
Biometrics 60, 747–756
September 2004

Shared Frailty Models for Recurrent Events and a Terminal Event

Lei Liu,1,∗ Robert A. Wolfe,1 and Xuelin Huang2

1Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109-2029, U.S.A.
2Department of Biostatistics, M. D. Anderson Cancer Center, University of Texas,

Houston, Texas 77030, U.S.A.
∗email: liulei@umich.edu

Summary. There has been an increasing interest in the analysis of recurrent event data (Cook and Lawless,
2002, Statistical Methods in Medical Research 11, 141–166). In many situations, a terminating event such
as death can happen during the follow-up period to preclude further occurrence of the recurrent events.
Furthermore, the death time may be dependent on the recurrent event history. In this article we consider
frailty proportional hazards models for the recurrent and terminal event processes. The dependence is
modeled by conditioning on a shared frailty that is included in both hazard functions. Covariate effects
can be taken into account in the model as well. Maximum likelihood estimation and inference are carried
out through a Monte Carlo EM algorithm with Metropolis–Hastings sampler in the E-step. An analysis
of hospitalization and death data for waitlisted dialysis patients is presented to illustrate the proposed
methods. Methods to check the validity of the proposed model are also demonstrated. This model avoids
the difficulties encountered in alternative approaches which attempt to specify a dependent joint distribution
with marginal proportional hazards and yields an estimate of the degree of dependence.

Key words: Counting process; Dependent censoring; Hospitalization; Proportional hazards model; Sur-
vival analysis.

1. Introduction
Recurrent event data arise frequently in longitudinal med-
ical studies. In many situations, the follow-up of recurrent
events could be stopped by a terminal event, such as death.
For example, patients may experience recurrent hospitaliza-
tions which are terminated by death. In the study of recurrent
rejection episodes of kidney transplant patients, some patients
may suffer total graft rejection which precludes further occur-
rence of rejection episodes.

In practice, recurrent and terminal events are often not
independent. For example, the recurrence of serious events
(like heart attacks) often increases the risk of death, which in
turn makes any subsequent recurrent event impossible. This
dependence should be accounted for in the joint modeling of
recurrent and terminal events.

It is of interest to many researchers to study the depen-
dent dropout mechanism in the repeated measure setting (De
Gruttola and Tu, 1994; Little, 1995; Hogan and Laird, 1997;
Sun and Song, 2001; Xu and Zeger, 2001). The analysis of
recurrent event process in the presence of a terminal event
bears much similarity to their studies. Two approaches are
generally adopted: marginal models and frailty models.

A natural marginal approach was taken by Li and Lagakos
(1997). They adapted Wei, Lin, and Weissfeld’s marginal
model (1989) and regarded the terminating event as a cen-
soring event for each recurrent event, or treated the failure
time for each recurrence as the minimum of the recurrent
event time and survival time. Cook and Lawless (1997) intro-

duced the mean frequency/rate function of recurrent events
among survivors at a given time. Ghosh and Lin (2000) pre-
sented asymptotic properties for the nonparametric estimate
of the marginal mean of the cumulative number of recurrent
events over time. Ghosh and Lin (2002) also developed semi-
parametric methods using IPCW (inverse probability of cen-
soring weighting; Robins and Rotnitzky, 1992) and a similar
technique, inverse probability of survival weighting (IPSW).
These models are extensions to the proportional means/rates
models (Lin et al., 2000) based on empirical process theory in
the absence of a dependent terminating event.

These marginal models do not specify the dependence be-
tween recurrent events and death. The application of marginal
semiparametric models such as Ghosh and Lin (2002) is lim-
ited due to strict conditions required for both IPCW and
IPSW methods, which may not be satisfied in reality.

Shared random effects models or frailty models have been
applied in this scenario. Lancaster and Intrator (1998) mod-
eled the joint distribution of hospitalization and survival para-
metrically through a common unmeasured “frailty.” They
treated hospitalization as a Poisson process whose rate func-
tion shares the same frailty with the hazard function of the
survival time. These two event processes were assumed to
be independent given frailty. Wang, Qin, and Chiang (2001)
modeled the occurrence rate function for recurrent events with
informative censoring in semiparametric and nonparametric
ways. They assumed a nonstationary Poisson process via a
frailty for recurrent events likewise. Conditioning on frailty,

747



748 Biometrics, September 2004

recurrent and terminal events are independent. They treated
both the distribution of informative censoring and frailty as
nuisance parameters. Thus, their models cannot be applied
to situations where modeling both the recurrent and terminal
events is of interest. Also the proposed semiparametric models
cannot handle time-dependent covariates.

In this article, we propose a joint semiparametric model
for the intensity functions of both recurrent events and death
by a shared gamma frailty. Nielsen et al. (1992; see also
Andersen et al., 1993, Section IX) presented a general frailty
model which may be specialized to recurrent event data with
a terminal event. In that model, the frailty effect on recurrent
and terminal event rates is the same. This is a special case
(γ = 1) of our model, in which the frailty can have different
effects on the two hazards.

The remainder of this article is organized as follows. In
Section 2, we introduce the underlying multiplicative intensity
model which takes into account the covariate information.
Statistical methods are developed in Section 3 using the EM
algorithm with a Metropolis–Hastings E-step. Results from
simulation and a real-data analysis are presented in Sections
4 and 5, respectively. Section 6 concludes the article with a
summary of our results and a discussion of generalizations of
the proposed models.

2. Models
Let Ci and Di be the censoring and death times for subject
i (i = 1, 2, . . . ,n). Write Xi = min(Ci , Di ) as the follow-up
time and ∆i = I(Di ≤ Ci ), where I(·) is the indicator func-
tion. Let Yi (t) = I(Xi ≥ t) be the at-risk indicator. Denote
by ND∗

i (t) = I(Di ≤ t) and N D
i (t) = I(Xi ≤ t, ∆i = 1) the

actual and observed death indicator by time t, respectively.
Similarly, define by NR∗

i (t) and N R
i (t) the actual and observed

number of recurrent events with N R
i (t) = N R∗

i (min(Xi , t)), re-
spectively. Write dNR∗

i (t) = NR∗
i {(t + dt) −} − NR∗

i (t−) as
dt→ 0 and dN R

i (t) = I(Xi ≥ t)dNR∗
i (t). We introduce hetero-

geneity with observed covariate Zi and unobserved frailty ν i ,
which may measure the latent “health status” of the patient
related to both recurrent events and the terminal event. The
observation for subject i is Oi(t) ≡ {Yi (u), N R

i (u), N D
i (u), 0 ≤

u ≤ t}, an i.i.d. copy up to time t of the whole observed data
O = {O(t), 0 ≤ t ≤ X}. Define by F0 the σ-field generated
by (ν, Z) and Ft = σ{F0,O(u), 0 ≤ u ≤ t}.

The following assumptions are made on the underlying
processes:

(1) The recurrent, terminating, and censoring processes
all have continuous distribution so that recurrent events and
death cannot happen at the same time. We adopt the conven-
tion that death happens first in the interval [t, t + dt).

We assume that the terminal event stops the further occur-
rence of recurrent events in that NR∗

i (t) is constant after Di .
This is different from the conventional censoring event which
only prevents us from observing further recurrent events but
does not prevent their occurrence. Thus, the terminal and re-
current event processes are not independent even conditional
upon frailty.

(2) P (dND(t) = 1 | Ft−) = Yi(t) dΛi(t) ≡ Yi(t)λi(t) dt,

where dΛi(t) = P (dND∗(t) = 1 |Z, ν , D ≥ t).

(3) P (dNR(t)=1 | Ft− ,D≥ t)=Yi(t) dRi(t)≡Yi(t)ri(t) dt,

where dRi (t) = P (dNR∗
i (t) = 1 |Zi , νi, Di ≥ t).

Note that P (dNR∗(t) = 1 | Ft− ,D ≤ t) is not estimable gen-
erally and is 0 in this setting where D is a terminal event.
Events (D < t) and (D ≤ t) are almost surely identical since
D has a continuous distribution.

(4) Censoring is noninformative. In particular, as in type
I or administrative censoring situations, censoring does not
depend on ν.

(5) P (N R(X) > 1) > 0, which assures that ν and γ can be
identified.

As in Kalbfleisch and Prentice (2002), the full likelihood
can be written as a product integral

L = L(F0)L(O | F0). (1)

Ignoring the contribution from independent and noninforma-
tive censoring,

L(Oi | F0) = P∞
0 L(Ft−+dt | Ft−)

∝ P∞
0 L

(
dNR

i (t), dND
i (t)

∣∣Ft−
)
. (2)

Along the lines of the development of the competing risk
likelihood, (2) can be written as the product of components
given by (7) and (8). The detailed steps are

L
(
dNR

i (t), dND
i (t)

∣∣Ft−
)

= [Yi(t) dΛi(t)]
dND

i
(t)[1 − Yi(t) dΛi(t)]

1−dND
i

(t)

×
{

[Yi(t) dRi(t)])
dNR

i
(t)[1 − Yi(t) dRi(t)]

1−dNR
i

(t)
}1−dND

i
(t)
.

(3)

Note we adopt the convention 00 = 1. It can be shown that
for continuous event times, (3) is equivalent to

[Yi(t) dΛi(t)]
dND

i
(t)[1 − Yi(t) dΛi(t)]

1−dND
i

(t)

× [Yi(t) dRi(t)]
dNR

i
(t)[1 − Yi(t) dRi(t)]

1−dNR
i

(t),

or

P∞
0 L

(
dNR

i (t), dND
i (t)

∣∣Ft−
)

= P∞
0 L

(
dNR

i (t)
∣∣Ft− ,D > t

)
P∞

0 L
(
dND

i (t)
∣∣Ft−

)
. (4)

We extend the model in Huang and Wolfe (2002) for clus-
tered survival with dependent censoring to the new setting as
follows:

ri(t) = νi exp
(
βTZi

)
r0(t), (5)

λi(t) = νγi exp
(
αTZi

)
λ0(t). (6)

The presence of the common frailty parameter ν weakens
the usual assumption of noninformative censoring of the re-
current event process by death. We adopt the gamma frailty
function fθ(·) with unit mean and variance θ. The mean is
unity to avoid the nonidentifiability problem, which otherwise
might arise if we multiply and divide the frailty and the base-
line hazard by the same constant. When γ = 0, λi(t) does not
depend on ν i and is noninformative for the recurrent event
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rate ri (t). θ = 0 implies that the frailty terms ν i ’s are identi-
cally 1, i.e., the heterogeneity in both recurrent and terminal
event rates is solely explained by Zi .

Denote tij to be the jth recurrent event time for ith subject,
δij the indicator of the recurrent event at time tij . Let xi be
the observed follow-up time. The first factor of likelihood (4)
is

exp

{
−

∫ ∞

0

Yi(t)νi exp
(
βTZi

)
dR0(t)

}

×
∏
j

[
νi exp

(
βTZi

)
dR0(tij)

]δij
. (7)

Similarly, (6) suggests the second part of likelihood (4) is pro-
portional to

exp

{
−

∫ ∞

0

Yi(t)ν
γ
i exp

(
αTZi

)
dΛ0(t)

}

×
[
νγi exp

(
αTZi

)
dΛ0(xi)

]∆i
. (8)

L(Oi | F0) can be written as the multiplication of (7) and
(8). The full log likelihood for {(Oi, νi), i = 1, . . . ,n} is

l = log

n∏
i=1

L(Oi, νi |Zi) = log

{
n∏
i=1

L(Oi | νi, Zi)fθ(νi)

}

=

n∑
i=1

{∑
j

[
log νi + βTZi + log dR0(tij)

]

−
∫ ∞

0

Yi(t)νi exp
(
βTZi

)
dR0(t)

}

+

n∑
i=1

{
∆i

[
γ log νi + αTZi + log dΛ0(xi)

]

−
∫ ∞

0

νγi exp
(
αTZi

)
dΛ0(t)

}

+

n∑
i=1

log fθ(νi). (9)

Time-dependent covariates could be incorporated in our
model. Analysis of internal time-dependent covariates yields
the same likelihood form as in (6.11) of Kalbfleisch and
Prentice (2002). In what follows we write Zi (t) to denote the
time-dependent covariates.

3. Methods
Equation (9) gives the likelihood for the “complete data” with
“known” frailties, which is more readily maximized than the
“observed data likelihood.” This makes the EM algorithm
a natural choice for parameter estimation. In the E-step,
since there is no closed form for the density of f(νi |Oi),
Metropolis–Hastings algorithm can be used to generate M
random numbers ν

(m)
i (m = 1, . . . ,M) for the estimation of

the expectation of the sufficient statistics involving frailties.
Examples are Ê(νi |Oi) = 1

M

∑M

m=1 ν
(m)
i and Ê(log νi |Oi) =

1
M

∑M

m=1 log ν
(m)
i . A brief introduction to the Metropolis–

Hastings algorithm is given in Appendix A.

In the M-step, parameter estimates are obtained by max-
imizing of the likelihood (9) as if the frailty statistics are
known. The components of the partial derivative for β and
r0 (·) are

∂l
∂β

=

n∑
i=1

[∑
j

δijZi(tij)

−
∫ ∞

0

Yi(t)Zi(t)Ê(νi |Oi) exp
(
βTZi(t)

)
dR0(t)

]

∂l
∂r0(tij)

=
δij
r0(tij)

−
n∑

k=1

Yk(tij)Ê(νi |Oi) exp
(
βTZk(tij)

)
.

Parametric models for r0(t) can be estimated with standard
asymptotic properties for fixed dimension MLE. The nonpara-
metric estimate of baseline intensity for recurrent events is of
the form of Breslow’s estimate,

r̂0(tij) =
δij∑

k

Yk(tij)Ê(νk |Ok) exp
(
βTZk(tij)

) .
(10)

β̂ can be solved by substituting (10) into the component of
partial derivatives ∂l/∂β. The second partial derivative for
covariate coefficient β is

∂2l
∂β2 = −

n∑
i=1

∫ ∞

0

Yi(t)Zi(t)Zi(t)
T Ê(νi |Oi)

× exp
(
βTZi(t)

)
dR0(t).

All other score components and second partial derivatives
are given in Appendix B.

Since the EM algorithm does not provide the information
matrix for the observed data likelihood directly, Louis’s for-
mula (Louis, 1982) is used to obtain it. Let η = (β, α, γ, θ,
r0, λ0). The observed information matrix I(η̂) is given by

I(η̂) = −Ê

{
∂2l
∂η∂η′

∣∣∣∣O, η̂
}

− Ê

{
∂l
∂η

∂l
∂η′

∣∣∣∣O, η̂
}

+Ê

{
∂l
∂η

∣∣∣∣O, η̂
}

Ê

{
∂l
∂η′

∣∣∣∣O, η̂
}
.

All of these terms are evaluated at the last iteration of the
EM algorithm, when the last term becomes zero for the MLE
η̂. The first two expectations can be calculated by averaging
over the corresponding terms involving Metropolis–Hastings
values.

4. Simulation
In this section we report results from a simulation study of
three settings to evaluate the performance of the proposed
estimation procedures. In each setting, we considered a single
binary covariate Z taking value 0 or 1, each with probability
1/2, sample size n = 100, and regression coefficients α = 1
and β = 1. Frailties were generated from a gamma distribu-
tion with mean 1 and variance θ = 1. The baseline intensity
functions for both recurrent events and death were taken to
be exponential with constant 2 and 1/2, respectively. We as-
sumed a fixed censoring time C = 0.8 for all subjects. A total
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Table 1
Simulation results: Parameter estimates for setting I

Shared frailty model Reduced model

Parameter Bias SE SEM CP Bias SE SEM CP

β = 1.0 −0.009 0.272 0.274 95.1% −0.061 0.270 0.273 94.9%
α = 1.0 0.006 0.360 0.362 96.4% −0.081 0.323 0.331 94.6%
γ = 0.5 0.022 0.285 0.276 94.3%
θ = 1.0 −0.001 0.244 0.253 93.6% 0.042 0.263 0.276 94.8%

Bias is the mean of the parameter estimates (based on 800 replicates) minus the true value; SE is the sampling
standard error of the parameter estimate; SEM is the sampling mean of the standard error estimate; CP is the coverage
probability of the corresponding 95% confidence interval.

Table 2
Simulation results: Parameter estimates for setting II

Shared frailty model Reduced model

Parameter Bias SE SEM CP Bias SE SEM CP

β = 1.0 0.015 0.271 0.264 93.3% 0.063 0.260 0.247 93.0%
α = 1.0 0.009 0.353 0.341 94.9% −0.134 0.291 0.278 91.1%
γ = −0.5 −0.001 0.233 0.265 95.1%
θ = 1.0 −0.047 0.292 0.304 92.6% −0.244 0.227 0.224 72.3%

of 800 replicates were generated. The only difference in these
settings lies in γ, which takes 1/2, −1/2, and 0 in settings I,
II, and III, respectively.

For setting I, subjects have 1.8 recurrent events on aver-
age. Of the subjects, 57% are censored and the rest experi-
ence death as the terminal event; 40% of subjects do not have
any recurrent event. With γ = −1/2 in setting II, the inci-
dence of recurrent events is preventive against the terminal
event. For this setting, each subject has 2.1 recurrent events
on average. Of the subjects, 42% are censored and 44% have
no recurrent event. The results are shown in Tables 1 and 2,
respectively.

It can be seen that in both settings I and II the magnitudes
of the empirical biases of the estimates from the joint frailty
model are very small. Only γ̂ in setting I and θ̂ in setting II
have significant biases of 0.022 and −0.047, respectively. The
coverage probabilities are close to the nominal level 0.95, too.
We observe only minor, if not negligible, biases for variance
estimates.

We also used a reduced model estimator assuming that the
hazards of recurrent and terminal events share no parameter,
i.e., γ = 0. We fitted recurrent event data (by an algorithm
similar to Klein, 1992) and survival data (by standard pro-

Table 3
Simulation results: Parameter estimates for setting III

Shared frailty model Reduced model

Parameter Bias SE SEM CP Bias SE SEM CP

β = 1.0 −0.005 0.277 0.268 94.5% −0.006 0.277 0.265 94.5%
α = 1.0 0.011 0.319 0.314 94.9% −0.006 0.312 0.308 93.0%
γ = 0 0.006 0.200 0.200 97.4%
θ = 1.0 −0.003 0.263 0.272 93.5% −0.014 0.256 0.263 94.6%

portional hazards model) separately. The results are shown
in the right side of each table. The resulting parameter esti-
mates are biased, especially for θ in setting II. It is clear that
ignoring the dependence between the terminal and recurrent
events can result in significant biases.

In setting III, we set γ = 0 to compare the reduced and full
model estimates when both models are valid. The estimates
are very close with the same accuracy and precision in this
special case (Table 3).

Figure 1 shows histograms for α̂, β̂, γ̂, and θ̂. In all settings,
the distribution of α̂ and β̂ are approximately symmetric and
normal, while θ̂ is skewed to the right. The distribution of γ̂
is skewed to the direction of its sign (positive or negative).

Figure 2 gives the estimates of cumulative baseline hazard
functions for the recurrent and terminal events. For simplicity,
we only include the points at times 0.1, 0.2, . . . , 0.8. In each
setting we draw the true cumulative baseline hazard functions
R0(t) = 2t and Λ0(t) = 0.5t for comparison. It can be seen
that R̂0(t) for all settings are virtually unbiased. Λ̂0(t) also
have little bias in settings I and III , but it is biased upward
and skewed in setting II.

We also plot the estimates of cumulative baseline hazards
in the reduced model assuming γ = 0 (results not shown).



Shared Frailty Models for Recurrent Events and a Terminal Event 751

(a) alpha

F
re

qu
en

cy

0.0 1.0 2.0

0
50

15
0

(b) beta

F
re

qu
en

cy

0.5 1.0 1.5 2.0

0
50

15
0

(c) gamma

F
re

qu
en

cy

−0.5 0.5 1.5

0
10

0
20

0

(d) theta

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0

0
50

15
0

(e) alpha

F
re

qu
en

cy

0.0 1.0 2.0

0
50

15
0

(f) beta

F
re

qu
en

cy

0.0 1.0 2.0

0
50

15
0

(g) gamma

F
re

qu
en

cy

−1.5 −0.5

0
10

0
20

0
30

0

(h) theta

F
re

qu
en

cy

0.5 1.0 1.5 2.0

0
50

15
0

(i) alpha

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0

0
50

15
0

(j) beta

F
re

qu
en

cy

0.5 1.0 1.5 2.0

0
50

15
0

(k) gamma

F
re

qu
en

cy

−1.0 0.0 0.5 1.0

0
10

0
20

0

(l) theta

F
re

qu
en

cy

0.5 1.0 1.5 2.0

0
10

0
20

0

Figure 1. The histograms for the parameter estimates of α, β, γ, and θ. (a)–(d) Setting I; (e)–(h) setting II; (i)–(l)
setting III.
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Figure 2. The estimates and 95% confidence interval of R0(t) and Λ0(t). (a and b) Setting I; (c and d) setting II; (e and f)
setting III. Means of the hazard functions at each time point are denoted by a dot; pointwise 95% empirical confidence interval
for the estimated cumulative baseline hazards are obtained from 800 replicates.
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Both R̂0(t) and Λ̂0(t) are biased downward in setting I and
upward in setting II, while unbiased in setting III. The bias in
Λ̂0(t) arises from the fact that the reduced model incorrectly
estimates the death hazard in model (6) by the marginal pro-
portional hazards method. The bias in R̂0(t) results from the
dependent censoring of the death event.

5. Application
We apply the proposed methods to hospitalization data for
transplant candidates with kidney disease. Data are obtained
from the Scientific Registry of Transplant Recipients (SRTR)
database (Merion, 2003). This analysis includes all patients
registered between January 1, 1999 and January 31, 1999 for
kidney transplant. The follow-up for hospitalization and sur-
vival ended on December 31, 2002. We are interested in the
joint modeling of hospitalization and survival event processes
(in days), taking account of covariate information.

A total of 1121 patients were enrolled in this study. Among
them there are 646 males (58%) and 743 whites (66%). The
average age at registration is 47. The number of hospitaliza-
tions ranges from 0 to 33, averaging 2.6 per patient, whereas
460 (41%) patients were not hospitalized. The wide range of
the number of hospitalizations suggests a large subject to sub-
ject variation. Kidney transplant was performed on 609, or
54% of patients during this period. At the end of the study
233 died and 375 were censored, while the remainder were cen-
sored before that date. In what follows we assumed censoring
is independent of hospitalization and death. To avoid ties, we
added a random number from Uniform(0, 1) distribution (in
days) to each patient’s event times.

We excluded two situations from the classification of the
“recurrent event.” First, the hospitalization for transplant is
not counted as a hospitalization. Second, if the patient dies
during hospitalization, it only counts as a terminal event, not
as a hospitalization. The hospital discharge time is used as
the recurrent event time.

Baseline covariates included in the analysis are age in years,
race (1 = white, 0 = nonwhite), and gender (1 = male,
0 = female). Transplantation status Tx (1 = posttransplant,
0 = pretransplant) is a time-dependent covariate for survival.
For hospitalization, we used two indicator variables to study
the impact of transplant: Tx1 (1 = within 180 days after
transplant, 0 = otherwise) and Tx2 (1 = more than 180 days
after transplant, 0 = otherwise).

Preliminary studies showed that race, gender, and age ef-
fects were not significant for the hazard of hospitalization with
this sample. Our final model is

r(t) = ν exp(β1Tx1 + β2Tx2)r0(t),

λ(t) = νγ exp(α1Race + α2Gender

+α3Age + α4Tx)λ0(t). (11)

We summarize the results in Table 4. During the first
180 days after kidney transplant, the rate of hospitalization
almost doubles (HR = 2.03, p < 0.0001). After 180 days the
hospitalization rate decreases by 20% (p = 0.005) compared
to that before transplant. Transplant also has a positive im-
pact on patient’s survival time. It decreases the death rate by
44% (p = 0.0005). Race and gender do not have any signif-

Table 4
Analysis of hospitalization data for kidney patients

Covariate Estimate SE p-value HR

For hospitalization
Tx1: within 180 days

after transplant
0.71 0.069 <0.0001 2.03

Tx2: more than 180 days
after transplant

−0.22 0.079 0.006 0.80

For survival
Race −0.19 0.18 0.20 0.83
Gender 0.17 0.20 0.21 1.19
Age 0.049 0.0059 <0.0001 1.05
Tx: posttransplant −0.58 0.17 0.0005 0.56

γ 0.56 0.078 <0.0001 1.76
θ 2.2 0.12

icant effect on survival, whereas each 1-year increase in age
elevates the death rate by about 5% (p < 0.0001).

The hospitalization rate varies greatly among patients (θ̂ =
2.2, p < 0.0001), which results from the wide range of the
number of hospitalization among patients. We also observe
γ̂ = 0.56, which is significantly greater than 0 (p < 0.0001).
This implies that the hospitalization and death rates are pos-
itively associated.

We checked the adequacy of the adopted model by eval-
uating the estimated cumulative hazard functions for vari-
ous stratifications. First, we divided the subjects into two age
groups: young (<47 years old) and old (≥47 years old). We
fitted the age-stratified models with the same adjusting vari-
ables as in (11). Plots of log R̂0(t) and log Λ̂0(t) versus log t are
displayed in Figure 3a and 3b, respectively. The parallelism
of the curves in both figures suggests that the proportional
hazards model for age is a very good approximation, after ad-
justment for other covariates. We observe no noticeable differ-
ence between young and old patients on R̂0(t), which justifies
the exclusion of age.

0 1 2 3 4 5 6 7

−8
−4

0
2

(a) log(R̂0) for age

log(time)

lo
g(

R̂
0)

2 3 4 5 6 7

−8
−6

−4
−2

0

(b) log(λ̂0) for age

log(time)

lo
g(

λ̂ 0)

Figure 3. Model checking for age. (a) log R̂0(t). (b)
log Λ̂0(t). (—) All; (· · ·) young; and (- - -) old.
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For the time-dependent transplant covariate Tx, model
checking examines the appropriate choice of time scale, as
well as the proportional hazards assumptions. The data were
divided into pretransplant and posttransplant follow-up pe-
riods. Separating the pretransplant data corresponds to cen-
soring the data at transplant. Since kidney transplantation is
determined largely by external factors, such as waiting time
and genetic matching of the donor organ rather than upon
patient condition, this censoring is plausibly treated as in-
dependent. As shown below, the pretransplant rate is nearly
constant, so a simple proportional hazards effect for trans-
plant would correspond to a constant posttransplant rate that
does not depend upon the time of transplant. For the post-
transplant group, the time origin was redefined to be the time
of transplant, in order to determine whether the ratio of pre-
to posttransplant rates varied by time since transplant.

We show the resulting R̂0(t) and Λ̂0(t) versus t in Figure 4.
For the pretransplant group, R̂0(t) is nearly linear in t, sug-
gesting that the event rate is approximately constant. The
posttransplant hospitalization rate is not constant over time
and has a change in slope around 180 days, which agrees with
the inclusion of Tx1 and Tx2 in the hospitalization hazard
model. Figure 4b shows that Λ̂0(t) has a modest change in
slope around 600 days in the pretransplant data, while the
posttransplant death rate is nearly constant. A more detailed
model could account for this nonproportionality if necessary.

We also considered the model with time (in months) from
waitlist registration to transplant as a baseline covariate in
the posttransplant group. Time to transplant is not a signifi-
cant predictor for hospitalization rate (HR = 1.00, p = 0.73),
indicating that the effect of transplant is constant with re-
spect to time to transplant. But it is a significant predictor
for survival (HR = 1.03, p = 0.03), suggesting that the data
would be better fit by a model with an interaction term be-
tween time of transplant and the effect of transplant (Meier-
Kriesche et al., 2001). The current results, shown without the

Figure 4. Model checking for transplant status Tx.
(a) R̂0(t) and (b) Λ̂0(t). (—) All; (· · ·) pretransplant; and (- - -)
posttransplant.

interaction term, represent the average effect of transplant
over the range of times of transplant in this data set.

The diagnostic results suggest that our model could be sim-
plified by using Weibull models for the baseline hazards as
indicated by the linear relationship in Figure 3.

6. Discussion
In this article, we proposed a shared frailty model for recur-
rent events and a terminal event. Our model can be easily
generalized. Other functional forms of the frailties can be in-
corporated in the joint models (5) and (6), such as exponen-
tial functions of ν in the mortality intensity. The correspond-
ing likelihood and estimation equations are readily adapted
with only a minor modification for the (expected) functions
of frailty terms. Stratum-specific models or interaction be-
tween frailties and other covariates can be utilized. Other
parametric families can be used for the frailty distributions,
e.g., log-normal (Huang and Wolfe, 2002). These models are
more flexible than those in Lancaster and Intrator (1998),
which assumed a common gamma frailty effect for both the
recurrent events and mortality. The proposed joint model can
also incorporate time-dependent covariates. Parameters for
terminal event can be estimated in our model, unlike that
presented in Wang et al. (2001).

We did not use the profile likelihood method to estimate
the variances because the resulting estimate for the variance
of frailty distribution θ is biased downward. Andersen et al.
(1997) studied this issue under the independent censoring sit-
uation and reached the same conclusion.

The use of fixed dimensional models for λ0(t) and r0(t)
would lead to standard maximum likelihood asymptotic prop-
erties. We assume nonparametric forms for these functions, so
the large sample properties of the estimators cannot be ver-
ified by the usual central limit theory. However, the simula-
tion results suggest the asymptotic validity of this approach.
Murphy (1995) studied asymptotic properties for the shared
gamma frailty model in a simple setting with no covariate
and no terminating events. Parner (1998) extended Murphy’s
result to a more general correlated frailty model with covari-
ates. These results provide an approach to establishing the
asymptotic properties of the proposed estimators.

Equations (3) and (4) are equivalent under the condition
that recurrent events and death cannot happen simultane-
ously. In our application, if a recurrent event happened just
before death (such as death while hospitalized), we treat it
only as a terminal event and disregard the recurrent event.
That is, our definition of recurrent event is actually “recur-
rent without death.”

As we rewrite (5) as ri (t) = exp(βTZi + log νi)r0(t), log νi
is a proportional hazards covariate for recurrent events which
is scaled to have coefficient 1. Similarly it is also a covariate for
the survival with coefficient γ. The true relationship between
recurrent and terminal events might be a complicated func-
tion involving time, which is approximated in the proposed
model to capture the association that is due to an unmea-
sured covariate. An alternative is to assume a robust model
by replacing νγ in (6) by a function which can be estimated by
nonparametric techniques, such as splines. The distributional
assumption about the frailty may be checked similarly as
Glidden (1999). Oakes (1989) developed diagnostic methods
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for related models. His methods are not directly applicable
to our model, but may provide valuable insight for future re-
search. Other approaches to checking the validity of the pro-
posed model are worthy of further investigation.
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Résumé

L’intérêt porté à l’analyse des événements récurrents est crois-
sant (Cook and Lawless, 2002). Dans de nombreuses situa-
tions, la survenue d’un événement final, comme le décès, peut
se produire pendant la période de suivi, empêchant ainsi que
se produisent d’autres événements récurrents. Par ailleurs, le
moment auquel survient le décès peut lui-même dépendre du
passé concernant les événements récurrents. Dans cet article,
nous considérons un modèle de fragilité avec taux proportion-
nels pour décrire le processus des événements récurrents et de
l’événement final. La dépendance est modélisée en condition-
nant par une fragilité partagée, incluse dans chacune des deux
fonctions de risque. On peut aussi, dans ce modèle, prendre
en compte l’effet de covariables. Les estimations et les tests
associés au maximum de vraisemblance sont réalisés à partir
de l’algorithme EM de la méthode de Monte Carlo, avec un
échantillonnage de Métropolis-Hasting à l’étape E. L’analyse
des données d’hospitalisation et du décès, chez des sujets en
attente de dialyse, est présentée pour illustrer les méthodes
proposées. Des méthodes, pour étudier la validité du modèle
proposé, sont aussi présentées. Ce modèle évite les difficultés
rencontrées dans les approches alternatives qui tentent de
spécifier une distribution jointe, avec dépendance et des taux
marginaux proportionnels, nécessitant alors d’estimer le degré
de dépendance.
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Appendix A

It is difficult to sample directly from

f(νi |Oi) =
f(Oi | νi)f(νi)
f(Oi)

=
f(Oi | νi)f(νi)∫
f(Oi | νi)f(νi)dνi

,

where f(Oi | νi) is given in Section 2. Metropolis–Hastings
(M–H) algorithm is used to generate the random number

chain ν
(m)
i (m = 1, . . . ,M). Suppose we are at the kth E-step

with current parameter estimates subscripted with (k). The

M–H chain starts with an initial value ν
(1)
i . After we obtain

ν
(m)
i , a new value ν̃ is sampled from gamma frailty with vari-

ance θ(k). We also draw an independent random number u
from Uniform(0, 1). ν

(m+1)
i is obtained as

ν
(m+1)
i =



ν̃ if u ≤ min

(
1,
f(Oi | ν̃)
f
(
Oi

∣∣ ν(m)
i

))
,

ν
(m)
i otherwise.

Notice f(Oi) is cancelled in the ratio.

Appendix B

In the M-step, the score equations for α, γ, λ0(·), and θ are

∂l
∂α

=

n∑
i=1

[
Zi(xi)∆i −

∫ ∞

0

Yi(t)Zi(t)

× exp
(
αTZi(t)

)
Ê
(
νγi

∣∣Oi

)
dΛ0(t)

]
,

∂l
∂γ

=

n∑
i=1

[
∆iÊ(log νi |Oi) −

∫ ∞

0

Yi(t)Ê
(
νγi log νi

∣∣Oi

)

× exp
(
αTZi(t)

)
dΛ0(t)

]
,

∂l
∂λ0(xi)

=
∆i

λ0(xi)
−

n∑
k=1

Yk(xi) exp
(
αTZk(xi)

)
Ê
(
νγk

∣∣Ok

)
,

∂l
∂θ

= −
n∑
i=1

Ê

[
1

fθ(νi)

∂fθ(νi)

∂θ

∣∣∣∣Oi

]
.

We obtain the Breslow-type baseline hazard estimate as

λ̂0(xi) =
∆i∑

k

Yk(xi)Ê
(
νγk

∣∣Ok

)
exp

(
αTZk(xi)

) .

The second derivatives for α, γ are

∂2l
∂α2 = −

n∑
i=1

∫ ∞

0

Yi(t)Zi(t)
⊗2

× exp
(
αTZi(t)

)
Ê
(
νγi

∣∣Oi

)
dΛ0(t),

∂2l
∂γ2 = −

n∑
i=1

∫ ∞

0

Yi(t)Ê(log νi |Oi)
⊗2Ê

(
νγi

∣∣Oi

)
× exp

(
αTZi(t)

)
dΛ0(t),

and

∂2l

∂α ∂γ
= −

n∑
i=1

∫ ∞

0

Yi(t)Ê
(
νγi log νi |Oi

)
exp

(
αTZi(t)

)
dΛ0(t),

where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT .
More components of the Information matrix are given

below:

∂2l
∂β ∂r0(tij)

= −S(1)(β, tij),

∂2l
∂r0(tij)2 = − δij

r0(tij)2 ,

∂2l
∂λ0(xi)2 = − ∆i

λ0(xi)2 ,

∂2l
∂α∂λ0(xi)

= −S(1)(α, xi),

∂2l
∂γ ∂λ0(xi)

= −S(1)(γ, xi),

∂2l
∂θ2

= −
n∑
i=1

Ê

{
1

fθ(νi)2

[
∂2fθ(νi)

∂θ2
fθ(νi)

−
(
∂fθ(νi)

∂θ

)2
] ∣∣∣∣∣Oi

}
,

with

S(1)(β, t) =

n∑
k=1

Yk(t)Ê(νk |Ok)Zk(t) exp
(
βTZk(t)

)
,

S(1)(α, t) =

n∑
k=1

Yk(t)Ê
(
νγk

∣∣Ok

)
Zk(t) exp

(
αTZk(t)

)
,

and

S(1)(γ, t) =

n∑
k=1

Yk(t)Ê
(
νγk log νk

∣∣Ok

)
exp

(
αTZk(t)

)
.

All other off-diagonal terms are zero.
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In the special case of gamma frailty with mean 1 and vari-
ance θ, we have

∂l
∂θ

=
n

θ2

[
log θ − 1 + Ψ1

(
1

θ

)

− 1

n

n∑
i=1

Ê(log νi |Oi) +
1

n

n∑
i=1

Ê(νi |Oi)

]

and

∂2l
∂θ2

= −2n

θ3

[
log θ − 1 + Ψ1

(
1

θ

)
− 1

n

n∑
i=1

Ê(log νi |Oi)

+
1

n

n∑
i=1

Ê(νi |Oi)

]
+
n

θ3

[
1 − 1

θ
Ψ2

(
1

θ

)]
,

where Ψ1(·) and Ψ2(·) are digamma and trigamma functions,
i.e., the first and second derivative of log(Γ(·)).


