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ABSTRACT

A New Femtosecond Laser-Based 3D Tomography Technique

by

McLean P. Echlin

Co-Chairs: Tresa M. Pollock and J. Wayne Jones

Tomographic imaging has dramatically changed science, most notably in the fields

of medicine and biology, by producing 3D views of structures which are too complex

to understand in any other way. Current tomographic techniques require extensive

time both for post-processing and data collection. Femtosecond laser based tomo-

graphic techniques have been developed in both standard atmosphere (femtosecond

laser-based serial sectioning technique - FSLSS) and in vacuum (Tri-Beam System)

for the fast collection (105 µm3
/s) of mm3 sized 3D datasets. Both techniques use

femtosecond laser pulses to selectively remove layer-by-layer areas of material with

low collateral damage and a negligible heat affected zone. To the authors knowl-

edge, femtosecond lasers have never been used to serial section and these techniques

have been entirely and uniquely developed by the author and his collaborators at the

University of Michigan and University of California Santa Barbara.

The FSLSS was applied to measure the 3D distribution of TiN particles in a 4330

steel. Single pulse ablation morphologies and rates were measured and collected from

literature. Simultaneous two-phase ablation of TiN and steel matrix was shown to

occur at fluences of 0.9-2 J/cm2. Laser scanning protocols were developed minimizing

xx



surface roughness to 0.1-0.4 µm for laser-based sectioning.

The FSLSS technique was used to section and 3D reconstruct titanium nitride

(TiN) containing 4330 steel. Statistical analysis of 3D TiN particle sizes, distribution

parameters, and particle density were measured. A methodology was developed to

use the 3D datasets to produce statistical volume elements (SVEs) for toughness

modeling. Six FSLSS TiN datasets were sub-sampled into 48 SVEs for statistical

analysis and toughness modeling using the Rice-Tracey and Garrison-Moody models.

A two-parameter Weibull analysis was performed and variability in the toughness

data agreed well with Ruggieri et al. bulk toughness measurements.

The Tri-Beam system combines the benefits of laser based material removal (speed,

low-damage, automated) with detectors that collect chemical, structural, and topo-

logical information. Multi-modal sectioning information was collected after many

laser scanning passes demonstrating the capability of the Tri-Beam system.
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CHAPTER I

Introduction

Tomographic imaging has provided major scientific insights to problems in medicine,

geology, oceanography, astronomy and materials science [1–5]. Two-dimensional (2D)

slices that can be reconstructed into three-dimensional (3D) datasets are acquired

with a wide variety of techniques that utilize electrons [6], neutrons [7], X-rays [8],

ions [3, 9], visible light [1, 2], or acoustic waves [10]. The sectioning and imaging

approach is constrained by the level of resolution required, physical size of the ob-

ject being interrogated, nature of the interaction of the material(s) being imaged

with the imaging probes, and destructive or non-destructive effects of the specific

machining method. For multiphase engineering materials the availability of 3D in-

formation permits analysis of material features such as particle clustering [11, 12],

spatial orientation and geometry [13], and phase interconnectivity [3], which are of-

ten misrepresented by 2D analysis of anisotropic materials [14]. For many materials,

the rarely occurring features located at the tails of the size distribution govern proper-

ties such as fatigue life [15, 16] or shear strength [17, 18], and it is therefore critical to

section large volumes of material to gain access to the microstructural statistics. For

these reasons, application of existing tomographic techniques to multiphase materials

(such as mechanical serial sectioning, FIB serial sectioning , and X-ray tomography),

where phases with similar densities are intermixed at the µm-scale and dispersed
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on the mm-scale, is particularly challenging because of maximum analyzable volume

constraints (FIB serial sectioning and mechanical serial sectioning) and loss of imag-

ing resolution with increased volume of analysis (X-ray tomography). In this thesis a

new femtosecond laser-based tomographic imaging technique has been developed that

addresses much larger material volumes compared to current techniques. Here the

femtosecond laser serves as the primary material removal tool, permitting the direct

ablation of material for the analysis of mm3 to cm3 volumes. A detailed summary of

lasers, laser ablation, and existing tomographic techniques will be presented in Chap-

ter II and Chapter III, along with an introduction to ductile fracture in steel, a topic

later addressed with the laser technique. This rapid laser serial sectioning technique

utilizes high repetition rate, ultrashort pulse femtosecond pulses for layer-by-layer

material ablation that is applicable to a wide variety of materials. The femtosecond

laser-based technique is discussed in detail in Chapter IV with comparisons to exist-

ing characterization techniques in Chapter V. Also in Chapter V, the distribution of

titanium nitrides (TiN) in a 4330 steel is characterized using this new tomographic

technique. The TiN precipitates in these steels are widely spaced and sized between

1-10 µm, and influence toughness in regions sized on the order of 100 µm in the vicin-

ity of crack tips. The femtosecond laser based tomography technique has permitted

the collection of samples from multiple regions in a sizable volume of material, both

requirements necessary to model toughness in this steel system.

1.1 Motivation for 3D

Microstructural constituents in engineering materials are often assumed to be dis-

tributed homogeneously in 2D and 3D space. For systems where prior knowledge

about the microstructure exists, 2D stereological methods can produce reasonable

representations of the 3D features [19]. In systems with more complex microstructure

and less prior knowledge about the microstructure, 3D data is essential for accu-
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rate representations. Hung et al were able to determine the nucleation sites of grain

boundary cementite, based on 3D reconstructions of pro-eutectoid cementite precipi-

tates in a Fe-C-Mn steel alloy [20]. Characterization of the cementite precipitates by

3D serial sectioning revealed the precise location of cementite connectivity, strongly

suggesting that cementite nucleates at austenite grain boundary edges and corners.

Thornton and Poulsen simulated 2D and 3D microstructural coarsening of a binary

50/50% phase mixtures that had previously undergone spinodal decomposition. In

the 2D case, as the phases coarsened, isolated regions (particles) form, whereas in 3D

continuity is maintained for each phase. These models show that significantly dif-

ferent microstructures result from the added 2D to 3D dimensional effects [21]. For

many processed materials with complex 3D structures such as directionally solidified

superalloys, composites, forgings, and other wrought-processed alloys, there are often

microstructural inhomogeneities that are indicative of material property anisotropies

[22]. These materials tend to have complex morphology or topology that cannot

be analyzed in 2D sections alone. The typical methods of 2D stereology [23] can

misrepresent complex 3D features and may not sample heterogeneous microstructure

properly. Additionally, 2D sections do not give the spatial distribution of phases, and

also have a low statistical chance of capturing rarely occurring phases.

Ultra high strength steels are often precipitation strengthened via metallic addi-

tions such as titanium that form carbides such as M23C6 type or carbonitrides such as

Ti(C,N). In a 4330 steel alloy investigated in this research, the addition of titanium

can also result in the formation of deleterious TiN precipitates, which can significantly

alter or degrade the fracture toughness, based on their spatial distribution. Hetero-

geneous distributions of the TiN inclusions will lead to increased material property

anisotropy and spatial variability. Therefore, it would be advantageous to statisti-

cally characterize the arrangement, size, and spacing of the TiN precipitates. In the

following section, requisite dataset sizes and resolution necessary to appropriately
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characterize such metallurgical problems are considered.

1.2 Tomography

Tomography techniques either utilize penetrating radiation, such as x-rays or elec-

trons, or a destructive serial sectioning process. Sectioning processes are applicable

to a wide variety of material systems and may permit access to large volumes of ma-

terial at higher nano-scale resolutions than x-ray tomography, especially in materials

with similar elemental constituents and therefore poor absorption contrast. X-ray to-

mography techniques that rely on a point source for X-ray generation see a reduction

in resolution with increased imaging volume. Numerous serial sectioning techniques

presently exist, such as mechanical serial sectioning, focused ion beam (FIB) serial

sectioning, and atom probe tomography, but there are still many challenges in ac-

quiring specific types and volumes of 3D data.

Material properties are dependent on structural features that span a range of

length scales. For most metals, strengthening arises from microstructural features

that exist on the 100’s of nm scale up to the 100’s of µm. These features tend to be

grains boundaries, precipitates, secondary phases, and voids. Precipitates and voids

of µm scale can be distributed with spacings that are orders of magnitude higher, mak-

ing 3D characterization difficult. In material systems (such as steels) where rarely

occurring, small-volume-fraction precipitates dictate toughness, standard serial sec-

tioning techniques are inadequately inefficient to capturing the volumes necessary to

characterize the distribution of precipitates. The tomography technique developed

here addresses the problem of characterizing submicron features that occur rarely,

i.e., features that are present at small volume fractions.
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1.3 Femtosecond Laser Based Tomographic Technique

In this thesis the development of a new 3D tomographic sectioning technique,

referred to as femtosecond laser aided serial sectioning (FSLSS), is described. This

technique utilizes a femtosecond laser to selectively section material with precisely

controlled removal rates. Subsequently, 3D reconstruction are made from optically

imaged microstructural data that has been image processed and segmented using our

Matlab and IDL based code. Femtosecond laser pulses are particularly beneficial for

machining material because they have high focused intensities (> 1018 W/cm2) and

ultrashort pulses (1-200 fs) [24]. The extremely high energy densities are used to

directly ablate localized volumes of material with collateral damage confined within

1-2 µm at ablation fluences that are below 2-5 times the ablation threshold. The

coupling of ultrashort femtosecond pulses with kilohertz or megahertz pulse repetition

rates provides material removal rates 4-5 orders of magnitude faster than any existing

serial sectioning technique. The time consuming nature of 3D dataset acquisition and

reconstruction, particularly for volumes in the mm3 range, motivates this research

to develop a better fundamental understanding of laser-material interactions that

enabled the increases in sectioning speed.

The FSLSS technique is shown to be suitable for 3D characterization of a range of

materials, as discussed in Chapter IV. The material removal rates for the femtosecond

laser are significantly faster than mechanical polishing and focused ion beam (FIB)

milling.

The reconstructed 3D datasets can be directly used as initial input for models of

processing or property prediction, such as ductile fracture and toughness modeling.

The overall goals of the research presented in this dissertation are to:

1. Establish a fundamental understanding of material removal under the action of

ultrashort pulses deposited on multiphase materials;
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2. Develop a technique utilizing a femtosecond laser for tomographic analysis;

3. Demonstrate the utility of the technique for acquisition of 3D datasets that

provide input to material property models.

1.4 Computational Power and Data Storage

The amount of storage required for high resolution 3D datasets has grown to be at

least 100megabytes/slice for each detector source, often with hundreds to thousands

of slices (with a single imaging source, 10-100 gigabytes). Only in the last 10 years

have desktop computers become powerful enough to deal with these storage and the

corresponding computational demands. Given the deficiencies of sample characteri-

zation in 2D, recent increases in computation processing power, the advancements in

cameras and imaging techniques, it is now feasible to consider more routine collection

of structural information in 3D, along with reconstruction and further computational

analysis using the 3D information.

Digital imaging devices such as charge coupled device (CCD) or complementary

metal-oxide semiconductor (CMOS) cameras have experienced exponential pixel den-

sity growth in sensors for the last ten years. Techniques that rely on CCD or CMOS

sensors, such as: optical microscopy, tunneling electron microscopy (TEM), and elec-

tron backscatter diffraction (EBSD) all continue to produce larger sized images with

higher resolution. This result has the following effects, (1) producing datasets with

higher resolution and therefore increased computational requirements and (2) requir-

ing larger sized media storage for archiving and analyzing the data.

Dataset size scales with the resolution of each image and the number of slices col-

lected, also called the sectioning resolution. Using only one imaging source, such as

optical microscopy, can yield datasets with slice sizes of 100megabytes with hundreds

of slices per dataset, or roughly 10 to 50 gigabyte datasets. When multi-modal data
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is collected, datasets will proportionally scale larger with the number of data types

collected. As data requirements have become larger, magnetic media storage density

continues to increase by a factor of 10 every 3 years [25]. Currently, 3D datasets

are so massive that computational power limitations require that they are resolution

down-sampled and intelligently meshed [26]. Processing power continues to increase

according to Moore’s Law, which states that the transistor density will double every

18 months or so [27]. The trends in increases in computational capacity, inexpensive

data storage, and digital imaging CCD technology suggests that the potential capa-

bilities of 3D data acquisition tools and the capacity for the analysis, modeling, and

simulation of these datasets will continue to become richer in resolvable detail and

size.

This thesis is organized as follows. In Chapter IV, a detailed description and the

motivation for the development of the new femtosecond laser based serial sectioning

(FSLSS) experimental technique, followed by a discussion of the role of TiN particles

distributed in a 4330 ultrahigh strength (UHS) steel as they limit fracture toughness

(Chapter V). Afterward, a summary of the current accomplishments will be presented

(Chapter VII) preceded by a new projected direction for the application of the fem-

tosecond laser: in situ machining in an SEM vacuum chamber, discussed in Chapter

VI.
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CHAPTER II

Background

The oldest known application of mechanical serial sectioning for the acquisition of

microstructural information dates back to the work of Otto Forsman in 1918 [28], with

reconstruction of pearlite colonies in hypereutectoid steel. More recently, 3D tomo-

graphic imaging techniques using electrons, ions, X-rays, electromagnetic fields, and

abrasives have been developed [1, 2, 5, 9, 29–40]. Subsequent applications of these

new techniques to analysis of steel microstructures include the 3D reconstructions

of complex proeutectoid ferrite laths [41], pearlite colonies [31], and coarse marten-

site [35]. An overview of recent developments in tomographic techniques is given in

Section 2.1. The ability to remove bulk amounts of material with negligible local

microstructural damage has motivated the application of these lasers as a tool for

sectioning material in this thesis. Femtosecond laser-material interactions will also

be discussed, in Section 2.3.1, particularly in the context of material removal and

multi-phase material ablation. Finally, a review of microstructure of 4330 steel and

ductile fracture will be discussed in Section 2.2 to prepare for the example case of

toughness modeling presented in Chapter V.
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2.1 Existing Tomographic Techniques

The current state of the art serial sectioning techniques, which can address large

datasets at microstructural levels of detail, are painstakingly time intensive experi-

ments. In this chapter, only techniques that can address near mm3 dataset volumes

while capturing low volume fraction microstructure detail will be discussed. The

three most widely used tomographic methods are: mechanical serial sectioning, X-

ray tomography, and focused ion beam (FIB) serial sectioning. Mechanical sectioning

is the most commonly used technique because in some instances it not require any

expensive or inaccessible hardware; this will be discussed in Section 2.1.3. X-ray

tomography systems are becoming widely available and fully automated and are dis-

cussed in Section 2.1.2. FIB serial sectioning, Section 2.1.1, is the newest of the

presented techniques and has the highest imaging resolution but characterizes the

smallest sample volumes.

There are a number of different techniques by which 3D datasets can be collected.

These techniques vary in the amount of material that can be removed per slice, the

minimum slice thicknesses, the minimum imaging resolution, the maximum volume

which can be sectioned, the slice rate, and whether or not the technique is destructive

or non-destructive. Many of these techniques, described in more detail in section 2.1.1

through section 2.1.3, are complementary to the FSLSS and have materials and length

scales over which they are most effective. A suite of tools is necessary to access and

quantify the microstructure that exists across length scales.

2.1.1 Dual Beam FIB

Focused ion beam serial sectioning (FIB) was developed following the advent of

the FIB column being integrated with a SEM chamber, a so-called Dual Beam FIB

(DB-FIB) [3, 42–44]. A predefined sample geometry is milled into the sample surface

so that the stage can be rotated to access all the tilt angles [44] needed for machining
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with the gallium ion beam and for collecting microstructural data, such as electron

backscatter diffraction (EBSD) data, energy dispersive spectroscopy (EDS) informa-

tion, or scanning electron microscopy images. Each detector mounted in a DB-FIB

occupies a different set of solid angles to gain access to the sample. Accessing the

correct geometric planes for data acquisition can be difficult due to the presence of

multiple detectors inside DB-FIB chambers, presented in Figure 2.1 [44], and because

the detectors require different angles of incidence for data collection. This technique

of sectioning is effective for reconstructing small volumes of material (less than 5 µm3

with slice thicknesses ranging from 5-100 nm, and 6-7 nm/pixel in-plane imaging res-

olution [3, 39, 42–44]. DB-FIBs make use of machine scripting to automate the SEM

acquisition and the FIB machining steps. Fiducial marks are usually scribed into the

sample surface to aid in fine-scaled alignment of the tilt angles and sample position

from slice to slice. The DB-FIB can acquire SEM image slices of size 50×50 µm at a

rate of 25-50 per hour in a fully automated mode. Datasets have been collected from

many different types of materials, such as small inclusion phase distributions in steel

samples [45], alpha and beta phases in titanium [36, 37], martensite laths in steels

[41], and gamma prime precipitate distribution in Ni-base superalloy castings [34].
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Figure 2.1: Dual-beam FIB stage views (a & c) showing the numerous detectors in proxim-
ity of the sample. Schematic sample positions (b & d) during milling and electron backscat-
ter detection EBSD. (Image from G.D. West [44]).

2.1.2 X-Ray Tomography

X-ray tomography is a way of non-destructively generating 3D datasets using high

power collimated X-rays. This technique has been packaged into commercially avail-

able turnkey systems (SKYSCAN, PHOENIX X-RAY, NORTH STAR IMAGING,

and XRADIA), modeled after the medical imaging units, but tailored for micron-

scaled resolution of millimeter to centimeter-sized samples. A typical benchtop system

has a 150 kV X-ray source that can give micrometer-scale resolution, depending on the

density of the material. Unfortunately, the reconstructed volume shrinks as the reso-

lution increases, due to the geometric relation between the magnification and the di-

verging beam, as shown in the schematic in Figure 2.2 [46]. These systems can readily

reconstruct material volumes in the near mm3 range with 2.5 µm voxel resolution for
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phase constituents with high dispersion contrast (such as air/metal or polymer/metal

composites). Examples of materials reconstructed using this tomographic technique

include ceramic and bioactive glass scaffolds for biomedical applications [47–49], mi-

crocracks in steel compact tension samples [50], solidifying dendrites in light metals

[51], and casting pores in aluminum [52]. Datasets are captured in approximately 24

hours and reconstructed over the course of a few days processing time. The major

limitations of these techniques are the lack of resolution and the low diffraction and

phase contrast in thick samples or dense materials. In order to overcome these prob-

lems, synchrotron radiation can be used with much higher penetration depths and

better imaging resolution due to the enhanced beam collimation and tunable beam

energies [53]. For example, Figure 2.3 shows variation in chemical composition in an

as-cast superalloy with elemental segregation due to improved phase contrast from

the synchrotron X-ray source [54]. Synchrotron X-ray reconstructions also can be

4-dimensional by imaging the time-based evolution of microstructure such as grain

growth [55] and aluminum alloy dendrite solidification [56].

Figure 2.2: (left) Schematic of X-ray tomography setup in which the sample is rotated
between the source and the detector. (right) The voxel resolution of the technique is depen-
dent upon the (1) magnification that is determined by the geometric ratio of the focus to
object distance (FOD) to the focus to detector distance (FOD), (2) the detector resolution,
and (3) the focal spot size of the X-ray source. (Image from O. Brunke [46]).

12



Figure 2.3: Synchrotron X-ray image of Ni-Al dendritic structure. Elemental segregation
is shown by false color derived from the varied absorption contrast of the regions. (Image
compliment of N. Husseini [54]).

2.1.3 Mechanical Serial Sectioning

The most widely used serial sectioning technique is mechanical polishing. Me-

chanical serial sectioning techniques use an abrasive medium or a tool bit to remove

layers of material from the sample surface between imaging steps. Many different

approaches have been employed, including micro-milling [2], mechanical polishing

[1, 4, 5, 30, 32, 35, 56], and grinding/dimpling [33]. Accurately monitoring and mea-

suring the material removal rate is a major challenge of all serial sectioning techniques

and is specifically difficult in mechanical sectioning due to the direct contact mode

of material removal. Consumable milling or grinding media must be periodically re-

placed or refreshed as they wear during sectioning experiments. To circumvent these

problems, many techniques make use of fiducial marks to monitor material removal

rates [38, 57], such as micro-indents on the polishing surface or by monitoring geo-

metric patterns scribed on the edge of the sample [35, 37]. The fiducial marks are

tracked using pre-determined geometric relations to reconstruct the removal rates af-

ter the sectioning. Systems such as RoboMet.3D [4] incorporate automation of the

polishing, imaging, and etching steps, although depth profiling and consumables must
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still be manually monitored. The automated mechanical polishing serial sectioning

techniques, such as RoboMet.3D, can make slices as thin as 0.1 µm for small sam-

ple volumes at a rate of approximately 4-20 slices per hour. Optical images or SEM

images and EBSD orientation data may be manually collected between slices. Diffi-

culties of mechanically serial sectioned datasets include that they are often difficult

to segment and align, and that imaging parameters and imaging areas can shift dur-

ing sectioning due to human errors and imprecise sample position encoding. These

sources of error require advanced segmentation algorithms and occasionally substan-

tial human input for accurate image processing. Voorhees et al [2] made progress in

addressing these problems in the image registration steps by equipping the transla-

tional stage in their sectioning setup with an encoded transducer. This modification

introduced increased repeatability into the spatial location of the imaging area during

image capture steps. Rowenhorst’s [58] recent work has been aimed at producing the

highest fidelity datasets possible. Removal rates are calibrated by scribing FIB mark-

ers into the edges of the sectioning experiment samples, and then monitoring their

removal during imaging steps. A full-time staff member meticulously collects optical

images with supplemental EBSD data. The reconstruction process is extremely time

intensive but produces high resolution datasets with multi-modal data (both EBSD

grain orientation information and optical microscopy). Figure 2.4 shows a 3D recon-

struction of 4380 collected and analyzed β grains in a Ti-21s alloy [58]. The number

of faces and grain orientations were measured to determine the triple point geometry

and a grain growth rate dependence on the number of faces was established.
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Figure 2.4: 3D reconstruction of Ti-21s. (a) 4380 β grains collected with an entire re-
constructed volume of 1115×516×300 µm (b) Individual reconstructed β grains of different
sizes with the corresponding number of faces annotated [58].

2.1.4 Current Challenges with 3D Tomographic Techniques

Destructive serial sectioning techniques are extremely time intensive. Sectioning

experiments require at least days for completion, while the time required to analyze,

segment, mesh and reconstruct the captured dataset will take weeks to months to

complete. For mechanical sectioning datasets of roughly 1500×1500×300 µm, collec-

tion times will require 2-3 weeks with supervision required to replace consumables.

Focused ion beam sectioning experiments of size 50×50×50 µm will require roughly

4 days for collection [42]. Therefore, steps should be taken to reduce processing time

during the experimental setup by increasing imaging fidelity or by capturing from

multiple data sources. Furthermore, consistency in imaging parameters such as con-

trast, brightness, color balance and imaging area will all help reduce in processing

time.

2.2 UHS Steel

Throughout the past three decades, extensive research efforts have aimed to better

understand the process of fracture and failure in high toughness metals, such as steel.

In tough materials, cracks are initiated and propagate from flaws or locations of high

15



stress concentrations with a high degree of energy absorption. In structural materials,

flaws include porosity, carbides, nitrides, or other inclusions where the second phase

cannot compatibly deform with the matrix phase. Therefore, the orientation and dis-

tribution of these defects can dramatically change the fracture process. Tomographic

techniques provide unique 3D data that can address these complex fracture problems.

2.2.1 Applications and Background

Ultrahigh strength (UHS) steels were developed for applications requiring high

strength, toughness, and wear resistance. Applications for these materials include

naval and other military armor, structural aerospace components, and impact resis-

tant applications where brittle type failures are not acceptable. They are useful in

structural applications at ambient to slightly elevated temperatures (150 ◦C); with

waning mechanical properties as the use temperatures approach the tempering tem-

perature.

Armor designed for ballistic penetration resistance typically fails through ductile

fracture within bands of concentrated shear Figure 2.5 [17, 59, 60]. Ductile failure

is the usual mode of failure in structural metals, with strain energy being absorbed

through the process of plastic deformation, void nucleation, growth, and coalescence

[11]. Crack propagation in high toughness materials occurs through void nucleation

and linkup. Small microvoids tend to nucleate near the interface of primary inclusions

and the matrix through a de-bonding event [17]. Propagation of cracks is therefore

aided by microvoid linkup in the local vicinities of inclusions. Also, non-uniform

particle distributions in regions of localized plastic flow significantly reduce the ca-

pability for plastic flow as the volume fraction of particles in the localized regions

increases [12, 61–63]. Due to the deformation processing involved in forging, the

primary inclusions discussed above tend to be heterogeneously distributed and are

poorly characterized by 2D stereological [14, 23, 64] or statistical approximations,
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therefore necessitating the collection of large representative volume element (RVE)

3D datasets. Using the FSLSS technique, we investigated the distributions of TiN

and Lanthanum Oxy-Sulfide inclusions in a 4330 titanium modified steel and a C-61

gear steel, respectively.

Figure 2.5: A 4340 plate steel after ballistic impact with visible shear localization that is
visible in the form of white bands [17]. (Image from J.G. Cowie et al [17])

When chemistry and tempering steps are controlled properly, these types of high

strength steels tend to have ductile failures whereby strain is localized into shear

bands and energy is dissipated by the generation, growth, and linkup of voids. The

development of these highly deformed areas in the material dissipates energy and

therefore makes them useful for armor applications.

There are three main classes of UHS steels: high alloy maraging steels, high alloy

secondary hardening steels, and low alloy steels. The work in this thesis focuses on a

low alloy UHS titanium modified 4330 steel.

2.2.2 Microstructure and Chemistry

The three general classes of UHS steels (high alloy maraging steels, high al-

loy secondary hardening steels, and low alloy steels) rely on different microstruc-

tural strengthening mechanisms to achieve their high strength. Type (1), high alloy

maraging steels use intermetallic substitutional compounds such as Ni3Mo, Ni3Ti,

and Fe2(Mo,Ti) to precipitation harden its relatively carbon free Fe-Ni martensitic
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structure. Type (2), secondary hardening steels use the same basic substitutional

compounds as high alloy maraging steels, but also contain chromium, molybdenum,

or vanadium carbides that precipitate during a 773-873K tempering step. The inter-

metallic carbides usually replace cementite phases during the tempering step. Type

(3), low alloy steels are martensitic mid-carbon tempered steels that form intermetal-

lic or transition metal carbides during a low-temperature tempering step at up to

523K.

UHS steels are primarily composed of either Fe-Ni or Fe-C martensitic microstruc-

ture. Martensitic steels require a fast quench from an austenitic solution to form their

metastable body centered tetragonal (BCT) crystal structure. The structure of con-

sists of a solid solution of the alloying components (C or Ni) that are diffusion limited

during the fast quench. Specifically, super saturated carbon is trapped interstitially

in the BCT crystal structure during martensitic transformation. Carbon is the most

potent strengthener added to steels, as shown by the classic work of Winchell and Co-

hen [65]. The martensitic steel microstructure has high strength and hardness but is

inherently brittle from either the high residual stresses of quenching or substitutional

element lattice mismatch.

Martensite is formed during a fast quench from solutionized austenite. In low-alloy

mid-carbon steels the martensite microstructure is composed of packets of elongated

parallel lath structures. These martensite packets and laths are proportionally sized

to pre-quenched austenite grains (Figure 2.6) [66]. Given the high hardness of marten-

site due to the supersaturated carbon content, tempering steps are often applied to

precipitate carbide strengtheners and increase ductility through the formation of ce-

mentite. The schematic in Figure 2.7 [67] shows the carbon concentration profiles and

the corresponding microstructural evolution of tempered martensite. In Figure 2.8

[68], an optical micrograph of a martensitic steel with an etched microstructure is

shown. No carbides are present with a fairly homogenous lath martensite microstruc-
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ture present. An optical micrograph of a similar martensitic steel after tempering is

shown in Figure 2.9 [69] with clearly developed carbides mixed with cementite.

Figure 2.6: A TEM image showing prior austenite grain size (in solid white lines) and
martensite packet laths (in dashed white lines) in a Fe-0.2C-1.5Mn-0.15V steel with grain
size of 2.3 µm. (Image from S. Morito [66])

Figure 2.8: An optical micrograph showing the lath martensite structure for a low-
temperature (200 hr at 400o C) heat treatment. Martensite is present without any visible
carbides or cementite. Image from R.N. Caron [68].
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Figure 2.9: An optical micrograph of tempered martensite with carbides and cementite
present near retained austenite grain boundaries. Image from B. Bramfitt [69].

In most engineering materials inclusion phases or precipitates exist. High strength

steels are no exception, generally exhibiting small, sub-micron precipitate strength-

eners formed during tempering, as well as larger 1-50 µm particles precipitated during

quenching from solution. The larger particles tend to exist as unintentional ceramic

phases, which are generally detrimental to properties such as toughness and strength

because they facilitate the process of ductile fracture by nucleating voids at the ma-

trix interface. The inclusion particles also create stress concentrations between the

particle-matrix interface due to non-uniform deformation of the two phases. Non-

metallic particles have been shown to deform elastically while the matrix deforms

plastically, fracturing particles or causing decohesion. Both lead to microvoids that

are detrimental to strength [18, 70–72]. Furthermore, some large non-metallic par-

ticles have been shown to be particularly susceptible to void nucleation by particle

fracture [72, 73]. This large particle effect is often justified by the greater presence

of surface flaws in the these brittle particles, leading to lower stresses required for

particle fracture [72].

Carbides and nitrides can be distinguished, respectively, by their spherical and
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cuboidal geometry from the micrograph in Figure 2.10. Ductility and toughness are

enhanced in these steels by precipitating transition carbides during tempering step(s).

Carbide precipitation is driven by the fast diffusion of the super-saturated carbon from

quenched martensite microstructure, which occurs at elevated temperature due to the

metastable nature of the martensite. Cementite (Fe3C) can also precipitate on the

grain boundaries during tempering step(s) if the amount of carbon is greater than

0.5weight%. This process is referred to as martensite embrittlement. In steels with

more complex compositions, tempering steps may be used to form complex carbides

or intermetallic phases from other elements in solution.

Figure 2.10: An optical micrograph of 4330 steel with cuboidal red-colored TiN particles
and smaller round black TiC particles

In this research, we focus specifically on a titanium modified 4330 steel designed

for applications that are subject to high strain rate deformation, such as in naval

armor and heavy construction machinery. Under these conditions, toughness becomes

a major consideration along with strength. The specific chemistry of the low alloy

titanium modified 4330 steel is listed in Table 2.1. In Figure 2.11 a FIB etched BSE

electron image shows the martensitic microstructure with TiN and TiC precipitates.

The microstructure of this high strength steel contains 1-10 µm cuboidal titanium

22



nitride (TiN) primary inclusions (Figure 2.10 - red particles) and sub-micron TiC

secondary inclusions (Figure 2.10 - small black particles). Titanium is added to form

sub-µm TiC strengtheners, but also results in TiN particles, which are deleterious

to the fracture toughness. The TiN inclusions can be easily identified when imaged

optically because they appear red in color due to absorption contrast. The inclusion

distribution and the morphology of the inclusions have been shown to affect the

void nucleation substantially [11]. Therefore, the 3D datasets have been acquired

and assessed statistically for information such as mean particle size, mean nearest

neighbor distances, and particle volume fraction.

Table 2.1: Composition in weight % of titanium modified 4330 steel.

(wt%) C Si Cr Mo Ni Cu Ti V P S Fe

Mod. 4330 0.29 1.52 1.91 0.38 0.19 0.14 0.042 0.11 0.012 0.005 bal.

Figure 2.11: A BSE micrograph of FIB milled 4330 steel with two cuboidal TiN particles
and smaller round dark grey TiC particles. The martensite laths are visible in light contrast
grey scales in the background. (Image from M.D. Uchic [45]).
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2.2.3 Mechanical Properties

UHS steels are commonly defined to have yield strength of at least 1380MPa.

They are usually tempered in order to increase their toughness and ductility at the

sacrifice of yield strength. The titanium modified 4330 (Ti mod 4330) steel has

lower yield strength of approximately 1275MPa as estimated from hardness mea-

surements. The Young’s Modulus for this steel is 200GPa, the Yield Strength is

1206MPa (175 ksi), and the Ultimate Tensile Strength is 1461MPa (212 ksi), a hard-

ness of 50.4HRC, and a Charpy impact energy of 37 joules.

Processing of the 4330 samples included a 1-hour austenizing step at 975◦C and

a highly agitated water quench. Its mechanical properties established by a 215 ◦C

tempering step at 100minutes followed by an air cool at which point a Rockwell

hardness of 50.4 developed.

2.2.4 Failure Modes

Ductile failure occurs when a material experiences intense plastic deformation

before fracture. Simultaneously, a significant amount of energy is absorbed during

this process. Materials with high purity, such as single crystal copper, nickel, niobium,

and lead have been shown to endure up to 100% reduction in area before failure

(Figure 2.12) [74]. Shear bands, such as those in Figure 2.12, are often clearly visible

in tensile tests of these highly strained materials. The ability for metals to slip so

extensively is an effect of the shared electronic structure that is typical in metallic

bonding.
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Figure 2.12: Single crystal niobium tensile test specimen showing shear bands and extreme
deformation in the gauge section. (Image from C.N. Reid [74]).

A typical ductile fracture in tension is described as having a cup and cone type

break. This refers to a necked region where cross sectional area of the specimen

has been reduced, a crack has nucleated and propagated internally (usually from the

lateral and radial center of the necked region), and failure has occurred within this

region (see Figure 2.13). A heavily voided region will form at the geometrical center

of a necked region in a tensile sample because of the strong hydrostatic stresses that

develop there. The voids in this region connect by continued plastic deformation,

and eventually the series of void nucleations and their connectivities will drive the

extension of a primary crack or cracks radially outward toward the edges of the necked

sample. Multiple void aggregations, referred to as void sheets, zig-zag outwardly at

angles of 50-60◦ radially toward the edge sample. Once the void sheet comes in

proximity of the edge of the sample shear stresses begin to dominate and produce a

fracture surface running at 45◦ between the axial and radial directions, developing

the cup and cone edges. The fracture surface in ductile failures is described as having

a dimpled surface, which is characteristic of the filamented breaks that occur with

crack propagation and void linking.
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Figure 2.13: A schematic illustrating the ductile fracture process. In (a) a specimen
is necking down in the gauge region with greater applied stress. In (b) voids begin to
nucleate at the center of the necked region where hydrostatic stresses are the largest. In (c)
void-linkup and crack formation occur spreading radially outward toward the edge of the
gauge section. Crack propagation tends to follow a zig-zag pattern along paths of greatest
shear stresses. In (d) cracks have spread, and therefore cross-sectional area has decreased
to a point where high stresses form brittle-type crack propagation. In (e) typical fracture
surfaces are illustrated. (Image from T.B. Cox [72]).

Void sheets form along bands of shear that extend from propagating cracks in a

stressed material. The shear bands form at 45◦ to the normal of stress direction, and

the crack will tend to follow a zig-zag pattern along these 45◦ shear bands staying

localized to the bar section of highest stress (normally the gauge section with most

necking) [75]. The ductile fracture surface usually has a dimpled texture reminiscent

of a small forest of necked regions. These dimples result from matrix and second

phase plastic deformation incompatibilities. For instance, a hard undeformable inclu-

sion phase will produce a large density of dislocations surrounding it, as the matrix

is plastically deformed and the inclusion resists elastically. As plastic deformation

continues the second phases may either fracture in a brittle manner or deform plas-
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tically, generating voids and microcracks [76]. Therefore, the volume fraction, size,

type, and special arrangement of inclusion phases, such as carbides, nitrides, and

sulfides, can be of particular importance in dictating the amount of energy dissipated

during a ductile fracture. Schematically in Figure 2.13, voids can be seen to nucleate,

grow, and propagate, eventually leading to failure within the necked region. In Fig-

ure 2.14, work by Cox and Low [72], inclusion phases are visible as void nucleators in

the concavity of the dimpled surfaces.

Figure 2.14: SEM image of AISI 4340 steel ductile fracture surface. Nucleating cementite
particles are marked with arrows. (Image from T.B. Cox [72].

The toughness of UHS steels is limited by the localization of plastic deforma-

tion at, and between, primary inclusion particles such as titanium-nitrides [77]. The

fracture or debonding of these TiN particles has been associated with the nucleation

of microvoids in UHS steels [59]. Stress concentrations at microvoids developed by
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fractured TiN particles drive the linkup with other voided regions through ligament

necking or shearing [78]. The heterogeneous stress distributions that occur due to

shear localization near TiN particles reduce the fracture toughness of UHS steels [11].

The void-coalescence process can be significantly affected by local material in-

homogeneities. Huang modeled the influence of voids and particles on plastic de-

formation in his 1993 work [12]. He showed that ductile fracture can occur sooner

at lower nominal strains with plastic flow localization. Void nucleation and linkup

and oriented planes of microvoiding called void sheets are all forms of localization.

Heterogeneity in microstructure, such as particle clustering, can produce local stress

concentrations, void nucleation, and coordinated void linkups at lower stresses than

would be expected for a volume with homogeneous microstructure. In effect, a mi-

crostructural heterogeneity such as a particle cluster acts as a larger effective defect.

For instance, in shear banding regions with severe strain localization, a 5% increase

in inclusion volume fraction can reduce the overall material ductility by a factor of

2 [12]. The 3D spatial distribution of inclusion phases in steels is directly important

for toughness and ductility. The degree of inclusion clustering and other material

heterogeneities are of importance for void propagation and growth [12], while the 3D

geometry (specifically size) of an inclusion affect the particle’s fracture strength and

its ability to nucleate voids [72]. Weibull determined that larger inclusions will require

lower applied stresses and therefore lower strains to be deformed, fracture, or debond

from the matrix [79]. Therefore, being able to predict where the largest flaws are,

and how they can interact with each other, is fundamentally important to predicting

how to process and modify the distribution detrimental phases like large inclusion

particles. In order to characterize the distribution of detrimental TiN precipitates

that form in a 4330 steel, an improved serial sectioning technique was required to

collect large near mm3 volumes of material with nm to µm scale resolution.
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2.3 Femtosecond Lasers

The advantages of femtosecond lasers for micromachining have motivated the

present development of the femtosecond laser based serial sectioning (FSLSS) pro-

cess. Schawlow and Townes developed the first laser at Bell Labs in 1958 using a

potassium vapor gain medium [80]. Since then, a variety of laser media have been

developed with pulse durations ranging from continuous wave operation down to fem-

tosecond pulse widths. Femtosecond lasers are particularly of interest because of their

pulse-width is on the same time scale, or shorter, than fundamental electronic-ionic

material interactions such as the electron relaxation time [81]. Applications for these

lasers include: the imaging of events that occur on ultrashort time scales (ablation,

plasma generation [82], two photon absorption [83]), diagnostics of highly localized

plasma generation (laser induced breakdown spectroscopy LIBS [84]), and low damage

laser micromachining [85].

The unique properties of femtosecond lasers stem from their characteristically

short pulse-width, high focused intensities, and kilohertz repetition rate. In the fol-

lowing sections, the fundamental characteristics of femtosecond lasers are discussed,

as well as the mechanisms by which energy is transfered to electron and ionic species,

and an overview of the laser-material interactions including laser ablation and dam-

age thresholds. These unique properties are central to the new FSLSS technique used

to perform microstructural characterization in 3D.

2.3.1 Laser Characteristics

High pulse energy (>0.1 mJ/pulse) femtosecond lasers have become commercially

available in the last two decades (1987 Clark MXR) with the advent of the chirped

pulse amplification (CPA) technology [86]. Previous to this invention, the damage

threshold fluence of the optics and gain media limited the amount of amplification in

short pulse laser systems. In CPA lasers, see Figure 2.15 [86], a pulse is spectrally
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and temporally stretched into the range of hundreds of picoseconds. The different

wavelength components in the spectral range are propagated over a widened tem-

poral space allowing for their amplification without self-focusing or optics-damaging

beam fluences. Recompression of the beam is performed after the amplification to

combine the ultra-short pulse characteristics with the increased beam power. Modern

gain media for CPA type femtosecond lasers include solid state Ti:sapphire rods and

Ytterbium-doped fibers. Ti:sapphire lasers generate ultrashort pulses by self-mode-

locking, a process by which pulse generation is promoted in specific phases through

constructive interference, schematically shown in Figure 2.16 [87]. CPA increases the

power of Ti:sapphire pulses into a range where they can be used to develop plasmas

and laser machine metals and ceramics. Femtosecond lasers produce tightly focused

and temporally short pulses with high repetition rates. Unlike laser pulses that are

nanoseconds or longer in duration, femtosecond pulses can ablate material with very

limited surrounding collateral dislocation damage and very little residual melted ma-

terial [88]. In Figure 2.19, SEM images of laser drilled holes shows damage increase

with increased pulsewidth. Heating is confined to a very localized area in the immedi-

ate vicinity of the pulse [89, 90]. Even at high repetition rates (1 kHz to 30MHz) the

time between each pulse delivery is very long, when compared to the 150 femtosecond

pulsewidth. Intensities of >1018 W/cm2 can be achieved by tightly focusing the beam

down to 1-10 µm full-width-half-max (FWHM) spot sizes using simple optics such as

a doublet lens. Kilohertz repetition rate lasers are available with pulse energies near

3-5mJ. Recently, megahertz repetition rate lasers have become commercially available

with pulse energies of approximately 100 nJ (CLARK MXR, COHERENT).
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Figure 2.15: Schematic of (a) Pulse stretcher - two opposed antiparallel diffraction gratings
with a telescope positioned in between them. An incoming pulse is chirped across its
wavelengths with red having a shorter path than blue wavelength. Schematic of (b) Pulse
compressor - two parallel diffraction gratings in which the blue has a shorter optical length
than red wavelength. Schematic of (c) Temporal ranges of pulse widths throughout the
chirped pulse amplification (CPA) process. (Image from G. Mourou [24]).

Figure 2.16: Simple example of the laser gain bandwidth, a mode-locked cavity, and the
corresponding laser output.
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2.3.2 Ablation/Energy Transfer

The dynamics of the mechanism of ultrashort pulse laser material removal has

been discussed in theories such as the Two-temperature model [91, 92]. This model

is used to predict the electron and phonon temperatures that develop during and

immediately after laser pulse deposition. The model assumes that electron excitation

occurs through the absorption of the laser photons followed by a localized thermal-

ization of that energy. The thermal energy diffusion is defined by a set of differential

equations that govern the temperature gradients based on position and time. Laser

ablation is modeled to occur anywhere the local equilibrium temperature exceeds the

enthalpy of vaporization for the material. At high laser fluences the Two-temperature

model does not agree well with the ablation events produced experimentally, suggest-

ing that mechanisms other than thermal ones are active [93]. Shock melting may be

an integral part of the material removal at higher fluences [94]. The model of Torralva

et al [94] predicts that additional material is removed at high laser fluences due to

shock-melting produced by a rarefaction wave caused by the high pressures induced

by high velocity material ablatants. This model also predicts that an abrupt change

in ablation fluence rate, known as the low to high fluence transition, corresponds to

the onset of shock-melting in nickel, aluminum, and a nickel-base superalloy. The

generally emerging view is that the following events occur during the laser-material

interaction with femtosecond pulses [81, 95, 96]. Initially, ultrashort pulsed laser en-

ergy is coupled to the electrons from the incoming photons immediately upon pulse

deposition. Femtoseconds later, electron diffusion occurs and the non-equilibrium

electron energy distribution relaxes back into a Fermi energy distribution. The elec-

tron energy is converted into phononic energy in the next 1-10 picoseconds, which is

commonly referred to as the thermalization time or the electron-lattice relaxation time

[97, 98]. At this point, ablation occurs as ions are excited to temperatures that are

well above their vaporization point. Interestingly though, the laser pulse arrives and
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ends picoseconds before any phononic heating begins. This means material ablation,

plasma formation, and the corresponding photon emission all occur long after the

direct laser light interaction. Diagnostics tools such as spectrometers take advantage

of the pulse-ablation temporal gap and are used directly to image the plasma-photon

emissions without imaging the laser light. Material removal also enhanced by the

pulse-ablation separation time and the subsequent wait time (before the next pulse)

in which plasma formation and dissipation can occur.

Femtosecond laser micro-machining experiments have been performed for a wide

range of materials to discern the benefits of ultra-short, high intensity laser pulses.

These experiments usually involve hole drilling [85, 99, 100], trench fabrication [101],

or single pulse laser modification [82, 88, 102]. However, the dynamics of damage

formation associated with these laser machining processes has not been studied in as

much detail.

Recently, experiments have been performed to quantify the extent of dislocation

injection or other forms of damage after irradiation by femtosecond laser pulses. In

the work of Kumar et al, the extent of dislocation injection into the bulk of nickel base

superalloy was measured by cross sectioning single laser pulses irradiated incident to

the sample surface [103]. In Figure 2.17 we show EBSD measurements taken from the

cross sections to determine the amount of strain induced beneath the laser ablation

events. The sample was polished using a Bueler Vibramet polisher to significantly

diminish any residual strain fields from the mechanical preparation steps. Similar

procedures were followed when sectioning the sample laterally for the same regions.

The amount of strain can then be correlated with the density of dislocations necessary

to deform the matrix, estimated using EBSD misorientation information. Kumar

found that dislocation densities on the order of 2.8× 1010 per cm3 were present near

high fluence laser craters of 5.1 J/cm2 [103] compared to densities of 108-109 per cm3

in undamaged material [54].
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Figure 2.17: EBSD map of a cross-sectioned single femtosecond laser pulse in a CMSX-
4 superalloy. Dislocation densities of 2.8 × 1010 per cm3 have been estimated from the
measured strain. (Image from A. Kumar [103]).

Dislocation distributions were analyzed by Ma et al in thin sheets subjected to

ablation following single pulse laser machining a TEM foil and imaging the region

surrounding the damage [88]. Dislocation densities of 1010 per cm2 were measured in

an area irradiated with approximately 2.5 J/cm2. Interestingly, the gamma/gamma’

two-phase structure typical of precipitation strengthened nickel base superalloys is

unperturbed by the dislocation injection, and are totally unaffected at a distance of

1-2 µm from the edge of the laser pulse, see Figure 2.18 [88].
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Figure 2.18: TEM images prepared from a foil of CMSX-4 superalloy that was subse-
quently laser machined with low-fluence laser pulses (0.392 J/cm2) [99]. Dislocations extend
radially less than 1-2 µms and the γ − γ� two phase microstructure is unperturbed.

2.3.3 Femtosecond Laser Machining

Femtosecond lasers have been shown to significantly limit material damage during

ablation. A number of studies have shown various ways by which these characteristics

can be utilized. These include: high aspect ratio hole drilling [88, 99, 104, 105], trench

machining [101, 106, 107], laser induced breakdown spectroscopy (LIBS) [84, 88, 108–

110], and surface texturing [111–113].

In Figure 2.19, SEM images show laser machining with decreasing pulse durations.

Continuous wave lasers show the most residual damage and the largest heat affected

zone, while femtosecond lasers show the least. Material removal happens between

pulses while the laser has stopped pulsing, which gives the ablatants time and a

ballistic pathway to eject from the areas that are being laser machined [93, 114, 115].

Energetically, pulsed lasers prevent repulsing of ejected ablated material and provide

time for material response [114].
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Figure 2.19: Femtosecond laser hole drilling is shown to produce less residual damage and
a smaller heat-affected-zone (HAZ) than longer pulse laser machining and continuous-wave
(CW) lasers. Laser machined holes using 780 nm wavelength at (right) 10 picosecond pulsed
laser, a (middle) 1 picosecond pulsed laser, and a (left) 150 femtosecond pulsed laser [116].

2.3.4 Damage Thresholds

The laser damage threshold is defined as the incident fluence required for single

pulse removal of material from a sample surface [96, 102]. The extrapolation of the

damage threshold is only as accurate as the quality of the data collected from the

imaging techniques used to characterize the damage morphology. Damage has been

reported as the maximum depth of material removed in a laser crater, as the 2D dam-

age area, or as the diameter of the laser spot damage area [96, 117–120]. Techniques

such as atomic force microscopy (AFM), confocal microscopy, and profilometry can

be used to quantify the depth of ablation craters made with various pulse energies.

Traditional 2D imaging techniques such as optical microscopy and scanning electron

microscopy (SEM) are used to profile the area of the laser pulse crater. A Gaussian

distribution is usually fit to the profile of the damage area.

In many materials [85, 88, 96, 117, 119] another high fluence threshold exists as

denoted by an abrupt change in the rate of material removal due to femtosecond

laser ablation. This threshold will be referred to as the low to high fluence ablation

threshold, and is depicted in Figure 2.20 [100, 119, 121–123]. The single pulse dam-

age morphology is qualitatively different when comparing the two regimes. At low

fluences, material is generally removed with little or no localized melting and little
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dislocation injection [88, 99]. In the high fluence regime, more material per pulse

is removed with some short-range melting or re-solidification and a higher degree of

dislocation injection [88]. High fluence damage is particularly evident in multi-pulse

drilling studies (Figure 2.21 and high-resolution SEM images (Figure 3.10 - left).

Damage thresholds are also dependent on the laser pulse-width, for instance, Bonse’s

work shows that as pulse width is shortened from 200 to 5 fs the ablation threshold

decreases by a factor of 2 [102].

Figure 2.20: Ablation depths plotted for a range of fluences in CMSX-4 superalloy. Cor-
responding low and high fluence single pulse laser craters are shown in the upper left and
right. Material removal rate slope is low for the low fluence range compared to the high
fluence range (Image from S. Ma [88]).
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Figure 2.21: Femtosecond laser drilled hole with a high aspect ratio and then sectioned
laterally [88]. The SEM image shows low amounts (less than 1 − 2 µm of redeposited
material are present on the sides of the sides and the shoulder of the hole. Laser machining
was performed with the number of pulses indicated in the image, at a fluence of 12.9 J/cm2.
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CHAPTER III

Laser-Material Interactions

Femtosecond lasers are pulsed lasers. Therefore, it is of benefit to study the

fundamental interactions of single pulse laser-material irradiations. In this chapter,

single pulse laser studies will be discussed in Section 3.1 followed by a description of a

more detailed investigation of single pulse ablation in 4330 steel and titanium nitride

in Section 3.2. In Section 3.3 the transition from single pulse laser ablation to bulk

material removal is considered.

3.1 Single Pulse Laser Studies

The study of the interaction of individual laser pulses with the incident material

is important in order to characterize the ablation morphology, evaluate the laser

damage thresholds of the material, and to determine the laser-energy distribution on

target. Figure 3.3 and Figure 3.10 show optical microscopy, SEM, and AFM images

of laser pulse craters with fluences listed in the figure captions. The extent of damage

can be fit to the corresponding theoretical Gaussian beam spatial intensity profile to

extract valuable parameters such as the focused beam diameter and the corresponding

ablation damage thresholds [114].

The peak laser fluence on target is defined as:
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φpeak =
E0

Area
=

2Epulse

πw
2
0

(3.1)

where φpeak is the peak fluence, E0 is the peak pulse energy, Epulse is the average

pulse energy, and w0 is the focused beam diameter.

From the single pulse ablation morphology, a set of scan parameters can be de-

signed to optimize material removal and minimize surface roughness. The laser-

material damage studies are also used to determine the laser fluence parameters at

which the least damage is subjected to the material with the greatest material removal

rate.

Experimentally, single pulses were irradiated on the surface of a sample with

spacing roughly 2-3 times the laser spot size diameter to produce a grid of damage

spots without impingement, shown in Figure 3.1. Each spot was interrogated using

optical microscopy, SEM, atomic force microscopy (AFM), and laser profilometry to

determine the ablation morphology. The 2D pulse area was measured by all of the

aforementioned techniques, while the ablation depth was measured exclusively using

AFM or laser profilometry.
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Figure 3.1: SEM image of single pulse laser machined spots on an area of 4330 steel.

For most single pulse studies, a 20 cm focal length plano-convex lens was used to

bring the laser into focus on the face of the sample surface. Rough focus was found

using a fluorescent card to indicate, by eye, the stage position with minimum spot

size. Optimal focus was achieved by laser machining incrementally positioned spots

on the sample surface in front of and behind the coarsely determined peak focal plane.

The focused beam profile of the femtosecond laser after a 20 cm focal length lens is

shown in Figure 3.2.
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Figure 3.2: CCD image of a the femtosecond laser beam at focus after a 20cm plano-convex
focal lens with Gaussian beam profile. The (1/e2) spot size is 39.05 µm.

Ablation thresholds were estimated from the measured squared diameter data by

extrapolating a fit of the lower fluence data points to 0 J/cm2. The squared diameter

is shown to have a linear dependence, for low irradiation fluences, with the log(Laser

Pulse Energy). A 2-parameter fit equation shown in 3.3 is used following Bonse’s

2001 techniques [124] to determine the ablation threshold φth and the (1/e2) spot size

(w0).

For a Gaussian beam, Equation 3.2 describes how the energy intensity decreases

radially from the maximum at r = 0. The parameter w0 is the 1
e2 radius of the

intensity distribution and φpeak is the maximum laser fluence.

φ(r) = φpeake

−2r2

w2
0 (3.2)

For a Gaussian beam the Equation 3.3 can be used to fit in terms of E and D
2

to extract the laser threshold damage radius w0 and threshold ablation energy Eth

[124, 125].

D
2 = 2w2

0 ln
φ

φth
= 2w2

0 ln
E

Eth
(3.3)
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Equation 3.4 is used to calculate the peak pulse fluence φpeak as a function of pulse

energy E0 and the laser spot radius w0.

φpeak =
2E0

Area
=

2Epulse

πw
2
0

(3.4)

Or by substitution of Epulse =
<P>
RR , where R.R. is the repetition rate of the laser

and < P > is average power, an equation was generated that uses a simple power

measurement to calculate peak fluence.

φpeak =
2 < P >

R.R.πw
2
0

(3.5)

The average laser output power < P > is measured using a OPHIR 3-watt ther-

mopile powermeter before single pulse irradiation. The (1/e2) diffraction limited

focused laser beam spot size is measured using a Dataray Beam Profiler CCD cam-

era. Using the average power < P >, the laser pulse repetition rate (R.R.), and the

focused laser spot size (1/e2) or the measured damage area (w0), the single pulse

energy and pulse fluence can be calculated using equation Equation 3.5.

Arrays of single pulses are deposited on a sample surface for analysis by optical

microscope, SEM, AFM, and laser profilometry. Pulses were irradiated on the sample

by one of two ways: (1) scanning the sample at a faster constant velocity than the

repetition rate of the laser with a synchronized mechanical shutter or (2) by modu-

lation of the internal Q-switch in the Clark MXR femtosecond laser. For case (1):

a THORLABS optical chopper was used to reduce the repetition rate of the laser

by mechanically blocking some of the laser pulses. An electronic TTL trigger signal

is sent to a UNIBLITZ mechanical shutter controls at the same time as the laser

Q-switches with an injection pulse. The trigger signal provides ample time for the

mechanical shutter to open and shut, only letting one pulse through, without aperture

clipping the beam. For case (2): single pulse modulation is controlled through the
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hardware controls of the laser, significantly simplifying the setup. Single laser pulses

are generated by energizing the Pockels cell long enough for one single seed pulse

injection into the main Ti:sapphire gain cavity. A digital interface card provides a

TTL signal to the laser for Pockel’s cell control. A three-axis Newport programmable

mid-range travel stage was used to control sample positioning and motion between

single laser pulse irradiations in both cases. Laser beam attenuators were used to ac-

cess a wide range of laser fluences for single shot laser experiments. Neutral density

filters as well as a polarizer-1/2 wave plate were used to attenuate the laser power.

3.1.1 Morphological Characterization

Single pulse laser shot morphologies were characterized using scanning electron

microscopy (SEM) and light optical microscopy (LOM) with Nomarski polarized fil-

ters. A PHILLIPS XL30 field emission gun (FEG) equipped electron microscope was

used to characterize the precise structure, damage thresholds, and geometry of laser

damage. LOM was used to survey the general size and distribution of pulse deposi-

tions. Nomarski mode polarizers greatly enhance residual matrix strain immediately

within and surrounding the laser shots. The laser beam profile is slightly ellipsoidal

so damage spot size calculations were made from the measured major and minor axis

lengths or by damage area measurements. The following relation was used to calcu-

late an equivalent diameters for ellipsoidal spots with long axis length lx and short

axis of length of ly:

Dequivalent =
�
lx ∗ ly (3.6)

and equivalent diameters were related to area by this equation:

D
2
equivalent = 4

A

π
(3.7)
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3.1.2 Single Pulse Ablation Rate

The depth of material removal per laser shot is important for selection of pa-

rameters for scale-up to multi-shot laser machining. The same laser pulse deposition

techniques detailed in beginning of this section were used to produce single shot

laser spots on samples. The single laser spots were imaged using a DIGITAL IN-

STRUMENTS Nanoscope IIIa atomic force microscopy (AFM) in tapping mode to

characterize the 3D profile of the laser damage. An AFM measurement of a 2.1 J/cm2

single pulse in 4330 steel is shown in Figure 3.3. A polynomial curve was fit to the

raw AFM data to help estimate the average lowest point in the 3D damage profile.

A VEECO Laser Profilometer model WYKO NC1100 was also used to determine the

depth of material removed by single pulse ablation experiments. The profilometer

was operated in the VSI mode allowing for 3 nm resolution in depth at a maximum

depth of 2 mm. The laser profilometer collected data at a significantly faster rate

with sufficient nanoscaled depth resolution, so this technique was generally used for

many later experiments.

Figure 3.3: (left) AFM scan of single laser pulse in 4330 steel with peak fluence φ =
2.1 J/cm2. A depth of 40 nm is apparent from the line profile on (right). 2D and 3D
information is extracted from AFM scans.
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3.2 Single Pulse Characterization of 4330 Steel & TiN

Single pulse laser spots were characterized for both 4330 steel and a tool grade TiN

coating using the laser profilometer, optical microscopy, and an SEM. The changes

in morphology in terms of both the squared-diameter and laser pulse depth have

been plotted against laser fluence in Figure 3.4, Figure 3.5, Figure 3.6, Figure 3.7,

and Figure 3.8. The ablation thresholds, as calculated using the two-parameter fit

for the diameter squared data, for 4330 and TiN were 0.40 J/cm2 and 0.27 J/cm2,

respectively. In Figure 3.6, the ablation threshold was extrapolated to be significantly

lower than for the data collected in Figure 3.4 and Figure 3.5 because the pulse energy

data were located much farther from the ablation threshold. The sensitivity of the

fit indicated that accurate ablation threshold measurements must be made at low

fluences, near the ablation threshold.
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Figure 3.4: Squared diameter of measurements collected from AFM measurements for
a 4330 steel irradiated with single laser pulses. An ablation threshold of 0.40 J/cm2 was
extrapolated from the fit of the squared diameter data by pulse energy. The (1/e2) spot
size was calculated from the fit to be 20.2 µm. The (1/e2 spot size is used to determine the
laser fluence at the sample surface. The threshold fluence provides a material dependent
scale for how much damage is being done to the sample.
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Figure 3.5: Squared diameter measurements collected from AFM measurements for a
4330 steel irradiated with single laser pulses. An ablation threshold of 0.41 J/cm2 was
extrapolated from the fit of the squared diameter data by pulse energy. The (1/e2) spot
size was calculated from the fit to be 19.8 µm. The (1/e2 spot size is used to determine the
laser fluence at the sample surface. The threshold fluence provides a material dependent
scale for how much damage is being done to the sample.
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Figure 3.6: Squared diameter measurements collected using an SEM for a 4330 steel
irradiated with single laser pulses. An ablation threshold of 0.047 J/cm2 was extrapolated
from the fit of the squared diameter data by pulse energy. The (1/e2) spot size was calculated
from the fit to be 47.6 µm. The (1/e2 spot size is used to determine the laser fluence at the
sample surface. The threshold fluence provides a material dependent scale for how much
damage is being done to the sample.
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Figure 3.7: Single pulse ablation depths (nm) for 4330 steel plotted against laser fluence
(J/cm2). Ablation depths measured using AFM.
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Figure 3.8: Squared diameter measurements collected using an AFM for 4330 steel irra-
diated with single laser pulses. An ablation threshold of 0.27 J/cm2 was extrapolated from
the fit of the squared diameter data by pulse energy. The (1/e2) spot size was calculated
from the fit to be 18.6 µm. The (1/e2 spot size is used to determine the laser fluence at the
sample surface. The threshold fluence provides a material dependent scale for how much
damage is being done to the sample.

Many materials are shown to exhibit two different threshold ablation regimes

with increasing fluence. In Figure 3.9, a number of fundamentally different materials

and their ablation depths are plotted against laser irradiation fluence. All of these

materials exhibit two separate ablation regimes, differentiable by a marked change in

ablation rate beyond a critical fluence in the range of 0.1-5 J/cm2.
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Figure 3.9: Ablation removal rates for 316 stainless steel [119], silicon [100], magnesium
oxide [122], poly-methyl-methacrylate [121], gold [123], alumina [122], and silver [123].
All studies were conducted with 100-500 fs. pulses and all curves exhibit a low and high
fluence ablation regime with a distinct transition at which the material removal rate sharply
increases. This plot shows that materials with multiple phases can be laser machined with
simultaneous material removal when their ablation rates are equal. This is only important
for multiphase material ablation where the beam has normal incidence to the sample surface.

The 4330 steel samples exhibit the usual two-threshold ablation regimes with dis-

tinct thresholds existing at φth,1 = 0.19 J/cm2 and φth,2 = 1.0 J/cm2. Above the

φth,2 threshold laser ablation can produce recast layers with features that appear

shock-melted, as appears in Figure 3.10. Between φth,1 and φth,2 the material re-

moval produces less surface roughness, particularly near the center of the laser pulse

crater, as compared with fluences higher than φth,2. The decreased roughness in the

lower fluence ablation regime also indicates that more consistent material removal

will occur.
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Figure 3.10: Field emission gun (FEG) SEM images of single pulse laser shots on a 4330
steel sample. (left) peak laser fluence φ=13.5 J/cm2 (top right) φ=9.6 J/cm2 (bottom right)
φ=5.3 J/cm2.

3.3 Bulk Material Removal

Femtosecond laser irradiation can be focused across a large range of spot sizes,

with highly tunable ablation rates. These properties make the laser an excellent

tool for tunable material removal. Furthermore, with the laser capable of operating

at kilohertz and greater repetition rates, material may be quickly removed from a

sample surface with very little collateral damage. Femtosecond lasers have < 1%

pulse-to-pulse power variability permitting the consistent and predictable material

removal rates observed in the single pulse experiments.

Since femtosecond lasers are pulsed-type laser systems, bulk material removal

has to be performed using aggregated ablation events. For example, a galvometric

scanner or a fast moving stage is required to deposit pulses onto separate sample

areas without significant pulse-overlap and in a reproducible and controlled manner.

Material removal parameters can be described by laser scanning patterns and laser

fluence, which will be discussed in more detail in Chapter IV. The laser produces

pulses with extremely low power variability (<1 % RMS) and consistent pulse profiles,

therefore, the aggregate of many single pulse events will be representative of multi-

pulse ablation experiments.
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To summarize, the ablation threshold for titanium modified 4330 steel, as mea-

sured by SEM, is 0.19 J/cm2 and the transition from the low to high fluence regimes

occurs at 1.0 J/cm2. When the data from Mannion [119] and Yasumaru [126] is

combined, an ideal laser fluence machining range of 0.2-2 J/cm2 becomes apparent.

Therefore, simultaneous two-phase material removal is shown to theoretically exist in

the specified laser machining range. In Chapter V, uniform material removal rates

are demonstrated experimentally for the TiN containing 4330 steel.
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CHAPTER IV

The Femtosecond Laser Based Serial Sectioning

Technique

A major component of this research was the development of the femtosecond laser

based serial sectioning technique (FSLSS) and the resulting acquisition of 3D datasets

using this technique. As such, there were many laser-based experiments performed to

develop, calibrate, and validate the FSLSS technique for subsequent application to the

TiN containing 4330 steel for acquisition of 3D datasets used in modeling efforts. The

material removal rates for laser ablation were calibrated and verified by profilometry

and SEM imaging, and then routinely tracked using an automatic focusing routine

integrated into the image capture step (see Section 4.3).

The femtosecond laser aided serial sectioning technique has three major compo-

nents: (1) a focused laser machining station, (2) an optical microscope with a high

resolution CCD camera, and (3) a programmable 3-axis stage for sample translation.

The serial sectioning procedure is composed of single or multilayer ablation for surface

laser machining, followed by a stage translation to the imaging pathway, and then the

image acquisition. The equipment used in the sectioning technique will be described

in the following chapter.
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4.1 FSLSS Components

The CLARK MXR-CPA 2001 femtosecond laser used in these experiments can

be highly focused (>1018 W / cm2) and has ultrashort femtosecond (fs) pulsewidths

(150 fs). The wavelength of the coherent radiation produced is 780 nm and operates

in a pulsed mode with a repetition rate of 1 kilohertz for the sectioning experiments

and 100Hz for the single pulse experiments. The beam profile is Gaussian and the

pulse-to-pulse energy variability is less than 1% RMS with the max pulse energy

being ∼0.8mJ. A feedback mode is used during extended machining experiments to

maintain the fiber laser pump lamp current, and therefore the laser output power.

The optics setup implemented in the laser machining line includes the following:

(1) a polarizer / waveplate combination used to selectively transmit polarized light

and thereby controls the average power of the laser, (2) neutral density filters to

coarsely attenuate the average beam power, (3) a plano convex lens to bring the beam

to the desired machining focal spot size, and (4) a fast acting shutter to regulate laser

pulses and machining.

A sample is rigidly affixed to the sample stage to maintain image sampling align-

ment and stage registration for the machining procedure. Three programmable NEW-

PORT backlash free ball-screw drive mid-range linear stages are used for sample

translations and laser machining. Each stage axis has a resolution of 0.5 µm and

unidirectional repeatability of 1.5 µm. The sample is scanned in the laser beam path

synchronously with a high speed UNIBLITZ shutter to preferentially deposit laser

pulses in the desired region. The laser is oriented so that the laser pulses are de-

livered orthogonally incident to the sample surface. Forced air is blown parallel to

the surface, across the focused laser pulse spots where plasma is being generated, to

prevent ablated material from redepositing on the sample surface or the machining

optics. This entire FSLSS setup is depicted in Figure 4.1.
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Figure 4.1: (left) Schematic of FSLSS technique. Imaging pathway consists of a mi-
croscopy and objective lens coupled to a CCD and images in standard atmosphere. The
laser-machining pathway consists of power attenuators and focusing optics. A three-axis
stage with the sample rigidly affixed translates the sample and performs the machining
steps. An in-situ spectrometer monitors the luminous plasma to capture chemical informa-
tion. (right) Photographs of schematically shown FSLSS setup.

The currently implemented stage machining pattern and the mechanical laser

shutter have been synchronized so that pulses are only deposited on the samples

surface once a constant stage velocity criterion has been met. The stage-shutter

integration is specifically important for accelerations and decelerations because pulse

deposition, and therefore material removal, would not be consistent otherwise. The

pattern of motion of the stage is shown in Figure 4.2. The stage is rastered in both

of the X and Y stage translating directions, with incremental line spacing motion in

the non-rastering direction in between laser scans.

57



Figure 4.2: Schematic of stage motion for femtosecond laser machining. Accelerations
are performed while a fast acting shutter stops the laser pulses. At constant velocities the
shutter is opened to laser machine the sample surface. Stage translation is alternated be-
tween the horizontal and vertical machining patterns shown overlaid above. The machining
patterns are offset by half of the line scan spacing every other iteration to reduce periodic
machining artifacts and lower the average surface roughness.

The stage positioning error approaches the microscope objective lens’s tolerance

in depth of focus. In order to solve this problem, autofocusing software was created;

this uses an edge contrast mode or a frequency (Fast Fourier Transform) mode to

automatically refocus between the machining and imaging steps. By tracking the

difference in the stage position obtained at focus, from slice to slice, the depth of

material removed per slice can be measured. The material removal depths are used

later, during the 3D reconstruction process to accurately stack the 2D images into

3D space.

The entire FSLSS experiment is controlled using a centralized LABVIEW program

that was created to coordinate stage movement, synchronize and actuate shutter

closure, capture optical microscope images, autofocus the specimen, translate the

stage, and track removal depth. This control process does requires the user to perform

basic setup processes, including finding maximum laser focus at the sample surface

and calibrating laser fluences. Once setup is complete, the LABVIEW program runs
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entirely automated, collecting large datasets unsupervised overnight or on weekends

at low-impact laser usage times.

Serial sectioning speeds have been increased with the use of less tightly focusing

optics (350mm to 1000mm focal length plano-convex lens) and higher average laser

power. The same laser fluences are achieved with the use of lenses with a smaller

numerical aperture and hence, a larger laser machining spot size. Since the machining

pattern used is a rastering method, the speed of the process is linearly related to the

speed of the scanning and the line width. Both of these variables are selected based

on the ablation spot size, which is a function of the focusing optics. A 1000mm focal

length lens produces a FWHM spot size of 167 µm and an 350mm focal length lens

produced a FWHM spot size of 57 µm. The decrease in line spacing from 45 µm to

15 µm reduces the number of passes per slice by one-third, cutting the machining time

in half from 9 to 4 minutes per slice. A slice is defined as any number of sequentially

repeated ablation patterns, in this case 4 repeated patterns were made per slice. A

scan pattern is illustrated in Figure 4.2.

Currently, the ablation rate for the FSLSS technique is 3.5× 106 µm3/min, which

is much faster than other types of material removal processes used in serial sectioning

techniques such as focused ion beam (FIB) and mechanical polishing. Figure 4.3

compares the material removal rate and maximum sample volume for mechanical

polishing, FIB sectioning, and the femtosecond laser. The FSLSS technique can

machine large volumes of material because the laser beam is translated using optics

and because laser ablation occurs in a non-contact mode. The maximum sample

size used in the FSLSS technique depends on the properties of the stage used for

translation and not the tool used for material removal. Numerous benefits are gained

by decoupling the machining tool from direct physical contact with the sample surface.

Benefits include: the precise registration of the stage and the sample, no consumable

wear related parts, and consistent beam focus location. After sectioning steps are
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performed for a specific material, the sample must have surface quality that permit

the imaging of the microstructural component of interest, such as metallic grains and

grain boundaries, inclusion phases, dendrite geometry, and porosity. To this end, the

femtosecond laser sectioned surfaces have low roughness of ∼ 0.5 µm. Despite the

imparted machining roughness optical images of titanium nitride (TiN) inclusions

with sizes of 0.5-1.0 µm and greater have been collected during sectioning experiments

of 4330 steel.

Figure 4.3: Material removal rate plotted against the maximum sectionable volume for
mechanical, FIB, and femtosecond laser based serial sectioning techniques.

4.2 Layer-by-Layer Material Removal

Material is removed from a sample surface by either: (1) moving the sample surface

under a fixed beam position or (2) scanning the femtosecond laser beam across the

sample. In both methods, the laser is scanned with normal incidence to the sample

surface. The ablation volume is therefore larger radially, on the incident sample

surface, than the depth of material removed. Material ablation is preferable in this

alignment because it permits more finely spaced sectioning depths.

The FSLSS technique was originally built to use method (1), fixed beam position

with sample translation, which used a Newport mid-range programmable stage to scan

the sample under the laser beam. A serpentine scan pattern, shown in Figure 4.2, was

designed to work in coordination with a UniBlitz mechanical beam shutter for precise

60



pulse delivery on the sample surface. The sample is over-scanned before and after the

desired ablation area to allow the Newport stage to attain constant linear velocity

during pulse deposition. The mechanical shutter is closed for the over-scanned areas,

and only opens once the stage is at constant velocity. The sample velocity is linearly

related to the pulse spacing as:

xspacing =
Vstage

RRlaser
(4.1)

where xspacing is the center-to-center distance between laser pulses, vstage is the

velocity of the stage, and RRlaser is the repetition rate of the laser. Now that the

location of the center of pulses are known, the spot size of the laser must be de-

termined to calculate the amount of pulse overlap. The spot size of the laser beam

can be roughly calculated for a Gaussian beam using the diffraction limited spot size

equation, which is:

w0 = 1.27
f

D
λ (4.2)

where w0 is the 1/e2 diameter at focus, λ is the wavelength of the coherent light,

and f
D is the numerical aperture of the optics being used. Alternately, and often more

accurately, a direct measurement of the focused spot size can be made using a CCD

camera with high resolution and square pixels or a Beam Profiler. The diameter of

the spot size can then be used to calibrate two variables, the line spacing l and the

stage velocity vstage. In parametric studies relating the stage velocity vstage and the

line spacing l, surface roughness was minimized at 50% overlap for both variables.

Full-width half-max (FWHM) spot sizes for the following optics were measured: for

350mm focal length lens w0 was 57 µm and for 1000mm focal length lens w0 was

167 µm. Line spacings and stage velocities were proportionately calibrated to the spot

sizes based on the 50% overlap result. Laser machining an area of 1200×1200 µm
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with depth ranging from 0.2-0.4 µm, depending on the material, required 4-5minutes.

The most recent iteration of the FSLSS technique, created earlier this year, has

been modified to scan the beam, instead of the sample. Laser scanning is performed

using a Newport Fast Steering Mirror (FSM). A gold coated mirror is mounted on a

BK-7 glass substrate with electromagnetically driven coils producing digitally encoded

mirror deflection. The inertial mass of the FSM laser scanning mirror is at least an

order of magnitude less than the mid-range linear stages, which is advantageous for

faster scanning speeds and reaching constant velocity. The FSM require a negligible

distance to attain constant velocity, resulting in a factor of 10 increase in overall scan

speed. A scan area of 750×750 µm with depth ranging from 0.2-0.4 µm, depending

on the material, requires less than 30 seconds to laser machine.

4.3 Material Removal Rates

Multi-pulse laser experiments were performed to remove layer-by-layer areas of

material. By scanning a laser beam with minimal pulse overlap, high-aspect ratio

cubic volumes of material are removed from sample targets. In order to characterize

these multi-pulse ablation efficiencies, techniques needed to be developed to track

material removal via the laser. Initial calibrations for the bulk material removal rates

were made using measurements with a stylus-profilometer. Once the precise removal

rates were established, an integrated auto-focus based depth profiling routine was

used to track material removal in-situ.

4.3.1 Profilometry

Profilometry was used to experimentally measure the depth in multi-shot laser

machined areas. These areas were prepared using the same ablation pattern shown

for the serial sectioning experiments, shown in Figure 4.2. The multi-shot areas were

machined with a focused laser spot size of 57 µm with 50% overlapping line and pulse
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spacing. A collective 580 laser passes, or 145 slices with 4 passes per slice, were used

to laser machine a square area of 1.5×1.5mm with depth of 37.5 µm or ∼65 nm/pass.

The depth of these deeply machined areas was measured using a contacting-mode

DEKTAK 3 profilometry stylus and the data is shown in Figure 4.4. The depth was

measured by performing a line-trace measurement across the un-machined sample

and into the machined area, to determine the step size. The profilometry data and

the average roughness of both the machined and un-machined areas were obtained.

Bulk laser pulse removal rates were calculated by dividing the total depth removed by

the total number of pulses deposited onto a fixed area. The current post machining

average roughness (Ra) has been measured to be between 0.1-0.4 µm for low ablation-

regime laser fluences in 4330 steel (see Figure 4.5).

Figure 4.4: Schematic and plot of data collected using a profilometer to characterize the
step height for repeated square area laser ablation scans. The step size is 37.5 µm which
was removed over the aggregate of 580 laser passes or about 64.7 nm/pass. Pulse overlap
was less than 20%.
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Figure 4.5: SEM image of 4330 steel after 80 µm of material removal using the FSLSS
technique. Sample surface has an average roughness (Ra) of 0.5 µm.

4.3.2 Autofocus Depth Profiling

In order to measure the laser ablation depths in situ, an optical microscope

was coupled to three-axis programmable NEWPORT mid-range travel linear stages.

Multi-pulse laser ablation was performed in one position, and then imaging was per-

formed in a secondary translated stage position. A MITUTOYO 20x imaging objec-

tive coupled to a INFINITUBE in-line lighting microscope was used to collect optical

micrographs of the laser ablated sample surface. As material was removed in a serial

process, one layer at a time between imaging steps, the sample surface falls out of

the focal plane compared to the previously imaged position. Therefore, an autofocus

routine was incorporated into automated stage control to bring the sample back into

focus between machining steps. By tracking the change in stage position necessary to

maintain peak optical focus, the material removal rate is also directly measured. The

Rayleigh range of the 20x objective is ∼0.6 µm providing adequate sub-micron reso-

lution for depth tracking. The material removal rate is linear, Figure 4.6, allowing for

an average removal rate to be calculated from the average change in stage positions
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over the course of a multi-layer laser material removal experiment.

Figure 4.6: The material removal, as determined by an autofocusing routine, is linear
throughout the entire sectioning experiment (41 hours). The sample surface is brought into
focus using a Fast-Fourier-Transform algorithm to provide open loop feedback for small
stage movements. The stage position, at focus, is recorded for every slice and then plotted
to determine the material removal rate.

4.4 Image Acquisition

Between each machining step (slice), the sample is imaged using a microscope

objective lens coupled with a 5.0megapixel CCD sensor. The LABVIEW control

program operates an integrated autofocus routine, which ensures that the sample

surface is at optimal focus; it also has the capability to acquire images at multi-
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ple stage positions for stitching and reconstruction of larger, high resolution areas.

Using the autofocus data from the calculated average removal rate an overall mate-

rial removal summary can be reconstructed. Imaging resolution is dependent upon

the magnification of objective lens used to resolve the image and the CCD sensor

size and resolution. With a 20x objective the in-plane resolution for this setup is

∼0.15 µm/pixel and with a 50x objective the in-plane resolution is ∼0.07 µm/pixel.

4.5 Image Segmentation Routines

Image segmentation is the process by which microstructural interfaces are iden-

tified and segregated using image processing tools. Discerning interfaces of most

microstructural features is fairly straightforward for humans, but computers have im-

mense difficulty being programmed to recognize the same details and pattern recogni-

tion. The image processing routines used to segment the raw FSLSS image data have

evolved during the course of the project. Preliminary routines consisted of adjusting

contrast, simple filtering, and standard thresholding routines. More advanced manual

methods were coded that consist of a series of 3D region growing [127] steps manu-

ally seeded with human input for the microstructural feature locations. The identified

and segmented individual particles were then compiled into a complete dataset. Cur-

rently, fully automated MATLAB segmentation routines, developed in collaboration

with N. Husseini (University of Michigan: Applied Physics), perform all the image

processing steps and output binary-segmented images. Many different automated

routines have been designed to segment the various types of microstructures being

interrogated. The automated code developed for segmentation of inclusion particles

in steel consists of a series of steps summarized here: a background average calcu-

lated for the entire dataset, background average subtraction for the entire raw data

stack, identification of peak intensity pixel values, threshold filter radiating outward

radially from peak intensified values, a disk smoothing routine, and removal of single
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pixel erroneous detections. The fully automated segmentation process only requires

a run time of about 30 seconds per image. In Figure 4.7 some of the segmentation

steps are shown for a raw optical image of 4330 steel from a FSLSS dataset. Image

registration, which is the alignment of slices in the stack, was not necessary due to

the sub-micron resolution of the 3-axis Newport stage.

Figure 4.7: (left) Raw optical image from FSLSS process with TiN inclusion particles
identified with arrows. (middle) Same image after background subtraction and a local
threshold being applied to the highest R/G/B color intensity ratio areas. (right) Same
image in final segmented form with a disk filter smoothing routine and deletion of single
pixel point detections with no nearest neighbors (26 total) in any plane.

4.6 Reconstruction Methods

Visualization of the segmented 3D images occurs in a three-step process. Cur-

rently, we use IDL visualization code developed by D. Rowenhorst (NRL) and the

open source PARAVIEW software. First, the images are loaded into memory and

then stacked into a 3D voxelized array - see Figure 4.8. A polygon surface mesh

is fit to the voxelized array, which can be input directly into the IDL visualization

code or into PARAVIEW. The 3D statistical analysis of the inclusion particles was

performed using IDL code from H. Jou (QUESTEK LLC: Evanston, IL). To calibrate

the visualizations correctly, the resolution and voxel sizes must be defined. For the

imaging plane (X and Y axis), the CCD resolution is used for the voxel spacing. In

the sectioning direction (Z axis), the material removal rate from the auto-focusing

routine is used to define the voxel spacing. Typically the imaging plane resolution
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is higher than the sectioning resolution due to the inherent coarseness of sectioning.

The FSLSS method produced nearly square voxels because of the precise machining

control of multi-pulse laser ablation.

Figure 4.8: Raw optical FSLSS images expanded from a schematic 2D segmented image
stack. The images are assembled with a spacing equal to the material removal rate calculated
for the specific FSLSS experiment.

4.7 Ablation Artifacts

During the process of calibrating the laser fluences necessary to remove multiple

phases simultaneously, many ablation artifacts have been discovered. These artifacts

tend to be coupled with either the scanning parameters or the laser focusing con-

ditions. Surface quality can be defined as a combination of surface roughness and

periodic surface texturing. Generally, surface modification is visible on three length

scales. These are, (1) sub-micron sized polarization induced ripples, (2) non-uniform

multi-phase ablation artifacts, and (3) > 5 µm scanning parameter related artifacts.

Laser polarization produces sub-micron scaled features known as ripples, shown

in Figure 4.9. These ripples have fine scaled roughness visible in multi-pulse laser

machining experiments and have been demonstrated in the literature on numerous
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occasions [102, 128]. They are commonly produced in laser processing of materials,

such as metals, semiconductors, and dielectrics, for lasers having a periodic wave-

length ranging through most of the visible spectrum and for continuous pulse lasers

down to ultrashort pulsed lasers [129]. The rippling has been shown to have a spac-

ing on the order of the wavelength of the laser light [130, 131], and in the case of a

titanium:sapphire femtosecond laser, 780 nm.

Figure 4.9: Secondary electron SEM image of 16 laser pulses at 0.54 J/cm2 on a single-
crystal nickel based superalloy CMSX-4 [88]. Small ripple formations are shown to form
at a length scale similar to that of the laser radiation (780 nm). The ripples are oriented
parallel to the polarization of the laser wavefront. (left) low magnification. (right) high
magnification

In multiphase materials, preferential ablation can create local topology during

a sectioning experiment. Preferential phase ablation can occur when ablation rates

are not matched in laser ablation with normal incidence to the sample surface (see

Figure 3.9). For instance, small mounds may form between a matrix material with

a faster removal rate and an inclusion phase with a slower removal rate, shown in

Figure 4.10 - bottom left. The differential laser removal rate is exacerbated by the

complex geometries that form between the two phases. In Figure 4.10 - bottom right,

a large peak has formed. Once a peak forms between two phases, it often will persist

or grow, with continued laser scanning, because of the non-planar interface formed

between the fast and slow ablating phases. Reduced laser ablation rates can occur
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when laser pulses are distributed over a larger area because of the steep or near vertical

interfaces that form between phases and the associated change in laser absorption and

reflection. Intermediate scale roughness can develop due to non-uniform ablation of

separate phase regions, in the case of TiN particles in 4330 steel, the particles and the

artifacts are spaced ranging from 5-25 µm. This occurs when a phase is preferentially

etched, creating a plateau or peak where the phase with the slower ablation rate

resides. A peak that is formed in this manner often forms a preferentially sharper

aspect ratio, due to the larger area over which pulses are deposited (steeper angle -

larger area of deposition) and reduced beam absorption resulting from the sharper

aspect ratio. A peak and some second-phase particles ablating at rates different from

the matrix are shown in Figure 4.10 - top right and bottom left.

Figure 4.10: (top left) Laser machining of lanthanum oxide containing steel. The laser ab-
lation scan paths are visible from line spacing that was larger than 50% overlap. (top right)
Mounds formed from nonuniform ablation of second phase lanthanum oxide precipitates in
steel. (bottom left) Laser scan lines are visible and lanthanum oxide phases that have been
exposed by sectioning. (bottom right) A peak has formed presumably from non-matched
ablation of two phases, again in a lanthanum oxide containing steel.

If scanning protocols are not optimized for the focused beam spot size, surface
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texturing develops on the order of the line spacing or the pulse size. By overlapping

pulses more by reducing the scan-line spacing and by introducing a dithered shift

in the ablation pattern, periodic structures on the order of 10-50 µm are removed.

Large scale periodic structures are visible in Figure 4.11 where a scan line spacing of

∼ 10 µm was chosen for a 1/e2 spot size of 18 µm. Laser scan parameters can create

periodic structures that are dependent on the scan line spacing or the pulse-to-pulse

spacing in the scan direction. In Figure 4.12, scan lines are visible in the ablated area.

Clearly, the line spacing was configured to be too large, with little pulse overlap - as

is evident by the periodic topology. In Figure 4.13, a schematic is shown depicting

the compounding laser scan line problems. In the FSLSS technique, a shift of the

ablation pattern by one-half of the line spacing was introduced to reduce the effective

line spacing by a factor of 2. Inherent stage positioner errors are beneficial in reducing

roughness by preventing line scans to occur along exactly the same paths for every

slice. The laser repetition rate is not synchronized with the stage scanning, which

introduces randomized pulse deposition, in the direction of travel. Therefore, the

likelihood of pulses falling in exactly the same location along the scan paths for two

different laser scans would be very low.

71



Figure 4.11: Secondary electron SEM image of polycrystalline nickel with periodic ma-
chining artifacts due to non-optimized line spacing. The width of the artifacts is 9.2 µm,
which was approximately equal to the scan line spacing.

Figure 4.12: SEM image of polycrystalline nickel after 200 µm of material removal using
the FSLSS technique in vacuum. Periodic structures have formed as a result of the 9.3 µm
line spacing.
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Figure 4.13: A schematic showing the line spacing, pulse spacing, and Gaussian beam
profile. Periodic machining artifacts will occur if these parameters are not optimized.

Laser ablation artifacts are detrimental to laser machining during the FSLSS tech-

nique, because planar areas of material must be uniformly removed in order for the 3D

reconstructions to be representative of the actual microstructure. The artifacts could

be useful for other applications though. An example of this is shown in Figure C.1

and Figure C.2, where an alumina fiber reinforced magnesium alloy has been prefer-

entially etched by laser ablation. The images on the (left), in both Figure C.1 and

Figure C.2, have been machined with a few passes of the ablation pattern, whereas

the images on the (right) have been scanned hundreds of times. In these optical mi-

croscope images, the matrix is out of focus after intensive laser machining, because it

has been removed at a greater rate than the alumina fibers that still remain visible.
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