

Supporting Information © Wiley-VCH 2012

69451 Weinheim, Germany

The Reaction of a High-Valent Nonheme Oxoiron(IV) Intermediate with Hydrogen Peroxide**

Joseph J. Braymer, Kevin P. O'Neill, Jan-Uwe Rohde,* and Mi Hee Lim*

ange_201200901_sm_miscellaneous_information.pdf

Table of Contents

Experimenta	al Section	S3			
Materials		S3			
UV-Vis Spectroscopy ESI(+)MS Measurements H NMR Spectroscopy					
			EPR Spectro	oscopy	S5
			O ₂ Detection		S6
References		S7			
Scheme S1.	Possible pathways to generate 6 in the reaction of 1 with	S8			
	an excess of H ₂ O ₂				
Figure S1.	UV-Vis spectra of the reaction of ${\bf 1}$ with 0.5 equiv of H_2O_2	S9			
Figure S2.	ESI(+) mass spectra of 1, 2, and the products of the reaction of 1 with	S10			
	0.5 equiv of H ₂ O ₂				
Figure S3.	¹ H NMR spectra of 1 , 2 , and the products of the reaction of 1 with	S11			
	0.5 equiv of H_2O_2				
Figure S4.	Control experiments for the detection of O ₂ over time	S12			
Figure S5.	EPR spectra of frozen samples from the reaction of 1 with	S13			
	$0.5 \text{ equiv of } H_2O_2$				
Figure S6.	Plot of k_{obs} versus [1] for the reaction with H_2O_2	S14			
Figure S7.	Evidence for the formation of 6 in the reaction of 1 with excess H ₂ O ₂	S15			
Figure S8.	Kinetic results for the reaction of 7 with H ₂ O ₂	S16			

Experimental Section

Materials. All reagents were purchased from commercial suppliers and used as received unless stated otherwise. Acetonitrile (CH₃CN), tetrahydrofuran (THF), dichloromethane (CH₂Cl₂), and diethyl ether (Et₂O) were deoxygenated by sparging with N₂ and purified by passage through two packed columns of molecular sieves under an N2 pressure (MBraun solvent purification system). Preparation and handling of air- and moisture-sensitive materials were carried out in a glovebox under an inert atmosphere of N₂. Fe(OTf)₂•2CH₃CN (OTf = trifluoromethanesulfonate) was synthesized by a modified literature method from anhydrous FeCl₂ and trimethylsilyl trifluoromethanesulfonate in CH₃CN and recrystallized from $CH_3CN/Et_2O.^{[1,2]}$ The compound $[Fe^{II}(N4Py)(CH_3CN)](OTf)_2$ $[2(OTf)_2, N4Py = N,N-bis(2-1)]$ pyridylmethyl)-N-[bis(2-pyridyl)methyl]amine] was prepared following the previously reported procedure by addition of Fe(OTf)₂•2CH₃CN to a solution of N4Py in THF with a slightly modified work-up.^[3,4] After stirring overnight, Et₂O was used to precipitate the orange product, which was recrystallized from CH₃CN/Et₂O. The characterization of the Fe complex by ¹H NMR spectroscopy and electrospray ionization mass spectrometry (ESI MS) was in agreement with the previous report of 2(ClO₄)₂ (Figures S2 and S3).^[3] The molar extinction coefficients for $[Fe^{II}(N4Py)(CH_3CN)]^{2+}$ (2) in CH₃CN were $7.4 \times 10^3 \text{ M}^{-1}\text{cm}^{-1}$ ($\lambda_{max} = 380 \text{ nm}$) and $5.8 \times 10^3 \text{ M}^{-1}$ 1 cm $^{-1}$ ($\lambda_{\text{max}} = 454 \text{ nm}$) at 25 °C. [Fe^{II}(tmc)(OTf)]OTf and iodosylbenzene (PhIO) were prepared by literature methods (tmc = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). [5,6] Oxidation of the iron(II) complexes (stored in N2 atmosphere) to the oxoiron(IV) complexes [Fe^{IV}O(N4Py)]²⁺ (1) and [Fe^{IV}O(tmc)(CH₃CN)]²⁺ (7) was carried out with PhIO as reported. [5,7,8] Diluted aqueous solutions of hydrogen peroxide (H₂O₂) were used for standardizing its 50% (w/w) stock solution (Sigma Aldrich, St Louis, MO, USA) by UV-Vis spectroscopy ($\lambda = 230$

nm, $\varepsilon = 72.4~\text{M}^{-1}\text{cm}^{-1}$). Deuterium peroxide (D₂O₂, 30% (w/w) in D₂O) was purchased from Icon Isotopes (Summit, NJ, USA) and standardized using solutions diluted with D₂O in a similar manner to H₂O₂.

UV-Vis Spectroscopy. UV-Vis spectra were recorded on a Hewlett Packard 8453 diode array spectrophotometer with samples maintained at the desired temperature using a cryostat/heater from Unisoku Scientific Instruments (Japan). A typical reaction involved adding 50 μL of a pre-chilled solution of H₂O₂ (50% in H₂O) in CH₃CN to a UV-Vis cuvette (path length, 1.0 cm) containing 2.0 mL of a solution of 1 or 7 in CH₃CN at -20 or 25 °C, respectively. For experiments in a 0.1 cm UV-Vis cuvette, 10 µL of a solution of H₂O₂ in CH₃CN was added to 400 μ L of a solution of 1 in CH₃CN. Kinetic experiments for reactions of 1 with an excess of H₂O₂ were monitored at 800 nm to reduce interference from other optical signals [i.e., formation of [Fe^{III}(N4Py)(OOH)]²⁺ (6)]. Analysis of pseudo-first-order decay traces of 1 by plotting ln A versus t indicated a linear trend for at least three half-lives. For the determination of the observed rate constant (k_{obs}) under pseudo-first-order conditions, data were used from at least three (for 1) or four (for 7) experimentally determined half-lives. The fitting of kinetic data and determination of $k_{\rm obs}$ values for 1 and 7 were carried out using the ChemStation software (Agilent Technologies, Santa Clara, CA, USA). Values of k_2 were determined by dividing the secondorder rate constant (k_2) by the number (n) of available protons for hydrogen atom transfer (for H_2O_2 , n = 2). Kinetic experiments were carried out in triplicate.

ESI(+)MS Measurements. ESI MS measurements were performed with a Micromass LCT time-of-flight mass spectrometer operating in the positive ion mode. Into a septum-sealed

4.0 mL vial, suspended in a cold bath at -20 °C and containing a 1.0 mM solution of 1 in CH₃CN, was injected a solution of 0.5 equiv of H₂O₂ in CH₃CN. Direct introduction of a sample from the reaction mixture into the mass spectrometer *via* a short transfer line was facilitated by applying slight pressure on the headspace of the solution with a syringe. Data were collected at a capillary voltage of 3100 V, a sample cone voltage of 17 V, a desolvation temperature of 100 °C, and a source temperature of 100 °C.

 1 H NMR Spectroscopy. 1 H nuclear magnetic resonance (NMR) spectra were acquired with a Varian 400 MHz instrument at ambient temperature. The reaction of 1.0 mM 1 in CD₃CN with 0.5 equiv of H₂O₂ at −20 °C was monitored by UV-Vis spectroscopy. After no further spectral changes were observed at −20 °C (ca. 4 h), the reaction solution was warmed to room temperature (no significant changes were observed in the optical spectrum upon warming). The orange solution was then analyzed by 1 H NMR spectroscopy. The NMR spectrum of 1 in CD₃CN prior to the reaction with H₂O₂ was consistent with that previously reported. $^{[8]}$

EPR Spectroscopy. Electron paramagnetic resonance (EPR) data were collected on a Bruker EMX electron spin resonance spectrometer equipped with an Oxford liquid helium cryostat or a Varian liquid nitrogen cryostat. For the preparation of EPR samples at different reaction time points, the reaction of 1.0 mM **1** in CH₃CN with 0.5 equiv of H₂O₂ at -20 °C was monitored by UV-Vis spectroscopy. At various time points, an aliquot of the reaction mixture was quickly transferred with a chilled Pasteur pipette into an EPR tube pre-cooled to -40 °C and immediately frozen in liquid nitrogen. The EPR sample of [Fe^{III}(N4Py)(OH)]²⁺ (**3**) was prepared from the reaction of **2** (1.0 mM in acetone) with 0.5 equiv of H₂O₂ at room temperature. [10] The

EPR spectra shown in Figure S5 were recorded at 4 K under non-saturating conditions with the instrument operating at 9.37 GHz, a power of 20.5 mW, a modulation frequency of 100 kHz, a modulation amplitude of 10 G, and a resolution in the X direction of 2048 points.

O₂ Detection. Concentrations of O₂ were measured using a borosilicate optical probe with 4.0 mm RedEyeTM patches from Ocean Optics (Dunedin, FL, USA; HIOXY coating, calibrated for -20 to 25 °C and 0.0 to 8.0 ppm (mass/mass) of O₂). The experiments were carried out in a threaded 1.0 cm cuvette (Starna Cells, Inc., Atascadero, CA, USA), containing 4.0 mL of solution to minimize headspace and sealed with a septum cap, at a temperature of $-20~^{\circ}\text{C}$ maintained by a cryostat from Unisoku Scientific Instruments. The borosilicate fiber optic probe was positioned with the RedEye oxygen sensing patch within the cuvette, and the entire set-up was then purged with N₂ to remove O₂. The O₂ concentrations were measured upon injection of 100 μL of a thoroughly N₂ purged 0.02 M solution of H₂O₂ in CH₃CN via an air-tight syringe into either CH₃CN only, 1.0 mM 1 in CH₃CN, or 1.0 mM 2 in CH₃CN. Concentrations were measured at various time points over 2 h at -20 °C. For experiments with 0.5 equiv of H_2O_2 and 1.0 mM 1 or 2 in CH₃CN, the reaction was continuously monitored by UV-Vis spectroscopy. As a control experiment, the concentration of O₂ in CH₃CN in this set-up was measured over 2 h [0.9 (± 0.1) ppm], verifying minimal O₂ leakage into the cuvette. The measurements for O₂ detection were conducted in triplicate. A calibration curve was created at -20 °C using various concentrations (4.0 - 20 ppm) of O₂ with solutions prepared by dilution of an O₂ saturated CH₃CN solution (8.1 mM O₂ in CH₃CN at 25 °C). [11] The theoretical yield of 20.3 ppm of O₂ for the reaction of 1 with H₂O₂ (based on a 2:1 stoichiometry between 1 and the produced O₂) was found to correspond to a sensor reading of 13.7 (± 0.4) ppm.

References

- [1] J. Arnold, C. G. Hoffman, D. Y. Dawson, F. J. Hollander, *Organometallics* **1993**, *12*, 3645.
- [2] K. S. Hagen, *Inorg. Chem.* **2000**, *39*, 5867.
- [3] M. Lubben, A. Meetsma, E. C. Wilkinson, B. Feringa, L. Que, Jr., *Angew. Chem.* **1995**, *107*, 1610; *Angew. Chem. Int. Ed.* **1995**, *34*, 1512.
- [4] J.-U. Rohde, S. Torelli, X. Shan, M. H. Lim, E. J. Klinker, J. Kaizer, K. Chen, W. Nam, L. Que, Jr., *J. Am. Chem. Soc.* **2004**, *126*, 16750.
- [5] J.-U. Rohde, J.-H. In, M. H. Lim, W. W. Brennessel, M. R. Bukowski, A. Stubna, E. Münck, W. Nam, L. Que, Jr., *Science* **2003**, *299*, 1037.
- [6] H. Saltzman, J. G. Sharefkin, Org. Synth. 1963, 43, 60.
- [7] J. Kaizer, E. J. Klinker, N. Y. Oh, J.-U. Rohde, W. J. Song, A. Stubna, J. Kim, E. Münck, W. Nam, L. Que, Jr., *J. Am. Chem. Soc.* **2004**, *126*, 472.
- [8] E. J. Klinker, J. Kaizer, W. W. Brennessel, N. L. Woodrum, C. J. Cramer, L. Que, Jr., *Angew. Chem.* **2005**, *117*, 3756; *Angew. Chem. Int. Ed.* **2005**, *44*, 3690.
- [9] P. George, *Biochem. J.* **1953**, *54*, 267.
- [10] G. Roelfes, M. Lubben, K. Chen, R. Y. N. Ho, A. Meetsma, S. Genseberger, R. M. Hermant, R. Hage, S. K. Mandal, V. G. Young, Jr., Y. Zang, H. Kooijman, A. L. Spek, L. Que, Jr., B. L. Feringa, *Inorg. Chem.* **1999**, *38*, 1929.
- [11] S. V. Kryatov, E. V. Rybak-Akimova, S. Schindler, *Chem. Rev.* **2005**, *105*, 2175.

(L)Fe^{III}-OH (3) +
$$H_2O_2$$
 \longrightarrow (L)Fe^{III}-OOH (6) + H_2O (1)
(L)Fe^{III}-NCCH₃ (4) + H_2O_2 \longrightarrow 6 + CH₃CN + H⁺ (2)
(L)Fe^{II}-NCCH₃ (2) + 1.5 H_2O_2 \longrightarrow 6 + CH₃CN + H_2O (3)
(L)Fe^{II}-NCCH₃ (2) + •OOH \longrightarrow 6 + CH₃CN (4)

Scheme S1. Possible pathways to generate 6 when an excess of H_2O_2 is present in the reaction with 1 (Scheme 1).

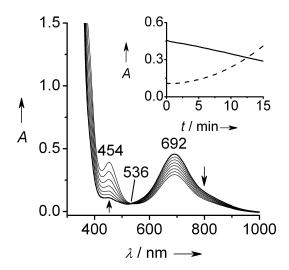
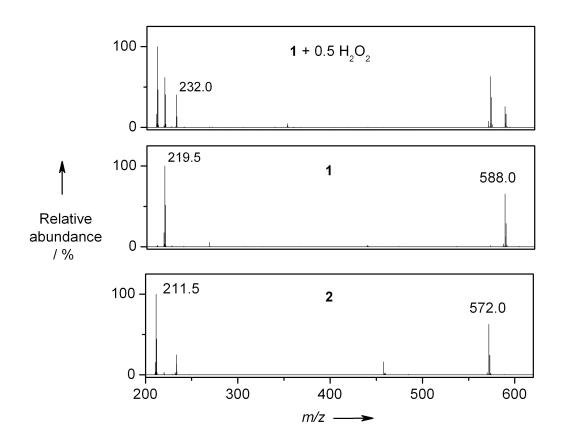
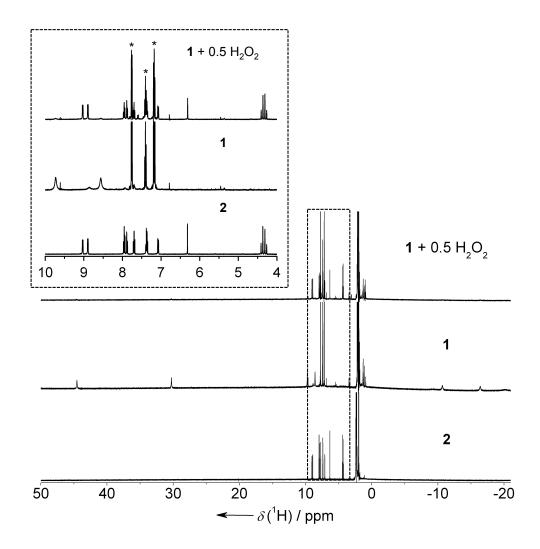




Figure S1. UV-Vis spectra of the first 15 min of the reaction of 1.0 mM 1 in CH₃CN (bold line) with 0.5 equiv of H₂O₂ at -20 °C (path length, 1.0 cm; *cf.* Figure 1). Inset: Time courses of the decay of 1 (λ = 692 nm, solid line) and the formation of 2 (λ = 454 nm, dashed line).

Species	Observed (m/z)	Calculated (m/z)
[Fe ^{II} (N4Py)] ²⁺	211.5	211.6
${[Fe^{II}(N4Py)] + CH_3CN}^{2+}$	232.0	232.1
${[Fe^{II}(N4Py)] + OTf}^{+}$	572.0	572.1
$[Fe^{IV}O(N4Py)]^{2+}$	219.5	219.5
${[Fe^{IV}O(N4Py)] + OTf}^{+}$	588.0	588.1

Figure S2. ESI(+) mass spectra of 1, 2, and the products of the reaction of 1.0 mM 1 in CH₃CN with 0.5 equiv of H₂O₂ at -20 °C (top) and summary of the observed and calculated m/z values (bottom).

Figure S3. ¹H NMR spectra of **1**, **2**, and the products of the reaction of 1.0 mM **1** with 0.5 equiv of H₂O₂ (-20 °C) in CD₃CN. Spectra were recorded at room temperature (400 MHz). Inset: Expanded view of the region from 4 to 10 ppm. The asterisks (*) indicate the ¹H NMR signals of iodobenzene.

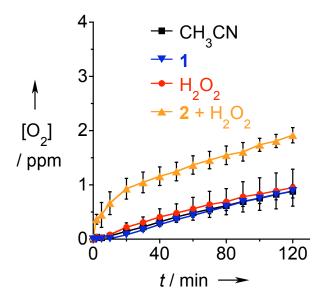
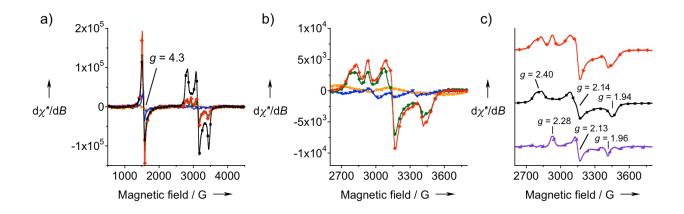



Figure S4. Control experiments for the detection of O_2 over time in CH_3CN (black squares), in a 1.0 mM solution of 1 in CH_3CN (blue inverted triangles), and upon addition of 100 μ L of a 0.02 M solution of H_2O_2 (in CH_3CN) to CH_3CN (red circles) and to 1.0 mM 2 in CH_3CN (orange triangles). The measurements were conducted at -20 °C and in triplicate.

Figure S5. EPR spectra of the reaction of 1.0 mM 1 in CH₃CN at -20 °C with 0.5 equiv of H₂O₂. a) EPR spectra (recorded at 4 K) of frozen samples of 1.0 mM solutions of 1 (blue inverted triangles) and 2 (orange triangles) in CH₃CN and of samples of the reaction of 1.0 mM 1 with 0.5 equiv of H₂O₂ (in CH₃CN at -20 °C) frozen at *ca.* 22 min (green circles) and at nearly complete decay of 1 (*ca.* 100 min, red diamonds). Also shown is the EPR spectrum of independently generated 3 (1.0 mM in acetone, black squares). EPR signals shown in a) were magnified by a factor of five except for that of 3. b) Expanded view of the region from 2600 to 3800 G. c) Difference EPR spectrum (purple right-angled triangles) generated by subtraction of the spectrum of 3 (reduced by a factor of 25, black squares) from that of the reaction mixture (*ca.* 100 min, red diamonds).

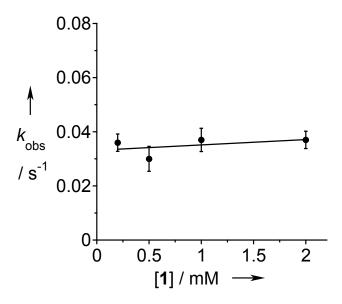
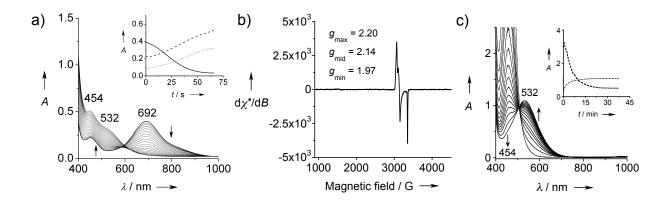



Figure S6. Plot of the pseudo-first-order rate constant (k_{obs}) versus [1] (0.2 - 2.0 mM) for the reaction of 1 with 50 mM H_2O_2 in CH_3CN at -20 °C.

Figure S7. Evidence for the formation of **6** in the reaction of **1** with an excess of H₂O₂. a) UV-Vis spectra of the first 1 min of the reaction of 1.0 mM **1** in CH₃CN (bold line) with 50 equiv of H₂O₂ at −20 °C (path length, 1.0 cm). Inset: Time courses of the decay of **1** (λ = 692 nm, solid line), formation of **2** (λ = 454 nm, dashed line), and formation of **6** (λ = 532 nm, dotted line). b) EPR spectrum of a sample obtained upon consumption of **1** in the reaction of 1.0 mM **1** with 20 equiv of H₂O₂ (in CH₃CN at −20 °C). This spectrum was recorded at 77 K under non-saturating conditions with the instrument operating at 9.26 GHz, a power of 20.5 mW, a modulation frequency of 100 kHz, a modulation amplitude of 10 G, and a resolution in the X direction of 1024 points. c) UV-Vis spectra of the formation of **6** (λ _{max} = 532 nm) upon the addition of 700 equiv of H₂O₂ to 1.0 mM **2** in CH₃CN at −20 °C (path length, 1.0 cm). Inset: Time courses of the decay of **2** (λ = 454 nm, dashed line) and formation of **6** (λ = 532 nm, dotted line).

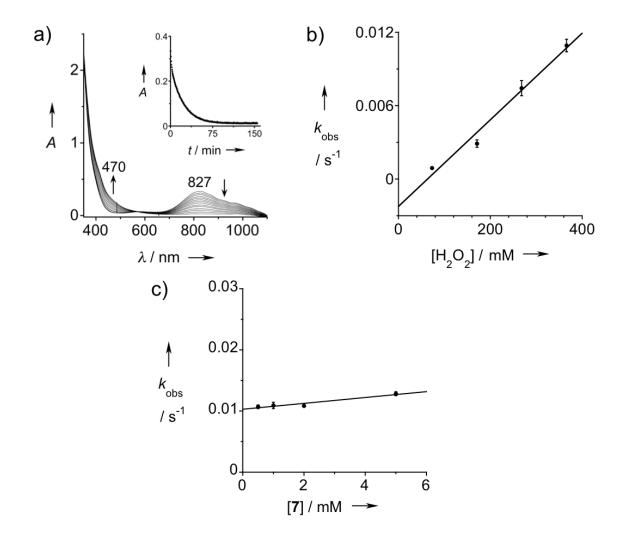


Figure S8. Kinetic results for the reaction of 7 with H_2O_2 in CH_3CN at 25 °C. a) UV-Vis spectra of the reaction of 1.0 mM 7 in CH_3CN ($\lambda_{max} = 827$ nm) with 75 equiv of H_2O_2 (path length, 1.0 cm). Inset: Time course of the reaction ($\lambda = 827$ nm). b) Plot of k_{obs} versus $[H_2O_2]$ (73 – 366 mM) for the reaction of 1.0 mM 7 with H_2O_2 . c) Plot of k_{obs} versus [7] (0.5 – 5.0 mM) for the reaction of 7 with 366 mM H_2O_2 .