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ABSTRACT 

We study the generally nonlocal Vlasov-Maxwell wave propagation 
and absorption problem for an arbitrarily nonuniform plasma. The 
Fourier transform of the nonlocal dielectric response kernel, 
K(r,k), is constructed by integration along particle orbits in the 
nonuniform field. Although a finite Larmor radius expansion of 
the transverse particle motion still applies, the phase integrals 
which comprise the usual plasma dispersion function are altered, 
containing an additional parameter characterizing the parallel 
field gradient. The use of realistic phase decorrelation 
estimates over a single bounce orbit leads to a reduction of the 
phase integrals to a tractible form. We numerically solve a I-D 
sheared field version of the resultant integral equation 
describing the mode conversion physics. Significant changes are 
found for small kll values. In addition, local absorption in the 
resonance zone appears to be stratified in conjunction with the 
rf-particle phase correlation which occurs for particles passing 
through the localized resonance. 

INTRODUCTION 

This paper addresses two difficulties arising in the treatment 
of wave propagation in a nonuniform plasma possessing both 
parallel and perpendicular field gradients. The first, exact 
treatment of particle orbits in the lineraized Vlasov theory, is 
needed for an accurate description of the particle-wave phase 
integral near the ion cyclotron resonance and its harmonics. Our 
work furthers an endpoint expansion method previously employed by 
Itoh. et al.l; we analytically reduce the velocity-integrated 
phase to a single simple integral. In doing so it is found that 
collisional phase-diffusion plays an important role in preserving 
the analyticity of velocity-integrated phase in the uniform limit. 
We have adopted the methods of Kerbel and McCoy 2 and Cohen et al. 3 
to estimate phase damping for uniform or weakly nonuniform 
conditions. 

Second, we treat questions concerning formulation and solution 
of the wave equation, especially in what concerns the correct 
implemtation of the nonlocal plasma response. For a fixed 
frequcney oscillation, the linear response has a general form 

(~)=]d3r e iK'~ O(~,k)'K(k). , where ~ is the plasma currnt, and 
is the electric fleld in the Fourier domain. When there is shear 
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the parallel wavenumber, kl|, which appears in the phase integral, 
is no longer ignorable wis respect to the nonlocal integration. 
To produce a differential formulation, one is forced to 
approximate the phase integral with a Taylor expansion about some 
fixed value of kll. 4 However, even for small values of shear, this 
expansion is inappropriate when the spectrum of ~(K) is fairly 
wide, such as for rapid variation of the Bernstein wave's 
wavelength, and when the phase integral has significant structure. 
Both conditions occur when there is a parallel gradient. 

We avoid this second difficulty entirely by solving the 
nonlocal integral equation directly. The wave equation is 
formulated as 

~d3r e i~ D(~,K)'~(E) = ~ant(~) (i) 

where D(~,K) is the dispersion kernel, which in form resembles the 
dispersion tensor of uniform plasma theory. A nonsparse matrix 
equation is produced which is the discrete version of integral 
equation (i), and we invert directly for the quanities ~(K). 

PHASE INTEGRAL 

The most important effect of the parallel gradient on the 
conductivity kernel, O(~,E), is the alteration of the phase 
integral which arises from integration along the particle orbits 
in the nonuniform field. This integral is: 

~Vli ;~ exp (i ;o~dZ' (Q-n,'-kiiVli ' ) ) exp (-vii 2/VTh 2) 

where primed quantities follow the unperturbed orbits. The values 
of v I and vii change slowly, and are expanded around the endpoint, 
z=0, in a Taylor series, to give "quasilocal" particle orbits which 
depend on the local parallel gradient through the single parameter 
LH-I = VIIB/B" The Vil integral can be done analytically, leaving 
just the integral over ~, which replaces the standard plasma 
dispersion function, Z((~-n~)/ikiiiVTh). After inluding collisional 
phase-damping, we find its replacement to be: 

Z(~,~;7 ) m i]~dx exp(-x2(l-~x/2)2/4 +i~ -7x3/8), 

where ~=(~-n~)/ik iv , and ~=n~/k IkiiI~iVTh; and y=v/IkiilVTh is the 
ii Th ii 

phase diffusion parameter, where $ ~ is the ion-ion deflection 
frequency. 

For comparison we note that the new parameter, ~, measuring the 
resembles the quantity (kllkc)-2, which parallel gradient, strongly 

Gambier and Samain 5 use to gauge parallel gradient effects in 
their nonlocal variational treatment. We also note analytical 
agreement in all limits with Itoh et al.'s phase integral. 1 

Plots of Z(~,~;7) versus ~ for a large negative and a small 
positive value of Q are shown in Figure i. In the kil-)0 limit 
(large a) there is damping, with Z~i/~I~I, in contrast to the 
uniform plasma result. For small positive ~, there appears a 
modulation of integrated phase due to systematic particle-rf phase 
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accumulation along the field gradient. The average value of this 
modulation is the uniform plasma value. As a--)0 +, the modulation 
becomes finer, and is reduced in magnitude by collisional 
phase-diffusion. 
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Figure I. Z(~,e.T) vs. ~ for: a)~=-10, and b)a-.5; real part is 
solid line, imaginary part is dotted line. 

SOLUTIONS OF THE INTEGRAL WAVE EQUATION 

The phase integral is employed in wave equation (i), which in 
its discretized form requires O(N 2) evalutions of the replacement 
Z-function, where N = # grid points = # Fourier components. In 
our I-D calculations we use N~I00. For sheared field runs we used 
Bp/B=I/10. Several series of runs were made showing the 
wavenumber spectrum, the values Er(X), and local energy fluxes for 
TFTR-Iike conditions (f=60MHz, Bo-40kG , no=4Xl013cm -3, T=5keV, 
ky=0m -I, Rmaj=3m, awall=Im, 95%D-5%H minority heating, or 100%D 2nd 
harmonic heating). Individual modes were easily identifiable on 
the wavenumber spectrum. When there was strong cyclotron damping 
at positive kz, a highly damped local oscillation was barely 
visible in the E r plot around the cyclotron resonance, with 
wavelength corresponding to the replacement Z-function's 
modulation for Hydrogen at the prominent kjl's of the fast wave. 
The local energy balances showed stratification of the energy 
deposition, indicative of a local standing wave at resonance. Our 
energy-like quantities derive from extrapolation of self-adjoint 
methods applied to the shear-free geometry. Here we point out 
that the correct distinction between reactive and dissipative 
power in nonlocal systems is still an active area of inquiry. 

In any case, the form of local energy quantities does not 
affect the validity of the scattering coefficients which are 
calculated in the asymptotic regions. Figure 2 compares the 
scattering coeffients versus k z of a minority heating outside 
launch scheme, with and without shear, for the above parameters. 
Transmission appears to be systematically shifted in k z, caused 
simply by the relation k~l=bTkz+bpk x. Reflection and Absorption are 
altered in more complicated fashion, with significant absorption 
at k~=0 being clearly evident. Comparisons were also made for 
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minority heating inside launches, and 2nd harmonic heating, both 
inside and outside launches. The implication from this study, for 
experiments, is that the ion cyclotron resonance is more 
absorptive than predicted by gradient-free theory, thus relaxing 
the constraints on kll for adequate wave damping. 
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Figuze 2. Scattering coefficients vs. k z for a minority heating 
inside launch scheme, in shear-free and sheared geometries. 
Plasma parameters are given in text. 
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