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Abstract 

A method for generating large-amplitude nonlinear plasma waves, which uti- 
lizes an optimized train of independently adjustable, intense laser pulses, is an- 
alyzed in I-D both theoretically and numerically (using both Maxwell-fluid and 
particle-in-cell codes). Optimal pulse widths and interpulse spacings are com- 
puted for pulses with either square or finite-risetime sine shapes. A resonant re- 
gion of the plasma wave phase space is found where the plasma wave is driven 
by the laser most efficiently. The width of this region, and thus the optimal finite- 
risetime laser pulse width, was found to decrease with increasing plasma density 
and plasma wave amplitude, while the nonlinear plasma wavelength, and thus 
the optimal interpulse spacing, was found to increase. Also investigated are the 
resonance sensitivities to variations in the laser and plasma parameters. Non- 
linear Landau damping of the wave by trapped background electrons is found 
to be important. Resonant excitation by this method is shown to more advan- 
tageous for electron acceleration than either the single pulse wakefield or the 
plasma beatwave concepts, because comparable plasma wave amplitudes may 
be generated at lower plasma densities, thus reducing electron-phase detuning, 
or at lower laser intensities, thus reducing laser-plasma instabilities. Practical 
experimental methods for producing the required pulse trains are discussed. 

1 INTRODUCTION 

The generation of  large-amplitude, relativistic plasma waves is a subject of  much current 
interest 2-5 because of its potential use for ultrahigh-gradient electron acceleration 3. While  
conventional if-driven accelerators are limited to fields < 1 MV/cm, plasma accelerators 
have been shown experimentally 4 to support gradients < 100 MV/cm. The maximum axial 
electric field of a relativistic plasma wave, as predicted by one-dimensional ( l -D)  cold fluid 
theory, is the "wave-breaking" field 5, EWB = E o ~ -  1), where 6 Eo = (meCtop/e) ~- 

I/2 3 = 
0.96neo [cm-  ] V/cm, tOp (47te2neo/me) I/2 is the electron plasma frequency, neo is the 
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ambient electron density, Tp = (1 -V2/C2) -1/2, and Vp is the phase velocity of  the plasma 
wave. For a laser-driven, plasma-based accelerator, Tp -~ )'g -~ to/top >> 1, where Tg = ( 1 - 
v2/c2) -1/2, Vg is the group velocity of  the laser, and to is the laser frequency. For a laser 

of  wavelength ~. -~ 2nc/to = 1 ktm and a plasma of density neo = 1016 c m  - 3 ,  "Yg ~ 300 ,  

Eo --~ 100 MV/cm and EWB ~-- 2.5 GV/cm. 
Until recently, only two major types of  laser-driven, plasma-based accelerators had been 

investigated: the plasma beatwave accelerator (PBWA) 3'4, and the laser wakefield accel- 
erator (LWFA) 3'7. In the PBWA, two laser beams of  frequencies tol and o2 are optically 
mixed in a plasma to produce a laser beatwave of  frequency Ato = tol - -  032, i.e., in effect a 
train of fixed equally spaced pulses of equal pulse widths. By adjusting the beat frequency 
and/or the plasma density such that Ato -~ COp, the laser beatwave can resonantly drive a large 
amplitude plasma wave. As the plasma wave amplitude grows, however, nonlinear effects 
cause the wavelength of  the plasma wave to increase and, hence, the resonant frequency is 
shifted away from Ato. Eventually the relative phase between the laser beatwave and the 
plasma wave becomes n/2 out of  phase and the beatwave no longer drives the plasma wave 
to higher amplitudes. This resonant detuning due to the increase in the plasma wavelength 
ultimately limits the plasma wave amplitude in the PBWA. In the LWFA, the ponderomotive 
force associated with the gradients in the intensity of  a single, ultrashort laser pulse 8 drives 
a plasma wave "wake-field." The maximum plasma wave amplitude is obtained when the 
pulse duration 1; and/or plasma density is adjusted such that z ~ 2re/top. The plasma wave 
amplitude increases as the laser intensity I increases and the laser pulse length decreases. 
Hence, in the LWFA, the plasma wave amplitude is limited by the maximum laser intensity 
and the minimum laser pulse length which can be obtained by laser technology. Currently, 
these values are limited to 8 1 ,.- 1018 W/cm 2 and "~ ,,~ 50 fs. 

Recently, the self-modulated LWFA has been suggested 9'1~ Here, a single laser pulse is 
incident on a plasma with a density that is higher than the "resonant density" such that the 
laser pulse duration is now several plasma periods, i.e., x > 2n/top. Due to a self-modulation 
instability 11, the pulse breaks up into multiple pulses, each of  which is "resonant." Although 
higher plasma densities and the high-intensity multiple-pulse structure lead to higher wake- 
field amplitudes, they are difficult to achieve simultaneously due to plasma defocusing 12. 
In simulations of  the self-modulated LWFA 9, the electron energy gain was observed to be 
limited by phase detuning between the accelerated electrons and the plasma wave. 

A fundamental limitation in all plasma-based accelerators is electron-phase detuning, 
i.e., accelerated electrons (with v --* c) outrun the plasma wave (with Vp "~ vg < c). Ac- 
celeration will cease once the electrons phase advance a distance (v - vp ) t  "~ ~,p/2  rela- 
tive to the plasma wave, where ~,p = 2I~c/top is the plasma wave length. In the labora- 
tory frame, this corresponds to a detuning distance of  Lt ~- ~p~,p, where v = c has been 

assumed. It can be shown 13 that the maximum energy gain, AWmax, of  a trapped electron 
in a 1-D plasma wave of amplitude Ez is AWmax -~ 4mec2T2pEz/Eo for E2/E 2 << 1, and in 

the nonlinear limit, AWmax -~ 2mec2~(Ez/Eo) 2 for E2/E 2 >> 1. For example, for a fixed 
value of  e = Ez/EwB -- 0.25 and a laser wavelength of ~. = 1 p.m, AWmax ~- 3.4 GeV for 
neo -- 1018 cm -3 (EwB = 7.3 GV/cm), whereas AWmax ~- 3.4 TeV for neo = 1016 cm -3 
(EwB = 2.4 GV/cm), where )'p --~ to/top >> 1 has been assumed. Notice that for a fixed e, 

AWm~x ~- 4mec2~82 ne 3/2, assuming 2 2 and ~p >> ,~ E z/E~ >> 1 1. Hence, at the high densi- 
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ties required either for self-modulation or for the use of  an ultrashort pulse in the standard 
LWFA, )'g is relatively low and acceleration is limited by electron phase detuning. 

In a previous paper 14, we proposed an alternative accelerator concept, which we call the 
resonant laser-plasma accelerator (RLPA), that combines the virtues of  these others, but has 
the following additional advantages: (i) by utilizing a train of  laser pulses with indepen- 
dently adjustable pulse widths and interpulse spacings, which are varied in an optimized 
manner, resonance with both the changing plasma-wave period and phase resonance width 
can be maintained in the nonlinear regime, and the maximum plasma-wave amplitude is 
achieved; (ii) lower plasma densities can be used, thus avoiding electron-phase detuning; 
and (iii) lower peak laser intensities can be used, thus allowing for a reduction of laser- 
plasma instabilities. In this paper we investigate the RLPA concept 14-16 in greater detail, 
including important issues such as (1) the sensitivities of  the wake field to changes in the 
laser and plasma parameters, and (2) nonlinear Landau damping of  the wave. 

This paper is concerned with determining the characteristics of  the plasma wave gener- 
ated by a nonevolving, optimized laser pulse train in 1D. The laser intensity profile of  the 
pulse train is assumed to be nonevolving and a function of  only the variable ~ = z - Vpt, 
where z is the axial propagation distance and Vp = Vg is assumed. Neglected are various 
effects which could effect the evolution of  the laser pulse train, such as diffraction or pump 
depletion. In the absence of some form of optical guiding, a laser pulse will diffract after 
propagating a distance characterized by the Rayleigh length, ZR = nr2oo/~,, where r0 is the 
minimumlaser spotsize at focus. For a tightly focused laser pulse, ZR can be relatively short. 
However, it has been observed both numerically 9 and experimentally 17 that a preformed 
plasma channel can be used to guide the laser pulse and prevent diffraction. Pump deple- 
tion refers to the process by which the laser pulse loses energy as it generates a plasma wave. 
A rough estimate for the pump depletion length, Ld, is given by equating the energy left be- 
hind in the plasma wave to the initial energy in the laser pulse train, i.e., Ld E2 ~_ CT.totE2L . 
Here, it is assumed that the laser pulse train consists of  pulses of  with equal intensities (EL 
is the amplitude of  the electric field of  the laser pulse) and the sum of the pulse durations is 
Xtot. Consider laser pulses with an intensity I ~ 1018 W/cm 2 (EL ----- 30 GV/cm for ~ ---- 1 ktm) 
and a total duration ofxtot = 1 ps. For a plasma wave amplitude o f E z  ~- 0.5 GV/cm, Ld ~-- 3 
cm. For propagation distances > Ld, pump depletion effects must be considered. The use 
of an active medium has been suggested as a method to overcome pump depletion 18. 

In Sec. 2, analytic solutions and sample calculations for a square pulse train are presented 
to demonstrate the advantage of the use of  multiple pulses in terms of  amplitude and energy 
efficiency. In Sec. 3, numerical results are presented of  pulse trains of  both the square and 
sine shapes. Comparison of the different acceleration schemes suggests that the RLPA is 
more efficient than either the PBWA or the LWFA. We also discuss the sensitivities of  the 
various plasma wave generation schemes to changes in the laser and plasma parameters, 
such as laser intensity (Sec. 3.2.6), laser pulse widths and interpulse spacings (Sec. 3.2.4), 
and plasma density (Sec. 3.2.5). Kinetic effects investigated by use of  a PIC code simulation 
are discussed in Sec. 4. Pulse-shaping techniques are discussed in Sec. 5. Conclusions are 
presented in Sec. 6. 
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2 ANALYSIS 

The laser-plasma interaction is modeled by the relativistic fluid-Maxwell equations. The 
laser pulse is described by the normalized transverse vector potential, ff = e,4• 2. The 
laser envelope, la I, is assumed to be nonevolving and a function of  only ~ = z -  vet, where 
v~ is the group velocity (assumed constant). Circular polarization is assumed, i.e., a 2 ---- 

aZ(~). The quantity a 2 is related to the laser wavelength ~, and intensity I by a ~- 6 x 
lO-l%[gm]I1/E[W/cm2].  The plasma response is described by the normalized electrostatic 
potential, t~ = ed~/meC 2, which in the 1-D limit obeys the nonlinear Poisson equation 14-16,20 

[/ d--~o=kEp~ 13g 1 - 1 , (1) 

where ~g = vg/c ,  3tg = (1 - ~g2)-1/2 and kp = Op/C is the plasma wave number. In deriving 

Eq. (1), ~ was assumed to be a function of only ~, i.e., Vp ~- Vg. In the limit a 2 << 1, 7g = 
o/O3p (nonlinear corrections are discussed in 21 ). As previously mentioned, the laser pulse 
structure is assumed to be nonevolving. This ignores various effects, such as diffraction, 
pump depletion and laser-plasma instabilities. 

2.1 S q u a r e  P u l s e s  

Several properties of  the plasma wave can be determined analytically from Eq. (1) for a 
series of square laser pulses. When a 2 is constant, Eq. (1) can be integrated to yield 

(2) 

where x = 1 + r  ~• = (1 +a2)  1/2 and xo is an initial condition, i.e., x = xo at x t = 0. 
Here, x' = k'~ld~p/d~ and is the normalized axial electric field of the plasma wave, i.e., 

x~ = Ez =- Ez/Eo, where Eo = mec2kp/e  (sometimes referred to as the cold, nonrelativis- 
tic wavebreaking field6). 

Consider an optimized square pulse train where an is the amplitude of  the n th pulse. For 
the first pulse, F-x t. (2) is solved with a = al and the initial condition xo = Xmino = 1. Equation 
(2) is integrated from the front of  the pulse to the back. The optimal pulse length, L1, is 
determined by the ~ distance required to reach maximum potential within the pulse, i.e., 
x ~ = 0 and x = Xmaxl. The wake behind the first pulse is given by solving Eq. (2) with a 2 ---- 

0 using the initial conditions x r = 0 and x0 = Xmax~. The potential of  the wake oscillates 
between Xmax~ and Xmin~. The distance required to reach the minimum potential, x ~ = 0 and 
x = Xminl, is defined to be one half the nonlinear plasma wavelength, ~,N1/2. The optimal 
spacing between the first and second pulse is determined by placing the front of  the second 
pulse at the position in the wake of the first pulse for which x ~ = 0 and x = Xmim. Hence, 
the optimal spacing between the first and second pulse is some odd multiple of  ~'~Vl/2. In 
general, for an optimized square pulse train, it can be shown that the amplitude of the wake 
behind the n th pulse oscillates between Xmin, <_ x < Xmaxn, where 
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Xmax. [Xm,.. , ( l  -- (4> 

Here, Y]_. = ( 1 + an 2) 1/2 and Xmino ~ 1. Furthermore, the maximum electric field amplitude 
behind the n th pulse is given by 

/~=. = 2~ [xma~.- i /~ -~3g(X2max . -  1/~)1/2] , (5) 

where/~max. = EmaxJEo. In deriving Eqs. (3)-(5), the spacing between pulses and the pulse 
lengths are assumed to be optimized, such that the n th pulse begins at x = Xminn_l and ends 
at x = Xmax.. Both the optimal width Ln of the n th pulse and the nonlinear wavelength of 
the wake behind the n th pulse (and, hence, the optimal spacing between pulses) increase 
with increasing n. Wave breaking occurs when the electron fluid velocity becomes equal to 
the plasma wave phase velocity Vg. When this occurs, the electron fluid density becomes 
singular. From Eq. (1), wave breaking occurs when Xmin. --+ 1/Tg, which implies Xmax. -+ 
xWB = ( 2 ~  -- 1)/yg. This corresponds to a wave-breaking electric field 5 of /~v B = 2(7g  - 1), 
or Ez = EWB. 

Numerical solutions to Eq. (1) indicate that for x 2 << ~wB, Eq. (1) can be approximated 
by the limit I]g --+ 1, i.e., 

2x" = 72~/x 2 - 1, (6) 

where the prime denotes k ~ l d / d ~ .  For a series of  optimized square pulses, analytic solu- 
tions can also be readily obtained from this reduced equation. In particular, 

Xmaxn = ~/2~1 ~t2~2 " �9 �9 ~2&. , (7) 

F-~maxn 1/2 - 1 / 2  = Xnlaxn --  Xmaxn, (8 )  

and Xminn = 1/Xmax.. Furthermore, the optimal width of  the n th pulse, Ln ,  and the nonlinear 
wavelength of the wake behind the n th pulse, )~N., are given by 

1/2 
Ln = (2/kp)xmaxnEz(pn), (9) 

1/2 ^ 
~N,~ = (4/kp)xnlax,,E2(Pn), (10) 

where E2 is the complete elliptic integral of  the second kind, 9n 2 = 1 - ~ X~x. and On 2 = 

1 - x~x. .  The optimal spacing between the end of  the n th pulse and the n th + 1 pulse is an 
integer multiple of  ~,N.. Note for equal pulse amplitudes, i.e., al = a2 . . . .  =- ao, Xmax. = 
~n ~ = (1 + a2) n. In the limit xZmax. >> 1, kpLn ~-- 2~0 ,  and kp~.Nn ~_ 4~f~0, and X'max. _ kpqlnLo. 

Several recent papers have addressed various aspects of  this problem 14-16. 
The maximum normalized electric field,/~max = X'ma~ = Emax/Eo, for an optimized train 

of n square pulses of  equal amplitudes, is plotted in Fig. 1 versus the quantity a~ "~ na~, 
using the above analytical results. For yg >> 1 and x 2 << XZw~,/~m~x is approximately inde- 
pendent ofne0. The curves show the result for 1, 3, 5, 10, and 100 pulses. Figure I indicates 
that just a few optimized square pulses are far more efficient than a single pulse. For exam- 
ple, at n~0 = 1015 cm -3 0.  = 1 ~tm, 7g ~ 103, Ew8 ~- 1.4 GV/cm), three square pulses can be 

18 2 2 used with an intensity I = 2.7 • 10 W/cm/pu l se  (a 0 = 1) and a total pulse train energy of  
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IT, tot  = 20 MJ/cm 2 to produce Ez = 0.1 GV/cm. Here, Xtot is the sum of the pulse durations 
in the train and 2.7a02 '~ 10-18~2[I.tm]l[W/cm2]. A single pulse at neo -- 1015 cm -3 requires 
I = 3 x 1019 W/cm 2 (a~ = 11), over an order of  magnitude higher intensity than in each 
pulse in the train, and a total energy six times greater (l%ot = 120 MJ/cm2), to produce this 
same Ez. (A low density was chosen for this example so that finite rise-time effects could be 
neglected, as discussed See. 3.2.1.) Figure 1 indicates that the amplitude-efficiency advan- 
tage of multiple pulses increases with increasing number of  pulses n or total laser intensity 
ao 2. Figure 2 shows the ratio of the maximum field achieved with a train of  pulses (/~max,) 
over that achieved with an equivalent-energy single pulse (/~maxl) versus an 2, demonstrating 
the energy-efficiency of  the RLPA as compared with the LWFA. 

3 NUMERICAL OPTIMIZATION 

3.1 Square pulses 

Figure 3 shows an example of  an optimized square pulse train (n = 4, a0 = 1.2, ne0 = 1016 
cm-3), as obtained by a numerical solution of  Eq. 1, in which the widths and spacing be- 
tween pulses are varied in order to maximize Xmax. For numerical reasons, we used non-ideal 
square pulses that have small but finite rise times. As will explained in Sec. 3.2.1, only in the 
limit of  low density, as was used in the example of  Fig. 3, do numerically optimized trains 
of  pulses with finite rise times reproduce the results analytically predicted in the ideal case 
(See. 2.1). The laser pulses are optimally located in the regions where d~p/d~ > 0. If the 
laser pulse is located in the region ofd~/d~ < 0, it will absorb energy from, and reduce the 
amplitude of, the plasma wave. Likewise, if it is in the region of dO/d~ > 0, it will impart 
energy to, and increase the amplitude of, the plasma wave. The sign of d~/d~ determines 
whether the group of background electrons in the frame of reference moving at speed close 
to c will have positive or negative velocity relative to the frame of  reference. The electrons 
with negative (positive) relative velocity will be accelerated (decelerated) by the laser pulse, 
downshifting (upshifting) the laser frequency, i.e., this determines the direction of  energy 
of  transfer. When a train that is not optimized is used, for instance fixed interpulse spac- 
ings (as in the case of  the PBWA), Xmax reaches some saturated value before being driven 
down by destructive interference when the pulses become out of  phase with the wave, i.e., 
when they are located in regions where dO/d~ < 0. This is referred to as resonance detun- 
ing. The plasma wave is driven most effectively near ~p = {~min (because that is where ne is 
maximum), and least effectively as ~ ---, 0?max. 

3.2 Sine pulses 

The above results are valid in the limits of either infinitesimally short rise times, or low 
density. In practice, the rise time Xrise of a pulse directly out of  a laser is finite and determined 
by the bandwidth of  the laser amplifiers; e.g., currently, the minimum amplified pulse width 
is Xmin ~- 50 fs t9. In order to study the effects of  plasma density and finite rise times on 
efficiency, we now consider pulses with an envelope profile a(~) given by a half-period of 
a sine function. (That Gaussian profiles give qualitatively similar results is verified in other 

556  



simulations.) 
In Fig. 4(a), we plotted the wake field resulting from single pulse excitation (LWFA) in- 

cluding fast oscillations of the laser pulse. For this example, neo = 1016 cm -3 and a0 = 2. 
The high-frequency density fluctuation inside the laser pulse envelope is due to electron 
quiver motion by the high-frequency oscillating electric field of  the pulse. Figure 4(b) shows 
an example of  a sine pulse train (n = 4, a0 = 1.2, neo : 1016 cm -3) that was optimized nu- 
merically. The first pulse in Fig. 4(b) has an optimum pulse width "c = Xopt = 940 fs (res- 
onant with neo = 1016 cm -3 and a0 --- 1.2) and the final pulse has x = "Copt = Xmin :" 200 
fs (IXtot = 2.1 MJ/cm2), which gives Ez = 0.18 GV/cm (e = 0.07). As in the square wave 
case, ENn, and thus the spacing between pulses, increases with each succeeding pulse aSXmax 
increases. 

3.2.1 Plasma wave phase resonance region 

Note that whereas xopt ~ XN,/c for succeeding square wave pulses increases with increasing 
Xmax, the opposite is tree for multiple sine pulses. This difference arises because, whereas 
for square pulses x is independent of  Xrise, for sine pulses x -~ 2"Crise. It is more advanta- 
geous to have a short sine pulse width (x << XNn/c), so that the highest pulse amplitude is 
reached near ~min (where it is most effective in driving the plasma wave), than to have a 
long sine pulse width (x ~ XN~/C), So that the pulse is driving the wave for a longer time, 
albeit mostly when it is less effective (away from ~min). Sine pulses are found to be more 
effective than square pulses for this same reason. For the later sine pulses, Top t is found to be 
approximately given by the width of the region between where ~b < 0 and d~p/d~ > 0, which 
defines a "phase resonance width" Lres. The physical origin of  Lres is that in this region (i) 
the ponderomotive force of the laser pulse is in the right phase with the electron motion to 
give energy to the plasma wave, and (ii) the density of  electrons with which the light pulse 
can interact is highest. 

For the wake behind the n th pulse, Lres c a n  be determined from Eq. (1) in the limit vg = c, 

1/2 
Lres = (2/kp)xrhaxn E2(x/2, [~n) - -  E2(~l, Pn) , (11) 

where ~2sin2al 1 -1 t . - l_ - l /2  1/IEmaxn and, = - x,,&x .. In the limit Xmaxn > > 1, Lres .---r Up .~.maxn '~' 

hence, the resonance becomes sharper (Q - ~,Nn/ Lres " Xmaxn). 
Figure 6 shows a plot of  Lre~/c, which approximates ~opt, v e r s u s  e = Ez/EwB for var- 

ious densities. Notice that, in the regime of high neo, finite rise-time effects become im- 
portant at high e, i.e., Xopt decreases below Xmin as e increases beyond a critical value (e.g., 
Lres/C < 50 fs for e > 0.14, at neo = 1016 cm-3). Since pulses with'c < "Cmin cannot currently 
be produced, the later pulses in a train will not be optimized. Although the later pulses with 
'c = 'train > Xopt will continue to increase Xmax, they will do this less effectively than a train 
in which all pulses are of  optimal widths. Consequently, although for these later pulses the 
sensitivity to changes in ~.N is reduced (as will be shown in Sec. 3.2.4), a pulse train in this 
high-ne0 regime can be less amplitude efficient than a single optimized pulse at the same 
density; i.e., a greater I%ot is required for the pulse train to achieve a given Ez at fixed neo. 
High neo, however, is unfavorable for electron acceleration because of  electron-phase de- 

tuning, AWmax " E2ne:/2,  as will be discussed in greater detail in the next subsection. 
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3.2.2 Efficiency comparison between RLPA and LWFA 

Figure 6 indicates that, for low neo and up to the previously mentioned critical value of e, 
the condition Xopt "~ Lres /C >_ "Groin '~ 50 fs can be satisfied for all of  the pulses in a train [as 
was the case of  Fig. 4(b)]. Consequently, multiple sine pulses in this regime are found to be 
similar to ideal square pulses in that a pulse train is more amplitude efficient than a single 
pulse at the same density. Specifically, 8 times higher intensity 22 (a0 = 3.4, or I = 3.1 • 1019 
W/cm2), corresponding to 2.6 times more energy (I'gto t = 5.4 MJ/cm2), is required of a sin- 
gle pulse (x = Xopt = 700 fs for neo = 1016 cm -3) to reach the same value of Ez (0.18 GV/cm) 
as is reached by the train of Fig. 4(b). In terms of  energy efficiency, a single pulse with the 
same intensity and pulse width as the first pulse in Fig. 4(b), corresponding to 0.42 times 
the laser energy (l'gtot = 0.91 MJ/cm2), results in a 3.9-times-smaller Ez (46 MV/cm). Re- 
ducing the intensity required to reach large plasma-wave amplitudes also reduces strongly 
driven instabilities, such as stimulated Raman scattering, self-focusing, or filamentation, 
which disrupt either the plasma wave or the laser beam. Pulse-to-pulse phase incoherence 
of the high-frequency laser oscillations can also reduce instabilities. 

In order to drive the same Ez with the same I as a sine pulse train, a higher neo must be 
" 1 / 2 I  forao 2 < 1.) Thus, used with a single sine pulse. (Recall that, for a single pulse, Ez "" "eO " 

the same value of  Ez = 0.18 GV/cm as is reached by the train in Fig. 4(b) is obtained by 
an equivalent-intensity single pulse (ao = 0.7) with x = Xopt = 90 fs at neo = 1018 cm -3, 
and with 70 times less energy (l%ot = 30 kJ/cm2). But, because energy gain favors low neo, 
the pulse train in Fig. 4(b) is 1000 times more "acceleration efficient"; i.e., AWmax = 13.7 
TeV for the pulse train, whereas AWmax = 13.7 GeV for the single pulse. Thus, a pulse train 
of equivalent intensity--at either equal or lower ne0--is more acceleration efficient than a 
single pulse 23. 

3.2.3 Efficiency comparison between RLPA and PBWA 

Thus far, the RLPA concept has been compared only to the LWFA; in this section, it is com- 
pared to the PBWA. In Fig. 5(a), the unperturbed plasma wave frequency was used for the 
beat frequency in a PBWA pulse train, Ato ,-~ tOp. However, as expected in this nonlinear 
regime, resonance detuning between the plasma wave and the PBWA laser train is observed. 
Therefore, for a more reasonable comparison, the pulse width for the PBWA needs to be 
optimized for a given plasma density, as was done for the RLPA, but in this case with the 
constraint that the pulse widths, pulse amplitudes, and interpulse spacings are kept constant 
for all pulses in the train. The PBWA optimized in this manner is shown in Fig. 5(b). A 
beatwave wavelength greater than the one corresponding to the unperturbed density ~,p is 
found to be optimum 24, compensating for the increase in the nonlinear wavelength ~,rr with 
increasing beatwave amplitude. As can be seen from Fig. 5(b), the net effect is to move the 
peak of the pulses closer to Lres and avoid resonance detuning. Although the final wake of 
the optimized PBWA is found in the example of Fig. 5(b) to be similar to that in the RLPA 
scheme for comparable laser pulse intensities, it should be emphasized that much more en- 
ergy was required for the former. 

It is useful to compare the wake fields produced by the various concepts given equal total 
laser energies, since that is the technological limitation imposed by the type of lasers capable 
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of the high-intensities required 25. The intensity and pulse width were varied in such a way 
that the total laser energy and number of pulses were kept the same for both the PBWA and 
the RLPA. It is found that the optimized PBWA is less energy-efficient than either the RLPA 
or the LWFA. For example, a PBWA pulse train with a0 = 1.07, x = 1060 fs, where x is the 
pulse width for each pulse, and total energy in the pulse train equal tol'~tot = 3.29/cm 2, pro- 
duced a normalized wake-field amplitude o f E z / E  o = 0.377. An equivalent-energy RLPA 
train (at = 1.6, T, tot : 1900 fs) gave Ez/Eo ---- 2.98, which is 7.9 times larger. In another 
example, a LWFA single pulse with ITtot : 5.05 MJ/cm 2 (a0 = 3.27, X = 700 fs) produced 
a wake larger by a factor of 1.23, Ez/Eo = 1.69, than an equivalent-energy PBWA with 
a0 = 1.2 and x = 1300 fs, which generated Ez/Eo ---- 1.38. Thus, based on the previous dis- 
cussion, the RLPA is the most energy efficient of  all three schemes. 

3.2.4 Wake-field amplitude vs interpulse spacing and pulse width 

The sensitivity of  the growth of/~max to changes in the pulse widths x and interpulse spac- 
ings ~,Nn of  the laser pulses of  Fig. 4(b) was studied numerically. It is governed by both the 
number of  pulses and the Q of the resonance, where Q ,,~ Xmax is as defined in Sec. 3.2.1. 
This can be seen from Fig. 7 in which we plot the maximum electric field/~max produced by 
varying both x a n d  ~'Nn, for the second n = 2 (a), third n = 3 (b), and fourth n = 4 (c) pulses 
of  the train shown in Fig. 4(b). For instance, from Fig. 7(c), it appears that the fourth pulse 
n = 4 is highly sensitive to absolute changes in x or ~'Nn in the vicinity of  x = Xopt. 

It can clearly be seen from Fig. 7(c) that the wake from pulses with x > Xopt are found to be 
less sensitive to changes in interpulse spacing than those with x ---- Xopt, without sacrificing 
much efficiency. For instance, if the pulse width of  the last pulse (n = 4) were x = 300 fs 
"~ 1.5"Copt (instead Of Zopt), it is found that a decrease in the optimal spacing between the last 
and the third pulse (~'N3) by 25 fs (corresponding to 8~,N3/CXopt = 13 %) results in a decrease 
of Ez (from the value obtained using x = Topt and the optimal position) by only 2.2% (instead 
of 5%). Note, in the "r = 1.5Xopt case, IXtot = 2.2 MJ/cm 2, corresponding to a laser pulse train 
energy increase of only 4.5%. 

The added pulses can also absorb the plasma wave, i.e., the maximum electric field 
(/::maxn) can be reduced to a value below that without it (/~maxn_l), when the spacing is re- 
duced such that the pulse becomes located in the d~p/d~ < 0 region. Absorption can be opti- 
mized just as amplification can, by varying x and ~,N, with the maximum amount of  absorp- 
tion equaling the maximum amount of  amplification. The second pulse can in fact totally 
absorb the plasma wave produced by the first pulse 15, the energy of  the plasma wave going 
into upshifting the frequency of the light 26. The amplitude is less sensitive to an increase in 
the spacing, since this moves the pulse further from the dr  < 0 region, and thus the wake 
continues to be enhanced, but less effectively. As ~,N increases beyond its optimum value, 
/~max asymptotes to the value it had without the pulse,/::maxn_l- Thus, the larger the value of  
n, the less the sensitivity to spacing, since the value of/~maxn_l is large to begin with, and 
thus the relative change, AEmaxn/F, maxn_l cannot be as large as it is for, say, the n = 2 pulse, 
for which/~maxn_l is smaller. (See the scaling change of  Emax for the three plots of  Fig. 7.) 
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3.2.5 Wake-field amplitude vs plasma density 

Since the exact resonant plasma density is difficult to produce with current technology, we 
must consider how stable the final RLPA wake field is to variation of  the plasma density. 
In Fig. 8(a), the sensitivity of the wake field versus the plasma density for the pulse train 
in Fig. 4(b) is shown. The density resonance width is 0.51, which is defined as An/no = 
(nu - nL)/no,  where nu and nL are the upper and lower values of  the density for which 
the wake amplitude is half of  its peak value (which it has at the resonant density no). For 
comparison, the density resonance for the PBWA pulse train of  Fig. 5(b) is shown in Fig. 
8(b), with a corresponding density resonance width found to be equal to 0.62. The ar- 
row indicates the density corresponding to the resonant density in the linear approximation, 
AO) = t.Op(ne). Thus despite the much greater efficiency of the RLPA than the PBWA, their 
sensitivities to density variation are similar. Achieving a density uniformity meeting this 
requirement should pose no significant technological challenges--at least for a proof-of- 
principle experiment--since, in fact, by use of multiphoton ionization 27, it has already been 
greatly exceeded in the laboratory over a distance [O(10 cm)] that is greater than the short 
distance discussed in Sec. 3.2 [4~.N ~ O(mm)]. 

3.2.6 Wake-field amplitude vs laser intensity 

In addition to density variation, shot-to-shot laser intensity fluctuations can result in detun- 
ing. Figure 9(a) shows the dependence of wake field amplitude on the laser intensity for the 
RLPA. As usual we assume here that the intensities of all pulses in the train are the same. 
Note the multiple peaks and sudden discontinuities in the slope of  the curve. They corre- 
spond to the various pulses coming in and out of resonance as/~max and thus ~.N change with 
increasing intensity. The peak at a 2 = 1.44 corresponds to optimization of  all pulses. As the 
intensity(a 2) increases, the position of the fourth pulse moves toward the absorption region 
(dt~/d~ < 0) and thus Xmax becomes reduced. At a 2 = 1.6, the fourth pulse moves into the 
emission region again (dr  > 0) and there is a sharp discontinuity. Another discontinu- 
ity appears at a02 = 2.1 as the third pulse moves from the absorption to the emission region. 
The peak at a 2 ~ 2.3 corresponds to the fourth pulse reaching resonance again. Figure 9(b), 
which shows the sensitivity of  the PBWA, is a smooth curve with only one peak since, unlike 
the RLPA, the PBWA pulses are much longer than Lres, and the optimum intensity for the 
PBWA in this example is the highest intensity plotted (a 2 = 2.5). However, as can be seen 
from Fig. 9(a), the amplitude fluctuations of the RLPA are in the worst case only 20% for a 
10% change in laser intensity, which does not represent a serious problem since shot-to-shot 
intensity stabilities of _< 5% are achievable. 

4 PARTICLE-IN-CELL CODE SIMULATIONS 

In order to study kinetic effects, we used a particle-in-cell (PIC) code with one spatial di- 
mension and three velocity dimensions. The simulation is fully relativistic and incorporates 
all of  Maxwell's equations. In order to simulate a laser pulse, one boundary becomes an an- 
tenna. A sine wave oscillates at the laser's wavelength, in this case I l.tm. To get the correct 
pulse shape, another sine wave modulates the laser wave so that the pulse has the shape of 
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a half sine-wave equal to the pulse width. A spatial grid was set up so that one laser wave- 
length was equal to 20 grid points. For a particle density np of 1016cm -3, as chosen in the 
previous fluid model simulations, the plasma wavelength ~,p is 279 ~tm, or 940 fs. The total 
domain of  the simulation is 10~,p in length. The electron-ion mass ratio is 1/1836, with the 
electron charge chosen to give the correct ~,p for the above np with 10 particles/cell. The first 
simulation run, shown in Fig. 1 l(a), was for LWFA with a pulse width equal to ~,p. Qual- 
itatively it has the same characteristics as that of  the fluid model, although the wavelength 
of the resultant wake field differs by about 10%. Comparison of  these two results validates 
the quasi-static approximation and the assumption of  nonevolving pulse-shapes used in the 
fluid code, but, of  course, only for the short distances studied. 

Because of  the computing expense involved in running the PIC code, optimization of  
the RLPA could not be done by variation of  parameters as was done with the fluid code. 
A good approximation, however, was made by performing a total of four separate simu- 
lations, adding one pulse at a time. The half-width of each succeeding pulse was made to 
coincide with Lres, which was determined by the previous simulation. The results appear in 
Fig. 11 (b). 

A feature revealed only when the PIC code is used to model the RLPA is nonlinear Lan- 
dau damping. Notice that in Fig. 1 l(b) the wake-field amplitude decreases rapidly after it 
reaches its peak, after the last of the four laser pulses is added to the train. This is not ob- 
served in the single-pulse case of Fig. 11 (a), or for the case of  the pulse train solved with the 
fluid-code, Fig. 4(b). The PIC-simulation particles start with a small temperature such that 
their initial velocities are much less than the phase velocity of  the wave. However, electron 
velocity distributions calculated in at various times during the simulation indicate that the 
first few pump pulses accelerate some of  the background electrons close to the relativistic 
phase velocity of  the wake field, so that these electrons are in the right phase to give energy 
to the wave. Besides decreasing the amplitude of  the wave after it reaches its peak, damping 
also undoubtedly competes with the latter pump pulses, reducing the rate of  growth of  the 
plasma wave. 

5 PULSE TRAIN GENERATION TECHNIQUES 

There are several ways of producing the required pulse train in practice. The first, shown 
in Fig. 10, is to use Fourier filtering. In this case, a mask is placed in the pulse stretcher 
of a chirped pulse amplification system 8 to modulate the beam in such a way that, when it 
is recompressed, a series of pulses with arbitrary spacings and widths will be produced 29. 
The minimum rise time of  each individual pulse is still governed by the gain bandwidth of  
the amplifiers. Shaped pulses have in fact been amplified in the laboratory 3~ Another pos- 
sibility is to use several separate compressors with adjustable lengths and delays. Finally, 
pulse shaping is much more versatile than optical mixing of  two laser lines, as is used in the 
PBWA, because in the latter case the limited choice high gain laser lines severely restricts 
the choice of operating plasma density. 
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6 CONCLUSIONS 

Optimal pulse widths and interpulse spacings were exactly computed from analytical theory 
for a train of square pulses, and were optimized numerically for a train of sine pulses with 
realistic rise times. A resonant region of the plasma wave phase space was found where the 
plasma wave is driven by the laser most efficiently. The width of this region, and thus the 
optimal finite-rise-time laser pulse width, was found to decrease with increasing density and 
plasma wave amplitude. However, at low densities, where electron energy gain is greatest, 
all pulses could be optimized up to the wave-breaking amplitude for the realistic trains con- 
sidered in this paper. Thus when compared to the PBWA and LWFA, the RLPA is found to 
drive nonlinear plasma waves with superior energy efficiency. The sensitivities of the wake 
field to changes in the plasma density and laser intensity were not found to pose significant 
technological problems. Wake fields from trains with somewhat-longer-than-optimal pulse 
widths were found to be considerably less sensitive to variation of interpulse spacing with- 
out sacrificing much efficiency. PIC code results validated the use of the quasi-static ap- 
proximation and the assumption of nonevolving pulse shapes in the fluid code for the short 
distances studied. They also showed the importance of nonlinear Landau damping at late 
times. The RLPA was shown to be superior for electron acceleration to either the PBWA of 
the LWFA because comparable plasma wave amplitudes may be generated at lower plasma 
densities, thus reducing electron-phase detuning, or at lower laser intensities, thus reducing 
laser-plasma instabilities. Finally, it was shown that practical methods for tailoring laser 
pulse trains using pulse-shaping techniques are currently available. 
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Figure 1: The maximum electric field (/~maxn) vs the quantity a 2 = na 2 for n = 1, 3, 5, 10 
and 100. 
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n =  3 ,5 ,  10and 100. 
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Figure 7: The maximum electric field/~max, produced by varying both the pulse widths "c 
and interpulse spacings ~.U., for the second n = 2 (a), third n = 3 (b), and fourth n = 4 (c) 
pulses. Note the change in scaling of/~max for the three plots. 
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Figure 10: A variably spaced pulse train with arbitrary pulse widths is produced by use of 
Fourier filtering in the laser stretcher stage. 
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Figure I 1: PIC simulation solution with ne = I016cm -3,  and a 2 = 1.44 for (a) a single sine 
pulse, and (b) four sine pulses. Plasma wave dampingis  observed at late times only in the 
latter case. 
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