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Acceptable yields for nanofabrication will require significant improvement in CD control. One method to achieve better run- 
to-run CD control is through inter-process feedforward control. The potential benefits of feedforward control include reduced 
run-to-run post-etch CD variance, rework, and scrap. However, measurement noise poses a significant threat to the success of 
feedforward control. Since the stakes are high, an incorrect control action is unacceptable. To answer this concern, this paper 
will focus on how to properly use the available sensor measurement in a run-to-run feedforward recipe adjustment controller. 
We have developed a methodology based in probability theory that detunes the controller based on the confidence in the sensor's 
accuracy. Properly detuning the controller has the effect of filtering out the noise from the SEM We will simulate this control 
strategy on industrial gate-etch data. 

INTRODUCTION 

The 1997 SIA Roadmap (7) suggests that 3or CD control 
will need to be 10nm in 2003 (half of the current tolerance 
window) and 5nm by 2009. One method to achieve better 
run-to-run CD control is through inter-process feedforward 
control. Figure 1 shows a feedforward control system em- 
bedded into the patterning process. The lithography process 
has output X which is the input to the RIE process. The 
RIE has output Y. Disturbances Dlith and Drie act on the 
outputs of the lithography and RIE, respectively. An in-line 
SEM is often employed in manufacturing systems for SPC 
on lithography CD. However, it may also be used for feed- 
forward control. The measured photoresist (PR) CD is rep- 
resented by M.  The measurement also includes SEM dis- 
turbances, represented by Dse m. The feedforward controller 
adjusts the nominal RIE recipe in order to compensate for 
the estimated post-etch CD deviations 1~. The desired result 
of the RIE recipe adjustment is a reduction in the run-to-run 
variance of Y by rejecting Dlith. We call this strategy feed- 
forward recipe adjustment (FFRA) control. 
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F I G U R E  1. An inter-process feedforward controller imple- 
mentation. 

process (4). Feedforward controllers can increase the out- 
put variance by making unnecessary or incorrect adjust- 
ments due to sensor noise. We will call this situation over- 
adjustment. The goal of this paper is to use variable estima- 
tion techniques to filter out the noise from the true underly- 
ing signal in order to avoid over-adjustment. 

MOTIVATION 

The potential benefits of feedforward control include re- 
duced run-to-run post-etch CD variance, rework, and scrap. 
However, measurement noise Dsem poses a significant 
threat to the success of feedforward control. If the SEM 
noise is large enough, the measurement M will misrepresent 
the true PR CD X and the controller could command incor- 
rect actions. Indeed, the variance of Y under feedforward 
control could actually increase! In most high-tech, high-cost 
manufacturing processes, incorrect control actions are unac- 
ceptable. The possibility of  this scenario becoming reality 
is enough to prevent feedforward control from realization in 
manufacturing. 

When a controller is subject to random measurement er- 
rors, compensation will only increase the variance of the 

PREVIOUS WORK 

Stoddard et al (10) implemented a feedforward and adap- 
tive feedback controller in the manufacture of an on-chip 
capacitor. The goal was constant capacitance in the pres- 
ence of varying dielectric thicknesses. Stefani et al (9) in- 
troduced a new eddy-current sensor and used it in a feed- 
forward control strategy for controlling film thickness. They 
deliberately allowed a very wide input distribution in order 
to avoid over-adjustment. They state that the most important 
factor in their successful demonstration was having a very 
accurate and repeatable sensor measurement to feedforward. 
Leang et al (2) used a feedforward control strategy within a 
photolithographic stepper system. They recognize that feed- 
forward control mechanisms are "... not well accepted in the 
semiconductor industry because of the high stakes involved. 
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A corrective action that worsens a process is not tolerated." 
Their approach is to only activate the feedforward controller 
when a SPC alarm triggered. Rietman (6) discusses a pre- 
production demonstration of a neural network that is used to 
regulate the resistance of vias between the first and second 
metal layers. 

Only one of the above examples took actions to avoid 
over-adjustment in their feedforward control strategy. The 
others mentioned the possibility of over-adjustment, but 
commented that the variance of the sensor was known to 
be much less than the variance of the manufacturing pro- 
cess. This gave them confidence, at some level, that over- 
adjustment was not going to be a problem. However, this is 
not always the case. 

SYSTEM VARIABLE DEFINITIONS 

In order to investigate over-adjustment in feedforward 
control, the variables of the system (Figure 1) need to be de- 
fined. First, it will be assumed that all the random variables 
(RV) are deviations from target. We will also assume that 
the variables are independent, identically distributed (i.i.d.) 
zero-mean Gaussian. Finally, we assume that the noise terms 
are uncorrelated. 

The lithography process is represented by the function 
glith('), the SEM by gsem(X) ,  and the RIE by 9rie(X) .  
These represent the nominal manufacturing processes with- 
out any noise. The deviation terms are defined to add noise 
to the outputs of the processes. The variance of Dlith is  0"2ith , 
the variance of Dsem is Cr2sem, and the variance of Drie is 
O'2ie . 

Figure 1 shows the lithography process is defined without 
an input deviation RV. Any disturbance contributed by the 
incoming wafers to the lithography can be represented by 
the disturbance Olith without loss of generality. The output 
of the lithography system is simply: 

g = Dtith • (I) 

Due to the simple setup of this system, 

Var[X] = O'~; 2 = ~rut h . (2) 

The output RV of the RIE is dependent upon the type of 
control system implemented. Under nominal recipe condi- 
tions (no feedforward control), the output is represented by 
Ynom. In order to define Y,~om and its variance, a useful 
model of 9rie(X) needs to be specified. Guided by indus- 
trial data sets, we are going to express 9,.i~(X) as a linear 
model: 

Yno~ = g~,~(X) + D~e  

= a X  + D~i~. (3) 

The variance of Ynom is: 

Var[Y~om] 2 2 2 = a (Til th -'1- f f r i e  " (4) 

The PR mask CD is measured by a SEM. SEMs are de- 
signed to be very accurate measurement tools and are regu- 
larly calibrated to give linear, unity gain outputs with no off- 
set over their range of operation. Therefore, the measured 
lot-mean PR mask CD deviation is modeled as: 

M = 9 ~ m ( X )  + D ~ m  

= X + Dsera • (5) 

The variance of the SEM output is: 

2 Var[M] = cr~ = Var[X] + ase m 
2 2 

"~- (Y l i th  "~- O ' s e m  " (6) 

Equation 3 modeled the RIE as a linear system. Therefore, 
the predictive model of the RIE will use the same structure, 

f" = ~r~e(2) 

: h X .  (7 )  

The predicted RIE output deviation, Y, becomes the input 
to the FFRA controller. The controller outputs an adjust- 
ment to the nominal recipe in order to compensate for 1~. 
The result of this control action can be represented as sub- 
tracting the predicted nominal output deviation from the true 
nominal output deviation. Therefore, the RIE output under 
feedforward control is 

Y#~o = Y , o , ,  - ? .  (8) 

There are three sources of error between the predicted output 
12 and the true value Ynom : 

1. the estimate of the true RIE input 3[ does not represent 
the true input X exactly, 

2. the model parameter estimate ~ does not represent the 
true model parameters a exactly, and 

3. the linear model structure of  [lrie (') does not capture 
the process 9~i~ (') exactly. 

Each error source should be minimized in order to increase 
the accuracy of the controller. There is significant work in 
all three areas in the statistics literature. Variable estimation 
can be found in most any statistics book, (1) for example. 
Techniques for modeling and parameter estimation can be 
found in (5). This paper will focus on removing error source 
#1 by applying variable estimation to FFRA control systems. 

For the sake of illustration, the next section will define a 
simple estimation method that can result in over-adjustment. 
We will then derive a better estimator and compare results. 

A NAIVE ESTIMATION 

One particularly naive estimate of  X is equating it to the 
reported SEM measurement, 

XM = M .  (9) 
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If this were so, then the prediction of the RIE output, based 
on Equation 7, becomes: 

(lO) 

Analogous to Equation 8, the FFRA output can be defined 
in terms of the nominal output and the control compensation 

I>M. Let Ynaive represent the FFRA output using the naive 
estimate, 

= - ? M  

= ( a X  + Drie) - ( a M )  

= (a  - a ) X  + D ~  - a D ~ , . .  (l l)  

For the sake of  simplicity, let us assume that the model pa- 
rameter estimate is accurate (& = a). Then, 

} n a i v e  = D r i e  - a D s e m  . (12) 

Since the noise terms are assumed independent, the post-etch 
variance becomes: 

Var[Ynoive] 2 = a O'sera "J¢- ~Tri e . (13) 

Compare this FFRA variance to the nominal variance in 
Equation 4. One can see that this naive implementation of 
FFRA rejects the lithography disturbances in  exchange for  
the measurement disturbances. This may or may not be a 
desirable thing to do. 

Figure 3 plots the nominal variance and Var[Ynaive] a s  

a function of  the measurement noise. Notice that if the 
measurement tool is perfect (a2sem = 0) then, under FFRA 
control, the input deviations would be compensated for ex- 
actly and only the RIE variance would remain. Also notice 
that under this naive implementation of feedforward con- 
trol, Var[Y,,,m,~] can exceed the nominal variance. When 
the SEM variance is greater than the lithography variance, 
then feedforward control is worse than no control! 

MMSE ESTIMATION 

In contrast to the naive implementation described above, 
estimation theory can be used to define a better estimate of 
X.  Classic signal processing techniques have a body of liter- 
ature on estimating the value of an inaccessible RV in terms 
of the observation of an accessible RV. Since we are not ig- 
norant about the RVs X or M,  their expected behaviors can 
be used in the estimate of run-to-run z given m. 

The problem statement is to find a X that minimizes the 
mean square error (MSE). The MSE is 

e = E [ ( X -  2 ) 2 ] .  (14) 

The ) (  that minimizes the MSE is the minimum mean square 
error (MMSE) estimator. The MMSE estimator of X based 
on observing the RV M is the conditional mean (8): 

In general, solving the conditional expected value of the 
MMSE estimator is very difficult, except for the case of 
Gaussian RVs. Since we have assumed X and M are Gaus- 
sian deviations from target, the MMSE estimator can be cal- 
culated for our problem definition (3): 

Xmmse = E[X] + p ~ M ( M  - E[M])  (16) 

where p is the correlation coefficient. This is the "optimal 
linear estimator" of X given M (8). 

Consider the effect of p on the MMSE estimate. If/3 is 
zero (i.e. the RVs are uncorrelated), then the best estimate 
of X is its mean E[X]  and the measurement provides no 
useful information. When p ~ 0, the measurement M is 
included in the estimate with appropriate scaling. The cor- 
relation coefficient is calculated by: 

Coy[X, M] 
p = (17) 

O" X O- M 

The covariance of X and M is: 

Co,4X, M ] = E [ ( X  - X ) ( M  - ~r)] 

= E [ ( X  - X ) ( X  + D , e m  - 2 ) ]  

= E [ ( X  - 2)  2] 
= Var(X)  = a 2 (18) X "  

Therefore, for our lithography and SEM setup, 

i X  
p = - (19) 

i M  

The MMSE estimator becomes: 

Xmmse = M cr2x i }  + i L m  " (20) 

Let S represent the ratio of variances, 

s = i }  = if__k} (21) 
o} 

Note that S has the property 

0 < S < 1 .  (22) 

Consider the affect of  SEM noise o n  X m r a s e .  If  there is no 
SEM noise (i~e m = 0), then S = 1 and Xramse = M .  That 
is to say, if the SEM is perfect, then the expected true in- 
put is, in fact, the measured value. When SEM noise exists, 
S < 1 and the expected true input Xrnrnse  will be a fraction 
of the measured value M. Therefore, X m m s e  will be closer 
to zero (target) than M.  This is the de-tuning mechanism. 
As isera2 increases, S --+ 0, which essentially turns off all 

control actions since 1 ? = Xramse --+ O. The a priori  infor- 
mation of lithography and SEM process variances is what 
detunes the controller and avoids over-adjustment. 

Figure 2 shows a graphical example of this estimator. The 
lithography output has a standard deviation of 10 and the 
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FIGURE 2. Distribution true input X given a measurement 
M ~ '/T/,. 

SEM has a standard deviation of 5. A measured lot-mean 
CD deviation of ra = - 2 0  is given. The Gaussian dis- 
tribution of the conditional RV X t m  is has expected value 
E[XIm] = - 1 6  and variance of 20. Notice that Xmrase is 
closer to zero than the measurement m because of the disbe- 
lief in the measurement and a priori  knowledge of the lithog- 
raphy distribution. 

Using the MMSE estimator, the output of the RIE under 
FFRA becomes: 

Yz~a = Y.om - ?  
= a X  + Dr~e - 5 S M .  (23) 

The variance is calculated as: 

2 ^ 2 P , 2  2 Var[Yff~a] = (a - 5S)2~2x + a~i~ + a 3 a8¢,,~ . (24) 

For simplicity, let us assume the model parameters are accu- 
rate (5 = a). A little algebra results in: 

2 2 
Var[Yg~a] = a  2 a x a s ~ m  + 2 

~2 X + ff2em (Trie 

a2S~Lm 2 = + O'ri e . 

(25) 

Compare Equation 25 to Equation 4 and Equation 13. 
They all contain an independent 2 ~rie term. Feedforward 
control does not reduce the inherent variance of the RIE pro- 
cess. The first term for all equations contain an a 2 repre- 
senting the effect of the RIE process. For the nominal RIE 
process, the output variance includes lithography deviations. 
For the naive FFRA implementation, the lithography vari- 
ance is exchanged with SEM variance. When the MMSE es- 
timator is used in the FFRA implementation, the lithography 
variance is exchanged for a scaled SEM variance, Sasem.  
Since S < 1, only a fraction of the SEM variance enters into 
the variance of Yffra.  

P e r f o r m a n c e  of  R I E  pa t te rn ing  wi th  two d i f f e ren t  uses  o f  tile m e a s u r e m e n t  
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FIGURE 3. FFRA performance as a function of  measure- 
ment noise. 

Consider the limits of the SEM variance to understand 
this FFRA variance. If  the SEM variance is large, using the 
FFRA strategy will result in an output variance of: 

lira Var[Ygr~] = aZ(r~¢ + (rz~ie • (26) 
O's2era--+ OO 

This is just the nominal output variance (Equation 4). The 
FFRA design will turn offthe controller if the measurement 
noise is too big. On the other hand, if the measurement noise 
is small: 

lim Var[YL+~ ] = ~r,~e2 . (27) 
O'2em- . .+0  

The input deviations are being compensated for perfectly, 
and only the random noise of the RIE process remains. Ob- 
viously, feedforward control cannot reduce the output vari- 
ance beyond the inherent RIE variance. 

The variance using FFRA can be plotted against increas- 
ing measurement noise. Figure 3 shows that the variance 
during FFRA will not increase above the nominal variance. 
As the SEM variance increases, the FFRA design detunes 
the controller gains. Knowledge of  the increased measure- 
ment noise decreases the measurement tool's credibility and 
the MMSE estimate reduces the amount of control authority. 

RESULTS 

We have simulated this FFRA methodology on a 0.35/zm 
gate etch data set obtained from an industrial fab. The data 
set contains a pair of SEM measurements for each lot. The 
first measurement is the pre-etch PR mask CD. This corre- 
sponds to M. The second measurement is the post-etch gate 
CD. This corresponds to Ynom. We will use these two data 
points to simulate the RIE output as if FFRA control had 
been used. 
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F I G U R E  4. Simulated FFRA performances on normalized 
industrial data from a 0.35#m gate etch process. 

First, we created the predictive linear model of M to Y,~om 
using linear regression (Equation 7). This calculated 6 = 
0.73. Next, we simulated the FFRA output by subtracting 
the predicted nominal output (Y = fiX,~ms~ = a S M )  from 
the nominal output (Y,~om) as shown in Equation 23. 

Figure 4 shows three data signals. The pre-etch mea- 
surements (M)  and the RIE model were used to calculated 
the predicted nominal output (Yp,'ed = 5Xmm,e) calculated 
from the pre-etch measurement and the RIE model. These 
are represented as 'O ' .  The nominal etch deviations under 
no control (Ynom) are shown by a dashed line and a 'o ' .  This 
is the second measurement from the data set directly. The 
simulated FFRA etch deviations (Yffra) are shown as a solid 
line and a '+ ' .  

Notice that due to errors in the prediction, the controller 
does not always perform the proper action. For example, 
the measurement of  the first lot predicted a CD above target, 
while the nominal CD was actually below target. Therefore, 
the FFRA simulated control action drove the output more 
negative. However, the MMSE estimation scaled the adjust- 
ment (by S)  to avoid over-adjustment. Nonetheless, there are 
more corrections than improper adjustments. The standard 
deviation of the nominal output is s[Y,~om] = 2.1, while the 
standard deviation of the output with simulated FFRA con- 
trol is s[Y£f~a] = 1.6. This is a reduction of 23%. 

currently being applied to lithography and RTP. 
Future work will extend the use of MMSE estimation 

to another type of feedforward control strategy. Due to 
complexity and implementation issues, generating a unique 
recipe for each run may be undesirable. However, allowing 
the controller to select a recipe from within a pre-defined 
set of allowable, qualified recipes is sometimes acceptable. 
We call this control algorithm Feedforward Recipe Selection 
Control (FRSC). This approach will realize a portion of the 
FFRA benefits while minimizing the costs in complexity. 
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CONCLUSIONS 

We have shown a methodology for proper integration of a 
sensor measurement into an inter-process feedforward con- 
troller. By using the MMSE estimator, over-adjustment is 
avoided and minimal variance is achieved. 

Notice that this work is generic. It is applicable to many 
sensor and manufacturing processes. In fact, this work is 
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