0 to 0.25.

To quantify where the drops are located in the channel,
the average nondimensional distance from the centerline is
computed by

Ny
1 <& y,—(H2)
=), —. 18
M NE, o (18)

A value of |y| close to a half indicates that the drops are
mostly deposited on the walls while a low value shows that
the drops are concentrated near the centerline. For drops in a
uniform emulsion, obviously |y|=0.25. The temporal evolu-
tion of the nondimensional distance away from the centerline
is shown for different nondimensional electrostatic forces in
Fig. 9(a). When no initial pressure gradient is applied the
drops form fibers that extend across the channel, but the
average distance away from the centerline increases only
slightly. As the mass flow is increased (1/E"=1.0) the ten-
dency of the drops to deposit along the walls leads to an
increase in the nondimensional distance from the centerline.
For this electrostatic force the maximum value obtained is
0.32. If the drops coalesced and formed a flat layer near the
walls, this distance would be 0.41 for the void fraction used
here. The lowest value is achieved for 1/E"=25.0 because no
drop is deposited onto the walls and all the drops remain
suspended.

The nondimensional distance away from the centerline is
not sufficient to describe the drop distribution in the channel.
For example, Fig. 9(a) shows that |y| for the inverse of
the nondimensional electrostatic forces of 1/E"=0 and
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FIG. 9. (a) Nondimensional distance of the drops from the centerline (|y|) vs
time for different nondimensional electrostatic forces. S~'=8.0, R=2.0; C.
=0.06, Oh=0.2, and a=0.36. (b) Relative position of the drops, as given by
the pair distribution function (G), vs time for different nondimensional elec-
trostatic forces. $7'=8.0, R=2.0; C,=0.06, Oh=0.2, and a=0.36. (c) Mass
flow rate ratio of the emulsion vs time for different nondimensional electro-
static forces. S'=8.0, R=2.0; C,=0.06, Oh=0.2, and a=0.36.

1/E"=25 is essentially the same but the drop distribution in
the channel is completely different. This makes it necessary
to introduce another variable to describe the flow. For homo-
geneous flows the relative position of the drops has usually
been quantified by the pair distribution function. While the
pair distribution function is less suitable for nonuniform
flows, it should be able to tell us something about how the
drops are attracted to each other. In particular, when the
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drops form fibers or layers close to the walls, the pair distri-
bution function is a good measurement of how the resulting
structures look like. Here we find the weighted average of
the distribution for drops that are close to each other. If 6, ; is
the angle between a line drawn connecting the centroids of
drops i and j and the horizontal axis, we compute the
weighted average by

1
G=— 2 X cos(26,) if |r-r|<3a. (19)
N i=1,Ng j=i+1,Ny

Here, N refers to the number of times two drops are sepa-
rated by less than the critical distance, in this case three times
the drop radius. If all the drops are stacked vertically, the
value of G is close to —1 and if the drops are lined up in
horizontal rows the value is 1. Note that here we average by
cos(26; ;) since the flow is two dimensional. For fully three-
dimensional flows the second Legendre polynomial is usu-
ally used to account for the difference in integrated volume
near the poles and the equator of each drop. The evolution of
the relative position of the drops, plotted in Fig. 9(b), shows
that, when a pressure gradient is applied, G increases due to
the formation of layers close to the walls. However if no
pressure gradient is applied, the formation of fibers leads to a
decrease of G until a value of about —0.3 is reached. At this
moment the fibers span the distance between the walls and
the flow is occluded.

The rheological properties of the fluid mixture is, obvi-
ously, strongly affected by the microscopic behavior of the
drops. In Fig. 9(c) we plot the mass flow rate ratios versus
time, for different nondimensional electrostatic forces. The
mass flow ratio, or the inverse of the effective viscosity, is
computed as the mass flow with and without drops for the
same pressure gradient.

MFR = QWITH DROPS (20)

WITHOUT DROPS

We note that we prefer to work with the mass flow ratio
rather than the effective viscosity, since in two dimensions
the fibration of the drops can block the flow completely,
resulting in MFR=0. The effective viscosity, on the other
hand, becomes infinitely large. In all cases the mass flow rate
first decreases sharply due to the presence of the drops. For
the intermediate case where the drops accumulate near the
walls, the flow rate seems to reach an approximately steady-
state value of slightly more than 0.2, although long-time os-
cillations still may persist. If all the drops coalesced into a
stationary layer at the wall, the flow rate in the narrower
channel (for the same pressure gradient) would be reduced
by a factor of 0.64. Here the drops do not coalesce and the
wall layer is both thicker and rougher, accounting for the
larger reduction in flow rate. For the highest flow rate
(1/E"=25.0) the drops remain suspended and the flow rate is
reduced by about half. We have repeated this simulation with
the electric field turned off and find that the presence of
drops leads to a very comparable reduction in flow rate (0.54
for no electric field versus 0.505 with the field). It seems,
therefore, safe to conclude that for the electric-field strength
used here the fluid shear is now the dominant effect, and that
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the behavior of emulsions at higher flow rates would not be
affected by the electric field.

To understand better the evolution of the flow, we show
the temporal evolution of the mean velocity profile for
1/E*=1.0 in Fig. 10(a). The evolution of the drop distribu-
tion with time for this case is shown in Fig. 7. When the
drops are introduced and the electric field is turned on, the
initial Poiseuille velocity profile is modified due to the pres-
ence of the drops. Initially, this modulation is stronger at the
center of the channel. As the flow evolves, however, the
deposition of the drops on the walls leads to a near-zero
velocity in near the walls, but a parabolic velocity profile in
the center of the channel. If no electric field was present, the
drops would change the flow and reduce the flow rate, but in
a different way and by not as much. The steady-state mean

Phys. Fluids 17, 093302 (2005)

velocity profiles for the cases shown in Figs. 8 and 9 are
compared to similar cases with no electric field in Fig. 10(b).
When electrostatic forces dominate the interactions, the
drops accumulate near the wall and a smaller amount of fluid
flows between the drop layers, with a parabolic velocity pro-
file. When the shear is stronger than the electrostatic interac-
tion, 1/E*=25.0, the drops remain suspended and lead to a
flattening of the velocity profile, especially in the center of
the channel where the drops accumulate. The drop interac-
tions induced lead to a small reduction in the total flow rate,
but overall the velocity profile is similar to the no electric-
field case. Close to the walls there is almost no change since
the wall shear has to balance the pressure gradient.

In Fig. 11 the velocity fluctuations, computed as the dif-
ference between the instantaneous velocity and the mean ve-
locity found by averaging over planes normal to the wall, are
plotted at three different times for the 1/E*=1.0 case. The
streamwise fluctuations are plotted in Fig. 11(a) and the nor-
mal velocity fluctuations are plotted in Fig. 11(b). Both the
streamwise and the normal velocity fluctuations are reduced
significantly as the flow evolves; the drops accumulate on the
walls and the fluid passage becomes narrower. The locations
of the fluctuation peaks move to where the shear is maxi-
mum (r/H= +0.4). In Fig. 11(c) we compare the streamwise
fluctuating velocities for two different nondimensional elec-
trostatic forces, 1/E"=1.0 and 1/E"=25.0, respectively, and
the corresponding flow with the electric field turned off. The
nondimensional fluctuations are of similar magnitude, al-
though the positions where the maximum values appear
change when the electric field is on. When the electric field is
strong enough, the peaks move from close to the walls to the
center of the channel.

For the systems examined here, the surface tension is
sufficiently high (or the drops small enough and the electric
field weak enough) so the drops remain nearly spherical. In
this case, the evolution should be essentially independent of
the electric capillary number and the Ohnsorge number. An
increase in the electric-field strength makes the drop-to-drop
and the drop-to-wall interactions stronger, and consequently
speeds up the process. The speedup of the electric drop in-
teractions is accounted for in the scaling of the time, but the
ratio of the hydrodynamic and the electric time scale
changes. For strong enough fields, we also expect the drops
to deform. To examine how the strength of the electric field
affects the flow we have simulated three different cases
where the electric capillary number was increased from
C,=0.06 to C,=0.15, 1.2, and 3.0, while the electric-field
strength remained constant (1/E*=1.0). In Figs. 12(a) and
12(b) we show the nondimensional distance from the center-
line and the mass flow rate versus time. The curves in Fig.
12(a) for this value of the electric-field strength show that
when the drops are nearly spherical (C,=0.15), the evolution
is essentially similar (in nondimensional time) to the
C,=0.06 case. When the deformation is much higher, the
nondimensional distance from the centerline is, in particular,
higher since the deformation allows the drops to pack tighter
at the wall, as shown in Fig. 13 for C,=3.0. The mass flow
rate ratio, see Fig. 12(b), shows a similar behavior. For
spherical drops the flow rate decreases until the drops are
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deposited on the walls. Then, it reaches an asymptotic value
of approximately 5% of the original flow rate. For highly
deformable drops (C,=3.0) the compact distribution of the
drops on the walls leads to a lower friction, and therefore a
higher mass flow rate, approximately 20% of the single-
phase flow.

In the simulations presented so far the void fraction has
been kept constant at 0.36. The number of drops in the chan-
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nel and their size determine the void fraction. Here we keep
the number of drops constant while varying the radius. Re-
ducing the size of the drops decreases the probability of
drop-to-drop or drop-to-wall interactions, so the electrohy-
drodynamic effects become weaker. For very low void frac-
tions the electrostatic forces move some of the drops to the
wall where they remain attached. However, the drops at the
center of the channel are far away and do not “see” the drops
on the walls. The deposition of drops onto the walls, there-
fore, slows down and some of the fibers remain suspended
for a long time. Figures 14(a) and 14(b) show the drop dis-
tributions and streamlines at late time for void fractions of
0.24 and 0.44, respectively. The nondimensional distance
away from the centerline is shown in Fig. 15(a) and the mass
flow rate in Fig. 15(b). For the higher void fraction, in addi-
tion to the deposition of drops on the walls, the emulsion
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FIG. 13. Steady-state drop distribution for an emulsion of 36 highly deform-
able drops. $7'=8.0, R=2.0; 1/E"=1.0, C,=3.0, Oh=0.2, and a=0.36.

forms a cluster-like structure that spans the channel. The re-
sult is that the flow is almost blocked, and the mass flow rate,
as shown in Fig. 15(b), reaches values very close to 0, and
during some instance even negative values. Visualization of
the evolution of the drops showed that at some moments, the
interaction between fibers was strong enough to push the
flow backward, leading to a negative value of the mass flow
rate ratio. This effect was found not only for oblate drops,
but also in emulsions of prolate drops. For the lowest void
fraction, a=0.24, the drops eventually form layers on the
walls. Because of the narrow layers, the resulting mass flow
rate is approximately two times larger than the case with the
medium void fraction (a=0.36).

In the simulations presented so far we have assumed that
no coalescence takes place. In reality, drops would coalesce
eventually. However, the experimental pictures of Pan and

|
|
=

FIG. 14. (a) Steady-state drop distribution and streamlines for an emulsion
of 36 drops at low void fraction. $~'=8.0, R=2.0; 1/E"=1.0, C,=0.06,
Oh=0.2, and a=0.24. (b) Steady-state drop distribution and streamlines for
a suspension of 36 drops at high void fraction. S™'=8.0, R=2.0; 1/E"=1.0,
C,=0.06, Oh=0.2, and a=0.44.
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McKinleyIO clearly show that coalescence is not instanta-
neous and droplet chains are clearly present. Thus, our
steady-state results are only a quasisteady one, representing
the state before coalescence.

IV. CONCLUSION

An electric field applied to an emulsion of drops flowing
through a channel can result in a significant modification of
the distribution of drops across the cross section of the chan-
nel. Here, we have examined the effect of the flow rate for a
relatively limited range of governing parameters, where the
electric field induces a flow at the drop surface from the
poles to the equator, and the drops become slightly oblate. In
this parameter range, the induced viscous flow leads to an
attraction between two drops whose centers lie on a line
parallel to the electric field and a repulsion between two
drops whose centers lie on a line perpendicular to the electric
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field. The flow, therefore, enhances the shorter-range dielec-
trophoretic interactions between drops. The results show that
for low flow rate the drops form fibers that span the channel
and block the flow. At higher flow rates short fibers form but
the flow breaks up longer fibers and the drops accumulate at
the walls, forming an essentially stationary layer. At even
higher flow rates the flow shear prevents the formation of
fibers and drops remain in suspension.

Although we have focused here on one particular value
of the permittivity and conductivity ratio, simulations of
other values in the oblate-drop regime suggest that the be-
havior described here is generic for all oblate drops. We have
also elected to focus on nondimensional field strengths
sufficiently weak so that drops remain nearly spherical and
electroconvective effects remain negligible. In the limit of
spherical drops (weak fields, small drops, or high surface
tension), the number of nondimensional parameters is re-
duced by one and the field strength can be absorbed into a
properly scaled time. We have shown that this scaling re-
mains accurate even for fairly significant drop deformations.
At higher-field values the drops break up and the dynamics
can change significantly.

The investigation reported here has relied exclusively on
examinations of two-dimensional systems. The interaction of
the drops is, naturally, stronger than in fully three-
dimensional flows. Depending on whether the forces due to
the electric stresses are stronger than the forces due to the
pressure drop applied in the channel, or the pressure drop is
stronger than the electric forces, three-dimensional emul-
sions still would exhibit the formation of fibers or a deposi-
tion of drops on the walls, respectively. However, an impor-
tant difference between two- and three-dimensional
situations is the rheological response of emulsions when the
fibers appear. Whereas in two-dimensional flows the forma-
tion of fibers leads to an occlusion of the flow and to a zero
flow rate, the formation of fibers in three-dimensional situa-
tions would not block the flow, as the suspending fluid could
flow around the fibers. Thus, the presence of the electric field
would substantially increase the effective viscosity of the
emulsion, but a small flow rate would still exist.

The results suggested here might have practical implica-
tions for the transport of drop emulsions. The accumulation
of drops at the channel walls, for example, suggests a way to
separate drops from the suspending liquid. The results of the
computations have been presented in nondimensional form,
but the system examined in Fig. 6 could, for example, be
realized by an emulsion of oil drops with a diameter of
0.5625 mm suspended in a silicon oil flowing through a
channel of height 10 mm with a maximum centerline veloc-
ity of 23.36 mm/s when there are no drops. The potential
difference between the walls would have to be 900 V.

Since the systems examined are two dimensional and the
focus here has been on the qualitative effect of the flow on
the drop distribution, we have not made much effort to ex-
amine in detail the structure of the drop distribution (beyond
using a few simple measures). We conclude by noting that
while all emulsions of oblate drops appear to show qualita-
tively the same behavior, prolate drops—where the
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dielectrophoretic forces and the flow-induced forces can op-
pose each other—show a much richer behavior, even for the
same flow rate.
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