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Dynamic contrast enhanced T1-weighted MRI using the contrast

agent gadopentetate dimeglumine (Gd-DTPA) was performed on

10 patients with glioblastoma. Nested models with as many as

three parameters were used to estimate plasma volume or

plasma volume and forward vascular transfer constant (Ktrans)

and the reverse vascular transfer constant (kep). These consti-

tuted models 1, 2, and 3, respectively. Model 1 predominated in

normal nonleaky brain tissue, showing little or no leakage of

contrast agent. Model 3 predominated in regions associated

with aggressive portions of the tumor, and model 2 bordered

model 3 regions, showing leakage at reduced rates. In the

patient sample, vp was about four times that of white matter in

the enhancing part of the tumor. Ktrans varied by a factor of 10

between the model 2 (1.9 $ 1023 min21) and model 3 regions

(1.9 $ 1022 min21). The mean calculated interstitial space

(model 3) was 5.5%. In model 3 regions, excellent curve fits were

obtained to summarize concentration-time data (mean R2 5

0.99). We conclude that the three parameters of the standard

model are sufficient to fit dynamic contrast enhanced T1 data in

glioblastoma under the conditions of the experiment. Magn

Reson Med 68:241–251, 2012.VC 2011 Wiley Periodicals, Inc.
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In fitting models to measurements, parsimony is an

accepted heuristic; the simplest model that fits the data is

usually accepted as the best model. The parameters of the

simplest acceptable model are then taken as best summariz-

ing the behavior of the system under study. One commonly

used discriminant between models is the F-test. If nested

models can be described, F-tests can be used in a compari-

son of successively more complex models. This allows a

reliable selection of the model and model parameters best

fitted to the data, given the available signal-to-noise (S/N).
At a given level of S/N in T1-weighted dynamic con-

trast-enhanced (DCE-T1) studies in the brain, a number
of possible conditions exist: (i) In normal brain, there is
no detectable microvascular leakage of contrast agent
(CA); (ii) In some pathologies, it can be determined that
the CA leaks from the microvasculature; (iii) If enough
CA leaks from the microvasculature at a high enough
rate, it can be determined that the CA re-enters the mi-
crovasculature from the interstitial space. It has been
proposed (1) that the standard model (SM) describing
DCE-T1 studies in brain (2–5) is a nested model with
either 1, 2, or 3 model parameters, corresponding to
cases 1, 2, and 3 above. To this set of models, we add a
model 0, where evidence of vascular filling with CA is
absent. In the analysis, the F-statistic generated in cases
1, 2, and 3 can be directly compared to its reduced
model alternative, thus allowing an unambiguous selec-
tion of model and model parameters best supported by
the data.

This article presents the results of DCE-T1 studies in
10 patients with treatment-naı̈ve glioblastoma (GBM).
For each voxel, dynamic MRI data was taken before,
during, and after arrival of CA. This data was converted
to a time trace of the change from baseline in the longi-
tudinal relaxation rate, DR1 (R1 ¼ 1/T1). DR1 was then
used as a measure of the change of CA tissue concentra-
tion with time. For each voxel, the models of the previ-
ous section, models 0, 1, 2, and 3 were fitted to the
concentration-time curve, and the F-statistic comparing
model 0 (insufficient vascular filling) to model 1 (vas-
cular filling with no microvascular leakage), models 1
and 2 (leakage without vascular reabsorption), and
models 2 and 3 (leakage with reabsorption) was calcu-
lated. Each F-statistic was thresholded at the 95% con-
fidence level, and used as a mask to plot the parameters
determined by the model. This produced almost com-
plete maps of the plasma volume (vp), maps of Ktrans,
the vascular forward transfer constant, in those areas
that had leaky microvessels, and maps of kep, the
vascular reverse transfer constant, in those areas that
had high enough leakage rates to demonstrate vascular
reabsorption.

THEORY: THREE MODELS PLUS ONE

There are four possible conditions for intravenously
administered CAs in cerebral tissue. The models corre-
sponding to three of these conditions have been labeled
models 1–3, respectively (1), because those are the num-
ber of parameters needed to model the pharmacokinetics
of the CA in the system. In this article, we have added
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model 0 to describe the case where a voxel’s CA concen-
tration is so low as to lack significant evidence of vascu-
lar filling. Note that the conditions of model 3 cannot be
true without the conditions of model 2 first being true,
model 2 cannot be true without model 1 first being true,
and model 1 cannot be allowed unless there is a detecta-
ble level of vascular filling. Thus, this system forms
nested models in both the functional and statistical
sense. This approach differs from the work in nested
models of Brix et al. (6) in that it starts from observed
data and generates parsimonious models, and in its nest-
ing scheme. We also note the innovative work of Sour-
bron (7) in extending DCE measurements to estimate
blood flow as well as the parameters of vascular volume
and leakage rates, and his demonstration that these
extended models are useful in certain pathologies.

Modeling of leakage in the vascular system was first
studied by Renkin (8) and Crone (9) in the single-capil-
lary model, which estimated vp, K

trans, and kep. Johnson
and Wilson (10) later formulated the tissue homogeneity
model, which added flow to the set of parameters in the
model. The integral form of a matrix-based model that
was mathematically equivalent to the Crone-Renkin sin-
gle-capillary was first generated by Patlak (2,3) and reit-
erated by Tofts et al. (4,5). This model has become
known as the SM. The SM describes the concentration of
CA in tissue after intravenous administration as follows:

CtðtÞ ¼ K trans

Z t

0

e�kepðt�tÞCpðtÞdtþ vpCpðtÞ; ½1�

where: Cp and Ct are the plasma and tissue concentra-
tions of the indicator, Ktrans is the unidirectional transfer
rate constant of the indicator from plasma across the vas-
cular endothelium and blood-brain barrier into the inter-
stitial space, kep, is the transfer rate constant from the
interstitial compartment to the vascular compartment, vp
is the fractional volume of the CAs vascular distribution
space, usually thought to be the plasma distribution
space. The plasma fractional volume and the blood frac-
tional volume are related via the following relationship:
vb ¼ vp

1�Hct, where Hct is the hematocrit at the level of the
microvasculature. In what follows, we assigned a value
of 0.45 to Hct for all patients. The mean value of Hct for
adult populations is 0.45 (11). Individual deviations
from that value and variation due to the Fahraeus effect
(12) will affect the value of Ktrans proportional to the
error in Hct.

If the transvascular transfer of the CA is bidirectionally
passive, the two rate constants are related via the inter-
stitial volume fraction: ve ¼ K trans

.
kep. Note, however,

that in the computation of the parameters of the nested
model (see later), ve is a derived factor; kep is the rate
constant that can be directly estimated from the tissue
concentration-time curve.

Patlak and others introduced a method for linearizing
the problem of curve fitting. In the original paper (2), it
was demonstrated that a graph of the ratio Ct(t)/Cp(t) ver-
sus $t0Cp(t)dt/Cp(t) (generally this abscissa is called
Óstretch timeÓ) yields a linear relationship, with a slope
of Ktrans and an ordinate intercept of vp, or vb if corrected
for hematocrit. Such a graph has become known as the

Patlak plot (2,13). If the full model of Eq. 1 is to be ana-
lyzed in the same manner, the abscissa becomes $t0e

�kep(t

t) Cp(t)dt/Cp(t). This linearization is useful because it
offers an easily visualized demonstration of the goodness
of fit of the model to the observations.

The Observation Equation

If the change in longitudinal tissue relaxivity, DR1 (R1 ¼
1/T1) is proportional to tissue concentration, the observa-
tion equation equivalent to Eq. 1 is

ð1�HctÞDR1tðtÞ ¼ K trans

Z t

0

e�kbðt�tÞDR1aðtÞdtþ vpDR1aðtÞ;
½2�

where R1a is the longitudinal relaxation rate of all pro-
tons in the artery R1t is the longitudinal relaxation rate
of all protons in the tissue, and D refers to the subtrac-
tion of the precontrast rate from its postcontrast value.

The Calculation of DR1 From SPGRE Data

In a spoiled gradient-recalled echo (SPGRE) DCE-T1
sequence, the signal intensity of any voxel will be
as follows:

SnðtÞ ¼ M0 sinðhÞe�TE R�
2ðtÞð1� e�TR R1ðtÞÞ

1� cosðhÞe�TR R1ðtÞ ; ½3�

where: Sn(t) is the signal intensity of the nth image set in
a DCE-T1 procedure, t is time, M0 is the magnetization of
the protons in the voxel, y is the local tip-angle, TR is
the repetition time between pulses, TE is the echo
time—the time between the center of the excitation pulse
and the center of the readout gradient—and R*

2(t) is the
transverse relaxation rate in the voxel as a function of
time (R*

2 ¼ 1/T*
2). The Appendix details the manner in

which this relation can be used to calculate DR1 during
and after the arrival of CA.

MATERIALS AND METHODS

MRI Studies

All studies were performed in a 3T GE Excite HD MR
system (GE Healthcare, Waukesha WI) using a standard
eight-channel phased-array RF coil and receiver. DCE-T1
studies were conducted in 10 treatment-naı̈ve patients
with GBM.

Before CA administration, T1 mapping was performed
using DESPOT1 (14) and a 3D SPGRE sequence.
Sequence parameters were as follows: TE/TR ~ 0.84/5.8
ms, flip angles, yi, of 2, 5, 10, 15, 20, and 25�, Asset
number ¼ 2, matrix of 256 $ 128, FOV 240 mm, sixteen
5 mm slices, no gap. This formed a set of signal inten-
sities {S(yi)} that could be used to form a voxel-by-voxel
least-squares estimate of M0 and T1, the two unknowns
of Eq. 3. The maps of T1 were used to establish baseline
precontrast values for the dynamic SPGRE procedure
that followed.

The 3D SPGRE DCE-T1 sequence was then begun,
with 70 image sets employing a 20� flip angle and other
parameters as above. Total data acquisition proceeded
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for 6.8 min, about 5.9s per image set. About 20s after the
start of the DCE-T1 sequence, Magnevist (Bayer Health-
care Pharmaceuticals, Wayne, NJ) in a dose of 0.1 mmol/
kg was injected at a rate of 4 mL/s. As detailed in the
Appendix, DR1(t) was calculated analytically for each
voxel using the assumed value of the tip-angle, y , the
estimated precontrast value of T1, and the ratio of the
postcontrast to baseline precontrast MRI signal. If
changes in R*

2(t) due to the arrival of CA could be
ignored, Eq. 3 could then be used to estimate the time
trace of the change in R1 (R1 ¼ 1/T1), and that in turn
was used as a measure of the CA concentration-time
curve.

Numerical Methods—Processing

See Eq. 3. The signal response with change in tip-angle
was observed. TR and {yi} were known, although {yi} was
probably not as well-known as TR. Using an object func-
tion of the squared residuals between the observed and
modeled values of {S(yi)}, a Simplex search in the two
variables M0 and T1was used to form least-squares esti-
mates at baseline. Following this, DR1(t) was generated
using the analytical process described in the Appendix.

Using the DR1 concentration-time maps, an Arterial
Input Function (AIF) for each patient was picked.
Because there are a number of artifacts that might be
introduced by the movement of blood through the image
slice, and by T*

2 signal loss, the AIF was adjusted by
comparison to white matter in a normal area of the brain
(15). An area of white matter was selected, and it was
assumed that the vp of the white matter (15,16) was 1%.
The AIF was scaled so that the ratio of the integrated
white matter concentration-time curve to that of the inte-
grated AIF was 1%. Thus, all vps were measured relative
to white matter vp.

A nonlinear least squares optimization using the Lev-
enberg-Marquardt (LM) Algorithm (17) was used to fit
model 3 to the experimental data, while the linear least-
squares method was used for the linear models (models
0–2). Using the AIF described in the previous paragraph,
the concentration-time data in all voxels were fitted with
the linear models 0, 1, and 2. Model 1 was tested against
model 0. If the F-test showed an advantage for models 1
and 2 was then tested against model 1. If the F-test
showed an advantage for models 2 and 3 (the full model)
was then fitted to the data for further model comparison.
To expedite the convergence rate of the fitting, the esti-
mated parameters for the partial models in each step
served as the initial values for fitting in the next step.
Sum Squared Error (SSE) maps for the fitted parameters
for all three models were calculated and used for statisti-
cal model comparison.

Statistical Tests—Model Comparisons

As in previous work, an Óextra sum of squares analysis
for nested variablesÓ (1,18) was used to examine which
model best resolved the data. The ratio Se=ne

Sf=nf
was com-

puted, where Se and Sf are summed-squared residuals
(further described later), the subscript f refers to the
higher-order model, and the subscript e refers to the

extra variance accounted for by the higher-order model
relative to the reduced, or partial, model. The degrees of
freedom me and mf are, in this case, 1 (for the number of
extra parameters in the full model), and N-m, where N is
the number of points on the clearance curve, and m is
the number of parameters in the partial model (m ¼ 1
and 2 for models 1 and 2, respectively). It is further
defined that Se ¼ Sp – Sf, where Sp is the sum of the
squared residuals of the partial model, and Sf is the sum
of the squared residuals of the higher-order model. For
linear models with identical independently distributed
(iid) errors that are normally distributed, the ratio Se=ne

Sf=nf
is

distributed as the F-statistic, Fve,vf, with me and mf degrees
of freedom.

In the F-test, the null hypothesis is that the two sam-
ples of sum-squared residuals were drawn from the same
pool. The failure of this hypothesis leads to acceptance
of the higher-order model. The probability associated
with the F-test (the P-value) is that of a Type I error, e.g.,
the probability of accepting model 3 when the underly-
ing truth is that of model 2. In comparing model alterna-
tives voxel-by-voxel, the confidence level (CL) was set at
95% for the main analysis. The effect of setting the CL at
90% was also examined.

Since it was unlikely that the errors of the fit of any
model to typical concentration-time data in tissue would
be iid and normally distributed (see the Discussion), the
sampling distribution of the generated F-test was studied
by selecting a region of normal tissue. It is known a pri-
ori that CA does not leak into normal brain at any detect-
able rate, and therefore model 1 must be true in normal
brain. A large region in normal brain was selected (typi-
cally several thousand samples with around 60 time
points each), and the distribution of the model 1 versus
model 2 F-test statistic was plotted. A 95% confidence
level (CL) for all F-tests was then generated from the
sampling distribution’s estimate of the 95% CL for the
model 1 versus model 2 F-test. The threshold for the
95% CL of all model tests was set according to this
threshold.

The fitting procedures produced, at most, maps of vp,
Ktrans, ve, and F-tests for model 0 vs. 1, model 1 vs. 2,
and model 2 vs. 3 (F0v1, F1v2, and F2v3, respectively). As
noted, for the purpose of displaying the parametric
maps, F0v1, F1v2, and F2v3 were windowed at the 95% CL
selected by an examination of F1v2 in normal tissue. If
the higher-order model was superior according to this
criterion, its parameters were shown on the subsequent
map of parametric estimates, with 0 displayed on the
map of vp in the event that F0v1 was not significantly
high, or the time trace of DR1(t) could not be determined.
This produced three parametric maps: a map of vp for
nearly every voxel of every slice studied, a map of Ktrans

in those voxels where either model 2 or 3 was appropri-
ate to the data fitting, and a map of ve in those voxels
where model 3 was appropriate. In voxels where model
0 prevailed, or where the fitting of Eq. 3 did not con-
verge for multiple time points, a value of 0 was plotted
in the map of vp. The parameter from the successful
model was the one that was mapped, so the parametric
map of vp (for instance) included estimates from all four
nested models. Lastly, a map of the regions where the
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four models prevailed was produced, with a signature
included for nonconvergent (NaN) voxels.

In each patient, the regions of interest (ROIs) defined
by the three nonzero models were the basis for the sum-
mary of results. Results were summarized across all sli-
ces in which the tumor could be visualized. In regions
where model 2 held, Ktrans and vp were summarized
across all slices and reported, and in regions where
model 3 held, Ktrans, vp, and kep (or ve) were reported.
Summaries for vp in the core regions, i.e., those regions
of model 0, 1, or NaN that lay in the enhancing region of
the tumor, were reported separately, either by reporting
the counts of NaN and model 0 voxels, or by reporting
the average vp in model 1 regions.

As a descriptive statistic for each patient, concentra-
tion-time data from all the regions of the tumor that were
identified as satisfying model 3 criteria were summed,
time point by time point, and the summed data were
then least-squares fitted to the full model, thus produc-
ing a global estimate of Ktrans, vp, and kep for the summed
data in regions where model 3 prevailed. Using this esti-
mate of kep, the data were then plotted as an extended
Patlak plot (3), and the R2 from the subsequent linear
regression was calculated. This strategy was used so that

an intuitively clear presentation of the goodness of fit
could be made, and also to examine the likelihood that a
model with more elements might be usefully deployed.
If, for instance, the data points that needed the most pa-
rameters (three) to explain their variation with time, had
a linear regression that left some sizable fraction of varia-
tion unexplained, then a model with even more parame-
ters—e.g., the shutter-speed model (19–21)—might be
explored.

As for reporting other data and comparisons, mean 6
standard deviation is given, and standard statistical tests
are indicated where used.

RESULTS

Ten patients (five male, five female) with treatment-naive
GBM were studied. Patients ranged in age from 23 to 75
years. All except two patients had a single typical ring-
enhancing lesion on their postcontrast MRI study. The
remaining two patients had multicentric enhancing lesions.

Precontrast S/N, measured as precontrast mean brain
signal amplitude over noise amplitude, was about 15:1.

The left panel of Fig. 1 displays a postcontrast T1-
weighted MRI of an image slice containing the largest

FIG. 1. MRI of patient number 2 in Table 2. Center: postcontrast T1-weighted image, Left: regions of interest 1 ¼ white matter, 2 ¼ gray
matter, 3 ¼ tumorous tissue. Right: detail of central bifrontal lesion.

FIG. 2. Left: arterial input function as estimated by a concentration-time curve from a voxel in patient number 2 of Table 2. Center: tis-

sue curves taken from models 1, 2, and 3 regions. Bottom to top: regions in which models 1, 2, and 3, respectively, were required.
Right: representative voxels from the same models 1, 2, and 3 regions.
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aspect of a tumor in a 62-year-old men who presented
with headaches and seizures. The postcontrast MRI
showed a bifrontal, heterogenously enhancing lesion
with central necrosis extending across the corpus cal-
losum. This is one of the two patients who had multi-
centric lesions. Upon biopsy, the central lesion proved
to be a GBM. The central panel of Fig. 1 shows the
regions of interest (ROIs) selected for tumor, grey, and
white matter, and the right panel shows an enlarged
detail of the central lesion.

The left panel of Fig. 2 shows a time trace of DR1 in a
voxel selected for an AIF in the patient of Fig. 1. This
trace was produced by Eqs. A9 and A10. The center
panel exhibits the same trace in the summed data of
regions associated with models 1–3 (to visualize these
regions, see Fig. 3). Finally, the right panel plots repre-
sentative single-voxel data from models 1–3 regions. A
visual inspection of the three tissue curves of this figure
should provide assurance that the model selection algo-
rithm is appropriate to the problem at hand. With some

FIG. 3. The results of a typical analysis in the MRI slice shown in Fig. 1. Top row shows parametric estimates in the full field of view,
with the F-statistic threshold chosen at the 95% confidence limit. The bottom two rows show the corresponding detail in the central
lesion when the F-test was windowed at the 95% (middle row) and 90% (bottom row) confidence limits. Left to right: vp, forward trans-

fer constant, interstitial volume fraction, model selection windowed at the 95% (upper row) and 90% (lower row) confidence level. Non-
covergent voxels are plotted as NaN, with a black signature. The parameters in each map are selected on the basis of the model mask,
with model 0 and nonconvergent (NaN) voxels both plotted as having a zero value. As a consequence of this model selection strategy,

Ktrans is not plotted in voxels where either models 2 or 3 is not selected, and ve, which is calculated from the ratio Ktrans/kep, is not plot-
ted in voxels where model 3 is not selected.

Table 1
Model Selection and Parameter Estimates from the Detail of Figure 2

Model Voxels Vp 6 SD Ktrans 6 SD (min�1) Ve 6 SD

(Core only) NAN 117

(Core only) model 0 18
(Core only) model 1 131 0.022 6 0.070
Model 2 176 0.018 6 0.016 0.0015 6 0.0015

Model 3 1138 0.065 6 0.037 0.015 6 0.011 0.055 6 0.043
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dispersion, the model 1 voxel follows fairly well the
uptake and long trailing curve of the input function,
while the model 2 and especially model 3 curves devi-
ate strongly from the clearance curve of the AIF. In
fact, dispersion at the tissue level may well explain the
deviation of the sampling distribution of the F-test from
that of tabulated values based on normal distributions
(see later).

Figure 3 shows the modeling results in this slice.
The column labeled Óregional model choiceÓ displays
a map of regions where model 0 (white), model 1
(blue), model 2 (green), and model 3 (red) were the
models of choice. Nonconvergent voxels are plotted as
black pixels, with 0 for all parameters. For the top two
rows, the confidence level (CL) for selection of the
higher-order model was set at 95%, as determined by
the sampling distribution of F1v2 in normal tissue. For
the bottom row, the CL was set at 90%. In the column
labeled vp, the combined estimates of the vp for all
models 0–3 are mapped, with the estimator for vp cho-
sen on the basis of the model selected. In the column
labeled Ktrans, the combined estimates of the transfer
constant for models 1 and 2 are mapped, again, with
the estimator for Ktrans chosen on the basis of the model
selected. Finally, in the column labeled ve, the estimate
of the interstitial space provided by model 3 is
mapped.

In Fig. 3 it is evident that, even in this central image
slice showing the largest extent of the GBM, the great
majority of voxels are free of CA leakage. Also evident
is the appearance of loci in the ventricles and large ves-
sels where models 2 and 3 are selected; these must be
ruled out as artifacts. In and around the tumor region,
all three models are selected. In the detail chosen,
shown in the bottom two lines of Fig. 3, there are a rel-
atively small number of nonconvergent pixels. This
demonstrates that a stable estimate of DR1 versus time
can usually be formed, and the data can be fitted with
at least one of the available models. Regionally, models
1 and 2 prevail in the necrotic core of the tumor, while
model 3 is selected in its peripheral and presumably
highly vascular regions. Model 2 often borders model 3
regions, providing a transition zone between the
regions of very high leakage with vascular reabsorption
and regions of no apparent leakage.

A 95% CL was chosen as a threshold for the model
choice in the tumor ROI of patient number 2. The num-
bers of voxels and mean values for each of the three
models is shown in Table 1. Note that the numbers for
model 1, 0, and NaN are only for the interiors of the
lesion, i.e., those areas completely surrounded by a
higher-order model. All vps are relative to an assumed
white matter vp of 1%. Mean vp in the tumor core in
models 1 and 2 core regions was about twice that of
white matter. In model 3 regions vp was about six times
that of white matter. The mean value of Ktrans increased
10-fold between regions where model 2 held, and those
where model 3 held. Thus, the regions with model 3
were presumably regions of the most aggressive tumor
growth, with both increased vascular volume, and high
leakage rates of the CA. The interstitial volume calcu-
lated from ve ¼ K trans

.
kep, a quantity that could be Ta
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estimated only in those voxels where model 3 held, was
estimated at about 6% in tissue that contained the most
aggressive tumor growth, presumably showing a high cel-
lular density.

A note about the cutoff levels for the F-tests: for the
patient studied, the value of the F-test at the sampling
95% CL was 10.4, and the 90% value was 7.0. For the
group of 10 patients, the mean 95% CL was 22.39, with
a range of 3.17 to 66.06, and the mean 90% CL was
12.84, with a range of 1.64 to 43.33. These levels are
well above the tabulated levels for a 95% CL (around
3.8) for an F-test of 1 and 60 degrees of freedom. Sources
of this bias in the CL are considered in the Discussion
section.

See Table 2. As noted in the Methods, all of the tumor
data from all of the slices where tumor could be visual-
ized was used in these summaries. For instance in the
patient chosen as an example, a total of 7316 voxels
were found in the tumor area where model 3 was the
best-fit model at a CL of 95%. Note that in patient num-
ber 10, a patient with a relatively small lesion, no model
3 regions could be found. Generally speaking, the trends
already described continue, with vascular volume meas-
uring about twice that of white matter in the enhancing
regions of the tumor that contained models 1 and 2
regions, and vascular volume in model 3 regions being
about four times that of white matter. Ktrans was 10 times
higher in model 3 regions than in MODEL 2 regions. The
mean estimate of interstitial volume fraction, ve, in
regions where that parameter could be estimated, was
about 8%, but with a relatively large coefficient of varia-
tion of 63%. It is beyond the scope of this article to com-
ment on the clinical correlates of these measures of vas-
cular parameters, other than to note that GBM is
notoriously heterogeneous in its pathology. That hetero-
geneity appears to be reflected in the maps produced,
and in the wide range of parametric estimates produced
by the analyses.

As described in the Methods, all of the concentration-
time data from all of the model 3 voxels in the region of
the tumor was summed, and using the estimated arterial
input function, was fitted to the extended Patlak model,
thus producing a model 3 fit to the summed concentra-
tion-time data from all of the voxels that, individually,
needed to be fitted with all three parameters of the full
SM. The curve fits of Fig. 4 were produced, with coeffi-
cients of determination, R2, reported in the last column
of Table 2. Remarkably, the mean R2 for nine patient
studies with model 3 regions was 0.991. Thus, in the
region selected to require the highest number of parame-
ters for fitting, on average 0.86% of the total variation of
the dynamic change in the MRI signal was left unex-
plained by the SM.

DISCUSSION

Ten sequentially selected treatment-naive patients with
diagnosis of GBM were studied with the intent of
addressing the question of which model should be used
for the study of vascular permeability in this very hetero-
geneous pathology. A set of nested models for the analy-
sis of DCE concentration-time data that had proven useful

in animal studies was used, allowing an objective crite-
rion for the voxel-by-voxel selection of the model most
appropriate to the data. The heterogeneity of the pathol-
ogy was reflected in the heterogeneity of the model selec-
tion, with three models appearing in substantial propor-
tions, and in places that reasonably might reflect the
underlying state of the tissue. In particular, model 1 was
selected in the great majority of tissue, where it was
known a priori that there was no leakage of CA because
the tissue was normal. In the necrotic core of the tumor,
where a model could be selected, models 1 and 2 were
selected, possibly because the delivery of CA to the core
was restricted by lack of flow. In the fast-growing rim,
model 3 was selected, sometimes bounded on the rim’s
inner and outer surfaces by regions where model 2 served
best. Smoothly varying maps of parameters were gener-
ated, each in the regions where they could be estimated.
This strategy assured the integrity of each of the paramet-
ric estimates, particularly insuring against indeterminacy
in the parametric estimates of the higher-order models by
requiring that, for each voxel, the experiment provided
enough information to allow the appropriate number of
parameters to be estimated. In the event that a parameter
could not be estimated, its mapping was not performed,
thus preventing any visual misinterpretation of the infor-
mation that was available in the data.

A set of nested models in a linear system allows a
firmly established theory to be applied to model selec-
tion. In the case at hand, the nesting of the models also
constructs a physically intuitive narrative: the reverse
transfer of CA from the interstitium to the vasculature
(model 3) cannot be measured unless the CA is first
transferred in detectable amounts to the interstitium via
forward leakage (model 2), which in turn cannot take
place unless the vasculature fills with CA (model 1).
Additionally, in parameters held in common between
models (i.e., vp between models 1, 2, and 3, and Ktrans

FIG. 4. In nine patients with model 3 regions, the data from the
regions where model 3 is valid is plotted as the extended Patlak

Plot, with regression lines for each patient data set. This presents
a visual verification of the robustness of the model 3.
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between models 2 and 3), it is evident that the paramet-
ric estimates tend to converge in value as evidence for
the higher-order model decreases (1).

The nesting described is the only nesting that is physi-
ologically reasonable. The commonly used tactic of not
considering vp (i.e., setting vp ¼ 0) in the analysis clearly
does not nest naturally in the SM.

There are numerous potential sources of systematic
error in the data, beginning with uncertainties in meas-
uring the arterial input function. Partial volume, inflow
(and outflow) effects in this non-flow-compensated
sequence are probably the most serious sources of arti-
facts. A tactic developed by Johnson et al. (15), that of
picking an AIF on the basis of shape (early arrival, well-
defined recirculation bump, nonzero tail) and then nor-
malizing the AIF to a white matter volume of 1% was
chosen. Thus, all of the blood volumes reported are
potentially biased to our choice of white matter volume.
However, since DCE-T1 measures of volume may be bi-
ased low (22) due to restricted rates of water exchange
across the blood-brain barrier (BBB), this tactic may have
the effect of correcting an in-built bias. Contrariwise,
because the rates of water exchange may, and probably
do, vary upward with breakdown of the BBB, the vascu-
lar volumes in the tumor areas, relative to white matter
vascular volumes, may be overestimated. This is a matter
that would best be resolved by MRI measures of vascular
volume that use a truly intravascular compound and
contrast mechanisms that do not vary with the rate of
water exchange across the vascular endothelium.

Another source of systematic error associated with the
AIF may be jitter, lag, and limited resolution in its tem-
poral sampling. Temporal requirements in DCE-MRI of
breast cancer have been previously reviewed by Hender-
son (23), and also by Kershaw (24). Both of these papers
modeled the consequences of limited temporal resolu-
tion in sampling of the arterial input function. Both dem-
onstrated that a limited temporal resolution in measuring
the AIF could bias parametric estimates of vascular pa-
rameters. Henderson specified that the AIF should be
sampled at intervals of 1 s to limit biases in Ktrans and ve
to less than 10%. Kershaw arrived at a similar conclu-
sion, but found that under some circumstances, temporal
requirements could be relaxed to 6 s intervals. In both
articles, Ktrans values were assumed to be of the order of
0.5 (min�1). At lower values of Ktrans, the biases intro-
duced by a slower temporal sampling of the AIF were
much smaller (c.f. Fig. 9 of Henderson). We note that our
measured values of Ktrans were at least 10 times smaller
than those assumed in Henderson or Kershaw’s model-
ing of breast tumors and consider that the biases intro-
duced to Ktrans by a 6-s sampling interval were probably
not significant. In support of this opinion, note that a CT
perfusion study using an iodinated CA of similar molec-
ular weight to Magnevist, with sampling at 1s intervals,
arrived at values of Ktrans and vb in GBM that were sub-
stantially in agreement with the values of this MRI DCE-
T1 study (25).

As to the likelihood of making an MRI estimate of
absolute cerebral blood volume, even with perfect
knowledge of the exchange rate of water across the BBB,
the uncertainties in the MRI-measured amplitude of the

AIF listed in the previous paragraph, the dispersion in
the shape of the AIF visible in the model 1 trace of DR1

versus time (Fig. 2), and the timing lag between the AIF
and its appearance in the microvasculature make this a
tricky task. It may be possible to normalize the AIF to a
large vein (e.g., the sagittal sinus), and thus relate all
blood volume measures to venous blood, but without the
approach described by Sourbron et al. (7), the timing lag
may still present a problem, particularly at the early time
points of the study.

Since all calculations of R1 depend on a knowledge of
the tip angle, B1 inhomogeneity is a pervasive source of
systematic error, both in the precontrast estimates of R1

via DESPOT1, and in the progressive saturation SPGRE
estimate of DR1 during and after contrast arrival in the
tissue. Equations 3, A9, and A10 can be used to examine
the effect of B1 inhomogeneities on the time trace of DR1

versus time, and on their further effect on the parametric
estimates of the model. However, the matter of system-
atic errors is probably better addressed in a thorough
study of the operating characteristics of estimates of vas-
cular parameters, rather than a article that considers
model selection.

Another potentially serious artifact seldom addressed
in the literature is the confounding effect of T*

2 dephas-
ing after the arrival of CA. We have conducted dual-echo
gradient-echo experiments (data not shown) in animal
models at 7T, and humans at 3T, that show a clear
decrease in MRI signal in the tissue, and in blood due
entirely to T*

2 dephasing after injection of CA. While the
echo times (0.84 ms) in the present experiment minimize
this effect relative to the T1 contrast, longer echo times
can generate a reduction in the MRI tissue signal that
has little to do with restricted transvascular water
exchange and/or diffusion of CA in the interstitium.

The linear fitting of the highest-order model (model 3)
to the summed concentration time data that voxel-by-
voxel demonstrated the highest-order variation yielded a
very interesting result: in the worst fit, R2 was 0.976,
meaning that about 2.4% of the variation in the data
could not be explained by the model. In the best fit, R2

was 0.9994; at most 0.06% of variation in the data could
not be explained by the model. These excellent fits were
made on concentration-time data summed across multi-
ple slices and numerous voxels containing a relatively
large distribution of parametric values. Despite the
numerous potential sources of error a remarkably good
result in curve fitting was typically obtained. Thus, for
summed areas it can be concluded that the largest num-
ber of parameters that can be simultaneously and reliably
fit to the data of this experiment is three. This view
should be qualified in that the result holds for GBM data
with a temporal sampling rate, S/N, CA administration,
and measurement duration such as presented in this
work.

The possibility remains that there is some higher-order
systematic time-varying behavior that averages out across
the summed voxels. See Fig. 5, where the individual val-
ues of R2 are plotted for the patient and image slice
shown in Figs. 1 and 3. The maps of R2 are uniformly
high—in most cases above 0.9 in the regions where
model 3 prevails, and uniformly lower in the regions
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with lower-order models. There is an apparent correla-
tion between areas of high R2 and areas where high con-
trast-to-noise might be expected. Further, if models with
more than three parameters could be supported in areas
of high leakage, one would expect regions that had high
values of Ktrans and low values of R2. However, it is evi-
dent from a comparison of Figs. 3 and 5 that regions
where Ktrans is high are regions where R2 is high. There-
fore there is no support in Fig. 5 for the existence of
higher-order models. Again, this view must be qualified
that the result holds for GBM data with temporal sam-
pling rate, S/N, CA administration, and measurement du-
ration such as presented in this work.

The very good fits of summed data using three parame-
ters does undermine the utilization of higher-order mod-
els like the shutter-speed model (SSM), since its full
analysis (21) requires five parameters (vp, K

trans, kep, and
two water exchange rates). The SSM has been applied to
studies of breast cancer, with interesting results
(22,26,27), but seldom with more than three freely varied
parameters, meaning that two of the model parameters
have been fixed. In such a situation, it is axiomatic that
the remaining freely varying parameters will arrive at bi-
ased estimates (c.f. chapter VII in Mood, Graybill , and
Boes (28)).

The question of the cost of fitting extra parameters
contrary to the principle of parsimony should be
addressed. In fitting data in the presence of noise, the
errors of estimation become highly covariant; employing
too many parameters in model fitting will lead to a poor
result in each of the parameters estimated. The results
then depend on the nature and biases of the optimiza-
tion procedure. In the extreme case, every optimization
procedure will fail to find a best-fit set of estimates, and
report this failure in a manner characteristic of the opti-
mization procedure. However, even when an optimiza-
tion procedure converges, if there is a lack of data (and/
or S/N) sufficient to fit the model, the optimization pro-
gram will produce a set of estimates that can be depend-
ent on both the starting point of the optimizer, and on
its characteristics. Since the fit to the data will be excel-
lent, without a voxel-by-voxel estimate of the variance-
covariance matrix, or alternatively, a model comparison

to a reduced model, this kind of failure will not become
apparent, but will lead to misleading results.

The 95% CLs, determined from the sampling distribu-
tion of the F-test in large numbers of normal voxels,
were quite large, about six times larger than 95% CLs in
tabulated F-tests. An inspection of the model 1 time
trace in Fig. 2 demonstrates that, although there is no
leakage in the tissue, dispersion in the intervening vas-
culature changes the shape of the input function. The
model states that the shape of the AIF and tissue
response will be the same, but with amplitudes depend-
ent on the vascular volume. This is clearly not the case.
The combination of low contrast-to-noise, dispersion,
and possibly limited transvascular water exchange,
appear to have increased the sampling distribution of the
F-test in tissue that is known not to have a leaky
microvasculature.

The tabulated F-tests are calculated under the assump-
tion that the errors of measurement are normally distrib-
uted with mean 0, variance 1. An ROI was selected in
normal brain of the patient of Figs. 1, 3, and 5. A histo-
gram of about 170,000 errors (2697 voxels, 63 time points
each) in the estimate of vb was calculated. If we assume
that the errors are iid, we can use them to approximate
the distribution of errors of the estimate of vb in model
1. This distribution, with a skew of 1.13, a kurtosis of
about 6, and a mean value of �6.92 $ 10�3, is not nor-
mally distributed, and should lead to a x2 distribution
that is weighted toward its tail. This in turn should gen-
erate an F-test that is also weighted toward its tail, thus
explaining the high value of the F-test for a CL of 95%.

We assumed that the sampling distribution of the F-
test of model 2 versus 1 in the normal area would be the
sampling distribution of the F-test for model 3 versus 2
in the leaky areas. The choice of CL was set at 95%.
This was motivated in part by the intention to select the
voxels that had the most evidence of higher-order varia-
tion (model 3), to be further examined for evidence of an
even higher-order model behavior. This CL implies a 5%
probability of a Type 1 error; that is to say, on the aver-
age about 5% of the voxels identified as model 3 are
actually better fit by model 2. In general usage, a type 1
error is thought to be costly, and the 5% level is thought

FIG. 5. Voxel-by-voxel maps of

the R2 of the successful model in
patient number 2 of Table 2.
Referring to Fig. 3, it is clear that

the regions of high R2 are strongly
associated with model 3 regions,

and in general, that regions with
higher contrast-to-noise are asso-
ciated with higher R2.
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to be appropriate for avoiding the conclusion that the
null hypothesis failed (in the sampling population)
when in actuality it should not have failed. For the pur-
poses of model selection in the DCE-T1 model, however,
a 95% CL based on the assumption that the F-test sam-
pling distribution is that of the model 1 region may be
too stringent. First, the selection of an erroneous higher-
order model in a relatively small population of voxels,
leading as it does to somewhat less stable estimates, may
not prove costly in the overall evaluation of the image.
Second, the sources of non-normality in the model 1
region may not be as important in the models 2 and 3
regions. The voxel-by-voxel map of R2 suggests this, and
suggests that the threshold of the model 3 versus 2 F-test
be adjusted downward.

The question of CL threshold, among other topics such
as other model comparison tests (e.g., the likelihood-ratio
test, or the related Akaike test that Brix et al. (6) have
used), variances, covariances, and biases of model esti-
mates under various conditions can and should be
addressed by an examination of the operating character-
istics of model fitting in DCE-T1 data. That examination
is, however, outside the scope of this article, which con-
cerns itself primarily with the question of model
selection.

In conclusion, voxel-by-voxel model selection is the
appropriate tactic for the analysis of DCE-T1 data in
GBM. With the reservation that the detailed time-varying
behavior of data on a voxel level might contain higher-
order elements, the SM, or its nested reduced models,
can account for substantially all of the variation in
summed DCE-T1 data, with biases to be expected in the
estimate of vascular volume, but not in either transfer
constant or interstitial space.

APPENDIX

The Calculation of DR1 from Three-Dimensional
T1-weighted Spoiled Gradient Echo MRI Data

We begin with Eq. 3 of the main article:

St ¼ M0 sinðhÞe�TE R�
2ðtÞð1� e�TR R1ðtÞÞ

1� cosðhÞe�TR R1ðtÞ ; ½A1�

where St denotes the T1-weighted signal intensity at time
point t, and the other parameters are as stated in the
paragraph associated with Eq. 3.

For each voxel, there are two main phases for the
signal: the preinjection phase, and the postinjection
phase. to set a baseline for the signal intensity before
arrival of the CA in the tissue, the arrival time of the
CA is determined by inspection, and the average of
the points St, t < tn is determined, where tn is the
time point of the last image before CA first appears in
the tissue:

mpre ¼
Pn

t¼m St

n�mþ 1
; ½A2�

where m is the time point where the summation starts
(usually the first or second time point of the data). Thus,
mpre is the mean of the signal intensity before CA arrives.

In this T1-weighted acquisition, mpre is associated with
the resting precontrast R1 value, R1(t � tn)

Let us now define a new parameter, at, the ratio of the
baseline signal intensity to the postinjection signal inten-
sity at time point t > tn:

at ¼ mpre

St
; t > t0 ½A3�

Equation 1 can be rewritten with the preinjection T1 and
T*
2 values:

S0 ¼ M0 sinðhÞe�TE R�
2ðt�tnÞð1� e�TR R1ðt�tnÞÞ

1� cosðhÞe�TR R1ðt�tnÞ : ½A4�

Since errors in MRI tissue are approximately normally
distributed, mpre is an unbiased estimator for S0:

S0 � mpre: ½A5�

Assume that TE << T*
2, and thus e�TER*2 � 1. In this case

at can be approximated as:

at ¼
ð1� e�TR R1ðt�tnÞÞ 1� cosðhÞe�TR R1ðt>tnÞ� �
ð1� cosðhÞe�TR R1ðt�tnÞÞ ð1� e�TR R1ðt>tnÞÞð Þ ½A6�

Define the following:

E0 ¼ e�TR R1 t�tnð Þ

Et ¼ e�TR R1 t>tnð Þ

ED
t ¼ Et

E0
¼ e�TR½ R1 t>tnð Þ� R1 t�tnð Þ�

½A7�

Then Eq. A6 can be written as:

at ¼
ð1� E0Þ 1� cosðhÞED

t E
0

� �
ð1� cosðhÞE0Þ ð1� ED

t E
0Þ� � ½A8�

Solving for ED
t :

ED
t ¼ ð1� E0Þ � at 1� cosðhÞE0ð Þ

ðE0Þ2 cosðhÞ at � 1ð Þ þ E0 cosðhÞ � atE0
½A9�

This yields an analytical solution for the change in
R1(t > n):

DR1ðt > nÞ ¼ � 1

TR
ln ED

t

� � ½A10�

We note that others, particularly Li et al. (29), have
arrived at an analytical estimate of R1 versus time after
the injection of a CA. However, in that paper’s method
an a priori knowledge of the relaxivity of CA in a partic-
ular tissue must be assumed, and a measure of proton
density (M0) must also be accomplished. It has been
demonstrated (22), that the apparent tissue relaxivity of
a CA is dependent on the rate of transvascular water
exchange, among other factors. This exchange rate prob-
ably does change in pathology. The analysis above does
not require an assumption about the tissue relaxivity, or
a calculation of M0, and may avoid systematic errors
associated with an assumption as to the relaxivity of the
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CA in a particular tissue. On the other hand, note the
sensitivity of expression A9 to an a priori knowledge of
tip-angle, y.
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