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A very promising propulsion scheme that could meet the objectives of the Space Exploration Initiative (SEI) of 
sending manned missions to Mars in the early part of the next century is the open-cycle Gas Core (GCR) Nuclear 
Rocket. Preliminary assessments of the performance of such advice indicate that specific impulses of several 
thousand seconds, and thrusts of hundreds of kilonewtous are possible. These attractive propulsion parameters are 
obtained because the hydrogen propellant gets heated to very high temperatures by the energy radiated from a critical 
uranium core which is in the form of a plasma generated under very high pressure. Because of the relative motion 
between the propellant and the core, certain types of hydrodynamic instabilities can occur, and result in rapid escape 
of the fuel through the nozzle. One effective way of dealing with this instability is to place the system in an 
externally applied magnetic field. In this paper we formulate the appropriate conservation equations that describe the 
dynamics of GCR in the presence of magnetic fields, and indicate the role such fields play in the performance of the 
system. 

INTRODUCTION 

One of the most promising approaches to advanced space propulsion that could meet the objectives of the Space 
Exploration Initiative (SEI) is the open-cycle Gas Core Nuclear Rocket (GCR) (Ragsdale 1990) shown in Figure 1. 
The principle of operation in this system involves a critical uranium core in the form of a gaseous plasma that heats, 
through radiation, a seeded hydrogen propellant which exits through a nozzle, thereby converting thermal energy into 
thrust as illustrated in Figure 1. The hydrogen propellant is injected through a porous wall with a flow distribution 
that creates a relatively stagnant, non-recirculating central fuel region in the cavity. It has been found, on the basis 
of a heat transfer model (Poston and Kammash 1992) that takes into account the wall material temperaatre and heat 

FIGURE 1. High Specific Impulse, Porous Wall Gas Core Engine (Courtesy of NASA, Lewis Research Center). 
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flux, that specific impulses substantially less than the 5000 S, often mentioned, are obtained when a maximum heat 
flux of 100 MW/m 2 is imposed. Moreover, the relative motion between the hydrogen and the nearly stationary 
uranium core gives rise to the well known Kelvin-Helmholtz instability (Chandrasekhar 1961) which, if allowed to 
arise, could result in the loss of approximately 3% of the fuel per second (Kammash and Galbraith 1992). It has 
been found (Northrop 1956), however, that such an instability can be suppressed by placing the system in an 
externally-applied magnetic field in the direction of the propellant flow which acts as a "surface tension" type of force 
that provides the desired stability. Clearly, the configuration of such a field must be such that it confines the 
uranium core and yet allow the propellant to exhaust through the nozzle. The most logical field topology is that of 
a "mirror geometry" (Kammash 1975) in which the field is stronger at the ends than it is at the center where the 
uranium core is to be situated. The ratio of the field strength at the "mirrors," where the plasma particles are 
reflected, to that at the center is referred to as the mirror ratio, Rm. The confinement of charged particles in such a 
magnetic configuration is often expressed in terms of the confinement parameter nx given by (Post 1987) 

n z  = 2.5 x 1010E 3/2 logR m, (1) 

where n is the density in cm -3, x is the confinement time in seconds, and E is the mean energy of the particles in 
keV. It is clear that perfect confinement requires an infinite mirror ratio (which is impossible), but significant 
reduction in the losses can be affected by moderate and technologically feasible values of Rm. The mirror ratio in 
effect defines a "loss cone" in velocity space which if, as a result of collisions with other charged particles, a particle 
falls in it, it will escape. It is clear, therefore, that geometric location of the particle in the system has no bearing 
on its confinement; rather it is the change in its velocity vector resulting from a collision with another particle that 
could place it in the loss cone and allow it to escape. For that reason it is reasonable to describe the system with a 
set of equations that ignore spatial variations. Such a set of conservation equations is often referred to as the point- 
reactor model which we will utilize to study the magnetically-confined gas core nuclear rocket. 

The Point-Rr Model of a Magnetized GCR 

The containment of the uranium plasma in GCR by a mirror-type magnetic field, and assessment of its dynamic 
performance can be evaluated by writing an appropriate set of particle and energy conservation equations for the 
constituents of the core. The species under consideration are the uranium and fission fragment ions, and the 
electrons. The equations of interest are the particle equation for the fuel ions 

= Su Nu srr,  (2) 
d z  *:u 

the energy balance equation for the fuel ions 

a(Nueu) = Suei. Nu eLu- SFPeu+Nu {NeWeu + NrWru + Wrru}, 
dt z u 

(3) 

the particle balance equation for thermalized fission fragments 

dNF - - NFF N F  , (4) 
dt ~FF qJF 

the energy balance equation for thermalized fission fragments 

d(NFEF)  _ NFFEF 

dt V FF 
Nr e .r - Nr{NuWr. + NeWt. -  WFrF}, 
"~F 

(5) 
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and the energy balance equation for the electrons 

d(  NeEe)  M 

- N e { N F W F e - N u W e u + W F F e } - " e E L e - P  B , 
dt re 

(6) 

where Nu is the number density of the uranium ions, Eu is the energy of these ions, and Su is the source term for 
these particles. In a similar manner we define NF and EF, and Ne and Ee for the fission fragments and the electrons 
respectively. The other terms are defined as follows: Xu is the confinement time for the uranium ions, and xF and Xe 
are those for the fission fragments and electrons respectively. We distinguish in this analysis between the "fast" 
fission fragments whose density is designated by NFF and slowing down time by XFF, and the "thermalized" ones 
noted earlier. In the energy equations of the various species we note the terms designated by W with appropriate 
subscripts. These denote the rate of energy exchange between the species represented by the subscripts (Galbraith and 
Kammash 1978); for example, WFU represents the energy transfer rate from the thermal fission fragments to the 
uranium ions as a result of collisions, while WFFU is the equivalent term for the exchange between the fast fission 
fragments and the uranium ions as these fragments slow down to reach thermalization. In Equation (2) the term SFF 
represents the rate at which uranium ions are lost as a result of their undergoing fission reactions, and this term 
should serve as the source term for the fission fragments number density seen in Equation (4). The terms El_e, ELu, 
and ELF represent the escape energy terms for the electrons, uranium ions, and fission fragment ions respectively, 
and are found from the mirror machine energy confinement equations (Galbraith and Kammash 1978). For the 
electrons, we assume that the time rate of change of their number density is much faster than that of the other 
species, that their particle balance equation may be replaced by a steady state equation of charge balance: 

/re 
"c e "c u T F 

where (Zeff)u denotes the effective charge on the uranium ions and a similar term for the fission fragments. It should 
be kept in mind that SFF = Nut'Of, where t~ is the neutron flux, and of is the fission cross section for the uranium 
Moreover the quantity Ne is found from the Saha equations which relate it to the densities and temperatures of the 
other species in the system (Kammash and Galbraith 1989). The electron confinement time %, and escape energy 
ELe are obtained using Pastukhov's equations (Galbraith and Kammash 1978), and these quantities along with Xu and 
ELu and XF and ELF require the ambipolar potential e~  which is obtained iteratively, at the same time as x e, by 
requiring that Equation (7) be satisfied. This electrostatic potential �9 is positive and is created by the deficiency in 
the negative charge in the system that arises from the rapid loss of the electrons through the mirrors. The term PB 
that appears in Equation (6) of the electron energy balance equation represents the radiative loss in the form of 
continuous X-rays which we assume to escape completely from the core. Another radiative loss term, known as 
synchrotron radiation, is ignored in this analysis in spite of the presence of the magnetic field, since the plasma 
temperature for the case at hand is considered relatively low. The fission energy produced in the reactor appears in 
the fission fragments since the portion carded out by the neutrons and gamma rays is not accounted for by the 
equations presented here which deal exclusively with charged particles. 

No attempt is made in this study to calculate particle and energy losses across the magnetic field so as to assess 
the extent of mixing of fuel particles with the propellant. Moreover no attempt will be made to present the solution 
of the governing equations formulated above at this time; rather some general comments will be put forward that 
will describe qualitatively the behavior of a critical uranium plasma situated in a mirror-type magnetic field. We 
note first that the energy produced by fission in the reactor, namely about 175 MeV out of about 200 MeV, appears 
in the terms WFFu, WFFF, and WFF e, the fast fission fragments which pass it on to the uranium ions, the thermal 
fission fragment ions, and the electrons as seen in Equations (3), (5), and (6). The energy of these particles increases 
as a result, and according to the confinement law, Equation (1), they will become better confined. Moreover, better 
confinement is obtained by increasing the mirror ratio, and if 54 Gauss is required at the center for stabilization, then 
about 5.5 KG will be needed at the mirrors to generate a mirror ratio of 100. For such a mirror ratio simple 
estimates indicate that over 90% of the particles remain confined. Since some losses are inevitable it is important 
that they occur through the mirror that coincides with the nozzle and not in the opposite direction. This can be 
accomplished by making the mirror machine slightly asymmetric by making the mirror ratio on the nozzle side 
slightly smaller than that at the opposite side. 
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RESULTS AND DISCUSSION 

Estimates of the uranium loss rate from this magnetic configuration can be obtained from a modified version of 
Equation (1) that takes into account the fact that the ions under consideration are uranium ions, and that the mirror 
becomes more lossy in the presence of an electrostatic potential 4) which is consistent with Equation (7). The 
resulting expression is 

Z b (8) NU= (3.844 x 1 --12) 2 2 

"C,, E3u12 l~176 1 + Z, ,e~ / E,," 

for a spherical GCR with 1 m radius and a fuel loading of 0.25 Kg and a mirror ratio of Rm = 100. Table 1 shows 
the corresponding loss rates. 

TABLE 1. Uranium loss rate from a magnetic mirror. 

Eu (keV) Zeff u e~ (keV) Nu/xu (cm "3 see "l) 
0.005 3.831 0.0133 5.756 x 1028 
0.050 18.001 0.0438 1.089 x 1030 
1.000 77.817 0.1614 3.798 x 1030 

10.000 91.106 1.0547 2.009 x 1029 

It is clear that these losses are prohibitively large, and that a magnetic mirror geometry as represented by Equation 
(8) may be inappropriate or not applicable. It is equally clear that the presence of a magnetic field should not worsen 
the confinement. The difficulty lies with Equation (8) since it assumes that a given particle makes, on the average, 
many transits of the core before suffering a collision. However, for the dense, highly charged uranium ions of GCR, 
the reverse is true. The transit time is xtr = r/c s where Cs is the thermal speed of the particle, and that should be 
compared with the 90 ~ collision time x0 (Kammash 1975). The results are given in Table 2. 

TABLE 2. Comparison of Collision and Transit Times. 

Eu (keV) Zeff u Xtr (sex) 're (sex) 

0.005 3.831 8.579 x 10 -4 9A91 x 10 "13 
0.050 18.001 2.731 x 10 -4 6.971 x 10 "14 
1.000 77.817 6.066 x 10 -5 1.325 x 10 "14 

10.000 91.106 1.918 x 10 -5 1.160 x 10 "13 

These figures reveal, in a dramatic way, that a typical particle will undergo many scattering collisions before it 
transits out of the system. As a result, the uranium plasma in GCR does not behave like a nearly collisionless gas 
for which a confinement law such as Equation (8) is applicable; rather it behaves much like a dense fluid for which 
the collision mean free path is much smaller than any characteristic dimension of the system. Such a description 
entails the use of a different confinement law, for a magnetic mirror, to be used in the above-mentioned balance 
equations that will allow a more accurate description of the performance of the system. 

SUMMARY AND CONCLUSIONS 

The particle and energy balance equations presented in this paper to describe the dynamics of GCR uranium 
plasma situated in a mirror-type magnetic field are adequate provided they are used in conjunction with a confinement 
law that is appropriate for a high density, high charge plasma system. Such a law should show enhancement of 
confinement with mirror ratio and size but lack of enhancement with thermal velocity or temperature. 

1100 



A c k n o w l e d p m e n t s  

This work was supported in part by the U. S. Department of Energy under Contract No. DE-FG02-93ER75869. 

References 

Chandrasekhar, S. (1961) Hydrodynamic and Hydromagnetic Stability, Dover Publications, New York. 

Galbraith, D. L. and T. Kammash (1978) "Electron and Ion Escape over a Potential Barrier in a Mirror Field," 
Plasma Physics 20: 959. 

Galbraith, D. L. and T. Kammash (1978) "The Dynamic Behavior of a Mirror Fusion Reactor," Electric Power 
Research Institute Report EPRI ER-521, March 1978. 

Kammash, T. and D. L. Galbraith (I992) "Fuel Confinement and Stability in the Gas Core Nuclear Propulsion 
Concept," AJAA 92-3818, 28th Joint Propulsion Conference, Nashville, TN, 6-8 July 1992. 

Kammash, T. and D. L. Galbraith (1989) "A High Gain Fusion Reactor Based on the Magnetically Insulated Inertial 
Confinement Fusion Concept," Nuclear Fusion 29: 1079. 

Kammash, T. (1975) Fusion Reactor Physics, Principles and Technology, Ann Arbor Science Publishers, Ann 
Arbor, MI. 

Northrop, T. G. (1956) "Helmholtz Instability of a Plasma," Physical Review 103:1150. 

Post, R. F. (1987) "The Magnetic Mirror Approach to Fusion," Nuclear Fusion 27: 1579. 

Poston, D. I. and T. Kammash (1992) "Heat Transfer Model for an Open-Cycle Gas Core Nuclear Rocket," in Proc. 
Ninth Symposium on Space Nuclear Power Systems, M.S. EI-Genk and M. D. Hoover, eds., American Institute 
of Physics, New York, AIP Conference Proceeding, No. 246: 1083-1088. 

Ragsdale, R. G. (1990) Nuclear Thermal Propulsion, a Joint NASA/DOE/DOD Workshop, Cleveland, OH, 10-12 
July 1990. 

1101 




