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The first subject considered in the article is a donor center embedded in a thin heterostructural
barrier separating a semiconductor medium into two halves. As a result of the small thickness of this
barrier, the wave function of an electron bound by the donor center shifts almost completely into
both halves of the surrounding semiconductor medium. The ground and first excited electron states
of such a donor center are separated from each other by a narrow energy gap determined by the
symmetric-antisymmetric tunnel splitting. Such structures can be implemented in both
GaAs/AlXGa1−XAs and Si/GeXSi1−X material systems. The second considered subject is an exciton
formed in analogous heterostructures when the staggered band alignment takes place between the
heterobarrier and semiconductor medium. As a result of such band alignment, the hole participating
in the exciton creation is located in the formed quantum well and the electron, which is the hole’s
opponent, is separated into halves �on different sides of the quantum well� as before. Unlike the
donor center, the exciton can be shifted and localized in arbitrary positions along the staggered
“barrier-well” boundary by inhomogeneous electric fields of external controlling gates. © 2005
American Institute of Physics. �DOI: 10.1063/1.2084317�
I. INTRODUCTION

Two-level quantum nanostructures manipulated by small
charged metallic gates are interesting as active elements of
the modern nanoelectronics and quantum information sci-
ences. Two two-level quantum subjects are considered theo-
retically in this article. The first is a donor center, located in
a thin heterostructural barrier separating a semiconductor
medium into two halves �Fig. 1�. The wave function of the
electron bound by this donor center is also split into two
halves placed on different sides of the heterobarrier and con-
nected weakly with each other by tunneling through the bar-
rier. As a result of this weak connection, we obtain a two-
level quantum system with a symmetric-antisymmetric �S-
AS� tunnel splitting of an electron ground state �see Secs. II
and III�.

The second subject we consider is a specific exciton
formed in the analogous heterostructure in the case when the
type-II �staggered� band alignment takes place �Sec. IV�. We
assume that the same heterostructural barrier as above ap-
pears in the semiconductor conduction band and separates
the electron wave function of the exciton into two halves.
Simultaneously, a quantum well is formed in the valence
band and localizes the hole part of the exciton wave function.
This localized hole serves as the above-described donor cen-
ter. In this case the ground exciton state also experiences a
tunnel S-AS splitting. The considered specific exciton exists
only around the heterobarrier plane and occupies an arbitrary
free position along this plane. It can be shifted by inhomo-
geneous electric fields, which pull the exciton into the maxi-
mum field position.

The consideration of the above-mentioned problems is
fulfilled on the basis of a simplified model. The heterobarrier
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potential is modeled as a �-function potential in the donor
center case and as a combination of a �-function barrier with
a “quasi-�-function” quantum well in the exciton case. Such
a simplified approach needs a minimal number of the param-
eters describing the heterostructure �but, of course, cannot be
complete�. The semiconductor medium, in which the elec-
tron wave function is basically located, is described below
by both an isotropic dispersion relation with a single effec-
tive mass �Sec. II� and an anisotropic dispersion relation with
two effective masses �Sec. III�. The latter case is related to
the case of GeXSi1−X /Si material systems when tensile-
stressed Si layers serve as the above-mentioned semiconduc-
tor medium.

II. SPLIT DONOR CENTER IN THE ISOTROPIC CASE

We consider a thin heterostructural barrier grown in an
undoped semiconductor and containing a shallow donor cen-
ter �DC�. The suitable illustrative example is an AlXGa1−XAs
barrier in a GaAs medium. Shallow donors with a low con-
centration ��1011 cm−2� are assumed in the barrier. In this

FIG. 1. Qualitative sketch of an electron wave function ��0,z� of the
ground �S� and the first excited �A� quantization states for a split donor

center in a thin heterostructural potential barrier.
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case, the average distance r1 between the donors in the bar-
rier ��30 nm� exceeds substantially the effective Bohr ra-
dius rB=�2�D /e2m for an electron in the GaAs medium
��8 nm�. Here �D and m are the dielectric constant and
�-electron effective mass for GaAs, respectively. The above-
mentioned Bohr radius is assumed to be much larger than the
AlXGa1−XAs barrier thickness, which is hypothetically equal
to several lattice constants: w�1 nm. So we have

r1 � rB � w . �1�

Since impurity �donor� centers are localized in the com-
paratively high heterobarrier, hypothetical thermodynamic-
equilibrium electrons will leave the donor neighborhood �and
the barrier in general� and step down into the surrounding
GaAs medium. In the high-temperature case, the donor elec-
tron becomes one of the free electrons in GaAs, but at suffi-
ciently low temperatures such an electron is localized around
its donor center on both sides of the heterobarrier and forms
the distinctive H-like atom, which is split into two halves by
the heterobarrier. Electron states in such a split donor center
�SDC� are subjects of our particular interest. We continue our
consideration using a simplified model: we replace the split-
ting heterobarrier having its real complicated potential,
which can be described by means of numerous parameters,
by a simple � potential. The resulting electron Hamiltonian is

Ĥ = p̂2/2m − e2/�Dr + U0��z� , �2�

where p̂=−i�� /�r , r= �r�
2 +z2�1/2 , r�

2 =x2+y2, the z axis is
directed along the normal to the heterobarrier, the x and y
axes are in its plane, and the introduced coefficient U0 serves
as the single parameter of the splitting barrier.

The splitting � potential changes the electron spectrum
of the SDC in comparison with the unsplit DC. The � poten-
tial excludes all the s states of the spherically symmetric
H-like center problem1 and first of all the ground 1s state. All
the other energy levels of the DC connected with p ,d , f , etc.,
states exist also in the SDC, but multiplicities of their degen-
eracy are noticeably lowered. The last component on the
right side of Eq. �2� cannot affect the DC electron states, for
which the electron wave functions ��x ,y ,z=0�=0 �that is,
for all the asymmetric states in relation to the plane z=0�.
These states include all the DC states with nonzero moments
of momentum directed arbitrarily along the plane z=0 and
with nonzero magnetic quantum numbers �m��0. In this lat-
ter case, we can always construct states with real factors1

sin m	 or cos m	 that are equal to 0 in the plane z=0 �where
	 is an angle in the plane, which is normal to the moment of
momentum�. We should also add to the above-mentioned
states all the states with moments of momentum directed
along the z axis, for which l− �m� is odd: l− �m�=1, 3, 5, and
so on �where l is an orbital quantum number for the DC�.
Note again that all the above-listed states are antisymmetric
on z,

��x,y,z� = − ��x,y,− z� , �3�

and belong to both the complete Hamiltonian �2� for the
SDC and the Hamiltonian �2� without the last component on

the right side, which describes the usual �unsplit� DC.
Let us imagine that the coefficient U0 in Eq. �2� is equal
to 
. Then, each of the above-listed antisymmetric solutions
�3� also generates the additional symmetric solution of Eq.
�2�, which can be constructed from the solution for z�0
by an even �symmetric� extension in the region
z�0, ��x ,y ,z�=��x ,y ,−z�. We have for such solutions
��x ,y ,0�=0 as before, but we have a discontinuous first
derivative at z=0, ���x ,y ,z� /�z�z�0=−���x ,y ,z� /�z�z�0.
Note that these symmetric solutions with discontinuous de-
rivatives �� /�z at z=0 do not represent any DC states. They
correspond only to SDC states for U0=
. Similar symmetric
fundamental states for the Hamiltonian �2� exist also for
large but finite values of U0. They do not coincide with ab-
solute values of the antisymmetric DC and SDC states being
different from them near the plane z=0 where ��x ,y ,0�
�0 for these symmetric SDC states. The approximate value
of ��x ,y ,0� can be obtained directly with the help of the
Hamiltonian �2� in the form

��x,y,0� � ��2/mU0� � ��0��x,y,z�/�z�z=0, �4�

where ��0��x ,y ,z� is the wave function of the corresponding
antisymmetric state.

The lowest DC �and SDC� antisymmetric state is a 2p
state with the energy

E2
�AS� = − 
0/8, �5�

where 
0=me4 /�2�D
2 and with the wave function

��x,y,z� = ����,�� = C� exp�− �/2� , �6�

where �=z /rB, �=r /rB, ��=r� /rB, and �2=�2+��
2 .

In order to take into account the energy correction con-
nected with a finite value of U0 and a nonzero value of
���� ,0� we use the variation principle1,2


 �� �*Ĥ�d� ”� ���2d� . �7�

Let us select a trial function in the form

� = C���� + Z�exp�− ��� , �8�

where Z and � are variation parameters. This trial function
differs from the well-known wave function �6� just by these
variation parameters: Z should not be 0 because of some
electron penetration into the barrier, and � cannot be equal to
1/2. The following calculations confirm that a small differ-
ence between � and 1/2 does not lead to a perceptible cor-
rection. We obtain the right side of Eq. �7� in the form

E1
�S� = E��,Z� = �
0/2���2 − �f�X�� + 
1g�X� , �9�

with f�X�= �1+X+X2 /2� / �1+3X /4+X2 /4�, g�X�=X2 / �1
+3X /4+X2 /4�, X=2�Z, and 
1=U0 /8rB. In the interesting
case of the high heterobarrier when 
1�
0 �that is, U0

�8e2 /�D�, we obtain X�
0 /32
1=
0rB /4U0�1, �=1/2
+
0 /256
1=1/2+X /8, and

E1
�S� = − �
0/8��1 + 
0rB/16U0� = − E2

�AS��1 + X/4� . �10�

We have also evaluated E with the help of a somewhat
different trial function, �=C����exp�−� /2�+Z�exp�−���,

compiled as a sum of the wave functions of the DC ground
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and first excited states with the single variation parameter Z�.
The optimal value of this parameter is Z��8
0rB /9U0 and
we obtain E1

�S�=−�
0 /8��1+ �8/81�
0rB /U0�=−�
0 /8��1
+16X /81�, that is, somewhat worse than in Eq. �10�.

The model heterobarrier, which splits the ground H-like
state of the DC, draws closer its even ground state and odd
first excited state and transforms them into a two-level sys-
tem with the distinctive S-AS level splitting. The structure of
this splitting does not contain the typical exponential factor
taking place in the case of thicker and lower barriers. Such a
factor could not be described by the simple �-function
model.3

III. DONOR CENTER IN THE ANISOTROPIC SILICON
CASE

The AlXGa1−XAs barrier in the GaAs medium discussed
above as the simplest example may not be the most attractive
from the viewpoint of applications. Now there exists great
interest4,5 in Si1−XGeX /Si heterostructures grown as a rule on
virtual Si1−XGeX substrates with X=0.3–0.4 �see Ref. 6 as a
review�. In this case, tensile-stressed Si layers, which are
stretched on the above-mentioned virtual substrates, cannot
be infinitely thick, but can be sufficiently thick. For example,
perfect Si layers with 26 nm thicknesses grown on the virtual
Si0.7Ge0.3 substrate are described in Refs. 7 and 8. Being
separated by a thin Si1−XGeX barrier �at X=0.3–0.4� such
layers are sufficiently vast to accommodate undistorted wave
functions of the SDC placed in this splitting barrier. The
above-indicated stretching of the Si medium in the xy plane
with its compression along the z axis normal to the barrier
induces a noticeable energy lowering of the two equiva-
lent electron valleys directed along the same z axis
��2 valleys� in comparison with the rest of the four valleys
��4 valleys�. This lowering lifts the multivalley problem, but
the electron spectrum continues to be anisotropic. The corre-
sponding Hamiltonian replacing the one in Eq. �2� is

Ĥ = p̂�
2 /2m� + p̂z

2/2mZ − e2/�Dr + U0��z� , �11�

where m�=mX=mY is a small transverse mass, mZ is a large
longitudinal mass, p̂�=−i�� /�r�, and p̂Z=−i�� /�z. We
have neglected a small anisotropy of the dielectric constant
�D in the Si medium. In contrast to the Hamiltonian �2�, the
Hamiltonian �11� allows us to obtain accurate wave functions
neither for the case U0=0 nor for the case U0=
. By tradi-
tion, we can use the variation procedure based on the trial
function in the form9–11

���,��� = C1 exp�− 	�1
2�2 + �1

2��
2 � �12�

for the ground �1s� state and on the trial function in the
form10,12

���,��� = C� exp�− 	�2�2 + �2��
2 � �13�

for the first excited �2p0� state. This state is antisymmetric in
relation to the plane �=0. As before, we have introduced
�=z /rB and ��=r� /rB on the right sides of Eqs. �12� and
�13� where rB=�2�D /e2m and m=mz

1/3m�
2/3. Below we are
interested in the case when mZ�m�. In the specific case of
Si, we select mZ=0.92m0 and m�=0.19m0. Then we have
m�0.32m0 and �=m� /mZ�0.206.

For the electron wave function of the considered SDC
placed in the �-shaped heterobarrier and described by the
model Hamiltonian �11�, we can select as a trial function
�analogously to the function �8��

� = C���� + Z�exp�− 	�2�2 + �2��
2 � . �14�

In the function �14� we have three variation parameters �, �,
and Z instead of two parameters for an isotropic valley when
�=�. The right-hand side of Eq. �7� in the considered aniso-
tropic case can be presented by three components,

E = E�a,p,Z� = �
0/2���2�1�p,Z� − ��2�p,Z�

+ �g�Z�/�� , �15�

where the first of them originated by the first two compo-
nents of the Hamiltonian �11� represents an electron kinetic
energy, the second one represents an electron-donor interac-
tion, and the last component expresses an interaction be-
tween an electron and the �-barrier potential. In Eq. �15� we
have

�1�p,Z� = �2/3 + ��10�p� − �2/3�r�Z�/q�Z� , �15a�

�2�p,Z� = 
�20�p� + Z��21�p� + �3/4��20�p��

+ Z2/2�/q�Z� , �15b�

�10�p� = �3/5��2/3 + �2/5��−1/3/�1 + p2� ,

�20�p� = �3/2���p2 + 1�arctan p − p�/p3, �15c�

�21�p� = 2�	p2 + 1 − 1�/p2 − �3/4��20�p� ,

� = 
0/4
1 = 2
0rB/U0 � 1, 
0 = me4/�2�D
2 , �15d�


1 = �1/8�U0/rB, g�Z� = Z2/q�Z� ,

r�Z� = 1 + �15/16�Z + �5/12�Z2,

�15e�
q�Z� = 1 + �3/4�Z + �1/4�Z2,

p2 = ��2/�2� − 1.

Below, we use the parameter p introduced by Eq. �15e� as
the variation parameter �instead of the parameter � and to-
gether with the parameters � and Z�. The optimal values of
�, p, and Z are defined by the following equations:

2��1�p,Z� − �2�p,Z� + �1/��g�Z� = 0, �16�

� � �1/�p − ��2/�p = 0, �17�

� � �1/�Z − ��2/�Z + �1/��dg/dZ = 0. �18�

The parameter ��1 introduced by Eq. �15d� can be con-
sidered as the small parameter of the problem allowing us to

obtain our solutions in the form
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� = �0 + �1� + ¯ , p = p0 + p1� + ¯ , Z = Z1� + ¯ .

�19�

It is evident that the case �=0 corresponds to a solution of
the problem for the 2p state without the separating barrier or
the same problem for the ground state at U0=
. Taking into
account components linear in � allows us to calculate the
correction, which is analogous to the one described by Eq.
�10� in the isotropic case.

Realization of the above-described procedure leads to
the equations

�0 = �1/2��20�p0�/�10�p0� = �20� �p0�/�10� �p0� , �20�

where �10,20� �p�=d�10,20/dp. Equations �20� allow us to ob-
tain in explicit form

� = �2/3�
2p0

3 + 3p0 − 3�1 + p0
2�arctan p0

�1 + p0
2�2��3 + p0

2�arctan p0 − 3p0�
�21�

and determine p0���. We can see that p0�1�=0, p0�0�=
,
and in the Si case with ��0.206 we have p0�0.206�
�1.325. We can obtain from the same Eqs. �20�

�0 =
15�1/3�1 + p0

2���1 + p0
2�arctan p0 − p0�

4p0
3�3��1 + p0

2� + 2�
�22�

and then �0=�0 / �1+ p0
2�1/2. In the Si case we have �0

�0.865 and �0�0.521.
The function Z1�p0� obtained from Eq. �18� can be pre-

sented in the form

Z1�p0� = − �1/2���0�11�p0� − �21�p0�� , �23�

with �11�p�= �3/40���1/3 / �1+ p2�−�2/3�; the expression for
�21�p� is presented above by Eq. �15c�. Taking into account
the approximate formulas �19�, we can rewrite Eq. �15� in the
form

E � E0�p0� + �E1�p0�Z1�p0� ,

where E0�p0�= �
0�0 /2���0�10�p0�−�20�p0�� and E1�p0�
= �
0�0 /4���0�11�p0�−�21�p0��. As a result, we can obtain

E � �
0�0/2�
�0�10�p0� − �20�p0� − ��/4���0�11�p0�

− �21�p0��2� . �24�

In the Si case �10�p0��0.455, �20�p0��0.788,
�11�p0��0.0199, and �21�p0��0.161, thus we have
E�−�
0 /2��0.341+0.00447��. Let us compare this result
with the analogous formula �10� that was derived for the
isotropic dispersion relation and presented in the form E�
−�
0 /2��0.25+0.0156��. We can see that the effect of the
splitting heterobarrier in the Si case is substantially smaller
than in the isotropic case �for the same values of 
0 and �!�.
This fact can be explained by the large longitudinal effective
mass mZ in the Si case.

IV. SPLIT EXCITON

The two-level systems appearing as a result of S-AS
splitting of the ground electron state in a donor center em-
bedded in a realistic thin heterobarrier can be noticeably dif-

ferent from the above-considered prototype based on the
�-shaped potential model. First, real donors embedded in a
finite-thickness barrier have some spread in the z coordinate
and this spread could destroy the suggested precise symme-
try and antisymmetry. Second, this finite-thickness thin het-
erobarrier can be insufficiently symmetric per se. Both of
these disadvantages could be eliminated by a correcting elec-
tric field of an outer controlling miniature gate, but there
appears a problem of the space alignment of this very small
gate with the donor center that is not very simple. These
problems could be simplified if we replace the donor center
localized in the heterobarrier by a hole localized in the same
layer. This means that we should turn the donor center with a
split electron wave function into a split exciton. The latter
could result only if our heterostructure containing a thin het-
erobarrier is a heterostructure with the so-called type-II �or
staggered� band alignment. In the case of a single heterojunc-
tion with the staggered band alignment,13 a special type of an
interface exciton should result �Fig. 2�. The electron part of
this heteroexciton is located in semiconductor B, in which
the conduction band �CB� is below the CB in semiconductor
A, and the hole part is placed mainly in semiconductor A. In
the case of very high levels of exciton pumping in such a
heterojunction we can imagine a certain interface electron-
hole liquid �heteroexciton liquid� concentrated along the het-
erojunction interface with two separated current directions
on different sides of the heterojunction

On the basis of the heterojunction with the staggered
band alignment shown in Fig. 2 two types of split heteroex-
citons could be organized. They are demonstrated in Fig. 3; a

FIG. 2. Model of an interface exciton in the case of a heterojunction with a
staggered band alignment.

FIG. 3. Two types of split heteroexcitons on the basis of a heterostructure
with a staggered band alignment: �a� the model of a split e heteroexciton and

�b� the model of a split h heteroexciton.
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split e heteroexciton in Fig. 3�a� and a split h heteroexciton
in Fig. 3�b�. In contrast to the heteroexcitons formed on the
basis of a single heterojunction �Fig. 2�, both of the above-
introduced types of split heteroexcitons are characterized by
the S-AS splitting of the ground quantization state. In fact,
they are two-level local centers having a two-dimensional
�2D� mobility in the heterojunction xy plane. Such excitons
could be arbitrarily shifted by inhomogeneous electric fields
�for example, created by an ordered system of microgates�.
The type-II band alignment, which is necessary to obtain
both split e heteroexcitons and split h heteroexcitons, is not a
unique phenomenon in the heterostructure world. Such align-
ments take place both in the case of lattice-matched �isomor-
phic� heterostructures and in the case of strained ones. Both
direct-band and multivalley semiconductors could play a role
of the electron counterpart �the semiconductor B in Figs. 2
and 3� for the above-considered heterostructures with the
staggered alignment. Such heterostructures can be grown on
all of the basic types of semiconductor substrates. Let us list
several such structures.

�1� GaAs substrates:
The type-II band alignment structures can be grown on
the basis of AlXGa1−XAs/In0.49Ga0.51P , AlXGa1−XAs/
In0.48Al0.52P, and �in the general case� AlXGa1−XAs/
�In0.48Al0.52�Y�In0.49Ga0.51�1−YP heterojunctions. In the
first case staggered structures appear14,15 at X�X1

�0.12. An increase in X−X1 leads not only to an in-
crease in a discontinuity �
C for the conduction bands,
but to a simultaneous decrease in a discontinuity �
V for
the valence bands �see Fig. 2�. As a result of this de-
crease the second critical point X=X2 appears. At this
point the discontinuity �
V changes its sign, and the
band alignment becomes straddling �type I� at X�X2.
The very crude estimation of X2 �using data from the
review article Ref. 16� gives X2�0.4.

In the case of AlXGa1−XAs/In0.48Al0.52P heterojunctions
staggered band alignment structures should take place in
the much wider interval of values of X. This interval
extends probably from some value X1�0.1 up to X=1
since In0.48Al0.52P is a multivalley semiconductor with
the direct band gap16 �2.7 eV and with the X-valley
indirect band gap �2.35 eV. Therefore, such a hetero-
junction forms a staggered band alignment both in the
case of the direct band gap AlXGa1−XAs�X�0.45� and in
the opposite case with X�0.45.

�2� InP substrates:
Heterostructures with the type-II �staggered� band align-
ment lattice matched to InP substrates are still more var-
ied than the previous group. This variety includes first of
all the classic In0.52Al0.48As/ InP heterojunction and also
additionally17 all of the In0.53−0.02XGa0.47−0.98XAlXAs/InP
heterojunctions for 0.48�X�0.22. Next, this variety
includes GaAs0.5Sb0.5/ InP heterojunction and the very
interesting almost symmetric GaAs0.5Sb0.5/ In0.53

Al0.47As heterojunction. All of the above-listed hetero-
junctions lattice matched to InP substrates are direct-
band structures. This list could be enlarged by a

18–20
AlAs0.56Sb0.44/ InP heterojunction including as a
component the widest band-gap semiconductor
�AlAs0.56Sb0.44� lattice matched to InP substrates.

�3� InAs and GaSb substrates:
They allow one to grow a large number of structures
with the staggering band alignment. The most typical
and known examples are AlSb/ InAs heterojunctions and
Al1−XGaXSb/InAs heterojunctions for comparatively
small values of X. Note that the classification including
only two types of the band lineup is incomplete in the
case of heterostructures grown on these substrates.16 The
straddling �type I� and staggered �type II� band align-
ments should be enlarged by the broken-gap �type III�
band alignment. The complete collection of the struc-
tures grown on these substrates deserves a separate de-
tailed consideration.

�4� Si-based heterostructures:
Si1−XGeX /Si heterojunctions grown on virtual Si1−XGeX

substrates and mentioned above in Sec. III have6 the
staggered alignment for all the values of X. The discon-
tinuity in the conduction band between �2 valleys in the
tensile-strained Si and all the valleys in the unstrained
Si1−XGeX substrate exceeds �0.2 eV for X�0.4 and
reaches �0.5 eV for X�0.75–0.8. The discontinuity in
the valence band between the light-hole �LH� band,
which is the highest in the tensile-strained Si, and the
LH and heavy hole �HH� bands in the substrate is no-
ticeably smaller, �0.1–0.15 eV, but the density of hole
states in the substrate material is substantially larger.
Therefore, we believe that in the case of the compara-
tively thin Si1−XGeX layer embedded into the tensile-
strained Si region, the exciton hole �in the HH form�
localizes mainly into this layer and the exciton electron
�in the �2 form� shifts in Si on both sides of this layer.

The consideration of the split heteroexciton in the form
of the bound electron and hole means that we use the
Wannier-Mott approach,21–23 in accordance with which the
size of this formation substantially exceeds the lattice con-
stant. Below we consider only the split e heteroexciton �Fig.
3�a�� from the two possible versions shown in Fig. 3 since
this one is genetically connected with the donor center con-
sidered above. In particular, such a situation corresponds to a
thin In0.52Al0.48As layer grown in the InP medium, to a thin
GaAs0.5Sb0.5 layer grown in the In0.53Al0.47As medium or in
the same InP medium, and also to the thin Si1−XGeX layer
grown in the tensile-strained Si medium, which is grown for
its part on the virtual 
100� Si1−XGeX substrate.

The thin heterostructural barrier for electrons in the con-
duction band can be described by a �-shaped potential
U0��z� as above, and the multiplier U0 is the single param-
eter of this description. The same heterostructural layer also
serves as the quantum well in the valence band, which local-
izes a hole. We assume that this well is sufficiently deep and
the HH effective mass is sufficiently large to arrange a suf-
ficiently deep position of the hole ground quantization en-
ergy level, to confine the corresponding hole wave function
within the layer, and to neglect its penetration outside. The
quantized hole has a 2D dispersion relation, which is as-

sumed to be known. In an isotropic and parabolic approxi-
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mation this relation is described by the hole effective mass
mP. We assume that not only this mass is known but we
know also the energy of the hole ground quantization level
−
G counted from the bottom of the conduction band outside
the heterostructural layer. This means that we know the en-
ergy gap 
G between the bottom of the conduction band in
the surrounding semiconductor medium and the hole ground
quantization energy level. The exciton wave function
��rN ,zN ;rP� is a function of five variables: three electron
coordinates �rN= 
xN ,yN� and zN� and two hole coordinates
�rP= 
xP ,yP��. The Hamiltonian of such a heteroexciton can
be written in the form

Ĥ = �p̂N
2 + p̂Z

2�/2mN + p̂P
2 /2mP − e2/�D�r2 + z2�1/2 + 
G

= − ��2/2M��2/�R2 − ��2/2�NM��2/�z2

− ��2/2�N�PM��2/�r2 − e2/�D�r2 + z2�1/2 + 
G, �25�

where p̂N,P=−i�� /�rN,P , p̂Z=−i�� /�z , M =mN+mP , �N,P

=mN,P /M, R=�NrN+�PrP, r=rN−rP, and z=zN. The
Hamiltonian �25� allows us to separate the variables in the
Schrödinger equation corresponding to this Hamiltonian and
introduce the multiplicative function

� = ��R���r,z� , �26�

where ��R� describes a free motion of the 2D heteroexciton
with the mass M and ��r ,z� describes a three-dimensional
�3D� motion of the electron bound by the hole around the
exciton mass center. This 3D motion is described by two
effective masses: m�=mNmP / �mN+mP� and mZ=mN�m�.
Since as a rule mN is substantially smaller than mP, which is
close to the HH effective mass, this additional anisotropy is
not very large. Therefore, the above-calculated estimation of
the S-AS splitting of the ground state donor level �see Eq.
�10�� can be satisfactory.

In the most interesting case of a Si1−XGeX /Si hetero-
structure, the quantized hole confined in the hole Si1−XGeX

quantum well binds an anisotropic �2 electron located
mainly in Si. Then a free motion of the 2D exciton is de-
scribed by effective mass M =mN�+mP and quantization of
the bound electron is defined by two effective masses,

m� = mN�mP/�mN� + mP�, mZ = mNZ, �27�

where mN� and mNZ are the effective masses of an aniso-
tropic �2 electron. We can see that the �2 electron trapped by
the heteroexciton is somewhat more anisotropic than the
same electron trapped by the donor center since m��mN�

but this effect is not very large because mN� can be notice-
ably smaller than mP.

Above we restricted our description of a quantized hole
dispersion relation by the single parameter mP. First, we
have neglected the well-known nonparabolic behavior of
subbands of size-quantized holes. Second, we have neglected
their noticeable anisotropy in the xy plane. The first and the
second become very substantial24–27 if kpw�1 where kp is a
wave vector of a quantized hole. We believe that these ef-
fects are negligible if rB�w �see Eq. �1�� where the electron
Bohr radius rB determines the exciton size. We should con-
sider sufficiently thin heterostructural layers. Nevertheless,

these layers should reliably provide the HH quantization.
V. CONCLUDING REMARKS

We have considered two methods of formation of two-
level quantum systems. Both methods are based on growing
very thin heterostructural layers �w�1 nm� in a homoge-
neous semiconductor medium. In the first case, a positively
charged donor center binding an electron is embedded in the
layer that is a potential barrier for electrons and the electron
wave function is located symmetrically on different sides of
this barrier. Both these electron halves are combined by a
weak tunnel connection through the barrier. A disadvantage
of this method could be caused by insufficient symmetry
of both the thin heterostructural layer itself and a position
of the donor center inside the layer. The other disadvantage
could be connected with the necessity to align positions
of the above-mentioned donor centers and the controlling
microgates.

The second method consists of replacing the donor cen-
ter by a hole binding an electron and forming a heteroexciton
together with it. Such a split heteroexciton is localized
around the heterostructural layer only if the staggered band
alignment takes place with the formation of a thin potential
heterobarrier for the electron and a quantum well confining
the hole. This exciton could be shifted along the heterostruc-
tural layer with the help of a controlling inhomogeneous
electric field28 and placed in the desirable position. The spa-
tial symmetrization of the exciton also looks simpler than the
electron symmetrization in a structure with a localized donor
center.

Split excitons can be obtained by connecting injected
free electrons and holes in the distinctive p+-i-n+ structure
where a remote n+ contact injects electrons directly in semi-
conductor B and a remote p+ contact injects holes in the hole
quantum well A. The success of such a measure depends
critically on the lifetime of the split heteroexciton, which
should be maximal and should repeatedly exceed a time of
formation of this pair from the injected free quasiparticles.
Of course, the thin heterostructural layer containing the hole
quantum well and the electron tunnel heterobarrier should be
maximally homogeneous.
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