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Abstract  

CIESIN (Consortium for International Earth Science Information Network) is 
funded by NASA to investigate the technology necessary to integrate and facilitate 
the interdisciplinary use of Global Change information. A clear part of this mission 
includes providing a link between the various global change data sets, in particular 
the physical sciences and the human (social) sciences. 

The typical scientist using the CIESIN system will want to know how phenomena 
in an outside field affects his/her work. For example, a medical researcher might 
ask: how does air-quality effect emphysema? This and many similar questions 
will require sophisticated semantic data integration. The researcher who raised the 
question may be familiar with medical data sets containing emphysema occurrences. 
But this same investigator may know little, if anything, about the existence or 
location of air-quality data. It is easy to envision a system which would allow 
that investigator to locate and perform a "join" on two data sets, one containing 
emphysema cases and the other containing air-quality levels. No such system exists 
today. 

One major obstacle to providing such a system will be overcoming the hetero- 
geneity which falls into two broad categories. "Database system" heterogeneity 
involves differences in data models and packages. "Data semantic" heterogeneity 
involves differences in terminology between disciplines which translates into data 
semantic issues, and varying levels of data refinement, from raw to summary. 

Our work investigates a global data dictionary mechanism to facilitate a merged 
data service. Specifically, we propose using a semantic tree during schema definition 
to aid in locating and integrating heterogeneous databases. 

1 I N T R O D U C T I O N  

CIESIN (Consort ium for International  Ear th  Science Information Network) is partici- 
pat ing in a Federally funded project  to explore technology necessary to integrate and 
facilitate the use of global change information. The work includes developing mecha- 
nisms to make this information available to scientists, policy-makers, and other user 
communities in their roles of researching and managing global change. 11 

CIESIN will serve as a link between relevant databases and an international  user 
community in facilitating access, distribution and use of derived scientific information 
in the pursuit  of understanding and predicting global environmental change. 11 
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The general challenge CIESIN faces is to develop information management sys- 
tems which support context-based information retrieval, heterogeneous and distributed 
databases, and "seamless" user interfaces. Ideally, it must allow users to browse and 
search through information domains using sophisticated querying techniques that will 
include imprecise queries, user-directed query processing, and queries that use similarity 
measures in order to retrieve data. 

The CIESIN vision mandates a non-predatory approach to data acquisition, so 
the CIESIN domain will be a collection of autonomous databases. These databases 
will differ considerably from one another not just in their contents, but also in their 
characteristics. For example, they will all have different schemas, semantic properties, 
and attributes. That is, CIESIN will administer a "heterogeneous database" domain. 

Our work investigates data dictionary extensions to facilitate a merged data service 
within this complex heterogeneous environment. Specifically, we present a semantic 
schema definition technique used to locate and integrate heterogeneous databases. The 
next section provides a more detailed problem definition and examples. In section 3 
we explore some state-of-the-art heterogeneous database solutions. Section 4 describes 
our techniques for semantic schema description in the CIESIN environment. Finally, in 
section 5 we conclude with the current status and our proposed future work. 

2 C I E S I N  E X A M P L E  

In this section we will describe an expected scientist interaction with the CIESIN in- 
formation system. This example is then used to illustrate some of the technical issues 
faced by the CIESIN system developers, and some potential solutions. 

In our scenario, a medical scientist is interested in studying how changes in particu- 
late pollution levels may affect the number cases of emphysema in the city of Metropolis 
over the past few years. The information about emphysema cases is available in a epi- 
demiology database (data set), while the measurements of particulate pollution levels 
are available in an air-quality database. Since much of the current scientific data is 
stored in tabular formats which fit the relational model quite well, we have chosen the 
relational model as our platform for this preliminary work. 

The problem of semantic heterogeneity arises within CIESIN because existing data 
sets can not be used to answer multidisciplinary queries directly. In our scenario, Tables 
1 and 2 represent the data sets retrieved from two data sources (the epidemiology data 
set and the air-quality data set). 
Some typical queries that the scientist may wish to make are as follows: 

Queryl: What is the correlation between the measurements of particulate pollution 
levels and those of emphysema in the city of Metropolis? 

Query2: What is the change of the number of emphysema cases between 1988 and 
1989 in the city of Metropolis? 

Query3: What are the changes of particulate pollution levels and the number of em- 
physema cases between 1988 and 1989 in the city of Metropolis? 
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Year Emphysema Cases 
1988 1,052 
1989 1,503 
1990 2,162 

Table 1: Data Set (1) from Epidemiology Database 

Date Particulate Concentration 
(gm/Uter) 

06/01/88 
12/01/88 
06/01/89 
12/01/89 
06/01/90 
12/01/90 

0.00210 
0.00220 
0.00222 
0.00228 
0.00232 
0.00240 

Table 2: Data Set (2) from Air-Quality Database 

The epidemiology data set holds the total number of emphysema cases in the city 
each year. The Mr-quality data set provides measurements of the particulate concen- 
trations every six months. However, these two data sets do not provide direct answers 
to any of the queries mentioned above. To answer the above queries, we must perform 
a "semantic join" on these two data sets. A semantic join is similar to the familiar re- 
lational theory join operation. Where the regular join performs field value matching to 
combine records, the semantic join must perform field meaning matching. For example, 
Table 3 shows the two data sets semantically joined on the meaning of the "Date" and 
"Year" fields. Table 3 can also be considered a "view", which merges the data in Tables 
1 and 2. 

This is a simple example of data integration across different domains, but it il- 

Year 
1988 
1989 
1990 

Particulate Conc. Emphysema Cases 
0.00215 1,052 
0.00225 1,503 
0.00236 2,162 

Table 3: The Integrated Data Set For Query 1 
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From To Increase in 
Emphysema Cases 

1988 1989 451 
1989 1990 656 

Table 4: The Integrated Data Set For Query 2 

Instrates a most important aspect of the CIESIN mission. Now, data retrieved from 
different sources may have different data representations, different data units, and differ- 
ent data semantics. A first step in data integration is data conversion. In our example, 
the data representation corresponding to the attribute "Year" in the epidemiology data 
set are very different from that corresponding to the attribute "Date" in the air-quality 
data set. 

The data corresponding to the attribute "Year" may be represented as integers 
(e.g. 1988), while the data corresponding to the attribute "Date" may be represented 
as strings (e.g. "08/01/88"). The data units of these two attributes are also different 
(year vs. month/day/year).  The data semantics of the two attributes are also different. 
The attribute "Year" indicates which year the data for the number of emphysema cases 
belongs to, while the attribute "Date" shows the date on which air quality was measured. 

Data integration must be accomplished by comparing the value corresponding to 
the "Year" attribute and the value corresponding to the "Date" attribute. However, such 
data comparison is meaningful only if two data items are on a common referential basis, 
i.e., their data representations, data units and data semantics are the same. Therefore, 
data of the "Date" attribute must be converted to the "Year" attribute before two data 
sets can be integrated. But, this may also involve "data refinement". For example, two 
half-year air-quality measurements may first be averaged to obtain a yearly air-quality 
value, then the two data sets merged. This is a form of data refinement which usually 
requires considerable domain knowledge, and it may be necessary to involve human 
experts in the process. 

The data integration problem is not limited to the difficulties of conversion among 
the different data representations or data units. It may also involve data refinement. For 
example, to answer Query2, we must compute the change in the number of emphysema 
cases (table 4). 

To answer Query3, we must perform all the data conversions and data refinements 
mentioned above on both data sets before they can be properly integrated. The air- 
quality data set must be converted to a yearly basis, and the change of particulate 
concentration must be computed. Then, we can integrate this result with the result 
from Query2 to answer Query3. Table 5 contains the data integration results for Query3. 
From the results of Query3, the user can clearly see the correlation between the increase 
of particulate concentration and the the increase of emphysema cases. 

These examples present simple illustrations of some problems CIESIN must over- 
come in order to provide data integration service. In the next section we will review 
current work in heterogeneous database systems and its limitations. In section 4, we 
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From 

1988 
1989 

To 

1989 
1990 

Changein Changein 
Emphysema Cases Particulate Conc. 

451 0.00010 
656 0.00011 

Table 5: The Integrated Data Set For Query 3 

will present our approach to CIESIN's semantic integration problem. 

3 PREVIOUS WORK 

Sheth 13 divides database heterogeneity into data model and semantic differences, and 
operating systems and hardware differences. Operating systems and hardware differ- 
ences are important and have been addressed with standards or de facto standards, in- 
cluding the ISO Remote Data Access (RDA) standard, 1 and IBM's CICS. 9 Data model 
differences include differences in query language and structures. These issues have also 
been extensively studied. Our primary focus is on semantic heterogeneity. 

Semantic heterogeneity arises from differences in the meaning of related data. Con- 
sider the example given by Sheth. 13 Two independent databases, DB1 and DB2, contain 
meal cost data. DB1 has data for restaurants and DB2 has data for boarding houses. 
The attribute MEAL_COST of relation RESTAURANT in database DB1 gives the av- 
erage cost of a meal per person in a restaurant "without" service charge and taxes. The 
same attribute name in relation the BOARDING in database DB2 expresses average 
cost of a meal per person "including" service charge and taxes. Semantic heterogeneity 
makes comparing or joining the two fields very tricky. 

To overcome this problem, most state-of-the-art systems use what Sheth 13 calls 
a "transforming processor" in conjunction with a global schema or virtual view. Fig- 
ure 1 shows the relationship between the transformation processor and the schemas. 
MULTIBASE s is an early example of this architecture (see Figure 2). MULTIBASE 
divides data heterogeneity into semantic and database integration issues, and the "ho- 
mogenization" of local databases. MULTIBASE uses the DAPLEX TM functional data 
modeling and query language to describe (homogenize) local schemas, i.e., present the 
global system with a homogeneous relational view of the local data. DAPLEX flexibility 
makes it possible to isolate differences in data model and access methods in the local 
schema. 

When a user performs a DAPLEX query on the global schema, the global data 
manager (GDM) transforms and distributes the query to the local database interfaces 
(LDI). Using the local DAPLEX schema the LDI transforms the query into the language 
of the local database system. Schema integration is performed by the GDM Transformer 
with the aid of "view derivations". View derivations are a set of rules (derivation oper- 
ators) expressed as a DAPLEX query. Derivation operators can also be called mapping 
functions or operators. The global schema or view is a logical connection between, and 
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Figure 1: Conventional Heterogeneous Schema Integration 
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Figure 2: MULTIBASE Schema Architecture 
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Global view/schema (G): 
0rF./.% DATA1, DATA2, ...) 

J Transformation J 
Processor 

define G.YEAR lo be 
x in L where LDATE ==  *rIG.YEAR 

Local view/schema(L): 
(DATE, DATA1, DATA2, ...) 

Figure 3: Sample Global Schema Transformation Rule 

presentation of, any number of the underlying local schemas. View derivations are used 
to define views in terms of local schemas. MULTIBASE also incorporated auxiliary 
databases to store information necessary to perform semantic mappings. The resent 
Pegasus 2 system work is comparable to MULTIBASE . 

Figure 3 uses a DAPLEX-1ike view description language to illustrate this pro- 
cess with the fields "YEAR" (e.g., 1876, 1991) in a global schema and "DATE" (e.g., 
4/23/91) in a local schema. This example of data refinement requires a global schema 
designer (with "intelligence") to reconcile the semantic differences and describe a map- 
ping from values in the global schema to those in the various private or foreign schemas. 
A number of other systems are based on this mapping technique. 3,4 

Heimbigner and Mcleod 6 describe a federation architecture with no global schema. 
The federation is organized as equal, autonomous databases or components, with sharing 
controlled by explicit interfaces. Each component/site is able to, in effect, build its own 
"global" schema that is best suited to its needs. 

Each federation has a single "federation dictionary" (FD) which maintains data 
about the member components. The FD: 

�9 supports entry and removal of components in the federation 

�9 has no direct control over the components 

�9 does not mediate communication with components 

Components define "private schemas" which describe data stored in the compo- 
nent. These schemas most resemble traditional non-federated database schemas. An 
"export schema" is then defined for the data sets to be made available to the rest of 
the federation. Federation participants search the FD to find schemas of interest and 
then import their exported schemas. Data within the exported schemas is then com- 
bined with view mapping operations (similar to those in MULTIBASE) to construct an 
"import schema" (or view). 
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top level topics 00[" 0 

export schema definition 

J NAME: nasa-sir-index i ATTRIBUTES: {...pollutlon,olr-pollutlon,alr-quallty} 

Figure 4: Semantic Tree Structure 

4 S E M A N T I C  I N T E G R A T I O N  

CIESIN's data semantics problems are unique. The diversity in its scientific data makes a 
single global schema impractical, if not impossible within the CIESIN environment. Fur- 
ther, any CIESIN solution must accommodate new data sets, and modifying a centrally 
administered global schema would make this difficult. Another important difference is 
the nature of the CIESIN user. The scientist using this system will have knowledge of 
a particular field of study, but limited knowledge outside that field. So, CIESIN must 
provide "knowledge discovery" services. 

In some sense, the CIESIN system will be a data dictionary (DD) of schemas, 
similar to a FDD. Users will access the DD in search of data sets. For example, a 
researcher might want to locate all data sets having information on "emphysema". 
Differences in variable names and a general lack of descriptive information might make 
this search difficult in heterogeneous database systems described in the last section. The 
CIESIN system will use semantic information to facilitate discovery. 

To address these problems, we propose a global data dictionary (GDD) for CIESIN. 
We will start with the basic GDD presented in the last section. The export schemas in 
the GDD will be extended to also contain a set of keyword attributes providing semantic 
annotation. This will be used to providing discovery mechanisms for exported schemas. 
The export schema will also contain "type tree" definitions of the schema fields to be 
used to partially automate the view creation process. 

In the next two sections we describe these extensions to the basic GDD. 

4.1 Semantic Hierarchy 
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Each data set administrator in the CIESIN federation will have his or her own inter- 
pretation of the data set contents. To allow discovery we had to provide a common 
framework in which users could describe data sets. Annotating the schema definitions 
with descriptive (semantic) attributes imposes a level of standardization required for 
any shared semantic understanding. A set of unique keywords or semantic attributes 
will used. Keywords will be stored as an unordered set of values with the schema deft- 
nition in the GDD. The user will have the option of specifying attribute-based searches 
or navigating through a hierarchy (Semantic Tree) of attributes to locate the desired 
data sets. 

The Semantic Tree (ST) is a "classification system". Classification systems de- 
scribe groupings of similar objects and show relationships between dissimilar groups, l~ 
A simple classification structure looks like a hierarchy, but more complex relationships 
can generate network structures. "Hierarchical classification" relationships are based 
on the principles of subordination (specialization) and inclusion. The Dewey decimal 
system is a typical hierarchical classification system. 

The system we propose is a hierarchical classification, where the universe of objects 
is divided into successively narrower classes. The interior nodes represent unique seman- 
tic keywords (classes), e.g., "epidemiology", "emphysema". The children of any node 
subdivide the class of the parent. The leaves of the ST contain directory information 
for the actual data set schemas. When a data set administrator is defining a schema 
to be included in the CIESIN system, that person will navigate the ST to annotate the 
schema with semantic attributes. The effect of this navigation process is to place a data 
set schema at a leaf of the ST and create a database of schemas (a data dictionary). 
The semantic keywords in the navigation path become part of the schema definition 
and will aid users who subsequently search the CIESIN system looking for data sets on 
a certain topic (data sets with certain semantic attributes). 

Figure 4 shows a partial semantic tree representation including a class for our air- 
quality data set. Clearly, the key to this solution is proposing a sufficiently complete 
set of keywords and structure in the ST. A draft list and hierarchy of keywords is being 
developed by CIESIN. s 

4.2 T y p e  Tree  

Since CIESIN has no global schema, mapping functions can not be implemented in 
advance. Schemas must be self-describing (via semantic attributes), so mappings can 
be constructed at query or view-creation time. The type tree (TT) provides the schema 
creator with object hierarchies of "field types" (type objects) to be used during the 
schema definition. Each type object in a TT not only contains semantic attributes, but 
a form of view mapping operators as well. The operators are used for constructing new 
type objects in terms of old ones. We are working on a mapping language which will 
automate a large portion of the transformation processor synthesis. 

Semantic attributes in an object are either inherited from its parent object or 
created for specializing the object. For a user-defined attribute, the schema creator must 
provide two attribute-mapping functions which specify how the user-defined attribute 
can be mapped to/from some system attributes. If these mapping functions are not 
provided, the system will not be able to perform data conversion related to this user- 
defined attribute. 
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date.yy = {date .year  % 100 } 
date .mm = { da te .month  } 
date.dd = { date.day } 

date_Ju l ian .yy  = { date .yy  } 
da te_Ju l ian .ddd = { 

for (tmp=O, I = 1; I <= date Jul ian.month; I++) 
tmp = trap + days In rnonth[I]; 

d a t e J u l i a n . d d d  = tml~ '+date_Ju l ian .day ;  
} 

date_Jul ian.month = {  
I = O; trap = date_Jul ian.day 
do { 

trap = trap - days_in_month[I ] ;  
I++; 

d(tmp <= O) 
ate_Julian.month = I; 

} 

Figure 5: Type Tree Example 

Figure 5 illustrates the TT for "time". The "time" object in the TT  represents 
the generic concept of time. The time specified in the TT can be either "absolute" 
or "relative". Thus, two system objects, "time_abs" (absolute time) and " time_tel" 
(relative time), are defined to reflect this model. The absolute time represents a time 
instance relative to 00:00:00, January 1, 0 A.D.. The relative time is a time instance 
relative to some absolute time. Users can define new time objects with respect to 
system objects or existing user-defined objects. In our example, the objects "date" and 
"date_Julian" are user-defined objects. The mapping functions for these two objects are 
also provided. 

We will use a C language subset to describe attribute mapping functions. We 
require that if a schema creator defines a mapping function from type X to type Y, then 
that person also defines a mapping ("complement") function from type Y to type X. 
While we require that mappings be two-way, we do not require that the two directions 
of the mapping be strict mathematical inverses of each other. We would prefer to 
work with such inverse mappings, but we recognize that there may be cases where it is 
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impossible to devise strict inverses. 
The data  conversion from one attribute to the other can be realized by a sequence of 

attribute mapping operators/functions. This sequence of operators/functions is called 
the "conversion path".  By requiring the user to define complement functions, we can 
always construct a reverse conversion path by replacing all the operators with their 
complements and applying them in reverse order. Therefore, the data conversion pro- 
cess in TT  level is always reversible. Examples of reversible operators are ' + ' ,  '- ' ,  '*' ,  
' / ' ,  and '= ' .  The reversibility of operators is important because it enables our system 
to construct the conversion functions automatically. The fact that  any user-defined at- 
tribute can be converted to/from some system attributes, guarantees the existence of 
some conversion function to perform conversion between any two attributes with com- 
patible units. The conversion function can be constructed by chaining all the operators 
and mapping functions along the conversion path. 

The units of time are defined as a type tree ("time_unit"). Each unit object in 
the "time_unit" subtree contains at least one conversion function to some other unit 
object. To support conversion between any two unit objects, all the objects in the 
subtree must be "strongly connected" by some conversion path. Some unit object also 
contains the constants that are necessary for the data conversion. For example, the 
"month" object contains an array of constants to store the number of days in a month 
("days_in_month"), which is shared by all its derived (children) objects. 

The conversion at the TT  level is restricted to data without data refinement (see 
section 2). The nature of the data refinement process is different from the data conver- 
sion process. Data  refinement functions/operators are similar to the view mapping or 
derivation operators discussed in section 3. The data refinement function may not be 
reversible (from high-resolution data to low-resolution data). Because it is impossible 
for a system to predict a user's intention for the data refinement process, we rely on 
the user to select the proper refinement functions at view creation time. Given the 
refinement function, the system will perform the data refinement incorporated with the 
necessary data conversion. Some typical refinement functions are average functions and 
summation functions. 

Together, the attribute mapping and refinement operators define the schema view 
definition language. It is the aim of this work to automate the processes of field mapping 
or transformation processor construction. We define as much semantics as possible in 
the TT.  But, domain specific knowledge makes it impossible to create views without 
user intervention at creation time. 

5 S T A T U S  ~ F U T U R E  W O R K  

This paper describes some of the information systems work being performed within 
the CIESIN project. Research in heterogeneous database semantics is now increasing 
and many of the issues discussed in this paper remain unsolved. Although completely 
automated meaningful semantic join is difficult (if not impossible) without user inter- 
vention, the future of heterogeneous databases is in methods and tools to aid semantic 
intergation. 7 

Future work falls into four categories: refinements to the ST , implementation of 
the schema specification language, implementation of the user query or view language, 
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and incorporating this work into a complete distributed system. Some of these future 
directions are outlined below. 

Because the ST and TT axe based on a strict hierarchy, they have many limitations. 
As the CIESIN keyword list expands cross referencing is a natural extension. Multiple 
inheritance techniques which solve many of these problems have been discussed by 
Sciore. 12 There is also a general question whether we will be able to define a sufficiently 
complete class hierarchy for the ST or TT. 

There are many details of the attribute mapping and refinement functions to be 
considered. The language should perform "fuzzy operations" which would allow ranges 
of values to satisfy a query. 

Finally, when we implement the semantic and type trees, we plan to do so on some 
existing systems such as DAPLEX or Pegasus. 
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