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A very thin positively charged metallic filament separated from a surface of a semiconductorsSd by
a thin nontunneling potential barriersBd induces a quantum wire(QWr) in the semiconductor at the
B/S interface. Single-electron quantum states of this QWr are controlled by a potential(and a
charge) of the metallic filament. Two close parallel metallic filaments placed over such aB/S
interface form a double-quantum wire with the ground and the first excited electron states, which
appear as a result of a symmetric–antisymmetric splitting of the ground electron state in the single
QWr. Two crossed metallic filaments, which are parallel to theB/S interface, form a quantum dot
with completely localized electron states under the crossing point of the metallic filaments. The
analogous crossing of a metallic filament by a pair of close metallic filaments forms a
double-quantum dot(DQD). The latter can serve as a two-level qubit cell. Such qubits can be
controlled by potentials of three independent metallic filaments inducing the above-mentioned
DQD. Besides this “outside” metallic wire control, the DQDs can be connected to each other across
the “inside” quantum wires, which have formed these DQDs by crossing. ©2005 American
Institute of Physics. [DOI: 10.1063/1.1849827]

I. INTRODUCTION

It is well known that a plane metallicsMd electrode,
which is positively charged and separated from a surface of a
semiconductorsSd by an isolating barriersBd, attracts elec-
trons by pulling them out of the semiconductor depths and
inducing an electron accumulation layer in the semiconduc-
tor, which is closely adjacent to theB/S interface[Fig. 1(a)].
The fabricatedn+ contacts that are remote from the consid-
ered area of theB/S interface could serve as electron
sources, and a necessary positive potential on the electrode
M should be set with respect to these contacts. An electric
field directed normal to theB/S interface(along theZ axis)
together with a heterostructural potential of theB/S interface
forms a quasitriangular potential well that localizes electron
motion in theZ direction. As a result of such localization,
this motion is quantized and discrete energy quantization lev-
els appear. An electron motion in directions along theB/S
interface(that is, in one of theXY planes) is not restricted at
all and is described by arbitrary two-dimensional(2D) wave
vectors with componentskx, ky.

Such a picture is valid as long as all the sizes of the
electrodeM in the XY plane are large: “unlimited.” Limita-
tion of one of these sizes leads to an additional electron
motion quantization in the accumulation layer induced in the
semiconductorS. There are two possible cases. In the first
one, the thickness,z0, of the isolating barrierB layer is small
relative to all of the sizes of the electrodeM in theXY plane.

Then we deal with an additional size quantization of a ho-
mogeneous electron gas in this plane determined by a con-
figuration and sizes of the electrodeM. The edge effects
appearing near the edges of the electrodeM are not substan-
tial for small values ofz0. The second case, which is really
the main subject of our interest in this article, appears if at
least one of the electrode’s sizes in theXY plane is smaller
than the distancez0 between this electrodeM and theB/S
interface(see Fig. 1). The simplest example of such a situa-
tion appears when the filamentM sizes,d0d is much smaller
thanz0. For simplicity (in order not to increase the quantity
of considered materials and interfaces), we have assumed
that such a filament is placed into the isolating barrierB
medium with a dielectric constant«B, which is smaller than
the dielectric constant,«S, of the semiconductorS. The elec-
tron states induced by this filament potential in the semicon-
ductor S (similar to the filamentM) are substantially local-
ized in two directions—along theZ axis (normal to theB/S
interface) and along theX axis[normal to the filament, which
is parallel to theB/S interface; see Fig. 1(b)]. They are de-
localized only along theY axis, which is parallel to the fila-
ment M. So, the positively charged filamentM induces a
quantum wire(QWr) in the semiconductorS, directly under
theB/S interface. Note that the metallic filamentM itself can
both be and not be a metallic QWr. The above-mentioned
induced quantum wires are considered in Sec. II.

Generally speaking, two identical parallel metallic fila-
mentsM1 and M2, equally distant from theB/S interface
[see Fig. 1(c)] do not induce two quantum wires. Beinga)Electronic mail: gribnikov@pa.msu.edu
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placed very close to each other, the filamentsM1 and M2

induce a single collective QWr. But if the distance between
them, 2w, is sufficiently large(i.e., exceeds 2z0), such a col-
lective QWr splits into two quasiindividual quantum wires,
which are connected by tunneling. This tunnel connection
becomes very weak with an increase in the distance 2w be-
tween the filaments. Due to this weak connection, a ground
quantum electron state in the individual QWr splits into a
couple of states. The so-called symmetric–antisymmetric(S–
AS) splitting detaches the asymmetric first excited state from
the symmetric ground(principal) state. The value of this
splitting depends not only on the distance 2w but also on the
electric charges of the filaments. As a result, we obtain the
induced double-quantum wire(DQWr). Once, methods of
fabrication and properties of the so-called DQWrs were sub-
jects of some pioneering experimental works and numerous
theoretical publications. We will return to this topic in Sec.
III where we consider the above-presented DQWrs induced
by a pair of parallel metallic filaments, which are not con-
nected by tunneling with each other.

In Sec. IV, we switch from parallel metallic filaments to
crossed ones. A crossed pair of positively charged filaments
M1 and M2 [Fig. 2(a)] is able to localize an electron under

the point of crossing and induce the so-called quantum dot
(QD) in the semiconductorS. Naturally, a pair of parallel
metallic filamentsM1 and M2 crossed by the third filament
M3 can form a double-quantum dot[DQD; see Fig. 2(b)]
with the S–AS split lowest state if the distance between the
filamentsM1 andM2 forming this pair is large enough.

When we consider the crossed filamentsM1 and M2,
there appears an additional problem related to the distances
z1 andz2, separating these filaments from theB/S interface.
Since such distances and also charges of crossed filaments
can be different, we have an additional possibility to substan-
tially enhance the electron spectra of the induced ordinary
and double-quantum dots(see Sec. V). Such a possibility of
using different levels of disposition of metallic filaments
over theB/S interface allows one to produce a DQWr on the
basis of two parallel metallic filaments distant from each
other only vertically(one over another) and charged differ-
ently; a higher one is charged positively and a lower one is
charged negatively. This picture is also described in Sec. V.
The DQDs obtained on the basis of such a “vertically de-

FIG. 1. Induced quantum structures in the semiconductorS under theB/S
interface:(a) two-dimensional electron gas(2DEG) induced by the metallic
gateM; (b) quantum wire(QWr) induced by the metallic filament gateM;
(c) double-quantum wire(DQWr) induced by the metallic filament gatesM1

andM2. FIG. 2. (a) Quantum dot(QD) induced under theB/S interface by the
charged metallic filaments 1-1 and 2-2 crossed with each other in the same
plane.(b) Double-quantum dot(DQD) induced under theB/S interface as a
result of intersection of the pair of charged metallic filamentsM1 and M2

placed in the planez=z0 by the third filamentM3 placed in the planez=z3.
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signed” DQWr crossed by the third filament(and its QWr)
result in a wider range of controlled parameters in compari-
son with an “ordinary” induced DQD obtained on the basis
of a “horizontally designed” DQWr. The controllability can
be still higher if instead of the “vertically induced” DQWr
we use the still more complicated DQWr induced by a com-
bined system of three metallic filaments. Such a complicated
DQWr is also described in Sec. V.

The induced DQDs, which are de facto the filament-
gate-potential-controlled two-level electron structures, can
be applied as qubit cells in the quantum-information systems.
Besides the ordinary and double QDs and QWrs, quantum
point contacts(QPCs) are also important elements of these
systems. Like the induced QDs, the induced QPCs can be
obtained on the basis of two crossed charged metallic fila-
ments, but charges of these filaments should be of the oppo-
site sign. Unlike a QD, which is the closed quantum struc-
ture, an induced QPC is an open structure and requires an
additional theoretical description outside this article. But in
Sec. VI together with consideration of the possible material
systems, we consider the simplest setup of the ballistic field-
effect transistors with metallic filament gates, allowing one
to induce and control both QWr channels and QPCs.

II. INDUCED QUANTUM WIRE

Let us consider again the interface of the two materials
shown in Fig. 1(b): a semiconductorsSd and a barriersBd
having dielectric constants of«S and «B,«S, respectively,
and also a metallic filamentM with a very small transverse
sized0. This filament is embedded in the barrier mediumB
and separated from theB/S interface by the distancez0. We
assume that a small-width filamentM has a long but limited
length of −aøyøa, wherea@z0@d0. The filamentM is
assumed to be positively charged and to have a potentialV0

relative to a very distant sphere of radiusr @a. In a homo-
geneous medium with a dielectric constant«B, a potentialV
around such a wire is given by1

V = sF0/«Bdlogfsj + 1d/sj − 1dg, s1d

wherej=sr1+r2d /2a, r1,2=Îx2+z2+sy±ad2, the origins forx
andz are in the center of the wire, and the origin fory is in
the middle of the filament. The constantF0 with its potential
dimension is not a real potential; it is finite ifd0→0, whereas
a realistic potential diverges logarithmically. Not far from the
middle of the filament wherex,y,z!a, we have j>1
+r2/2a2 with r =Îx2+z2, and

V > sF0/«Bdlogs1 + 4a2/r2d > s2F0/«Bdlogs2a/rd. s2d

For long distances from the filament whenR=sx2+y2

+z2d1/2@a, we have

V > 2F0a/«BR, s3d

that is, the charged piece of the filament, with the length 2a,
has a full charge ofQ=2aF0, andF0 is an average charge
density in the wire. For the excess electron density of
,105–106 e/cm, we have F0>5310−5–5
310−4 g1/2 cm1/2 s−1=0.015–0.15 V.[In reality, we are in-
terested in still larger values ofF0 s,1 Vd]. Of course, a

finite filament cannot be charged homogeneously; its edges
are charged stronger than its middle part, but an effect of
such an inhomogeneity is not substantial if the length 2a is
not small. To obtain a potentialV in the mediumS [see Fig.
1(b)] with a dielectric constant of«SÞ«B, we should
change2,3 1/«B by 2/s«B+«Sd;2/«S in Eqs.(1)–(3). In par-
ticular, we have instead of Eq.(2)

V > s4F0/«Sdlogs2a/rd, s4d

wherer can be written[after taking into account the shifting
of the coordinate origin to theB/S interface; see Fig. 1(b)] in
the form ofr =sx2+z0

2+z2+2zz0d1/2. Let us remember that we
have assumedz0@d0.

The potentialV given by Eq.(4) can be written in the
neighborhood of the linex=z=0 in the form

V > VW = s4F0/«Sdflogs2a/z0d − sz/z0d − sx2/2z0
2d

+ sz2/2z0
2dg, s5d

that is, this potential can be separated in the variablesx and
z if z!z0 and x2!z0

2. Below we will make sure that these
inequalities are difficult to satisfy for reasonable values ofz0

and F0. Therefore, the separability of the variables obtain-
able for the potential in the form(5) can be justified only for
the lowest-energy states. The higher states form an infinite
system of levels coming closer together with an increase in
energy(without the above-mentioned separability in the vari-
ablesx andz). If the B/S interface is characterized by a very
high heterobarrier, which does not allow electrons to pen-
etrate in the medium of the barrierB from the semiconductor
S, a boundary condition for a single-electron wave function
in this interface is

Csx,y,z= 0d = 0. s6d

Besides the potentialVWsx,zd [see Eq.(5)], an electron can
experience an action of image forces appearing as a result of
the different values of«S and «B,«S. A potential of the
image forces in our case is one dimensional and can be writ-
ten in the form3

VI = es«S− «Bd/2«S«Sz. s7d

Finally, it is possible that there exists a homogeneous electric
field J0 induced by charged impurities either in the barrier
B, or in the B/S interface, or by a remote homogeneously
charged electrode. The corresponding potential is

VF = − J0z. s8d

The field J0 can be both parallel and antiparallel to theZ
component of the electric field of the metallic filament,

J1 = 4F0/«Sz0, s9d

presented in Eq.(5). But remember that Eq.(5) is justified
only for z!z0 and x2!z0

2. By summarizing the potentials
VWsx,zd, VIszd, andVFszd, we obtain

eVsx,zd = eV0 + smv2/2dsz2 − x2d + eq/z− eJz, s10d

where V0=s4F0/«Sdlogs2a/z0d, J=J1+J0, q=es«S

−«Bd /2«S«S, v2=4eF0/m«Sz0
2, andm is an electron effective

mass for theXY plane in the semiconductorS. Solving the
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three-dimensional(3D)-Schrödinger equation with the poten-
tial energy of −eVsx,zd [see Eq.(10)], we obtain for the
electron energy

E = Esn1,n2,kyd = − eV0 + "2ky
2/2m+ "vsn1 + 1/2d + En2

,

s11d

whereky is the wave vector of a “free” motion alongside the
Y axis, n1 is the quantum number, which describes electron
oscillations alongside theX axis, andEn2

are the discrete
energy levels of the quantization alongside theZ axis in the
field with the potential

VZszd = − Jz+ q/z+ mv2z2/2e. s12d

Note that as a result of assuming a finite length, 2a, of the
metallic filament we should deal with a discrete set of the
wave numbersky, but such discreteness is not substantial for
large values of 2a. A motion in the field of the potentialVZszd
is defined by the wave functionZsn2,zd that should be found
with the boundary conditions ofZs0d=Zs+`d=0. This means
that the last component on the right-hand side of Eq.(12) can
be considered only as a small correction. Below, we neglect
for our evaluations not only this component but also the
image forces component and calculateEZsn2d for a triangular
quantum well. The wave functionZsn2,zd in such a potential
is described by the formula

Zsn2,zd = Asn2dAi sZ − Zn2
d, s13d

where AisZd is an Airy function,4 Z=z/zC, zC

=s"2/2MeJd1/3, Asn2d is a normalizing coefficient,M is an
electron effective mass for theZ-axis direction, and positive
numbersZn2

are the roots of the equation

Ai s− Zn2
d = 0, s14d

obtained from the boundary conditionZsn2,0d=0. Let us
write out several of the lowest values4 of Zn2

:Z1=2.3381,
Z2=4.0879,Z3=5.5206,Z4=6.7867, and so on. We see that
the numbersZn2

and the energy levels

En2
= Zn2

s"eJd2/3/s2Md1/3 s15d

form the consequence converging with an increase in a num-
ber n2. The effective massM can be distinguished from the
effective massm for the motion alongside theXY plane.
Such a situation takes place in the case where theS material
is Si, and theXY plane is one of thek100l planes. Quantiza-
tion in theZ direction selects only such pair of three pairs of
the Si electron valleys, for which reallyM .m.

Let us compare the energy parameterdZ

=s8e"F0/z0«Sd2/3/M1/3 describing approximately the energy
distance between theZ quantization levels(for J0=0) with
the analogous parameter

dX = "v = s4eF0/m«Sd1/2s"/z0d s16d

introduced for theX quantization levels. Their relation
dZ/dX=2seF0m/«Sd1/6sz0m/"Md1/3 for z0=10−6 cm, «S=«B

+«S=15, andF0=0.015/0.15 V could be varied in the limits
of 0.5/2.0. The energydX for these numbers is equal to
,s0.5/1.5d10−2 eV. The sizes of the wave functions in theZ
and X directions can be evaluated by the valuesDZ

="2/3s«Sz0/eMF0d1/3 andDX=s"z0d1/2s«S /emF0d1/4, respec-
tively, and we have

DZ/z0 = s"/z0d2/3s«S/eMF0d1/3, s17ad

and

DX
2/2z0

2 = s"/2z0ds«S/emF0d1/2. s17bd

The approximation used in Eq.(5) is valid if both DZ/z0

!1 andDX
2 /2z0

2!1. In the Si case, the second of these strong
inequalities is more critical. This inequality can be satisfied
for z0=10−6 cm, m=10−28 g, and «S=«B+«S=15 if F0

ù0.15 V and forz0=3310−6 cm if F0ù0.015 V. Note that
insufficient fulfillment of the above-mentioned strong in-
equalities does not lead to missing qualitative results but our
approximate analytic evaluations become insufficiently accu-
rate.

We have shown above that a QWr could be “grown”
directly under theB/S interface, over which a thin metallic
filament is really grown. Parameters of the QWr are con-
trolled by the parameters and an electric charge(a potential!)
of the filament. The quasiequidistant level system of theX
quantization described by the numbersn1 is combined in this
QWr with levels of theZ quantization described by the num-
bersn2. The above-mentioned image forces, which are not
connected with the filament, force electrons out of the inter-
face and decrease energy distances between theZ quantiza-
tion levels. The homogeneous electric fieldJ0, which is par-
allel to the field J1 under the filament, increases these
distances.

III. INDUCED DOUBLE-QUANTUM WIRE

In the case of the same two parallel finitesuyuøad me-
tallic filaments placed over theB/S interface in the same
distancez0 and in the distance 2w from each other[Fig.
1(c)], the electric potential in the semiconductorS could be
presented by the formula

Vsx,y,zd = s2F0/«Sdlogfsj1 + 1dsj2 + 1d/sj1 − 1dsj2 − 1dg,

s18d

where j1,2=hfsx±wd2+sz+z0d2+sy−ad2g1/2+fsx±wd2+sz
+z0d2+sy+ad2g1/2j /2a. If x,y,z,w!a, we have

j1,2 > 1 + fsx ± wd2 + sz+ z0d2g/2a2. s19d

Of course, Eq.(18) is invalid near the edgesuyu>a of this
filament pair but this is not essential because we are inter-
ested in the middle parts of the filaments, which are distant
from the edges. Taking into account Eq.(19), Eq.(18) can be
rewritten in the form

V = s8F0/«Sdhlogf2a/sz0
2 + w2d1/2g − s1/4dlog Fsx,zdj,

s20d

where

Fsx,zd = h4w2sz+ z0d2 + fx2 − w2 + sz+ z0d2g2j/sw2 + z0
2d2,

s21d

and zù0. At the B/S interface, wherez=0, the function
Fsx,zd transfers into
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Fsx,0d = f4w2z0
2 + sx2 − w2 + z0

2d2g/sw2 + z0
2d2. s21ad

The functionFsx,0d is increasing monotonically with an in-
crease inx2 if w2øz0

2 and experiences a maximum atx=0
and minimums atx2=xm

2 ;w2−z0
2 when w2.z0

2. In the last
case, the electron potential energy −eVsx,zd appearing in the
Schrödinger equation contains the analogous maximum and
minimums at z=0 together with the functionFsx,0d. A
switch from the single-minimum structure of the potential
energy −eVsx,zd at w2øz0

2 to the double-minimum structure
at w2.z0

2 leads to the substantial reconstruction of the spec-
trum of the quantized single-electron states for the QWr in-
duced by the above-mentioned pair of the parallel metallic
filaments. This QWr demonstrates a shift from the ordinary
single QWr, which is similar to the ones considered in Sec.
II, at w2øz0

2 to the double QWr(that is DQWr) realized if
the inequalityw2.z0

2 is satisfied with a sufficient reserve.
The distinctive signs of such a DQWr are contained in the
structure of its lower quantized levels: the two lowest levels
in the DQWr should be very close to each other. This level
couple is formed by the ground symmetric electron state and
the first excited antisymmetric state. The interspace between
the levels is determined by the tunnel symmetric–
antisymmetric(S–AS) splitting of the ground state of the
conditional half of the considered DQWr. It decreases expo-
nentially with an increase in the height and the width of the
potential barrier separating the potential energy minimums.
The interminimum distance is equal to 2xm=2sw2−z0

2d1/2 and
determined by the metallic filaments’ positions only. The bar-
rier height, which is equal to

edV = uVs0,0d − Vsxm,0du

= s4eF0/«Sdulogf1 − sw − z0d2/sw2 + z0
2dgu

> s2eF0/«Sdsw − z0d2/z0
2 s22d

if w2−z0
2!2z0

2, depends also on the charge of the filaments,
F0. This height should exceed(and with a sufficiently large
reserve) the energy,"vm/2, of the conditional quantization
for the ground electron state in the energy minimum atx
= ±xm. The latter can be evaluated in the form:"vm/2
=s"v /2d4z0

2sw2−z0
2d / sw2+z0

2d2>s"v /2dsw2−z0
2d /z0

2>"vsw
−z0d /z0, wherev2=4eF0/m«Sz0

2, as in Eq.(10). Then the
conditionedV."vm/2 appears as

seF0m/«Sd1/2sw − z0d . ", s23d

or

l ; "s«S/eF0md1/2 , w − z0. s23ad

Remember that we consider in Eqs.(22), (23), and (23a)
only a small preponderance ofw over z0: w−z0!z0. This
requirement is compatible with Eqs.(23) and (23a) if

2z0 @ l. s24d

Equation (24) accurately coincides with the condition
DX

2 /2z0
2!1 [see Eq.(17b)] considered in Sec. II, which has

substantiated the simplified formulas of theX quantization
for the induced ordinary QWr and allowed us to obtain in
that case the ground-state level with the energy"v /2. In the
case considered here, Eq.(24) jointly with Eq. (23) allows us

to obtain only the much shallower S–AS split level with the
energy"vm/2. Deepening of this level requires an increase
in the charges,F0, of the filaments.

The S–AS splitting of the lowest level in the above-
described DQWr is determined by the potential energy ob-
tained from Eq.(20)

edVsx,zd = s2eF0/«Sdlog Fsx,zd

> s2eF0/«Sdf− 2sw2 − z0
2dx2/sw2 + z0

2d2

+ x4/sw2 + z0
2d2 + 4zz0/sw2 + z0

2dg. s25d

Formula(25) is justified when each of the components in the
brackets is small in comparison to(1). We do not keep in
these brackets the small component 4zz0x

2/ sw2+z0
2d2, which

hinders separation of the variables, and assume that this
component is a higher-order infinitesimal and can be ne-
glected. The potential energyedVsx,zd in Eq. (25) describes
an aggregate of the one-dimensional(1D)-(QW) quantum
well along theX axis and the triangular 1D-QW along theZ
axis (see Fig. 3). The desired S–AS splitting of the principal
and the first excited states of the DQWr can be presented by
the approximate formula5

EAS − ES = shvm/2pdexpf− s2/"dE
0

a

upudxg, s26d

where the quasiclassic momentumpsxd can be written in the
form

psxd = h2mfs2eF0/«Sdsw2 − z0
2 − x2d2/sw2 + z0

2d

− "vm/2gj1/2

> s2"/lz0dfsw − z0 − x2/2z0d2 − lsw − z0dg1/2 s26ad

and the top limit of the integral in Eq.(26a) is a=xm

−slz0d1/2>z0
1/2f21/2sw−z0d1/2−l1/2g. When the inequality in

Eq. (23a) is strong, the exponential index in Eq.(26) is equal
to fs8Î2dsw−z0d3/2/3lz0

1/2g, and the S–AS splitting is small if

FIG. 3. Potential energyedVsx,zd [see Eq.(25)] of the electron in the
DQWr induced by the pair of charged filamentsM1,2, in the case whenl
!w−z0!z0. The straight line 1 corresponds to the componentedVs0,zd and
the solid line 2 corresponds to the componentedVsx,0d. The line 3 corre-
sponds to the approximate parabolasedVsx,0d>«Mf−1+2sx7xmd2/xm

2 g,
where «M =s2eF0/«Sdfsw2−z0

2d / sw2+z0
2dg2>s2eF0/«Sdsw−z0d2/z0

2). These
parabolas lead to the equidistant quantization levels«n="vmsn+1/2d.
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p expfs8Î2dsw − z0d3/2/3lz0
1/2g @ 1. s27d

As in the case of the inequality in Eq.(23a), we need small
values of the parameterl and sufficiently large values of
w−z0. The same tendency takes place if the differencew
−z0 does not become small in comparison toz0.

IV. CROSSED FILAMENTS: AN INDUCED QUANTUM
DOT

Let us turn from the case of two parallel metallic fila-
ments to the case of two crossed filaments. Our interest in
the case of crossed filaments has been prompted by the pos-
sibility of forming a QD with completely localized electron
states. It is known6 that an intersection of QWrs generates
bound quantum states localized around this intersection.
[Generally speaking, formation of such states does not re-
quire the “full” crossing (of the 1-type or X-type). It is
sufficient6 to createT-like or Y-like intersections, and even
simple angles(G-like)]. There have been7,8 some experimen-
tal versions of crossing QWr on the basis of laterally pat-
terned modulation-doped GaAs/AlGaAs heterostructures
fabricated by the use of electron-beam lithography and ion-
beam-assisted etching. Unfortunately, the above-mentioned
localized states have not been considered in these works.
But, on the other hand, such states have been investigated in
Refs. 9–13, in which QDs have been obtained as a result of
the intersection of the twoT-shape QWrs. TheseT-QWrs
have been manufactured by cleaved edge overgrowth(CEO;
see the detailed review and numerous references in Ref. 14).
The QDs have been grown by the twofold CEO procedure
suggested in Ref. 15 and implemented in Refs. 9–13.

Let us consider two filaments, which are placed perpen-
dicularly to each other and form an equal-arm cross in the
planez=−z0 parallel to theB/S interface[see Fig. 2(a)]. In
analyzing this case we intend to use Eq.(18) the same as
before with some redefinition of functionsj1 and j2 on the
right-hand side. Now we havej1,2=sr1

s1,2d+r2
s1,2dd /2a1,2,

where r1,2
s1d =fx2+sz+z0d2+sy±a1d2g1/2 and r1,2

s2d =fsx±a2d2+sz
+z0d2+y2g1/2; a1 anda2 are the lengths of these filaments. Of
course, such an approach is very simplified since we assume,
in fact, that charge densities in both crossing filaments are
constant in the neighborhood of the intersection point that is
incorrect. We assume that the uncounted charge redistribu-
tion should not be noticeable in the case of very small trans-
verse sizes of the filaments, and the qualitative picture is
adequate.

In the neighborhood of the coordinate origin wherex, y,
z, z0!a1,2 we obtain

j1,2 > 1 + s1/2dsr s1,2d/a1,2d2 s28d

with r s1d=sx2+z2d1/2 andr s2d=sy2+z2d1/2. As a result of these
redefinitions, we obtain from Eq.(18)

Vsx,y,zd = s8F0/«Sdhlogf2sa1a2d1/2/z0g − s1/4dlogfsx/z0d2

+ s1 + z/z0d2g − s1/4dlogfsy/z0d2 + s1 + z/z0d2gj.

s29d

If z/z0!1 andsx/z0d2, sy/z0d2!1, Eq.(29) becomes similar
to Eq. (5) describing the ordinary QWr as

V > VC = s8F0/«Sdhlogf2sa1a2d1/2/z0g − sz/z0d

− sx2 + y2 − 2z2d/4z0
2j. s30d

But in contrast to the potentialVW described by Eq.(5),
which localizes the motion in theXY plane only alongside
theX axis, the potentialVC localizes the motion in this plane
completely. Therefore, the subject described by this potential
is a quantum dot(QD). This QD is induced by the crossed
charged filament shown in Fig. 2(a). The potentialVC pre-
sented by Eq.(30) is axially symmetric. But with an increase
in x and y (in comparison withz0) such an axial symmetry
gradually disappears. Equipotential lines, which are circles
for small values ofsx2+y2d /z0

2,1, become more and more
crosslike with an increase in this value going deep into the
channels of the vanishing quantum wires. The energy quan-
tization levels corresponding to the potentialVsx,y,zd=VC

+VI +VF [see Eqs.(7) and (8)] are given by the formula

E = En1,n2
= − 2eV08 + "vsn1 + 1d + En2

8 , s31d

whereV08=s4F0/«Sdlogf2sa1a2d1/2/z0g and the frequencyv
is the same as in Eqs.(10) and(11). The coefficient 2 before
eV08 is connected with double numbers of the filaments with
the same charge densityF0 in the same place. As a result of
the same reason, we should replace the expression forVZszd
in Eq. (12) by the new expressionVZ8szd=−s2J1+J0dz
+q/z+mv2z2/e in order to calculateEn2

8 in Eq. (31). The
energy of the ground state of the quantization in theXY plane
has also doubled; we have"v in Eq. (31) instead of"v /2 in
Eq. (11), though the distance"v between the quantization
levels remains the same in the accepted equidistant approxi-
mation. But let us note that all such levels in Eq.(11) are
nondegenerate and all of them in Eq.(31) are degenerate,
excluding the leveln1=0. The degeneration multiplicity is
equal ton1+1, that is, the first excited state is double degen-
erated, etc. Since for large numbers ofn1 the approximate
potential, which is proportional tosx2+yd2/4z2 in Eq. (30), is
insufficiently accurate, these levels become nonequidistant
and split into nondegenerate(or less degenerate) levels. As a
result, the structure of quantization levels for our QD could
be substantially enriched.

Up to now, we have assumed that the considered inter-
sected filaments forming the QD are the same. They have the
same cross-section shape and size, the same charge density
F0, and the same distancez0 from theB/S interface. But all
these conditions are not essential in order to form the QD.
The induced QWrs and QDs in the semiconductorS are
formed directly under theB/S interface independently of dis-
tances between charged filaments(or any other charged
sources) and thisB/S interface. These filaments can be the
same or different. They can be short circuited to each other
and have the same potential, but they can also be isolated
from each other and have different potentials. Depending on
these potentials and on real shapes and sizes of these fila-
ments (which could be not only filaments), we can create
different potential distributions in the semiconductors under
theB/S interface and form various induced structures includ-
ing dots, wires, potential barriers, vast electron reservoirs,
and contact systems.
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Let us consider the analogous to Eq.(29) expression for
the potential in the close neighborhoodsx,y,z,z1,2!a1,2d of
the crossing point of two differently charged filaments,
which are parallel to theB/S interface and differently distant
from this interface(z1,2 are the distances from the interface;
see Fig. 4). As before, we assume that these filaments are
perpendicular to each other and their projections on the in-
terface are crossed in the middle. Instead of the single charge
densityF0, we introduce the two analogous parametersF1

andF2. As a result of such changes, instead of Eq.(29) we
obtain

V = s4/«SdsG1 + G2d, s32d

where G1,2=F1,2hlogs2a1,2/z1,2d−s1/2dlogf1+2sz/z1,2d
+sr s1,2d /z1,2d2gj. The analogous approximate formula can be
obtained if we use Eq.(32) instead of Eq.(30); the approxi-
mate expressions forG1,2:G1=F1flogs2a1/z1d−sz/z1d+sz2

−x2d /2z1
2g andG2=F2flogs2a2/z2d−sz/z2d+sz2−y2d /2z2

2g. As
a result of the inequalityz1Þz2, we have lost the symmetry
in relation to the transformationx→y,y→x. Therefore, in-
stead of Eq.(31) we have

E = En18,n19,n2
= − 2eV08 + "v8sn18 + 1/2d + "v9sn19 + 1/2d + En2

9 ,

s33d

whereV08=s2/«SdfF1 logs2a1/z1d+F2 logs2a2/z2dg,

v82 = 4eF1/m«Sz1
2, s34ad

and

v92 = 4eF2/m«Sz2
2. s34bd

The energyEn2
9 has the same structure as the energiesEn2

and
En2

8 in formulas(11) and(31), being different only due to the
redefinition of parameters. Formula(33) demonstrates the
above-indicated lifting of degeneracy as a result of the axial

symmetry disappearing. Ifn18=n19=0, we have the single
level of the “zero” electron oscillations with the energy of
E0="v="sv8+v9d /2, as before. But the doubly degenerate
level n1=1 with the energy ofE1=2"v splits into two non-
degenerate levels:(1). n18=1, n19=0, E1,0="sv+v8d and (2).
n18=0, n19=1, E0,1="sv+v9d. The triply degenerate leveln1

=2 with the energy ofE2=3"v splits onto three nondegen-
erate levels:(1). n18=2, n19=0, E2,0="sv+2v8d, (2). n18=1,
n19=1, E1,1="sv+v8+v9d, (3). n18=0, n19=2, E0,2="sv
+2v9d, etc. Differences between the split energies are small
if frequenciesv, v8, andv9 are close to each other. In the
opposite case, the level systematics can be substantially dis-
rupted. Equality or inequality of the above-mentioned fre-
quencies depends on the values ofF1/z1

2 andF2/z2
2 [see Eqs.

(34a) and (34b)] and can be controlled not only by the fila-
ment design but also by the filament charges(that is, by their
potentials).

V. DOUBLE-QUANTUM DOTS AND OTHER VERSIONS
OF THE DOUBLE-QUANTUM WIRES

In Sec. III, we have considered a certain method of for-
mation of DQWrs by the fabrication of two parallel metallic
filaments placed in theXY plane, which is parallel to theB/S
interface and over it. These filaments should be sufficiently
distant from each other(the distance 2w should be somewhat
larger than 2z0). Naturally, the analogous method is also suit-
able for the formation of DQDs, which can be created by
crossing the above-described pair of parallel filaments with
the third metallic filamentM3 [see Fig. 2(b)]. In other words,
we should form a pair of not very long-distant QWrs using
the method “by filament crossing” described in Sec. IV. We
need this “not very long” distance in order not to obtain the
S–AS level splitting that is excessively small. The transverse
third filamentM3 is obliged neither to be placed in the same
XY plane with the parallel pair nor to be equally charged
with each of them. The potential, creating each of two QDs
in the DQD, can be presented in the form[compare with Eq.
(30)]

V = s4/«SdhF3 logs2a3/z3d + 2F0 logf2a/sz0
2 + w2d1/2g

+ sF0/2dsw2 − z0
2d2/sw2 + z0

2d2 − zfF3/z3

+ 2F0z0/sw2 + z0
2dg − sF3/2d

3sy/z3d2 − sF0/2dx82sxm + xd2/sw2 + z0
2d2j, s35d

wherex8 =x−xm, F3 is the charge of the metallic filament
M3 placed at the distancez3 from theB/S interface, andF0

is the charge of each of the filamentsM1,2, placed at the
distancez0 from the B/S interface. If w−z0!2z0, the last
two components in the curly brackets on the right-hand side
of Eq. (35) can be expressed in the form

− s1/2dfF3sy/z3d2 + 2F0x82sw − z0d/z0
3g.

In the case of the equal(or close to each other) values ofF0

andF3 and simultaneously alsoz3
2 andz0

2, we could obtain a
very anisotropic QD and, as a result, a very distinctive DQD.
The standard situation can be approximately restored if
F3/z3

2<2F0sw−z0d /z0
3. This means that the filamentM3

should be noticeably distant from theB/S interface in com-

FIG. 4. Quantum dot(QD) induced under theB/S interface by the crossed
charged metallic filaments 1-1 and 2-2 placed in the different planes in
parallel to theB/S interface.
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parison to the filamentsM1,2 and the chargeF3 should be
small in comparison to the chargeF0.

Of course, the above-described designs of DQWrs and
DQDs are not unique. Below, we consider one more. It in-
cludes two parallel metallic filamentsM1 andM2 placed one
over the other[see Fig. 5(a)] in the same verticalYZplane in
the distancez2−z1 from one another(z1 and z2 are the dis-
tances from the filamentsM1 and M2 to theB/S interface).
As before, we assume that the transverse filament sizes of
both M1 and M2 are small(disappearingly small!) in com-
parison with bothz1 and z2. This means that the charged
filamentsM1 andM2 do not screen practically with one an-
other. The potential of these filaments in the semiconductorS
is presented by Eq.(32) with the new values ofG1,2

G1,2= F1,2hlogs2a1,2/z1,2d − s1/2d

3logf1 + 2sz/z1,2d + r2/z1,2
2 gj, s36d

where r2=x2+z2. As before, we assume thatx,z!z1 and
obtain the formula, which is analogous to Eq.(30)

V > s4/«Sdsg1 + g2d s37d

with g1,2=F1,2flogs2a1,2/z1,2d−sz/z1,2d+sz2−x2d /2z1,2
2 g.

We assume that(1). F1,0, but F2.0 as before;(2).
F2. uF1u, and this inequality should be sufficiently strong in
order to provide the next additional inequalities,

F2 log s2a2/z2d . F1 logs2a1/z1d, s38ad

F2/z2 . uF1u/z1, s38bd

but

F2/z2
2 , uF1u/z1

2, s39d

that is

uF1u
F2

.
z1

2

z2
2 .

F1
2

F2
2 . s39ad

The above-written inequalities(38) and (39) mean that the
vertical filament pairM1 and M2 behaves itself as a posi-
tively charged filament for sufficiently large distances when
x2,z2ùz2

2 since the realistic positive chargeF2.0 signifi-
cantly exceeds the negative chargeuF1u sF1,0d and domi-
nates everywhere excluding a small neighborhoodx2,z2

øz1
2 of the filamentM1. The negative charge of the filament

M1, which dominates in the above-indicated small neighbor-
hood, pushes out an electron from this space and depletes it.
In this case, the minimums of the potential energy are
reached forz=0 at x= ±xm (see Fig. 3), where

xm
2 = suF1uz2

2 − F2z1
2d/sF2 − uF1ud. s40d

If inequalities (39a) take place, the right-hand side of Eq.
(40) is positive. The excess of the potential energyeVs0,0d
over the energyeVsxm,0d can be presented by the formula

d = eVs0,0d − eVsxm,0d

= s2e/«Sdh− uF1ulogsuF1uz2
2/F2z1

2d + sF2 − uF1udlogfs1

− z1
2/z2

2d/s1 − uF1u/F2dgj > s2e/«Sd

3h− uF1ulogsuF1uz2
2/F2z1

2d − sF2 − uF1udfsz1
2/z2

2d

− uF1u/F2gj. s41d

The third equality in Eq.(41) is justified if uF1u!F2 and
z1

2!z2
2. We also have

eVsx,0d > eVsxm,0d

+
8esF2 − uF1ud2fsz2

2/F2d − sz1
2/uF1udg

«Ssz2
2 − z1

2d2 sx 7 xmd2

s42d

around the positionsx= ±xm of the energy minimums. The
frequencyv of the electron oscillations aroundx= ±xm could
be found from the formula

v2 = s16e/m«SdfsF2 − uF1ud2/sz2
2 − z1

2d2gsz2
2/F2 − z1

2/uF1ud.

The zero oscillation energy"v /2 should be noticeably
smaller than the height,d, of the potential barrier separating
the above-mentioned minimums

s1 − z1
2/z2

2duF1ufsem/«Sdsz2
2/F2 − z1

2/uF1ud1/2g . ". s43d

Inequality (43) is analogous to Eq.(23) [or (23a)] that is
obtained for the DQWrs of the first version. The advantage
of the “vertical” second version considered in this section in
comparison to the “horizontal” first version is determined by
its more varied controllability: parameters of the DQWr de-
pend on two different chargesF1 andF2. By varying these
charges, we can transform our DQWr into the ordinary QWr
and vary the positions of the energy levels over a very wide
range, both in the double version and in the ordinary version.
The role of the additional negative-charged filamentM1 (Fig.
5) is analogous to the role of the thin depleting middle gate
in the tunnel-barrier split electron waveguides.16 The middle-
gate architecture16–19 has been designed for fabrication of
DQWrs by tunnel-barrier splitting of an ordinary wide QWr

FIG. 5. (a) Double-quantum dot induced by the pair of charged metallic
filamentsM1 andM2 placed one over another. The filamentM1 is negatively
charged and the filamentM2 is positively charged.(b) Double-quantum dot
induced by the negatively charged filamentM1 and the pair of positively
charged filamentsM28 andM29. In both cases, the positively charged filaments
M3 directed along theX axis induce the double-quantum dots under the
crossing points.
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in two. An extremely narrow gate, manufactured with the
help of the direct-write electron-beam lithography,16,19 pro-
vides such a splitting. The obtained DQWrs(split electron
waveguides) with autonomously contacted halves have been
intended for implementation of ballistic resonant tunnel
couplers20,21 and other resonant devices. Most of such and
other devices based on DQWrs and combinations of DQWrs
with ordinary QWrs could be designed on the basis of the
above-described metallic filaments.

Still more controllability than in the case of the verti-
cally designed DQWrs could be reached for the DQDs de-
signed on the basis of such DQWrs[see Fig. 5(a)]. For trans-
formation of such a DQWr into the DQD we need to
introduce the additional filamentM3, which is perpendicular
to the filamentsM1 and M2 and placed at some distancez3

from the B/S interface. In Fig. 5 it is placed over the fila-
mentsM1 and M2 sz3.z2.z1d but it is optional; we only
needz2.z1 with a certain substantial reserve as before. The
elementary theory of such a DQD can be developed by add-
ing the third componentG3 to the sum ofG1+G2 on the
right-hand side of Eq.(32), whereG1 andG2 are presented by
Eq. (36). This third component is

G3 = F3hlogs2a3/z3d − z/z3 logf1 + 2z/z3 + sz2 + y2d/z3
2gj.

s44d

In addition to the sum ofg1+g2, this component adds in the
right-hand side of Eq.(37) the component

g3 = F3flogs2a3/z3d − z/z3 + sz2 − y2d/2z3
2g, s45d

whereF3 is always positive similar toF2. This additional
component allows us to replace the inequalities in(38) and
(39) by much more liberal ones. Specifically, instead of Eq.
(38b) we can use

F2/z2 + F3/z3 . uF1u/z1. s46d

This inequality in combination with the inequality in(39)
leads to

uF1u
F2

.
z1

2

z2
2 .

F1
2

F2
2s1 + F3z2/F2z3d−2 s47d

instead of Eq.(39a). Such a replacement noticeably widens
the controllability area for the considered DQDs.

In particular, let us consider the case whenuF1u is so
large thatuF1u /F2 exceeds not onlysz1/z2d2 but alsoz1/z2.
This means that Eq.(38b) together with the right inequality
in Eq. (39a) is not fulfilled. As a result of this nonfulfillment,
both the DQWr and QWr cannot exist outside the vicinity of
the intersection point of the filamentsM1 andM2 by the third
filament M3, such aM1+M2 combination of the filament
charges repels electrons from theB/S interface. But the posi-
tively charged crossing filamentM3 changes the situation
around the crossing point if the chargeF3 is sufficiently
large, and the inequalities in(46) and (47) are fulfilled. The
DQD becomes possible in the neighborhood of the crossing
point of the QWr on the basis of the filamentM3 and the
nonexistent(imaginary!) DQWr on the basis of the filaments
M1+M2. Since fulfillment or nonfulfillment of the inequality
in (38b) is determined by the charge combination of the three

participating charged filaments, we can deal with both the
“semi-isolated” DQDs strung onto the QWr on the basis of
the filament M3 and the DQDs also connected with the
DQWrs growing alongside the filamentsM1+M2 (if they ex-
ist).

The above-considered DQWrs, on the basis of the two
metallic filaments placed in the same vertical plane[Fig.
5(a)], have a very substantial disadvantage besides the
above-mentioned advantages. It could be formulated as the
instability of the S–AS splitting of the ground quantum states
as a result of a small asymmetry of the left and right sides
(halves) of the induced DQWr. In the case of the horizontally
designed DQWr on the basis of the two independent metallic
filaments placed in the approximately same horizontal plane
[Fig 1(c)], the small controllable potential difference could
compensate for any small asymmetry of the forming fila-
ments M1 and M2 [such as unequal chargessF1ÞF2d or
unequal distances from theB/S interfacesz1Þz2d, etc.] As a
result of such compensation, we obtain the minimum value
of the resonant S–AS splitting. But in the case of the verti-
cally designed DQWrs[Fig. 5(a)], we miss such a possibility,
and any technological asymmetry(such as incomplete verti-
cality or small asymmetry of the filaments) leads to missing
of the desirable minimum S–AS splitting. To reestablish sta-
bility, we can exchange the positively charged filamentM2 in
Fig. 5(a) by the pair of independent filamentsM28 and M29
placed at the same distance,z28=z29, from the B/S interface
[see Fig. 5(b)] and having the same chargesF28=F29d. Nev-
ertheless, the independence of these filaments allows them to
have a small charge(and potential) differencedF!F28. The
obtained structure combines both above-considered DQWr
structures: the horizontally and vertically designed ones. Of
course, to providedF /F28!1, the comparatively small dis-
tance, 2w, between the filamentsM28 andM29 should be large
in comparison to the possible spatial errordx of the position
of the filamentM1 in relation to each of them.

If the distance 2w is small in comparison toz2=z28=z29,
the filament pairM28+M29 can be considered as the single
united filament with the doubled chargeF2=2F28. All the
formulas written for the DQWr shown in Fig. 5(a) are also
available for the one in Fig. 5(b). The single important dis-
tinction between them is that the latter[Fig. 5(b)] allows us
to tune the S–AS splitting with the help of a small correcting
charge differencedF!F28.

VI. DISCUSSION: THE SIMPLEST SETUP

To form electron devices on the basis of the above-
considered quantum wires and dots induced by potentials of
initial metallic filamentlike gates require selecting(1) semi-
conductorS; (2) materials and structures of the metallic gate
filaments; (3) materials and structures of dielectric layers,
which form the combined barrierB; and (4) structure of the
B/S interface. An evident and attractive material for the role
of the semiconductorS is Si, which has the natural partner,
SiO2, for the role of the basic component for the barrierB.
The main disadvantage of such a selection is a comparatively
low value of the peak electron mobilityms in inversion and
accumulation layers created at the SiO2/Si interface:
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2.4 m2/V s (Ref. 22), 1.5 m2/V s (Ref. 23), ø4.0 m2/V s
(Ref. 24), and 1.0 m2/V s in thin Si layers grown between
SiO2 layers.25 These values do not promise sufficiently large
lifetimes of the electron states in our induced quantum wires
and dots. The insufficiently large values of the mobilityms

are explained by unavoidable roughness of the SiO2/Si in-
terfaces and existence of bound charges22 in SiO2. As is
known, the silicon dioxide is not the single dielectric mate-
rial that can isolate metallic gates from Si surfaces. There
exist the traditional competitors of SiO2, such as SiOx,2,
Si3N4, SiOxNy, Al2O3, and also additionally HfO2, ZrO2

TiO2, etc., (see Ref. 26 as a review.) Unfortunately, we do
not know the values ofms measured in the accumulation
layers atTø4.2 K in the case of these gate dielectrics.

Another alternative to reach longer-lifetime-induced
electron states is using Ge as the semiconductorS instead of
Si. Germanium can be grown much cleaner and much more
dislocation-free than silicon. For a long time, absence of the
stable natural germanium dioxide GeO2 did not allow Ge to
be a real silicon competitor even for low-temperature appli-
cations. Now, this situation can be changed as a result of the
appearance of the other isolating gate dielectrics(for
example,27–29 the same ZrO2). Unfortunately, we do not
know the values ofms for Tø4.2 K in this case as before,
but they should be definitely higher than in the Si case.

The maximally tempting contenders for the role of the
metallic gate filaments are both multiwall and single-wall
carbon nanotubes(MW CNTs and SW CNTs). They combine
high conductivities and the required very small transverse
sizes. Now there appears a large number of communications
on using CNTs as the active element(current-conducting
channel) in field-effect transistors(FETs; see Ref. 30 as a
review and Ref. 31.) As a rule, the silicon dioxide, SiO2, is
used universally as a substrate, a top cover, and a gate di-
electric in such FETs, but there are rare exceptions: for
example,32 HfO2. Though the problem of directed
placement33 and directed fixation of nanotubes is far from
the final solution, coating of SW CNTs with an isolating shell
could be very progressive. There are several suggestions of
coated nanotubes with the calibrated SiO2 shells(see Ref. 34
and references therein). Such coating of SW CNTs and their
subsequent gluing together with the same silica can lead to
multilayer structures containing the metallic(nanotube) gates
on the top of the primary dielectric layer grown on the Si or
Ge surface.

To foresee construction of complicated multielement
systems(like quantum computing models) on the basis of the
above-described QWrs, QDs, DQDs, etc., we should inves-
tigate parameters of the separate simplest elements and struc-
tures including a small number of such elements. Below, we
consider two such elements: the induced QWr and quantum
point contact(QPC). The layout shown in Fig. 6 is placed on
the undoped semiconductor sampleS (Si or Ge) with two
heavy doped regions:n+−S and n+−D, contacting with an
outer electric circuit that is out of the area of Fig. 6. The
gatesMS andMD, placed on the top of the primary barrierB1

and having sufficiently large sizes, are positively charged by
potentials VS and VD, respectively, and induce two-
dimensional electron gases(2DEGs) 2DEGS and 2DEGD.

These gases are separated from each other by a very narrow
(substantially submicron) spatial interval 2l ø0.1 mm. Sev-
eral metallic filaments(we have three such filaments,M1,2,3,
in Fig. 6), which are isolated from the gatesMS,D by the
barrierB2 and form the second level of the controlling sys-
tem, intersect this spatial interval and induce the QWrs1,2,3.
We have created the completely induced FETs, which are
controlled both by the potentialsVS,D and by the potentials
V1,2,3 of the filament gatesM1,2,3. The potentialsVS,D form
the controlled induced 2DEG source and drain and the po-
tentialsV1,2,3 induce the QWr current-conducting channels.
Currents in these channels should be measured as functions
of both VS,D and V1,2,3. The filament gatesM1,2,3 are fixed
and buried by the barrierB3. We lead outside the current-
conducting contacts with then+−S andn+−D heavily doped
regions to measure the FET currents and contacts with the
gatesMS,D and M1,2,3 to introduce the potentialsVS,D and
V1,2,3. The subject of our measurements is the conductivities
of each quantum wires QWr1,2,3, which depend on the above-
mentioned potentials. The potentialsVS,D together withV1,2,3

form configurations of the 2D/1D contacts of the 2DEGS and
2DEGD to the 1DEG1,2,3 in the QWr1,2,3.

What do we expect as a result of such measurements?
Since these measurements take place for low temperatures in
the very short QWr1,2,3 s2l ,0.1 mmd, we should obtain bal-
listic electron transport and conductance quantization. In
contrast to the AlGaAs/GaAs case, in which conductance
quantization has been measured repeatedly both in different
QPCs and in comparatively long QWrs, there are only sev-
eral successful results for the Si case.35–41 Results in Refs.
35–38 have been obtained for very short metal-oxide semi-
conductor(MOS) structures, in which electron mobilityms is
within the above-mentioned small values.22–25 The quantum
wires in Refs. 39–41 have been induced in the tensile-
stressed 26-nm-thick Si layer grown on the undoped
Si0.7Ge0.3 virtual (relaxed) substrate and covered by
Si0.7Ge0.3 spacer followed by modulation donor doping layer
and Si3N4 dielectric. Appearance of the intermediate

FIG. 6. Layout of the device for identification and measurement of the
induced quantum wires.
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Si0.7Ge0.3 layer between the active Si layer and the gate iso-
lator substantially improves the 2DEG quality. The peak mo-
bility value of ms s,17.5 m2/V sd in this case is much
higher than in 2DEGs, induced directly under the SiO2/Si
interface. Such mobility corresponds to the elastic mean free
path ,1.5 mm that very much simplifies investigation for
both QWr effects and, as a result, QD effects.

The potentialsV1,2,3 in the suggested structures in Fig. 6
determine the minimum width of our induced QWr1,2,3 and
the potentialsVS,D can change their effective length 2leff

ø2l. If the initial length 2l is insufficiently small, the effect
of the positive accumulating potentialsVS,D can be also in-
sufficient to shorter 2leff and make it shorter than the elastic
mean free pathLe.

Below we suggest one more design of the induced OPC.
It is illustrated in Fig. 7 where we show the middle part of
the structure displayed in Fig. 6 with the added transverse
filament gateMT. We assume that this gate is charged by the
negative potentialVT,0 and creates a certain electron deple-
tion under it(like the filamentM1 in Fig. 5). This depleting
filament interrupts the QWrs1,2,3 and forms depleted sections
in the middle of them. These sections depend on both the
potentialVT and the potentialsV1,2,3and are the actual OPCs.
However, there is a noticeable difference between these
OPCs and the traditional OPC. The traditional one is a 2D/
1D/2D structure, obtained on the basis of the 2DEG in a
modulation-doped heterostructure. The above-considered
QPC is a 1D/1D/1D structure, in which the middle 1DEG is
depleted in comparison to the side ones. It is de facto a
one-dimensionaln+nn+ conductor. It is a difficult problem to
realize such a QPC by the traditional methods using
modulation-doped heterostructures.

The same structure is shown in Fig. 7, but in the case of
VT.0, is suitable for formation of the intersection quantum
dots considered in Sec. IV. Such QDs should appear under all
the crossing points of the filamentMT with the filament
M1,2,3. This charge exchange in the filamentMT transforms
the independent QWr1,2,3, shown in Figs. 6 and 7, in the
network connected by the new quantum wire QWrT under
this filamentMT. In this case, it is preferable to organize the
additional second of current-conducting contacts analogous
to n+−S andn+−D and the additional gate pair analogous to
MS,D to provide current control in the QWrT. But such a
four-contact bridgelike FET is outside of the frameworks of
this article. We also bring out of these frameworks the in-
duced FETs with the DQWr channels, which can be much
more cumbersome in comparison to the layout shown in Fig.
6 [see for example, Ref. 42].

VII. CONCLUDING REMARKS

Above we have theoretically substantiated the procedure
of induction of quantum wires, quantum dots, double-
quantum wires, double-quantum dots, and quantum point
contacts in a semiconductor with the help of the charged
metallic filaments embedded in the barrier space over the
semiconductor in parallel to the barrier/semiconductor inter-
face. These filaments can be placed on several levels over the
primary B/S interface to finally induce the complicated 2D
device structure under theB/S interface in the semiconduc-
tor. This structure should be controlled by the system of dc
and ac potentials in the above-mentioned filaments and also
by the potentials of the remote semiconductorn+ contacts
and the potentials of the large gates assigned to these con-
tacts (see the gatesMS,D in Fig. 6). Such a gate system is
able to provide a qubit control including entanglement and
reading out processes.

We have assumed that it is possible to use Si and Ge as
the basic semiconductor materials for our systems. The qual-
ity of the suggested structures is defined substantially by the
B/S-interface quality. All of our wires and dots are attached
by the gate potentials to this interface. Defects and rough-
nesses of this interface as well as the charged centers close to
this interface can decrease the quality of the induced wires
and dots very much. It seems that using a sufficiently thick
layer of the tensile-stressed Si grown on the virtual Si0.7Ge0.3

substrate and separated from the barrier oxide by the moder-
ately thick Si0.7Ge0.3 spacer could substantially improve
qualities of the induced electron structures. In this case, the
above-mentioned spacer would be a component of the thick-
enedB/S interface separating the dielectric barrierB con-
taining the metallic gates from the semiconductorS (tensile-
stressed Si) with the induced device structure.
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