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Abstract. We review the construction of regular p-brane solutions of M-theory and string theory
with less than maximal supersymmetry whose transverse spaces have metrics with special holon-
omy, and where additional fluxes allow brane resolutions via transgression terms. We summarize
the properties of resolved M2-branes and fractional D2-branes, whose transverse spaces are Ricci
flat eight-dimensional and seven-dimensional spaces of special holonomy.

INTRODUCTION

Regular supergravity solutions with less than maximal supersymmetry may provide vi-
able gravity duals to strongly coupled field theories with less than maximal supersym-
metry. In particular, the regularity of such solutions at small distances sheds light on
confinement and chiral symmetry breaking in the infrared regime of the dual strongly
coupled field theory [1].

In this contribution we shall review the construction of such regular supergravity
solutions with emphasis on resolved M2-branes of 11-dimensional supergravity and
fractional D2-branes of Type IIA supergravity, which provide viable gravity duals of
strongly coupled three-dimensional theories with N = 2 and N — 1 supersymmetry.

This construction has been referred to as a "resolution via transgression" [2]. It in-
volves the replacement of the standard flat transverse space by a smooth space of special
holonomy, i.e. a Ricci-flat space with fewer covariantly constant spinors. Furthermore,
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additional field strength contributions are involved, which are provided by harmonic
forms in the space of special holonomy. Transgression-Chern-Simons terms modify the
equation of motion and/or Bianchi identity for the original p-brane field strength. The
construction will be reviewed for resolved M2-branes and D2-branes.

The explicit construction of such solutions has led to mathematical developments,
for example obtaining harmonic forms for a large class of special holonomy metrics.
As a prototype example we shall review the construction of the metric and the middle-
dimensional forms for the Stenzel manifolds in D = 2n (with n > 2 integer) [3, 4]. We
shall also briefly mention examples of known G^ holonomy spaces and their associated
harmonic forms. We also discuss the old as well as the new two-parameter metric with
Spin(l) holonomy [5, 6] and the associated harmonic forms .

We then briefly summarize the properties of resolved M2-branes [2, 4] and fractional
D2-branes [2, 7] as well as fractional M2-brane whose transverse space is that of the
new Spin(l) holonomy metrics [5].

Finally, we summarize the key results and spell out directions for future work.
The work presented in this paper was initiated in [2] and further pursued in a series

of papers that provide both new technical mathematical results and physics implications
for resolved /7-brane configurations [3, 4, 5, 6, 7].

RESOLUTION VIA TRANSGRESSION

Motivation

The AdSp+i/CFTD correspondence [8, 9, 10] provides a quantitative insight into
strongly coupled superconformal gauge theories in D dimensions, by studying the dual
supergravity solutions. The prototype supergravity dual is the D3-brane of Type IIB
theory, with the classical solution

F(5} =
p4

HH = 0 =*H= l + -j . (1)

In the decoupling limit H = I + ^ — >• ^ this reduces to Ad 85 x S5, which provides a
gravitational dual of the strongly coupled N = 4 super- Yang-Mills (S YM) theory.

Of course, the ultimate goal of this program is to elucidate strongly coupled YM
theory, such as QCD, that has no supersymmetry. But for the time being important steps
have been taken to obtain viable (regular) gravitational duals of strongly coupled field
theories with less than maximal supersymmetry. In particular, within this framework
we shall shed light on gravity duals of field theories in D = {2,3,4} with N = {1,2}
supersymmetry.

As a side comment, within D = 5 N =2 gauged supergravity progress has been made
(see [11, 12] and references therein) in the explicit construction of domain wall solu-
tions, both with vector-multiplets and hyper-multiplets, which lead to smooth solutions
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that provide viable gravity duals of D = 4 N =1 conformal field theories. However,
the aim in this contribution is to discuss the higher dimensional embeddings and the
interpretation of such gravity duals.

A typical way to obtain a supergravity solution with lesser supersymmetry is to
replace the flat transverse 6-dimensional space ds^ = dr2 + r2 d£l2 of the D3-brane
in (1) with a smooth non-compact Ricci-flat space with fewer Killing spinors. In this
case the metric function H still satisfies HH = 0, but now D is the Laplacian in the
new Ricci-flat transverse space. This procedure ensures one has a solution with reduced
supersymmetry; however the solution for H is singular at the inner boundary of the
transverse space, signifying the appearance of the (distributed) D3-brane source there.

A resolution of the singularity (and the removal of the additional source) can take
place if one turns on additional fluxes ("fractional" branes). Within the D3-brane context,
the Chern-Simons term of type IIB supergravity modifies the equations of motion:

dF(5} = *n=
F(3) = F + iF = mL(3), (2)

where L(3) is a complex harmonic self-dual 3-form on the 6-dimensional Ricci-flat space.
Depending on the properties of LB , this mechanism may allow for a smooth and thus
viable supergravity solution. This is precisely the mechanism employed by Klebanov
and Strassler, which in the case of the deformed conifold yields a supergravity dual
of D = 4 N = 1 SYM theory. (For related and follow up work see, for example,
[13, 14, 15, 16, 17, 18, 19, 20, 21]. For earlier work see, for example, [22, 23, 24, 25].)

In a general context the resolution via transgression [2] is a consequence of the Chern-
Simons-type (transgression) terms that are ubiquitous in supergravity theories. Such
terms modify the Bianchi identities and/or equations of motion when additional field
strengths are turned on. /?-brane configurations with (n + l)-transverse dimensions, i.e.
with "magnetic" field strength F^9 can have additional field strengths F(M) which, via
transgression terms, modify the equations for F(ny.

dF(n) = F(p)AFU); (p + q = n+l). (3)

If the (n+ 1) -dimensional transverse Ricci-flat space admits a harmonic /?-form L^
then the equations of motion are satisfied if one sets F^ — mL^9 and by duality
F(q) ~ A* *£(/?)• Depending on the L2 normalizability properties of L^9 one may be
able to obtain resolved (non-singular) solutions.

Resolved M2-brane

The transgression term in the 4-form field equation in 1 1 -dimensional supergravity is
given by

= ^(4)AF(4), (4)
and the modified M2-brane Ansatz takes the form

ds2
n =
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F(4) = dxf\dH-+mL{4}, (5)

where L(4) is a harmonic self-dual 4-form in the 8-dimensional Ricci-flat transverse
space. The equation for H is ten given by

. __Lm^i^ (6)

For related work see, for example, [17, 27, 28, 29, 30, 31].

Resolved D2-brane

The transgression modification in the 4-form field equation in type IIA supergravity
is

and the modified D2-brane Ansatz takes the form:

F(4) - dx^dH-+mL(4], F (3)=mL ( 3 ) , < | ) = l o g J H r , (8)

where G(3) is a harmonic 3-form in the Ricci-flat 7-metric dsj, and L(4) = *L(3), with *
the Hodge dual with respect to the metric ds2. The function H satisfies

Dff=-^24p (9)

where D denotes the scalar Laplacian with respect to the transverse 7-metric ds%. Thus
the deformed D2-brane solution is completely determined by the choice of Ricci-flat
7-manifold, and the harmonic 3-form supported by it.

Other Examples

In general the transgression terms modify field equations or Bianchi identities as given
in (3), thus allowing resolved branes with (n+l) transverse dimensions for the following
additional examples in M- theory and string theory:

• (i) DO-brane: J*F(2) = *F(4) AF(3),
• (ii) Dl-brane: d*F*f = F(5) AF$S,
• (iii) D4-brane: dF(4} = F(3) AF(2),
• (iv) IIA string: d*F(3) = F(4) A F(4),
• (v) Iffi string: d*Fgf = F(5) AF(f ,
• (vi) heterotic 5-brane: dF^ — Ffa AF^2).

In what follows, we shall focus on resolved M2-branes and briefly mention fractional
D2-branes. For details of other examples and their properties, see e.g., [2, 3, 32].
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MATHEMATICAL DEVELOPMENTS

The construction of resolved supergravity solutions necessarily involves the explicit
form of the metric on the Ricci-flat special holonomy spaces. These spaces fall into
the following classes:

• Kahler spaces in D = 2n dimensions (w-integer) with SU(n) holonomy, and two
covariantly constant spinors. There are many examples, with the Stenzel metric on
T*Sn providing a prototype. They are typically asymptotically conical (AC).

• Hyper-Kahler spaces in D = 4n with Sp(ri) holonomy, and n+l covariantly con-
stant spinors. Subject to certain technical assumptions, Calabi's metric on the co-
tangent bundle of CPn is the only complete irreducible cohomogeneity one example
[33].

• In D = 1 there are exceptional G^ holonomy spaces with one covariantly constant
spinor. Until recently only three AC examples were known [34, 35], but new metrics
have been recently constructed in [37, 36, 38, 39, 40].

• In D = 8 there are exceptional Spin(l) holonomy spaces with one covariantly
constant spinor; until recently only one AC example was known [34, 35]. New
metrics were recently constructed in [5, 6].

The focus is on a construction of cohomogeneity one spaces that are typically asymp-
totic to cones over Einstein spaces. Recent mathematical developments evolved along
two directions: (i) construction of harmonic forms on known Ricci-flat spaces (see in
particular [3, 7]), (ii) construction of new exceptional holonomy spaces [5, 6, 36, 37, 38,
39, 40]. In the following two subsections we illustrate these developments by summa-
rizing (i) results on the construction of harmonic forms on the Stenzel metric [3] and
briefly mention GI holonomy metrics [2, 7], and (ii) results for the construction of new
Spin(7) two-parameter metrics [5, 6], all serving as prototype examples.

Harmonic forms for the Stenzel metric

The Stenzel[41] construction provides a class of complete non-compact Ricci-flat
Kahler manifolds, one for each even dimension, on the co-tangent bundle of the (n +1)-
sphere, T*Sn+l. These are asymptotically conical, with principal orbits that are described
by the coset space SO(n + 2)/SO(ri)9 and they have real dimension d — 2n + 2.

Stenzel metric

In the following we summarize the relevant results for the construction of the Stenzel
metric. (For more details see [3].) This construction [3, 41] of the Stenzel metric starts
with LAB, which are left-invariant 1-forms on the group manifold SO(n + 2). By splitting
the index as A = (1,2,/), we have that L/7 are the left-invariant 1-forms for the SO(n)
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subgroup, and so the 1 -forms in the coset SO(n + 2)/SO(n) will be

a,- = Lii, Oi = L2i, V E = L i 2 . (10)
The metric Ansatz takes the form:

ds2 = dt2 + a2o2 + b2G2 + c2v2 , (11)
where a, b and c are functions of the radial coordinate t. One defines Vielbeine

e° = dt, el = aGi, el=bGt, e° = cv , (12)

for which one can introduce a holomorphic tangent- space basis of complex 1 -forms £a:

(13)

Defining a — ea, b = e^, c = e*, and introducing the new coordinate r| by
anbn cd\\ — dt, one finds [3] that the Ricci-flat equations can be obtained from a
Lagrangian L = T — V which can be written as a "supersymmetric Lagrangian":
L = ^gij(dal/di[\)(daj/dr[) - ^gij^j^j- The solution of the first-order equations
yields the explicit solution:

a2 = Rl'(»+V cothr, b2 = Rl'(»+V tanhr, h2 = c2 = -L^R-»'(»+V (sinh2r)w , (14)

where R(r) = /O
r(sinh2w)w du, and the radial coordinate r is introduced as dt = h dr.

For each n the result is expressible in relatively simple terms. For example:

n=l:R = sinh2 r; n = 2:R= |(sinh4r-4r) ; n = 3 : R = |(2 + cosh2r) sinhV (15)

The case n = 1 is the Eguchi-Hanson metric [26], and n = 2 it is the deformed conifold
[42].

As r approaches zero, the metric takes the form

ds2 ~dr2 + r2^2 + a? + v2 , (16)

which has the structure locally of the product R"+1 x S"+1 , with Sn+l being a "bolt." As
r tends to infinity, the metric becomes

representing a cone over the Einstein space SO(n + 2)/SO(ri).

Harmonic middle-dimension (p^q) forms

An Ansatz compatible with the symmetries of the Stenzel metric is of the form:

LM = /, £i{ ...,,_,;, ...;P e° A e'1 A -
(18)
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with /i, /2 being functions of r, only. The harmonicity condition becomes dL(p^ —
0, since *L(p>q) = \p~~qL(p^ . The functions /i, /2 are solutions of coupled first-order
homogeneous differential equations, yielding a solution that is finite as r -> 0:

, (19)

. (20)

For any specific integers (/?, #), these are elementary functions of r.
For the two special cases of greatest interest, they have the following properties:
• (/?,/?)-forms in 4p-dimensions: /i = -/2 = (cos£r)2/> with |L(/V?)|2 = (c^ffi4, falls-

off fast enough as r — > oo. This turns out to be the only L2 normalizable form.
• (/?+ l,p)-formsin (4/7 + 2) -dimensions. As r-» <*>: |L(/?+1?/?)|2 - [sinh ̂ ^ which

is marginally L2-non-normalizable.
As for physics implications, the case in 2(n + 1) — 4 dimensions with an L2-

normalizable L^ ^-form is precisely the example of the resolved self-dual string
discussed in detail in Section 2.2.

In 2(w + 1) = 6 dimensions, the L(2,i)-form was constructed in [1], and provides a
resolution of the D3-brane. Since £(2,1) is only marginally non-normalizable as r — > <»,
the decoupling limit of the space-time does not give an AdSs, but instead there is a
logarithmic modification. In particular, this modification accounts for a renormalization
group running of the difference of the inverse-squares of the two gauge group couplings
in the dual SU(N) x SU(N + M] SYM [24].

On the other hand in 2(n + 1 ) = 8 dimensions the L2 normalizable L(2)2)-form supports
additional fluxes that resolve the original M2-brane, whose details will be given in
Section 5.1.

It turns out that one can construct regular supersymmetric resolved M2-branes for
many other examples of 8-dimensional special holonomy transverse spaces, such as the
original Spin(l) holonomy transverse space [2], a number of new Kahler spaces [2, 7],
and hyper-Kahler spaces [4].

Old G2 holonomy metrics and their harmonic forms

Resolved cones over S2 x S4 and S2 x CP2

The first type of complete Ricci-flat 7-dimensional metrics of G^ holonomy, obtained
in [34, 35], correspond to R3 bundles over four-dimensional quaternionic-Kahler Ein-
stein base manifolds M. These spaces are of cohomogeneity one, with level surfaces
that are S2 bundles over M (also known as "twistor spaces" over M). There are two cases
that arise, with M being S4 or CP2. Thus the two manifolds have level surfaces that are
CP3 (S2 bundle over S4) or the flag manifold SU(3)/(U(l) x [/(!)) (S2 bundle over
CP2), respectively. These two manifolds are the bundles of self-dual 2-forms over S4

or CP2 respectively. They approach R3 x S4 or R3 x CP2 locally near the origin. (The
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calculations for the two cases, with the principal orbits being S2 bundles either over S4

or over CP2, proceed essentially identically.)
The harmonic 3-form, was constructed in [4]: it is a fully L2-normalizable.

Resolved cone over S3 x S3

The remaining complete 7-dimensional manifold of GI holonomy obtained in [34, 35]
is again of cohomogeneity one, with principal orbits are topologically S3 x S3. The
manifold is the spin bundle of S3; near the origin it approaches locally R4 x S3.

This metric admits a regular harmonic 3-form, explicitly constructed in [2]: it is
square-integrable at short distance, but gives a linearly divergent integral at large dis-
tance. The short-distance square-integrability is enough to give a regular deformed D2-
brane solution, even though L^ is not L2-normalizable.

New Spin(l) holonomy metrics

The old metric and harmonic 4-forms

Until recently only one explicit example of a complete non-compact metric on a
Spin(l] holonomy space was known [34, 35]. The principal orbits are S1, viewed as
an S3 bundle over S4. The solution (21) is asymptotic to a cone over the "squashed"
Einstein 7-sphere, and it approaches R4 x S4 locally at short distance (i.e. r w f). The
metric is of the form:

1 0 / 3 _ i /10/3
(21)

where hi = GJ — A'(1), and the a/ are left-invariant 1-forms on SU(2], dQ% is the metric
on the unit 4-sphere, and A'(1) is the SU(2) Yang-Mills instanton on S4. The a, can be
written in terms of Euler angles as

GI = cosx|/d0+sin\|/sin0d(p, 02 = — sin\|/d0+cos\|/sin0d(p, 03 = d\|/+cos0d(p.
(22)

A regular L2 normalizable harmonic 4-form in this metric was obtained in [2].

New Spin(l) holonomy metric

The generalization that we shall consider involves allowing the S3 fibers of the previ-
ous construction themselves to be "squashed." Namely, the S3 bundle is itself written as
a U(l) bundle over S2 leading to the following "twice squashed" Ansatz:

ds\ = dt2 + a2 (D^)2 + b2G2 + c2 d&l, (23)
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where a, b and c are functions of the radial variable t. (The previous Spin(7) example
has a = b.) Here

p\ = sinGsinxj/, p2 = sin 9 cos xj/ , ^3=cos0, (24)

are the S2 coordinates, subject to the constraint^/// = 1, and

Dp1 = dp1 + e^A^ p* , a = rfcp + A(1) , A(1) = cos9d\|/ - fJA\l} , (25)

where the field strength Fp) of the f / ( l ) potential A(^ turns out to be given by:
F(2) = fcjklfDi/ A Dpi - itFfo.

The Ricci-flatness conditions can be satisfied by solving the first-order equations of
a supersymmetric Lagrangian, yielding the following special solution (for details see
[5, 6]):

(26)
The quantity ^[a2 + (Dp1)2] is the metric on the unit 3-sphere, and so in this case we
find that the metric smoothly approaches R4 x S4 locally, at small distance (r — > 31),
i.e. it has the same topology as the old Spin(7) holonomy space. On the other hand, it
locally approaches M 7 x S1 at large distance. Here M 7 denotes the 7-manifold of G^
holonomy that is the R3 bundle over S4 [34, 35]. Asymptotically the new metric behaves
like a circle bundle over an asymptotically conical manifold in which the length of the
U ( l ) fibers tends to a constant; in other words, it is ALC.

If one takes r to be negative, or instead analytically continues the solution so that
I — >• — I (keeping r positive), one gets a different complete manifold. Thus instead of
(26), the quantity ^(a2 + (Dp1)2 + d&fy is precisely the metric on the unit 7-sphere,
and so as r approaches £ the metric ds% smoothly approaches R8. At large r the function
b, which is the radius in the U ( l ) direction a, approaches a constant, and so the metric
tends to an S1 bundle over a 7-metric of the form of a cone over CP3 ; it has the same
asymptotic form as (26). The manifold in this case is topologically R8.

In [5, 6] the general solution to the first-order system of equations is obtained, leading
to additional families of regular metrics of Spin(l) holonomy, which are complete
on manifolds B^ that are similar to Bg. These additional metrics have a non-trivial
integration constant which parameterizes inequivalent solutions. (For details see [6] and
Appendix A of [5]).

L2 normalizable harmonic 4-forms for the new Spin(l) 8-manifolds were obtained in
[5].

Applications: resolved M2- and D2-branes

The explicit construction of harmonic four-forms of 8-dimensional Ricci flat spaces
led to the analytic expressions of resolved M2-brane solutions, while the three-forms
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(and dual four-forms) of GI holonomy spaces to analytic expressions for fractional D2-
branes. Their properties such as supersymmetry conditions, flux integrals and aspects of
dual field theories were discussed in particular in [2, 3, 4, 31] and [7], respectively.

Resolved M2-branes are always supported by L2-normalizable harmonic forms and
thus they are regular at short distance and have decoupling limits at large distance
that yield AdS^. They have no conserved additional (fractional) charges. The dual 3-
dimensional dual field theory is therefore a superconformal field theory (with N = 1 or
N = 2 supersymmetry) which is in turn perturbed by marginal operators associated with
pseudo-scalar fields [31]. On the other hand the fractional D2-branes have conserved
fractional charges corresponding to D4-branes wrapping the 2-cycles dual to S4 (CP2)
in M 7, or to NS-NS 5-branes wrapping the 3-cycle dual to S3 in M 7, respectively.

An interesting implication involves the properties of fractional M2-branes using the
new Spin(l) holonomy spaces. After reduction on Sl these give fractional D2-branes
where, whose fractional magnetic charge is for D4-branes wrapping 2-cycles and for
D6-branes wrapping 4-cycles. The fact that the resolved M2-brane on the new Spin(l}
holonomy space has non-zero fractional charge is a consequence of the asymptotically
locally conical structure of the new Spin(l) holonomy space.

CONCLUSIONS AND OPEN AVENUES

In this contribution we have presented a summary of some recent developments in the
construction of regular /?-brane configurations with less than maximal supersymmetry.
In particular, the method involves the introduction of complete non-compact special
holonomy metrics and additional fluxes, supported by harmonic-forms in special holon-
omy spaces, which modify the original /?-brane solutions via Chern-Simons (transgres-
sion) terms.

The work led to a number of important mathematical developments which we have
also summarized. Firstly, the construction of harmonic forms for special holonomy
spaces in diverse dimensions was reviewed, and the explicit construction of harmonic
forms for Stenzel metrics was summarized. Secondly, a construction of new two-
parameter Spin(l) holonomy spaces was discussed. These have the property that they
interpolate asymptotically between a local Sl x M 7, where the length of the circle is fi-
nite and M 7 is the G^ holonomy space with the topology of the S1 bundle over S4, while
at small distance they approach the "old" Spin(l) holonomy space with the topology of
the chiral spin bundle over S4.

The mathematical developments also led to a number of important physics implica-
tions, relevant for the properties of the resolved /?-brane solutions, briefly summarized
in the section above. In particular, the focus was on the properties of resolved M2-branes
with 8-dimensional special holonomy transverse spaces (e.g., Stenzel, hyper-Kahler and
Spin(l) holonomy spaces) and the results for the fractional D2-branes with three 7-
dimensional G^ holonomy transverse spaces.

There are a number of open avenues in the exploration of further properties of such
solutions. In particular, it is of importance to study the properties of the dual three
dimensional field theories in greater detail.
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Another important direction involves the study of novel special holonomy spaces in
M-theory. In particular, novel constructions of G^ holonomy spaces [36, 37, 38, 39, 40]
are of importance in the study of N = 1 D=4 field theory aspects of M-theory [43,
44, 45] and the study of M-theory on spaces of G^ holonomy has recently attracted
considerable attention. Specifically, it has been proposed that M-theory compactified
on a certain singular seven-dimensional space with G^ holonomy might be related to
an N = 1, D = 4 gauge theory [10, 43, 44, 45, 47] that has no conformal symmetry.
The quantum aspects of M-theory dynamics on spaces of GI holonomy can provide
insights into non-perturbative aspects of four-dimensional N = 1 field theories, such
as the preservation of global symmetries and phase transitions. For example, Ref. [43]
provides an elegant exposition and study of these phenomena for the three manifolds of
G2 holonomy that were obtained in [34, 35].

A recent development in this direction is the discovery of M3-brane configurations
[48, 36] which have a flat 4-dimensional world-volume and the transverse space that is
a deformation of the G^ along with the 4-form field strength turned on. These config-
urations turn out to have zero charge and ADM mass (leading to naked singularities at
small distances).
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