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Abstract. The first part of this paper reviews some issues representing major computational challenges for global MHD
models of the space environment. These issues include mathematical formulation and discretization of the governing equations
that ensure the proper jump conditions and propagation speeds, regions of relativistic Alfvén speed, and controlling the
divergence of the magnetic field. The second part of the paper concentrates on modern solution methods that have been
developed by the aerodynamics, applied mathematics and DoE communities. Such methods have recently begun to be
implemented in space-physics codes, which solve the governing equations for a compressible magnetized plasma. These
techniques include high-resolution upwind schemes, block-based solution-adaptive grids and domain decomposition for
parallelization. We describe the space physics MHD code developed at the University of Michigan, based on the developments
listed above.

INTRODUCTION

Global computational models based on first principles
represent a very important component of efforts to un-
derstand the intricate processes coupling the Sun to the
geospace environment. The hope for such models is that
they will eventually fill the gaps left by measurements,
extending the spatially and temporarily limited observa-
tional database into a self-consistent global understand-
ing of our space environment.

Presently, and in the foreseeable future, magnetohy-
drodynamic (MHD) models are the only models that
can span the enormous distances present in the magne-
tosphere. However, it should not be forgotten that even
generalized MHD equations are only a relatively low-
order approximation to more complete physics; they pro-
vide only a simplified description of natural phenomena
in space plasmas.

NON-RELATIVISTIC
MAGNETOHYDRODYNAMICS

The governing equations for an ideal, non-relativistic,
compressible plasma may be written in a number of
different forms. While the different forms of the MHD
equations describe the same physics at the differential
equation level, there are important practical differences

when one solves discretized forms of the various formu-
lations.

According to the Lax-Wendroff theorem [1] only con-
servative schemes can be expected to get the correct jump
conditions and propagation speed for a discontinuous so-
lution. This fact is much less emphasized in the global
magnetosphere simulation literature than the more con-
troversial divergence ofB issue. In some test problems
the non-conservative discretization of the MHD equa-
tions can lead to significant errors, which do not diminish
with increased grid resolution.

Fully Conservative Form

The fully conservative form of the equations is

∂U
∂ t

+(∇ ·F)T = 0 , (1)

whereU is the vector of conserved quantities andF is a
flux diad,

U =

 ρ

ρu
B

Emhd

 (2)
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F =


ρu

ρuu+
(

p+ 1
2µ0

B2
)

I − 1
µ0

BB

uB−Bu

u
(

Emhd+ p+ 1
2µ0

B2
)
− 1

µ0
(u ·B)B


T

(3)

whereEmhd is the magnetohydrodynamic energy, given
by

Emhd =
1
2

ρ u2 +
1

γ −1
p+

1
2µ0

B2 (4)

Symmetrizable Formulation

Symmetrizable systems of conservation laws have
been studied by Godunov [2] and Harten [3], among oth-
ers. One property of the symmetrizable form of a system
of conservation laws is that an added conservation law

∂ (ρs)
∂ t

+
∂ (ρ sux)

∂x
+

∂ (ρ suy)
∂y

+
∂ (ρ suz)

∂z
= 0

for the entropys can be derived by a linear combintion
of the system of equations. For the ideal MHD equa-
tions, as for the gasdynamic equations, the entropy is
s = log(p/ργ). Another property is that the system is
Galilean invariant; all waves in the system propagate at
speedsu± cw (for MHD, the possible values ofcw are
the Alfvén, magnetofast and magentoslow speeds). Nei-
ther of these properties holds for the fully conservative
form of the MHD equations.

Godunov showed that the fully conservative form of
the MHD equations (eq. 1) is not symmetrizable [2]. The
symmetrizable form may be written as

∂U
∂ t

+(∇ ·F)T = Q , (5)

where

Q =−∇ ·B


0

1
µ0

B
u

1
µ0

u ·B

 (6)

Vinokur separately showed that eq. (5) can be derived
starting from the primitive form, if no stipulation is made
about ∇ ·B in the derivation. Powell showed that this
symmetrizable form can be used to derive a Roe-type
approximate Riemann solver for solving the MHD equa-
tions in multiple dimensions [4].

The MHD eigensystem arising from eq. (1) or eq. (5)
leads to eight eigenvalue/eigenvector pairs. The eigen-
values and associated eigenvectors correspond to an
entropy wave, two Alfvén waves, two magnetofast
waves, two magnetoslow waves, and an eighth eigen-
value/eigenvector pair that depends on which form of

the equations is being solved. This last wave (which de-
scribes the jump in the normal component of the mag-
netic field at discontinuities) has a zero eigenvalue in the
fully conservative case, and an eigenvalue equal to the
normal component of the velocity,un, in the symmetriz-
able case. The expressions for the eigenvectors, and the
scaling of the eigenvectors, are more intricate than in gas-
dynamics [5].

We note that while eq.(1) is fully conservative, the
symmetrizable formulation (given by eq. 5) is formally
not fully conservative. Terms of order∇ ·B are added
to what would otherwise be a divergence form. The
danger of this is that shock jump conditions may not be
correctly met, unless the added terms are small, and/or
they alternate in sign in such a way that the errors are
local, and in a global sense cancel in some way with
neighboring terms. This downside, however, has to be
weighed against the alternative; a system (i.e., the one
without the source term) that, while conservative, is not
Gallilean invariant, has a zero eigenvalue in the Jacobian
matrix, and is not symmetrizable.

SEMI-RELATIVISTIC PLASMAS

While the solar-wind speed remains non-relativistic in
the solar system, the intrinsic magnetic fields of several
planets in the solar system are high enough, and the
density of the solar wind low enough, that the Alfvén
speed,

VA =

√
B2

µ0ρ
(7)

can reach appreciable fractions of the speed of light. In
the case of Jupiter, the Alfvén speed in the vicinity of the
poles is of order ten! Even Earth has a strong enough
intrinsic magnetic field that the Alfvén speed reaches
twice the speed of light in Earth’s near-auroral regions.

Limiting the Alfvén Speed

For these regions, solving the non-relativistic ideal
MHD equations does not make sense. Having waves in
the system propagating faster than the speed of light,
besides being non-physical, causes a number of numer-
ical difficulties. However, solving the fully relativistic
MHD equations is overkill. What is called for is a semi-
relativistic form of the equations, in which the flow speed
and acoustic speed are non-relativistic, but the Alfvén
speed can be relativistic. A derivation of these semi-
relativistic equations from the fully relativistic equations
is given in [6]; the final result is presented here.

admin
808



The semi-relativistic ideal MHD equations are of the
form

∂Usr

∂ t
+(∇ ·Fsr)

T = 0 (8)

where the state vector,Usr, and the flux diad,Fsr, are

Usr =


ρ

ρu+ 1
c2 SA

B
1
2ρu2 + 1

γ−1 p+eA

 (9)

Fsr =


ρu

ρuu+ pI +PA

uB−Bu(
1
2ρu2 + γ

γ−1 p
)

u+SA


T

(10)

In the above,

SA = 1
µ0

(E×B) (11)

eA = 1
2µ0

(
B2 + 1

c2 E2
)

(12)

PA = eAI − 1
µ0

BB− 1
µ0c2 EE (13)

are the Poynting vector, the electromagnetic energy den-
sity, and the electromagnetic pressure tensor, respec-
tively. The electric fieldE is related to the magnetic field
B by Ohm’s law.

Lowering the Speed of Light

This new system of equations has wave speeds that
are limited by the speed of light; for strong magnetic
fields, the modified Alfvén speed (and the modified
magnetofast speed) asymptote toc. The modified mag-
netoslow speed asymptotes toa, the acoustic speed.
This property offers the possibility of a rather tricky
convergence-acceleration technique for explicit time-
stepping schemes, first suggested by Boris [7]; the wave
speeds can be lowered, and the stable time-step thereby
raised, by artificially lowering the value taken for the
speed of light. This method is known as the “Boris cor-
rection.”

The equations in section are valid in physical situa-
tions in whichVA > c. A slight modification yields a set
of equations, the steady-state solutions of which are inde-
pendent of the value taken for the speed of light. Defining
the true value of the speed of light to bec0, to distinguish
it from the artificially lowered speed of light,c, the equa-
tions are:

∂Usr

∂ t
+(∇ ·Fsr)

T = Qc0 (14)

where the state vector,Usr, and the flux diad,Fsr, are as
defined above, and the new source term in the momentum

equation is

Qc0 =
1
µ0

(
1

c2
0

− 1
c2

)
E∇ ·E (15)

An implementation of the semi-relativistic equations
has been made in the BATSRUS code developed at the
University of Michigan [8, 6].

SOLUTION TECHNIQUES

Finite-Volume Scheme

The MHD equations are well suited for finite volume
methods when the governing equations are integrated
over a computational celli, yielding

dUi

dt
=− 1

Vi
∑
faces

F · n̂A− Qi

Vi
∑
faces

B · n̂A, (16)

whereVi is the volume of celli, A is the surface area of
the faces forming the computational cell,n̂ is the unit
vector normal to the cell faces,Ui is the cell-averaged
conserved solution vector, andQi is given by

Qi =−


0

1
µ0

Bi

ui
1

µ0
ui ·Bi

 . (17)

The numerical face fluxes,F · n̂, are defined in terms of
the left and right interface solution states,UL andUR, as
follows

F · n̂ = F (UL,UR, n̂) , (18)

whereUL andUR are the state vectors at the left and right
sides of the interface.

TVD-MUSCL

Because the MHD equations are a system of hyper-
bolic conservation laws, many of the techniques that
have been developed for the Euler equations can be
applied relatively straightforwardly. In particular, the
high-resolution finite-volume approach of van Leer [9]
(i.e. approximate Riemann solver + limited interpola-
tion scheme + multi-stage time-stepping scheme) is per-
fectly valid. The Rusanov/Lax-Friedrichs approximate
Riemann solver can be applied directly; no knowledge
of the eigensystem of the MHD equations is required
other than the fastest wave speed in the system. A Roe-
type scheme [10] can be constructed for non-relativistic
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MHD, but requires more work, because of the complex-
ity of the eigensystem. In addition, an HLLE-type Rie-
mann solver has been derived by Linde [11]; it is less
dissipative than the Rusanov/Lax-Friedrichs scheme, but
less computationally intensive than the Roe scheme.
Whichever approximate Riemann solver is chosen to
serve as the flux function, standard interpolation schemes
and limiters can be used to construct a finite-volume
scheme.

CONTROLLING ∇ ·B

One way in which the numerical solution of the MHD
equations differs from that of the gasdynamic equations
is the constraint that∇ ·B = 0. Enforcing this constraint
numerically, particularly in shock-capturing codes, can
be done in a number of ways, but each way has its par-
ticular strengths and weaknesses. This issue is explained
more fully in the references such as [12], [4, 8], [13],
[14], [15]. Tóth has published a numerical comparison
of many of the approaches for a suite of test cases [16].

BLOCK-BASED AMR ON CARTESIAN
GRIDS

Adaptive mesh refinement techniques that automatically
adapt the computational grid to the solution of the gov-
erning PDEs can be very effective in treating problems
with disparate length scales. Methods of this type avoid
underresolving the solution in regions deemed of interest
(e.g., high-gradient regions) and, conversely, avoid over-
resolving the solution in other less interesting regions
(low-gradient regions), thereby saving orders of magni-
tude in computing resources for many problems. For typ-
ical solar wind flows, length scales can range from tens
of kilometers in the near Earth region to the Earth-Sun
distance (1.5×1011 m), and timescales can range from
a few seconds near the Sun to the expansion time of the
solar wind from the Sun to the Earth (∼105 s). The use
of AMR is extremely beneficial and almost a virtual ne-
cessity for solving problems with such disparate spatial
and temporal scales.

Adaptive Blocks

Borrowing from previous work by Berger and cowork-
ers [17, 18, 19, 20, 21] and Quirk [22, 23], and keeping
in mind the desire for high performance on massively
parallel computer architectures, a relatively simple yet
effective block-based AMR technique has been devel-
oped and is used in conjunction with the finite-volume

FIGURE 1. (left) Self-similar blocks used in parallel block-
based AMR scheme. (right) Self-similar blocks illustrating the
double layer of ghost cells for both coarse and fine blocks.

scheme described above. The method has some simi-
larities with the block-based approaches described by
Quirk and Hanebutte [23] and Berger and Saltzman [21].
Here the governing equations are integrated to obtain
volume-averaged solution quantities within rectangular
Cartesian computational cells. The computational cells
are embedded in regular structured blocks of equal sized
cells. The blocks are geometrically self-similar with di-
mensions˜̀x× ˜̀y× ˜̀z and consist ofNx×Ny×Nz cells,
where ˜̀x, ˜̀y, and ˜̀z are the nondimensional lengths of
the sides of the rectangular blocks andNx, Ny, andNz are
even, but not necessarily all equal, integers. Typically,
blocks consisting of anywhere between 4× 4× 4 = 64
and 12×12×12= 1728 cells are used (see Figure 1). So-
lution data associated with each block are stored in stan-
dard indexed array data structures. It is therefore straight-
forward to obtain solution information from neighboring
cells within a block.

Computational grids are composed of many self-
similar blocks. Although each block within a grid has the
same data storage requirements, blocks may be of differ-
ent sizes in terms of the volume of physical space that
they occupy. Starting with an initial mesh consisting of
blocks of equal size (i.e., equal resolution), adaptation is
accomplished by the dividing and coarsening of appro-
priate solution blocks. In regions requiring increased cell
resolution, a “parent” block is refined by dividing itself
into eight “children” or “offspring.” Each of the eight oc-
tants of a parent block becomes a new block having the
same number of cells as the parent and thereby doubling
the cell resolution in the region of interest. Conversely,
in regions that are deemed overresolved, the refinement
process is reversed, and eight children are coarsened and
coalesced into a single parent block. In this way, the cell
resolution is reduced by a factor of 2. Standard multigrid-
type restriction and prolongation operators are used to
evaluate the solution on all blocks created by the coars-
ening and division processes, respectively.

Two neighboring blocks, one of which has been re-
fined and one of which has not, are shown in Figure 1.
Any of the blocks shown in Figure 1 can in turn be re-
fined, and so on, leading to successively finer blocks. In
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the present method, mesh refinement is constrained such
that the cell resolution changes by only a factor of 2 be-
tween adjacent blocks and such that the minimum reso-
lution is not less than that of the initial mesh.

In order that the update scheme for a given iteration
or time step can be applied directly to all blocks in an
independent manner, some additional solution informa-
tion is shared between adjacent blocks having common
interfaces. This information is stored in an additional two
layers of overlapping “ghost” cells associated with each
block as shown in Figure 1. At interfaces between blocks
of equal resolution, these ghost cells are simply assigned
the solution values associated with the appropriate inte-
rior cells of the adjacent blocks. At resolution changes,
restriction and prolongation operators, similar to those
used in block coarsening and division, are employed to
evaluate the ghost cell solution values. After each stage
of the multistage time-stepping algorithm, ghost cell val-
ues are reevaluated to reflect the updated solution values
of neighboring blocks. With the AMR approach, addi-
tional interblock communication is also required at in-
terfaces with resolution changes to strictly enforce the
flux conservation properties of the finite-volume scheme
[17, 18, 19]. In particular, the interface fluxes computed
on more refined blocks are used to correct the interface
fluxes computed on coarser neighboring blocks so as to
ensure that the fluxes are conserved across block inter-
faces.

PARALLEL IMPLEMENTATION

The parallel block-based AMR solver was designed from
the ground up with a view to achieving very high per-
formance on massively parallel architectures. The under-
lying upwind finite-volume solution algorithm, with ex-
plicit time stepping, has a very compact stencil and is
therefore highly local in nature. The hierarchical data
structure and self-similar blocks make domain decom-
position of the problem almost trivial and readily enable
good load-balancing, a crucial element for truly scalable
computing. A natural load balancing is accomplished by
simply distributing the blocks equally amongst the pro-
cessors. Additional optimization is achieved by ordering
the blocks using the Peano-Hilbert space filling curve
to minimize inter-processor communication. The self-
similar nature of the solution blocks also means that se-
rial performance enhancements apply to all blocks and
that fine grain parallelization of the algorithm is possible.
The parallel implementation of the algorithm has been
carried out to such an extent, that even the grid adapta-
tion is performed in parallel.

Other features of the parallel implementation include
the use of FORTRAN 90 as the programming language

FIGURE 2. Parallel speedup of BATSRUS on various ar-
chitectures. Black dashed lines represent perfect scaling from
single node performance.

and the message passing interface (MPI) library for per-
forming the interprocessor communication. Use of these
standards greatly enhances the portability of the code and
leads to very good serial and parallel performance. The
message passing is performed in an asynchronous fash-
ion with gathered wait states and message consolidation.

Implementation of the algorithm has been carried out
on Cray T3E supercomputers, SGI and Sun workstations,
on Beowulf type PC clusters, on SGI shared-memory
machines, on a Cray T3D, and on several IBM SP2s.
BATSRUS nearly perfectly scales to 1,500 processors
and a sustained speed of 342 GFlops has been attained
on a Cray T3E-1200 using 1,490 PEs. For each target
architecture, simple single-processor measurements are
used to set the size of the adaptive blocks. The scaling of
BATSRUS on various architectures is shown in Figure 2.

Implicit Time-Stepping

In BATSRUS we have a number of time stepping al-
gorithms implemented. The simplest and least expen-
sive scheme is a multistage explicit time stepping, for
which the time step is limited by the CFL stability con-
dition. We have also implemented an unconditionally sta-
ble fully implicit time stepping scheme [27, 28]. The sec-
ond order implicit time discretization (BDF2) requires
the solution of a non-linear system of equations for all
the flow variables. This can be achived by the Newton-
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Krylov-Schwarz approach: a Newton iteration is applied
to the non-linear equations; a parallel Krylov type it-
erative scheme is used to solve the linear systems; the
convergence of the Krylov solver is accelerated with
a Schwarz type preconditioning. We have implemented
two Krylov solvers: BiCGSTAB and GMRES. A modi-
fied block incomplete LU (MBILU) preconditioner is ap-
plied on a block by block basis. Since every block has a
simple Cartesian geometry, the preconditioner can be im-
plemented very efficiently. The resulting implicit scheme
requires about 20-30 times more CPU time per time step
than the explicit method, but the physical time step can
be 1,000 to 10,000 times larger. This implicit algorithm
has a very good parallel scaling due to the Krylov scheme
and the block by block application of the preconditioner.

In BATSRUS, we can combine explicit and implicit
time stepping. Magnetosphere simulations include large
volumes where the Alfvén speed is quite low (tens of
km/s) and the local CFL number allows large explicit
time steps (tens of seconds to several minutes). In these
regions implicit time stepping is a waste of computa-
tional resources. Since the parallel implicit technique we
use is fundamentally block based we only treat those
blocks implicitly where the CFL condition would limit
the explicit time step to less than the selected time
step (typically∼ 10 s). Needless to say, this combined
explicit-implicit time stepping represents more computa-
tional challenges (such as separate load balancing of ex-
plicit and implicit blocks). Overall, this solution seems
to be a very promising option, but other potential av-
enues need to explored before one makes a final deci-
sion about the most efficient time-stepping algorithm for
space MHD simulations. These questions will be dis-
cussed in an upcoming paper [29].

APPLICATIONS

BATSRUS has been extensively applied to global numer-
ical simulations of the inner heliosphere including CME
propagation [30, 31], the coupled terrestrial magneto-
sphere-ionosphere [32, 33, 34], and the interaction of
the heliosphere with the interstellar medium [35]. In ad-
dition, it has also been successfully applied to a host
of planetary problems ranging from comets [36, 37], to
Mercury [38], Venus [39], Mars [40], Saturn [41], to
planetary satellites [42, 43].

In this section we briefly summarize our most am-
bitious space weather simulation so far, in which we
used BATSRUS to simulate an entire space weather
event, from its generation at the Sun through the for-
mation and evolution of a CME, to its interaction with
the magnetosphere-ionosphere system [30, 31]. In this
simulation we resolved multiple spatial and temporal

FIGURE 3. 3D representation of the steady-state solar wind
solution. The shading represents log|B| in the(x,z)- and(x,y)-
planes. The thin black lines are the computational mesh and
the thick solid lines are magnetic field lines: grey denotes the
last closed field lines, black is open field lines expanding to
the interplanetary medium just above the heliospheric current
sheet, and finally, white lines show open magnetic field lines in
the(y,z)-plane.

scales and took advantage of frequent grid refinements
and coarsening to follow the CME through interplan-
etary space. The total number of cells varied between
800,000 and 2 million as the solution evolved. The sim-
ulation used 13 levels of grid refinement. The simulation
ran faster than real time on a 512 node Cray T3E-600 su-
percomputer. This simulation demonstrates that we have
the necessary experience to undertake the research out-
lined in this proposal.

Here we only show a few highlights of this simulation.
The detailed results have been published in JGR-Space
Physics [31].

A steady state solar wind was obtained in the corotat-
ing frame for a tilted rotating Sun. The intrinsic magnetic
field was approximated by the superposition of a tilted
(with respect to the rotation axis) octupole and dipole.
Figure 3 depicts a three-dimensional representation of
the predicted pre-event steady-state solar wind solution
in the vicinity of the Sun. The narrow dark region shown
in Figure 3, which also coincides with regions of higher
mesh refinement, corresponds to the beginning of the he-
liospheric current sheet. Due to the combined effects of
magnetic tilt and solar rotation, the current sheet is tilted
with respect to the rotation axis, and deformed, and re-
sembles a “ballerina skirt.”

Figure 4 shows a 3D representation of the magnetic
field configuration 9 hours after the initiation of the
CME. The density enhancement first leads to the “filling”
of the closed magnetic field lines with additional plasma
and subsequent expansion of the closed field line region.
One can see that the closed field lines become greatly
stretched by the outward moving plasma. This is due to
the fact that the plasmaβ (the ratio of the kinetic and
magnetic pressures) is quite large and the magnetic field
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FIGURE 4. 3D representation of magnetic field lines 9 hours
after the initiation of a CME. Grayscale represents log(B),
white lines are open magnetic field lines, grey lines represent
magnetic field lines with both ends connected to the Sun.

FIGURE 5. 3D representation of the last closed terrestrial
field lines for southward IMF conditions. White field lines form
the dayside magnetopause, while black ones map to the mag-
netotail. The greyscale represents normalized thermal pressure.

is “carried” by the outward moving plasma. We also note
the decrease of magnetic field strength behind the leading
edge of the outward moving disturbance.

The dynamic response of the global magnetosphere
to the changing solar wind conditions produced by the
density-driven CME was also computed as part of this
simulation. The global magnetospheric configuration for
quiet-time southward IMF conditions is shown in Fig-
ure 5. During the event the solar wind velocity remained
nearly radial with the speed gradually decreasing from
about 550 km/s to about 450 km/s. The solar wind dy-
namic pressure increased from its pre-CME value of 2.25
nP (att = 72 hrs) to 4.6 nP at the peak of the event.

The ionospheric potential and convection patterns also
change during the CME event. The ionospheric convec-
tion shows the two-cell pattern of ionospheric convection
typical for southward-type IMF conditions. The convec-
tion pattern is also “twisted” due to the presence of a non-
zero IMFBy component. The most important change in
the ionosphere is the doubling of the cross-cap potential
drop from 30 kV at 70.5h to 60 kV some 27 hours later.

Overall, this simulated space weather event was not

very geoeffective. It is expected that we will be able to
generate more geoeffective CMEs with the help of more
realistic explosive event generation modules. This simu-
lation, however, demonstrates the present capabilities of
BATSRUS.

CONCLUDING REMARKS

With the combination of adaptive mesh refinement,
domain-decomposition parallelization, and robust finite-
volume solvers, methods for solving the ideal MHD
equations are developing into powerful tools for a num-
ber of applications. With attention to some issues partic-
ular to solar-wind modeling (high Alfvén speeds, strong
embedded magnetic fields, pressure positivity and diver-
gence control), these tools are becoming quite sophisti-
cated. Much of the work to be done in improving these
tools is in coupling them to solvers for regions in which
semi-relativistic ideal MHD is not a sufficient model.
The results presented in this paper, while preliminary,
hint at the new abilities and insights that can be gained
from this approach.
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