7667

CHRYSLER / UMTRI

Wind-Steer Vehicle
Simulation

Reference Manual

Version 1.4
(Volume II of II)

Report No. UMTRI-90-19-2

M. W. Sayers
C. C. MacAdam
Y. Guy

May 1990

UMTR] The University of Michigan

Transportation Research Institute

Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
UMTRI-90-19-2

4. Title and Subtitie 5. Report Date
Chrysler / UMTRI Wind-Steer Vehicle Simulation — May 1990
Reference Manual, Version 1.4 (Volume II) 8 Performing Organization Code

8. Performing Organization Report No.
7. Author(s) IH ITRI'g -19-2
M. W. Sayers, C. C. MacAdam, Y. Guy 0
9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)
The University of Michigan —
Transportation Research Institute ot o 500533
2901 Baxter Road, Ann Arbor, Michigan 48109 T Type o7 Faport snd Period Covered
12. Sponsoring Agency Name and Address
Chrysler Motors Corporation 6/86 - 3/90
Highland Park, Michigan Tl e e P

15. Supplementary Notes
Chrysler Challenge Fund Project 2000533, “Vehicle Crosswind Stability.”
Chrysler Corp Personnel: James H. Frye, Mark Gleason, John Pointer.

16. Abstract

The Wind-Steer model is a time-based simulation of the handling performance of a
passenger car in response to steer inputs from a driver and external wind conditions. The

simulation includes the aerodynamic properties of the vehicle, a closed-loop driver model,
and vehicle chassis characteristics.

This is volume 2 of 2.

17. Key Words 18. Distribution Statement
computer model, simulation, vehicle No restrictions.
dynamics, vehicle model, aerodynamics,
passenger car, steering system, driver
model, crosswind

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages | 22. Price

Unclassified Unclassified 127

COPYRIGHT NOTICE

The computer software documented herein is copyrighted by:
The Regents of the University of Michigan, 1987-1990,
Ann Arbor, Michigan. All Rights Reserved.

ACKNOWLEDGEMENTS

This document and associated work are part of a research project supported at The
University of Michigan Transportation Research Institute (UMTRI) by The Chrysler
Motors Corporation under the Chrysler Challenge Fund Project 2000533 entitled, “Vehicle
Crosswind Stability.” The Challenge Fund Program is administered at Chrysler by Mr.
James H. Frye. Technical support has been generously provided by Chrysler engineering
staff, in particular Messrs. Mark Gleason and John Pointer of the aerodynamics group.
Additional engineering assistance has been provided by Messrs. Don VanDis and Fred
Winsor on various topics related to vehicle chassis and steering dynamics.

The model and simulation code were originally developed by Mr. Yoram Guy and L.
Segel of the Engineering Research Division (ERD) at UMTRI in 1986 and 1987.
Subsequent additions and modifications have been performed by M. Sayers and C.
MacAdam (also at UMTRI) during 1987 through 1990.

Reference

TABLE OF CONTENTS

Manual (Volume II)

Copyright Notice

Acknowledgements

1. Guide to This Manual

2. Nomenclature
Subscripts 2
Variables and Parameters 2

3. Equations of Motion

3.1
32

33
3.4

3.5
3.6

3.7

Degrees of Freedom 6
Body Equations 7
Kinematical Relationships 7
Force / Moment Equilibrium Equations 9
Aerodynamic Forces and Moments 10
Suspension / Wheel Terms 11
Vertical Displacements 11
Effective Stiffness and Damping Values 11
Vertical Damping Forces 12
Vertical Ground Loads 12
Roll Axis 12
Tire Slip / Camber / Steer Equations 13
Suspension Kinematics (Independent Suspensions) 13
Suspension Kinematics (Beam Rear Axle) 13
Left-Front Suspension 14
Right-Front Suspension 15
Left-Rear Independent Suspension 16
Right-Rear Independent Suspension 16
Beam Rear Axle 17

Power-Assisted Steering System 17

ii-

4. Programming Details
4.1 Machine Dependencies 20
4.2 Structure of Program 21
4.3 Program Modules 22

4.4 The Output File 30
Method Used to Write Time Histories 30
Deleting Variables 31
Adding Variables 32
Changing the Format of the Output File 32

4.5 Changing the Tire Model 33
Appendix A — Driver Model
Appendix B — source Code

20

34
45

1. GUIDE TO THIS MANUAL

This manual is the second of two volumes documenting the Chrysler/UMTRI Wind-
Steer Vehicle Simulation, Version 1.4. This manual provides detailed background material
for the model that is of interest in order to understand the modeling assumptions or to
modify the computer code.

The companion volume (Volume I) explains how to use the software.

The material in this volume is presented in four chapters and two appendices, which
contain the following material:

Chapter 2 Nomenclature
This chapter defines all of the symbols used in the rest of the volume.

Chapter 3 Equations of Motion
This chapter describes modeling assumptions and presents the differential equations
that are solved numerically in the Wind-Steer simulation program.

Chapter 4 Programming Details

This chapter discusses the programming details necessary for understanding and
modifying the computer code.

Appendix A Driver Model

This appendix contains reprints of two technical papers that describe the driver
steering control model contained in the program.

Appendix B Source Code
This appendix lists the FORTRAN 77 source code used in implementing the model
on both Apple Macintosh and IBM PC / compatibles personal computers.

Reference Manual (Version 1.4) 1

2. NOMENCLATURE

This chapter defines all of the symbols used in Chapter 3 and in the rest of this volume.

Subscripts
1 =Front Axle 2 =Rear Axle L =Left R =Right

Variables and Parameters
Symbols refer to parameters unless they are identified as being variable

Ay = [Variable] Lateral acceleration of vehicle center-of-mass, perpendicular to
longitudinal vehicle axis and parallel to ground

a = Distance from front axle to total vehicle center of mass
ag = Distance from front axle to center of mass of the sprung mass
b = Distance from total vehicle center of mass to rear axle
Cp = Steering boost coefficient

Cy = Steering damping coefficient
Co = [Variable] Comering stiffness for slip, defined as 0Fy/jq,
Cy= [Variable] Comering stiffness for camber, defined as aFY/a'y

CMa= [Variable] Aligning stiffness, defined as OMz/)q,
Dj;, Dj; = Damping coeficient for jounce for front and rear shock absorbers
D;;, Dy = Damping coeficient for rebound for front and rear shock absorbers

Fp = [Variable] Suspension jounce / rebound damping force (additional
subscripts indicate which wheel)

Fy = [Variable] Tire-generated side force (additional subscripts indicate which
wheel)

Fya = [Variable] Aerodynamic side force
Fza = [Variable] Aerodynamic vertical force

Reference Manual (Version 1.4) 2

hy, hy = Height of nominal front and rear roll centers
hgm = Nominal height of sprung-mass center of mass

hra= [Variable] Vertical distance between the sprung-mass center of mass and
the instant roll axis

heel, hrea = [Variable] Vertical distance between center-of-mass of the sprung mass
and the instant front and rear roll centers

Ixs = [Variable] Instant moment of inertia of sprung mass about roll axis
Iyx = Moment of inertia of sprung mass about longitudinal (x) axis

Ixz = Cross product of inertia of sprung mass for x, z directions

I;z= Yaw moment of inertia for entire vehicle

Kaux1, = Auxiliary roll rate (beyond rate due to vertical springs), for front and rear
Kaux2 axles, including the effects of tire compliance

Krr1, K2 = Auxiliary roll rate (beyond rate due to vertical springs), for front and rear
axles (without effects of tire compliance)

Ks1, Ksp = Vertical spring stiffness, for front and rear suspensions (one wheel)
K1, KT2 = Vertical tire stiffness, for front and rear tires (one tire)
= Total roll stiffness of suspensions and tires acting on sprung mass
= Wheelbase (a +b)

Mct, b= [Variable] Total steering system coulomb-friction on "forward" or
"backward" path, resolved as a motion-resisting moment about the front-
wheel kingpins

M, = [Variable] Steering system viscous damping, resolved as é motion-
resisting moment about the front-wheel kingpins

Mp = [Variable] Steering moment servo-boost component, resolved as a motion-
assisting or motion-resisting moment about the front-wheel kingpins

Mg = [Variable] Front-wheel steering moment component, less viscous damping
and boost

Mpn = [Variable] Upper steering shaft "manual” moment (also controlling servo
valve)

Mxa = [Variable] Aerodynamic roll moment acting on vehicle
Mya = [Variable] Aerodynamic pitch moment acting on vehicle

Mgz = [Variable] Tire aligning moment (additional subscripts indicate which
wheel is referenced)

Mza = [Variable] Aerodynamic yaw moment acting on vehicle

Reference Manual (Version 1.4) 3

mg = Sprung mass
m = Total mass
p = [Variable] Roll rate
Q= Acrodynamic pressure, p VA2 /2
q = [Variable] Pitch rate
r = [Variable] Yaw rate

t1, tp = Half-track distances for front and rear of vehicle (centerline of vehicle to
centerline of tire)

= Vehicle speed (constant)
Va = [Variable] Air speed, relative to vehicle
Vwind = [Variable] Absolute wind speed
w = [Variable] Vertical velocity of sprung mass
= [Variable] absolute (inertial) X coordinate of vehicle center-of-mass
= [Variable] absolute (inertial) Y coordinate of vehicle center-of-mass

yra= [Variable] Lateral distance between instant roll axis and sprung-mass
center of mass

Vrcl, Yrc2 = [Variable] Lateral distance between center-of-mass of the sprung mass and
the instant front and rear roll centers

o = [Variable] Tire slip angle (subscripts indicate referenced tire)
01g, Ogo = Static tire slip angles for front and rear axles
B = [Variable] Vehicle slip angle
Ba= [Variable] Aerodynamic slip angle

8g = [Variable] Front-wheel steering angle displacement, before adjusting for
lash

8pw = [Variable] Average front-wheel steering angle displacement
Opash = Total steering system lash resolved to an angle about front-wheel kingpins
gy = Roll steer coeficient for beam-type rear suspension
¢ = [Variable] Roll of sprung mass relative to baseline trim condition
Y= [Variable] Tire camber angle (subscripts indicate referenced tire)

Yio» Y20 = Static tire camber angles for front and rear axles

Reference Manual (Version 1.4) 4

i1, By = Nondimensional parameters that reduce the effective suspension stiffness
to account for tire vertical compliance

= [Variable] Pitch of sprung mass relative to baseline trim condition
p = Density of air OR
= [Variable] Instantaneous path curvature of vehicle, at the center of mass
= [Variable] Vehicle yaw (heading) angle relative to inertial frame
Vyind = [Variable] Absolute wind direction (180° from meteorology convention)
z= [Variable] Vertical displacement of vehicle sprung mass
z;L = [Variable] Vertical displacement at left front suspension point
z1r = [Variable] Vertical displacement at right front suspension point
zy1 = [Variable] Vertical displacement at left rear suspension point
zor = [Variable] Vertical displacement at right rear suspension point
I;s = Steering wheel / upper column rotational inertia
Ksc = Steering column stiffness
KL = Steering linkage stiffness (one side)
Kss = Effective (lumped) steering system stiffness based on Kgc and KsL
GR = Overall gear ratio of steering system

dsw = [Variable] Steering wheel rotational displacement
O¢tw' = [Variable] dgy / GR
CL = Aerodynamic lift coefficient
Cp = Aerodynamic drag coefficient
CMm = Aerodynamic pitch moment coefficient
KL = Aerodynamic coefficient for lift force variation due to Baz
Kp = Aerodynamic coefficient for drag force variation due to Ba2

Ky = Aerodynamic side force coefficient

KN = Aerodynamic yaw moment coefficient

KR = Aerodynamic roll coefficient

KM= Aerodynamic coefficient for pitch moment variation due to Baz

A = Aerodynamic cross sectional area

Reference Manual (Version 1.4) 5

3. EQUATIONS OF MOTION

3.1 Degrees of Freedom 6
3.2 Body Equations 7
Kinematical Relationships 7
Force / Moment Equilibrium Equations 8 ——
3.3 Aerodynamic Forces and Moments 10
3.4 Suspension/Wheel Terms 10
Vertical Displacements 10
Effective Stiffness and Damping Values 11
Vertical Damping Forces 11
Vertical Ground Loads 12
3.5 Roll Axis 12
3.6 Tire Slip / Camber / Steer Equations 13
Suspension Kinematics (Independent Suspensions) 13
Suspension Kinematics (Beam Rear Axle) 13
Left-Front Suspension 13
Right-Front Suspension 15
Left-Rear Independent Suspension 16
Right-Rear Independent Suspension 16
Beam Rear Axle 16

3.7 Power-Assisted Steering System 17 |

—

—_—

This chapter describes modeling assumptions and presents the differential equations
that are solved numerically in the Wind-Steer simulation program.

3.1 Degrees of Freedom

The vehicle model is intended to accurately predict handling behavior for moderate
levels of cornering (less than 0.3 g’s) and frequencies less than 5 Hz. The vibrational
characteristics of the unsprung masses are not included in the model because they involve
frequencies (typically 10 — 15 Hz) well above the bandwidth of interest for steering
response. Forces and moments acting on the body through the suspensions depend on the
suspension deflections. The model predicts suspension deflections by using a quasi-static
force balance between the tire vertical force and the vertical suspension force. That is,

Reference Manual (Version 1.4) 6

vertical tire forces predicted by the models are determined solely by the motions of the
sprung mass.

The vehicle is modeled as a rigid body that is free to pitch, roll, and yaw, and to
translate laterally and vertically. The forward speed is constant. Movements of the four
wheels are treated quasi-statically by considering the compliance of the suspensions and
tires. Altogether, the vehicle has five dynamic degrees of freedom and is essentially an
extension of Segel's original three-degree-of-freedom model which included yaw, roll, and
lateral translation.! A dynamic steering system option adds a sixth degree of freedom.

Even though the unsprung masses do not have dynamical degrees of freedom, the
equations of motion nonetheless account for the distribution of mass and rotational inertia
between the sprung and unsprung masses. In bounce, pitch, and roll, the sprung and
unsprung masses are coupled through the compliant suspension elements. In yaw and
lateral translation, they are coupled through suspension elements that are essentially rigid.
Thus, the force and moment balances for yaw and lateral acceleration involve the mass and
rotational inertia of the entire vehicle. The force and moment balances for bounce, pitch,
and roll involve the mass and rotational inertia of only the sprung mass.

The dynamics of the steering system are also included as an option. When selected, the
input to the steering system is a torque acting on the steering wheel. The steering wheel
torque may be specified as an open-loop time-history input, or, it can instead be calculated
by the resident closed-loop driver model during path-following maneuvers.

The constant-speed vehicle model includes a total of six dynamic degrees of freedom.
Table 3.1.1. defines the twelve state variables that describe the kinematics of the vehicle.
They follow the SAE recommended practice sign convention.2

Independent steer, camber, and vertical motions are included for each wheel. These
high-frequency motions are treated as being in static equilibrium at the low frequencies of
interest.

3.2 Body Equations

Kinematical Relationships

The derivatives of the inertial X and Y coordinates of the vehicle center of mass are
related to the constant forward speed and vehicle rotation:

X =V cos(y + B) (3.2.1)

1 Segel, L. "Theoretical Prediction and Experimental Substantiation of the Response of the
Automobile to Steering Control." Proceedings of the Automobile Division of the Institution of
Mechanical Engineers, No. 7, 1956-57.

2 Vehicle Dynamics Terminology, Handbook Supplement, SAE Recommended Practice, SAE J670e,
June 1978.

Reference Manual (Version 1.4) 7

Y = Vsin(y + B) (3.2.2)

Table 3.1.1. State variables.

X inertial forward coordinate of vehicle center of mass

Y inertial lateral coordinateof vehicle center of mass

z inertial vertical coordinate of vehicle sprung mass

[0 Euler roll angle of sprung mass

0 Euler pitch angle of sprung mass

1 Euler yaw angle of total vehicle

P Roll angle rate of sprung mass (in body-axis coordinate system)

q Pitch angle rate of sprung mass (in body-axis coordinate system)

T Yaw angle rate of sprung mass (in body-axis coordinate system)

B Side slip angle of vehicle mass center

w Vertical displacement rate of sprung mass (in body axis coordinate system)
Orw Average steer angle of front wheels

The following four state variables are speeds defined as derivatives of other state
variables:

W=z (3.2.3)
p=9 (3.2.4)
q=6 (3.2.5)
r=y (3.2.6)

Two useful variables that are derived from the yaw rotation rates are the lateral
acceleration and the path curvature of the vehicle center of mass:

Ay= Yﬁgi—ﬁl (3.2.7)
0 =r—§£ (3.2.8)

Reference Manual (Version 1.4) 8

Force / Moment Equilibrium Equations

The following sums combine the external forces and moments applied the tires and the
aerodynamic effect:

2 Fy =Fy, +Fy, +Fy, + Fy + Fya (3.2.9)

Z Fz=Fz, +Fz,+Fz, +Fz,—Fza (3.2.10)

z Mz =Mz, + Mz, +Mz, + Mz, + Mza
+a (FYlL + FYIR) -b (FYu, + FYzR) + (a —Ii") FYA (32 1 1)

Five equilibrium equations can be written for this vehicle model by balancing the
applied forces and moments with D’Alembert’s forces and torques. The summation of
lateral force and yaw moment are applied about the entire vehicle, whereas the pitch and roll
moments and the vertical force are applied only for the sprung mass. As implied by the
form of the following equations, these relations are used to evaluate the acceleration
variables.

Ixsp=-Ixzt-msh,V (r + B) +ms g yra_K¢ o+ tl(FDlL—FDIR) (3.2.12)
+ t{Fpy — FDy) + Mxa — hsm Fya B

——mshrap+zFY r

3.2.13
B mV ()
-1 +) M
.24 LM (3.2.14)
Iz
-VF
w=mgmsz Z (3.2.15)
a[2 uy Ksy (z -2 0)+Fp, +Fp,l
—b[2p.szz(z+be)+FDZL+FDz,]+MYA+(%—aS)FZA
q= (3.2.16)

Iys
As written above, the first three of these equations are coupled in such a way that they

cannot be evaluated sequentially in a computer program. That is, the terms p, B, and r
appear on both sides of eqs. 3.2.12 through 3.2.14. By substituting egs. 3.2.13 and

3.2.14 into 3.2.12, an alternative expression for p is obtained which is not dependent on f3
orr:

Reference Manual (Version 1.4) 9

I
msgym—%Z Mz — Ky ¢ + Mxa — hgm Fya

h
- m;n ra z Fy+t (FDu. —Fle) + 1t (FD2L —FDuJ

2
m%hrza _ _I_)Z_

Tyq — Dslra

m Iz (3.2.17)

p:

This expression is used (rather than eq. 3.2.12) to evaluate p. The known value of p is
then used in egs. 3.2.13 and 3.2.14 to evaluate P and r.

3.3 Aerodynamic Forces and Moments

The aerodynamic slip angle (B,) and speed (V) are defined as follows:

Vax = Vwind €08 (Wwind — V) — V cos (B) (3.3.1)

\ Vwind $in (Wwind — W) — Vsin (B) (3.3.2)

V=V ViV (3.3.3)

A4V
Ba=tan ‘(_V_a_)_() - T, Vay>0

ay

ay (3.3.4)
Ba=tan"{—3—a—’f + T V<0
ay (3.3.5)
The areodynamic forces and moments are the following:
2
Q i;A (3.3.6)
Fxa=Q A (Cpo + Kp Ba?) (3.3.7)
Fya=-QAKy B, (3.3.8)
Fza=-QA (CLo+ Kz B (3.3.9)
Mxa=—-QALKRBa (3.3.10)
Mya =-Q A L (Cyo + Km Ba2) (3.3.11)
Mza=-QALKnNpBa (3.3.12)

Reference Manual (Version 1.4) 10

3.4 Suspension / Wheel Terms

Vertical Displacements

The tire slip and camber angles are influenced by the following suspension deflections

zL=2z-a6 - 1¢ (3.4.1)
zZR=2z-a0 + 110 (3.4.2)
Zy = z+b0 - o (3.4.3)
Z)R= 2 +bO + 120 (3.4.4)

The above expressions neglect vertical tire deflection. The effects of tire compliance are
treated below by defining “effective stiffness” and “effective damping” values.

Effective Stiffness and Damping Values

All suspension springs in the vehicle model are linear. These include the vertical spring
rates at each wheel, the auxiliary roll stiffness for the front and rear axles, and the tire
vertical spring rates. The vertical motions of the wheels (acting against the tire vertical
stiffness) is not computed in this model. Instead, the tire compliance values are used to
lower the spring and damping rates of the suspension so that the vertical force, roll
moment, and pitch moment acting on the sprung mass take into account the tire vertical
deflections.

Effects of vertical spring and damper coefficients are reduced by the proportion of the
overall vertical wheel movement that is due to the tire compliance

Kr1

= 34.5

K1 Koy + Ksy ()
__Kn :

My = ke + K3 (3.4.6)

The effective auxiliary roll stiffnesses for the front and rear axles are also reduced due
to tire compliance

Kn (22K
Kau = 2 6 K 2 6 Ko + Ke) -2 16 Ksy (3.4.7)
2 % (K71 + Ks1) + Kt
K m=2t§Kn(2‘§Ks2+Kfﬂ)_2u2éKsz (3.4.8)

2 & (K72 +Ks2) + K2

A single stiffness applies to the roll motions of the sprung mass.

2 2
Ke=2mKs1t] + 2myKs2 & + Kaux1 + Kaux2 (3.4.9)

Reference Manual (Version 1.4) 11

Vertical Damping Forces

A bi-directional shock absorber model is used. A linear damping coefficient is used
with different values for jounce and rebound, as indicated by the subscripts j/r. The
nondimensional coefficients 1 and p (see egs. 3.4.5 and 3.4.6) are used to reduce the
suspension motion by the amount of the tire deflection.

Fp, = mDgm1lw - a® - t1p] (3.4.10)
Fp, = H1Dgm1[w —ab + t1p] (3.4.11)
Fp, = M2Dgm2[w + b6 - t2p] (3.4.12)
Fp, = w2 Dgmlw + b6 +typ] (3.4.13)

Vertical Ground Loads

The tire forces and moments are influenced by vertical load. The vertical loads for each
tire are defined as follows:

b K - hpei(Fy, + F
Fz, = %[‘:g _ Kaw ¢ rz:(Yu Ym)} +Fp,, + Mz Ks1 (3.4.14)
Fz= %[b rIrj g, KA 0- hr#FY‘L > FY“‘)} + Fpy + 1121RKs: (3.4.15)
Fz, = %[alllj g _ Kawm0- hrz(FYﬂ' * FY’Q +Fp, + H2251 Ks2 (3.4.16)

F __L[amg + KAux2¢_hrc2(FYu‘+FYJm)_
Y t
2

+ Fpy + W2zZ2rKs2 (3.4.17)

3.5 Roll Axis

The suspension kinematics are simplified by assuming that the sprung mass rotates
about a roll axis. To extend this representation, the axis is permitted to move as a function
of roll angle. The roll axis is located by two points, each in the vertical plane containing
each axle. These points are defined by static heights located on the longitudinal centerline
of the vehicle, h; and hp. Movements of these two points are introduced as vertical and
lateral components, hy and yrc, which are defined as quadratic functions of roll angle in
coordinates fixed in the (rolling) sprung mass (see Section 2.1 in Volume I). The (rolled)
vertical and lateral distances between the center of the sprung mass and the roll axis are
defined as

h' = hyer "’%(hrd — hee) 3.5.1)

Reference Manual (Version 1.4) 12

Y = Yret 47 (Y2e2 = Yie1) (3.5.2)

These dimensions are projected into a non-rolling frame to yield the offsets
hra =h'- y' ¢ (353)

ya=y +h'¢ (3.5.4)

An instant roll moment of inertia is defined for the sprung mass to include the effect of
the offset of the center of mass relative to the roll axis.

IXS = Ixx + (yra2 + hraz) myg (3.5.5)

3.6 Tire Slip / Camber / Steer Equations

The tire side force and aligning moment are modeled as being linear with respect to slip
and inclination angles. However, as was explained in Section 2.3 of Volume I, the
coefficients can be functions of vertical load. The static offset in steer and inclination angle
are assumed to have equal magnitudes but opposite signs for the two suspensions on an
axle. The same is true for kinematics effects. That is, the change in steer and inclination
due to suspension deflection on the two sides of the vehicle are modeled as having opposite
signs. Steer and inclination are also influenced by forces and moments applied by the tires,
due to suspension compliance. The compliance effects are the same on either side of the
vehicle.

The right-hand side of the vehicle should be used as the reference in applying
conventional SAE kinematics and compliance coefficients.

Suspension Kinematics (Independent Suspensions)

The changes in steer and inclination due to suspension kinematics for axle i are
described as follows for independent suspensions:

Sk, = Coz; ziL + Cézy; ziL2 (3.6.1)
dk;g = -Céz1; ZiR - Cz1; ZiR2 (3.6.2)
YK = Cra1; il + Cy2, ziL? (3.6.3)
YKig = -Crz1; ZiR - Cyz2; ZiR2 (3.6.4)

Suspension Kinematics (Beam Rear Axle)

For a beam rear axle, the inclination angle remains constant. The influence of
suspension kinematics on steer are accomodated by a linear roll-steer coefficient:

OK,g = 0Ky = ER O (3.6.5)

Reference Manual (Version 1.4) 13

Left-Front Suspension

The slip angle is defined as follows for the left-front suspension:

oL =010+p + ‘LVA —Opw + SKIL— Kscr, FYIL - Ksemy Mz, (3.6.6)

where o1 is the slip angle, oy, is the static toe-out, pw is the steer angle predicted by the
steering model, Ok, is the steer due to bump-steer, KscF, is the lateral-force compliance-
steer coefficient for the front axle, and Kcw; is the aligning-torque compliance coefficient.

If the dynamic steering system is being used, separate right- and left-hand front-wheel
steer angles are computed within the steering system model. The aligning torque
compliances are also accounted for in the steering system model. If the steering model is

not being used, SFw is equal to 5SW/GR and the aligning torque compliances are included
as shown.

The inclination angle for the left-front suspension is:
YIL=Y1o+ 0+ YKiL "K}CFl FYlL (3.6.7)

where y; is the inclination angle, i, is the static camber, Yk, is the portion of the
inclination angle due to suspension deflection, and KycF, is a lateral-force compliance-
inclination coefficient for the front axle.

Because the slip and inclination angles are influenced by tire side force and aligning
moment, which are in turn developed by slip and inclination , the above equations are not
suitable for sequential evaluation. For the specific tire model described here, it is in fact
possible to obtain closed-form solutions for slip and inclination , because the explicit force
and moment equations are linear with respect to slip and inclination. The simulataneous
linear equations can be solved analytically.

A problem with this approach is that the formulation is tied to the specifics of the tire
model. Changing the tire model (for example, to allow slip angles into the nonlinear
regime) becomes difficult. Therefore, a more generalized formulation is used which is
independent of the tire model characteristics. The simultaneous equations are solved with a
Newton-Raphson iteration method, which is valid for both linear and nonlinear equations.
The Newton-Raphson method is well established, and an existing computer alogorithm
was incorporated into the Wind-Steer simulation.!

The Newton-Raphson method requires that a set of two simultaneous equations be put
into the form of error functions:

f] (xls X2y o xl'l) = O

1 Press, W.H. et al., Numerical Recipes: the Art of Scientific Computing. Cambridge University
Press, 1986.

Reference Manual (Version 1.4) 14

fy (X1, X2, ... Xp) =0 (3.6.8)

where x1 and x; are independent variables and f; and f; are nonlinear error functions of
those variables that are identically zero when the equations are satisfied. In matrix form,
this is

f®=0 (3.6.9)

where f is defined as [fi, f2]T and x is defined as [x1, x2]T. To find the values for x; and
x2 which satisfy eq. 3.6.9, the Newton-Raphson algorithm requires: (1) a subroutine to
compute f, given x, and (2) a subroutine to compute J, given x, where] is the 2x2
Jacobian, whose elements are defined as

o=
5= 5 (3.6.10)

The above equations for slip and camber are easily put into the form required for the

Newton-Raphson computation:

x=[or, Y1) T (3.6.11)

Error functions are obtained by moving all terms to the right-hand side of eqs 3.6.6 and
3.6.7:

O=fi=-oyL+0ap,+B +'IVA—8FW+5K1L—K5CF1 Fy,L - Ksem; Mz

0=f=-Y1L-Y0+ 0+ YKL —KyCF, Fy L (3.6.12)
The Jacobian is obtained by applying eq. 3.6.10 to eq. 3.6.12:

oF oM. oF
Ju=1+ KSCF1 _aEY’“ KSCM, jaz Jiz= KSCF1 —B—YX

oF oF :
J21 =Ky, 30% Jn=1+KcF, —a-yl (3.6.13)

Right-Front Suspension

A similar formulation is used for the right-front suspension:

QR =00 + B + LVA - Opw + 8KlR— KSCFl FYlR - K5CM1 MZiR (3.6.14)

YIR =Y1o + ¢ + YK1R -K‘YCFI FYIR (3615)

The Newton-Raphson formulation for the right-front suspension is nearly identical to
the one used for the left. In this case, the variables are

x = [o1R, Y1R]T (3.6.16)

the error functions are:

Reference Manual (Version 1.4) 15

ra_

0=11=-0ur - @0 + B+~ Opw + 8k, ~ Kacr; Fyyg - Ksomy Mz

0=1>=-yRr +Y0 + 9 + YK;gr KycF; Fy g

(3.6.17)

The Jacobian matrix is identical to that used for the left-front suspension (eq. 3.6.13).

Left-Rear Independent Suspension

The equations for an independent left-rear suspension are:

QoL =0y + B — Ib OKyr — Kscr, Fyo - Ksem, Mz,
\%

ToL = Y20 + O + YKy ~KyCF, Fyyp

The independent variables for the Newton-Raphson computation are:

x = [0, YaLIT
Error functions are developed from eqgs 3.6.18 and 3.6.19:

0=1f) =—0aL + 0 +B"'Lvh +6K2L—K8CF2FY2L—K8CM2 Mz,

O=fr=—"pL-T0++ YKo —KycF; Fyyp
The Jacobian is obtained by applying eq. 3.6.10 to eq. 3.6.21:

oF oM, oF
111=1+K5c1=2—agY+Kacmza—az 112=K<~3cr-2——'ayY
oF dF
J21 = Kycr, a—; Jp=1+ K7CF27Y¥'

Right-Rear Independent Suspension

The equations for an independent right-rear suspension are:

OlgR = —0Olgo + f - ‘%2 + 8kar — K5CF, Fyor — KocMy Mzg

Y2R = Y20 + 9 + YKop —KyCF, Fyop

The independent variables for the Newton-Raphson computation are:

x = [ogR, Yor]T

and the error functions are:

O=f;=-0pr -0 +B- ’I_/b + 8KzR - KSCFz FY2R - K8CM2 MZzR

Reference Manual (Version 1.4) 16

(3.6.18)

(3.6.19)

(3.6.20)

(3.6.21)

(3.6.22)

(3.6.23)

(3.6.24)

(3.6.25)

0=1f2 =—Yr + Y20 + 0 + YKo ~KyCF, Fyor (3.6.26)
The Jacobian defined in eq. 3.6.22 also applies to the right-rear suspension.

Beam Rear Axle

For a beam rear axle, linkage compliance can permit the axle to steer in response to
applied side force and aligning moment. The attachment of the wheels to the axle is
assumed to be rigid, and the axle is assumed to have negligible roll compliance. These
assumptions lead to the following expressions for the slip and camber angles.

O, = 0y + B - -%Ih + SKL - KSCF;(FYL + FYm) - KSCMz(MZL + MZZR) (3.6.27)

OR = 0oL — 2 0129 (3.6.28)
Y2L = - Y20 Y2R = Y20 (3.6.29)

In this case, only one independent variable is needed for the Newton-Raphson
computation:

x=[o]T (3.6.30)
the error function is:

0=1f) =—ap + 0+ P - 1\7& + Oky. — KscpFya + Fya) — Ksom{Mza + Mzz) (3.6.31)

and the Jacobian is:

oF oM.
Jp=1+2 Kms&thmﬁé (3.6.32)

3.7 Power-Assisted Steering System

The steering system model is similar to work published by Segel and MacAdam!,
except that the high-frequency degree of freedom associated with wobble of the front
wheels is left out because the high frequencies are outside the bandwidth of interest.

1 Segel, L. "On the Lateral Stability and Control of the Automobile as Influenced by the Dynamics of

the Steering System." Journal of Engineering for Industry (Transactions of ASME), Vol. 88, Series B, No.
3, August 1966.

Segel, L. and MacAdam, C. C. "The Influence of the Steering System on the Directional Response to
Steering," Proceedings of the 10th IAVSD Symposium of the Dynamics of Vehicles on Roads and Tracks,
Prague Cz, 1987.

Reference Manual (Version 1.4) 17

The following equations for the dynamic steering system model are based on the
diagram of Figure 3.7.1. The dynamics for the upper portion of the steering system are
given by:

Iisd? (Bgw) /dt2 = M + Kgs (8w - Ogw)/GR
- Css d (asw) /dt - CF Slgﬂ[d (st) / dt] (371)
where,

Otw' = dsw/ GR (3.7.2)

and Cgg , CF are parameters representing viscous and coulomb friction.

The "no-lash" front wheel angle, d¢y, is determined from the quasi-static relationship
accross the lumped compliance K¢ and current value of 8¢y, as:

8fw = wa' + H (1 - CB) /KSS (3.73)

The lumped compliance, Kgs, is given by the serial combination of the upper column
compliance Kgc and the two lower linkage compliances KgJ, as:

2 Ksc Ksi, GR2 / (GR2 Kgc+ 2 K¢l)

CB is the power boost (percent / 100) contribution from the pump and, H, the tire aligning
torques of both front tires, is given by:

H=2 Co (xprxm)[(v+ar)/U - 8g] / Kss (3.7.4)

Xp and Xm are the pneumatic and mechanical trails, respectively, of the front tires/wheels.
Co is the front tire cornering stiffness.

Substituting 3.7.4 into 3.7.3 and solving for 3¢y, yields:

Otw = [8w’ +2 Co (xp+xm) (1 - CB) (v+ar) / (UKss)] /

(inertia)
|)
Driver ss coulomb Sear wa
— fricti atio
Steering f_n_c_:tf f Ssw Kss Lash |

Torque R Eﬁ (QQ T'L‘_—

M

3 VISCOUS Power d H
Sw friction Boost R
steering

wheel Figure 3.7.1. Steering System Model.

Reference Manual (Version 1.4) 18

[1+2 Co (xp+xm) (1 - CB) / K] (3.1.5)

Substituting 3.7.5 into the differential equation 3.7.1 results in:

I d2(Sgy) /dt2 = M+ K[A Sy - B (v+ar)] / GR2
- Cgs d (8gw) / dt - CFsign[d (Bgw) / dt] (3.7.6)

where,
A=1-1/[1+2Cq(xptxm) (1 -CB)/Ks]
and,
B =2 Cq (xp+xm) (1- CB) GR /
{[1+2Cq (xp+xm) (1- CB) /Kss] U Ks }

The left and right front wheel angles, dwL and OfwR, are obtained from equation (3.7.5)
using left/right parameter values of tire cornering stiffness and inclusion of the wheel lash.

Reference Manual (Version 1.4) 19

4. PROGRAMMING DETAILS

4.1 Machine Dependencies 20
4.2 Structure of Program 21
4.3 Program Modules 22
4.4 The Output File 30
Method Used to Write Time Histories 30
Deleting Variables 31
Adding Variables 32
Changing the Format of the Qutput File 32
4.5 Changing the Tire Model 33

This chapter describes how the Wind-Steer program operates. It is intended for
programmers who wish to modify the program, or port it to a new computer.

4.1 Machine Dependencies

The Wind-Steer program is written completely in Fortran 77. The standard does not
recognize any hardware-specific aspects of a computer, such as the screen, keyboard, or
clock. To make the program a more productive tool, it does make use of a few machine-
specific features for the versions that run on the IBM PC, the Apple Macintosh, and MTS
(The University of Michigan mainframe computer). These are:

¢ The output file contains the time and date for the simulation, which is provided by a
subroutine called TIMDAT. The subroutine TIMDAT should be modified to work
on the computer for which the program will be used. If time and date information
is not available, the subroutine can be made inoperative.

The Macintosh version uses external subroutines provided with the compiler, TIME
and DATE. These must be linked with the rest of the program if it is re-compiled
for the Macintosh.

¢ The Fortran i/o unit number for the “terminal” (i.e., the keyboard and screen)
should be set to the proper value expected by the compiler. Most compilers,
including all three that have been used to date, permit an asterisk * to be used to
specify the screen and keyboard.

Reference Manual (Version 1.4) 20

Simulation progress is shown on the screen in the PC and Mac versions. This
involves interacting with the screen. This is done in the subroutine OUTPUT and
should be modified to work on the new computer, or deleted.

The IBM version uses the subroutine SETCUR from an UMTRI library of Fortran
extensions. This library must be linked with the rest of the program for use on the
IBM PC.

Writing of binary data has been done differently for every system so far. The MTS
version uses an MTS subroutine, WRITE, to put binary data into an ordinary file.
The PC version opens a separate file with access type set to a nonstandard type
BINARY. The Mac version uses a separate file with access set to
UNFORMATTED. Both the Mac and the PC versions of the program produce
binary files with no structure—just a stream of binary data.

The source code is contained in a large file with the main program and all of the
subroutine modules, and in nine small “include files” which are merged with the
main file during compilation. The INCLUDE command is not standard Fortran,
and is handled differently by each compiler.

4.2 Structure of Program

The operation of this program follows that of many programs that use numerical
integration to simulate a dynamic system, and can be summarized by the following steps:

1.
2.

Read input data. This function is performed by the subroutine INDATA.

Initialize variables and constants derived from input data. This function is
performed by the subroutine INIT.

Establish name(s) of output file(s) and write header data (number of channels,
names, etc.) This function is performed by the subroutine OPNOUT.

Perform the numerical integration using a “loop,” in which the differential equations
are solved numerically for time T, and T is increased in small increments DT. The
differential equations are written in the form:

Y =dYydt =f(Y1, Y2, ... Yo,) 4.2.1)
where Yj is a state variable, i = 1, 2, ... n, and n = number of equations.

The function indicated above as f is named FUNCTN in the Fortran Wind-Steer
program.

The integration from time T to T+DT is performed using a modified Euler method,
sometimes called a second-order Runge-Kutta. Specifically, the integration of each
state variable is accomplished as follows:

Yi=Yi{T)+DTh«f (Y1, Y2, .. Yo, T) (4.2.2)
Yi(T+DT) = Y{T) + DT « £ (Y'1, Y'2, ... Y'n, T+DT)) (4.2.3)

Reference Manual (Version 1.4) 21

Note that f (FUNCTN) is evaluated twice for each integration step: once at the start,
and a second time at the midpoint of the time interval. All of the equations that
represent the vehicle are contained in FUNCTN and in several auxiliary
subprograms that are used by FUNCTN. (These additional routines are named
AIRACT, FDAMP, ROLLAX, STEER, TIRES2, SUM, etc.)

At some multiple of DT, values of interest are written into the output file by the
subroutine OUTPUT.

4. Print the success or failure of the simulation and close any open files.

4.3 Program Modules

This section describes the modules that make up the Wind-Steer program. The
subprograms are shown below in alphabetical order with a listing of their arguments and
common block references.

AIRACT(YAW, BETA, VYAW)

Update air velocity, sideslip, and magnitudes of forces and moments in common block
/AEROY.

- YAW real*4 Yaw angle of vehicle.
— BETA real*4 Sideslip angle of vehicle.
— VYAW real*4 Yaw rate of vehicle.

Common Blocks: GLBL PARS AERO

BEAM(ALPH, DFDX, FNEG)
Compute 2x2 Jacobian and a 2-element error array for beam rear suspension.

— ALPH real*4 2-element array. 1=left slip, 2=right slip
« DFDX real*4 2x2 array, df/dx (partial derivatives)
« FNEG real*4 2 negative error functions in equations

Common Blocks: SUSP TSOLVE VARS

Functon DFYDA(ALPHA, GAMMA, FZ, AXLE)

Compute cornering stiffness as a function of FZ. In this version (linear default) the
arguments ALPHA and GAMMA are not used.

— ALPHA real*4 slip angle

— GAMMA real*4 camber angle

- FZ real*4 vertical load

— AXLE integer axle number (1 or 2)

Reference Manual (Version 1.4) 22

« DFYDA real*4 partial derivative of Fy with respect to alpha.
Common Blocks: TIRE

Functon DFYDG (ALPHA, GAMMA, FZ, AXLE)

Compute camber stiffness as a function of FZ. In this version (linear default) the
arguments ALPHA and GAMMA are not used.

— ALPHA real*4 slip angle
— GAMMA real*4 camber angle
- FZ real*4 vertical load

— AXLE integer axle number (1 or 2)
« DMZDA real*4 partial derivative of Mz with respect to alpha.

Common Blocks: TIRE

Functon DMZDA(ALPHA, GAMMA, FZ, AXLE)

Compute aligning stiffness as a function of FZ. In this version (linear default) the
arguments ALPHA and GAMMA are not used.

— ALPHA real*4 slip angle

— GAMMA real*4 camber angle

- FZ real*4 vertical load

— AXLE integer axle number (1 or 2)

<« DFYDA real*4 partial derivative of Fy with respect to alpha.

Common Blocks: TIRE

DRIVE1 (DFW)

Read driver model parameters.

« DFW real initial average front wheel angle =0

Common Blocks: DRVMOD GLBL PARS
DRIVER (X, Y, DFW, DFWNOW)

Calculates closed-loop driver steering control angle.

- X real current time

->Y real driver model state vector

« DFW real calculated average front wheel angle.

— DFWNOW real current average front wheel angle.

Reference Manual (Version 1.4) 23

Common Blocks: AERO GLBL PARS DRVYMOD

DRIVET (X, Y, DRTORQ, DRTNOW)
Calculates closed-loop driver steering wheel control torque.

- X real current time

=Y real driver model state vector

¢« DRTORQ real calculated steering wheel torque.
— DRTNOW real current steering wheel torque.

Common Blocks: AERO GLBL PARS DRVTOR VARS

DRIVGO

Initialize driver model parameters for steering angle version of driver model.

Common Blocks: DRVMOD GLBL PARS VARS TIRE

DRIVGT

Initialize driver model parameters for torque version of driver model.

Common Blocks: DRVTOR GLBL PARS VARS TIRE

ECHO

Echo parameter values to file to verify that the input was interpreted correctly.

Common Blocks: GLBL PARS MNVR SUSP TIRE AERO
PRNT VARS

FDAMP (VZ, VROLL, VPITCH, FD)
Compute the damping force for all four wheels.

- VZ real*4 vertical velocity of vehicle sprung mass c.g.
— VROLL real*4 roll velocity of vehicle sprung mass.

— VPITCH real*4 pitch velocity of vehicle sprung mass.

« FD real*4 2 x 2 matrix of damping forces at each wheel.

Common Blocks: SUSP

This subroutine uses different rates for jounce and rebound. The sign convention is
that jounce — positive damping force.

Reference Manual (Version 1.4) 24

FUNCTIN (T, Y, YP)

Compute derivatives of state variables in the vehicle/steering model.

- T real*4 Time (independent variable of integration)
-Y real*4 1-D array of 13 state variables
« YP real*4 1-D array of 13 derivatives: yp(i) = dy(i) / dt

Common Blocks: GLBL PARS SUSP AERO VARS TIRE

Subroutine FUNCTN contains the equations of motion for the 5-d.o.f vehicle model
and a 1-d.o.f steering system model.

Functon FWIND (T)

This function provides a wind profile as a function of time. The default version uses
filtered random noise to generate a random wind with a PSD that falls off at 6 dB/oct. It
can be replaced to provide a different type of profile.

- T real*4 time

Common Blocks: GLBL

GMPRD (A, B,R,N, M, L)

Calculates the product of two matrices.

- A real N x M input matrix
- B real M x L input matrix
« R real N x L output matrix equal to product of A and B
- N integer row dimension of A .
- M integer column dimension of A and row dimension of B
> L integer column dimension of B

INDATA

Prompt user for name of input file, then open file and read input data.

Common Blocks: DRVMOD GLBL PARS MNVR SUSP
TIRE AERO PRNT
INDSUS(IX, DFDX, FNEG)

Compute 2x2 Jacobian and 2-element error array for a tire on an independent
suspension. This routine is used by the Newton-Raphson solver, MNEWT.

- X real*4 2-element array. x(1)=slip, x(2)=camber
« DFDX real*4 2x2 array, df/dx (partial derivatives)

Reference Manual (Version 1.4) 25

« FNEG real*4 2 negative error functions in equations

Common Blocks: SUSP TSOLVE

INIT

Initialize input-based values and non-zero variables.

Common Blocks: GLBL PARS SUSP AERO VARS PRNT

Function LENSTR(STRING)
Count characters in left-justified string.

— STRING char left-justified string
« LENSTR integer number of significant characters in STRING

MAIN—WIND

Main program module that controls the wind & handling simulation.

Common Blocks: DRVMOD GLBL PARS SUSP VARS
AERO PRNT MNVR

MNEWT(X, USRFUN, IERR)

This routine is based on MNEWT from the Numerical Recipes library. It has been
"hard-wired" for the Chrysler vehicle handling model. The error threshold is less than .01
deg

& X real*4 2-element array with variables to solve for.

— USRFUN sub. subroutine to provide ALPHA and BETA arrays.

« IERR integer error code. 0=0K, 1=didn’t converge.
OPNOUT

Write header portion of the output ERD file, and compute constants used later.
Common Blocks: GLBL PARS

OUTPUT (T, Y, YP)

Write predicted response variables into output file and show progress on screen.

- T real Time.
=Y real 1-D array with state variables of system.
- YP real 1-D array with derivatives of state variables.

Reference Manual (Version 1.4) 26

Common Blocks: GLBL PARS VARS AERO

Function POLY4(COEF, FZ)

evaluate 4-th order polynomial
— COEF real array of 4 coeficients.
- FZ real load (independent variable).

ROLLAX (ROLL, YROLAX, HROLAX, IXSRA)

Compute instantaneous lateral and vertical distances of the sprung mass c.g. from the
roll axis.

— ROLL real*4 Roll angle of sprung mass.

— YROLAX real*4 Lateral distance (in a non-rolling frame) between c.g. of
sprung mass and roll axis.

« HROLAX real*4 Horizontal distance (in a non-rolling frame) between c.g. of
sprung mass and roll axis.

« IXSRA real*4 Moment of inertia of the sprung-mass about the
instantaneous roll axis.

Common Blocks: PARS SUSP

Function STEER(T)
Return steering wheel angle or steering wheel torque as function of time.

« STEER real*4 Steering wheel angle.
- T real*4 Time.

Common Blocks: MNVR VARS GLBL PARS DRVYMOD

The angle (or torque) is determined by one of three methods, dependent upon the
variable NSTEER in the common block MNVR: (1) if NSTEER < 0, the UMTRI driver
model is used; (2) if NSTEER = 0, a sinusoidal function is used; and (3) if NSTEER >0, a
table look-up is used.

Function SUM(MATRIX)

Sum values in a 4-element matrix.

— MATRIX real*4 matrix with 4 elements (2 x 2), (4 x 1), or (1 x 4).
« SUM real*4 Sum of values in matrix.

TABLEM, N, X,Y,Z,Q

Table look-up routine.

Reference Manual (Version 1.4) 27

- M integer index of X-Y table (arrays) at which to start search

- N integer index of X-Y table (arrays) at which to end search

- X real N-array of abscissa table values

->Y real N-array of ordinate table values

- Z real scalar abscissa value

« Q real scalar ordinate value of X-Y table corresponding to Z
TIMDAT(TIMEDT)

Obtain the current time and date.

« TIMEDT char*24 String containing time and date.

Functon TIREFY (ALPHA, GAMMA, FZ, AXLE)
Compute tire side force.

— ALPHA real*4 slip angle

— GAMMA real*4 camber angle

- FZ real*4 vertical load

- AXLE integer axle number (1 or 2)
« TIREFY real*4 tire side force

Common Blocks: TIRE

Functon TIREMZ (ALPHA, GAMMA, FZ, AXLE)
Compute tire aligning torque.
— ALPHA real*4 slip angle
— GAMMA real*4 camber angle
- FZ real*4 vertical load

— AXLE integer axle number (1 or 2)
< TIREMZ real*4 tire aligning torque

Common Blocks: TIRE

Functon TIRES (BETA, V, VYAW, ROLL

This subroutine solve simultaneous equations for slip and camber angles and tire forces
and moments.

— BETA real*4 slip angle

-V real*4 speed

- VYAW real*4 yaw rate

Reference Manual (Version 1.4) 28

— ROLL real*4 roll angle
Common Blocks: TSOLVE SUSP VARS PARS

TRAJ (X, XT, YT, YPATH)
Obtains the previewed lateral path position (relative to the vehicle heading).
- X real forward preview distance
- XT real x-coordinates of path in vehicle axis system at X ahead
- YT real y-coordinates of path in vehicle axis system at X ahead
— YPATH real lateral offset of path from vehicle at X ahead

TRANS
Calculates transition matrix for driver model internal vehicle model. (without steering
system)

Common Blocks: DRVYMOD

TRANST
Calculates transition matrix for driver model internal vehicle model. (with steering
system)

Common Blocks: DRVTOR PARS GLBL TIRE VARS

WHEELZ (Z, ROLL, PITCH)

Update matrices in the common block /VARS/ based on the new position of the sprung
mass.

- Z real*4 Vertical position of sprung mass c.g. (in).

— ROLL real*4 Roll angle of sprung mass (rad)

— PITCH real*4 Pitch angle of sprung mass (rad)

Common Blocks: SUSP VARS

The matrices ZW, FZ, KNMSTR, KNMCBR in common /VARS/ are updated. The
quantities computed for each wheel are: vertical displacement, normal ground load, bump-
steer angle and bump-camber angle for each wheel, relative to static trim. roll-center heights
are assumed fixed relative to the road for the calculation of lateral load transfer.

Reference Manual (Version 1.4) 29

4.4 The Output File

There are at least two reasons why one might wish to modify the existing format of the
output file created by the Wind-Steer program: (1) to add or delete variables of interest, or
(2) to set the format to match established post-processing software other than the software
used within ERD at UMTRL

Method Used to Write Time Histories

The code for writing the output file is contained in two program modules: (1) OPNOUT
opens the output file and writes the header information, and (2) OUTPUT writes the values
of output variables at discrete time intervals. Only these two subroutines need to be
modified. (In reading the following descriptions, it may be helpful to also view the source
code listings for those subroutines, contained in Appendix B.)

Most of the the code in subroutine OPNOUT assigns names to character variables.
Then, at the bottom of the subroutine, those variables are written into the output file in the
format required for an ERD header. Similarly, most of the code in OUTPUT assigns
values to elements in a REAL array. Then, at the bottom of the subroutine, those variables
are written into the output file in the format required for an ERD header. It is essential that
the one-to-one correspondence is maintained between labels for variables and values for the
variables. As long as the two forms of data are properly paired, the number of variables
and their order really doesn’t matter.

Both subroutines use a variable called NCHAN to identify the channel number being
considered. For each value of NCHAN, the following assignments are made in OPNOUT:

* a 32-character name for the variable of interest is assigned to the character*32
Fortran array element LONGNM (NCHAN), e.g., “Input Steer Angle”

+ an 8-character name for the variable of interest is assigned to the character*8
Fortran array element SHORTN (NCHAN), e.g., “Steer In”

¢ a 32-character generic name for the variable of interest is assigned to the
character*32 Fortran array element GENNM (NCHAN), e.g., “Steer Angle”

* an 8-character name for the units of the variable of interest is assigned to the
character*8 Fortran array element UNITNM (NCHAN), e.g., “deg”

* a 32-character generic name for the rigid body associated with the variable of
interest is assigned to the character*32 Fortran array element RIGBOD (NCHAN),
e.g., “Input”

In subroutine OUTPUT, for each value of NCHAN, an appropriate value is assigned to
the array element BUFFER (NCHAN).

At the bottom of each subroutine, the value of NCHAN is equal to the total number of
channels that are written into the output file.

The channel definitions are grouped such that variables that apply to the input or the
entire vehicle are handled first. Variables that apply to each wheel (suspension and tire

Reference Manual (Version 1.4) 30

variables) are handled in two nested DO loops. The outer loop goes from the front axle to
the rear, and the inner loop goes from the left side to the right. Thus, each block of code
within the loops gets executed four times.

Deleting Variables

To delete a variable, a block of code is removed from the OPNOUT subroutine and a
corresponding block is removed from OUTPUT. The block of code in OPNOUT begins
with comments describing the variable, then the statement “NCHAN = NCHAN + 1,” and
then five assignment statements for element NCHAN of arrays LONGNM, SHORTN,
UNITNM, GENNM, and RIGBOD. Delete all of these lines or comment them out (insert
a Cin column 1 of each line so that the line is ignored by the Fortran compiler). Identify
the corresponding assignment statement in OUTPUT and delete also (or comment it out).
It is usually necessary to modify some of the lines following the deleted line in OUTPUT
so that the following values are put into lower indexed elements of the array BUFFER.

For example, suppose we want to delete the Z deflection of the vehicle body. The
block of code in subroutine OPNOUT that provides the labels is the following:

UNITNM (NCHAN)
RIGBOD (NCHAN)

UDIST
THISRB

|

C Roll Angle
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Roll Angle'

The underlined lines would be deleted. The code in subroutine OUTPUT that includes
this variable is the following:
o
C Body position variables
o
BUFFER (NCHAN + 1)
BUFFER (NCHAN + 2)
BUFFER (NCHAN + 3)

Y(1) / ININFT
Y(2) / ININFT
Y(3)

+ *

BUFFER (NCHAN + 6) = Y(6) * TODEG
= +

From viewing the definitions of the Y array, it turns out the Y(3) is the Z variable. The
underlined code would be modified as follows:

Reference Manual (Version 1.4) 31

cC
C Body position variables

C
BUFFER (NCHAN + 1) = Y(1l) / ININFT
BUFFER (NCHAN + 2) = Y(2) / ININFT
BUFFER (NCHAN + 5) = Y(6) * TODEG

= +

The line that set the value in the buffer was deleted, and the following lines were
modified so that at the end of the block NCHAN was incremented by 5, rather than 6 as
before.

Adding Variables

To add a variable, a new block of code is added to subroutine OPNOUT and a
corresponding block is added to OUTPUT. The code added to OPNOUT should (1)
provide labels for element NCHAN of the arrays LONGNM, SHORTN, UNITNM,
GENNM, and RIGBOD, and (2) the variable NCHAN should be properly incremented.
The code added to OUTPUT should (1) provide the value of the new variable and put it
into the element NCHAN of the array BUFFER, and (2) the variable NCHAN should be
properly incremented. The location of the added code defines where the new variable is
situated relative to the existing output variables. The only restriction is the the order of
channels in BUFFER must match the order of the labels in each of the character arrays.

Changing the Format of the Output File

As the Wind-Steer program exists at UMTRI, the output file follows the ERD format.
The numerical values of the output variables can be written in binary form, or in text form
using a Fortran FORMAT that was specified in line 5 of the input file. The existing
flexibility should be sufficient to accommodate any desired formats for the output. For
example, if a plotting program expects to find columns of numbers separated by commas,
the following FORMAT could be put into line 5 of the input file:

(100(F10.2,1X))

If the existing flexibility is not sufficient, the code that writes into the output file can be
replaced as needed. (It lies at the bottom of the OUTPUT subroutine.)

The header portion of the file is more likely to cause problems with post-processing
software. The code that writes the header is contained in the bottom of the OPNOUT

subroutine, and is shown (partially) below:
c
C Write standard ERD file heading.
C
WRITE (IOUT, '(A)') 'ERDFILEV2.00'
WRITE (IOUT, 410) NCHAN, NSAMP, NRECS, NBYTES, NUMKEY, DT*IPRINT
410 FORMAT (5(I6,','),E13.6)
411 FORMAT (A8,255A8)
412 FORMAT (A8, 31A32 : 2(/'&1000 ', 31A32))

Reference Manual (Version 1.4) 32

WRITE (IOUT, '(A,A)"') 'TITLE ', TITLE
WRITE (IOUT,411) 'SHORTNAM', (SHORIN(J), J=1, NCHAN)

WRITE (IOUT, '(A,A)') 'HISTORY Input file was ', FNREAD
WRITE (IOUT, '(A)') 'END'

This is the only code that is modified to change the form of the file header. Most of the
code above this section consists of statements that assign labels to arrays of character
variables. Some of those labels can be printed in a different format if desired. For
example, suppose that a plotter expects to find labels enclosed in double quotes on the first
line, followed by numbers separated by commas. Also suppose that the short labels (8
characters or less) are the appropriate length for the plotter. Then the existing code could
be replaced with the following:

c
C Write l-line heading with labels enclosed in double-quotes and
C separated by commas. e.g., "Time", "Steer In",
c
WRITE (IOUT, 411) 'SHORTNAM', (SHORTN(J), J=1, NCHAN)
411 FORMAT (100('"',A8,'"',1X)

4.5 Changing the Tire Model

The formulation used to incorporate the tire side force and aligning torque into the
vehicle dynamics is independent of the formulation used to define the side force and
aligning torque as functions of slip and camber angle. (See Section 3.6.) The tire model is
defined within five subprogram modules: DFYDA, DFYDG, DMZDA, TIREFY, and
TIREMZ. The first two define partial derivatives of side force with respect to alpha and
gamma, the third defines the partial derivative of aligning torque with respect to alpha, and
the last two compute side force and aligning torque.

To change the tire model, these five modules are replaced. No other changes should be

made in the program, with the possible exceptions of the input and echo routines if the new
model requires additional input parameters.

Reference Manual (Version 1.4) 33

APPENDIX A — DRIVER MODEL

This appendix contains copies of two technical papers which fully document the
concepts implemented in the computer code used to represent the driver model closed-loop
steering control process. Additional documentation is provided by comments contained in
the computer code itself; see subroutines DRIVGO, DRIVE1, TRANS, DRIVER, AND
TRAIJ.

The material is reproduced here by permission of the IEEE Transactions on Systems,
Man, and Cybernetics journal (Copyright IEEE), and the ASME Journal of Dynamic
Systems, Measurement, and Control (Copyright ASME).

Reference Manual (Version 1.4) 34

"'. \¥E | TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-11, No. 6, JUNE 1981

393

Application of an Optimal Preview Control
for Simulation of Closed-Loop
Automobile Driving

CHARLES C. MACADAM

Abstract— An optimal preview control method is applied to the automo-
bile path following problem. The technique is first used to examine the
straight-line regulatory driving task and results compared with similar ex-
perimental measurements. The method is further demonstrated by closed-
loop simulation of an automobile driver/vehicle system during transient
lane-change maneuvers. The computer simulation results are compared
with equivalent vehicle test measurements.

I. INTRODUCTION

HIS PAPER presents example applications (to the

automobile path following problem) of a general
method of control synthesis presented in [1]. The method is
demonstrated here by simulation of a closed-loop automo-
bile/driver system and the results compared with
driver/vehicle test measurements. Results for the optimal
preview control are also discussed within the context of
manual control pursuit tracking task findings.

The control technique demonstrated herein is designed
for application to linear time-invariant systems utilizing
preview control strategies for regulation or tracking tasks.
A common example of this type of control strategy occurs
during normal automobile path following in which drivers
“look-ahead” to follow a desired path. Human operators,
as part of various man-machine systems, typically employ
preview control strategies to control and stabilize such
systems. It is widely recognized that human operators are
capable of controlling and ‘adapting to a wide variety of
dynamical systems, many of which are vehicles with pre-
view-oriented control requirements such as automobiles,
bicycles, and complex aircraft [2]-[8]. Clearly human con-
trol of most vehicles would not be possible without some
training by the operator to acquire an understanding of the
vehicle response to various control inputs. While a certain
portion of this training serves to identify and reinforce
learned opcn-loop responses for repeated and familiar con-
trol task scenanos, the remainder frequcntly serves to
identify and ‘reinforce the operator’s understanding or
“feel” of the vehicle response to control inputs continually
in use for closed-loop regulation and /or pursuit needs. It is
in this latter control category for general linear system
representations capable of preview control strategies, that
the method presented in [1] can find particular application.
As wﬂl be demonstrated in thxs paper, application to the

Manmmptreeuvedchbetlo 1980; revised March 2, 1981.
mmthornmthtbemghwnywetykmrchlnmmeo“he
Umvemtyofmdn;an.AnnArbor MI 48109. -

automobile path following problem produces substantive
agreement when compared with driver /vehicle experimen-
tal measurements for both straight-line regulatory driving
and transient lane-change maneuvers.

II. THE OPTIMAL PREVIEW Comoi.

Before applying the optimal preview control of (1] to the
automobile path following problem, the main results and
symbol definitions contained therein are briefly reviewed
in this section for later refcrenoe As denved in [1], for the
linear system

(1)

- ¥=Fx+gu
y=mx (2)

where

x n X | state vector,
y scalar output related to the state by the n X lm
constant observer vector transpose,
F constant n X n system matrix,
and
g constant n X 1 control coefficient vector,

the optimal control u%(¢) which minimizes a special form
of the local performance index, : '

72 £ [0 =y -) i 0)
over the current preview interval (1, ¢ + T) where

W arbitrary weighting function over the preview inter-
val
and

f previewed input,
is given by

#0) = [[-wlr+ § 220 ‘"(”") ok (r)}
z {(ﬂ_t)m.{uzl F(q—1)"
-/ [/‘”{(n—:)m'{n P T

(n+1)!
W(n - t)dn]

}W(n - t)dn]

f

F'(n—1)"
(+1)!

@

0018-9472/81/0600—0393800.75 ©1981 IEEE

"7 304

where I is the identity matrix. For the special case of
W(n — t) = 8(T*), the Dirac delta function for 0 < T* <
T, (4) simplifies to

f(t+1T)=m"

I+2

= F(r)"

]x(x)

W() = = 5)

T‘m'{l-&- 2|(+1)

=[f(e+ T*) = y(t + T*)]/ (T*K),
the single-point preview control version of (4), where

Fr(T*
“’2 T 5-1))'

Equation (6) represents a proportional controller with
gain inversely related to the preview interval 7™ and oper-
ating on the error between the previewed input f(t + T*)
and y,(¢ + T*), that portion of the previewed output deriv-
ing from the state vector's current initial condition. Like-
wise (4) can be interpreted as a proportional controller
operating on a similar error averaged and weighted over
the preview interval (s,¢+ T) by the additional terms
appearing in (4).

It is also shown in [1] that the optimal solution 4°(1) can
be expressed in terms of any current nonoptimal u(t) and
correspondingly nonzero preview output error ¢(¢) as

Te(n)A(n)W(n - t)dn

f"ﬁAA’(n)W(n- t)dy

u®(t) = u(t) + = ™

where

A(m)2 (=)mT| 1+ 3 F(r(t?l-lt') g
«(n) = f(n) = m"(n, 1)x(1) = u(1)A(n)
F"(n - t)

o(n. 1) 21+ 2

For the specxal case of W(n - t) 8(T™), as before, (7)
reduces to

W(t) = u(t) +i(-’7§-]1;—) ®)

The formulation expressed by (7) can be useful in describ-
ing systems which do not achieve, though closely ap-
proximate, the defined optimal system behavior. Such cases
may arise from limitations in achieving the precise optimal
control due to time lags or dynamic properties inherent in
the controller and not accounted for a priori in the optimi-
zation. The next two sections adopt this view for the
car/driver man-machine system in an attempt to describe
and explain actual closed-loop driving behavior.
. Finally, it was also shown in [1] that information con-
cerning stability of the closed-loop system utilizing the
optimal preview control of (4) or (7) is provided by the

(6)

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. sMC-11, NO. 6, JUNE 1981

characteristic roots of the constant matnx

[F -])
where
qub(n,ﬂ){nm'{“' 2 T 4(_"1)). }W(n)dn
{ '[I'*' p T%))_' }W(n)dn

For the special case of W(n) = §(T*), (9) becomes
{gm’{n)] / (1~ K)} (10)

III. APPLICATION TO MANUAL CONTROL PURSUIT
TRACKING TASKS AS REPRESENTED BY
STRAIGHT-LINE Am'omo_nmz DriviNGg

(T‘)

The most well-known and characteristic property ex-
hibited by human operators in tracking tasks is the trans-
port delay deriving from perceptual and neuromuscular
mechanisms. By introducing this inherent delay property a
posteriori in the optimal preview control formulation, excel-
lent agreement can be demonstrated between typical man-
ual control pursuit tracking task results and the resulting
optimal preview controller modified to include the inherent
transport delay (heretofore referred to as the “modified”
optimal preview control).

For reasons of clarity and notational simplicity, the
discussion in this section will make use only of (8), the
single-point preview control version of (7). Equation (8)
can be represented by the block diagram of Fig. 1, where
G(s) = [Is — F]~'g represents the controlled element vec-
tor transfer function, and u(?), the current control, is
related to the optimal control «%(¢) by a transfer function
H(s) (previously assumed equal to one in the derivation of
the optimal control u%(¢)). The introduction of the H(s)
transfer function is useful in describing systems which
function (or are presumed to do so) in an error minimiza-
tion fashion, but fail to achieve the precise optimal control
due to an inherent limitation within the controller or
control process itself, e.g., delays resulting from processor
calculations and sample hold operations in digital systems.
or perceptual /neuromuscular lags in the case of a human
controller. By letting H(s) = e ~*", those actual delay limi-
tations displayed by human operators during tracking tasks
can be approximated by the parameter 7, an effective
transport lag. By incorporating this approximation and
noting then that the transfer function relating u(t) and
€«(t+ T*)ise /(1 — e~"")KT®, Fig. 1 reduces to Fig. 2,
a single-loop pursuit tracking formulation. The open-loop
transfer function Yy(s) relating y(¢ + T*) and ¢(+ + T™) is
given by

m's(t + T*,1)G(s)

Y(s) = -

. (1)

] —e™ "

canadt 4 o L)

MAcADAM: OPTIMAL PREVIEW CONTROL

395

of T* and = were selected to fit the experimental data as
closely as the single-point model would permit. As can be
seen, the model and experimental results display excellent
agreement. Not only does the preview model reproduce the
=6 db/octave slope of the familiar manual control “cross-
over” model [2], [8] gain characteristic, but also the peaking
phase characteristic usually displayed in manual control
task experimental data of this kind.

The model parameters 7* and 7 appearing in (11) repre-
sent the average preview time used by the driver and

(t o[. y(t+T")
i) 0 o) P sty
+
KT*
Fig. 1. Block diagram for the single-point preview control
+ _€(t+T) : e-“ u(t) x(t) [. + _y(t+T?)
f(t+T) ——i)——- =7 G(s) md(t+T"t)
- KT*(1-e) *
!
KT* :
—_
— Fig 2 Equivalent block diagram for the single-point preview control, H(s) = ¢~
The stability of this system is determined by the char- ’ SIMULARTED
» . o
acteristic roots of 1 + Yy(s), or equivalently, . g ® MEASURED
_ 1+ e~ m™(t + T*,t)G(s)/KT* =0. (12) N n\

To test the utility of this model by comparison with S \
experimental findings, open-loop gain/phase frequency re- u
sponse results measured by Weir et al. [9, Fig. 12-C] for an \
automobile straight-line regulatory control task are pre- =] \
sented in Figs. 3 and 4. These experimental results repre- =]
sent the open-loop frequency response relating the driver’s .
output (presumably an estimate of future lateral position) o
to an assumed error, derived by the driver, between the 0 \
previewed input (straight road ahead) and the driver’s =
-output. Since this may be categorized as a form of linear =
pursuit tracking, the formulation of (11) is accommodated. S
Also shown in Figs. 3 and 4 is the frequency response
calculation for (11) with parameters T* = 3.0 (s) and r = = N
0.26 (s). The model output y(r+ T*) is the estimated w N
vehicle lateral position at time z + T*; the input f(z + T*) oy
= 0 is the lateral displacement of the previewed path. The 8
automobile (F, g) dynamics used in (11) appear in Ap- ?‘
pendix I-A and duplicate those identified in [9). The values T ™

1
FREQ. (RRO/SEC)
Fig. 3. Frequency response gain comparison.

his /her effective transport lag associated with this particu-
lar control task. The values of T* and'r used here fall well
within the range identified by other investigators studying
straight-line automobile driving [10]-[12] and human oper-
ator tracking performance [2], (4}, [9].

Interestingly, for the relatively simple control task of
typical straight-line automobile regulation as discussed here,

3%

SIMULRTED
S @ MEASURED
=
3
w
-
I
S
=
GC’)
w I
e
o
we
€s .
Q! N
A N
o A1l @ \
= /] alIN
< \
[} & Y
= ®
w
o
N
! 2 3 458789 2 3 4 S8768
un! ot

FREQ. (RAD/SEC)
‘ Fig. 4. Frequency response phase comparison.

the vehicle dynamics portion of the total transfer function
(11) does not play a dominant role except at very low
frequencies. As a result, the open-loop transfer function
gain characteristic (11) is closely approximated by the
human operator term, e ™*"/(1 — e ~*") ~ e ~*"/rs. Such a
result would support the well-known fact that tracking task
test results for simple automobile regulation [8], [9] can
generally be approximated by the “cross-over” model form
Ce™"/s (C being the “cross-over” gain constant) in the
vicinity of the cross-over frequency. Moreover, in such
cases where the above approximation does hold, 1/7 be-
comes C in the “cross-over” model representation.

For the simple manual control pursuit tracking task, as
represented here by straight-line automobile regulation, the
modified optimal preview controller, even employed in
only a single-point form [W(n — t) = §(T*)], appears to
accurately mimic human control behavior. It might, there-
fore, seem reasonable to conjecture that human operator
strategy during simple pursuit tracking (or at least straight-
line automobile regulation) is closely akin to an optimal
preview error minimization process which ignores or is
unaware of transport delay mechanisms inherent in the
control processor. A more stringent test of this hypothesis
is offered in the following section wherein transient auto-
mobile path following is examined using the modified
optimal preview control model in its complete form.

APPLICATION OF THE OPTIMAL PREVIEW CONTROL
FOR SIMULATION OF CLOSED-LOOP TRANSIENT
AUTOMOBILE PATH FOLLOWING

The previous section addressed the applicability of the
optimal preview control to the problem of preview regula-
tion and the effects of an inherent transport delay within

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-11, NO. 6, JUNE 1981

(c]
‘\G
—_—

366 n

0s5n

Fig 5. Lane-change test course.

a8 —— SIMULATED
et —e— MERSURED
P
&s
H
=]
5
00 100 200 300 400 S00 6.00
0 =~ _ TIME
n
] —e— SIMULATED
t‘{,’ —e— MEASURED
-
=
we
=
[4
zlﬁ
R 3
000 100 280 300 400 500 6.00
TINE
=3 —— SIMULATED
g —e— MEASURED
w
23
éc
&
LIJ'
=
000 100 200 300 400 S50 6.00
TIRE

Fig. 6. Closed-loop simulation/test result comparison.

the controller. Using straight-line automobile regulation as
an example, the single-point preview model was compared
with experimental results within the frequency domain. In
this section application to the tracking problem is demon-
strated using the general preview control model (7), with an
inherent transport time delay to simulate a closed-loop
automobile /driver path following maneuver. Results from
the model are compared with time history measurements
from corresponding full-scale vehicle tests.

The specific closed-loop maneuver examined here re-
quired an automobile driver to perform a standard 3.66 m
(12-ft) lane-change within a distance of 30.5 m (100 ft) at a
vehicle speed of approximately 26.8 m/s (60 mi/h). The
initiation and completion of the lane change was con-
strained by 3.05-m wide (10 ft) cone-marked lanes (Fig. §).
The test vehicle was a standard American compact with
measured parameter values shown in Appendix I-B. A
representative test result for this vehicle/driver combina-
tion appears in Fig. 6, showing recorded-time histories
of lateral acceleration, yaw rate, and front-wheel steer
angle [13].

MACADAM: OPTIMAL PREVIEW CONTROL v 397

~ Also shown in Fig. 6 are computer simulation results a8 —e— SINMULATED
using the optimal preview control (7) with an assumed o —— MERSURED
human operator transport delay term e " relating u°(¢) 33.
and u(¢). The transport lag term is included here, as in the T
previous section, to approximate the principal human oper- %N
ator lag effects. The calculation of (7), steer angle, seen in 0
Fig. 6 is for values of * = 0.2 (s) and T = 1.3 (s) using ten ‘o0 w0 200 AR 40 s 6w
equally spaced points in the preview interval to approxi- -
mate the integral. The values of T and 7 were selected to o - ig:gtﬁ;g"
closely fit the test measurements. The (F, g) automobile g
4 dynamics model is the same two-degree-of-freedom model €3
F . appearing in Appendix I-A, evaluated for the parameter e
values identified in Appendix I-B. The previewed input par
f(n) appearing in (7) represents the desired lateral path =2

P
8
8

deviation and was obtained during the simulation using the ‘ WG o s s
simple straight-line path segments shown in Fig. 5 as input.)

As seen from Fig. 6, excellent agrecment can be obtained
between the experimental results and simulation predic-
tions using the two numerical parameters (r,T) and a
simple straight-line path input. Variations in the value of 7
primarily influenced the closed-loop system damping; larger ,
values producing reduced damping. Variations in the value W0 100 200 300 400 S0 600
of T influenced control (steering) amplitude as well as . e . .
damping; larger values of T producing lower control am- Fig. 7. Closed-loop simulationlest result comparison —modified
plitude and increased damping. '

Finally, Fig. 7 shows a comparison of the preview model
predictions and measured test results for a modified set of
vehicle dynamics (F, g). The same vehicle was employed
but with modifications to its mass center and rear tires so
as to produce a new set of parameter values listed in
Appendix I-C. As shown in Fig. 7 the principal change in
the closed-loop response from Fig. 6 is an increased steer-
ing gain (lower steering amplitude for the same nominal
maneuver) and decreased damping. Larger values of (0.3)
and T (1.55) were required in the calculation of (7), shown &
as steer angle in Fig. 7, to better approximate the reduced
damping and smaller amplitude steering control. A com- 000 3000 60.00 000 150.00
parison of computed vehicle path trajectories, correspond- , ConcrTibtweL FoStTIon”
ing to the baseline and modified vchxclc responses shown ' Fig. 8. Simulated path trajectories.
in Figs. 6 and 7, appears in Fig. 8.) ‘ '

Characteristic roots for each of the closed-loop systems,
as calculated from the constant matrix (13), are shown in

—=— SINMULATED
—e— MERSURED

0.04

STEER ANGLE (RAD)

-0.04

4.00

% BASELINE VEMICLE

)
O MODIFIED VEWICLE ¥ A3K
x SN

3.00

LATERAL POSITION (M)
2.00

*
o
*
U]
*
o
*
U]

BASELINE VEHICLE
MODIFIED VEHICLE

O X

5.00

Fig. 9. The matrix (13) (see Appendix I-D) is similar to
that given by (9) but includes the influence of the transport -
lag term e ~*" approximated by the first-order Padé poly- % §§
nomial 8
T o=
1- ‘2'3 p=
T
. o b
F N 1 X
_______ le oo = =
- (13) g
cr(F—Z"I) L ch_z
T ! T
Note that the reduced damping in the driver/vehicle * & g
responses, displayed in Figs. 7 and 8, is equivalently repre- g 0 30 200 -0 0

sented by the corresponding closed-loop characteristic f00t Fig 9. Characteristic roots of the baseline and modified closed

-loop
locations shown in Fig. 9. systems.

T

These results and those of the previous section demon-
strate useful application of the optimal preview model in
simulation of closed-loop automobile driving. The prin-
cipal conclusion concerning these results is that driver
steering control strategy during path following can be
accurately represented as a time-lagged optimal preview
control. Similar applications and extensions to problems in
other fields are clearly suggested by the results shown here.

CONCLUSION

The optimal preview control model, applied here to the
closed-loop automobile path following problem, offers a
useful and direct method for representing closed-loop be-
havior of linear driver/vehicle systems. It is suggested that
driver automobile steering control strategy during path
following can be viewed as a time-lagged optimal preview
control process.

The general linear system formulation of the preview
control methodology, demonstrated here, permits appli-
cation to a broad range of problems relating to man-
machine systems,

APPENDIX |

A. If'ehicle Dynamics

The linear dynamical equations of an automobile for
lateral and yaw motions are

y=o+ Uy (A1)
©=[-2(C,+C,)/mU]o +[2(bC, - aC,,) /mU — U]
+(2G,, /m)8py, (A2)

#=[2(b¢,,~ aC,,)/1U]0 +[-2(a'C,, + b3C,,) /1U]+

+ (2ac,, /1)8ey (A3)
i=r | (A4)
where

y inertial lateral displacement of the vehicle mass
center,

o lateral velocity in the vehicle body axis system,

r yaw rate about the vertical body axis,

¥ vehicle heading angle, and

8rw front tire steer angle, contrbl variable.

The parameters appearing in (Al)-(A4) are

U forward vehicle velocity,
C.,» C,, front and rear tire cornering coefficients,

£
ab forward and rearward locations of tires from
the vehicle mass center, and
m, I vehicle mass and rotational inertia.

The above equations can be expressed in matrix notation

x=Fx+gbsy, (AS)

IEEE TRANSACTIONS ON SYSTEMS, wui. AND CYBERNETICS, VOL. SMC-11, NO. 6, JUNE 1981

where
y
0
I=r
12
01 0 U 0
Fo|0 A B0 _la
“lo 4, B, o 5% ¢
00 1 0 0
and o

A,==2(C,+C,)/mU
B,=2(bC,,— aC,,)/mU~U
C,=2C,/m

A,=2(C, —aC,,)/IU

B,= —2(a’C,, + bC,,) /IU
G,=2aC,, /1. |

The calculation of (11) appearing in Figs. 3 and 4 used
the following parameter values identified in [9] for ve-
hiceD

= 1.41 m (4.63 ft)

= 141 m (4.63 ft)

= 2016 kg (138 slug)

I =4013 m-N-s? (2960 ft-1b-s?)
U =23m/s(73.3 ft/s))
C., = 25 266 N /rad (5 680 Ib/rad)
Ca, =70 933 N/rad (15 960 Ib/rad).

The constant observer vector m” = (1,0,0,0) provided the
vehicle lateral position y.

a
b
m

B. Baseline Vehicle Parameter Values

The vehicle parameter values listed below and used in
the calculations appearing in Fig. 6 were derived from -
vehicle wheelbase /weight measurements and steady-state,
constant-steer vehicle test results [13]

a =137Tm(@45ft)

b =122m(4.0ft)

m = 1563 kg (107 slug)

I =2712m-N-s2 (2 000 ft-1b-s?)
U =259 m/s (85 ft/s)

C,, = 19 438 N/rad (4 370 Ib/rad)
C,, = 33 628 N /rad (7 560 Ib /rad).

The weighting function W appearing in (7) was selected as
constant 1.0 over the ten-point preview interval.
C. Modified Vehicle Parameter Values

The vehicle parameters of Appendix I-B were altered to
those values shown in this section by a rearward shift in
the vehicle mass center and a decrease in rear tire inflation

MACADAM: OPTIMAL PREVIEW CONTROL

pressures

a =143 m4.7ft)

b =116 m (3.8 ft)

m = 1753 kg (120 slug)

I =2712 m-N-s? (2000 ft-1b-s?)
U =259 m/s (85 ft/s)

C,, = 20 906 N /rad (4700 1b/rad)
Ca, = 29 536 N /rad (6640 1b/rad).

The closed-loop calculation using these parameter values
appears in Fig. 7.

D. Suability of the Closed-Loop Optimal Preview-Controlled
System Including a Transport Time Lag

Given the system

x=Fx+gu (A6)
u=e"*"u’ (A7)
= —c’x (A8)

where F, g, u° and ¢7 are defined in (1), (4), and (9). If the
transport time lag e =" is approximated by the first-order
Padé polynomial, -

T
13
2, (49)
1+ E’S
(A7) becomes
= 2 0 .0
u—;_-(—-u+u)—u. (A10)
Substitution of
u’= -’
and '

u®= —cT[Fx + gu]

9

into (A10) produces the closed-loop state equation

g

X la-5--3-r === {.;'.} All

[p } J(F-.Z.I)' -2 (al1)
] T

equivalent of (A6)-(A8). For small r, stability of the

time-lagged optimal preview-controlled system is provided

by the characteristic roots of the system matrix appearing
in (Al1).

REFERENCES

[1} C. C. MacAdam, “An optimal preview control for linear systems,”
J. Dynamic Systems, Measurement, Control, Sept., 1980.

{2] D. T. McRuer, er al., “New approaches to human-pilot/vehicle
analysis,” Systems Technology, Inc., Tech. Rep., AFFDL-TR-67-
150, Feb. 1968.

[3] W.W. Wierwille, G. A. Gagne, and J. R. Knight, “An experimental
study of human operator models and closed-loop analysis methods
for high-speed autombile driving,” JIEEE Trans. Hum. Factors
Electron., vol. HFE-8, no. 3, pp. 187-201, Sept. 1967. .

(4] K. Tanaka, N. Goto, and K. Washizu, “A comparison of techniques
for 1dcnnfymg buman operator dynamics utilizing time series analy-
sis,” in Proc. Twelfth Annu. Conf. Manual Control, Univ. of [linois,
Urbana, IL, May 25-27, 1976, pp. 673-693.

{§] D. H. Weir, “Motorcycle bandling dynamics and nder control and
the effect of design configuration on response and performance,”
Ph.D. dissertation, Univer. of California, Los Angeles, CA 1972, .

[6] S. Ben-Ari and J. R. Ellis, “The control of an articulated semitrailer
vehicle,” in Vehicle Safety Legislation—Its Engineering and Social
Implications. London: Mechanical Engineering Publications
Limited, 1975.

{11 D. L. Kleinman, S. Baron, and W. H. Levison, “An optimal control
model of human response, part I: Theory and validation,” Auto-
matica, vol. 6, pp. 357-369, 1970.

{8] D.T.McRuer et al., “New results in driver steering control models,”
Human Factors, vol. 19, pp. 381-397, Aug. 1977.

{91 D. H Weir, R. 1. DiMarco, and D. T. McRu:r, “Evaluation and .
correlation of driver/vehicle data,” vol. I, Final Tech. Rep., Na-
tional Highway Traffic Safety Admin., DOT-HS-803-246, Apr. 1977.

{10] R. G. Mortimer and C. M. Jorgeson, “Eye fixations of drivers as
affected by highway and traffic characteristics and moderate doses
of aleohol,” in Proc. Sixteenth Annu. Meeting, Human Factors
Society, Oct. 17-19, 1972, pp. 86-92.

[11] M. Kondo and A. Ajimine, “Driver’s sight point and dynamics of
the driver-vehicle-system related to it,” SAE Paper No. 680104,
Automotive Engineering Congress, Detroit, M, Jan. 8-12, 1968.

{12] D. A. Gordon, “Experimental isolation of drivers’ visual input,”
Public Roads, vol. 33, pp. 266-273, 1966.

[13] “Comparison of vehicle test procedures,” Contract DRDA 781433,
Highway Safety Research Institute, University of Michigan, 1978.

&= Technical Briefs

An Optimal Preview Control for Linear Systems

C.C. MacAdam'

A technigue for synthesizing closed-loop control of linear
time-invariant systems during tracking of previewed inputs is
presented. The derived control is directly dependent upon the
properties of the controlled system and is obtained by
minimization of a defined previewed output error.

1 Introduction

This paper presents a general method of control synthesis
applicable to linear time-invariant systems utilizing preview
control strategies for regulation or tracking tasks. A common
example -of this type of dynamical behavior occurs during
normal automobile path following in which drivers ‘‘look-
ahead”’ to follow a desired path. A frequent source of preview
control strategies in various man-machine systems is, of
course, the human operator. It is widely recognized that
human operators are capable of controlling and adapting to a
wide variety of dynamical systems, many of which are
vehicles with preview-oriented control requirements such as
automobiles, bicvcles, and complex aircraft [1-7]. Although
this paper does not offer evidence as to the utility of the
proposed control synthesis for man-machine systems in-
volving preview strategies, it is suggested that the method
presented here can be applied to such problems. Portions of
the work by Tomizuka (8], which treated a similar problem,
indicated useful application of optimal preview control
methods in representing man-machine dynamical behavior.

The particular method presented in this paper is directly
applicable to general linear system representations assumed to
incorporate preview control strategies that depend only upon
knowledge of the current values of the state and control. The
optimal control is derived by minimization of a performance
index that is defined as a mean squared preview output error.
It will be shown that the derived control function is not ar-
bitrary or independent but depends directly upon the
dvnamical properties of the controlled system.

11 Statement of the Problem
Given the linear system
X=Fx+gu 0
y=m'x @

'Research Associate, University of Michigan, Highway Safety Research
Institute, Ann Arber, Mich. 48109

Contributed by the Dynamic Sysiems and Control Division of THE AMERICAN
SOoCTETY OF MECHANICAL ENGINEERS. Manuscript received at ASME
Headquarners, July 9, 1980.

188/ Vol. 102, SEPTEMBER 1980

where,

x isthe n x | state vector .

y is the scalar output reiated to the state by then x 1 m”
constant observer vector transpose

F isthe constant n X n system matrix

and
g isthe constant 7 X 1 control coefficient vector

find the control, u(r), which minimizes a local performance
index,

] f1+T
782 (U-yWa-nian @

over the current preview interval (t,1+ T), where,

W is an arbitrary weighting function over the preview
interval
andf is the previewed input.

The performance index given by (3) represents the weighted
mean squared error between the previewed input and the
previewed output as defined below.

The previewed output, y(n), is related to the present state,
x(t), by

yin=mTo(n0x(n) + | mTo(nbgu(b)ds @

where,
é(n,t)=exp(F(n—1:)]
is the transition matrix of the system F[9].

If u(t) is assumed selected on the basis of a constant
previewed control, u(£) = u(t), equation (4) simplifies to

y=mTomnx(n +u(n | 'm o (nt)edt ®)

and the performance index, (3), can be written as

J= ;ST (or-momoxa

-umS:mfmn.z)gdz]%ww-; } an ©

The above assumption simply requires the resulting op-
timization to reflect a control strategy dependent only upon
current values of the state and control. This assumption is, in
part, motivated by the potential application 10 those man-
machine systems, wherein, it is assumed the human operator
is limited in deriving or having knowledge a priori of more
complex or optimal control waveforms over the preview
interval.

The necessary condition for minimization of J, defined by

Transactions of the ASME

uation (6), with respect 1o the control, u (1), is provided b_,

'Jdu = 0, or

dJ 2 s1-T
— 7’3, {I;f(q)-mro(n.l)x(t)

o

—u(t).\r’mTa(n.E)ng]}

;U:mro(n,i)gd&’} W(n-1)dn=0 ™M

Equating ¢ {n, §) withexp[F(n=§)} =1 + EF" (ﬂns) !

n=]

vere [is the identity matrix, and performing the d¢ in-
tegrations, (7) becomes

_[“'T {f(n)—mT[H > 5—(','1—'—’—] Q)

n=|

(ﬂ-I)mT[[+ i FM

= T (n+)!]g“(’)} {("")m’

-~ P (n=1)"
'[”,z,:, n+ 1!

lving (8) for u(r) yields
S| e 9 LI 0

n=]

Jwa-na=0 @

(‘(n_,)mfl:“. Ef"_(l':_”l]g}

TSI W(n-t)dn]

, S,"T {(nft)m7[1+ i‘, %]g}z W(n-l)dr;]

A=l

)

\..iere 4% (¢) represents the optimal solution. For the special
case of W(n = t) = §(T"), the Dirac delta function for 0
-T < T, (9) simplifies to

S+ 7‘)-m’[l+) f'-1’17—:l]x(t)

T Ealthdin
T'm [“',,;, n+1)!]
=[f(t+T) =y (1+ T)/(TK) (1)
'oere

| Kam [l > %]g

A=}

gmr.gor{[“_ E F"(ﬂ)

Equation (11) represents a proportional controller with gain
inversely related to the preview interval, 7, and operating on
the error between the previewed input, f(1+7), and
Yo (t+T"), that pomon of the previewed output deriving
from the state vector’s current initial condition. Likewise,
equation (9) can be interpreted as a proportiona! controller
operating on a similar error averaged and weighted over the
preview interval (1, 1 + T) by the additional terms appearing
in equation (9).

The optimal solution, u°(¢), can also be expressed in terms
of any current non-optimal u(r) and correspondingly nonzero
preview output error, e(?), by writing equation (9) as

W) = [ST Un-mmemnx -uma)

1+T
cAm)W(n—t)dn+u(t) S' A¥(n) W(n-r)dn]

/ [S:;{‘(n) W(n-l)dn]

(12)
or
s1+T
}le(n)A(n)W(ﬂ-t)dn _
wW(=u(t)+ — (13)
(A W(n=ndn
where
= F(n=-1)"
- T
Almglr=nm [’*,z,:, (n+1)!]

€(n) 4 fin)—m7&(n,1)x(t) = U(t)A(n)

o F(n=1)
s a1+ Y 2

A=l

For the special case of W(n~t) = 6(T*), as before, equation
(13) reduces to

e(t+T")
™K

The formulation expressed by equation (13) can be useful in
describing systems which do not achieve, though closely
approximate, the optimal system behavior. Such cases may
arise from limitations in achieving the precise optimal control
due to time lags or dynamic properties inherent in the con-
troller and not accounted for a priori in the optimization.

While equations (9) and (13) are equivalent mathematically,
the latter deomonstrates an explicit relationship between the
derived optimal control and the previewed output error
function appearing in the performance index of the original
problem formulation. Simply stated, the current control level
is modified only in response to a nonzero function of the
previewed output error, and, in this sense, analogous to an
integral controller.

Finally, dependence of the derived optimal control upon the
system (F, g) properties is clearly demonstrated by the explicit
presence of F and g in equations (9) and (13). Furthermore,
information concerning stability of the closed-loop system
utilizing the optimal preview control of equation (9) or (13) is
provided by the characteristic roots of the constant matrix

Bl £ 7wy

A=

W (ty=u(t)+ (14)

n=]

Journal of Dynamic Systems, Measurement, and Control

gor {”mr [1+ E F(q)"

am1 R+ 1!

J¢} winan

SEPTEMBER 1980, Vol. 102/ 189

Introduction

Th; purpose of _thc present paper is twofold. The first is to
obtain an analytic expression for the critical speed of a

or
[F-ge] L8
where :

T = P(ﬂ)" = F"(n)n ,
cr:mTSO {[H—g p]}{nm7[1+2 (nﬂ):]g}u(n)dn
~T - F" n s

.\-o [nm’[l-(- E} (n(jl))!]g} W(n)dn

resulting from the substitution of (9) into (1). For the special
case of W(n) = 6(T"), (15) becomes

el e 2)

'
.

(16)

nel

III Summary

The optimal preview control model presented here offers a
useful and direct method for representing closed-loop
behavior of linear svstems utilizing preview control strategies.
The derived control is directly related to the properties of the
linear system and the previewed input. Further, the method is
formulated in terms of general linear system representations,
thereby permitting applications to a wide variety of problems.

References

| McRuer, D.T., et al., *“‘New Approaches to Human-Pilot/Vehicle
Anaiysis,” Systems Technology, Inc., Tech. Rept. AFFDL-TR-67-150, Feb.
1968.

2 Wierwille, W.W., Gagne, G.A., and Knight, J.R., **An Experimental
Stucy of Human Operator Models and Closed-Loop Analysis Methods for
High-Speed Automobile Driving,” IEEE Trans. on Human Faciors in Elec-
tronics, Vol. HFE-8, No. 3, Sept. 1967, pp. 187-201.

3 Tanaka. K., Goto, N., and Washizu, K., *“A Comparison of Techniques
for ldentifying Human Operator Dynamics Utilizing Time Series Analysis,”
Proceedings of the Twelfth Annual Conference on Manual Control, University
of Illinois, Urbana, Ill., May 25-27, 1976, pp. 673-693.

4 Weir, D.H., “Motorcycle Handling Dynamics and Rider Control and the
Effect of Design Configuration on Response and Performance,** Ph.D. thesis,
University of California, Los Angeles, 1972.

§ Ben-Ari, S., and Ellis, J.R., “The Control of an Articulated Semitrailer
Vehicle,” Vehicle Safety Legisiation—Iis Engineering and Social Implications,
Mechanical Engineering Publications Limited, London, 1975,

6 Kieinman, D.L., Baron, S., and Levison, W.H., **An Optimal Control
Model of Human Response, Part I: Theory and Validation,” Automatica, Vol.
6. 1970, pp. 357-369.

7 McRuer, D.T., et al., ““New Results in Driver Steering Control Models,”
Human Factors, Vol. 19, Aug. 1977, pp. 381-397.

8 Tomizuka, M., *“The Optimal Finite Preview Problem and lts Application
to Man-Machine Systems,"* Dissertation, MIT, Cambridge, Mass., Sept., 1973.

9 D'Angelo, H., Linear Time-Varying Sysiems: Analysis and Synthesis,
Allyn and Bacon, Boston, 1970.

Asvmptotic Theory of Freight Car Hunting

A. M. Whitman'

A simple formula is derived for the hunting speed of a freight
car from an 8 degree of freedom linear model using asymp-
totic techniques. A comparison is made between the ap-
proximation and exact (numerical) solutions. The two agree
within 10 percent for parameter values typical of present
designs.

' Director of Research, Railroad Dynamics, Inc., Ardmore, Pa.

Present Address: Associate Professor, University of Pennsylvania,
Phiiadelphia, Pa.

Cortributed by the Dynamic Systems and Control Division of THE AMERICAN
SocTETY OF MECHANICAL ENGINEERs. Manuscript received at ASME
Keadguarers, July 9, 1980.

180/ Vol. 102, SEPTEMBER 1980

multidegree of freedom model of a freight car which is simple
enough to convey physical insight into the hunting probiem
while at the same time complex enough to have validity for
realistic vehicles. The second is to illustrate the simplification
which can be effected in problems of this type by employing
asymptotic methods. These methods are model independent
and rely on the fact that the creep forces dominate the motion.

Previous work has included analytical studies of simple
vehicles [1-2] and numerical solutions for realistic vehicles [3-
4]. The present work can be viewed as a generalization and
formal mathematical justification of the former, which
although cleverly done are ad hoc by nature and seem to be
restricted to systems with few degrees of freedom, and a
specialization of the latter, giving the same results in the
region of validity of the expansion but being restricted by
nature to specific regions in parameter space. The utility of
the present work is in the simple result which it yields. From
this one can obtain physical insight into the phenomenon as
well as easily calculable answers.

Model Description

We consider a model of the lateral dynamics of a freight car
composed of a rigid car body pinned at either end to a truck.
The pin connection transmits a linear damping moment
(constant ¢’ /) between the car body and the truck. Each truck,
see Fig. 1, i1s composed of 2 wheelsets, two rigid sideframes
connected by ball joints to each wheelset, and a bolster, which
contains the car connection (centerplate) at its midpoint, is
constrained to move parallel to each wheelset by means of
frictionless slotted pins in each sideframe, and is restrained
from moving freely in that direction by 2 linear springs
(constant k each) and dampers (constant ¢ each) at each end.
In the real system this restraint is provided by the shear
stiffness of the bolster springs, whose primary function is to
support the car weight, and the sliding of the friction wedges
laterally, Further, because the springs and dampers are
separated by a distance d, there is a moment tending to square
the truck due to both the springs (constant 4kd?) and the
dampers constant 4cd?). In addition, the bolster has mounted
symmetrically with respect to the centerplate, constant
contact sidebearings (constant kg each) whose function is o
provide a torsionai spring restraint for the bolster relative to
the car body (constant 2k w?). Actually the sidebearings also
transmit a damping moment between the bolster and the car
body (constant 2c;w*); however, this has the same form as
the centerplate moment and can be combined with it. There
are eight degrees of freedom in this model and we will take as
our independent coordinates x7, yf, 87, uf, xR, yR, BR, uR,
Here the superscripts represent the front and rear truck
coordinates, x is the axial displacement of the truck centroid
relative to the track center line, ¥ the yaw angle of each
wheelset of the truck as a result of the kinematic constraint, 8
the trail angle of the truck, and u the bolster displacement
relative to the truck centroid. The equations of motion, which
have been derived elsewhere [5] and which are quite similar to
others which have been discussed in the literature [4], are
written here in dimensionless form in terms of sum and
difference coordinates,

Transactfons of the ASME

APPENDIX B — SOURCE CODE

This appendix lists the Fortran source code for the Wind-Steer model. Variables in
common blocks are defined in separate “include” files, which are listed separately from the
program subroutines at the end of the appendix.

Main Program Listing

CHRYSLER/UMTRI VEHICLE CROSSWIND STABILITY PROJECT
5-D.0.F. VEHICLE + 2-D.0.F. STEERING SYSTEM + CLOSED-LOOP DRIVER MODEL
VERSION 1.4 - APRIL 1990

(c) The Regents of The University of Michigan, All Rights Reserved

Written by Yoram Guy, 6-30-87 (Phase 1; v 0.70)
Modified by M. Sayers, 4-26-88 (mainframe to PC versions; v 0.80)
Modified by C. MacAdam, 5-19-88 (driver model installed; v 0.83)

Modified by M. Sayers, 8-28-88 (changed egs. of motion,
new integrator; v 0.85)
Modified by C. MacAdam, 9-7-88 (driver model and wind profile
additions; v 0.90)
Modified by M. Sayers,12-14-88 (cosmetics, changed input; v 0.91)

Modified by C. MacAdam,1-30-89 (steering system, revised tire eqns
and params for SAE conventions, torque-option driver model; v 1.0)

Modified by C. MacAdam, 5-30-89 (static wind sensitivity eqns and
summary output added to echo file; random crosswind input;
additional output plot variables: e.g., aver workload, etc.; v 1.3)

Modified by M. Sayers, 4-10-90 (large angle tire egs.; vl1.4)

MACHINE DEPENDENCIES:
Most of the following code is standard Fortran 77 and is independent
of the implementation, EXCEPT:

(1) "include" files are not standard and must be referenced
as needed for a specific compiler.
(2) The terminal is referenced as unit * in READ and WRITE
statements involving the user. (Although not "standard,"
this works with most compilers and probably is OK.)

OO0 O0000000000000000000000000000000000

Otherwise, all machine-specific sections of code are identified by

Appendix B 45

comments that begin with "C--". This file includes the code
needed for

(1) the Microsoft Fortran compiler for the IBM PC
(2) the Absoft Fortran compiler for the Apple Macintosh
(3) the FortranVS compiler for the UM mainframe (MTS) system

QOO0 QOOQO00000O0O000O0O0Q000A0

PROGRAM SECTIONS:

MAIN -- Controls "flow" of program and performs num. integration

AIRACT (T, YAW, BETA, VYAW) -- handle aerodynamic forces and moments
BEAM(ALPH, DFDX, FNEG) -- equations for beam suspension

BLOCK DATA ~-- initializes variables in COMMON blocks

Function DFYDA (ALPHA, GAMMA, FZ, AXLE) -- partial deriv: dFy/dAlpha
Function DFYDG(ALPHA, GAMMA, FZ, AXLE) -- partial deriv: dFy/dGamma
Function DMZDA (ALPHA, GAMMA, FZ, AXLE) -- partial deriv: dMz/dAlpha
DRIVEL (DFW) =-- Read driver model parameters

DRIVER(X, Y, DFW, DFWNOW) -- compute closed-loop steer angle

DRIVET (X, Y, DRTORQ, DRINOW) -- compute closed-loop steer torque
DRIVGO -- initialize driver model (steer-angle version)

DRIVGT ~-- initialize driver model (steer-torque version)

ECHO -- create output file with echo of input parameters

FDAMP (VZ, VROLL, VPITCH, FD) -- compute damping force for 4 wheels
FUNCTN(T,Y,YP) -- computes YP derivatives given T and Y

Function FWIND(T) -- provide cross-wind as function of time
GMPRD(A, B, R, N, M, L) -- multiply two matrices

INDATA -- read input data and converts units

INDSUS (X, DFDX, FNEG) -- equations for independent suspension

INIT -- computes constants used in simulation

Function LENSTR(STRING) -- no. of characters in string

MNEWT (X, USRFUN, IERR) -- algebraic equation solver

OPNOUT -- create output file and write header

OUTPUT (T, Y, YP) -- write simulation variables into file at time T
Function POLY4 (COEF, FZ) -- evaluate 4th-order polynomial of Fz
ROLLAX (ROLL, YROLAX, HROLAX, IXSRA) -=- roll axis kinematics
Function STEER(T) -- provides steering wheel angle as function of T
Function SUM(MATRIX) -- sums 4 elements of matrix

TABLE(M, N, X, ¥, 2, Q) -- table look-up routine.

TIMDAT (TIMEDT) -- produce string with time and date

Function TIREFY (ALPHA, GAMMA, FZ, AXLE) -- compute Fy for tire
Function TIREMZ (ALPHA, FZ, AXLE) -- compute Mz for tire

TIRES (BETA, V, VYAW, ROLL) -~ compute slip, camber, forces for tires
TRAJ (X, XT, YT, YPATH) -- compute lat. disp. of previewed path
TRANS -- Compute transition matrix for driver model (angle version)
TRANST -- Compute transition matrix for driver model (torque version)
WHEELZ (2, ROLL, PITCH) =-- handle wheel kinematics

LIST OF SYMBOLS:

I/0 SYMBOLS

IREAD - unit number for input data

Appendix B 46

DT
TEND
IPRINT
KSYWND
AIRHO
\4
VWIND
WINDKY

AREA
QZERO
KY
CLO, KL
KR
CMO, KM

QOOO000O0O000N0O000O0000O00N0O00000000000000000000000000000000000

Appendix B

IECHO - unit number for output file with echo of input data
IOUT - unit number for simulation output file

SIMULATION PARAMETERS

time step for numerical integration

end time of simulation

print interval (every i-th point is save in output file)

wind heading angle (of velocity vector)

air density

vehicle speed

wind speed

wind key: >= 0 => time history wind profile input:
windky is num of (T,VW) table pairs.

< 0 => call user function "FWIND" for
profile input.

GLOBAL TIME-VARIABLES

T - time

Y (13) - array of 13 state variables

AY - vehicle lateral acceleration (ignoring roll-accel.)

RHO - path curvature

BETAIR - aerodynamic sideslip angle

VAX,VAY - x,y components of air velocity (axles reference)
Position Speed Accel.

XG, VXG - X of total cg (inertial reference)

YG, VG - Y of total cg (inertial reference)

BETA, VBETA - ground sideslip (BETA = VY / V)

z, vz, AZ - sprung mass cg vertical

ROLL, VROLL, AROLL - roll

PITCH, VPITCH, APITCH - pitch

YAW, VYAW, AYAW - yaw

SW, VSW, ASW - steering wheel angle

FW - front wheel steer angle
GLOBAL INTEGERS - INDICES AND FLAGS

UNITS - (CHAR*1l) 'E' = English (ft, lbm, deg), otherwise metric

NUMKEY - 1 = binary MAC, 2 = BINARY PC, 5 = text output

NAXLE - 1 = front, 2 = rear

NSIDE - 1 = left, 2 = right

NSTEER - >0 ---> steer table (no. of T,SW pairs)

- =0 ---> gine function (harmonic SW)
- <0 ---> driver model (-no. of XPNT,YPNT pairs)

VEHICLE AERODYNAMIC, STEERING-SYSTEM, AND GENERAL PARAMETERS

VEHICLE CROSS-SECTION AREA (IN Y-Z PLANE)
DENSITY * AREA / 2

AERODYNAMIC SIDE FORCE COEFFICIENT
AERODYNAMIC DOWN FORCE (-LIFT) COEFFICIENTS
AERODYNAMIC ROLL MOMENT COEFFICIENT
AERODYNAMIC PITCH MOMENT COEFFICIENTS

47

Appendix B

c KN - AERODYNAMIC YAW MOMENT COEFFICIENT

C CDO,KD - AERODYNAMIC DRAG FORCE COEFFICIENTS

c

c CBOOST - STEERING POWER-BOOST COEFFICIENT

C CFSS STEERING SYSTEM COULOMB FRICTION MOMENT

C GR - STEERING-SYSTEM OVERALL KINEMATIC RATIO

C GRTODG - GR (ABOVE) * TODEG

c ISS - STEERING-SYSTEM MOMENT OF INERTIA - LUMPED AT STEER-WHL
c KSC - STEERING-COLUMN STIFFNESS

C KSL - STEERING LINKAGE STIFFNESS

C SSKEY - STEERING-SYSTEM KEY TRIGGERING USE OF DYN ST SYS MODEL
c XTRAIL - FRONT WHEEL MECHANICAL TRAIL

C

C HCGTTL - TOTAL STATIC CG HEIGHT ABOVE GROUND

c HCGSP - STATIC SPRUNG-MASS CG HEIGHT ABOVE GROUND

C XCGSP - STATIC SPRUNG-MASS CG DISTANCE FROM FRONT AXLE

C XWBCGS - SPRUNG-MASS CG DISTANCE AHEAD OF HALF-WHEELBASE POINT
C XWBCGT - TOTAL CG DISTANCE AHEAD OF HALF-WHEELBASE POINT

C WHLRAD - TIRE ROLLING RADIUS = ASSUMED UNSPRUNG-MASS CG HEIGHT
C IXSCG - SPRUNG-MASS X-X MOMENT OF INERTIA (X-X THRU SPRUNG CG)
c IXSRA - SPRUNG-MASS MOMENT OF INERTIA ABOUT ROLL AXIS

c IXZ - SPRUNG-MASS XZ PRODUCT OF INERTIA

C IYS - SPRUNG-MASS PITCH MOMENT OF INERTIA

C 12z - TOTAL YAW MOMENT OF INERTIA

c KROLL - TOTAL ROLL STIFFNESS

C MASS - TOTAL MASS

c SPMASS - SPRUNG MASS

c SPWGHT - SPRUNG WEIGHT

C WEIGHT - TOTAL WEIGHT

C USWGHT - UNSPRUNG WEIGHT

c WRATIO - FRONT-AXLE NORMAL (GROUND) LOAD FRACTION OF TOTAL WEIGHT
c WB - WHEELBASE

c CSROLL - REAR BEAM-AXLE ROLL-STEER COEFFICIENT

c

C PER-AXLE PARAMETERS - INDEXED (AXLE)

c

C XAXLE - DISTANCE FROM TOTAL CG TO AXLE (NEGATIVE FOR REAR)

c TRACK - NOMINAL TRACK WIDTH (ASSUMED CONSTANT)

Cc HOROLC - STATIC ROLL CENTER HEIGHT ABOVE GROUND

C HCGSRC - STATIC ROLL CENTER HEIGHT BELOW SPRUNG CG (<0 IF ABOVE)
c FZOWHL - TIRE/ROAD STATIC NORMAL LOAD AT EACH WHEEL

Cc K2z - SUSPENSION VERTICAL (RIDE) STIFFNESS AT EACH WHEEL

C KZAXLE - SUSPENSION VERTICAL (RIDE) STIFFNESS (2 X K2)

C KAUX - SUSPENSION AUXILIARY ROLL STIFFNESS

C KTIRE - TIRE VERTICAL STIFFNESS

C CZJINCE - DAMPING COEFFICIENT IN JOUNCE AT EACH WHEEL

C CZRBND - DAMPING COEFFICIENT IN REBOUND AT EACH WHEEL

c CSFY - FY (CORNERING-FORCE) COMPLIANCE-STEER COEFFICIENT

C CSMzZ - ALIGNING-MOMENT COMPLIANCE-STEER COEFFICIENT

C CCFY - FY COMPLIANCE-CAMBER COEFFICIENT (0 FOR BEAM AXLE)

c

C KINEMATIC Z-POLYNOMIAL COEFFICIENTS (2 X 2) - INDEXED (AXLE,POWER)
c

c Csz - BUMP-STEER COEFFICIENTS

c CCz - BUMP-CAMBER COEFFICIENTS

c YROLCF - R.C. LATERAL DISP. VS ROLL IN SPRUNG MASS COEFFICIENTS
c HROLCF - R.C. VERTICAL DISP. VS ROLL IN SPRUNG MASS COEFFICIENTS
c

48

PER-WHEEL (2

SINUSOIDAL STE

TSWBGN -
TSWEND -
TSWPRD -
SWPHSE -
SWAMPL -
SWSHFT -

X 2 ARRAY) VARIABLES - INDEXED (AXLE,SIDE)

ALFA - TIRE SLIP ANGLE
GAMMA - TIRE CAMBER ANGLE
ALFAQ0 - STATIC TIRE SLIP ANGLE
GAMMAQO - STATIC TIRE CAMBER ANGLE
FY - TIRE CORNERING FORCE DUE TO SLIP AND CAMBER
MZ - TIRE ALIGNING MOMENT
FD - SUSPENSION VERTICAL DAMPING FORCE
FZ - TIRE/ROAD NORMAL LOAD
W - SUSPENSION DYNAMIC VERTICAL DISPLACEMENT
KNMCBR - KINEMATIC (BUMP/ROLL) STEER ANGLE
KNMCBR - KINEMATIC (BUMP/ROLL) CAMBER ANGLE

TIRE FZ-POLYNOMIAL COEFFICIENTS (4 X 2) -~ indexed (AXLE,POWER)
CALFA - cornering-stiffness Fz-polynomial coefficients
CGAMMA - camber-stiffness Fz-polynomial coefficients
CALIGN - aligning-stiffness Fz-polynomial coefficients

ER PARAMETERS (for equation see function STEER)

global time at steer start (prior to which: SW = 0)
global time at steer end (after which: SW is frozen)

length of period (sec)
time phase lead (deg, e.g. +90 =---> cosine)
amplitude (steering wheel degq)

amplitude zero shift (steering wheel degq)

OO0 000000000000000000000000000

MAIN PROGRAM

IMPLICIT REAL (K,M)

EXTERNAL F
REAL Y(13)
CHARACTER
INTEGER*2

UNCTN

¢, YP(13), ¥YM(13)
AGAIN

HOUR, MIN, SEC, I100

include DRVMOD.inc
include GLBL.inc
include PARS.inc
include SUSP.inc
include AERO.inc
include VARS.inc
include PRNT.inc
include mnvr.inc

DATA T/0.0
PI = 4.0 *

/, Y/13%0.0/
ATAN(1.0)

(o Read input data (includes opening all i/o files)

CALL INDATA

Appendix B

49

CALL INIT
C 1Initialize Driver Model Vehicle Parameters:

IF(NSTEER .LT. 0) THEN
IF (ABS(SSKEY) .LE. 0.001) THEN
CALL DRIVGO
ELSE
IF (NSTEER .GT. -100) CALL DRIVGT
ENDIF
ENDIF

C
C Set up output file with simulated time histories
C

CALL OPNOUT
C
C Start by evaluating derivatives and printing variables at t=0
CMD--Use function TIME for Mac (1 line)
CALL TIME (ISEC1)
CMD--Use function GETTIM for IBM PC (2 lines)
* CALL GETTIM (HOUR, MIN, SEC, I100)
* ISEC1 = 3600*HOUR + 60*MIN + SEC + I100*.01
CALL FUNCTN (T, ¥, YP)
CALL OUTPUT (T, Y, YP)

Integration loop. Continue until printout time reaches final time.
Begin each step by allowing subroutines to update internal variables.
Then use two evaluations of the derivatives to integrate over the
step.

QOO0

NLOOP = TEND/DT/IPRINT+1
DT2 = DT / 2.
DO 40 ILOOP=1,NLOOP
DO 30 INNER=1, IPRINT
DO 10 I=1,NEQN
YM(I) = Y(I) + DT2 * YP(I)
10 CONTINUE
CALL FUNCTN (T+DT2, ¥YM, YP)
DO 20 I=1,NEQN
Y(I) = Y(I) + DT * YP(I)
20 CONTINUE

T=T + DT
CALL FUNCTN (T, Y, YP)
30 CONTINUE
CALL OUTPUT (T, Y, Y¥YP)
IF (T .GE. TEND) go to 50
40 CONTINUE
50 CONTINUE
CMD--Use function TIME for Mac (1 line)
CALL TIME (ISEC2)
CMD--Use function GETTIM for IBM PC (2 lines)
* CALL GETTIM (HOUR, MIN, SEC, I100)
* ISEC2 = 3600*HOUR + 60*MIN + SEC + I100*.01

* End of integration loop. Print final status of run

WRITE (*, *) ' Termination at time =', T, ' sec.'

Appendix B 50

WRITE (*,*) ' Computation efficiency: ', (ISEC2 - ISECl) / T,
& ' sec/sim. sec'
WRITE (*,*) ' !

CLOSE (IQUT)
PAUSE 'Done'
END

% Kk %k kK kg ok ok Kk Kk kK ok %k ok ok %k Kk Kk Kk ok ok gk ok ok ok ok ok Kk sk Sk Sk gk ok sk ok k Kk Kk Kk ks Kk k kK Xk k ok Kk kK Kk sk ke ok kK kK

SUBROUTINE AIRACT(T, YAW, BETA, VYAW)

% %k % %k Kk Kk Kk ok gk kK Kk ok k sk ok Kk Kk Kk k ke ke k ok sk k ok kK K K %k gk Sk sk gk sk ok Kk Kk Kk ke ko kK Kk Kk Kk ok sk sk ok k kK Kk %k k k kK Kk k Kk

C Subroutine AIRACT updates air velocity and sideslip, and the
C magnitudes of all corresponding aerodynamic forces and moments
C in the common block /AERO/
C

IMPLICIT REAL (K,M)

C
include GLBL.inc
include PARS.inc
include AERO.inc
C

C Look up wind magnitude from TABLE, or, get from user-defined "FWIND"

C function. TABLE and FWIND return VWIND in units of kmh or mph.
c
VWIND = 0.0
IF (WINDKY .GT. 0) THEN
CALL TABLE(1, WINDKY, TWIND, WINMAG, T, VWIND)

ELSE

VWIND = 0.0

IF (WINDKY .LT. 0) VWIND = FWIND(T)
ENDIF

Cc
C CONVERT VWIND TO INTERNAL UNITS OF M/SEC OR IN/SEC:
c

VWIND = VWIND / KMHMPH

CALCULATE AIR SLIP AND VELOCITY:

[pNoNe]

RELKSY = KSYWND - YAW

VAX = (VWIND * COS(RELKSY) - V * COS(BETA)) / ININFT
VAY (VWIND * SIN(RELKSY) - V * SIN(BETA)) / ININFT
VAY = VAY - XWBCGS * VYAW / ININFT

VA2 = VAX * VAX + VAY * VAY

VA = SQRT (VA2)

BETAIR = 0.0

IF (VAY .GT. 0.0) BETAIR = (ATAN2(VAY, VAX) - PI) * TODEG
IF (VAY .LT. 0.0) BETAIR = (ATAN2(VAY, VAX) + PI) * TODEG
BETA2 = BETAIR * BETAIR

CALCULATE AERODYNAMIC FORCES AND MOMENTS ACTING
AT GROUND LEVEL, AT HALF WHEELBASE POINT:

Q000

CY = -KY * BETAIR
FYA = QZERO * CY * VA2

CL = CLO + KL * BETA2
FZA = -QZERO * CL * VA2

CR = -KR * BETAIR

Appendix B S1

MXA = QZERO * WB * CR * VA2

C
CM = CMO + KM * BETA2
MYA = QZERO * WB * CM * VA2
c
CN = -KN * BETAIR
MZA = QZERO * WB * CN * VA2
C
CD = CD0 + KD * BETA2
FDRAG = QZERO * CD * VA2
c
c RESOLVE MOMENTS ABOUT SPRUNG OR TOTAL CG, AS APPROPRIATE:
c
MXA = MXA - HCGSP * FYA
MYA = MYA + XWBCGS * FZA
MZA = MZA - XWBCGT * FYA
C
RETURN
END

KAEKKKKAKA K KKKRKRKRKA Ak kA ARk ARk Ak kA Ak hkkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkkkkkkhkhkhkkkkkkkxrxkkkk

SUBROUTINE BEAM(ALPH, DFDX, FNEG)
KA KKK A KA A KA AR KA R AR AR AR A AR AR R AR KRR KA AAKRKRARAA A ARk ARk Ak Ak kkkkkkkhkkhkkhkkkkkk
This subroutine computes a 2x2 Jacobian and a 2-element error
array for beam rear suspension.
It is called in turn by the Newton-Raphson solver, MNEWT.

--> ALPH real 2-element array. l=left slip, 2=right slip
<-- DFDX real 2x2 array, df/dx (partial derivatives)
<=-- FNEG real 2 negative error functions in equations

* % % % %k o O %

IMPLICIT REAL (K,M)

REAL ALPH(2), DFDX(2,2), FNEG(2)
include VARS.inc

include SUSP.inc

include TSOLVE.inc

* 2x2 Jacobian

DFDX(2,1) = CSFY(2)*DFYDA(ALPH(1l), -GAMMAO(2), Fz(2,1), 2)
& + CSMZ (2) *DMZDA(ALPH (1), -GAMMAO(2), FZ(2,1), 2)
DFDX(1,1) = DFDX(2,1) + 1.
DFDX(1,2) = CSFY(2)*DFYDA(ALPH(2), GAMMAO(2), FZ(2,2), 2)
& + CSMZ (2) *DMZDA (ALPH(2), GAMMAO(2), Fz(2,2), 2)
DFDX(2,2) = DFDX(1,2) + 1.

* Compute and save tire forces and moments.

SAVEFY (1) = TIREFY(ALPH(l), -GAMMAO(2), FZ(2,1), 2)
SAVEFY(2) = TIREFY(ALPH(2), GAMMAO(2), Fz(2,2), 2)
SAVEMZ (1) = TIREMZ (ALPH(l), FZ(2,1), 2)
SAVEMZ (2) = TIREMZ (ALPH(2), FZ(2,2), 2)

* Negative of error function.

FNEG (1) - CSFY(2)* (SAVEFY(l) + SAVEFY(2))

& - CSMZ (2)* (SAVEMZ (1) + SAVEMZ(2)) - ALPH(l) + BIAS(1)
FNEG (2) FNEG (1) - ALFA0(2)

FNEG(1) FNEG(1) + ALFA0(2)

Appendix B 52

RETURN
END
T T T 2221222222222 222222222 25 22 2 s s R R bbbl b

BLOCK DATA
**
* Tnitialize variables in common blocks.
C

IMPLICIT REAL (K,M)

C

include GLBL.inc

include PARS.inc

include MNVR.inc

include SUSP.inc

include TIRE.inc

include AERO.inc

include VARS.inc

include PRNT.inc

DATA NEQN/13/, NSTEER/1/, TODEG/1.0/, SW/0.0/, FW/2*0.0/, AY/0.0/
DATA RHO/0.0/, KROLL/0.0/, CSROLL/0.0/, CS2/4*0.0/, CCz/4*0.0/
DATA ALFA/4*0.0/, GAMMA/4*0.0/, FY/4*0.0/, MZ/4*0.0/, FD/4*0.0/
DATA ZW/4*0.0/, YROLCF/4*0.0/, HROLCF/4*0.0/

DATA KNMSTR/4*0.0/, CPLSTR/4*0.0/, TTLSTR/4*0.0/, KNMCBR/4*0.0/
DATA YOUTDR/13*0.0/, STORQ/0.0/, MMCOL/0.0/

DATA TSWBGN/0.0/, TSWEND/0.0/, SWAMPL/0.0/, TSWPRD/0.0/
DATA SWPHSE/0.0/, SWSHFT/0.0/, DRLAG/0.0/, DRPREV/0.0/
DATA VA/0.0/, BETAIR/0.0/, FYA/0.0/, FzA/0.0/, Fz/4*0.0/
DATA MXA/0.0/, MYA/0.0/, M2A/0.0/, FDRAG/0.0/

DATA XPNT/999*0.0/, YPNT/999*0.0/, SLOPE/999%*0.0/

DATA G/9.81/, ININFT/1/, KMHMPH/3.6/, UOMEGA/'rad/sec'/

DATA UDISP/'m'/, UDIST/'m'/, UANGL/'rad'/, UVELFT/'m/s'/

DATA UFORC/'N'/, UTORQ/'m-N'/, KINEM/.TRUE./, BEAM/.TRUE./

DATA LINE/-1/, NPAGE/1l/, INDX/0/, BLNK12/'® v/

DATA FNREAD /' '/
o

END
**

FUNCTION DFYDA(ALPHA, GAMMA, FZ, AXLE)
KKK KAKI AR E KA IR KKK I KA AKX KRR RK R KRR ARk ko kX kA kK kR ARk kkkkkkkkk k%

* This version (UMTRI default) computes cornering stiffness as
* a cubic function of FZ.

* In this version, the arguments ALPHA and GAMMA are not used.

--> alpha real slip angle
--> gamma real camber angle
-=> FZ real vertical load

--> AXLE integer axle no. (1 or 2)
<-- DFYDA real partial derivative of Fy with respect to alpha

* % % ¥ *+ A

include TIRE.inc

INTEGER AXLE

DFYDA = POLY4 (CALFA(l, AXLE), F2)
RETURN

END

%% % % o de % K K Kk Kk kT ok Kk ok Kk K Kk g sk sk Kk kK kK Kk ke gk gk gk ok ke ke Kk Kk kK ok ke k ke k kK ke k ke k ke ke ok k ko ok ok ok ok k ok kX

Appendix B 53

FUNCTION DFYDG(ALPHA, GAMMA, FZ, AXLE)

% Kk % %k Kk k Kk Kk ok Kk ok k Kk %k Kk %k Kk Kk ok k ok kK %k Kk ok sk ok ok k kK ok sk k k Kk ok ok k k k sk Kk sk Kk %k %k ok gk K ok ok ok sk ke sk Kk ok sk ok kK Kk ko ke ke ok ok k

This version (UMTRI default) computes camber stiffness as a
cubic function of F3z.

*
*

* % % % X %

In this version, the arguments ALPHA and GAMMA are not used.

alpha real slip angle

gamma real camber angle

Fz real vertical load

AXLE integer axle no. (1 or 2)

DFYDG real partial derivative of Fy with respect to gamma

include TIRE.inc

INTEGER AXLE

DFYDG = POLY4 (CGAMMA (1, AXLE), F2)
RETURN

END

AAkEAAKK KK KKK KAK KKK KA Ak Ak kA Ak kkkkkkkkkkkkkkkkhkkkkhkkhkhkkkkkkkhkkkhkhkkkkkkkk*xx

FUNCTION DMZDA (ALPHA, GAMMA, FZ, AXLE)

% Kk % Kk Kk Kk Kk k kK k Kk ok kK kK Kk ok k kK kK gk Kk ok kK ok Kk %k Kk ok sk ok sk Kk sk Kk sk sk ok sk Kk sk Kk ok sk ok sk ok ke %k ke ok sk Kk sk sk Kk ke ke k ke k ke ok ok ok k

This version (UMTRI default) computes aligning stiffness as a cubic
function of FZ.

*
*

¥ % % A %

In this version, the arguments ALPHA and GAMMA are not used.

alpha real slip angle

gamma real camber angle
FZ real vertical load
AXLE integer axle no. (1 or 2)

DMZDA real partial derivative of Mz with respect to alpha

include TIRE.inc

INTEGER AXLE

DMZDA = POLY4 (CALIGN(l, AXLE), F2)
RETURN

END

C ok % % %k ok J ok ok ok Kk ok sk ok ok Kk k ke ke ok ok ok ok Kk ok ok ok ks ok kK kK ok Sk sk sk sk ok ke kK ke Sk gk ok ok ke gk sk ok Kk ke ok ok ok ok Kk ke ok k ok ok Kk
C k% %k % ok ok ke k ok k ke kK ok ok ok ok ke ke ko gk ok sk Kk ke ke ke sk ok ok ok Kk kK sk sk sk ok ok Kk ke kg gk ok kK ke ok ok ok ok Kk ok ke kR ok ok ok ok k

C

C DRIVEl: Reads Driver Model (Path, Preview, Lag) Parameters->unit IREAD

============Author and Modification Section

Author: C. C. MacAdam

Date written: 05/19/88

Written on:

Modifications:

QOO0

QOQOQQ

============Algorithm Description

Purpose and use:

Appendix B 54

Error conditions:
Machine dependencies: none

Called By: INDATA

QOOO0O0O00000

SUBROUTINE DRIVEL (DFW)
SAVE

C
C============Variable Descriptions
C

C---Arguments passed:

c
C DFW...steer angle of front tires [or average] (rad)
C
c
C---COMMON blocks---------—-————- e
c
include drvmod.inc
include pars.inc
include glbl.inc
c
C---DRIV.BLK common block variableg---==-=——ccmcmmmm e

CAF...total cornering stiffness of tires on left front susp (lb/rad)
CAR...total cornering stiffness of tires on left rear susp (lb/rad)
WHBS..wheelbase of vehicle (center-line of front & rear susp) (ft)
WF....static load on front suspension (lb)

WR....static load on rear suspension (lb)

U.....initial velocity (ft/sec)

---DRVST1.BLK common block variables

GRAV..... gravitational constant

TICYCL...driver model sample time (sec)

TSS...... minimum preview time (sec)

DMAX..... upper bound on front wheel angle steer (rad)
XP,YP....x-y path coords(SAE) wrt inertial coords [input] (ft)
TAUMEM. . .driver transport time dealy [input parameter] (sec)
...driver model preview time [input parameter] (sec)

RM.......vehicle mass (slug)

A........ distance from c.g. to front suspension center-line (ft)
1 N distance from c.g. to rear suspension center-line (ft)
RI....... total vehicle yaw inertia (slug-ft)

PSIO..... current yaw angle reference value (rad)

NTF...... number of points in the preview time interval
NP....... number of points in the x-y trajectory table
TLAST....last time driver model calulated a steer value (sec)

DFWLST...last value of steer calculated by driver model (rad)
TILAST...last sample time driver model calulated a steer value (sec)
DMEM. 2-dim array (time & steer history) used in delay calculat'n
XT,YT....transformation of XP,YP in vehicle body axes (ft)

---Local variables-------------——- e e

QOO0 000000000000000000000000000Q0
=
]
o]

Appendix B 55

C WGHT..total static weight on front and rear suspsensions (lb)

C DFW...steer angle of front tires [or average] (rad)

c

C---Functions and subroutines==--—-—====—===— - m o

None

Process Block

QOOO0OQ0O00Q0

GRAV = 32.2
TICYCL = 0.0099
TsS = 0.0
DMAX = 0.2

DO 40 J =1, NP
READ (IREAD, 30) XPDR(J), YPDR(J)
30 FORMAT (2F12. 4)
40 CONTINUE
READ (IREAD, 60) TAUMEM, TFF
60 FORMAT (F12.4)

PSI0O = 0.0
NTF = 10
DO 80 J
XT (J)
YT (J)
80 CONTINUE
TLAST = 0.
DFWLST = 0.
TILAST = 0.
DFW = 0.
DO 90 I =1, 100
DMEM(I,1) = 0.
90 DMEM(I,2) = -1.
RETURN
END
C***
c
C Closed-Loop Steer Calculation
Cc
C DRIVER: Computes closed-loop steering control during the simulation

1, NP
XPDR(J) * COS(PSIO) + YPDR(J) * SIN(PSIO)
-XPDR(J) * SIN(PSIO) + YPDR(J) * COS(PSIO)

============Author and Modification Section
Author: C. C. MacAdam
Date written: 05/19/88
Written on:

Modifications:

Algorithm Description

eNeoNoNoNoNoNoNoNoNo N NN N Ne]

Appendix B 56

Purpose and use:
Error conditions:
References:

MacAdam, C.C. "Development of Driver/Vehicle Steering
Interaction Models for Dynamic Analysis," Interim
Technical Report, U.S. Army Tank Autcmotive Command
Contract No. DAAE(07-85-C-R069, The University of
Michigan Transportation Research Institute Report
No. UMTRI-86-41, July 1986.

MacAdam, C.C. "Application of an Optimal Preview Control
for Simulation of Closed-Loop Automobile Driving,"
IEEE Transactions on Systems, Man, and Cybernetics,
Vol. 11, June 1981.

MacAdam, C.C. "An Optimal Preview Control for Linear
Systems," Journal of Dynamic Systems, Measurement,
and Control, ASME, Vol. 102, No. 3, September 1980.

Machine dependencies: none

Called By: STEER (function)

QOO0 O0O00000000000000000

SUBROUTINE DRIVER(X, Y, DFW, DFWNOW)

SAVE
C
C============Variable Descriptions
(o}
C---Arguments passed:
C
C X....... time in the simulation (sec)
C Y....... current state vector obtained from WIND/STEER
C DFW..... closed-loop steering control returned to WIND/STEER
C DFWNOW..current steering angle [average] of front wheels,
C after effects of roll-steer, compliance, etc.
C
DIMENSION Y (5), YC(5)
DIMENSION DUMV11 (4)
DIMENSION DUMV1 (4), VECM(4)
DIMENSION DUMM1 (4,4), DUMM2 (4, 4)
DIMENSION FFV(4)
o}
C---COMMON bloCckS======—-cm—eerc e cm e e e e e e
(o}
include drvmod.inc
include pars.inc
include aero.inc
include glbl.inc
C
C---DRIV.BLK common block variables=-==-===c-cecmcmm e e
C

Appendix B 57

CAF...total cornering stiffness of tires on left front susp (lb/rad)
CAR...total cornering stiffness of tires on left rear susp (lb/rad)
WHBS. .wheelbase of vehicle (center-line of front & rear susp) (ft)
WF....static load on front suspension (lb)

WR....static load on rear suspension (lb)

U..... initial velocity (ft/sec)

~~-=-DRVST1.BLK common block variables

GRAV..... gravitational constant

TICYCL...driver model sample time (sec)

TSS...... minimum preview time (sec)

DMAX..... upper bound on front wheel angle steer (rad)

XP,YP....x-y path coords(SAE) wrt inertial coords [input] (ft)
TAUMEM. . .driver transport time dealy [input parameter] (sec)

...... driver model preview time [input parameter] (sec)

RM....... vehicle mass (slug)

A........ distance from c.g. to front suspension center-line (ft)

= distance from c.g. to rear suspension center-line (ft)
RI....... total vehicle yaw inertia (slug-ft)

PSIO..... current yaw angle reference value (rad)

NTF...... number of points in the preview time interval

NP....... number of points in the x-y trajectory table

TLAST....last time driver model calulated a steer value (sec)
DFWLST...last value of steer calculated by driver model (rad)
TILAST...last sample time driver model calulated a steer value (sec)
DMEM..... 2-dim array (time & steer history) used in delay calculat'n
XT,YT....transformation of XP,YP in vehicle body axes (ft)

---TRSSTR.BLK common block variables

QOO0 O0000000000000000000000000
=
&l
m

cC TTT....... transition matrix at 10 discrete points in preview interval
c TTT1...... integral of trans matrix wrt preview time

C GV......... vector of control gain coefficients

C

C
C YC....... local (body-axis based) copy of state vector Y

C VECM..... observer vector - lateral displacement from state vector
C DUMV1....work vector

c DUMV1l... "

C DUMML....work matrix

C DUMM2.... "

C T.vovvn.. time in the simulation (sec)

C EPSI..... yaw angle between body axis and current index value, PSI0
C PSIO..... current nominal value of yaw angle used for linearization
C NP....... number of points in x-y path table

C XP,YP....x-y inertial path table [input] (ft)

(of XT,¥YT....x-y path table transformed to body axis [PSIO] system (ft)
C EPSY2....cumulative preview path error squared

C EPSY..... mean squared value of cumulative preview path error

C TSUM..... scalar work quantity

C SSUM..... scalar work quantity

C DFWLST...steering control from last calculation (rad)

cC TJI...... preview time ahead from present time value (sec)

C I,J,K....integer counters

C XCAR..... preview distance ahead in feet (ft)

C X0....... present forward postion of vehicle c.g. (ft)

Appendix B 58

TTAB..... current time less the driver delay, TAUMEM. Used to access
the delayed driver response stored in DMEM array. (sec)

Sl....... scalar work quantity
Tl....... scalar work quantity
....... previewed path error (ft)
FFV...... aerodynamic lateral accel and yaw accel "sensory" vector

---Functions and subroutineg-=-—-——==-——-e-—mm e e

QOO0 000
[}
g

EXTERNAL TRAJ, GMPRD

QOO0

DATA VECM /1.0, 3*0.0/

Update Aerodynamic accel (force/moment) vector for driver model:

(oo Ne]

FFV (1) 0.0

FFV(2) = FYA / RM * WEIGHT / SPWGHT
FFV(3) MZA / ININFT/ RI

FFV(4) 0.0

1 T=X
EPSI = ABS(Y(4) - PSIO)
DO10I=1,5
10 YC(I) = Y (I)
IF (EPSI .LE. .0002) GO TO 30

Update Coordinate Transformation

[oNPNONQ]

PSIO = Y (4)
DO 20 J =1, NP
XT(J) XPDR(J) * COS(PSIO) + YPDR(J) * SIN(PSIO)
20 YT(J) = -XPDR(J) * SIN(PSIO) + YPDR(J) * COS(PSIO)

30 YO =Y (5) * SIN(PSIO) + Y(1l) * COS(PSIO)
X0 = Y(5) * COS(PSIO) + Y(1) * SIN(PSIO)
YC(1l) = Y0
YC(4) = Y(4) -~ PSIO
EPSY2 0.

TSUM = 0.
SSUM = 0.
DFW = DFWLST

Return if time from last calculation less than sample interval

[eNONe]

IF (T - TILAST .LE. TICYCL) RETURN

Update tire cornering stiffnesses and vehicle velocity
and recalculate transition matrix: Not Used Presently
x COMMENTED QUT ***

CAFTEM
CARTEM

(CCAF1*FFZL1+CCAF2*FF2L2) / (FFZL1+4FFZL2)
(CCAR1*FFZL3+CCAR2*FFZL4) / (FFZL3+FFZL4)

QOO0 0O0000

Appendix B 59

CAF = CAFTEM
CAR = CARTEM
UTEMP = DMVELC
U = UTEMP

CALL TRANS

Loop to calculate optimal preview control per References 2 & 3:
(NTF points within the preview interval)

OO0OO0OO0OO00000

DO 50 I = 1, NTF
TJI = (TFF - TSS) / NTF * I + TSS
DO 40 J =1, 4

DO 40 K =1, 4
DUMM1 (J,K) = TTT1(J,K,I)
40 DUMM2(J,K) = TTT(J,K,I)

CALL GMPRD (VECM, DUMM1, DUMV11, 1, 4, 4)
CALL GMPRD (VECM, DUMM2, DUMV1, 1, 4, 4)
CALL GMPRD (DUMV1, YC, T1, 1, 4, 1)

C
C Get observed path input, YPATH, within preview interval at XCAR ft:
c
XCAR = X0 + U * TJI
CALL TRAJ (XCAR, XT, YT, YPATH)
C
CALL GMPRD (DUMV11l, GV, S1, 1, 4, 1)
CALL GMPRD (DUMV1l, FFV, DYAERO, 1, 4, 1)
c
C EP is the previewed path error at this preview point.
C
EP = Tl + S1 * DFWNOW + DYAERO - YPATH
TSUM = TSUM + EP * S1
SSUM = SSUM + S1 * Sl
C
C Cumulative preview error calculation (unrelated to control)
c
EPSY2 = EPSY2 + EP * EP * (TFF - TSS) / NTF
Cc
50 CONTINUE
C
C Cumulative preview error calculation (unrelated to control)
c
EPSY = SQRT(EPSY2) / (TFF - TSS)
Cc
C Optimal value - no delay yet.
Cc
DFW = -TSUM / SSUM + DFWNOW
C
C Maximum steer bound set at DMAX (arbitrary)
C
IF (ABS(DFW) .GT. DMAX) DFW = DMAX * SIGN(1l.,DFW)
Cc
C Store steer history and corresponding times in DMEM.
C Retrieve steer delayed by TAUMEM sec and return as
C delayed driver steer control, DFW.
C

DO 60 J =1, 2
DO 60 I =1, 99
DMEM(101 - I,J) = DMEM(100 - I,J)

Appendix B 60

60 CONTINUE
DMEM(1,1) = DFW
DMEM(1,2) =T
TTAB = T - TAUMEM
DO 70 I =1, 99
IJK =1
IF (DMEM(I + 1,2) .LE. TTAB .AND. DMEM(I,2) .GE. TTAB)
1 GO TO 90
70 CONTINUE
WRITE (*,80)TAUMEM,DFW,X
80 FORMAT ('0', '*x*x** TAUMEM PROBABLY TOO LARGE *kkkx
& /,3(1X,G12.6))
STOP
90 DFW = 0.0
IF(T .GE. TAUMEM) DFW = DMEM(IJK,1)
C
C Save steer and time values for next calulation.
C
DFWLST = DFW
TLAST = X
TILAST = X
RETURN

END
C***

Closed-Loop Steer Calculation

DRIVET: Computes closed-loop steering TORQUE control during the simul

’

Author and Modification Section

Author: C. C. MacAdam
Date written: 01/30/89
Written on:

Modifications:

============A]lgorithm Description
Purpose and use:

Error conditions:

References:

MacAdam, C.C. "Development of Driver/Vehicle Steering
Interaction Models for Dynamic Analysis,™ Final
Technical Report, U.S. Army Tank Automotive Command
Contract No. DAAE(07-85-C-R069, The University of
Michigan Transportation Research Institute Report
No. UMTRI-88-53, December 1988.

MacAdam, C.C. "Application of an Optimal Preview Control
for Simulation of Closed-Loop Automobile Driving,"

QOO0 Q0000000000000 00

Appendix B 61

IEEE Transactions on Systems, Man, and Cybernetics,
Vol. 11, June 1981.

MacAdam, C.C. "An Optimal Preview Control for Linear
Systems," Journal of Dynamic Systems, Measurement,
and Control, ASME, Vol. 102, No. 3, September 1980.

Machine dependencies: none

Called By: STEER (function)

QOO0 000000n

SUBROUTINE DRIVET (X, Y, DRTORQ, DRTNOW)

SAVE
c
C============Variable Descriptions
C
C---Arguments passed:
Cc
C X....... time in the simulation (sec)
C Y..o..o. current state vector obtained from WIND/STEER
C DRTORQ..... closed-loop TORQUE control returned to WIND/STEER
C DRTNOW..... current steering TORQUE
C
DIMENSION Y(7), YC(7)
DIMENSION DUMV11(6)
DIMENSION DUMV1(6), VECM(6)
DIMENSION DUMM1 (6,6), DUMM2(6,6)
DIMENSION FFV(6)
C
C-=--COMMON blocks=—-=----—-——=—-—-—-—ommmmm e -
o
include drvtor.inc
include pars.inc
include aero.inc
include glbl.inc
include vars.inc
C
C---DRIV.BLK common block variableg-----—----=—cceomcmmmm e
C
C CAF...total cornering stiffness of tires on left front susp (lb/rad)
C CAR...total cornering stiffness of tires on left rear susp (lb/rad)
C WHBS..wheelbase of vehicle (center-line of front & rear susp) (ft)
C WF....static load on front suspension (1lb)
C WR....static load on rear suspension (lb)
cC U..... initial velocity (ft/sec)
Cc
C---DRVST1.BLK common block variables
C
C GRAV..... gravitational constant
C TICYCL...driver model sample time (sec)
C TSS...... minimum preview time (sec)
o DMAX..... upper bound on front wheel angle steer (rad)
C XP,YP....x-y path coords(SAE) wrt inertial coords [input] (ft)
C TAUMEM...driver transport time dealy [input parameter] (sec)
C TFF...... driver model preview time [input parameter] (sec)

Appendix B 62

C RM....... vehicle mass (slug)

C A........ distance from c.g. to front suspension center-line (ft)

C B........ distance from c.g. to rear suspension center-line (ft)

C RI....... total vehicle yaw inertia (slug-ft)

c PSIO..... current yaw angle reference value (rad)

C NTF...... number of points in the preview time interval

C NP....... number of points in the x-y trajectory table

C TLAST....last time driver model calulated a steer value (sec)

c STLST...last value of steer calculated by driver model (rad)

C TILAST...last sample time driver model calulated a steer value (sec)
C DMEM..... 2-dim array (time & steer history) used in delay calculat'n
o} XT,YT....transformation of XP,YP in vehicle body axes (ft)

c .

C---TRSSTR.BLK common block variables

Cc

C TTIT....... transition matrix at 10 discrete points in preview interval
C TTTl...... integral of trans matrix wrt preview time

C GGV......... vector of control gain coefficients

Cc

C---Local variables---=-==—--=---—mmm oo
Cc

cC YC....... local (body-axis based) copy of state vector Y

o VECM..... observer vector - lateral displacement from state vector

C DUMV1....work vector

C DUMV11... "

C DUMMI....work matrix

o DUMM2.... "

(O time in the simulation (sec)

C EPSI..... yaw angle between body axis and current index value, PSIO
C PSIO..... current nominal value of yaw angle used for linearization
C NP....... number of points in x-y path table

C XP,YP....x-y inertial path table [input] (£ft)

C XT,YT....x-y path table transformed to body axis [PSIO] system (ft)
C EPSY2....cumulative preview path error squared

C EPSY..... mean squared value of cumulative preview path error

C TSUM..... scalar work quantity

C SSUM..... scalar work quantity

C DFWLST...steering control from last calculation (rad)

C TJI...... preview time ahead from present time value (sec)

c 1I,J,K....integer counters

C XCAR..... preview distance ahead in feet (ft)

C X0....... present forward postion of vehicle c.g. (ft)

C TTAB..... current time less the driver delay, TAUMEM. Used to access
Cc the delayed driver response stored in DMEM array. (sec)

cC Sl....... scalar work quantity

C Tl....... scalar work quantity

C EP....... previewed path error (ft)

c FFV...... aerodynamic lateral accel and yaw accel "sensory" vector

c & power boost influence

Cc

C---Functions and subroutines=—-———=———= oo ————————
Cc

EXTERNAL TRAJ, GMPRD

Process Block

[eNeNeNe NS

Appendix B 63

DATA VECM /1.0, 5*0.0/
DATA STLST /0.0/

c
C Update Aerodynamic accel (force/moment) vector for driver model:
c
FFV(1) = 0.0
FFV(2) = FYA / RM * WEIGHT / SPWGHT
FFV(3) = MZA / ININFT/ RI
FFV(4) = 0.0
FFV(5) = 0.0
FFV(6) = 0.0
c
1 T=X
EPSI = ABS(Y(4) - PSIO)
pDo101=1, 7
10 YC(I) = Y(I)
c IF (EPSI .LE. .0002) GO TO 30
C
C Update Coordinate Transformation
c
PSI0 = Y(4)
DO 20 J =1, NP
XT(J) = XPDR(J) * COS(PSIO) + YPDR(J) * SIN(PSIO)
20 YT(J) = -XPDR(J) * SIN(PSIO) + YPDR(J) * COS(PSIO)
c
30 YO = -Y(7) * SIN(PSIO) + Y(1) * COS(PSIO)
X0 = Y(7) * COS(PSIO) + Y(1l) * SIN(PSIO)
YC(1l) = YO0
YC(4) = Y(4) - PSIO
EPSY2 = 0.
TSUM = 0.
SSUM = 0.
DRTORQ = STLST
c
C Return if time from last calculation less than sample interval
c ,
IF (T - TILAST .LT. TICYCL) RETURN
c
c
C Update tire cornering stiffnesses and vehicle velocity
C and recalculate transition matrix: Not Used Presently
C *** COMMENTED QUT ***
C
C CAFTEM = (CCAF1*FFZL1+CCAF2*FFZL2) / (FFZL1+FFZL2)
c CARTEM = (CCAR1*FFZL3+CCAR2*FFZL4) / (FFZL3+FFZL4)
c CAF = CAFTEM
C CAR = CARTEM
C UTEMP = DMVELC
c U = UTEMP
c CALL TRANST
c
C Loop to calculate optimal preview control per References 2 & 3:
C (NTF points within the preview interval)
C

DO 50 I = 1, NTF
TJI = (TFF - TSS) / NTF * I + TSS
DO 40 J =1, 6

Appendix B 64

DO 40 K =1, 6
DUMM1 (J,K) = TTTT1(J,K,I)
40 DUMM2 (J,K) = TTTT(J,K,I)
CALL GMPRD (VECM, DUMM1, DUMV1l, 1, 6, 6)
CALL GMPRD(VECM, DUMM2, DUMV1, 1, 6, 6)
CALL GMPRD (DUMV1, YC, T1, 1, 6, 1)

C Get observed path input, YPATH, within preview interval at XCAR ft:

XCAR = X0 + U * TJI
CALL TRAJ(XCAR, XT, YT, YPATH)

CALL GMPRD (DUMV1l, GGV, S1, 1, 6, 1)
CALL GMPRD (DUMV1l, FFV, DYAERO, 1, 6, 1)

EP is the previewed path error at this preview point.

[eNeNe!

EP = Tl + S1 * DRTNOW + DYAERO - YPATH
TSUM = TSUM + EP * S1
SsuM SSUM + S1 * S1

Cumulative preview error calculation (unrelated to control)

Q00

EPSY2 = EPSY2 + EP * EP * (TFF ~ TSS) / NTF
50 CONTINUE

Cumulative preview error calculation (unrelated to control)

QOO0

EPSY = SQRT(EPSY2) / (TFF - TSS)

Optimal value - no delay yet.

(oS N®]

DRTORQ = -TSUM / SSUM + DRTNOW

Maximum steer bound set at STMAX (arbitrary)

Q00

IF (ABS (DRTORQ) .GT. STMAX) DRTORQ = STMAX * SIGN(1l.,DRTORQ)

Store torque history and corresponding times in DMEM.
Retrieve steer delayed by TAUMEM sec and return as
delayed driver torque control, DRTORQ.

QOO0

DO 60 J =1, 2
DO 60 I =1, 99
DMEM (101 - I,J) = DMEM(100 - I,J)
60 CONTINUE
DMEM(1,1) = DRTORQ
DMEM(1,2) = T
TTAB = T - TAUMEM
DO 70 I =1, 99
IJK = I
IF (DMEM(I + 1,2) .LT. TTAB .AND. DMEM(I,2) .GE. TTAB)
1 GO TO 90
70 CONTINUE
WRITE (*,80)TAUMEM,DRTORQ, X
80 FORMAT ('0', '****x*x TAUMEM PROBABLY TOO LARGE *****1,
& /,3(1X,G12.6))

Appendix B 65

c
C
c

STOP
90 DRTORQ = 0.0
IF(T .GE. TAUMEM) DRTORQ = DMEM(IJK, 1)

Save steer and time values for next calculation.

STLST = DRTORQ
TLAST = X
TILAST = X
RETURN

END

C % % %k % ok ok ok k ke dok ok ok Sk ok ok ke ok ke ok ok Sk ok ok ke ok ok ke ok ok ke ok ok ok ok ok ke ok ok sk ok ok gk ok ok ok ok ok ok ok ok ok ok ke ke ko ok ok
Chhkkkkkkhkkkkkhkhkkkkhkhkkhkhkhkhhdkkhkhkhkkhkkhkkhkkkkhkhkkkkhkkkkkkkhkkkkkkkkkkkxk

x* CHRYSLER Initialization Entry for the Driver Model *

DRIVGO: Intializes driver model vehicle-based parameters from COMMONs

Author and Modification Section
Author: C. C. MacAdam

Date written: 05/19/88

Written on: Mac II

Modifications:

QOQOOOQOQOQ0O0O0O000000000000000000000000000000000000

===========Algorithm Description
Purpose and use:

Error conditions:

References:

MacAdam, C.C. "Development of Driver/Vehicle Steering
Interaction Models for Dynamic Analysis," Interim
Technical Report, U.S. Army Tank Automotive Command
Contract No. DAAE(07-85-C-R069, The University of
Michigan Transportation Research Institute Report
No. UMTRI-86-41, July 1986.

MacAdam, C.C. "Application of an Optimal Preview Control
for Simulation of Closed-Loop Automobile Driving,"
IEEE Transactions on Systems, Man, and Cybernetics,
Vol. 11, June 1981.

MacAdam, C.C. "An Optimal Preview Control for Linear
Systems," Journal of Dynamic Systems, Measurement,
and Control, ASME, Vol. 102, No. 3, September 1980.

Machine dependencies: none

Called By: INDATA

Appendix B 66

Q00

SUBROUTINE DRIVGO

SAVE
C
C Variable Descriptions
C
C---Arguments passed: None
c
C
C---COMMON block8=======—=——c e e
C

include drvmod.inc
include pars.inc
include glbl.inc
include tire.inc
include vars.inc

Cc

C~--DRIV.BLK common block variables---—=——=-=—e oo
C

C CAF...total cornering stiffness of tires on left front susp (lb/rad)
C CAR...total cornering stiffness of tires on left rear susp (lb/rad)
C WHBS..wheelbase of vehicle (center-line of front & rear susp) (ft)

C WF....static load on front suspension (lb)

C WR....static load on rear suspension (lb)

C U..... initial velocity (ft/sec)

C

C---DRVST1.BLK common block variables

C

C GRaAV..... gravitational constant

C TICYCL...driver model sample time (sec)

C TSS......minimum preview time (sec)

C DMAX..... upper bound on front wheel angle steer (rad)

C XP,YP....x-y path coords(SAE) wrt inertial coords [input] (ft)

C TAUMEM...driver transport time dealy [input parameter] (sec)

C TFF...... driver model preview time [input parameter] (sec)

C RM....... vehicle mass (slug)

C A........ distance from c.g. to front suspension center-line (ft)

C B........ distance from c.g. to rear suspension center-line (ft)

C RI....... total vehicle yaw inertia (slug-ft)

C PSIO..... current yaw angle reference value (rad)

C NTF...... number of points in the preview time interval

C NP....... number of points in the x-y trajectory table

C TLAST....last time driver model calulated a steer value (sec)

C DFWLST...last value of steer calculated by driver model (rad)

C TILAST...last sample time driver model calulated a steer value (sec)
C DMEM..... 2-dim array (time & steer history) used in delay calculat'n
C XT,YT....transformation of XP,YP in vehicle body axes (ft)

C

C---Local variables——=—=—==mm oo
Cc

C A..... distance from c.g. to front suspension center-line (ft)

C B..... distance from c.g. to rear suspension center-line (ft)

C WGHT..total static weight on front and rear suspsensions (1b)

C RM....total static mass (slug)

C DFW...steer angle of front tires [or average] (rad)

Appendix B 67

c
C---Functions and subroutines-----------------------———————————— oo
C

EXTERNAL TRANS

============Process Block

QOO0

WGHT = WEIGHT

B = WRATIO * WB / 12.

A = (1. - WRATIO) * WB / 12.
RM = WGHT / GRAV

WHBS = A + B

WF = WGHT * B / WHBS

WR = WGHT * A / WHBS

RI = A *B * RM

RI = I22 / 12.

Q
o

Initial Tire Cornering Stiffnesses for Driver Model (lb/rad):
(£lip sign from SAE convention to positive values here)

QOO0

CAF = 0.0
CAR = 0.0
DO 30 NAXLE = 1, 2
DO 20 NSIDE =1, 2
CALF = 0.0
DO 10 NPOWER = 1, 4
CALF = CALF
1 + CALFA (NPOWER,NAXLE) * FZ(NAXLE,NSIDE) ** (NPOWER-1)
10 CONTINUE
IF (NAXLE .EQ. 1) CAF = CAF - 0.5 * CALF
IF (NAXLE .EQ. 2) CAR = CAR - 0.5 * CALF
20 CONTINUE
30 CONTINUE

Speed in ft/sec:

OO0

U =V * KMHMPH * 88. / 60.

Call TRANS to Calculate Transition Matrix

[eNeNeNe!

CALL TRANS

Q

RETURN
END

C***
C***

**x* CHRYSLER Initialization Entry for the Driver Model **x*

DRIVGT: Intializes driver model vehicle-based parameters from COMMONs

Author and Modification Section

QOQO0O00O00n0n

Author: C. C. MacAdam

Appendix B 68

Date written: 01/30/89
Written on: Mac II

Modifications:

Algorithm Description
Purpose and use:

Error conditions:

References:

MacAdam, C.C. "Development of Driver/Vehicle Steering
Interaction Models for Dynamic Analysis," Final
Technical Report, U.S. Army Tank Automotive Command
Contract No. DAAE07-85-C-R069, The University of
Michigan Transportation Research Institute Report
No. UMTRI-88-53, December 1988.

MacAdam, C.C. "Application of an Optimal Preview Control
for Simulation of Closed-Loocp Automobile Driving,"
IEEE Transactions on Systems, Man, and Cybernetics,
Vol. 11, June 1981.

MacAdam, C.C. "An Optimal Preview Control for Linear
Systems," Journal of Dynamic Systems, Measurement,
and Control, ASME, Vol. 102, No. 3, September 1980.

Machine dependencies: none

Called By: INDATA

QOO0 0000000000000000000000000000

SUBROUTINE DRIVGT

SAVE
C
C============Variable Descriptions
C
C---Arguments passed: None
C
C
C===COMMON bloCkS=======m e o e e e
c
include drvtor.inc
include pars.inc
include glbl.inc
include tire.inc
include vars.inc
C

C---DRIV.BLK common block variableg=====-===-—-—-mmmmm e

Appendix B 69

CAF...tota
CAR...tota
WHBS. .whee
WF....stat
WR....stat
U..... init

1 cornering stiffness of tires on left front susp (lb/rad)
1 cornering stiffness of tires on left rear susp (lb/rad)
lbase of vehicle (center-line of front & rear susp) (ft)
ic load on front suspension (1lb)

ic load on rear suspension (lb)

ial velocity (ft/sec)

---DRVST1.BLK common block variables

TLAST....

TILAST...

gravitational constant

..driver model sample time (sec)

minimum preview time (sec)
upper bound on front wheel angle steer (rad)

..X-y path coords(SAE) wrt inertial coords [input] (£ft)
..driver transport time dealy [input parameter] (sec)

driver model preview time [input parameter] (sec)

vehicle mass (slug)

distance from c.g. to front suspension center-line (ft)
distance from c.g. to rear suspension center-line (ft)
total vehicle yaw inertia (slug-ft)

current yaw angle reference value (rad)

number of points in the preview time interval

number of points in the x-y trajectory table

last time driver model calulated a steer value (sec)

last value of steer calculated by driver model (rad)

last sample time driver model calulated a steer value (sec)
2-dim array (time & steer history) used in delay calculat'n

..transformation of XP,YP in vehicle body axes (ft)

---Local variables--------=-—————— -

QOO0 000000000000000000000
=
é
Jed

C A..... dist
C B..... dist
C WGHT. .tota
C RM....tota
C DFW...stee

C---Functions
C

ance from c.g. to front suspension center-line (ft)
ance from c.g. to rear suspension center-line (ft)

1l static weight on front and rear suspsensions (lb)
1 static mass (slug)

r angle of front tires [or average] (rad)

and subroutines-==-—=——=—-—mmm e

EXTERNAL TRANS

C
C
C
C============Process Block
o]
o]
WGHT = WEIGHT
B = WRATIO * WB / 12.
A = (1. - WRATIO) * WB / 12.
RM = WGHT / GRAV
WHBS = A + B
WF = WGHT * B / WHBS
WR = WGHT * A / WHBS
C RI = A *B * RM
RI = 122 / 12.
STMAX = 1000.
C

Appendix B

70

c
c
c

QO

[eEeNeNe?!

Q

AhkkhkkAkkhkkkAkkhkkhkhkhkkkkhkhkkhkhkhkhkhkkhkhkhkkhkhkkkhkkkhkhkhkkhkhkkhkkkhkhkhkkkkhkkhkkkhkkkkkkkkxxk

KRKK K KKK KKK KKK AR AR KAk Ak Ak kA Ak kA kkhkhkkhkhkhkkhkhkkkhkhkhkkkhkhkkkkkkkkkkxk

Initial Tire Cornering Stiffnesses for Driver Model (lb/rad):
(flip sign from SAE convention to positive values here)

CAF = 0.0
CAR = 0.0
DO 30 NAXLE = 1, 2
DO 20 NSIDE =1, 2
CALF = 0.0
DO 10 NPOWER = 1, 4
CALF = CALF
1 + CALFA (NPOWER,NAXLE) * FZ (NAXLE,NSIDE) ** (NPOWER-1)
10 CONTINUE
IF (NAXLE .EQ. 1) CAF
IF (NAXLE .EQ. 2) CAR
20 CONTINUE
30 CONTINUE

CAF - 0.5 * CALF
CAR - 0.5 * CALF

Speed in ft/sec:

U=V * KMHMPH * 88. / 60.

Call TRANS to Calculate Transition Matrix
CALL TRANST

RETURN
END

SUBROUTINE ECHO

* Echo parameter values to file to verify that the input was
* interpreted correctly

include drvmod.inc
include GLBL.inc
include PARS.inc
include MNVR.inc
include SUSP.inc
include TIRE.inc
include AERO.inc
include PRNT.inc
include VARS.inc
CHARACTER*32 FNECHO
CHARACTER*24 TIMEDT
LOGICAL ISIT

C Get name of echo file from user. Delete old file if it exists.

FNECHO = ' '
WRITE(*, '(A\)') ' Name of (optional) parameter echo file: '
READ(*, '(A)') FNECHO
IF (FNECHO .EQ. ' ') THEN

RETURN
ELSE

INQUIRE (FILE=FNECHO, EXIST=ISIT)

IF (ISIT) THEN

OPEN (IECHO, FILE=FNECHO)

Appendix B 71

CLOSE (IECHO, STATUS='DELETE')
END IF
OPEN (IECHO, FILE=FNECHO, STATUS='NEW')
END IF

WRITE (IECHO, ' (A/) ")
&' ECHO FROM WIND/HANDLING SIMULATION, V1.4'

WRITE (IECHO, '(A, A/)') ' Input file: ', FNREAD
CALL TIMDAT (TIMEDT)
WRITE (IECHO, '(A,A/)') ' Run made at ', TIMEDT
WRITE (IECHO, '(A,A/)') ' TITLE: ', TITLE
WRITE (IECHO, '(A/) ")
& ' GENERAL SIMULATION INFORMATION:'
IF (UNITS .EQ. 'E' .OR. UNITS .EQ. 'e') THEN
WRITE (IECHO, ' (TS5, A)') 'English Units'
ELSE
WRITE (IECHO, ' (TS5, A)') 'Metric Units'
END IF
WRITE (IECHO, '(T5,A,A)') 'Output format: ', FRMT

WRITE (IECHO, ' (TS5, ''V, TEND, DT:'',T30, 3Gl4.5)') Vv, TEND, DT
IF (IPRINT .EQ. 1) THEN
WRITE (IECHO, '(T5,A)') 'Write to file every time step'

ELSE
WRITE (IECHO, '(TS5,A,I2,A)') 'Write to file every ', IPRINT,
& ' steps'
END IF
WRITE (IECHO, ' (TS5, ''KSYWND, AIRHO:'', T30, 2G14.5)'")

1 KSYWND, AIRHO

IF (WINDKY .GE. 0) THEN
WRITE (IECHO, ' (/A/) ') ' WIND MAGNITUDE TIME HISTORY INPUT:'

DO 32, J=1, WINDKY
WRITE (IECHO, '(3X, 2G14.5)') TWIND(J), WINMAG(J)
32 CONTINUE

ELSE

WRITE (IECHO, '(/A/) ")
& ' Wind input defined by user function FWIND'
ENDIF

IF (NSTEER .EQ. 0) THEN
WRITE (IECHO, '(/A/)') ' SINUSOIDAL STEER:'
WRITE (IECHO, ' (T8, ' '"TSWBGN, TSWEND:'',T30,2G14.5)') TSWBGN,

& TSWEND

WRITE (IECHO, ' (T8, ' 'SWSHFT, SWAMPL:'',T30,2G14.5)"') SWSHFT,
& SWAMPL

WRITE (IECHO, ' (T8, ' 'TSWPRD, SWPHSE:'',T30,2Gl14.5)') TSWPRD,
& SWPHSE

ELSE IF (NSTEER .LT. 0 .AND. NSTEER .GT. =-100) THEN
WRITE (IECHO, '(/A/)') ' DRIVER MODEL INPUT:'
WRITE (IECHO, ' (TS5, ' 'DRLAG, DRPREV:'',T30,2G1l4.5)"') TAUMEM, TFF
WRITE (IECHO, '(/T5,A/)') 'X-Y path coordinates:'
DO 35, J=1, ABS (NSTEER)

WRITE (IECHO, '(3X, 2G14.5)') XPDR(J), YPDR(J)
35 CONTINUE

ELSE

IF (NEQN .EQ. 11) THEN

Appendix B 72

WRITE (IECHO, '(/A/) ') ' STEER TABLE - time(sec), sw{deg):'
DO 40, J=1, ABS (NSTEER)
WRITE (IECHO, '(3X, 2Gl14.5)') XPNT(J), YPNT(J)

40 CONTINUE
ELSE
IF (NSTEER .GT.-100) THEN
WRITE (IECHO, ' (/A/)') ' STEER TORQUE TABLE - time(sec), storg
& (in-1lbs):'

DO 42, J=1, ABS(NSTEER)
WRITE (IECHO, '(3X, 2G14.5)') XPNT(J), YPNT(J)

42 CONTINUE
ENDIF
ENDIF
END IF
C
C Total vehicle and sprung mass parameters:
Cc
WRITE (IECHO, ' (/A/)') ' TOTAL VEHICLE AND SPRUNG MASS PARAMETERS:'
WRITE (IECHO, ' (TS, ''WEIGHT, SPWGHT, WRATIO:'', T30, 3Gl4.5)")
1 WEIGHT, SPWGHT, WRATIO
WRITE (IECHO, ' (TS5, ''IXSCG, IYS, Izz, IXZ:'', T30, 4Gl4.5)"')
1 IXSCG, IYS, Izz, IX2
WRITE (IECHO, ' (TS5, ''WB, WHLRAD, HCGTTL:'', T30, 3Gl4.5)")
1 WB, WHLRAD, HCGTTL
C
C Aerodynamic parameters:
C
WRITE (IECHO, '(/A/) ') ' AERODYNAMIC PARAMETERS:'
WRITE (IECHO, ' (TS5, ''AREA:'', T30, Gl14.5)') AREA
WRITE (IECHO, ' (T5, ''KY, KR, KN:'', T30, 3Gl4.5)') KY, KR, KN
WRITE (IECHO, ' (TS5, ''CLO, KL:'', T30, 2Gl14.5)') CLO, KL
WRITE (IECHO, ' (TS5, ''CM0, KM:'', T30, 2Gl14.5)') CMO, KM
WRITE (IECHO, ' (T5, ''CDO, KD:'', T30, 2Gl4.5)') CDO, KD
C
C Steering system:
Cc
WRITE (IECHO, '(/A/)') ' STEERING SYSTEM:' .
WRITE (IECHO, ' (TS, ''ISS, KSC, DLASH, KSL:'', T30, 4Gl14.5)"') ISS,
& KSC, DLASH, KSL
WRITE (IECHO, ' (TS, ''GR, XTRAIL, CSS, SWSTOP:'', T30, 4Gl14.5)') GR,
& XTRAIL, CSS, SWSTOP
WRITE (IECHO, ' (TS, ''CBOOST, SSKEY, CFSS:'', T30, 3G14.5)"')
1 CBOOST, SSKEY, CFSS
C
IF (KINEM) THEN
WRITE (IECHO, '(/Aa)")
& ' NKINEM <> 0 -- Use full kinematics model'
ELSE
WRITE (IECHO, '(/A)")
& ' NKINEM = 0 -- Use simple kinematics model'
END IF
c
IF (BEAM) THEN
WRITE (IECHO, '(/A)') ' BEAM <> 0 ~-- Beam rear suspension’'
ELSE
WRITE (IECHO, '(/A)') ' BEAM = (0 -- Independent rear suspension'’
END IF
Cc

Appendix B 73

DO 80, NAXLE=1l, 2

C
C Suspension and tire data:
c
WRITE (IECHO, '(/'' AXLE NUMBER'', I2,
1 //T5, ''Suspension and tire data'')') NAXLE
WRITE (IECHO, ' (T7, ''TRACK, HOROLC:'', T30, 2G14.5)")
1 TRACK (NAXLE), HOROLC (NAXLE)
WRITE (IECHO, ' (T7, ''KZ, KAUX:'', T30, 2G14.5)"')
1 KZ (NAXLE) , KAUX (NAXLE)
WRITE (IECHO, ' (T7, ''CZJNCE, CZRBND:'', T30, 2G14.5)"'")
1 CZJNCE (NAXLE) , CZRBND (NAXLE)
WRITE (IECHO, '(T7, ''ALFAOQ, GAMMAO:'', T30, 2Gl14.5)")
1 ALFAQ (NAXLE), GAMMA(Q (NAXLE)
C
C Kinematic coefficients:
C
IF (KINEM) THEN
WRITE (IECHO, ' (/T5,A) ') 'Kinematic coefficients:'
WRITE (IECHO, ' (T7, A, T30, 2Gl14.5)"')
& 'YROLCF:', YROLCF (NAXLE,1l), YROLCF (NAXLE,2)
WRITE (IECHO, '(T7, A, T30, 2Gl14.5)")
& 'HROLCF:', HROLCF (NAXLE,1l), HROLCF (NAXLE,2)
IF (BEAM .AND. NAXLE .EQ. 2) THEN
WRITE (IECHO, ' (T7, A, T30, Gl14.5)"'")
& 'Rear axle roll steer: ', CSROLL
ELSE
WRITE (IECHO, ' (T7, A, T30, 2Gl14.5)"')
& 'CSZ: ', CSZ(NAXLE,1l), CSZ(NAXLE,?2)
END IF
WRITE (IECHO, ' (T7, A, T30, 2Gl4.5)"')
& 'CCz: ', CCZ(NAXLE,1l), CCz(NAXLE,2)
END IF
C
c Compliance coefficients:
C
WRITE (IECHO, ' (/T5,A) ') 'Compliance coefficients:'
WRITE (IECHO, ' (T7, ''CSFY, CSMz, CCFY:'', T30, 3Gl14.5)"')
1 CSFY(NAXLE), CSMZ (NAXLE), CCFY (NAXLE)
C
C Tire coefficients (positive stiffness input values assumed):
C
WRITE (IECHO, ' (/TS5,A) ') 'Tire stiffness coefficients:'
WRITE (IECHO, ' (T7, ''CALFA:'', Tl6, 4Gl14.5)"')
1 (CALFA (J,NAXLE) ,J=1, 4)
WRITE (IECHO, '(T7, ''CGAMMA:'', T1l6, 4Gl14.5)'")
1 (CGAMMA (J,NAXLE) ,J=1, 4)
WRITE (IECHO, ' (T7, ''CALIGN:'', Tl6, 4Gl14.5)"')
1 (CALIGN (J,NAXLE) ,Jd=1,4)
WRITE (IECHO, '(T7, ''KTIRE:'', T1l6, G14.5)') KTIRE (NAXLE)
80 CONTINUE
C
C
C Aerodynamic Center of Pressure, Vehicle Mass Center, & Neutral Steer
C Point Calculations:
C
Fz(1l,1) = .5 * WEIGHT * WRATIO
Fz(1,2) = .5 * WEIGHT * WRATIO

Appendix B 74

Fz(2,1) .5 * WEIGHT * (1. - WRATIO)

o

FZ(2,2) .5 * WEIGHT * (1. - WRATIO)
c
CAl = POLY4(CALFA(1,1), FZ(1,1))
CA2 = POLY4(CALFA(1l,2), FZ(2,1))
c
AA = WB * (1. - WRATIO)
BB = WB * WRATIO
c
REDUC1 = 1.0
REDUC2 = 1.0
c
C Check for steering system usage:
c
IF(SSKEY .NE. 0.0) THEN
c
C Pneumatic + Mechanical trail, total steering system compliance:
c
XP = POLY4(CALIGN(1,1), Fz(1,1)) / POLY4(CALFA(1l,1), F2(1,1))
XPM = XP + XTRAIL
c
C Power Boost (cboost is percentage/100 contribution by pump) :
C cboost = 0 -> no power steering boost
c
CB = 1. - CBOOST
c
C Reduction factor to reflect presence of steering system
C for a non-rolling vehicle: (include both tires => 2.0 factor)
C
REDUC1 = KSS / (KSS + 2.0 * CAl * XPM * CB)
c
C End of steering system-related parameter calculations.
C
ENDIF
c
C Reduction factor to reflect rolling & tire camber:
C
C Serial spring (suspension & tire):
C
RKFP = 1. / (1. / K2(1) + 1. / KTIRE(1))
RKRP = 1. / (1. / Kz(2) + 1. / KTIRE(2))
c
C Roll stiffness of vehicle:
c
RKPHI = (RKFP * (TRACK(l))**2 + RKRP * (TRACK(2))**2)/ 2./57.3
& + KAUX (1) + KAUX(2)
c
REDUC2 = 1.0 - (HCGTTL * WEIGHT /(RKPHI * FZ(1l,1)) + CCFY(l)) *
& POLY4(CGAMMA(1,1), F2(1,1)) + HCGTTL * WEIGHT * TRACK(l) /
& (2. * RKPHI * 57.3)
& * CAl / Fz(l,1) * CSZ(1l,1) + CAl * CSFY(1l) -
& POLY4(CGAMMA(1,1), F2(1,1)) * HCGTTL * WEIGHT * TRACK(l) /
& (2. * RKPHI * 57.3 * Fz(1,1)) * CCz(1,1)
c
C TOTAL Front Reduction:
c
REDUCF = REDUC1l * REDUC2
c

Appendix B 75

C Effective front tire cornering stiffness following reductions:
© CAl = CAl * REDUCF
g Rear Reduction due to aligning torque compliance:
C (need to add rear roll ster effect still) 4/24/89
© XPR = POLY4 (CALIGN(1,2), FZ(2,1)) / POLY4(CALFA(1l,2), FZ(2,1))
REDUC3 = 1.0 / (1.0 + CSMZ(2) * CA2 * XPR)
g Rear Reduction due to camber & Fy compliances:
© REDUC4 = 1.0 - CCFY(2) * POLY4(CGAMMA(1l,2), Fz(2,1))
& + CA2 * CSFY(2)
g TOTAL Rear Reduction:
¢ REDUCR = REDUC3 * REDUC4
g Effective rear tire cornering stiffness following reductions:
¢ CA2 = CA2 * REDUCR
g c.g. to neutral steer pt (<0 for understeer, or, nsp behind c.g.)
¢ XCGNS = (AA * CAl - BB * CA2) / (CAl+CA2)
g Center of Pressure (CP) ahead of mid-wheelbase:
‘ XL2CP = KN / KY * WB
g c.g. ahead of mid-wheelbase:
© XL2CG = (BB - AA) / 2.
g mid-wheelbase pt to neutral steer pt (>0 => ahead of L/2):
¢ XL2NS = XL2CG + XCGNS
c

C neutral steer pt to center of pressure (>0 => cp ahead of nsp):
XNSCP = XL2CP - XL2CG - XCGNS

Understeer gradient (deg/g):

[eNeNe!

UNDSTR = FzZ(1,1) / CAl - FZ(2,1) / CA2

Passive Wind Sensitivity (Rss & its approx due to constant crosswind)
of 10 degrees of aero sideslip:
First calculate crosswind force due to 1 degree of wind sideslip:

QOO0

Uu =V * 88. / 60.
FA = 0.5 * AIRHO * UU**2 * KY * AREA

WSENS = Rss (due to 1 degree of crosswind)
(vehicle reference area differences accounted for in FA)

QOO0

Appendix B 76

eNoNe!

WSENS = 1. / (57.3 * 2.* CAl * CA2 / (CAl + CA2) * (AA + BB)**2 /
& (12**2) / UU + WEIGHT / 32.2 * UU * (-XCGNS/12.)) * XNSCP / 12.
& * 57.3 * FA

Simplified wind sensitivity (WSIMP):

WSIMP = 1. / (WEIGHT / 32.2 * UU * (-XCGNS / 12.)) *
& XNSCP / 12, * 57.3 * FA

WRITE (IECHO, ' (/T5,A) ') '*** Summary Calculations **x*!
WRITE (IECHO, ' (/T5, ''Front C-alpha (lb/deg):'', T60, F10.3)') CAl
WRITE (IECHO, ' (TS, ''Rear C-alpha (lb/deg):'', T60, F10.3)') CA2
IF(SSKEY .NE. 0.0) THEN
WRITE (IECHO, ' (T5, ''Pneumatic & mechanical trail (im):'', T60,
& F10.3)"') XPM
WRITE (IECHO, ' (T5, '‘'Steering system stiffness (in-lb/deg):'', T60,
& F10.3)') KSS
WRITE (IECHO, ' (T5, ''Steering Syst Compl Reduction Factor:'', T60,
& F10.3)') REDUC1
ENDIF
WRITE (IECHO, ' (T5, ''Front Rolling & Camber Reduction Factor:'?',
& T60, F10.3) ') REDUC2
WRITE (IECHO, ' (TS, ''Total Front C-alpha Reduction Factor:'', T60,
& F10.3)') REDUCF
WRITE (IECHO, ' (TS5, ''Rear Camber & Fy Compl Reduction Factor:'?,
& T60, F10.3)') REDUC3
WRITE (IECHO, ' (TS, ''Rear Align Torque Compl Reduction Factor:'?,
& T60, F10.3)') REDUC4
WRITE (IECHO, ' (TS5, ''Total Rear C-alpha Reduction Factor:'', T60,
& F10.3)') REDUCR
WRITE (IECHO, ' (T5, ''Understeer Gradient (deg/g):'"',
& Te0, F10.3)') UNDSTR
WRITE (IECHO, ' (T5, ''Distance from c.g FORWARD to neutral steer pt
& (in), XCGNS:'', T70, F10.3)') XCGNS
WRITE (IECHO, ' (T5, ''Distance from WB/2 FORWARD to center of
& pressure (in), XL2CP:'', T70, F10.3)') XL2CP :
WRITE (IECHO, ' (T5, ''Distance from WB/2 FORWARD to c¢.g (in),
& XL2CG:'', T70, F10.3)') XL2CG
WRITE (IECHO, ' (TS5, ''Distance from WB/2 FORWARD to neutral
& steer pt (in), XL2NS:'', T70, F10.3)') XL2NS
WRITE (IECHO, ' (T5, ''Distance from neut steer pt FORWARD to
& cent of press (in), XNSCP:'', T70, F10.3)') XNSCP
WRITE (IECHO, ' (T5, ''Wind Sensitivity (deg/s of yaw rate
& / deg of wind sideslip), WSENS:'', T70, F10.3)') WSENS
WRITE (IECHO, ' (T5, ''SIMPLIFIED (less accurate) Wind Sensitivity
& Measure, WSIMP:'', T70, F10.3)') WSIMP

CLOSE (IECHO)
RETURN
END

% % % % %k Kk %k k %k Kk Kk Kk K Kk %k Kk Kk %k Kk Kk Kk Kk Kk k Kk k %k %k %k %k %k Kk Kk Kk Kk %k %k %k %k %k %k %k %k %k %k %k Kk %k %k % % % %k %k %k Kk % %k % %k %k %k %k k % &k %k

SUBROUTINE FDAMP (VZ, VROLL, VPITCH, FD)

AAEKAKKAKAKAKAAA KKK AR AR ARk Ak kA khkhkhkhkkhkkkhkkhkhkkkhkkkhkkkhkkhkkkhkhkikkhkkkkkkxk

C

SUBROUTINE FDAMP RETURNS FD, THE DAMPING FORCE ACTING AT EACH WHEEL
~— ACCOUNTING FOR SEPARATE JOUNCE AND REBOUND COEFFICIENTS.
POLARITY: NET JOUNCE VELOCITY ==> POSITIVE FD

--------- NET REBOUND VELOCITY ==> NEGATIVE FD

Appendix B 77

IMPLICIT REAL (K,M)
REAL FD(2,2)

include SUSP.inc

DO 20, NAXLE = 1, 2
DO 10, NSIDE = 1, 2
VDAMP = VZ - XAXLE (NAXLE) * VPITCH
1 + .5 * TRACK(NAXLE) * VROLL * (-1)**NSIDE
IF (VDAMP .GT. 0.0) THEN
FD (NAXLE,NSIDE) = CZJNCE (NAXLE) * VDAMP
ELSE
FD (NAXLE,NSIDE) = CZRBND (NAXLE) * VDAMP
END IF
10 CONTINUE
20 CONTINUE

RETURN
END
R R R R g T T E e ST

SUBROUTINE FUNCTN(T, Y, YP)
KKK KKKK KKK KKK KRR KRR KRR KRR A KAk R kAR kR Ik kkkkkkkkkkkkkkkkkkkkkkkk k% %
SUBROUTINE FUNCTN DEFINES THE EQUATIONS OF MOTION FOR THE 5 D.O.F
VEHICLE + THE 2 D.O.F STEERING SYSTEM (A SECOND ORDER SYSTEM FOR
THE STEERING WHEEL INERTIA/COLUMN AND FIRST-ORDER SYSTEM FOR THE
LOWER WHEEL ROTATIONAL MOTION (NO WHEEL INERTIA):
YP(I) = F(Y, T), WHERE Y, YP ARE VECTORS, AND YP(I) = DY(I)/DT.
STATE-VECTOR Y AND T ARE PASSED TO FUNCTN, AND VECTOR YP RETURNED.

QOO0 00

SAVE VSW1, VSWw2
IMPLICIT REAL (K,M)
REAL IXSRA, Y(13), YP(13)

include GLBL.inc

include PARS.inc

include SUSP.inc

include AERO.inc

include VARS.inc

include TIRE.inc

DATA VSW1, VSW2 /2*0.0/

DATA ALF1l, ALF2, ALF1PR, ALF2PR /4 * 0.0/

CONVERT VECTOR Y INTO NAMES

QOO0

XG = Y(1)
YG = Y(2)
z Y(3)
ROLL Y (4)
PITCH = Y(5)
YAW Y (6)
VROLL Y (7)
VPITCH = Y(8)
VYAW Y (9)
BETA Y (10)
N4 Y (11)

Appendix B 78

C Steering System STATE Variables:

IF (NEQN .EQ. 13) THEN
VSW = Y(12)
SW = Y(13)

ENDIF

GET CURRENT STEERING WHEEL ANGLE OR STEERING WHEEL TORQUE
CONTROL INPUTS: (depending upon inclusion, or not, of steering sys)

OO0

CONTRL = STEER(T)

IF (NEQN .EQ. 11) THEN
SW = CONTRL

ENDIF

IF (NEQN .EQ. 13) THEN
STORQ = CONTRL
ENDIF

C CALCULATE CURRENT GEOMETRY AND FORCES

CALL ROLLAX(ROLL, YROLAX, HROLAX, IXSRA)

CALL FDAMP (VZ, VROLL, VPITCH, FD)

CALL WHEELZ(Z, ROLL, PITCH)

CALL TIRES (BETA, V, VYAW, ROLL)

CALL AIRACT(T, YAW, BETA, VYAW)
EQUATIONS OF MOTION

(I) ROLL MOMENT:

QOO0

MSHR = SPMASS * HROLAX
SUMFY =. SUM(FY) + FYA
SUMMZ SUM(MZ) + MZA + XAXLE (1) *(FY(1,1) + FY(1,2))
& + XAXLE (2) *(FY(2,1) + FY(2,2))

AROLL

(SPWGHT * YROLAX - IXZ / 122 * SUMMZ + MXA
- KROLL * ROLL - MSHR / MASS * SUM(FY)

+ .5 * TRACK(1l)*(FD(1,1) - FD(1,2))

+ .5 * TRACK(2)*(FD(2,1) - FD(2,2)))

/ (IXSRA - MSHR * MSHR / MASS - IXZ*IXZ/I122)

R R

(ITI) LATERAL FORCE:

[oNoNe]

VBETA = (SUMFY - MSHR * AROLL) / (MASS * V) - VYAW

(III) YAW MOMENT:

[eNeoNe]

AYAW = (SUMMZ - IXZ * AROLL) / IZZ

(IV) VERTICAL FORCE:

[eNeNe]

AZ = (WEIGHT + FZA - SUM(FZ)) / SPMASS

(V) PITCH MOMENT:

QOO0

APITCH = (XAXLE (1) * (KZAXLE(l) * (Z - XAXLE(l) * PITCH)
& + FD(1,1) + FD(1,2))

Appendix B 79

5]

+ XAXLE(2) * (KZAXLE(2) * (2 - XAXLE(2) * PITCH)

& + FD(2,1) + FD(2,2)) + MYA) / IYS
C
C
C
C (VI) POWER-STEERING SYSTEM (Lash & Coulomb Friction included):
C
IF (NEQN .EQ. 13) THEN
C
XP1 = - POLY4(CALIGN(1,1), FZ(1,1)) / POLY4(CALFA(1l,1), FZ(l,1))
XP2 = - POLY4(CALIGN(1,1), Fz(1,2)) / POLY4(CALFA(1l,1), FZ(1,2))
XP = (XPl + XP2) * 0.5
CAl = - POLY4(CALFA(1l,1), F2(1,1))
CA2 = - POLY4(CALFA(1l,1), FZ(1,2))
CA = (CAl + CA2) * 0.5
XPM = XP + XTRAIL
Cc
C Power Boost (cboost is percentage/100 contribution by pump) :
C cboost = 0 -> no power steering boost
C
CB = 1. - CBOOST
EXPR = 1. + 2. * XPM * CB * (CA / TODEG) / KSS
ASW = (STORQ - KSS / (GR**2) * ((1. - 1. / EXPR) * SW - 2. * XPM
& * CA * GR * CB * (BETA + XAXLE(l) * VYAW / V) / (EXPR * KSS)))
& / ISS - CSS * VSW / ISS
C
ASW = ASW * TODEG
c
C Update column "wrap-up" torque, mmcol = m - iss * asw:
C (measured in tests)
C
MMCOL = STORQ - ISS * ASW / TODEG
C
Cc
C Add coulomb friction and check for polarity change:
Cc
IF (ABS(VSW) .GT. 0.01 .AND. VSW2 .NE. 0.0) THEN
ASW = ASW - SIGN((CFSS / ISS * TODEG), VSW)
IF(SIGN(l1.,VSW) .NE. SIGN(l.,VSWl1l) .AND.
& SIGN(l1.,VSW) .EQ. SIGN(1l.,VSW2)) THEN
VSW = 0.0
ASW = 0.0
VSW1 = 0.0
VSW2 = 0.0
Y(14) = 0.0
ENDIF
ELSE
IF (ABS (ASW) .GT. (CFSS / ISS * TODEG)) THEN
ASW = ASW - SIGN((CFSS / ISS * TODEG), ASW)
ELSE
ASW = 0.0
ENDIF
ENDIF
c

Appendix B 80

Q00

[eNeNe!

a

aQOQ0O0

[oNe NP

VSW1
VSW

VSW2
VSW1

]

Check for violation of steering wheel stop (limit) setting:

IF (ABS (SW) .GT. SWSTOP) THEN
SW = SIGN(SWSTOP, SW)

vsSw = 0.0
ASW = 0.0
ENDIF

Front Wheel Angles:

FW(l) = SW / GR / (1. + (XP1 + XTRAIL) * CB * CAl / TODEG / (KSS
& / 2.)) + (XP1 + XTRAIL) * CAl * CB / (KSS / 2.) * (BETA +

& XAXLE(1) * VYAW / V) / (1. + (XP1 + XTRAIL) * CB * CAl / TODEG
& / (KSS / 2.))

FW(2) = SW/ GR / (1. + (XP2 + XTRAIL) * CB * CA2 / TODEG / (KSS
& / 2.)) + (XP2 + XTRAIL) * CA2 * CB / (KSS / 2.) * (BETA +

& XAXLE(l) * VYAW / V) / (1. + (XP2 + XTRAIL) * CB * CA2 / TODEG
& / (KSS / 2.))

Include the lash (deg):

IF (ABS (DLASH) .GT. 0.001) THEN
ALF1PR = (BETA + XAXLE(l) * VYAW / V) * TODEG - FW(1)
IF (ABS (ALF1PR) .GT. DLASH) THEN
ALF1l = ALF1PR - SIGN(DLASH, ALF1PR)
FW(l) = BETA + XAXLE(l) * VYAW / V - ALFl / TODEG
ELSE
FW(l) = BETA + XAXLE(l) * VYAW / V
ENDIF

ALF2PR = (BETA + XAXLE(l) * VYAW / V) * TODEG - FW(2)
IF (ABS (ALF2PR) .GT. DLASH) THEN
ALF2 = ALF2PR - SIGN(DLASH, ALF2PR)
FW(2) = BETA + XAXLE(l) * VYAW / V - ALF2 / TODEG
ELSE
FW(2) = BETA + XAXLE(l) * VYAW / V
ENDIF
ELSE
no lash: (to radians)

FW(l) = FW(1) / TODEG
FW(2) = FW(2) / TODEG

ENDIF

End of steering system calculations.

ENDIF

INERTIAL DISPLACEMENTS OF TOTAL CG:

Appendix B 81

VDIR = YAW + BETA
VXG = V * COS(VDIR)
VYG = V * SIN(VDIR)

LATERAL ACCELERATION OF TOTAL CG (W/O CONTRIBUTION OF ROLL-ACCEL.):

QOO

AY = (VYAW + VBETA) * V / G

Path curvature:

QOO0

RHO = (VBETA + VYAW) / V

Convert names into array YP

eNeXe]

YP (1) = VXG

YP (2) VYG

YP (3) vz

YP (4) VROLL
YP (5) VPITCH
YP (6) VYAW
YP (7) AROLL
YP (8) APITCH
YP(9) AYAW
YP (10) VBETA
YP(11) = AZ

Steering System STATE Variables:

Q00

IF (NEQN .EQ. 13) THEN
YP (12) = ASW
YP(13) VSW

ENDIF

Copy array Y into common block for use by driver model

QOO

Do 150, d =1, 13
YOUTDR(J) = Y (J)
150 CONTINUE

C
RETURN
END

ok ok K K ok ok kK ok ok ok K ok ok ok ok ok K ok K ok ok 3 ok ok ok ok K ok ok ok kK ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok K ok ok ok K ok k ok ok
FUNCTION FWIND (T)
SAVE

ARKKKAIKKKAA KK KKK A KR KRAAKR A KRR A AR AR Ak kA kK kkkkhkkhkkhkkkhkhkhkhkkhkhkhkhkkkkhkkhkkkkkkkdhkkxkx

C This function is an optional user-defined subroutine used to
C calculate or define a wind profile in lieu of entering time history
C wind profiles. It is called when the WINDKY parameter is entered as
C a negative integer; a positive entry for WINDKY forces a table
C look-up instead.
Cc
C Time, T, is passed to the subroutine; the wind magnitude, FWIND, is
C returned.
C
include GLBL.inc
c
C (user-defined code)

Appendix B 82

Current wind: random number generator passed through a first order
filter. This scheme makes the rms of the wind sensitive to the
integration step size. Currently "sized" for DT = 0.02 seconds.

* % * * Q)

DATA XX, YY, VvV, XL, YL, TL /6*0.0/

*

Set dc component of wind (mph):

* %

DC = 20.0
* TInitialize fwind filter:

IF(T .LE. 0.0) THEN

XX = RAN3(-1) ~ 0.5

CALL FILTER(T, XX, YY, Vv, XL, YL, TL)
ENDIF

XX = RAN3(1) - 0.5

CALL FILTER(T, XX, YY, Vv, XL, YL, TL)
FWIND = YY + DC

RETURN

END
Chhkkdkkkkkhhkhkhkhkhkhkhkhkhkkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkdkhhkhkhkkhkhkkkhxkxx

c***
C

C *** Matrix Product Subroutine ***

Cc

C GMPRD: Computes matrix product

============Author and Modification Section
Author: IBM Scientific Subroutine
Date written:
Written on:

Modifications: C. MacAdam

============Algorithm Description

Purpose and use: R = A B
Error conditions:
Machine dependencies: none

Called By: DRIVER

QOOQOQOO0OO000000000Q00000000000

SUBROUTINE GMPRD (A, B, R, N, M, L)

============Variable Descriptions

oo Ne]

Appendix B 83

C---Arguments passed:

C
C A..... N x M matrix
C B..... M x L matrix
C R..... N x L resultant matrix = A B product
C N..... integer row dimension of A
C M..... integer column dimension of A (or row dimension of B)
C L..... integer column dimension of B
c
DIMENSION A(N*M), B(M*L), R(N*L)
c
C---COMMON blocks=========—c— e cc e e
o]
o None
C
C---COMMON Variables-——-—=-—=—-=—m—me e e e
C
C None
C
C---Local variables—=—=—=——= e m e e
C
C IR, IK, M, K, L, IR, JI, J, N, IB, IK, etc integer counters
C
C---Functions and subroutines===-====c-ccmmcmmm e -
C
c None
C
C
C
C Process Block
c
IR =0
IK = -M
DO 10 K=1, L
IK=IK + M
DO 10 J =1, N
IR=1IR + 1
JI =J-N
IB = IK
R(IR) = 0.
DO10 I =1, M
JI =JI + N
IB=1IB +1
10 R(IR) = R(IR) + A(JI) * B(IB)
RETURN
END

R R T T T R T e
SUBROUTINE INDATA

% %k % %k %k Kk %k de d de Kk d de vk Kk d vk Kk de d vk Kk Kk Kk Kk Kk Kk k% Kk ek kK ke sk ke kK ke sk ke ke ks ks sk ek sk sk ke ke ki ok ok ok ki k ok ok ok ok ok
(1) Get file names from the user,

(2) connect the files to their Fortran i/o units,

(3) read the dataset from unit IREAD,

(4) echo the parameter values to unit IECHO,

(5) and, perform the necessary conversions of physical units.

oNe oo NeNe]

IMPLICIT REAL (K,M)
LOGICAL ISIT

Appendix B 84

o
C
c

C
c
C

c

CMD--Use NUMKEY=1 for Mac,

<)

Appendix B

Get input

100 WRITE(*,

R R

drvmod.inc
GLBL.inc
PARS.inc
MNVR.inc
SUSP.inc
TIRE.inc
AERO.inc
PRNT.inc

include
include
include
include
include
include
include
include

file name from user

WRITE(*,'(///A/A/A/A/A/RA)"')

' CHRYSLER-UMTRI CROSSWIND STABILITY PROJECT',
WIND / STEER SIMULATION - Version 1.4, April 1990',' ',

)
' Copyright (c) The Regents of The University of Michigan',
' 1987-1990, Ann Arbor, Michigan.

Y(A\) ")
READ (*, '(A)') FNREAD
INQUIRE (FILE=FNREAD, EXIST=ISIT)

IF (.NOT. ISIT) THEN

WRITE (*, '(A, A, A)'")
'" does not exist.
GO TO 100
END IF

All Rights Reserved.','

' Name of input file: '

' File "', FNREAD,

Try again.'

OPEN (IREAD, ERR=100, STATUS='OLD', FILE=FNREAD)

Read general simulation and maneuver parameters:

READ (IREAD, ' (//A)') TITLE
READ (IREAD, ' (A) ') UNITS
READ (IREAD, ' (A) ') FRMT
DO 3 I=1,10
IF (FRMT(I:I) .NE. '
FRMT = FRMT(I:)
GO TO 4
END IF

') THEN

3 CONTINUE
4 CONTINUE

5

2 for IBM PC

IF (FRMT(:1) .NE. '(') THEN
NUMKEY = 1
FRMT = 'Binary'
ELSE
NUMKEY = 5§
END IF
READ (IREAD, 530) V, TEND, DT
READ (IREAD, 520) IPRINT
READ (IREAD, 530) KSYWND, AIRHO
READ (IREAD, 520) WINDKY
VWIND = 0.0
IF (WINDKY .GE. 0) THEN

DO 5 J = 1, WINDKY

READ (IREAD, 530) TWIND(J), WINMAG(J)

CONTINUE

85

ELSE
VWIND = FWIND (T)

ENDIF
c
READ (IREAD, 520) NSTEER
IF (NSTEER .EQ. 0) THEN
READ (IREAD, 530) TSWBGN, TSWEND
READ (IREAD, 530) SWSHFT, SWAMPL
READ (IREAD, 530) TSWPRD, SWPHSE
ENDIF
IF (NSTEER .LT. 0 .AND. NSTEER .GT. -100) THEN
NP = -NSTEER
CALL DRIVEL (SW)
ENDIF
IF (NSTEER .GT. 0) THEN
DO 10, J=1, ABS(NSTEER)
READ (IREAD, 530) XPNT(J), YPNT(J)
10 CONTINUE
ENDIF
c
C Total vehicle and sprung mass parameters:
C
READ (IREAD, 530) WEIGHT, SPWGHT, WRATIO
READ (IREAD, 540) IXSCG, IYS, I2Z, IXZ
READ (IREAD, 530) WB, WHLRAD, HCGTTL
C
C Aerodynamic parameters:
C
READ (IREAD, 530) AREA
READ (IREAD, 530) KY, KR, KN
READ (IREAD, 530) CLO, KL
READ (IREAD, 530) CM0, KM
READ (IREAD, 530) CDO, KD
C
C Steering system:
C
READ (IREAD, 540) ISS, KSC, DLASH, KSL
READ (IREAD, 540) GR, XTRAIL, CSS, SWSTOP
IF (SWSTOP .EQ. 0.) SWSTOP = 1000.
READ (IREAD, 530) CBOOST, SSKEY, CFSS
c
C Calculate equivalent single steering system stiffness based on input
C values for the steering column, steering linkage, and gear ratio:
C
KSS = 2.*GR*GR*KSC*KSL / (2.*KSL + GR*GR*KSC)
c
C Suspension and tire data:
C
READ (IREAD, 520) NKINEM
IF (NKINEM .EQ. 0) KINEM = .FALSE.
READ (IREAD, 520) NBEAM
IF (NBEAM .EQ. 0) BEAM = .FALSE.
C
DO 30, NAXLE=1l, 2
C

READ (IREAD, 530) TRACK (NAXLE), HOROLC (NAXLE)
READ (IREAD, 530) KZ (NAXLE), KAUX(NAXLE)

Appendix B 86

READ (IREAD, 530) CZJNCE (NAXLE), CZRBND (NAXLE)
READ (IREAD, 530) ALFAOQ (NAXLE), GAMMAQ (NAXLE)

KINEMATIC COEFFICIENTS:

QOO

IF (KINEM) THEN
READ (IREAD, 530) YROLCF (NAXLE, 1), YROLCF (NAXLE,2)
READ (IREAD, 530) HROLCF (NAXLE, 1), HROLCF (NAXLE, 2)
IF (BEAM .AND. NAXLE .EQ. 2) THEN
READ (IREAD, 530) CSROLL
ELSE
READ (IREAD, 530) CSZ(NAXLE,1), CSZ(NAXLE,2)
END IF
READ (IREAD, 530) CCZ (NAXLE,1l), CC2Z(NAXLE,2)
END IF

Compliance coefficients:

Q00

READ (IREAD, 530) CSFY(NAXLE), CSMZ(NAXLE), CCFY(NAXLE)

Tire stiffness coefficients:

Q00

READ (IREAD, 540) (CALFA(J,NAXLE),J=1,4)

READ (IREAD, 540) (CGAMMA (J,NAXLE),J=1,4)
READ (IREAD, 540) (CALIGN (J,NAXLE),J=1,4)
READ (IREAD, 530) KTIRE (NAXLE)

30 CONTINUE
C
CLOSE (IREAD)

Change from metric to English units, if specified

QOO0

IF (UNITS .EQ. 'E' .OR. UNITS .EQ. 'e') THEN
G = 386.1
ININFT
KMHMPH
TODEG
UDISP
UDIST
UANGL 'deg’
UVELFT = 'ft/s'
UOMEGA = 'deg/sec'
UFORC = 'lb'
UTORQ = 'in-1b'

END IF

12
0.056818
180.0 / PI
linl
lftl

General simulation and maneuver parameters:

Include steering system dynamics only if non-zero damping:

OO0

IF (ABS(SSKEY) .LT. 0.001) NEQN = NEQN - 2

(@]

WRITE(*,'('' '"',A//)') TITLE
IF (IECHO .GT. 0) CALL ECHO

V = V / KMHMPH

Appendix B 87

QOO

QOO0

50

QOO0

Qo0 Q0

70
80

520

530

540
c

VWIND = VWIND / KMHMPH
KSYWND = KSYWND / TODEG
GRTODG = GR * TODEG

DO 80, NAXLE=1l, 2
KAUX (NAXLE) = KAUX(NAXLE) * TODEG

With english units, SW, KSC, KSL stay in deg, while FW, VFW
stay in rad (with metric units, all are in rad, and todeg = 1)

ALFAQ (NAXLE) = ALFAQ (NAXLE) / TODEG
GAMMAO (NAXLE) = GAMMAO (NAXLE) / TODEG
IF (NSTEER .EQ. 0) SWPHSE = SWPHSE / TODEG

Convert polynomial coefficients from deg to rad:

IF (KINEM) THEN
DO 50, NPOWER = 1, 2

YROLCF (NPOWER,NAXLE) = YROLCF (NPOWER,NAXLE) * TODEG **
NPOWER

HROLCF (NPOWER, NAXLE) = HROLCF (NPOWER,NAXLE) * TODEG **
NPOWER

CSZ (NPOWER,NAXLE) = CSZ (NPOWER,NAXLE) / TODEG
CCZ (NPOWER, NAXLE) CCZ (NPOWER,NAXLE) / TODEG

CONTINUE
END IF
Compliance coefficients:
CSFY (NAXLE) = CSFY(NAXLE) / TODEG
CSMZ (NAXLE) = CSMZ (NAXLE) / TODEG
CCFY (NAXLE) = CCFY(NAXLE) / TODEG
Change CALFA polarity to conform with SAE conventions
and convert polynomial coefficients from deg to rad
DO 70, NPOWER = 1, 4
CALFA (NPOWER,NAXLE) = -CALFA(NPOWER,NAXLE) * TODEG
CGAMMA (NPOWER,NAXLE) = CGAMMA (NPOWER,NAXLE) * TODEG
CALIGN (NPOWER,NAXLE) = CALIGN (NPOWER,NAXLE) * TODEG
CONTINUE
CONTINUE
RETURN
FORMAT (BN, I4)

FORMAT (3F12.0)
FORMAT (4r12.0)

END

khkkhkhkhkhkhkkhkkkhkhkhkhkhkAhkkhhkhkkkkhkhkhkhk kA A A A A A A A Ak kkkkkkhkhkhkhkhhkhkhkkkkkhkhkhkhkhkkkkkkkx

SUBROUTINE INDSUS (X, DFDX, FNEG)

% % %k %k Kk %k %k J Kk Kk k Kk Kk Kk Kk Kk %k Kk %k Kk Kk k Kk Kk sk Kk Kk k Kk ok ok Kk Kk k k %k k k% Kk Kk %k ok ok %k ok ok sk k% ok Kk ok sk Kk ok ok ok ke ke ok ok ke ke kb k ok ke
* This subroutine computes a 2x2 Jacobian and a 2-element error

* array for a tire on an independent suspension.

* It is called in turn by the Newton-Raphson solver, MNEWT.

*

Appendix B 88

-=> X real 2-element array. x(1l)=slip, x(2)=camber
<-- DFDX real 2x2 array, df/dx (partial derivatives)
<-- FNEG real 2 negative error functions in equations

In addition to the arguments, it deals with variables FZTEMP, AXLE,
and BIAS from the common block /TSOLVE/. These apply for
a particular wheel, and are set in the subroutine TIRES.

* % X A % X %

IMPLICIT REAL (K,M)

REAL X(2), DFDX(2,2), FNEG(2)
include TSOLVE.inc

include SUSP.inc

ALPHA = X(1)
GAMMA = X(2)

CA DFYDA (ALPHA, GAMMA, FZTEMP, AXLE)
CM = DMZDA (ALPHA, GAMMA, FZTEMP, AXLE)
CG DFYDG (ALPHA, GAMMA, FZTEMP, AXLE)

* 2x2 Jacobian

DFDX(1,1) CSFY (AXLE) *CA + CSMZ (AXLE) *CM + 1.
DFDX(2,1) = CCFY(AXLE) *CA

DFDX(1,2) CSFY (AXLE) *CG

DFDX(2,2) CCFY (AXLE) *CG + 1.

* Negative of error function.

SAVEFY(l) = TIREFY(ALPHA, GAMMA, FZTEMP, AXLE)
SAVEMZ (1) = TIREMZ (ALPHA, FZTEMP, AXLE)

FNEG(1l) = -ALPHA + BIAS(l) - CSFY(AXLE)*SAVEFY(1)
& - CSMZ (AXLE) *SAVEMZ (1)

FNEG(2) = -GAMMA + BIAS(2) - CCFY(AXLE) *SAVEFY (1)
RETURN

END

% 3k J Kk %k Kk Kk k Kk ok k ok k ok k ok Kk ok ke k k kK k Kk ok k kK k k% k ke kK ok Kk sk Kk sk Kk %k Kk sk Kk %k Kk sk Kk kK %k Kk %k Kk %k ke k k% %k ok %k ok ok ok

SUBROUTINE INIT
% % % % %k Kk %k Kk K Kk K Kk Kk %k %k Kk % % % %k %k %k %k %k % %k %k %k %k % % % %k % % % % % % k %k % % %k k % % % % % Kk % %k % % % %k %k %k % % %k k %k % %k %k k k%
C
C Initialize input-based values and non-zero variables
o

IMPLICIT REAL (K,M)

include GLBL.inc

include PARS.inc

include SUSP.inc

include AERO.inc

include VARS.inc

include PRNT.inc

MASS = WEIGHT / G
SPMASS = SPWGHT / G
USWGHT = WEIGHT - SPWGHT

XAXLE (2) = - WB * WRATIO

XAXLE (1) = WB + XAXLE (2)

FZOWHL (1) = .5 * WEIGHT * WRATIO

FZOWHL(2) = .5 * WEIGHT * (1 - WRATIO)

XCGSP = WB * (2 * FZOWHL(2) - .5 * USWGHT) / SPWGHT

Appendix B 89

XWBCGS = .5 * WB - XCGSP

XWBCGT = .5 * WB - XAXLE (1)

HCGSP = (HCGTTL * WEIGHT - WHLRAD * USWGHT) / SPWGHT
ROLLVR = .5 * TRACK(1l) / HCGTTL

QZERO = AIRHO * AREA / 2

KROLL = 0.
C
DO 20, NAXLE =1, 2
g Approximate effects of tire stiffness + damping in suspension:
© TRKSQR = .5 * TRACK (NAXLE) **2
SUMKZ = KZ (NAXLE) + KTIRE (NAXLE)
g Reduce overall damping coefficients for negligible tire damping:
: CZJNCE (NAXLE) = CZJNCE (NAXLE) * KTIRE(NAXLE) / SUMKZ
CZRBND (NAXLE) = CZRBND (NAXLE) * KTIRE (NAXLE) / SUMK2Z
g Total vertical suspension rate at wheel (parallel springs):
© KZSSP = KZ (NAXLE) + KAUX(NAXLE) / TRKSQR
g Overall vertical rate (suspension and tire in series):
‘ K2ZTTL = KZSSP * KTIRE(NAXLE) / (KZSSP + KTIRE (NAXLE))
g KZ <--- overall vertical rate without auxiliary roll stiffness:
© KZ (NAXLE) = KZ(NAXLE) * KTIRE (NAXLE) / SUMKZ
g Adjusted auxiliary roll rate (in parallel with kz):
© KAUX (NAXLE) = (KZTTL - KZ(NAXLE)) * TRKSQR
g Effective roll stiffness and axle vertical stiffness
Cc

KROLL = KROLL + KZ (NAXLE) * TRKSQR + KAUX (NAXLE)
KZAXLE (NAXLE) = 2 * KZ (NAXLE)
HCGSRC (NAXLE) = HCGSP - HOROLC (NAXLE)
DO 10, NSIDE = 1, 2
ALFA (NAXLE,NSIDE) = -(-1)**NSIDE * ALFAQ (NAXLE)
GAMMA (NAXLE,NSIDE) = =-(-1)**NSIDE * GAMMAQ (NAXLE)
FZ (NAXLE,NSIDE) = FZOWHL (NAXLE)
KNMSTR (NAXLE,NSIDE) = 0.0
KNMCBR (NAXLE,NSIDE) = 0.0
10 CONTINUE
20 CONTINUE
RETURN
END
Kk KKK KK KKK KKK KK KKK KKK KKK A KKK KKK KKK KK h KRRk k Kk kk ok kK ok kdk Kok kkk ko k*

FUNCTION LENSTR (STRING)

% % Kk k Kk %k Kk k Kk k kK Kk Kk k ok k Kk ok k ok ok k k ok kk Kk Kk ok ok Kk k ke ok ke sk ke Kk ke ok ke k ke sk ok k ke ok sk ok ok ke sk ok ke ok ke ke sk ok ke ok ok ke ke ok ok

* count characters in left-justified string. M. Sayers, 8-9-87
CHARACTER* (*) STRING

N = LEN (STRING)
DO 10 L =N, 1, -1

Appendix B 90

IF (STRING(L:L) .NE. ' ' .AND. STRING(L:L) .NE. char(3)) THEN
LENSTR = L
RETURN
END IF
10 CONTINUE
LENSTR = 1
RETURN
END
ok 3 e e e ok ok ke K ok ok K ok ok ok ok ok ok ok ok ko k3 ok ok ok K K ok ok ok ok ok K ok K ok k ok K ok ok K ok ok ek ok ok ko ok ok ok ok K

SUBROUTINE MNEWT (X, USRFUN, IERR)
KK A KK KA KA KKK KA KAKR KA KRR A KRR A AR AA IR IR Ak Ak hk kA hkk kA kkkhkkkkhkkkkkkhkkkkkkkkkk
* This routine is based on MNEWT from the Numerical Recipes library. It
* has been "hard-wired" for the Chrysler vehicle handling model. The
* error threshold is less than .01 deg

PARAMETER (N=2, NTRIAL=10, TOLX=.0000001, TOLF=.000001)
DIMENSION X(N),ALPHA(N,N),BETA(N), INDX (N)
IERR=0
DO 13 K=1,NTRIAL
CALL USRFUN (X,ALPHA,BETA)
ERRF=0.
DO 11 I=1,N
ERRF=ERRF+ABS (BETA(I))
11 CONTINUE
IF (ERRF.LE. TOLF)RETURN
TMP1 = ALPHA(2,1) /ALPHA(2,2)
TMP2 = BETA(2) /ALPHA(2,2)
BETA(l)= (BETA(l) - ALPHA(1l,2) *TMP2)
& / (ALPHA(1,1) - ALPHA(1,2)*TMP1)
BETA (2)=TMP2 - TMP1*BETA(1)

ERRX=0.

DO 12 I=],N
ERRX=ERRX+ABS (BETA(I))
X(I)=X(I)+BETA(I)

12 CONTINUE
IF (ERRX.LE.TOLX) RETURN
13 CONTINUE
IERR=1
RETURN
END

% %k %k Kk Kk % k Kk Kk Kk Kk k Kk Kk k Kk Kk Kk Kk k Kk kK k Kk Kk k Kk Kk Kk k Kk Kk Kk k Kk Kk k Kk Kk Kk Kk Kk Kk k k Kk Kk Kk k k Kk k k Kk Kk k k kk Kk Kk kkkkkkkkk

SUBROUTINE OPNOUT
3k ok ok ok 3k ok ok 3k ok ok 3k ok ok kK ok ok ok ok ko ok ok 3 ok ok ke 3 ok ok kK ok ok ok ok ok ok 5 ok ok ok o ok ok 3 ok ok kK K ok ok kK K
Cc SUBROUTINE OPNOUT INITIALIZES THE OUTPUT ERD FILE.
C
IMPLICIT REAL (K,M)
CHARACTER*32 LONGNM(66), GENNM(66), RIGBOD(66), THISRB
CHARACTER*32 FNOUT
CHARACTER*24 TIMEDT
CHARACTER*8 SHORTN(66), UNITNM(66)
CHARACTER*4 LORR(2)
CHARACTER*1 AXLE(2), SIDE(2)
INTEGER NCHAN
LOGICAL ISIT

include GLBL.inc
include PARS.inc

Appendix B 91

DATA AXLE/'l','2'/, SIDE/'L','R'/, LORR/'Left','Rght'/
DATA TIMEDT/' '/

C
110 WRITE(*, '(A\)') ' Name of simulation output file: '
READ (*, '(A)') FNOUT
IF (FNOUT .NE. ' ') THEN
INQUIRE (FILE=FNOUT, EXIST=ISIT)
IF (ISIT) THEN
OPEN (IOUT, FILE=FNOUT)
CLOSE (IQUT, STATUS='DELETE')
END IF
OPEN (IOUT, FILE=FNOUT, STATUS='NEW')
WRITE (*,*) ' !
ELSE
WRITE (*,*) 'Output file is required!'
GO TO 110
END IF
c
C Start with 0 output channels
c
NCHAN = 0
o
C Time
c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Time'’
SHORTN (NCHAN) = 'Time'
GENNM (NCHAN) = 'Time'’
UNITNM (NCHAN) = 'sec'
RIGBOD (NCHAN) = 'Time'
C
C Input Steer Angle
c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Input Steer Angle'
SHORTN (NCHAN) = 'Steer in'
GENNM (NCHAN) = 'Angle’
UNITNM (NCHAN) = UANGL
RIGBOD (NCHAN) = 'Input'
c
C Input Steer Torque & Steering Wheel Velocity
Cc
IF (SSKEY .NE. 0.0) THEN
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Input Steer Torque'
SHORTN (NCHAN) = 'SW Torq'
GENNM (NCHAN) = 'Torque'
UNITNM (NCHAN) = UTORQ
RIGBOD (NCHAN) = 'Input'
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Steering Wheel Velocity'
SHORTN (NCHAN) = 'SW Vel
GENNM (NCHAN) = 'SW Vel'
UNITNM (NCHAN) = UOMEGA
RIGBOD (NCHAN) = 'Input'
END IF

Appendix B 92

THISRB = 'Body'

c

C X Position

c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'X Position, Sprung Mass cg'
SHORTN (NCHAN) = 'X cg'
GENNM (NCHAN) = 'X Position'
UNITNM (NCHAN) = UDIST
RIGBOD (NCHAN) = THISRB

c

C Y Position

C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Y Position, Sprung Mass cg'
SHORTN (NCHAN) = 'Y cg'
GENNM (NCHAN) = 'Y Position'
UNITNM (NCHAN) = UDIST
RIGBOD (NCHAN) = THISRB

C

C Z Position

o
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Z Position, Sprung Mass cg'
SHORTN (NCHAN) = 'Z cg'
GENNM (NCHAN) = 'Z Position'
UNITNM (NCHAN) = UDISP
RIGBOD (NCHAN) = THISRB

c

C Roll Angle

c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Roll Angle'
SHORTN (NCHAN) = 'Roll'
GENNM (NCHAN) = 'Roll'
UNITNM (NCHAN) = UANGL
RIGBOD (NCHAN) = THISRB

C

C Pitch Angle

c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Pitch Angle'
SHORTN (NCHAN) = 'Pitch'
GENNM (NCHAN) = 'Pitch'
UNITNM (NCHAN) = UANGL
RIGBOD (NCHAN) = THISRB

C

C Yaw Angle

c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Yaw Angle'
SHORTN (NCHAN) = 'Yaw'
GENNM (NCHAN) = 'Yaw'
UNITNM (NCHAN) = UANGL
RIGBOD (NCHAN) = THISRB

C

C Roll Rate

Appendix B 93

NCHAN = NCHAN + 1

LONGNM (NCHAN) = 'Roll Rate'
SHORTN (NCHAN) = 'p'
GENNM (NCHAN) = 'Roll Rate'

UNITNM (NCHAN) = UOMEGA
RIGBOD (NCHAN) = THISRB

c

C Pitch Rate

o
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Pitch Rate'
SHORTN (NCHAN) = 'q'
GENNM (NCHAN) = 'Pitch Rate'’
UNITNM (NCHAN) = UOMEGA
RIGBOD (NCHAN) = THISRB

c

C Yaw Rate

c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Yaw Rate'
SHORTN (NCHAN) = 'r'
GENNM (NCHAN) = 'Yaw Rate'’
UNITNM (NCHAN) = UOMEGA
RIGBOD (NCHAN) = THISRB

c

C Body Slip Angle

c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Vehicle Slip Angle'’
SHORTN (NCHAN) = 'slip'
GENNM (NCHAN) = 'Angle'
UNITNM (NCHAN) = UANGL
RIGBOD (NCHAN) = THISRB

Cc

C X Velocity, Sprung Mass cg

C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'X Velocity, Sprung Mass cg'
SHORTN (NCHAN) = 'X dot'
GENNM (NCHAN) = 'X Velocity'
UNITNM (NCHAN) = UVELFT
RIGBOD (NCHAN) = THISRB

C

C Y Velocity, Sprung Mass cg

c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Y Velocity, Sprung Mass cg'
SHORTN (NCHAN) = 'Y dot'
GENNM (NCHAN) = 'Y Velocity'
UNITNM (NCHAN) = UVELFT
RIGBOD (NCHAN) = THISRB

Cc

C 2z Velocity, Sprung Mass cg

Cc

NCHAN = NCHAN + 1
LONGNM (NCHAN)
SHORTN (NCHAN)

'z Velocity, Sprung Mass cg'
'w cg'

Appendix B 94

GENNM (NCHAN) = 'Z Velocity'
UNITNM (NCHAN) UDIsSp // '/s'

RIGBOD (NCHAN) = THISRB
c
C Lateral Acceleration
c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Lateral Acceleration at cg'
SHORTN (NCHAN) = 'Ay cg'
GENNM (NCHAN) = 'Lateral Acceleration'
UNITNM (NCHAN) = 'g''s'
RIGBOD (NCHAN) = THISRB
C
C Vehicle Path Curvature
c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Vehicle Path Curvature'
SHORTN (NCHAN) = 'Rho cg'
GENNM (NCHAN) = 'Vehicle Path Curvature'
UNITNM (NCHAN) = 'l/' // UDIST
RIGBOD (NCHAN) = THISRB
c
C Aerodynamic Drag Force
c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Aerodynamic Drag Force'
SHORTN (NCHAN) = 'Fx Aero'
GENNM (NCHAN) = 'Force'
UNITNM (NCHAN) = UFORC
RIGBOD (NCHAN) = THISRB
c
C Aerodynamic Side Force
c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Aerodynamic Side Force'
SHORTN (NCHAN) = 'Fy Aero'
GENNM (NCHAN) = 'Force'
UNITNM (NCHAN) = UFORC
RIGBOD (NCHAN) = THISRB
c
C Aerodynamic Down Force
c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Aerodynamic Down Force'
SHORTN (NCHAN) = 'Fz Aero'
GENNM (NCHAN) = 'Force'
UNITNM (NCHAN) = UFORC
RIGBOD (NCHAN) = THISRB
c
C Aerodynamic Roll Moment
c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Aerodynamic Roll Moment'
SHORTN (NCHAN) = 'Mx Aero'
GENNM (NCHAN) = 'Moment'
UNITNM (NCHAN) = UTORQ
RIGBOD (NCHAN) = THISRB
C

Appendix B 95

C 2Aerodynamic Pitch Moment

C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Aerodynamic Pitch Moment'
SHORTN (NCHAN) = 'My Aero'
GENNM (NCHAN) = 'Moment'
UNITNM (NCHAN) = UTORQ
RIGBOD (NCHAN) = THISRB

C

C Aerodynamic Yaw Moment

C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Aerodynamic Yaw Moment'
SHORTN (NCHAN) = 'Mz Aero'
GENNM (NCHAN) = 'Moment'
UNITNM (NCHAN) = UTORQ
RIGBOD (NCHAN) = THISRB

C

C Air Speed

c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Air Speed’
SHORTN (NCHAN) = 'V Air'
GENNM (NCHAN) = 'Speed'
UNITNM (NCHAN) = UVELFT
RIGBOD (NCHAN) = 'Input'

C

C Cross Wind

c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Crosswind'
SHORTN (NCHAN) = 'VyWind'
GENNM (NCHAN) = 'Speed'
UNITNM (NCHAN) = UVELFT
RIGBOD (NCHAN) = 'Input'

C

C Steering Work

c
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Steering Work'
SHORTN (NCHAN) = 'StWork'
GENNM (NCHAN) = 'Speed'
UNITNM (NCHAN) = 'in-1b'
RIGBOD (NCHAN) = 'Input'

o

C Average Steering Power

C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Average Steering Power'
SHORTN (NCHAN) = 'StPower'
GENNM (NCHAN) = 'Speed'
UNITNM (NCHAN) = 'in-lb/s'
RIGBOD (NCHAN) = 'Input'

C

C BARerodynamic Slip Angle

C

NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Aerodynamic Slip Angle'

Appendix B 96

SHORTN (NCHAN) = 'Slip Air'
GENNM (NCHAN) = 'Angle'
UNITNM (NCHAN) = UTORQ
RIGBOD (NCHAN) = THISRB
C
C Tire/Wheel variables. There are 2 nested loops here: the outer
C indexed the axle, and the inner indexes the side.
C
DO 100, NAXLE =1, 2
DO 80 NSIDE = 1, 2
THISRB = SIDE(NSIDE) // ' side, Axle ' // AXLE (NAXLE)
C
C Steer of road wheel
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Total Steer, ' // THISRB
SHORTN (NCHAN) = SIDE(NSIDE) // ' Str ' // AXLE (NAXLE)
UNITNM (NCHAN) = UANGL
GENNM (NCHAN) = 'Angle'
RIGBOD (NCHAN) = THISRB
C
C Tire slip angle
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Slip Angle, '// THISRB
SHORTN (NCHAN) = SIDE(NSIDE) // ' Alph ' // AXLE (NAXLE)
UNITNM (NCHAN) = UANGL
GENNM (NCHAN) = 'Angle’
RIGBOD (NCHAN) = THISRB
C
C Tire camber angle
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Camber Angle, '// THISRB
SHORTN (NCHAN) = SIDE(NSIDE) // ' Gamm ' // AXLE (NAXLE)
UNITNM (NCHAN) = UANGL
GENNM (NCHAN) = 'Angle'
RIGBOD (NCHAN) = THISRB
C
C Tire side force
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Side Force, '// THISRB
SHORTN (NCHAN) = SIDE(NSIDE) // ‘! Fy ' // AXLE (NAXLE)
UNITNM (NCHAN) = UFORC
- GENNM (NCHAN) = 'Force'
RIGBOD (NCHAN) = THISRB
C
C Tire Aligning Moment
C
NCHAN = NCHAN + 1
LONGNM (NCHAN) = 'Aligning Moment, ' // THISRB
SHORTN (NCHAN) = SIDE(NSIDE) // ' Mz ' // AXLE (NAXLE)
UNITNM (NCHAN) = UTORQ
GENNM (NCHAN) = 'Moment'
RIGBOD (NCHAN) = THISRB
C
C Tire vertical force
Appendix B 97

[eNeN¢®!

[e NP Ke]

QOO0

QOO0

NCHAN = NCHAN + 1
LONGNM (NCHAN) 'Load, ' // THISRB

SHORTN (NCHAN) SIDE (NSIDE) // ' Fz ' // AXLE (NAXLE)
UNITNM (NCHAN) UFORC

GENNM (NCHAN) = 'Force'

RIGBOD (NCHAN) = THISRB

Suspension Displacement

NCHAN = NCHAN + 1
LONGNM (NCHAN)

'Vert Disp, ' // THISRB

SHORTN (NCHAN) SIDE(NSIDE) // ' Z ' // AXLE (NAXLE)
UNITNM (NCHAN) UDISP

GENNM (NCHAN) = 'Displacement'

RIGBOD (NCHAN) THISRB

Suspension Damping Force

NCHAN = NCHAN + 1
LONGNM (NCHAN)

'Damping Force, ' // THISRB
SHORTN (NCHAN) SIDE(NSIDE) // ' Fdmp ' // AXLE (NAXLE)
UNITNM (NCHAN) UFORC
GENNM (NCHAN) = 'Force'
RIGBOD (NCHAN) = THISRB
80 CONTINUE

100 CONTINUE

Write Header Info for ERD file

Set parameters needed to write header
NUMKEY = 1 for 32-bit floating-point binary, 5 for Text

NSAMP TEND / DT / IPRINT + 1
NRECS = NSAMP
IF (NUMKEY .NE. 5) THEN
NBYTES = 4*NCHAN
ELSE
NBYTES = 1
END IF

Write standard ERD file heading.

WRITE (IOUT, ' (A)') 'ERDFILEVZ2.00'
WRITE (IOUT, 410) NCHAN, NSAMP, NRECS, NBYTES, NUMKEY, DT*IPRINT

410 FORMAT(5(I6,','),E13.6)
411 FORMAT (A8,255A8)
412 FORMAT (A8, 31A32 : 2(/'&1000 ', 31A32))

WRITE (IOUT, ' (A,A)') 'TITLE ', TITLE

WRITE (IOUT, 411) 'SHORTNAM', (SHORTN(J), J=1, NCHAN)
WRITE (IOUT, 412) 'LONGNAME', (LONGNM(J), J=1, NCHAN)
WRITE (IOUT,411) 'UNITSNAM', (UNITNM(J), J=1, NCHAN)
WRITE (IOUT, 412) 'GENNAME ', (GENNM(J), J=1, NCHAN)
WRITE (IOUT, 412) 'RIGIBODY', (RIGBOD(J), J=1, NCHAN)

WRITE (IOUT, '(A)') 'TRUCKSIMWind/Steer'

IMPH = NINT (V * KMHMPH)

Appendix B 98

IF (UNITS .NE. 'E' .AND. UNITS .NE. 'e')
& IMPH = NINT (V * KMHMPH / 1.61)

WRITE (IOUT, '(A,IS5)') 'SPEEDMPH', IMPH
C
IF (NUMKEY .EQ. 5) WRITE(IOUT, '(A,A)') 'FORMAT ', FRMT
C
CALL TIMDAT (TIMEDT)
WRITE (IOUT, '(A,A)")
& 'HISTORY Data generated with Wind/Steer model at ', TIMEDT
WRITE (IOUT, '(A,A)') 'HISTORY Input file was ', FNREAD
WRITE (IOUT, '(A)') 'END'
C
C If this is a Mac or PC, and data will be binary, then close header
C and create binary file. The following line is used to disable the
C creating of a second file for MTS.
C

C--Use this only for the MTS version.
c RETURN
501 CONTINUE

IF (NUMKEY .NE. 5) THEN
CLOSE (IOUT)
LNAME LENSTR (FNOUT)
FNOUT FNOUT (:LNAME) // '.BIN'
INQUIRE (FILE=FNOUT, EXIST=ISIT)
IF (ISIT) THEN
OPEN (IQUT, FILE=FNOUT)
CLOSE (IOUT, STATUS='DELETE')
END IF
C--The following 2 lines are for the Mac version.
OPEN (IOUT, FILE=FNOUT, STATUS='NEW', ACCESS='SEQUENTIAL',

& FORM='UNFORMATTED')
C--The following 2 lines are for the PC version.
* OPEN (IOUT, STATUS='NEW', ACCESS='SEQUENTIAL',
* & FORM='BINARY')

END IF

RETURN

END

J J ke d Kk kK kK Kk ke k ok k Kk Kk ke ok ko Kk sk ok %k ke ke k %k ok Kk Kk sk sk Kk ke k sk sk %k Kk %k sk sk sk Kk Kk ok sk sk gk ke ke sk sk sk sk Kk Kk Kk ke k ke k ke k ok ok ok

SUBROUTINE OUTPUT(T, Y, YP)
khkkhkhkhkkkhkhkhkhkhkhkhkkkhkhkhkhkARAhAkkkkkkhkkkhkkArkhkrkkkkkkhkkkkhkhkkkkkhkkhkkkkkkkhkkkhkkkkkx
Subroutine OUTPUT copies (at each output step) the simulation
variables into a buffer array in a sequence as specified in the
header, and outputs the buffer into the erd-file in binary or
text form.

QOO0

'SAVE

IMPLICIT REAL (K,M)

INTEGER*2 LEN2, IBMROW, IBMCOL
REAL BUFFER(66), Y(*), YP(*)

include GLBL.inc
include PARS.inc
include VARS.inc
include AERO.inc

Appendix B 99

C Fill the ERD buffer. The following code should create a one-to-one
C match between the label sets created in routine OPNOUT and output
C variables put into the array BUFFER.
C
NCHAN = 0
C
C Time and inputs
C
BUFFER (NCHAN + 1) =T
BUFFER (NCHAN + 2) = SW
NCHAN = NCHAN + 2
IF (SSKEY .NE. 0.0) THEN
NCHAN = NCHAN + 1
BUFFER (NCHAN) = STORQ
NCHAN = NCHAN + 1
BUFFER (NCHAN) = VSW
END IF
C
C Body position variables
C
BUFFER (NCHAN + 1) = Y(l) / ININFT
BUFFER (NCHAN + 2) = Y(2) / ININFT
BUFFER (NCHAN + 3) = Y(3)
BUFFER (NCHAN + 4) = Y(4) * TODEG
BUFFER (NCHAN + 5) = Y(5) * TODEG
BUFFER (NCHAN + 6) = Y(6) * TODEG
NCHAN = NCHAN + 6
c
C Body speed variables
c
BUFFER (NCHAN + 1) = Y(7) * TODEG
BUFFER (NCHAN + 2) = Y(8) * TODEG
BUFFER (NCHAN + 3) = Y(9) * TODEG
BUFFER (NCHAN + 4) = ¥ (10) * TODEG
BUFFER (NCHAN + 5) = YP(1l) / ININFT
BUFFER (NCHAN + 6) = YP(2) / ININFT
BUFFER (NCHAN + 7) = Y(11)
NCHAN = NCHAN + 7
c
C Lateral Acceleration, Path Curvature
c
BUFFER (NCHAN + 1) = AY
BUFFER (NCHAN + 2) = RHO * ININFT
NCHAN = NCHAN + 2
C
C Rerodynamic variables
C
BUFFER (NCHAN + 1) = FDRAG
BUFFER (NCHAN + 2) = FYA
BUFFER (NCHAN + 3) = FZA
BUFFER (NCHAN + 4) = MXA
BUFFER (NCHAN + 5) = MYA
BUFFER (NCHAN + 6) = MZA
BUFFER (NCHAN + 7) = VA
BUFFER (NCHAN + 8) = VWIND / ININFT

IF(T .GE. 0.1 .AND. SSKEY .NE. 0.0) THEN
BUFFER (NCHAN + 9) = BUFFER (NCHAN + 9) + STORQ *
& (SW - SWLAST) / 57.3

Appendix B 100

BUFFER (NCHAN + 10) = BUFFER (NCHAN + 9) / T
ELSE
BUFFER (NCHAN + 9) = 0.0
BUFFER (NCHAN + 10) = 0.0
ENDIF
SWLAST = SW
BUFFER (NCHAN + 11) = BETAIR
NCHAN = NCHAN + 11
c
C Tire/Wheel variables
c
DO 100, NAXLE = 1, 2
DO 80, NSIDE =1, 2
BUFFER (NCHAN + 1) = TTLSTR(NAXLE,NSIDE) * TODEG

BUFFER (NCHAN + 2) = ALFA(NAXLE,NSIDE) * TODEG
BUFFER (NCHAN + 3) = GAMMA (NAXLE,NSIDE) * TODEG
BUFFER (NCHAN + 4) = FY(NAXLE,NSIDE)

BUFFER (NCHAN + 5) = MZ(NAXLE,NSIDE)

BUFFER (NCHAN + 6) = FZ(NAXLE,NSIDE)

BUFFER (NCHAN + 7) = ZW(NAXLE,NSIDE)

BUFFER (NCHAN + 8) = FD (NAXLE,NSIDE)

NCHAN = NCHAN + 8

80 CONTINUE
100 CONTINUE

C

C Write data to the file.

C

C--The next 3 lines are for the Mac

IF (T .EQ. 0.) WRITE (*, '(A/7X,A)') ' Progress:',6 'sec'
CALL TOOLBX (2'89409000',0,-11)
WRITE (*, '(F6.2)') T

C--The next 11 lines are for the IBM PC

* IF (T .EQ. 0.) THEN

* IBMROW = 18

* IBMCOL = 10

* WRITE (*, '(/////A\)") ' !

* CALL SETCUR (IBMROW, IBMCOL)
* WRITE (*, '(A,12X,A\)') ' Progress:', 'sec'
* END IF

* IBMROW = 18

* IBMCOL = 22

* CALL SETCUR (IBMROW, IBMCOL)

*

WRITE (*, '(F6.2\)") T
C--End IBM PC stuff

IF (NUMKEY .EQ. 5) THEN
WRITE (IOUT, FRMT) (BUFFER(J),J=1, NCHAN)

ELSE
C
C--This line is only for MTS
C LEN2 = NBYTES
o CALL WRITE (BUFFER, LEN2, 16384, LNUM, IOUT)
C

C--This line is for the Mac and the PC
WRITE (IOUT) (BUFFER (J), J=1, NCHAN)
END IF

Appendix B 101

RETURN
END

KhA KA I I KA A Ak kA AR Ak kA AR A AR ARk k kA hkhkk ok ko kkkkkkkhkhkkk kA AKXk kkkkkkkkkkkkkkkxk

FUNCTION POLY4 (COEF,FZ)

A KK KKK KA A A A AR AR KR AR KR A AR A Ak Ak kA A Ak kA kA Ak kKA Ak k kA A Ak kA AAKA KKk kkkkkkkkkkkkx
* evaluate 4-th order polynomial

REAL COEF (*)

POLY4 = COEF(1l) + COEF (2)*FZ + COEF (3) *FZ*FZ + COEF (4) *FZ2**3
RETURN

END

Kk %k % %k ok Kk gk ok Kk Kk ok ok Kk kK ok Kk kK kK Kk sk ke Kk sk kK sk Kk Kk k kK sk Kk K sk ok ks ok %k ok Kk ok Kk k Kk ok kK Kk Kk k %k k Kk Kk kK k kK

SUBROUTINE ROLLAX(ROLL, YROLAX, HROLAX, IXSRA)

% J 3k K sk Kk ok gk ok Kk gk kK ok Kk sk ke ok Kk Kk sk Kk ok k Kk kK kK ok %k Kk ok Kk sk Kk sk Kk sk ok Kk sk ok Kk k ke k Kk sk Kk k Kk ok k koK ke ok ok ke ke

(@} QOO0 00

QOO0

QOO0 QOO0

[e e Ne!

Subroutine ROLLAX returns YROLAX and HROLAX, the dynamic lateral
and vertical distances of the sprung mass cg from the roll axis in
a non-rolling reference frame, and IXSRA, the sprung-mass moment of
inertia about the instantaneous roll axis, as functions of roll.
(Effects of roll-axis inclination the from x-x axis are neglected.)

IMPLICIT REAL (K,M)
REAL IXSRA

include PARS.inc
include SUSP.inc

For each axle, find dynamic r.c. displacements in sprung mass
with sprung cg as origin

DO 40 NAXLE=1l, 2
YRC (NAXLE) = 0.0
HRC (NAXLE) = HCGSRC (NAXLE)
DO 20 NPOWER=1, 2
YRC(NAXLE) = YRC(NAXLE) + YROLCF (NPOWER,NAXLE) * ROLL**NPOWER
HRC(NAXLE) = HRC(NAXLE) + HROLCF (NPOWER,NAXLE) * ROLL**NPOWER
20 CONTINUE
40 CONTINUE

Find y and z projections of roll-axis distance from sprung cg
in sprung-mass (rolling) reference frame

YRACG
HRACG

YRC(1l) + (YRC(2) - YRC(1l)) * XCGSP / WB
HRC(1l) + (HRC(2) - HRC(l)) * XCGSP / WB

Transform y and z projections into non-rolling frame
(Approximating: cos(roll) = 1, sin(roll) = roll)

YROLAX = YRACG + HRACG * ROLL
HROLAX HRACG - YRACG * ROLL

Calculate IXSRA based on ixscg and roll-axis arm (YRACG**2+HRACG**2)
IXSRA = IXSCG + (YRACG * YRACG + HRACG * HRACG) * SPMASS

RETURN
END

% % % %k %k Kk %k %k %k Kk %k Kk Kk %k %k %k %k %k Kk Kk Kk Kk k %k %k %k %k %k Kk Kk %k Kk Kk %k % %k %k %k %k %k %k Kk Kk Kk %k % %k %k %k %k %k Kk Kk %k %k k Kk kk Kk kkkkkkkxk

FUNCTION STEER(T)

Appendix B 102

% % K % Kk K Kk Kk % Kk K %k Kk K %k Kk %k %k Kk % Kk Kk % Kk Kk %k %k Kk % k Kk k %k Kk k %k Kk %k %k Kk k %k %k % 5k %k %k 5k %k Kk %k %k %k %k %k % %k Kk % &k Kk % %k k %k k% k

C Function steer returns the steering wheel-angle (deg), SW,
C or steering wheel torque (in-1lbs), STORQ,
C as a function of T in one of 3 control modes:
C (NSTEER > 0) -- use table look-up
C (NSTEER = 0) =-- sinusoid function
C (NSTEER < 0) -- Driver model
c (NSTEER < -100) -- sinusoidal torque sweep
c
SAVE
IMPLICIT REAL (K,M)
include vars.inc
include mnvr.inc
include glbl.inc
include pars.inc
include drvmod.inc
c
DIMENSION YDR(7)
c
DATA DFW,DFWNOW /2*0.0/
DATA DRTORQ,DRTNOW /2*0.0/
C
IF (NSTEER) 100, 200, 300
c
C Driver model:
c
100 IF(ABS(SSKEY) .LE. 0.001) THEN
YDR(1) = YOUTDR(2) / ININFT
YDR(2) = YOUTDR(10) * V / ININFT
YDR(3) = YOUTDR(9)
YDR(4) = YQUTDR(6)
YDR(5) = YOUTDR(1l) / ININFT
DFWNOW = (TTLSTR(1,1) + TTLSTR(1,2)) * 0.5
CALL DRIVER(T, YDR, DFW, DFWNOW)
c
C Add kinematic and compliance steer effects (prior time step) and
C convert to degrees at steering wheel:
C
STEER = (DFW - (KNMSTR(1l,1) + KNMSTR(1l,2)) * 0.5 -
1 (CPLSTR(1,1) + CPLSTR(1,2)) * 0.5) * GRTODG
c
C No initial steering from driver during lag period:
c
IF(T .LE. TAUMEM) STEER = 0.0
c
RETURN
C
ELSE

IF (NSTEER .LT. -100) THEN
W0 = 0.1 * 6.2832
WMAX = 4.0 * 6.2832
WW = (WMAX - W0) / 2.0 * (1. - COS(6.2832/25. * T)) + WO
STEER = 20. * SIN (WW * T)

RETURN

ELSE
YDR(1l) = YOUTDR(2) / ININFT
YDR(2) = YOUTDR(10) * V / ININFT
YDR(3) = YOUTDR(9)

Appendix B 103

YDR (4) = YOUTDR(6)

YDR(S) = YOUTDR(13) / TODEG
YDR(6) = YOUTDR(12) / TODEG
YDR(7) = YOUTDR(1l) / ININFT

DRTNOW = STORQ / ININFT
CALL DRIVET(T, YDR, DRTORQ, DRTNOW)
STEER = DRTORQ * ININFT

C
C No initial torque from driver during lag period:
C
IF(T .LE. TAUMEM) STEER = 0.0
C
RETURN
ENDIF
c
ENDIF
C
C
C Sinusoidal steer function:
C
200 IF (T .LT. TSWBGN) THEN
STEER = 0.0
ELSE
IF (T .LE. TSWEND) STEER = SWSHFT +
1 SWAMPL * SIN(2*PI* (T-TSWBGN)/TSWPRD + SWPHSE)
END IF
Cc (FOR T > TSWEND, STEER IS NOT CHANGED)
RETURN

C
C Steer table:
o]

300 IF (T .LT. XPNT(NSTEER)) GO TO 310

Cc
C Steering angle past the end of the table retains end value:
c
STEER = YPNT (NSTEER)
RETURN
o
310 IF (INDX .NE. 0) GO TO 330
c
C First call - pre-compute elements in SLOPE array
c
DO 320, J=1,NSTEER-1
SLOPE (J) = (YPNT(J+1l) - YPNT(J)) / (XPNT(J+1l) - XPNT(J))
320 CONTINUE
C
(of Increment interval J if t >= XPNT(J+l), else pop to interpolate:
c

330 DO 340, J = 1, NSTEER-1

INDX = J

IF (T .GE. XPNT(J) .AND. T .LT. XPNT(J+1)) GO TO 350
340 CONTINUE

350 STEER = YPNT(INDX) + (T - XPNT(INDX)) * SLOPE (INDX)

INDX will hold the number (index) of the 'active' table interval

[eNeKe!

Appendix B 104

RETURN
END
ek g K ok ok ok Sk Kk ok ok K K Kk k ok ok kK K ok ok Kk ok ok ok ok ok ok ok ok o ok ok ok kK ok ok ok Kk ok ok ok ok ok ok ok ok Kk

FUNCTION SUM(MATRIX)
3k e 3k e 3k ok ok ek 3k ok K k3 ok ok ok ok K ok K ok ok ok ok ok K ok K ok ok ko kK ok ok ok ok ok ok ok ok ok ok K ok ok ok K ok kK
c FUNCTION SUM PERFORMS A SUMMATION OF ALL COMPONENTS
C OF A 2 X 2 MATRIX ("WHEEL" ARRAY)

C
REAL MATRIX(2,2)
C
SUM = MATRIX(1,1) + MATRIX(1,2) + MATRIX(2,1) + MATRIX(2,2)
RETURN
END

% % %k % %k k Kk k % Kk k Kk Kk %k Kk %k Kk %k k Kk %k Kk %k Kk %k Kk %k k %k %k Kk %k k %k Kk %k %k %k %k Kk %k Kk %k k %k %k %k %k Kk %k k %k %k %k %k Kk %k k %k %k k %k %k Kk %k k kk kkk*%

SUBROUTINE TABLE(M, N, X, Y, Z, Q)
% %k Kk Kk k Kk Kk Kk Kk k Kk k Kk k Kk Kk k ok kk Kk kk Kk k ok k ok Kk ok k Kk ok k Kk ok k Kk sk k Kk Kk Kk Kk sk Kk Kk k Kk kk ok ok ok ok ok ok kkkkkkkkkkkkkkk
C Table look-up routine. Q = Y(X), FOR X = Z. Search over range
C X(M) -> X(N).
C
DIMENSION X (*), Y (*)
C
INC =1
DO 20 I = M, N, INC
IF (Z .LE. X(I)) GO TO 30
20 CONTINUE
Q = Y(N)
RETURN
30 IF (I .NE. M .AND. Z .NE. X(I)) GO TO 40
Q = Y(I)
IF (I .EQ. M .AND., Z .LT. X(I)) Q = Y(M)
RETURN
40 Q = (Y(I)*(2 - X(I - INC)) = Y(I - INC)*(2 = X(I))) / (X(I) - X(I
1- INC))
RETURN
END

% % Kk Kk k Kk Kk kK Kk Kk Kk k Kk Kk Kk Kk k Kk Kk k Kk ok ok Kk Kk k sk kK %k Kk K %k sk Kk %k k Kk k sk Kk Kk k Kk Kk k Kk Kk k kK ok Kk koK ke ok k ok ok ok ok

SUBROUTINE TIMDAT (TIMEDT) .
% K Kk k Kk K Kk Kk k Kk %k Kk Kk k Kk Kk Kk Kk Kk Kk k Kk %k Kk Kk Kk Kk k Kk %k k %k Kk Kk % %k %k Kk %k %k %k k %k k Kk 5k Kk %k Kk Kk %k %k %k k %k %k k %k k k %k k %k k k %k k %
C Get date and time
c
C <-- TIMEDT char*24 string containing time & date.
C
CHARACTER*24 TIMEDT
CHARACTER*36 MONTHS
INTEGER*2 YEAR, MONTH, DAY, HOUR, MIN, SEC, I100
MONTHS = 'JanFebMarAprMayJunJulAugSepOctNovDec'

C--The following 4 lines are for the IBM PC (using Microsoft
C--time and date functions)

* CALL GETDAT (YEAR, MONTH, DAY)

* CALL GETTIM (IHOUR, MIN, SEC, I100)

* WRITE (TIMEDT, 100) IHOUR, MIN, MONTHS (MONTH*3-2:MONTH*3),
* & DAY, YEAR

C--get time for MTS version
Cc CALL TIME (22, 0, TIMEDT)

C--The following 5 lines are for the Apple Mac

Appendix B 105

C--(using Absoft time & date functions)
call date (m, iday, iyear)
call time (isec)
write (timedt, 100)

& isec/3600, mod (isec, 3600) / 60, months (m*3-2:m*3),
& iday, 1900 + iyear
100 FORMAT (I2,':',I2.2,' on ',A3,I3,',',I5)
RETURN
END

%k Kk Kk Kk K k % % Kk Kk Kk K K K Kk k %k Kk Kk Kk Kk Kk Kk k kK k K k %k % %k % sk ok ok Kk Kk Kk Kk K K Kk k Kk k Kk Kk Kk Kk Kk k ok ok k %k k ok ok k kK ok k ok ok ok

FUNCTION TIREFY(ALPHA, GAMMA, FZ, AXLE)
KKK KKK KKKKIKKKKK KKK KKK KR KR KR KKK KKK KKK KKK KKK KRR KRRk Kk Kk khkkkk Kk

* This function computes tire side force. This version (UMTRI) is
* linear in alpha and gamma, but nonlinear in Fz.

* --> alpha real slip angle

* -=> gamma real camber angle

* -=> FZ real vertical load

* --> AXLE integer axle no. (1 or 2)

* <-- TIREFY real side force for tire
*

include TIRE.inc
INTEGER AXLE
TIREFY = POLY4(CALFA(l,AXLE), FZ)*ALPHA
& + POLY4 (CGAMMA (1,AXLE), FZ)*GAMMA
RETURN
END
A KA KA AR A AR A KR A KRR AR KKK KAKRKR AR ARk kA Ak hkkhkhkkkkhkkkhkkkkhkkhkkhkkkkhkkkkkkkkkkkkkkk

FUNCTION TIREMZ (ALPHA, FZ, AXLE)
Je Kk % Kk %k K Kk Kk Kk % Kk %k K %k Kk Kk K Kk %k Kk % k %k Kk %k %k %k Kk Kk k Kk k Kk k Kk k ok %k k k Kk % Kk %k %k % %k %k Kk %k Kk %k Kk %k % %k % Kk %k k %k % Kk %k k %k %k k% k% *k
* This function computes tire aligning torque. This version (UMTRI) is
* linear in alpha, but nonlinear in Fz.

--> ALPHA real slip angle

--> FZ real vertical load

AXLE integer axle no. (1 or 2)
<-- TIREMZ real side force for tire

* % F X A
]
U
\'4

include TIRE.inc
INTEGER AXLE
TIREMZ = POLY4(CALIGN(l, AXLE), FZ)*ALPHA
RETURN
END
%k k Kk kK KKKk Kk kK kkkkkk Kk kK kK kK k Kk %k k %k %k %k %k %k %k %k %k %k %k %k %k %k %k %k %k %k %k %k Kk %k %k k Kk K %k %k %k %k %k Kk k %k % % %k %k % k%

SUBROUTINE TIRES (BETA, V, VYAW, ROLL)
% % % Kk % % Kk Kk K Kk %k Kk Kk Kk K Kk k Kk K Kk kK Kk Kk Kk Kk Kk Kk kK kK k Kk Kk Kk k Kk ok Kk sk Kk k Kk k k %k %k Kk %k Kk %k Kk %k Kk Kk %k Kk % Kk %k %k %k k Kk %k %k %k %k
* This subroutine solve simultaneous equations for slip and camber
* angles and tire forces and moments.
*

IMPLICIT REAL (K,M)

EXTERNAL INDSUS, BEAM

include TSOLVE.inc

include SUSP.inc

include VARS.inc

include PARS.inc

REAL X(2)

Appendix B 106

DO 100 AXLE =1, 2
YWPART = BETA + VYAW * XAXLE(AXLE) / V
c
C Case for beam rear axle (no camber compliance, same steer compliance
C for both wheels):

c
IF (AXLE .EQ. 2 .AND. BEAM) THEN
C
C Compute known part of alphas, then solve equations
C
BIAS(l) = YWPART - KNMSTR(2, 1)
X(1) = ALFA(2, 1)
X(2) = ALFA(2, 2)
CALL MNEWT (X, BEAM, IERR)
IF (IERR .NE. 0) THEN
WRITE(*, *) ' Error, Newton-Raphson iteration did not converge.'
WRITE (*, *) ' There is a problem in the tire/suspension equations.'
WRITE(*,*) ' Rear (beam) suspension.'
WRITE(*,*) ' (Press Return)'
PAUSE
STOP
END IF
ALFA(2, 1) = X(1)
ALFA (2, 2) = X(2)
FY(2, 1) = SAVEFY (1)
FY(2, 2) = SAVEFY(2)
MZ (2, 1) = SAVEMZ (1)
Mz (2, 2) = SAVEMZ(2)
C
C Calculate compliance steer and "total" steer
c
CPLSTR(2,1) = CSMZ(2) * (SAVEMZ(1l) + SAVEMZ(2))
& + CSFY(2) * (SAVEFY(l) + SAVEFY(2))
CPLSTR(2,2) = CPLSTR(2,1)
TTLSTR(2,1) = KNMSTR(2,1) + CPLSTR(2,1)
TTLSTR(2,2) = TTLSTR(2,1)
c

C Independent wheels, with coupling between camber and steer:
c
ELSE
DO 90 SIDE = 1, 2

Check for steering angle (from steering system on front axle)

[oNe @]

IF (AXLE .EQ. 1) THEN
IF (ABS(SSKEY) .GT. 0.001) THEN
CSMZ (AXLE) = 0.0
STRCON = FW(SIDE)
ELSE
STRCON = SW / GRTODG
ENDIF
ELSE
STRCON = 0
END IF
c
C Sign of camber, toe-in depends on side
C
IF (SIDE .EQ. 1) THEN

Appendix B 107

BIAS (1) = ALFAQ (AXLE)

BIAS(2) = ~-GAMMAQ (AXLE)
ELSE

BIAS (1) = -ALFAQ (AXLE)

BIAS(2) = GAMMAQ (RAXLE)
END IF

C
C Compute known part of alpha and gamma, then solve equations
c

BIAS (1) = BIAS(l) + YWPART - STRCON - KNMSTR (AXLE, SIDE)
BIAS(2) = BIAS(2) + ROLL + KNMCBR(AXLE,SIDE)
FZTEMP = FZ (AXLE, SIDE)
X(l) = ALFA(AXLE, SIDE)
X(2) = GAMMA (AXLE, SIDE)
CALL MNEWT (X, INDSUS, IERR)
IF (IERR .NE. 0) THEN
WRITE (*,*) ' Error, Newton-Raphson iteration did not converge.'

WRITE(*,*) ' There is a problem in the tire/suspension equations.'
WRITE(*,*) ' AXLE, SIDE=', AXLE, SIDE
WRITE(*,*) ' (Press Return)'
PAUSE
STOP
END IF

ALFA (AXLE, SIDE) = X(1)
GAMMA (AXLE, SIDE) = X(2)
FY(AXLE, SIDE) = SAVEFY(1l)
MZ (AXLE, SIDE) = SAVEMZ (1)

c
C Calculate compliance steer and "total" steer (kinem + compl + strcon
C input):
c
CPLSTR (AXLE, SIDE) = CSMZ (AXLE) * SAVEMZ (1)
& + CSFY(AXLE) * SAVEFY(1l)
TTLSTR (AXLE, SIDE) = KNMSTR (AXLE, SIDE)
& + CPLSTR(AXLE, SIDE)
& + (2 - AXLE) * STRCON
90 CONTINUE
END IF
100 CONTINUE
RETURN
END
kA Ak AKX AR AL A A A A KA A ARAAA AR A ARk Ak k ok kkkkkhkkkhk kA Ak kkkkkhkkh A hkkx
c
C **% Trajectory Subroutine *x*x
c

C TRAJ: Computes lateral displacent of previewed path as a table look-up

Author and Modification Section

Author: C. C. MacAdam
Date written: 01/01/88
Written on:

Modifications:

QOO0 O0O0000000

Appendix B 108

Algorithm Description
Purpose and use:

Error conditions:

Machine dependencies: none

Called By: DRIVER

QOO0 00000Q0

SUBROUTINE TRAJ (X, XT, YT, YPATH)
SAVE

Variable Descriptions

-Arguments passed:

....... forward displacement (ft)

=>XT...... longitudinal path coordinates (ft)

->YT...... lateral path coordinated corresponding to XT values (ft)
<-YPATH...lateral displacement of path corresponding to X, (ft)

QOO0 0O000000
U
\A
<

DIMENSION XT(*), YT(*)

C

C---Local variables-====--cecccmm e e
C

C Jueu.... integer counter

C SLOPE...dYT/dXT of path at X

C

C---Functions and SUDrOUtineS==========cm oo e
C

C None

C

C

C

C============Process Block ====
C

C SEARCH FOR XI,XI+1l:

DO 10 J =1, 99
IF (X .GE. XT(J) .AND. X .LT. XT(J + 1)) GO TO 30
10 CONTINUE
WRITE (*,20)
20 FORMAT ('0', 'X-SEARCH IN SUB. TRAJ FAILED.')

STOP

30 SLOPE = (YT(J + 1) = YT(J)) / (XT(J + 1) - XT(J))
YPATH = YT (J) + SLOPE * (X - XT(J))
RETURN
END

C***
C
C Transition Matrix Calculation.
C
C
C

TRANS: Computes transition matrix of the linearized system

Appendix B 109

============Author and Modification Section
Author: C. C. MacAdam
Date written: 05/19/88
Written on:

Modifications:

QOO0 00000Q0n

============Algorithm Description

C
C Purpose and use: Used by the driver model in predicting future states
o
C Error conditions:
Cc
C Machine dependencies: none
c
C Called By: DRIVGO
C
C
o
SUBRQUTINE TRANS
SAVE
c
C============Variable Descriptions
o
C---Arguments passed: None
c
DIMENSION SV (4), SD(4), SVI(4)
C
C-==COMMON bloCk8=======———mm e e e mmm e m— e mmm—m e -
C

include drvmod.inc
---DRIV.BLK common block variables---=-=--=-——--cc-m-o——mmmm oo
CAF...total cornering stiffness of tires on left front susp (lb/rad)

CAR...total cornering stiffness of tires on left rear susp (lb/rad)
WHBS. .wheelbase of vehicle (center-line of front & rear susp) (ft)

WF....static locad on front suspension (lb)
WR....static load on rear suspension (1lb)
U..... initial velocity (ft/sec)

---DRVST1.BLK common block variables

GRAV..... gravitational constant

TICYCL...driver model sample time (sec)

TSS...... minimum preview time (sec)

DMAX..... upper bound on front wheel angle steer (rad)

XP,YP....x-y path coords(SAE) wrt inertial coords [input] (£ft)
TAUMEM. . .driver transport time dealy [input parameter] (sec)

QOO0 000000000000000

TFF...... driver model preview time [input parameter] (sec)
RM....... vehicle mass (slug)
- distance from c.g. to front suspension center-line (ft)

Appendix B 110

None

C B........ distance from c.g. to rear suspension center-line (ft)

C RI....... total vehicle yaw inertia (slug-ft)

C PSIO..... current yaw angle reference value (rad)

C NTF......number of points in the preview time interval

C NP....... number of points in the x-y trajectory table

C TLAST....last time driver model calulated a steer value (sec)

C DFWLST...last value of steer calculated by driver model (rad)

C TILAST...last sample time driver model calulated a steer value (sec)
C DMEM..... 2-dim array (time & steer history) used in delay calculat'n
C XT,YT....transformation of XP,YP in vehicle body axes (ft)

c

C---TRSSTR.BLK common block variables

C

C TTIT....... transition matrix at 10 discrete points in preview interval
C TTT1...... integral of trans matrix wrt preview time

C GV......... vector of control gain coefficients

c

C---Local variables—===———=———m e e e
c

C DELT..... time step in local Euler integration (sec)

C Aal....... lat accel coefficient of sideslip veloc in linearizd system
Cc Bl....... " yaw rate "

C A2....... yaw accel " sideslip vel "

C B2....... " yaw rate "

c <Cl....... steer control gain coefficient for lateral accel

C C2....... steer control gain coefficient for yaw moment

C ULAST....last value of forward velocity (ft/sec)

C NBEG..... integer startin counter value

C NENDl....integer ending counter value

C NENDV....integer ending counter value

C Jeieenen. integer counter

C SV....... state vector: y,v,r,yaw,x [SAE]

c SVli...... integral of state vector

C SDevvnnn. state vector derivative

c

C---Functions and subroutines==————=———= o=
c

c

c

c

c

c

c

c

Al = -2, * (CAF + CAR) / RM / U

Bl = 2, * (CAR*B - CAF*A) / RM / U - U
A2 = 2, * (CAR*B - CAF*A) / RI / U
B2 = -2, * (CAR*B*B + CAF*A*A) / RI / U
Cl =2. * CAF / RM

C2 =2, *CAF / RI * A

ULAST = U
Gv(l) = 0.
GV(2) =C1
GV (3) c2
GV (4) 0

DO 70 3 =1, 4
NBEG = TSS / DELT + 1

Appendix B 111

NEND1 (TFF + .001 - TSS) / NTF / DELT
NENDV = NEND1
DO 10 L =1, 4
Sv(L) = 0.0
SVI(L) = 0.0
10 CONTINUE
TIME = 0.

C
C 1Initialize each state in turn to 1.0 and integrate (Euler).
c
Sv(J) = 1.0
DO 60 I = 1, NTF
DO 40 K = NBEG, NENDV
SD(1) = SV(2) + U * SV (4)

SD(2) = Al * SV(2) + Bl * SV(3)
SD(3) = A2 * SV(2) + B2 * SV(3)
SD(4) = SV(3)
DO 20 L =1, 4
SV(L) = SV(L) + SD(L) * DELT
20 CONTINUE

TIME = TIME + DELT
DO 30 L =1, 4
SVI(L) = SVI(L) + SV(L) * DELT
30 CONTINUE
40 CONTINUE

Store "impulse" responses in TTT columns, integral in TTT1.
TTT is a NPT-point tabular transition matrix, TTTl is its integral.
(See References 2 & 3.)

QOO0

DO50L =1, 4
TTT(L,J,I) = SV(L)
TTT1(L,J,I) = SVI(L)

50 CONTINUE
NBEG = NBEG + NEND1
NENDV = NENDV + NEND1
60 CONTINUE
70 CONTINUE
RETURN
END

C Kk %k 3k sk sk ok ke ek ok k ke Kk ke ke ok ok ok gk gk ke ke ke ke k k ok ok kK K Kk Kk ok ok kS ke ko ok ok ok ok ok Sk ok ok k% %k %k %k kK k ok ok ok
C kK Kk Kk k kK % %k %k %k J kK ok Kk Kk ok ke k ok ke ok ek kK ke k ke k ok sk %k gk gk ke k ok ok k %k gk %k kK Kk ok k k ok ok ok k ok Sk kK kK kK Kk

Transition Matrix Calculation.

TRANST: Computes transition matrix of the linearized system (torque
version of the driver model)

============Author and Modification Section
Author: C. C. MacAdam
Date written: 01/30/89

Written on:

QOO0 00Q0000000

Modifications:

Appendix B 112

============Algorithm Description
Purpose and use: Used by the driver model in predicting future states
Error conditions:
Machine dependencies: none

Called By: DRIVGT

QOO0 000000000

SUBROUTINE TRANST
SAVE
REAL KSSL, ISSL

o
C Variable Descriptions
C
C---Arguments passed: None
C

DIMENSION SV (6), SD(6), SVI(6)
C
C---COMMON blocks=----=-=-==—c—cmm e e
o

include drvtor.inc

include pars.inc

include glbl.inc

include tire.inc

include vars.inc
C

C---DRIV.BLK common block variables-—---—=—=——c-—cmmmm e

CAF...total cornering stiffness of tires on left front susp (lb/rad)
CAR...total cornering stiffness of tires on left rear susp (lb/rad)
WHBS. .wheelbase of vehicle (center-line of front & rear susp) (ft)

WF....static load on front suspension (lb)
WR....static load on rear suspension (lb)
U..... initial velocity (ft/sec)

---DRVST1.BLK common block variables

GRAV..... gravitational constant

TICYCL...driver model sample time (sec)

TSS...... minimum preview time (sec)

DMAX..... upper bound on front wheel angle steer (rad)

XP,YP....x~y path coords(SAE) wrt inertial coords [input] (ft)
TAUMEM. . .driver transport time dealy [input parameter] (sec)

QOO0 0000000000000000

TFF...... driver model preview time [input parameter] (sec) '
RM....... vehicle mass (slug)

A........ distance from c.g. to front suspension center-line (ft)
B........ distance from c.g. to rear suspension center-line (ft)
RI....... total vehicle yaw inertia (slug-ft)

PSIO..... current yaw angle reference value (rad)

NTF...... number of points in the preview time interval

Appendix B 113

NP....... number of points in the x-y trajectory table

TLAST....last time driver model calulated a steer value (sec)
DFWLST...last value of steer calculated by driver model (rad)
TILAST...last sample time driver model calulated a steer value (sec)
..... 2-dim array (time & steer history) used in delay calculat'n
XT,YT....transformation of XP,YP in vehicle body axes (ft)

---TRSSTR.BLK common block variables

QOQOO0O0O00000
g
I3

C TTTT....... transition matrix at 10 discrete points in preview
interval

c TITT1...... integral of trans matrix wrt preview time

C GGV......... vector of control gain coefficients

c

C---Local variables====—=-==--em—m e
c

C DELT..... time step in local Euler integration (sec)

cC Al....... lat accel coefficient of sideslip veloc in linearizd system
c Bl....... b yaw rate "

C A2....... vaw accel " sideslip vel "

CcC B2....... " yaw rate "

cC <Cl....... steer control gain coefficient for lateral accel

cC C2....... steer control gain coefficient for yaw moment

C ULAST....last value of forward velocity (ft/sec)

C NBEG..... integer startin counter value

C NENDI....integer ending counter value

C NENDV....integer ending counter value

C Joeenviens integer counter

C SV....... state vector: y,v,r,yaw,x [SAE]

C Svli...... integral of state vector

C SD.vvvnn state vector derivative

c

C---Functions and subroutines----=--————=~——c-mememmme e
c

C None

c

C

c

C============Process Block

c

c

CSDAML = CSS * TODEG / ININFT

KSSL = KSS * TODEG / ININFT

XP = - POLY4(CALIGN(1,1), Fz(1,1)) / POLY4(CALFA(1,1), FZ(1,1)) /
& ININFT

XM = XTRAIL / ININFT

ISSL = ISS / ININFT

CSSL = CSS * TODEG / ININFT

DELT = 0.01

Al = -2, * (CAF +CAR) / RM / U

Bl = 2. * (CAR*B - CAF*A) / RM / U - U

A2 = 2., * (CAR*B - CAF*A) / RI / U

B2 = - 2, * (CAR*B*B + CAF*A*A) / RI / U

Cl =2. * CAF / RM

C2 =2. * CAF / RI * A

D1 =1. / GR / (1. + 2. * (XP + XM) * CAF * (1. - CBOOST) / KSSL)
El = 2. * (XP + XM) * CAF * (1. - CBOOST) / (U * KSSL
& * (1. + 2. * (XP + XM) * CAF * (1. - CBOOST) / KSSL))

Appendix B 114

Fl
A3
&
B3
c3
&
D3

* Rl
. * (XP + XM) * CAF * (1. - CBOOST) / (GR * U * ISSL
(1. + 2. * (XP + XM) * CAF * (1. - CBOOST) / KSSL))
* A3

KSSL / (GR**2) * (1. - 1. / (1. + 2. * (XP + XM)

CAF * (1. - CBOOST) / KSSL)) / ISSL

CSSL / 1ISSL

o ([
* 1P ok NP

ULAST = U
GGV (1)
GGV (2)
GGV (3)
GGV (4)
GGV (5)
GGV (6) / ISSL
DO 70 J =1, 6
NBEG = TSS / DELT + 1
NEND1 (TFF + .001 - TSS) / NTF / DELT
NENDV = NEND1
DO 10 L =1, 6
SV(L) = 0.0
SVI(L) = 0.0
10 CONTINUE
TIME = 0.

[T T

0
0
0.
0.
0
1.

c
C 1Initialize each state in turn to 1.0 and integrate (Euler).
o

SV(J) = 1.0
DO 60 I = 1, NTF
DO 40 K = NBEG, NENDV
SD(1) = SV(2) + U * SV(4)
SD(2) = (Al + Cl * E1) * SV(2) + (Bl + Cl * F1) * SV(3)
& + Cl * D1 * SV(5)
SD(3) = (A2 + C2 * E1) * SV(2) + (B2 + C2 * F1) * SV(3)
& + C2 * D1 * SV(5)
SD(4) = SV(3)

SD(5) = SV(6) '

SD(6) A3 * SV(2) + B3 * SV(3) + C3 * SV(5) + D3 * SV (6)
c
DO 20L =1, 6
SV(L) = SV(L) + SD(L) * DELT
20 CONTINUE
TIME = TIME + DELT
DO 30L =1, 6
SVI(L) = SVI(L) + SV(L) * DELT
30 CONTINUE
40 CONTINUE
c
C Store "impulse" responses in TTTT columns, integral in TTT1.
C TTTT is a NPT-point tabular transition matrix, TTT1 is its integral.
C (See References 2 & 3.)
c

DO S0OL=1, 6
TTTT(L,J,I) = SV(L)
TTTT1(L,J,I) = SVI(L)

50 CONTINUE
NBEG = NBEG + NEND1
NENDV = NENDV + NEND1

60 CONTINUE
70 CONTINUE
RETURN
END
KAKKKKKKK KK KK KKK KKK KKK KKK KKK KK KK KK KKKk K KK KKK KKk Kk Kk Kk ok ok ok K ok ok ok & ok K ok ok ok ok X ok % ok %

SUBROUTINE WHEELZ (Z, ROLL, PITCH)
KKK KKK KKK KKK KKK KK KKK KKK KKK A KKK KKK KKK KR KKK KK KKK KK KRR KRR KK Rk kA kkkk kK kkk k%

C Subroutine wheelz updates the matrices ZW, FZ, KNMSTR, KNMCBR in
C common /VARS/ - namely: vertical displacement, normal ground load,
C bump-steer angle and bump-camber angle for each wheel, relative to
C static trim.
C polarity: jounce displacement ==> positive ZW, F2Z
C == rebound displacement ==> negative ZW, FZ
Cc
IMPLICIT REAL (K,M)
INTEGER SIDE
c
include SUSP.inc
include VARS.inc
c
DO 30, NAXLE =1, 2
MOMENT = KAUX(NAXLE) * ROLL
& - HOROLC(NAXLE) * (FY(NAXLE,l) + FY(NAXLE,2))
DO 20, NSIDE = 1, 2
IF (NSIDE .EQ. 1) THEN
SIDE = 1
ELSE
SIDE = -1
END IF
c
THISZW = 2 - XAXLE (NAXLE) * PITCH
1 - SIDE * .5 * TRACK(NAXLE) * ROLL
ZW (NAXLE,NSIDE) = THISZW
FZ (NAXLE,NSIDE) = FZOWHL (NAXLE) + THISZW * KZ (NAXLE)
1 - SIDE * MOMENT / TRACK(NAXLE) + FD(NAXLE,NSIDE)
c
IF (KINEM) THEN
IF (NAXLE .EQ. 2 .AND. BEAM) THEN
KNMSTR(2,NSIDE) = CSROLL * ROLL
ELSE
KNMSTR (NAXLE,NSIDE) = SIDE * (CSZ(1l,NAXLE) * THISZW
& + CSZ(2,NAXLE) * THISZW * THISZW)
KNMCBR (NAXLE,NSIDE) = SIDE * (CCZ(1l,NAXLE)
& * THISZW + CCZ(2,NAXLE) * THISZW * THISZW)
END IF
END IF
20 CONTINUE
30 CONTINUE
C
RETURN
END
*
*

SUBROUTINE FILTER(TIME, XNOW, YNOW, VNOW, XLAST, YLAST, TLAST)
SAVE

*

First Order Filter: y / x=a / (b + s)

Appendix B 116

TIME..... current time (sec)

XNOW..... current input signal to be filtered (input)
YNOW..... filtered value of XNOW signal (output)

..... first derivative of YNOW (output)

XLAST....value of XNOW at last filter computation (input)
YLAST....value of YNOW at last filter computation (input)
VLAST....value of VNOW at last filter computation (input)

* % A F ok A *
@]
=

TLAST....value of TIME at last filter computation (input)

Set Filter cutoff frequency (rad/s) and gain:

* % X X

BRKPT = 1.5

GAINDC = 200.0
*

B = BRKPT

A = GAINDC * B

* UPDATE RETURN VALUES FROM LAST ENTRY IN CASE OF T<=0 RETURN

YNOW = YLAST
VNOW VLAST

* INITIALIZE FOR TIME ZERO

IF(TIME .LE. 0.0) THEN

YLAST = XNOW
VLAST = 0.0
XLAST = XNOW
TLAST = 0.0
YNOW = XNOW
VNOW = 0.0

END IF
T = TIME - TLAST

IF(T .LE. 0.0) RETURN

*
*
* COMPUTE CONSTANTS IN RECURSION EXPRESSIONS
*
Cl=1(1L.0-T*B/ 2.0) / (L.0O+T=*B/ 2.0)
C2=A*T/ (2.0 + T * B)
*
* CALCULATE FILTERED VALUE OF DISPLACEMENT & CURRENT VELOCITY:
*
YNOW = Cl * YLAST + C2 * (XNOW+XLAST)
VNOW = A * XNOW - B * YNOW
.
* UPDATE VALUES FOR NEXT ENTRY PRIOR TO RETURNING
*

YLAST = YNOW

XLAST = XNOW
TLAST = TIME
*
RETURN
*
END

Appendix B 117

FUNCTION RAN3 (IDUM)
SAVE
IMPLICIT REAL*4 (M)
PARAMETER (MBIG=4000000.,MSEED=1618033.,MZ=0.,FAC=2.5E-7)
c PARAMETER (MBIG=1000000000,MSEED=161803398,M2=0,FAC=1.E-9)
DIMENSION MA(55)
DATA IFF /0/
IF (IDUM.LT.0.0R.IFF.EQ.0) THEN
IFF=1
MJ=MSEED-IABS (IDUM)
MJ=MOD (MJ, MBIG)
MA (55)=MJ
MK=1
DO 11 I=1,54
II=MOD (21*I,55)
MA (II)=MK
MK=MJ~-MK
IF (MK.LT.M2) MK=MK+MBIG
MJ=MA (II)
11 CONTINUE
DO 13 K=1,4
DO 12 I=1,55
MA (I)=MA(I)-MA(1+MOD(I+30,55))
IF(MA(I) .LT.MZ)MA(I)=MA(I)+MBIG
12 CONTINUE
13 CONTINUE
INEXT=0
INEXTP=31
IDUM=1
ENDIF
INEXT=INEXT+1
IF (INEXT.EQ.56) INEXT=1
INEXTP=INEXTP+1
IF (INEXTP.EQ.56) INEXTP=1
MJ=MA (INEXT) -MA (INEXTP)
IF (MJ.LT.M2) MJ=MJ+MBIG
MA (INEXT) =MJ
RAN3=MJ*FAC
RETURN
END

Include Files

REAL KY, KL, KR, KM, KN, KSYWND, MXA, MYA, MZA, KD
INTEGER WINDKY

COMMON /AERO/ AIRHO, AREA, QZERO, KY, CLO, KL, KR, CM0, KM, KN,

1 VWIND, KSYWND, VA, BETAIR, FYA, FZA, MXA, MYA, MZ3,
2 CD0, KD, FDRAG, WINDKY, TWIND(1000), WINMAG(1000)
SAVE /AERO/

Appendix B 118

C mmmmmm e > DRIV
c
COMMON /DRVST1/ GRAV,TICYCL,TSS,DMAX,XPDR(100), YPDR(100), TAUMEM,
1 TFF, RM, A, B, RI, PSI0O, NTF, NP, TLAST, DFWLST, TILAST,
2 DMEM (100,2), XT(100), YT(100)
SAVE/DRVST1/
COMMON /DRIV/ CAF, CAR, WHBS, WF, WR, U
SAVE/DRIV/
COMMON /TRSSTR/ TTT(4,4,10), TTT1(4,4,10), GV(4)
SAVE/TRSSTR/
c
C ==——mmmmmmmmm e > DRIV
C
COMMON /DRVST1/ GRAV, TICYCL,TSS,DMAX,XPDR(100), YPDR(100), TAUMEM,
1 TFF, RM, A, B, RI, PSI0, NTF, NP, TLAST, DFWLST, TILAST,
2 DMEM(100,2), XT(100), YT(100)
SAVE/DRVST1/
COMMON /DRIV/ CAF, CAR, WHBS, WF, WR, U
SAVE/DRIV/
COMMON /TRSTOR/ TTTT(6,6,10), TTTT1(6,6,10), GGV(6), STMAX
SAVE/TRSTOR/
c
C == > GLBL
o
CHARACTER*80 TITLE
CHARACTER*32 FNREAD, FRMT
CHARACTER*8 UOMEGA, UTORQ, UANGL, UVELFT
CHARACTER*2 UDISP, UDIST, UFORC
CHARACTER*1 UNITS
REAL KMHMPH, ININFT
INTEGER NBYTES
PARAMETER (IREAD=5, IECHO=7, IOUT=8)
COMMON /GLBL/ NEQN, V, TEND, DT, NUMKEY, LNAME,
& IPRINT, PI, ININFT, KMHMPH, G, TODEG, TITLE,
& UOMEGA, UANGL, UVELFT, UTORQ, UDISP, UDIST, UFORC,
& FNREAD, FRMT, NBYTES, UNITS
SAVE /GLBL/
c
C - e e > MNVR:
c
REAL XPNT(999), YPNT(999), SLOPE(999)
COMMON /MNVR/ NSTEER, INDX, TSWBGN, TSWEND, SWAMPL, TSWPRD,
1 SWPHSE, SWSHFT, DRLAG, DRPREV, XPNT, YPNT, SLOPE
SAVE /MNVR/
o
C - > PARS:
C

REAL IXSCG, IXz, IYS, IZZ, ISS, KSS
REAL MASS, KSC, KSL, KROLL

Appendix B 119

COMMON /PARS/ MASS, SPMASS, IXSCG, IXZ, IYS, IZZ, HCGTTL, WHLRAD,

1 WEIGHT, SPWGHT, USWGHT, WRATIO, WB, GR, GRTODG,
2 ISS, KSC, CBOOST, SSKEY, XTRAIL, KROLL, CFSS,
3 XWBCGS, XWBCGT, XCGSP, HCGSP, DLASH, CSS, KSL, KSS,
4 SWSTOP, XPM
SAVE /PARS/
C
C = > PRNT
o
CHARACTER*80 VNAMES, VUNITS
CHARACTER*12 BLNK12
REAL PRBUFF (0:50,5)
COMMON /PRNT/ LINE, NPAGE, VNAMES, VUNITS, BLNK12, PRBUFF
SAVE /PRNT/
o
C ——mmmmmmmm - > SUSP
C
LOGICAL KINEM, BEAM
REAL TRACK(2), XAXLE(2), KZ(2), KZAXLE(2), KAUX(2)
REAL KTIRE(2), CZJNCE(2), CZRBND(2), ALFAQ(2), GAMMAO (2)
REAL FZOWHL(2), HOROLC(2), HCGSRC(2), CSFY(2), CSMZ(2), CCFY(2)
REAL CSZ(2,2), CCZ(2,2), YROLCF(2,2), HROLCF(2,2), YRC(2), HRC(2)
COMMON /SUSP/ KINEM, BEAM, CSROLL, TRACK, XAXLE, KZ, KZAXLE,
1 KAUX, KTIRE, CZJNCE, CZRBND, ALFAQ, GAMMA(O, FZOWHL,
2 HOROLC, HCGSRC, YROLCF, HROLCF, CSFY, CSMZ, CCFY,
3 CSZ, CCZ, YRC, HRC
SAVE /SUSP/
c
C e - > TIRE
o

REAL CALFA(4,2), CGAMMA(4,2), CALIGN(4,2)
COMMON /TIRE/ CALFA, CGAMMA, CALIGN
SAVE /TIRE/

*

common block to share data between the tire-equation solver
* and the tire-matrix generator used by the Newton-Raphson routine.

INTEGER AXLE, SIDE
COMMON /TSOLVE/ AXLE, SIDE, BIAS(2), FZTEMP, SAVEFY(2), SAVEMZ(2)
SAVE /TSOLVE/

REAL ALFA(2,2), GAMMA(2,2), FY(2,2), Mz(2,2), FD(2,2), Fz(2,2)

REAL ZW(2,2), KNMSTR(2,2), CPLSTR(2,2), TTLSTR(2,2), KNMCBR(2,2)

REAL YPOUT(13), YOUTDR(13), FW(2), MMCOL

COMMON /VARS/ SW, FW, AY, RHO, ALFA, GAMMA, FY, MZ, FD, FZ, ZW,
KNMSTR, CPLSTR, TTLSTR, KNMCBR, YPOUT, YOUTDR,

2 STORQ, BOOST, MMCOL, VSW

(=Y

Appendix B 120

SAVE /VARS/

Appendix B 121

