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Abstract.  Spherically symmetric Black Holes of the Vaidya type are examined in 
an asymptotically de Sitter, higher dimensional spacetime. The various horizons are 
identified and located. The structure and dynamics of such horizons are studied. 

I N T R O D U C T I O N  

Several solutions to the Einstein equations of localized sources in higher dimen- 
sions have been obtained in the recent years. This includes the higher dimensional 
generalizations of the Schwarzschild and the Reisner-Nordstrom solutions [1], the 
Kerr solution [2] and the Vaidya solution [3]. Recently the metric of a radiating 
black hole in a de Sitter background, that  is a generahzation of the Mallett [4] 
metric, has been written down [5]. In the present work our aim is to demonstra te  
that  the dynamics of a radiating black hole in a higher dimensional cosmological 
background can be sensibly discussed. First, we seek to identify and locate the 
various horizons. Then we study the structures and discuss the dynamics of such 
horizons. It  is shown, at each stage, that  all the results we obtain reduce to the 
well known Mallett [6] results as we go down to four dimensions. 

In Section I we introduce the working metric. In Section II  we derive equations 
for the horizons. We solve these equations and use the solutions to identify and 
locate the various horizons in the problem. In Section I I I  we take up the issue of 
the structure of such horizons and study their dynamics. In Section IV we conclude 
the discussion. 
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I T H E  M E T R I C  

We wish to consider a radiating black hole introduced in an N dimensional de 
Sitter space-time. In advanced time, comoving, coordinates the line element is [5], 

ds2 = _ [ 1 2GNm(V)nr, (n + 1)2A(n + 2)r2] dv2+2dvdr-~d~+l '  (1.1) 

where n = N - 3, m(v) ,  the mass, is a monotonically decreasing function 
of the advanced time coordinate v, GN is the N-dimensional gravitational con- 

2 = dO~ + sin 20ad0~ + ... + stant, A is the cosmological constant and d~2n+ 1 
sin 2 01 sin 2 02... sin z 0,~d0~+ 1 is the line element on the (n + 1)-sphere. The Lumi- 

d~/i. nosity L0 = -~-~ < 1, is measured in regions where d is time-like. 
One can introduce a basis of N vectors at every point in this spacetime. Two 

such vectors fl~ and l~ that span the radial-temporal subspace are fla = 5~ and l~ = 
1 [1 2GNm(v) 2A _21 g: + g: .  The rest of the (N - 2) vectors are defined 

on the (n + 1)-sphere and induce on the latter a tensor field %b of the form 
S '"2  t~ £02K0~ /~ gO=+t gO'~+ x %b=r  2 ( ~ ' ~ +  . . . .  1%% + . . . + s i n  201sin 202..sin 2 ~ . ~  "b 1" 

The vectors satisfy flafla = l~,l '~ = 0, %bk b = % j b  = 0, fl~l a = -1 .  

II L O C A T I O N  OF T H E  H O R I Z O N S  

The structure and dynamics of horizons of such non-static metrics can be ap- 
proached from the non-perturbative description of deformation of relativistic mem- 
branes. The quantities that characterize how a variation in the symmetry of a 
membrane evolves are the expansion rate, 0, the shear rate, or, and the vorticity 
(twist), w. They obey the Rachaudhuri [7] equation, 

dO too (.y:)-i 0 z o-,~bo -ab + w,~bw '~b R,~bl'~l b (2.1) 
dv 

where Rab is the N-dimensional Ricci tensor, 7~ is the trace of the projection tensor 
for null geodesics and t¢ is to be identified as the surface gravity. 

Spherically symmetric irrotational spacetimes, such as under consideration, are 
vorticity and the shear free. The structure and dynamics of the horizons are then 
only dependent on the expansion, 0. Following York [8] we note that to O(Lo) the 
evolution of an apparent horizon (AH)  is to satisfy the requirement that 0 ~_ 0, 
while that of an event horizons (EH)  is to satisfy the requirement that a0 ,,~ 0. 

The Apparent Horizons 
In our basis the expansion 0 can be written as 

0 = 7°b~olb (2.2) 
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From eq. (2.2) and the ~%rk condition 0 _~ 0 we find that  the (AHs) satisfy, 

(n + 1 ) (n  + 2) GNm (v) O. (2.3) r ~ + 2 _ ( n + l ) ( n + 2 ) r  ~ +  
2A n A 

While eq. (2.3) admits no simple solutions it is possible to cast it in a form 
for which approximate  solutions are reasonable and justifiable. To this end we set 

r = k (1 - ~) where k = ,/0~+a)(n+2) to t ransform eq. (2.3) to the form V 2A 

( 2 -  ( ) ( 1  - ~ ) ~ - f l ( n )  = 0., (2.4) 

n 

where fl (n) = 2aNm(.) [ 2A ] ~- In  our model  A > 0 and so/3 (n) > 0 so that  n t(n+l)(n+2)J " 
for real and positive v values, 0 < ~ < 1 and 0 < fl < 1. This justifies seeking lower 
order solutions by expanding the expression (1 - ~)n in the first te rm of equat ion 
(2.4). Thus  to 0 (~4) we find 

~4 + a~3 + b~2 + e~ + d = 0, ( 2 . 5 )  

6,, b 7-- 6(2n+1) 15 
w h e r e  a - (n-1)(2n-1)'  n ( n - 1 ) ( 2 n - 1 ) '  C - -  . (n-1)(2n-1) '  a n d  d = 

6 , (n -~2n-~) f l  (n).  We should ment ion that  this expansion is strictly valid for n > 2, 
al though the solutions have the right limits when n = 1. The  solutions for the 
5-dimensional (n = 2) case are exact .  In general this approximat ion is good in the 
limit ( --+ 0. 

Of the four solutions for eq. (2.5) the two physically interesting ones for our 
purposes are 

1 1 R 1 
~+ =--a4 +-2 (p,~p)i-~D(p,~), ( 2 . 6 )  

where R = q- - b + 2 cos ~v, D = 

-1 [gabc - 2b ~ - 2 7 c  ~ - 9 ( 3 a  2 + b) e l .  27 
Recalling tha t  r = k (1 - ( ) ,  the  solutions above give 

4 a b - S c - a  3 

1 [(3ac - b 2) - 12d] and q 

1 [2D(p ,~)T2R(p ,~) ia]}  ri.(v)~_k 1±~ (2.7) 

In the limit n ~ 1 one recovers the well known solutions [6]. Thus 

lim r ]H  ( v ) ± ( - - - ~ )  ~ = COS ~ ,  
n = l  

( 2 . s )  

whoso < • < . )  -- = + 
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Consequently, we identify the loci of r]H (v) and r + .  (v) in equations (2.7) as the 
black hole and de sitter apparent horizons (AH-)  and (AH+), respectively, for a 
radiating black hole in an N-dimensional background with a cosmological constant. 

The Event Horizons 
The event horizons are null surfaces. To O(Lo) the evolution of these surfaces 

can be determined by applying to eq. (2.2) the second of the York conditions, 
dA IEH ~ -- O. One finds that the event horizons (EHs) in this problem satisfy 
dv 

r~+2 (n + 1)2A(n + 2) r .  ~ (n + 1)n(n + 2) GNm *A (v) = 0. (2.9) 

where ra* (v) is some effective mass given by ra* (v) = m (v) -- L0 
t ¢  

Eq. (2.9) is exactly of the same form as its counterpart equation (2.3) with the 
mass m (v) replaced by the effective mass m* (v). Hence we can immediately write 
the solutions to (2.9) as 

1 [2D* (p, T) :7 2R* (p, T) ± a'] } ,  ~i.(v)~_k 1+ ~ (2.10) 

where * means m (v) ~ ra* (v) = m (v) - Lo and 1 -,¢ ~Tr < ~0 ~ < ~r. 
In the limit n -~ 1 one recovers the well known solutions [6]. Thus 

hmrE~ (v) ± ( ~ )  1 ~ .  ,~=1 = cos  ~ (±),  (2.11) 

where (~ < qYi_)(v ) <r r )  = arccos [-3m* (v) v~ ]  and q3i+ ) = QI'i_ ) +rr)  

Consequently, we identify the loci of ran  (v) and r+n (v) in eq. (2.10) as the 
black hole and de sitter event horizons, i.e. (E H- )  and (EH +) respectively, for a 
radiating black hole in an N-dimensional background with a cosmological constant. 

The ordering of the horizons can now be made. One finds from our results that 
E H -  < A H -  < AH + < E H  +. 

III S T R U C T U R E  A N D  D Y N A M I C S  OF THE 
H O R I Z O N S  

Structure of  the Apparent Horizons 
At the apparent horizons the expansion, ~), vanishes. One then finds that eq. 

(1.1) will, along with eqs. (2.7), induce on the surfaces van and r+H metrics of the 
form 

I d~ ~ I~=~. = T ~ ( p , ~ )  t sin~ +~cos~v  dv~+d~L1, (3.1) 
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where ct±(p,~2) = (DR) -1 R +  4R 5 1  , f l  = 3 V  3 d m  

2a Noting that ~, p and (~± are all positive quantities then for and a - m ( . ) ~ "  
~r d r n  < ~ < 7r, ~-  < 0 contributes the only negative quantity in eqs. (3.1). We 
conclude, on this basis that the apparent horizon surface rAH (v) of an evaporat- 
ing black hole in a higher dimensional de Sitter spacetime is timelike while the 
associated cosmological apparent horizon r+u is spacehke. 

In the limit n --+ 1, one finds that 

ds2 ]r=~'~u= ± sin (3.2) 

Eqs. (3.2) are the known results [6] for the four dimensional case. 

The dynamics of the Hor izons  
One can rewrite equations (3.1) in the form 

d s  2 I , = ~ .  ~ _ +2Lorh.) dv~ + d~+~ (3.3) 

where FhH), ~ k [ ~ 1 ] = ~C~(±)(p,~o)[p ~ + a COS ~0 . We see then that to 0 (L0) the 

apparent horizons r~H move with velocities given by 

d r y .  ~_ ~2LoFh . )n .  (3.4) 
dv 

Similarly the motion of the event horizons r~H can be deduced from eqs. (2.9). 
One finds that the velocities of these surfaces are given by 

(3.5) 
dv 

5: where the F(EH) n are obtained by applying to F(AH) n the transformation m (v) ---+ 

m* (v) = m (v) - L0 that turns A H  quantities to E H  quantities. For the range 
t¢ 

(½r < ~,~,* < ~') c°nsidered F±(AH),~ and F(Eu)" are positive so that for the observer 

at YAH < r < V+H both E H -  and A H -  move with negative velocities --2LoF(EH) n 
and -2LoF~-AH),~, respectively. Such motion represents, in each case, a contraction 
of the respective black hole horizon. Conversely the cosmological horizons E H  + and 
A H  + are observed to expand at velocities 2LoF~EH) ~ and 2LoF~-AH),~, respectively. 

As (n--* 1) one recovers the known results [6] for the four dimensional case, 
and in this limit as A ~ 0, we recover from the equations the standard relations 

lira drX" - -2Lo and lira d ~  -2Lo.  
n - - 1  d v  - -  n - - 1  d v  

h ~ o  h ~ O  
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IV C O N C L U S I O N  

In this discussion we have examined black holes of the Vaidya type in an spa- 
tially flat higher dimensional spacetime with a cosmological constant. We find four 
horizons identified as the event horizon, E H -  and the apparent horizon A H -  for 
the black hole and their cosmological counterparts, E H  + and A H  +, respectively. 
We have, to good order of accuracy, located these horizons and deduced both their 
structure and dynamics. Our results reduce to the known ones, under various lim- 
its, including the four dimensional case [6]. It is seen then that  the problem of the 
dynamics of a radiating blackhole in a higher dimensional cosmological background 
can be sensibly discussed. 

An application of our results to the Hawking radiation problem will be the topic 
of a future discussion, elsewhere. 
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