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ABSTRACT

The results of the study of possibilities to use spin-orbital force in order to
split a circulating beam to two polarized beams are presented in this report. It
is shown that the original spin-splitter1,2 idea which is based on using intrinsic
spin-orbital resonance is not sufficient for splitting, in principle, because the
spin's long lasting effect on particle betatron oscillations is reduced just to a
small tune shift. The theorem on the conservation of the sum or difference of
quantum orbital and spin numbers, i.e. the combined spin-orbital invariance, is
established for this case. The resonant RF magnetic field parallel to the plane
of splitting is introduced in order to stabilize spin in the plane of its precession
and remove the combined invariancy. The new double-resonance invariants are
established, which describe the spin dynamics and the splitting process.

In addition, a method of spin-splitting a beam is considered using gradient
RF magnetic field resonance to particle betatron oscillations. The field has a
component along the axis of the equilibrium polarization in the storage ring. No
resonance with spin precession around this axis is required.

The necessary conditions of beam splitting are discussed.

1. The neo-classical RF Stern-Gerlach method

We describe the principal aspects of this possibility. The spin-dependent
part of the Hamiltonian corresponding to the resonant spin-orbit force can be
written in the following form:

Hsp = Snn· w(r, v, t), (1)

(2)

where Sn is the spin projection on n, and vector was a function of RF field can
be written as follows:

w~ _(.!. +G)B(r, t),
'"Y Bo

where Bo IS the average vertical field of the ring, and B(r, t) IS the gradient
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RF field: 

11~. (r~e i~t B(r', t)  = l t3o ; (~e- iwt  q- 5_w,_  / . 

We assume that t3~ linearly depends on x. Averaging of the Hamiltonian 
(1) for fast-oscillating terms, we get an effective Hamiltonian in the form: 

1 _. a.e_iea~ Heft = ~ S n ( g w a "  e leo + g ~  ), (3) 

where/7 is the generalized azimuth of the particle, 

= + C). < 

03 
e = kx + Vx - 

0do 

- - "  fx" e-i(kx+vx)a >x,y=O (4) 

wo is the revolution frequency, and a is the complex amplitude of the betatron 
x-oscillations: 

1 [afx(0)+ X ~  

Using the Hamiltonian equations we get: 

a' = iRg~e i'0- Sn, 
P 

s" = 0; 

(5) 

here p is the particle total momentum and 2rrR is the circumference. So, the 
spin projection on ff is constant, and we have the resonance spin-splitting of the 
betatron oscillations: 

0 
• R , [ • liR e -iew°t - 1 

a+ - a_ = 1--. tig w e"°d0 = g* (6) 
p J p e 

0 

To conclude this section, we note that the method described above can be 
considered as an immediate extension of the classical Stern-Gerlach method to 
the case of circulating charged particles: the spin is stabilized by the basic 
conservative field, and the stable spin component is responding to the regular 
spin-orbit force; but, in order to enhance the splitting effect during many particle 
revolutions, we must apply the RF alternating gradient field with the frequency 
which is resonant to particle free oscillations. 
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From the practical point of view, one disadvantage of this me thod  is the 
smallness of the value of the RF field strength compared to tha t  of the intrinsic 

gradient field. 

2. T h e  R F - d r i v e n  S t e r n - G e r l a c h  e f fec t  n e a r  a n  i n t r i n s i c  r e s o n a n c e  

Now we add a dipole or solenoidal RF field to the intrinsic constant field of 

the ring: 

]~(r', t )  = Re  [t3°(r-') • e-iWt]. 

The  frequency w of this field must be in resonance with particle be ta t ron  Ux- 
value and with spin precession frequency Usp. So, we have the double resonance 

condition: 
03 03 

- -  ,-~ Usp + ksp, - -  ,~ ux + kx, (7) 
03o 03o 

where ksp and kx are integers; note that  kx - ksp = k, where k is the integer in 
resonance condition Usp ~ Ux + k. 

Let us observe the spin motions with respect to the system of base vectors 

n(O) ,n l (O) ,n2(O) ,  

where 

~.1 + iff2 = g. e -i(~2~°-k~p)O --= I ~1. 

Complex vector g is defined by the relation 

(s) 

= 77. e iu~pO, 

where 77 is the solution of spin equations on the closed orbit ,  with the feature 
~(0 -[- 27r) = ~ (0 ) .  e -2~riu~p. 

We should pay some at tent ion to a peculiar effect which arises when using 
the RF field. In order to provide a small value for the phase difference between 
the particle revolution and RF field oscillation, we need a bunched beam, i.e. 
we have to supply a longitudinal electric RF field with the frequency Wo or qWo, 
where q is an integer. In such a regime particle energy and relative phase (0 -wot )  
will oscillate near equilibrium values with some low frequency UTWo , u 7 < <  1. 
Also the be ta t ron  and spin u-values will oscillate due to chromatici ty parameters  

OUx/07 and COUsp/07. It is not difficult to extend the consideration taking these 
synchrotron oscillations into account. But,  for simplicity, we assume here that  

the amplitudes of all of these oscillations are small enough to neglect them and 
also that  all of the frequencies are constant and equal to the averaged values. 
We also assume that  we can neglect phase "mismatching" (0 - Wot) since the 



330 Charged Particle Storage Rings 

beam is short enough. There is also an advantage of using bunched beams, in 
that the contribution of energy spread to betatron and spin frequency becomes 
a value of the second order. Note that the parameter - ~  could be canceled 
by the introduction of sextupoles and the parameter OVsp/O 7 vanishes by using 
Siberian Snakes. 

Then we have the equations of motion as follows: 

S~. = i@S_ - i~r* S+, 

S~ = i~¢Sn - iespS+, esp = Vsp + ksp - w (9) 
(,.do 

£' - iex£ = il~gs+; ex = Ux + kx 
02 

we define here 

= q¢  + ga, 

p 020 

< W R F "  ~1 > < W i "  I~1 > ~¢ = , g a - -  , 

02 o 02 o 

where ~¢VRF and *~ri are the angle speed of the spin precession in the RF field, 
and in the intrinsic gradient field, respectively, according to the BMT equation. 

Now we assume the relation 

I~xl < <  I~1, (10) 

which is not too precise a requirement from the practical point of view. With 
this condition, we can write the solution for spin motion in the base system (8) 
as :  

^ 

W nXW ^ 

g(o) = ~jl. i~,1 + s. (e) .  ~ + I~1 s. (e) ,  (11) 

Sn(8) + iS_L(8) = [S.(O) + iSj_(e)] exp(- i  /I@lda), 
Sll = const 

^ 

where vector ~ has the components: 
^ 

= (~1, ~2, ,,p), ~1 + i~2 = ~(~). 

Further, we assume for simplicity, that 

I~,pl < <  I,~1; (12) 

then the axis of spin precession Jr71 is close to the plane transverse to ~. 
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The evolution of amplitude a averaged for spin precession axound @ is de- 
scribed by the equation: 

.R  , ' & :  
a I + iexa = I p g  ,--=7, Sii. 

Iwl 
(13) 

With taking adiabatic invariancy of Sl into account, the invariant of this 
equation is the Hamiltonian 

neff -+ Hsplit = 2--~ f exdla2[ + S,I" [~ + gal. (14) 

Thus, this Hamiltonian describes the splitting process, after using the eigen- 
values of the operator SI]: 

h 
sll--'  ±g. 

Let us assume that  ex = const, i.e. x-oscillations are linear; then we obtain the 
trajectories of the splitting process in variables lal and ¢, i.e., a = lalei¢: 

~_~exlalP 2 + ~/1@12 + 2]gcgal cos ¢ + ]gal 2 = const. (15) 

Let us focus our attention on the case of precise resonance, i.e. ex = O, when 
we can expect the biggest value of splitting. In this case, we have 

]~l - I q¢ + gal = const, (16) 

i.e. total  effective field ~,  which is the vector sum of ~¢ and the intrinsic field 
ga, just rotates in the plane transverse to x~. We can get the angle speed Aw of 

^ 

this rotation (with respect to system ff = gl,  g2) using the equation (13): 

~ . Rh 2 ~ = + , = -  g (17) 
I, l' z p  

and then we have 

= +Px Igl 2 
2p Iq¢ + gaol w°' 

where ao is the initial value of a. 

( is )  
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or 

The time progress of the splitting process depends on the evolution of '~: 

* = *(0). exp(iAw, t), (19) 

+ ga= (q¢ + gao)exp(4-iRhlgl2wot/2plq¢ + gaol}. 

Particularly, at ao = 0 (i.e., Iga~l < <  I, 1) we have 

x~r ,,.Rhlgl 2 . ,  1]. 

(20) 

(21) 

Thus, we have a process with a beat period of 27flAw. The maximum splitting 
arises at the moments 

t , = ( n + ~ ) ~ - - ~ w  , n = 0 , 1 , 2 . . .  (22) 

when it is equal to 
qz 

[ a + - a _ [ m =  = 2 t" [ .  
g 

(23) 

It is also important  to note that  for the condition [gao[ < <  ]'~[, the value 
[a[ does not depend on [~[ in the initial stage of the splitting process, when 
t < <  1/Aw: 

]a+ - a_[ ~ ah[g[wot, t < <  1 (24) 
p Aw'  

but the phase of a 4- depends on the phase of ~ ,  which gives rise to a spin 
resonance motion: 

a+ ~ 4- i Rhg* q7 2p I~l w°t' t < <  1/Aw. (25) 

3. T h e  c o n d i t i o n s  o f  b e a m  s p l i t t i n g  

Now, we have to discuss and formulate the conditions which must be satisfied 
in order to realize the perfect splitting of a beam. First of all, note that  after 
splitting the beam to the value of la+ - a_ I above the beam size a, we can 
frequently accelerate the process by engaging in some kind of instability. It 
could be quadrupole instability as a result of the beam interaction with some 
dissipative elements of the chamber, but, possibly, the simplest and most efficient 



Ya. S. Derbenev 333 

way to accelerate the splitting process is to create the parametric instability by 
switching on the RF gradient magnetic field with the frequency 

w = (k 4- 2Vx)Wo; 

the field must be switched off when the amplitudes a+ and a_ achieve the perfect 
value that is necessary for separation of two polarized parts of the beam. 

So, in practice, the time of splitting would be limited by the value 

7Ma 
r~pt ~ hlgl ~/~,x. (26) 

Correspondingly, the necessary strength of the spin-driving RF field has the 
order of value: 

I,~1 ;~ Iglav~x. (27) 

The betatron tune spread AUx must be small enough to satisfy the condition 

AVx < 1/~0Tspt. (28) 

The spin-driving RF field must be parallel to the plane of splitting, in order 
not to excite the dipole x-oscillation: 

BRF II (~, ~). (29) 

Taking into account the admissible value of the dipole amplitude Xd, we obtain 
the limitation on the deviation angle a of the field ]3RF: 

g xA. < B >  .Avd, (30) 
< BRF > 

where/3 is the fl-function, B is the bending field, BRF is the amplitude of the 
RF field, the brackets < . . .  > mean averaging along the closed orbit, and Avd 
is the detune between frequencies of dipole and quadrupole beam oscillations. 

Note also that t3RF should not be parallel to the direction of the periodic 
polarization ~ in the storage ring. At low energies this condition can be satisfied 
together with (29) by using the RF solenoid. At high energies we should use the 
transverse RF field; in this case, the directions of ~ and x must be different. 

CONCLUSION 

Thus, the conclusions are as follows: 

- the Stern-Gerlach method can work in storage rings, in principle, only 
with application of resonant RF magnetic field; 
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- -  the necessary time for splitting is defined by the beam size; therefore, it 
is especially important to provide a beam size as small as possible, using 
some cooling technique; 

- the question of how to monochromize the betatron particle motion during 
the splitting process is still the most crucial problem from a practical point 
of view. 
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