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ABSTRACT 
 
 

Search and Matching Models of Housing and Macroeconomic Activity 
 

by  
 

Syeda Aneeqa Aqeel 
 
 
 
Chair:  Christopher L. House 
 
 

This dissertation presents three papers on the macroeconomics of the housing 

market. Motivated by the fact that U.S. housing data are characterized by highly 

persistent and non-zero vacancies in both short run and long run, I develop dynamic 

search and matching models of the housing market with flexible prices, that produce 

coincidental steady state equilibrium vacancies and prices. The structural models 

developed in this dissertation analyze the impact of macroeconomic shocks on demand 

and on flow and stock supply of housing under differing assumptions about demand.  

The basic model with homogeneous demand is successful in generating highly 

persistent fluctuations in ownership vacancies at business cycle frequencies.  For certain 

shocks it can also reproduce the negative correlation between flow investment and 

vacancies observed in the data.  

In the second paper I apply the model to quantitatively analyze the impact of 

Hurricane Katrina on the housing market in affected cities.  I also present an empirical 



x 
 

analysis using the hurricane’s impact on local housing markets as a natural experiment.  I 

posit that exogenous variation in housing stock due to the hurricane causes the demand 

curve for housing to shift out in affected cities.  This yields an estimate of the elasticity of 

flow supply in housing.  Model simulations successfully predict a rise in prices for 

disaster areas even though it overshoots in magnitude compared to actual data. The model 

also correctly predicts that residential investment increases after the hurricane and tracks 

actual data closely in magnitude.   

In the final paper I present the matching model modified to include heterogeneous 

demand. Introducing heterogeneity provides the insight that sellers trade off vacancy 

duration and fit with buyer against price after a negative demand shock, thereby reducing 

prices less than they would be forced to in a Walrasian setting.  I use this model to 

analyze the home buyer tax credit from the U.S. government in 2008-2010. I find that the 

credit raises total sales to include lower fit values that previously yielded a price with 

negative match surplus.  The paper verifies that the policy is successful in reducing 

unsold vacancies while boosting average price above steady state.  
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Chapter 1 
Introduction 

 
Despite the co-existence of searching buyers and available houses for sale, many houses 

for sale remain vacant for long periods of time, documented by the U.S. Census which 

reports the national average ownership vacancy rate at 1.56 percent of the housing stock 

over the period 1965 to 2009.  This non-market clearing feature of housing contradicts 

Walrasian notions of equilibrium and seems to fit in with the idea of an equilibrium rate 

of vacancies, similar to equilibrium in search and matching models of the labor market.  

Given that long-run persistent vacancies are a readily observable feature of the housing 

market, their impact on price and on new investment in housing should be important but 

it is largely neglected in macroeconomic literature.   

In this dissertation I focus on filling these gaps in the literature by exploring the 

role of search and matching frictions in housing markets. This dissertation contributes 

two original dynamic structural models of decentralized search and matching in the 

housing market that incorporate demand and supply of existing vacancies and new 

residential investment and relate them to observed price and time on market.   

In the first, basic, search and matching model with homogeneous searchers, I 

show the propagating effect of persistent vacancies on new investment in response to 

aggregate shocks.  In the second model, I introduce heterogeneous searchers and show 

the impact of both search-and- matching frictions and heterogeneous demand on price 

and sales.    

I analyze two separate empirical episodes affecting U.S. housing markets to 

illustrate policy applications.  The basic homogeneous searchers model developed in 

Chapter 2 is applied in an extensive case study of the impact of Hurricane Katrina on 

affected housing markets in Chapter 3.  In Chapter 4, I use the search and matching 

model with heterogeneous searchers and use it to analyze the impact of the federal 
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housing tax credit scheme run by the U.S. government between 2008 and 2010, in 

the aftermath of the twin subprime mortgage and financial crises.  

A dynamic matching framework is a natural approach to modeling a market with 

equilibrium vacancies because it introduces a real friction that impedes market clearing 

even with flexible prices.  The model I present here is based on the labor search literature 

such as the classic search models by Mortensen (1970) and Pissarides (1985).  A 

matching framework captures the time delay involved in searching for a vacant housing 

unit that exactly meets the requirements of a searcher, in the presence of informational 

and other frictions.   The thrust of the matching friction is to impose ‘stochastic rationing’ 

(Pissarides, 2000) on searchers and sellers, whereby searchers are probabilistically 

matched with vacancies for sale.  With a positive fraction of searchers and vacancies left 

unmatched each period, matching technology also gives rise to a so-called trading 

externality on the long side of the market.  That is, if the number of vacancies rises 

relative to the number of searchers in the market, the hazard rate for vacancies will fall.   

The search and matching model presented in this dissertation is able to 

concurrently produce a dynamic negative relationship between market price and time-to-

sale and the negative effect of vacancy duration on new investment that are both 

commonly observed in the housing market. These features of our matching model are 

discussed in Chapter 2, in which I present the theoretical model.  

The search and matching model constructed in Chapter 2 analyzes a market for 

owner-occupied housing. Searchers and sellers meet in a decentralized market to trade 

and the meetings are governed by an exogenous matching technology that imposes 

stochastic rationing and trade externalities on agents.  Profit-maximizing firms construct 

new housing units for sale each period, facing upward sloping marginal costs. The model 

does not address the role of land in the housing market.  Potential buyers do not 

distinguish between new and existing housing units so construction firms care about the 

expected duration of vacancy, which is increasing in the total number of vacant houses 

already on the market.  Thus the existing stock of vacant housing units directly impacts 

the flow of new housing because the longer is the expected duration of vacancy the lower 

is equilibrium new investment.    
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The model assumes risk neutrality and perfect foresight across agents and 

assumes homogeneity of searchers and vacancies.  Prices are negotiated through Nash 

bargaining by each matched searcher-seller pair.   A match refers to the meeting of a 

searcher and seller that generates positive surplus for each.   Given their outside options, 

each pair agrees on a mutually acceptable division of this surplus from a successful sale 

in the current period, rather than waiting to find another transaction opportunity.  

Therefore, when a searcher-seller pair meets it results in a sale.      

In steady state equilibrium, a negative relationship exists between the vacancy 

rate and the search rate, which is the housing market equivalent of the Beveridge curve in 

labor matching models.  The model is able to produce this relationship, which has also 

been documented to exist empirically in the housing market by Peterson (2009).  

The structural relationship between vacancies and supply of new housing units in 

the model also captures a stock-and-flow characteristic of housing supply whereby a 

shock to the housing stock can result in a much larger and persistent adjustment of flow 

investment in new housing mediated by persistent and durable vacancies.  This is 

particularly well illustrated in Chapter 3 where I use the model to analyze the shock to the 

housing market from Hurricane Katrina 

Chapter 3 first undertakes an empirical difference-in-differences estimation 

exercise that uses Hurricane Katrina as a natural experiment.  The treatment due to 

Katrina is the destruction of a large share of the existing housing stock and extensive 

outward migration from affected areas.  Next, I simulate these shocks to housing stock 

and population in the model and compare the predictions of the model on price, 

investment and vacancies against my empirical findings.  

I use longitudinal data on residential new building permits, net migration, 

ownership vacancy rates and the House Price Index (HPI) for a total of 57 MSAs that lie 

within a 550 mile radius of New Orleans, Louisiana, which was the epicenter of the 

hurricane.  In this sample, 13 MSAs receive the treatment. I show that in metro areas 

closest to the epicenter of Hurricane Katrina, house prices rise by almost 7 percent after 

the shock and have continued to rise steadily till 2008Q4.  Across MSAs in which one or 

more counties were declared disaster zones by FEMA, residential new building permits 

rise by 19 percent over the previous year after the shock.  Moreover, the impact on prices 
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and investment is lower, the greater the distance at which a city lies from New Orleans.  I 

also use the exogenous variation in prices from the shock to housing stock to obtain a 

post-disaster estimate of the elasticity of flow supply of housing in hurricane-affected 

areas of 2.3.  I use this estimated elasticity in the model simulations to follow.  

With a few modifications to the theoretical model, I include Hurricane Katrina as 

an unanticipated shock to the housing market in each affected city.  The shock moves 

each market out of its steady state equilibrium with a sudden reduction in the housing 

stock and sudden change in population from net migration.  Out-migration from affected 

cities is comprised of all steady-state renters and a fraction of previous owner-occupiers 

who are rendered homeless by the hurricane.  The remaining owner-occupiers whose 

units are destroyed in the shock stay in the city and become active searchers for new 

housing.  Since the inflow into the search population exceeds its steady state level, the 

hurricane shifts out net demand for new investment in affected cities.  I use the hurricane 

to identify the slope of the flow supply curve, given that it causes a shift in demand for 

housing.  I calibrate the size of the drop in housing stock and population to match what is 

actually observed.  I match remaining moments of the model to moments of the data and 

simulate the model to generate artificial data on prices, flow investment and vacancies for 

57 MSAs.  Finally, I re-estimate the difference-in-differences regressions using these 

artificial time series and compare coefficient estimates based on the simulated data with 

estimates from the actual data. 

The model successfully predicts a rise in prices for disaster areas but overshoots 

in magnitude compared to actual data. Across all affected cities, the average predicted 

quarterly price increase in simulated data is 39 percent from 2005Q3 to 2005Q4, 

compared to 3.4 percent in actual data. In actual data, prices in the affected metro areas 

continue to rise after the hurricane while prices decline towards steady state in the model, 

producing the typical shape of an impulse response in a perfect foresight model.  That 

prices overshoot in the model relative to the data is unsurprising, given that the model 

abstracts from labor and financial markets.  

The model predicts that residential investment increases after the hurricane and 

tracks actual data closely.  For affected MSAs, permits rise by 33 percent in a year in 

simulations while they rise by 19 percent in the data.  While in actual data, building 
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permits rise by 36 percentage points from 2005 to 2006 for MSAs within 100 miles of 

New Orleans, in the model the change in flow housing investment is about 49 percent.  

Thus, the matching model provides a set of structural relationships in the housing 

market in cities affected by the hurricane that are demonstrably reasonable.  It is able to 

capture the dynamic path of new construction and prices in the aftermath of migration 

and reduction in housing stock due to Hurricane Katrina, in sign and significance, though 

not necessarily in magnitude.  

Other matching models of housing mostly dwell on the observed negative 

relationship between sales price and existing structures while my matching framework 

focuses on the real side of the housing market in a recursive dynamic environment, 

specifically on new housing supply and existing housing stock. My model’s success in 

predicting the path of new real investment shows that it is a good starting point to analyze 

new housing supply when existing vacancies and price are both factored into the 

producer’s decision.  This chapter provides evidence to support the structural 

relationships that the matching model posits and illustrates the propagating effects of 

matching frictions on demand and supply of housing.   

In the final chapter of this dissertation, I modify the basic search and matching 

model of housing to allow for heterogeneous matches.  Matches are now heterogeneous 

in quality of fit, which is reflected in the size of the match surplus.  I assume that the 

quality of housing units is homogeneous from the perspective of quality of materials, 

total living space and access to amenities.  These are all aspects of quality that one would 

expect to be incorporated into house prices.  

In this paper, the fit of a match captures instead the differences in how well a 

housing unit meets the searcher-buyer’s preferences on aspects that are a matter of 

individual circumstance or taste.  I assume that surplus is increasing in quality-of-fit, 

which is only realized after a match has been made.  Hence, when paired with a low 

quality-of-fit match, the searcher-buyer may receive a bigger surplus by choosing to 

extend his search and wait for a better match. Therefore, only matches with a surplus 

greater than some threshold value will materialize as sales per period.  The additional 

friction of searcher heterogeneity allows me to model the decision of searcher-buyers on 

match quality, when given the incentive of a tax credit. It also illustrates a composition 
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effect on price, whereby sellers mitigate downward adjustment of sales prices by 

accepting a longer wait for to match with a better fit if a tax incentive is offered to 

searcher-buyers, compared to the counterfactual.  

In 2008, federal housing tax credits for new homebuyers were introduced as part 

of stimulus measures to revitalize the U.S. housing market in the aftermath of the 

subprime mortgage crisis.  They were enacted as part of the 2008 American Housing 

Rescue and Foreclosure Prevention Act; 2009 Worker, Homeownership and Business 

Assistance Act; and 2009 American Recovery and Reinvestment Act.   

The homebuyer’s tax credit scheme poses a macroeconomic shock that affects the 

cost of buying a new house. I show the impact of the credit shock on the length of search 

for potential buyers and on the threshold quality of matches and match surplus.  By 

distorting the effective surplus of a given match upwards independent of the fit, the credit 

lowers the threshold quality of matches in the market and consequently raises the number 

of sales albeit with higher variation in quality of fit.  As people become more willing to 

accept lower quality matches to take advantage of the credit, the duration of search also 

falls.  Hence, all else equal, the model predicts that the tax credit effectively greases the 

wheels of the housing market and raises both sales and new flow investment in the 

market.  

Previous search models of housing have been preoccupied mainly with the 

behavior of house prices given a fixed housing stock.  Wheaton (1990) presents a static 

unit-switching search model of housing vacancies to rationalize the existence of long run 

equilibrium vacancies.  He shows that longer expected matching times are inversely 

related with final sales price given a fixed housing stock.  Albrecht et al. (2007) attribute 

the negative relationship between price and time-on-market to increasing desperation on 

the part of both searchers and sellers, while ignoring new construction altogether.   

Krainer (1999) and Novy-Marx (2009) focus on price behavior in hot and cold 

markets. Krainer (1999) shows that prices do not fluctuate as much as they should due to 

sellers’ preoccupation with maintaining liquidity and their expectations of the aggregate 

state of the economy. Novy-Marx (2009) argues the same thing while emphasizing the 

role of self-reinforcing behavior by sellers in hot and cold markets that creates “feedback 

loops”, and assuming finite elasticity of entry with respect to expected value of 
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participation.  Ngai and Tenreyro (2008) develop a search and matching explanation for 

seasonal fluctuations in house prices.  

Peterson (2009) uses a search and matching explanation for an empirical 

Beveridge curve relationship between the vacancy rate and housing demand growth rate 

as proxied by the rate of growth of owner-occupied housing units. Finally, Piazzesi and 

Schneider (2009) try to explain the correlation between buyer sentiment and observed 

prices by approximating momentum trading in a search and match framework.   

Overall, the search and matching models presented in this dissertation present a 

dynamic framework with different types of demand heterogeneity. This allows me to 

analyze the impact of aggregate shocks to demand on key aspects of demand and supply, 

including time to sale, price and new investment. In this way, I am able to bring together 

different themes that have been explored in the housing literature so far in one cohesive 

framework that is, moreover, suitable for policy analysis.   
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Chapter 2 
A Search and Matching Model of the Housing Market 

 

I. Introduction 

This paper relates vacancies for sale in the housing market to new residential 

investment in housing units in a search and matching framework.  Persistent vacancies 

are a documented feature of the housing market and contradict the idea that flexible 

prices are sufficient to allocate housing units across potential buyers. A matching 

framework is perfectly suited to analyze the role of vacancies in the housing market, in 

which both price and the degree of matching friction mediate the allocation of vacant 

units across searchers.  Since housing units are highly durable, the existence and 

persistence of vacancies naturally must have an impact on new construction.  Indeed, 

empirical evidence shows that while new construction is positively correlated with price, 

duration of vacancy seems to matter as much or more (Di Pasquale and Wheaton, 1999).  

In this paper I construct a dynamic macroeconomic search and matching model of 

housing that incorporates the existing stock of vacant units and investment in new units in 

the supply of housing for sale.  This implies a structural relationship between vacancies 

and new construction that depends on the degree of friction in the market, and hence 

duration of vacancy.  Interaction between vacancies and supply of new housing units 

reflects the stock-flow nature of housing supply whereby a shock to the housing stock can 

result in a much larger and persistent adjustment of flow investment in new housing.  

Firms care about future prices and the time to sale for vacancies in the model, while 

buyers are bound by the market technology in how frequently they can expect to match.  

Hence, the speed of adjustment towards the steady state after a shock depends on search 

and vacancy duration, which underpin the propagation role of vacancies in the market.  

The model constructed here analyzes a decentralized market for owner-occupied 

housing governed by an exogenous matching technology. Profit-maximizing firms
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construct new homes for sale each period.  Searchers looking for vacant housing units to 

buy do not distinguish between new and existing homes so construction firms care about 

the expected duration of vacancy for houses, which is increasing in the total number of 

vacant houses already on the market.  Thus the existing stock of vacant housing units 

directly impacts the flow of new housing because the longer is the expected duration of 

vacancy, the less responsive is flow housing supply to price changes.   

I numerically solve the model by log-linearization around its steady state 

equilibrium, using the algorithm developed by Andersen and Moore (1985). Finally, I 

present impulse responses from the log-linearized model to shocks to population and 

firms’ production costs to analyze the model’s dynamic mechanisms.  

 

 

II. Housing Demand 

The model can be used to describe a single housing market, whether at the city level or at 

the level of the macroeconomy. The market for non-rental housing has a fixed population 

of N households, H total existing houses in stock of which a fraction depreciate 

completely each period, and a finite number of firms that produce new houses. New and 

existing houses are bought and sold in the market without distinction over their vintage. 

The housing market is mediated by a matching technology that dictates the rate at 

which searchers and sellers can meet and transact per period. Households are assumed to 

have homogeneous preferences and all agents are risk neutral.  Once a searcher and seller 

match, the price at which they agree to transact is determined by Nash bargaining.  

 

Market Timing and Matching Technology 

The model is specified in discrete time, where a period can be thought of as lasting 13 

weeks or a quarter and the sequence of events within a period is illustrated in the timeline 

below. The period begins with an existing total stock of housing H, of which there are V 

already lying vacant, and an existing body of searchers S.  

The housing market meets at the start of the period and matches 𝜇𝑆 searchers with 

𝑞𝑉 vacancies.  All remaining searchers and sellers wait until the next period to try to 

match again.  Because a match creates surplus for the searcher and seller, successfully 
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matched searchers will purchase vacancies and become owner-occupiers rather than bear 

the cost of waiting at least another period.  Unmatched searchers are absorbed by 

exogenous temporary lodgings until next period, so the flow cost of searching can be 

thought of as period-by-period renting at a given rate R. 
 

 
Total matches per period, M, are determined by a concave function, 𝑀(𝑆,𝑉), 

which is  increasing in both arguments.  To solve the model I assume that this matching 

technology takes the Cobb-Douglas functional form with constant returns to scale, 

𝑀(𝑆,𝑉) = 𝑚�𝑆𝛾𝑉1−𝛾, where S is the number of households searching for a house, V is 

the number of houses for sale and γ is the elasticity of total matches with respect to the 

number of searchers.   

Standard search and matching models of the labor market feature ‘stochastic 

rationing’  (see Pissarides, 2000), whereby there is a positive chance that an agent will 

simply not be able to find a counterparty.  This paper also incorporates such rationing, 

which mechanically captures the time to search that must be taken by a household in the 

real world before it can find a match suitable for its needs. When a searcher does match 

with a vacancy, a surplus is created because the house fits the searcher’s requirements 

and tastes and the seller finds a credible buyer.  

When a house for sale does not match with a searcher in a particular period, that 

vacancy is again available for sale next period. The hazard rate for a typical vacancy is 

the ratio of total matches to the total number of vacancies for sale, which given the 

matching function is 𝑞(𝜃) =  𝑚�𝜃−𝛾, where 𝜃 = 𝑉
𝑆
 is the relative supply of vacant houses. 

Hence, for the seller, the likelihood of matching with a searcher is decreasing in the total 

number of vacancies in the market.   

Analogously, the representative searcher faces a positive probability of not 

matching with a vacancy in a given period.  The hazard rate for a searcher is simply the 

Matching & 
Bargaining in 
the Housing 
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Own-Occupy 
  

 Exogenous 
Separation 

 

Depreciation 
New 

Construction 
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ratio of total matches to the number of searchers in the market, 𝜇(𝜃) = 𝑀
𝑆

=  𝑚�𝜃1−𝛾.  As 

relative supply increases, the rate of successfully matching with a vacant house rises for 

the representative searcher.   

This matching technology is standard in the literature. Both 𝛾 and 𝑚�  determine 

the number of matches made, given the total number of searchers and sellers in the 

market.  The matching elasticity with respect to searchers is assumed 0 < 𝛾 < 1 so both 

searchers and vacancies are necessary inputs for a match.  Given some γ, 0 < 𝑚� < 1 

captures the efficiency of the matching technology, which ultimately determines the 

speed of adjustment after a shock given θ and γ.  

The matching function rations houses for sale across housing demand distinctly 

from the market price mechanism.  In classical theory, if the number of sellers outweighs 

the number of searchers or vice versa, 𝜃 ≠ 1, market price will adjust to reach an 

equilibrium point where supply and demand are equal.  In a matching framework, even if 

θ = 1 the market mechanism imposes non-clearing. Moreover, the relative strength of 

supply of vacant houses to demand, θ, imposes an additional so-called ‘trading 

externality’ on agents. For any 𝜃 ≠ 1, the matching technology will favor the short side 

of the market with a higher rate of matching.  

Once matching is complete, a fraction λ of owner-occupiers are exogenously 

separated from their existing houses by a move shock.  These households become 

searchers next period and their houses enter the pool of vacancies for sale. Notice that 

while in aggregate the number of households separated from their existing housing units 

each period is deterministic at a constant Poisson rate of separation λ, the move event is 

random at the individual level.  

Following the move shock, a further fraction 𝛿 of remaining owner-occupiers lose 

their houses to depreciation.  These households must also search next period, but do not 

become sellers.  The assumption of complete depreciation of a fraction of the housing 

stock each period has no effect on the results of the model since old and new houses are 

perfect substitutes in the model and the equilibrium market price is independent of 

vintage.  
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Finally, construction firms build new houses for sale X given expected future 

demand for housing.  New houses are added to the pool of vacant housing available for 

sale next period.   

 

Population and Searchers 

Total population N is held fixed in the model but is subject to exogenous migration 

shocks that will affect demand for ownership vacancies. The law of motion for 

population is given by equation [1], where IM denotes in-migration and EM is out-

migration and both are zero in steady state. New immigrants must wait one period before 

they can match in the market and similarly emigrants must wait one period to sell houses 

they are making vacant. 

 

              𝑁𝑡+1 = 𝑁𝑡 + 𝐼𝑀𝑡 − 𝐸𝑀𝑡                                        [1] 

 

The evolution of searchers in the market is dictated by realized matches, separations and 

net migration each period, per equation [2].   

 

𝑆𝑡+1 = (1 − 𝜇𝑡)𝑆𝑡 +  𝐼𝑀𝑡 +  �𝜆 + 𝛿(1 − 𝜆)�(𝑁𝑡 − (1 − 𝜇𝑡)𝑆𝑡)             [2] 

 

The total number of searchers entering the market at the start of period t+1 sums 

unmatched searchers from the previous period, new immigrants into the city, and all 

matched owner-occupier households in the total population who are forced to move due 

to exogenous separation or depreciation.  For simplicity, I assume that existing searchers 

do not emigrate or otherwise ‘drop out’ of searching in favor of their temporary 

accommodation.  Hence, the only possible exit from search is into a state of ownership. I 

assume that separated homeowners cease to occupy their housing units and must become 

searchers when they create a vacancy.  I thereby maintain homogeneity of all searchers 

and all sellers on each side of the market.  
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III. Housing Supply 

The distinction between stock and flow supply is significant for housing given its durable 

nature. In this section I model the relationship between inventory of unsold vacancies, 

occupied housing and new construction. Chapter 3 analyzes the impact of a large 

negative shock to total housing stock on new construction, where I show that, all else 

equal, flow supply must adjust by several orders of magnitude more than fraction of 

housing stock destroyed given that the ratio of equilibrium vacancies to existing stock is 

relatively small.  

 In a matching framework vacancies behave as a propagation mechanism for 

aggregate shocks to housing, because of its durable nature. Hence, the effect of an 

aggregate shock on the market is not restricted to the jump response of prices and new 

investment alone.  Instead, there is a stock effect that necessitates a protracted adjustment 

to return to steady state. For instance, when the market receives a negative demand 

shock, prices and investment jump down, but housing units that have already been 

produced or lie vacant for sale do not disappear. Instead, as vacancies increase after the 

shock, they dampen new investment for several periods until the excess inventory can be 

eliminated at the current rate of sales in the market. Because housing units have longer 

shelf lives than other products, one can expect new housing investment to experience a 

far slower return to normal production levels than for non-durable goods and in this way 

the shock is propagated over several periods after its actual occurrence.  A matching 

model captures this by modulating the rate of matches and resulting sales according to 

changes in housing inventory relative to demand.  

 

Vacancies & Housing Stock 

Vacancies and total housing stock are predetermined variables in the model, like 

searchers and total population.  The equation of motion [3] shows that vacancies evolve 

according to matches made per period, newly constructed housing and existing housing 

that is made vacant by a separation or out-migration shock, denoted by λ and EM, 

respectively.   
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𝑉𝑡+1 = (1 − 𝑞𝑡)(1 − 𝛿)𝑉𝑡 +  𝜆(1 − 𝛿)(𝐻𝑡 − (1 − 𝑞𝑡)𝑉𝑡 − 𝐸𝑀𝑡) +  𝑋𝑡 + 𝐸𝑀𝑡   

[3] 

Total vacancies at the start of period t+1 include unmatched vacancies from last period 

net of depreciation. The depreciation rate is denoted δ.   

The housing stock at t+1 is the sum of existing houses after depreciation and new 

construction, as in equation [4].   

𝐻𝑡+1 = 𝐻𝑡(1 − 𝛿) + 𝑋𝑡                                          [4] 

I assume that the market does not distinguish between new and old housing units, 

so Vt+1 is the total supply of vacant units available for purchase at t+1, for sale at a single 

market price.  

 

New Construction 

Flow supply of housing comprises of units that are entering the vacancy state because of 

a separation or out-migration shock and new construction (which I also call new 

investment).  All new investment is undertaken by firms.   

I assume that the representative investment firm faces an upward sloping marginal 

cost curve, implying convex costs of construction of new housing units. This is 

reasonable given that essential inputs to new construction are fixed in the short term, 

most notably land, by law or nature, which may be reclaimed in the long run. Moreover, 

while labor might be elastically supplied in residential construction, capital and material 

inputs may be inelastically supplied in the short run due to capacity constraints. Similar 

assumptions regarding the cost of construction are made by Glaeser, Gyourko and Saiz 

(2008), who assume that marginal costs rise with the amount of production linearly.  

Topel and Rosen (1988) provide empirical evidence for the U.S. showing that factor costs 

are positively correlated with construction levels.  

In this paper, the stochastic nature of matching naturally forces optimizing firms 

to consider the asset value of an unsold vacancy because there is a positive probability 

that they will not be able to sell new housing units immediately.  This asset value is 

simply the present discounted value of the sum of expected sales prices given expected 

hazard and depreciation rates. Firms thus care not only about the current price, but about 

the expected path of market prices when making the decision to invest in new housing 
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units today.  At the optimal level of production marginal cost must equal the forward-

looking expected value of a vacancy, denoted 𝐴𝑡.  Letting 𝑋𝑡 stand for investment in new 

housing, equation [5] is the firm’s short run “supply” curve for new housing units.  ξ is 

the inverse elasticity of supply and α is a stochastic cost-shifter.    

     𝐴𝑡 = 𝛼𝑋𝑡
𝜉           [5] 

Units newly constructed in period t can only be sold when the market meets in 

t+1.  If a newly built vacancy is not sold right away, firms may make positive profits on 

these units and the original cost of construction is effectively sunk.  The interim cost 

incurred by waiting to sell a house is depreciation. 

 

 

IV. Payoffs and Price 

As illustrated in the timeline in Section II, a household can be in one of two states 

at any time: searcher or owner-occupier. Each searcher, owner-occupier and seller earns a 

flow payoff and a continuation value given expected hazard, separation and depreciation 

rates. Households and firms are homogenous, risk-neutral, forward-looking, and seek to 

maximize net payoffs. All payoffs in the model are expressed as dynamic recursive asset 

value equations in monetary units.  These value equations are used to determine the 

surplus created for a buyer-seller pair by a successful match, which is divided between 

the two parties during price-setting.    

Assuming that a household may only own one housing unit at a time, the present-

value payoff, 𝑊𝑡, from being an owner-occupier is stated in equation [6].    

 

𝑊𝑡 = 𝑅𝑡 + 𝑏 + 𝜆(𝐿𝑡 + (1 − 𝛿)𝐴𝑡) + 𝛿(1 − 𝜆)𝐿𝑡 + (1−𝜆)(1−𝛿)
1+𝑟

𝐸𝑡𝑊𝑡+1             [6] 

 

An owner-occupier in period t earns a flow payoff equal to the sum of exogenous 

(imputed) rent Rt and an advantage of owning which is identical across households.  This 

‘joy of ownership’ is expressed in monetary terms by b, and can represent the ability to 

customize one’s residence. It is the joy of ownership, in essence which creates match 

surplus, making ownership more desirable than renting. The continuation value of being 

an owner-occupier is the probability-weighted sum of all the events that may occur in the 
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interval [t,t+1). The owner-occupier experiences involuntary separation from his existing 

housing unit with probability λ, given which he will earn the present-value payoff of a 

searcher, 𝐿𝑡 and if the house does not depreciate in the same time interval, he will also 

earn the present-value payoff of a seller, At.  If the existing house depreciates, the owner-

occupier only receives the searcher’s payoff Lt.  Finally, if the owner-occupier does not 

experience either the separation or depreciation events, he will earn the present 

discounted value of being an owner-occupier in t+1. Notice that the interest rate used to 

discount future returns is assumed exogenous and constant at r.  

A household already in the search state will be matched by the market next period 

with likelihood 𝜇𝑡+1.  Once matched, the searcher has a choice to buy the vacancy, or 

continue in the search state and will choose the higher of these two values.  Hence, the 

payoff of searching, Lt, is the discounted probability-weighted maximum of the expected 

value earned by an owner-occupier 𝐸𝑡𝑊𝑡+1  net of the expected purchasing price 𝐸𝑡𝑃𝑡+1, 

and the value of remaining in the search state next period if matched; plus the value of 

remaining a searcher if not matched by the market. This is written in equation [7].   

   

  𝐿𝑡 = 1
1+𝑟

𝐸𝑡[𝜇𝑡+1𝑚𝑎𝑥{(𝑊𝑡+1 − 𝑃𝑡+1),𝐿𝑡+1} + (1 − 𝜇𝑡+1)𝐿𝑡+1]             [7] 

 

Since we ignore costs of home ownership other than depreciation for simplicity, the net 

value of ownership will always be higher than continued search.  Thus the first term 

inside the parentheses can be rewritten to simply be the probability weighted net value of 

ownership 𝜇𝑡+1(𝑊𝑡+1 − 𝑃𝑡+1).  

Whether an existing homeowner or a firm, a seller has three available choices at 

the start of period t+1 when the matching market meets.  The first is to sell the vacancy at 

market price Pt+1.  The second is to leave the unit vacant till the next period and receive a 

seller’s present-value payoff in t+1 if it does not depreciate.  Finally, sellers have an 

outside option in the rental market, analogous to searchers: the third choice for a seller is 

to convert the vacancy into a rental unit permanently and pay some 𝑧 > 0 in one-off 

transaction costs at t, incurred in selling the unit to a rental management company or 

taking on rental management oneself.  As expressed in equation [8], a seller faces these 

choices if his vacancy is matched at rate 𝑞𝑡+1.  If the vacancy is not matched, with 
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probability (1 − 𝑞𝑡+1), the seller still has a choice between waiting to sell next period or 

converting to a rental unit permanently today. 

𝐴𝑡 =
1

1 + 𝑟
𝐸𝑡[𝑞𝑡+1 max{𝑃𝑡+1, (1 − 𝛿)𝐴𝑡+1, (Γ𝑡+1 − 𝑧)}

+ (1 − 𝑞𝑡+1) max{(1− 𝛿)𝐴𝑡+1, (Γ𝑡+1 − 𝑧)}] 

[8] 

 The expected present discounted value from converting a vacancy into a rental unit is 

summarized by Γ𝑡+1 = 𝑅𝑡+1 + 1−𝛿𝑅

1+𝑟
𝐸𝑡+1Γ𝑡+2. Rental units are assumed to depreciate at a 

higher rate than ownership units denoted Rδ δ> .  

 

Price Determination 

Once matched, a searcher in principle has a choice between purchasing a house now and 

remaining in the search state for a match next period, which is reflected in equation [7]. 

Since a positive surplus is created by matching with a vacancy and there is no 

heterogeneity in searchers or vacancies, a searcher will always make the purchase right 

away, if matched. The match surplus is simply the difference between the net payoff 

earned by an owner-occupier and that earned by a searcher.  In other words, it is the net 

gain to a household from owning rather than renting.  

Similarly, the seller’s surplus from a match is his net gain from selling now over 

his other two choices. For current matches to proceed to sale there must be non-negative 

surplus for sellers.  In this case, the seller’s payoff equation [8] will include 𝑃𝑡 ≥

max {(1 − 𝛿)𝐴𝑡, (Γ𝑡 − 𝑧)} where (1 − 𝛿)𝐴𝑡 > (Γ𝑡 − 𝑧).  

Each searcher-seller pair will negotiate over how to divide total surplus generated 

from a match.  I make the standard assumption that this negotiation takes the form of 

Nash bargaining, and solves the problem in equation [9].   

                                     𝑃𝑡 = 𝑎𝑟𝑔max
𝑃𝑡

(𝑊𝑡 − 𝑃𝑡 − 𝐿𝑡)𝜙(𝑃𝑡 − (1 − 𝛿)𝐴𝑡)1−𝜙        [9] 

Equation [9] defines the bargained sales prices of a vacancy, where ϕ denotes the 

searcher’s bargaining weight. Since all searchers and sellers are homogeneous, there is a 

single market price at which all housing units are sold in period t.  
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V. Steady State Equilibrium  

The model in steady state equilibrium is characterized by a constant level of searchers, S, 

constant level of vacancies, V, and consequently a constant ratio of vacancies to 

searchers, θ.  In steady state, population size is also constant, at N, with zero net 

migration, and there is a constant level of housing stock, H, that is maintained by flow 

investment in new units to replace depreciated units. Finally, W, L, and A denote the 

steady state values of owning, searching for and selling a house in the steady state.  The 

equilibrium price, P, and relative supply of vacancies to searchers, θ, satisfy equations [1] 

through [9] given the vector of parameters Ω = [𝛼, 𝛾,𝑚,𝜆, 𝛿,𝜙, 𝑧, 𝜉] .   

The Nash bargaining solution holds in steady state, so substituting steady state 

values for W, L and A yields the steady state bargained-price curve as a decreasing 

function of θ in equation [10].  Notice that the bargained price curve does not represent 

the quantity of housing units demanded for a schedule of potential prices. Instead, it is the 

schedule of realized bargained prices for any given level of relative supply.   

   

𝑃 = g(𝜃;Ω)(𝑅 + 𝑏)       [10] 

 

Let 𝜓 = 𝜆 + 𝛿(1 − 𝜆).   The function g(𝜃;Ω) is decreasing in θ.  It takes the form,   

g(𝜃;Ω) =
(1 + 𝑟)(1− 𝜙)�𝑟 + 𝛿 + 𝑚�𝜃−𝛾(1− 𝛿)�

(𝑟 + 𝛿)�𝑟 + 𝜓 + 𝑚�𝜃1−𝛾𝜙(1 − 𝜓) + 𝑚�𝜃−𝛾(1− 𝜙)(1 − 𝜓)�
.  

  Notice that the steady state bargained sales price [10] in the matching model 

differs from the Walrasian free-market price of a housing unit by the portion of total 

match surplus that the searcher-buyer receives, ϕ, and the degree of friction and trade 

externality imposed by the matching technology for any 𝜇 ≠ 1 and 𝑞 ≠ 1.  In the absence 

of these frictions and for the case where the full surplus is obtained by the seller, the 

steady state price reduces to the infinite sum of the present discounted stream of steady 

state rents and ownership benefits 𝑃 = 1+𝑟
𝑟+𝛿

(𝑅 + 𝑏).  

Substituting steady state values A and X into [5] yields the upward-sloping steady 

state new construction curve for new housing units in (𝑃, 𝜃) space in equation [11].  This 

curve is the long-run equilibrium cost of construction of the marginal new unit, given the 

interest rate, rental return in the economy and steady state population.  
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   𝑃 = h(𝜃;Ω)𝑁𝜉     [11] 

Here, h(𝜃;Ω) = 𝛼(𝜃𝛿)𝜉

𝑚�𝜃−𝛾
�𝑟 + 𝛿 + 𝑚�𝜃−𝛾(1 − 𝛿)� �𝑚�𝜃

−𝛾+(1−𝑚�𝜃−𝛾)(𝜓−𝛿)
𝑚�𝜃1−𝛾+𝜓(1−𝑚�𝜃1−𝛾) �

𝜉
 and is 

increasing in θ.  

Equations [10] and [11] are two equations in two unknowns P and θ and the set of 

parameters Ω.  Their intersection yields the steady state values of P and θ, given 

underlying profit-maximization by firms undertaking new construction. A lower bound 

on market price is given by the outcome where a seller is indifferent between selling 

today, waiting to sell and renting out the vacancy.  This is the case where = (1 − 𝛿)𝐴 =

Γ − 𝑧 .  By no arbitrage, the minimum possible sales price at which a market for 

ownership exists is one at which the steady state return to a seller from permanently 

renting out a housing unit is equal to that from selling it today.  This is the price 

 𝑃 = 𝐴 = 1+𝑟
(1−𝛿)(𝑟+𝛿𝑅)𝑅 −

𝑧
1−𝛿

 .  

 It is important to note that the flow supply curve is only the new construction 

curve, and signifies the profit-maximizing number of new units constructed given the 

expected future path of price.  This model incorporates both stock and flow housing 

supply.  The total number of units available for sale is a stock variable, given by the total 

number of vacancies in equilibrium which includes new construction by firms and 

previously owned housing units for sale. 

Equilibrium is therefore described not merely by an equilibrium price, but also by 

the corresponding ratio of total vacancies to searchers in the market.  A state of vacancy 

is essentially costly unemployment of the housing stock.  Equilibrium P and θ imply the 

equilibrium asset value of a vacancy A and the expected vacancy duration 1
𝑚𝜃−𝛾 

, which 

together dictate how many new units firms will optimally invest in.   

 

Price and Vacancy Duration 

The bargained price schedule [10] is downward sloping in (𝑃,𝜃) space.  The meaning of 

this extends beyond the standard Walrasian law of demand.  Here, a negative slope for 

the bargained price curve says that the higher is the equilibrium number of vacancies to 

searchers, the longer is vacancy duration for the representative house and the lower is the 
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equilibrium price received upon sale. In other words, there is a negative relationship 

between time-to-sale and sales price that is implied in the matching model. This 

relationship between price and vacancy duration is not restricted to steady state 

equilibrium, and will be demonstrated again in the dynamic context, discussed below.  
 

Vacancy Duration and New Investment 

The fact that the matching equilibrium is a combination of price and the number of 

vacancies per searcher has an important implication on the investment behavior of 

construction firms. As a consequence of the trading externality for sellers in the matching 

framework, the expected payoff of a vacancy and hence new investment is lower the 

higher is relative supply in the market.  

To illustrate, one can rewrite the new construction curve as 

= 𝑞(𝜃)𝑃
(1+𝑟)−�1−𝑞(𝜃)�(1−𝛿) = 𝛼𝑋𝜉  .  As the relative supply of vacant housing rises, both A and 

new flow supply are lower since the hazard rate for vacancies is decreasing in θ . 

Specifically, 𝜕𝑋
𝜕𝑞(𝜃)

> 0 and by the property of the matching technology, 𝑑𝑞(𝜃)
𝑑𝜃

< 0. This 

occurs because the higher is the number of vacant units per searcher in the market, the 

lower is the likelihood of matching for an individual vacancy and the higher is expected 

waiting time for the individual seller, given by 1/𝑞(𝜃). Hence, because new investment 

depends on both P and θ, the response of forward-looking firms to a higher price will be 

directly mitigated by the expected effect of a higher number of total vacancies on the 

time-to-sale for a new unit, both of which are summarized in A.  This result holds both in 

steady state as well as in the dynamic context, discussed below. In the dynamic context, it 

is the dampening effect of total vacancies on new investment that lies at the heart of the 

propagation mechanism of vacancies in the housing market. 

 

‘Beveridge’ Curve Relationship 

Labor matching models were formulated to rationalize a negative long run tradeoff 

between job vacancies and the rate of unemployment. The matching model developed 

here predicts a similar negative relationship between housing vacancies and search 

demand for housing in long run equilibrium.   
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To derive this relationship, I start by rewriting equation [3] as the sum of flows 

out of and into total vacancies from t to t+1.  Subtracting 𝑉𝑡 from both sides of the 

equation and rearranging yields  

 

Δ𝑉𝑡+1 = −�𝛿 + 𝑞𝑡(1 − 𝛿)�𝑉𝑡 + 𝜆(1 − 𝛿)[𝐻𝑡 + (1 − 𝑞𝑡)𝑉𝑡] + 𝑋𝑡 

 

The first term on the RHS is the outflow from vacancies due to depreciation and 

matching; the second and third terms are inflows into vacancies. In steady state 

equilibrium, the overall number of vacancies is constant, so period-by-period change (the 

LHS) equals zero.  Simplifying and dividing both sides by the steady state housing stock 

results in an expression for the long run negative relationship between the vacancy rate 

and θ in equation [12].   

 

𝑣 = 𝜆+𝛿(1−𝜆)
1−(1−𝑞(𝜃))(1−𝜆)(1−𝛿)

             [12] 

Next, we can express the steady state demand for housing as a percentage of the 

total housing stock, and define this as a new variable 𝑠. We can also rewrite =

�𝑉
𝐻
� /(𝑆

𝐻
) = 𝑣

𝑠
 .  Then, it follows that because 𝑑𝑣

𝑑𝑞
< 0 and 𝑑𝑞

𝑑𝑠
> 0 from the matching 

technology, equation [12] represents a negatively sloped curve in (𝑣, 𝑠) space. The curve 

captures the tradeoff between vacancies and searchers in a housing market, given 

matching technology and separation and depreciation rates. Figure 2.1 plots [12] in (𝑣, 1
𝜃

) 

space, which I discuss further below.  

For the equilibrium price and θ, the housing Beveridge curve will yield the 

particular vacancy rate that prevails in the long run for a given rental return on housing 

units.  From the intersection of [10] and [11], equilibrium θ is given by  

 

𝑚𝜃−𝛾(1−𝜙)(1+𝑟)(𝑅+𝑏)
(𝑟+𝛿)�𝑟+𝜓+𝑚�𝜃1−𝛾𝜙(1−𝜓)+𝑚�𝜃−𝛾(1−𝜙)(1−𝜓)�

−  𝛼(𝜃𝛿𝑁)𝜉 �𝑚�𝜃
−𝛾+(1−𝑚�𝜃−𝛾)(𝜓−𝛿)

𝑚�𝜃1−𝛾+𝜓(1−𝑚�𝜃1−𝛾) �
𝜉

= 0.  
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In (𝑣, 𝑠) space, this can be plotted as a straight line through the origin with constant slope 

𝜃 = 𝑣
𝑠

= (𝑉/𝐻)/(𝑆/𝐻).   The intersection of the Beveridge curve with equilibrium 

relative supply thus delivers the model’s predicted vacancy rate in steady state.   

An empirical investigation of whether a Beveridge curve exists for housing has 

been undertaken by Peterson (2009).  He shows that a negative relationship exists 

between the vacancy rate and housing demand growth rate, using the rate of growth of 

owner-occupied housing units in the U.S. as a proxy for the latter.  Peterson predicts a 

slope parameter between -0.4 to -1 for the Beveridge curve. 1

The matching model in this paper has static population, implying a constant level 

of search demand for housing in steady state equilibrium. Using the baseline calibration 

of the model in Table 2.1, I plot the matching model’s prediction of the Beveridge 

relationship in Figure 2.1, where the vacancy rate is free to vary for a given range of 

values of 1
𝜃
 . The slope implied by the model for the baseline calibration for the log-linear 

version of [12] is -0.392, given 𝜃 = 1 in steady state equilibrium.   

  Notice that he is comparing 

the rate of change of housing demand with the stock rate of supply, rather than estimating 

a stable relationship between the levels of demand and supply of housing.   

 

 

VI. Solution and Model Dynamics 
This dynamic matching model has a total of 18 equations, including two shock 

processes (see below). Unlike labor matching models, there are two primary backward 

looking variables in the model: vacancies and searchers.  To achieve the saddle point 

equilibrium, new housing investment and price play the role of corresponding jump 

variables. Prices, asset values and payoffs are all forward-looking and rationally 

determined. 

I log-linearize this large system of forward and backward looking equations and 

solve it numerically using the Anderson-Moore algorithm (Andersen and Moore, 1985).  

Using given parameter values, the algorithm computes the reduced form VAR(1) system 

for a dynamic structural model and imposes restrictions on initial conditions as well as 

                                                           
1 That is a vacancy rate that is lower by 0.4 percentage points corresponds to an increase in the growth rate 
of housing increases by 1 percentage point. 
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stability and historical conditions that rule out explosive solutions and solve for a saddle-

point steady state equilibrium.  The reduced form system produced by the algorithm is 

then used to produce impulse responses of the model to shocks in the vicinity of the 

steady state.  

We can admit multiple potential sources of aggregate uncertainty in the model by 

allowing several variables to stochastically vary over time: namely, the exogenous 

separation rate 𝜆; the rental rate R which can be interpreted as the productivity of a 

housing unit in monetary units; or the firm’s cost of construction through the shifter α. 

Explicitly included in the model equations already are net migration shocks, which I have 

discussed above.  

In this section, I briefly discuss the calibration of parameter values to solve the 

system numerically.  This is followed by a discussion of dynamic behavior of the 

matching model in response to in- and out-migration shocks and a cost shock. In that 

analysis I present impulse response functions of the log-linearized model and relate these 

to the analytically derived price, flow supply and Beveridge curves.   

 

Calibration  

The model has a total of 10 free parameters and 1 exogenous variable, R.  I use two 

degrees of freedom to pick the steady state equilibrium (𝑃 = 1,𝜃 = 1) for simplicity, 

which fixes total population N and the benefit of ownership b.  The remaining free 

parameter values are calibrated to observed data, summarized in Table 2.1.   I also 

specify the steady state values of the shock variables that I use.  

Given 𝜃 = 1, 𝑚 is calibrated to yield a search duration for the representative 

household in the model that matches the median observed length of search for home 

buyers in the U.S. according to the National Association of Realtors of 8 weeks.  

I choose γ, the elasticity of the matching function with respect to searchers, to be 

0.5.  This implies that searchers and vacancies are relatively substitutable in the matching 

function.  As Shimer (2005) clarifies, substitutability between inputs in the matching 

function dictates the degree of flexibility of equilibrium θ.  In essence, the more 

substitutable are the inputs the steeper is the Beveridge curve. Shimer’s example is for 

the labor market: suppose labor productivity rises relative to the unemployment benefits 
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and the cost of advertising a new vacancy for firms.  This raises the return to vacancies, 

relative to unemployment in the market.  Then, the more substitutable are unemployment 

and vacancies in the matching function, the more the market can switch away from 

unemployment towards vacancies and raise equilibrium matches which raises job 

creation. Thus the efficiency of matching depends not only on the 𝑚 factor, but also on γ.  

In a centralized market the degree of substitutability depends only on the 

parameters of the matching function.  However, Hosios (1990) shows that for a 

decentralized framework, both the Nash bargaining weight of searchers and their weight 

in the matching function will dictate the flexibility of the market to substitute between 

searchers and vacancies in equilibrium.  To achieve the same solution as the social 

planner in a decentralized market, a necessary and sufficient condition is that the 

searchers’ Nash bargaining weight should equal the Cobb Douglas searcher elasticity of 

the matching function (Hosios, 1990).  I therefore choose ϕ to equal 𝛾 = 0.5.  The results 

of the model are invariant to changing ϕ and γ.  

  The frequency of separation for owner-occupiers from their existing housing unit 

is set to match the 6-year median length of stay in one house in the U.S. reported by the 

National Association of Realtors.   

The depreciation rate is fixed to 1.14% per year, which implies a service life of 80 

years for the average house, as reported by the Bureau of Economic Analysis (February 

2008).  

The real risk-free rate is fixed to the time-average of the real federal funds rate.  

The steady state value of R is fixed to the mean of the average range for real rents 

observed in U.S. data.  This is calculated by Davis et al (2008) as 3.5 percent to 5.5 

percent of the value of a house.  

Finally, a neutral steady state value 𝛼 = 1 is fixed for the shifter in the firm’s 

marginal cost.  The firm’s elasticity of supply for new units is fixed based on my own 

estimates using MSA-level building permits as an instrument for new investment, for a 

panel of 57 MSAs. 2

 

  

 

                                                           
2 A detailed description of this estimation exercise is provided in Chapter 3.  
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Shocks to Demand: In- and Out-Migration 

Consider an unanticipated non-transitory in-migration shock to the market of 1 percent of 

the steady state population. The shock moves the market out of its steady state and new 

entrants to the market enter the pool of searchers immediately. The bargained price jumps 

up on impact to reflect the higher demand for housing.  This is effected by a shift of the 

‘demand’ curve for housing [10] to the right, along the upward sloping new construction 

curve [11], as illustrated in Figure 2.2.  The shift of the bargained price curve from 𝐷0 to 

𝐷1 shows that desired vacancies per searcher 𝜃∗ exceed the equilibrium total ‘vacancy 

rate’ 𝜃, inducing firms to create new housing units.   

In (𝑣, 𝑠) space the increase in investment units is reflected in a pivot of the 

equilibrium new construction curve.  Initially, the market is in equilibrium at point A. 

Once the shock occurs, the number of searchers jumps up and vacancies fall, moving the 

market to the southwest of A (marked by an asterisk).  Since the increase in demand is 

permanent, firms respond by raising the number of units constructed and this raises the 

equilibrium θ.  With more vacancies per searcher, the hazard rate for searchers rises and 

for constant probabilities of separation and depreciation, the new equilibrium is at point B 

with a higher vacancy rate and a lower ratio of searchers to housing stock.  The in-

migration shock permanently raises the asset value of vacancies to firms and permanently 

lowers the value of searching.  Just as in the labor example by Shimer (2005) mentioned 

above, the decentralized market moves to substitute the lower-value search activity for 

higher-value vacancies, to point B on the Beveridge curve.  Since the model is calibrated 

to satisfy the Hosios (1990) condition, this is in fact the efficient outcome. 

Turning to the dynamic predictions of the model, Figure 2.3 presents impulse 

response functions (IRFs) from the linearized model given an unanticipated permanent 

in-migration shock equal to 1 percent of the population. These allow us to trace out the 

adjustment paths of the key variables in the model after the shock. The solid lines in each 

sub-figure represent results for the benchmark calibration in Table 2.1; the dashed lines 

with an asterisk marker show results for a higher rate of matching, such that search 

duration is only 4 weeks per year (i.e. lower 𝑚 given θ=1); the  dotted lines with square 
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markers show results for higher elasticity of investment, 1
𝜉

= 10.  The in-migration shock 

is not reversed, which is reflected in the population level being higher by 1 percent.   

In Figure 2.3, firms see the asset value of vacant units jump up and immediately 

raise investment in housing by twice as much (reflecting the assumed elasticity of flow 

supply).  In the meantime, as the relative number of vacancies to searchers falls, the 

hazard rate for vacancies rises and outstanding inventory in the market quickly dissipates 

so vacancies initially fall. Over time, as new housing units come on the market, vacancies 

rise, searchers fall, and prices also fall.   

Notice that the inverse relationship between vacancy duration and price holds in 

the dynamic context as well as in comparative statics.  The dynamic path of 𝑃𝑡 is inverse 

to the path of 𝜃𝑡.  Once 𝜃𝑡 begins to rise, 𝑞𝑡 starts to fall, vacancy duration is rising and 

𝑃𝑡 is falling towards long run equilibrium. Similarly, new investment does not adjust to 

the shock all at once on impact, given the expected path of 𝜃𝑡. Investment firms only 

adjust construction by as much as they can expect to sell in each period, depending on 

𝑞𝑡(𝜃) and ultimately the matching technology.  

The total length of time that the market takes to adjust to steady state equilibrium 

after the shock depends on both the matching efficiency and the elasticity of investment.  

Altering the rate of matching through the matching efficiency parameter illustrates the 

role of vacancies in propagating the shock and affecting the path of flow investment.  As 

the dashed lines with asterisk markers in Figure 2.3 show, if 𝑚 is doubled, the dynamic 

path of flow investment lies above the solid path depicting the benchmark calibration: if 

searchers and vacancies are matched faster, investment responds slightly more quickly at 

each point in time to the shock.  The dynamic path of price, vacancies and θ is steeper 

when search duration is lower.  Notice, however, that some of the gain in speed of 

adjustment of investment to the demand shock is offset by a slightly higher percentage of 

households separated from their current units because of the move or depreciation 

shocks.  Hence, the higher 𝑚 does not make itself apparent in a lower path for searchers 

compared to the baseline case in Figure 2.3.  

The second experiment in Figure 2.3 (the dotted lines with square markers) 

illustrates that the degree of elasticity of flow investment can dramatically influence how 

many vacant units are available to absorb additional demand.  An elasticity of 10 for flow 



28 
 

investment implies the IRF paths shown by the dotted line compared to the benchmark 

case.  An extreme case of this is shown in Figure 2.4, which plots results for 1
𝜉

= 1000, a 

good approximation for infinite elasticity.  Here, the market adjusts in as little as 3 years 

because flow investment jumps up by 125 percent of steady state level on impact and 

thereby raising vacancies on impact, rather than running them down immediately when 

newly in-migrating searchers flood into the market.  

Figure 2.5 shows IRFs from a permanent out-migration shock of 1 percent of the 

population.  This helps to further illustrate the interaction between inventory of vacant 

units and flow supply.  Notice that the response of flow investment is symmetric (for the 

benchmark calibration in Table 2.1) for positive and negative migration shocks.  

Investment rises and falls by 6 percent relative to steady state, respectively, which is a 

reflection of the forward-looking optimizing behavior of firms in the model.  Since the 

expected path of prices is symmetric between the two shocks, and given the rate of 

matching in the market, firms respond symmetrically in each case.  

Comparing Figure 2.3 (benchmark solid plots) with Figure 2.5, shows that 

vacancies perform the function of sponging up excess demand or supply, falling or rising 

in varying degree in response to in-migration or out-migration of 1 percent of the 

population, respectively.  When there is an influx of new searchers in the housing market, 

inventory is depleted on impact and stays below long-run equilibrium in the near horizon 

while all new units are absorbed by searchers.  When homeowners put their units up for 

sale and leave the market altogether, causing a negative shift of the housing bargained 

price “demand” curve, inventory rises on impact as expected and flow investment falls 

well below steady state given the expected path of searchers and θ.  Even though the 

initial increase in vacancies is roughly halved in the first quarter after the shock, 

vacancies remain above steady state level for several years after the shock, illustrating 

their propagation role.  Because of the matching friction, price adjustments cannot assist 

in dissipating vacancies altogether. Instead, vacancies and 𝜃 remain higher than steady 

state, though falling over time, and investment remains below steady state, though rising, 

in the near horizon.   

The predominant feature of a matching framework is that there is a positive 

vacancy rate for housing units in both short and long-run equilibrium at the equilibrium 
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price. As the accelerated paths of investment, price and vacancies in Figure 2.4 shows, 

even when investment has fully adjusted to the positive demand shock, matching frictions 

entail a non-zero vacancy rate in steady state. 

 

Supply Shock (α) 

I next consider the model’s dynamic response to a change in productions conditions, 

reflected in a transitory but persistent increase in marginal cost through a 1 percent rise in 

the cost shifter 𝛼.  I assume that the shock decays at the rate of 5 percent per year.   

 When the shock occurs, new investment immediately contracts, which is reflected 

in a shift leftward of the static new construction curve in Figure 2.6. Prices rise to reflect 

the increase in marginal construction costs, raising also the value of a vacancy. In Figure 

2.6, the static Beveridge curve diagram shows that the market moves to a point where 

vacancies are lower because fewer new units are produced and the ratio of vacancies to 

searchers falls. The shock is transitory, so price adjusts over time and the market moves 

slowly back to its original equilibrium at A.  

Figure 2.7 shows the impulse response functions of the log-linearized model.  As 

𝜃 falls, the hazard rate for vacancies rises.  As new supply contracts when the shock 

occurs, the market runs down existing inventory of vacant units to adjust to the shock.  

The main counterintuitive prediction of the model in this scenario is that the value 

of ownership falls when housing units are in relatively short supply. By rights, rent and 

hence the value of owning should also rise when new supply contracts.  However, in 

Figure 2.7 the opposite is true.  Thus, searchers rise in number as more households 

become indifferent between searching and owning.  

This small example illustrates how a worsening of credit or other conditions 

affecting the cost of production for construction firms can cause the market for ownership 

housing units to contract.  To compensate for the higher cost of production of housing, 

the return on housing must rise not only for sellers (through price) but also for buyers 

(through rent) in order for the market for ownership to exist.  
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VII. Conclusion 

The chapter develops a new macroeconomic matching model of housing that is unique as 

it incorporates the supply of new units alongside the stock supply of housing. I analyze 

steady state and dynamic equilibrium and show that after a demand shock, it is both the 

degree of matching friction and the elasticity of supply that determine the speed of 

adjustment.  

Persistent vacancies have a propagating effect on new construction given their 

durable nature, in the presence of a matching friction.  That is, the market technology 

dictates that only a fraction of vacant units are matched with a fraction of searchers each 

period.  Because housing units are durable, the remaining unmatched vacancies persist 

over time and remain on sale the next time the market meets.  When a shock occurs, the 

speed of matching determines the pace at which changes in housing demand are satisfied.  

Not only do available vacancies adjust slowly to the shock at the rate determined by the 

market technology, but due to their durability they also impact how much new investment 

responds per period.   

 The model is presented with two particular assumptions that affect the scope of 

analysis.  Firstly, I assume no population growth, which diminishes the role of a 

Beveridge curve relationship in the model’s applications.  Second, I assume fixed rent 

here. However, Chapter 3 of this dissertation reconsiders the role of rent in the model’s 

underlying mechanisms, using data on median rents across the U.S. at the MSA level.  

 This model of ownership vacancies and investment has the potential to shed light 

on the decision between renting and buying once it is combined with a counterpart for 

rental vacancies.  This is an important part of my research agenda stemming from this 

dissertation.  
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Table 2.1 - Calibrated Values for Parameters of the Matching Model 

Symbol Description Value 

𝑚�  Matching efficiency 0.125/week;  0.999/year 

γ Searchers’ elasticity in match function 0.5 

α Supply shifter 1 

1/𝜉 Elasticity of flow supply 2 

λ Separation rate 0.2  per year 

δ Depreciation rate 0.0114  per year 

𝜙 

 

 

Nash bargaining weight of households 0.5 

𝑟 Real discount rate 0.02  per year 

R Steady state exogenous real rental rate 0.045  per year 

 

Note:  This table shows the baseline values chosen for parameters and exogenous variables in the 
quantitative solution of the matching model. 
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Figure 2.1 – Housing Beveridge Curve in Matching Model Using Baseline Calibration 

 

Notes: This figure shows the equilibrium Beveridge curve generated by the market in the search and matching model.  Allowing relative demand to vary 
independently, this graph shows equilibrium combinations of the number of searchers per vacancy in the market and percentage of the housing stock that is 
vacant for sale (vacancy rate).  The housing Beveridge curve illustrates the static tradeoff between demand for housing and available housing units for sale.  As 
equilibrium searchers per vacant unit increase, each vacancy is in higher demand and the market adjusts its equilibrium rate of vacancies out of total housing 
stock downwards.  
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Figure 2.2 – Static Analysis of In-Migration Shock  

   

    

A. Bargained Price and Flow Supply       B. Housing Beveridge Curve  

Notes: This figure shows the impact of positive shock to demand from an increase in the population size due to in-migration.  In Figure A, in-migration shifts the 
bargained price curve out, reflecting an exogenous increase in housing demand.  In Figure B, the increase in housing demand is represented in terms of the 
Beveridge curve.  The higher rate of construction relative to searchers in the new equilibrium is represented as a pivot of the equilibrium new construction curve 
in (𝑆/𝐻  , 𝑉/𝐻 ) space. The impact effect of the in-migration shock can be visualized as an upward jump in the number of searchers and a decline in vacancies, 
which moves the market somewhere to the southwest of point A (marked by an asterisk). Since the price increase resulting from higher demand is permanent, 
firms respond by raising the number of units constructed and this raises the equilibrium θ, given by the intersection of the Beveridge curve and the dotted new 
construction curve. This makes point B the new equilibrium point in Figure B.                    
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Figure 2.3 – In-Migration Shock

 

Notes:  This figure shows impulse responses of key variables to a 1 percent in-migration shock to the housing market.  The impulse responses are reported in 
percentage deviations from steady state levels for each variable.  The benchmark calibration corresponds to the solid lines, marked “Baseline” in the legend.  
Two alternative calibrations are also presented for comparison.  The “Low Duration” calibration shows adjustment paths when vacancy duration is only 4 weeks 
(half the length of the baseline calibration).  The “High elasticity” calibration uses a flow supply elasticity of 10, compared to 2 in the baseline calibration.  
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Figure 2.4 – In-Migration Shock with Infinitely Elastic Investment 

 

Notes:  This figure shows impulse responses of key variables to a 1 percent in-migration shock to the housing market when the supply of vacancies can adjust 
quickly to the additional demand due to infinitely elastic investment.  The impulse responses are reported in percentage deviations from steady state levels for 
each variable.  The parameter 𝜉 = 1/1000, implying an elasticity of supply of 1000.   
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Figure 2.5 – Out-Migration Shock 

 

Notes:  This figure shows impulse responses of key variables to a 1 percent out-migration shock to the housing market.  The impulse responses are reported in 
percentage deviations from steady state levels for each variable.   
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Figure 2.6 – Static Analysis of Cost Shock 

 

   

A. Bargained Price and Flow Supply          B. Housing Beveridge Curve  

 
Notes: This figure shows the static equilibrium resulting from a higher marginal cost of construction. With a higher marginal cost, flow supply is lower for each 
price, resulting in a shift leftward of the static new construction curve in Figure A. The equilibrium price of a vacancy is higher which equivalently implies that 
the equilibrium value of a vacancy is higher.  Thus, in Figure B, in the new short run equilibrium the market moves to a point where vacancies are lower because 
fewer new units are produced and the ratio of vacancies to searchers falls, relative to the original intersection point. Because the shock is transitory, when price 
returns to its original steady state level, the original intersection point will be reached with lower demand for each vacant unit and a higher vacancy rate. 
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Figure 2.7 – Cost Shock 

 

Notes:  This figure shows impulse responses of key variables to a 1 percent transitory increase in the marginal cost of construction.  The impulse responses are 
reported in percentage deviations from steady state levels for each variable.   
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Chapter 3 

House Prices, Investment and Vacancies after Hurricane Katrina: 

Empirical Analysis of the Search & Matching Model 

 

 

I. Introduction 

In this chapter, I make small modifications to the search and matching model constructed 

in Chapter 2, and use it to analyze the housing markets affected by Hurricane Katrina.  In 

affected cities, Katrina caused a sharp reduction in the stock of housing and unanticipated 

changes in migration, providing a natural experiment suitable for analysis using the 

search and matching model of housing.   

This chapter presents both an empirical analysis of the natural experiment and a 

theoretical investigation of it using the model developed in Chapter 2.  I construct and use 

a panel data set for 57 Metropolitan Statistical Areas (MSAs) within roughly 500 miles of 

the epicenter of the hurricane.  I use a difference-in-differences estimation to produce 

reduced-form empirical impulse responses of house prices and new residential investment 

to the change in housing stock and migration from the hurricane.  Calibrating the log-

linearized structural matching model for the shocks experienced in each MSA, I simulate 

the dynamic paths of price and investment predicted in response. In this way, I am able to 

compare the estimated responses of price, flow investment and vacancy rates with the 

predicted responses of the model.  I find that the model successfully predicts a rise in 

prices for disaster areas even though it overshoots in magnitude compared to actual data. 

The model also correctly predicts that residential investment increases after the hurricane 

and tracks actual data closely in magnitude. 
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II. Matching in the Housing Market 

The model, its timing and notation remain mostly unchanged here from Chapter 2.  As 

before, the market here represents a single MSA with H denoting the total housing stock 

and N being total population, which is constant except for migration shocks.   

In steady state, demand for housing units is generated by existing homeowners 

who are forced to enter the search state due to a separation shock with Poisson 

probability 𝜆, or complete depreciation of their unit with Poisson probability 𝛿.  Those 

who are merely separated from their units may resell in the matching market, alongside 

firms constructing new units for sale.  Searchers and sellers are matched according to the 

same market technology function as before, which is assumed to take the Cobb-Douglas 

form, 𝑀(𝑆,𝑉) = 𝑚�𝑆𝛾𝑉1−𝛾.  As before, the likelihood of a seller being matched with a 

searcher, 𝑞(𝜃) is decreasing in the ratio of total vacancies to searchers, 𝜃; while the 

likelihood of a searcher matching with a seller, 𝜇(𝜃) is increasing in 𝜃.  

The sequence of events in a time interval is as before, illustrated below. Given a 

pre-determined stock of housing, 𝐻𝑡, vacancies, 𝑉𝑡, and searchers, 𝑆𝑡, the market meets at 

the start of the period and matches vacancies with searchers.  Unmatched searchers and 

sellers must wait until the next period, paying rent and depreciation costs, respectively.  

Households who are successfully matched become owner-occupiers.   

 

 
Following the payoffs to all parties, a fraction λ of owner-occupiers are 

exogenously separated from their existing housing units.  A fraction 𝛿 of owners that are 

not separated may still have to search next period because their unit has completely 

depreciated.   

At the end of the period, construction firms make investment in new housing units 

for sale, 𝑋𝑡.  New units augment the stock of vacant non-rental housing available for sale 
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next period, 𝑉𝑡+1, and add to total stock , 𝐻𝑡+1.  Similarly, existing houses that are 

separated from their current owners enter the stock of vacancies for next period.  

I model the event of Hurricane Katrina with a new variable 𝜅𝑡, that takes value 1 

if there is a hurricane and 0 otherwise.  Then to capture the unanticipated shock to the 

housing stock from Hurricane Katrina, I allow the rate of depreciation to vary from its 

fixed value, 𝛿, when 𝜅𝑡 = 1.  Hence depreciation may be rewritten as 𝛿𝑡 = 𝛿 + 𝜂𝜅𝑡, 

varying from its steady state value only on the date of the hurricane. The coefficient on 𝜅𝑡 

captures the percentage of housing units destroyed by the shock.  

In the model, the hurricane event also causes migration out of cities that lie in its 

path.  Cities that are not in the hurricane’s path receive immigrants from the affected 

areas.  This migration is modeled as unanticipated shocks to population. While the 

destruction of housing occurs only once, the migration shocks occur both on the 

hurricane date itself and in each period after it, to mimic the migration patterns observed 

in actual data for my sample MSAs.  

 

Population, Searchers, Vacancies & Housing Stock 

Since there are no births and deaths in the model, population varies only by migration, 

namely 𝐸𝑀𝑡, which denotes out-migration in period t or 𝐼𝑀𝑡, which is in-migration as 

per equation [1]. 

             𝑁𝑡 = 𝑁𝑡−1 + 𝐼𝑀𝑡 − 𝐸𝑀𝑡                                                     [1] 

The evolution of searchers in the market depends on the match and separation 

probabilities as well as net migration, per equation [2]. 

𝑆𝑡+1 = (1 − 𝜇𝑡)𝑆𝑡 +  𝐼𝑀𝑡 +  �𝜆𝑡 + 𝛿𝑡(1 − 𝜆𝑡)�(𝑁𝑡 + 𝐸𝑀𝑡 − 𝐼𝑀𝑡 − (1 − 𝜇𝑡)𝑆𝑡)

− (𝜎 + 𝜌(1 − 𝜎))𝐸𝑀𝑡 

[2] 

The total number of searchers entering the market at the start of period t+1 is the 

sum of unmatched searchers from the previous period and new immigrants into the city.  

Further, all matched owner-occupier households in the total population who are forced to 

move due to a separation or depreciation shock also enter the body of searchers.   

The last term is new to the searcher evolution process, whereby emigration is an 

outflow from the total number of searchers. Specifically, σEM emigrants are searchers 
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who leave the city instead of continuing to look for housing there.  The remaining 

emigrants are all owner-occupiers, of whom the fraction 𝜌 have experienced destruction 

of their housing units and would have entered search if they had remained in the city. 

That is, the remaining emigrating owner-occupiers (1 − 𝜌)(1 − 𝜎) are those who have 

not experienced destruction of their housing units by the hurricane and become only 

sellers in this market when they emigrate.  

This leads to the modification of the law of motion for vacancies in the model, to 

include the housing units sold by emigrating owner-occupiers in equation [3].  
 

𝑉𝑡+1 = (1 − 𝑞𝑡)(1 − 𝛿𝑡)𝑉𝑡 +  𝜆𝑡(1 − 𝛿𝑡)(𝐻𝑡 − (1 − 𝑞𝑡)𝑉𝑡 − (1 − 𝜎)𝐸𝑀𝑡)

+  𝑋𝑡 + (1 − 𝜎)(1− 𝜌)𝐸𝑀𝑡 

[3] 

Total vacancies at the start of period t+1 include unmatched vacancies from last 

period net of  depreciation and existing houses put up for sale by owner-occupiers who 

experience the move-shock but not depreciation in interval [t, t+1].  New construction, 

𝑋𝑡, also raises vacancies. Finally, the last term in [3] is emigrating owner-occupiers who 

sell their units upon leaving the city.   

The housing stock at t+1 is the sum of existing houses after depreciation and new 

construction, as before, 𝐻𝑡+1 = 𝐻𝑡(1 − 𝛿) + 𝑋𝑡.  New construction is undertaken by 

firms and the market faces an upward sloping supply curve for new units as before, 

𝐴𝑡 = 𝛼𝑋𝑡
𝜉.  

 

Asset Values, Price and Equilibrium 

The remainder of the model equations are the same as in the basic matching framework 

and are reproduced here for convenience. The asset value of being in the search state is 

denoted 𝐿, given by the recursive equation [4].  

  𝐿𝑡 = 1
1+𝑟

𝐸𝑡[𝜇𝑡+1(𝑊𝑡+1 − 𝑃𝑡+1) + (1 − 𝜇𝑡+1)𝐿𝑡+1]                 [4]  

The asset value of the owner-occupier state is given by W, as expressed in [5].  

 𝑊𝑡 = 𝑅𝑡 + 𝑏 + 𝜆𝑡(1 − 𝛿)𝐴𝑡 + �𝜆𝑡 + 𝛿(1 − 𝜆𝑡)�𝐿𝑡 + (1−𝜆𝑡)(1−𝛿)
1+𝑟

𝐸𝑡𝑊𝑡+1          [5] 
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The asset value of a vacancy, A is earned in the seller state, and given by equation [6].  

𝐴𝑡 = 1
1+𝑟

𝐸𝑡[𝑞𝑡+1𝑃𝑡+1 + (1 − 𝑞𝑡+1)(1− 𝛿)𝐴𝑡+1]     [6] 

Finally, price is given by the Nash bargaining solution that divides the match surplus 

between searcher-buyer and seller, as in equation [7].  

                         𝑃𝑡 = 𝑎𝑟𝑔max
𝑃𝑡

(𝑊𝑡 − 𝑃𝑡 − 𝐿𝑡)𝜙(𝑃𝑡 − (1 − 𝛿)𝐴𝑡)1−𝜙                   [7] 

I solve for steady state equilibrium and log-linearize the model around the steady state as 

described in detail in Chapter 2. 

 

 

III. Data and Stylized Facts 

In order to establish the impact of Hurricane Katrina on the housing market in affected 

cities, I build a panel data set comprising time series for house prices, new investment, 

ownership vacancy rates and net migration.  The panel consists of 57 MSAs, of which 13 

are cities comprise the treatment group that was directly hit by the hurricane.  The sample 

period is 2000 to 2008. 

My treatment group is not an exhaustive list of the cities that were in fact hit by 

the hurricane.  A total of 38 MSAs can be identified with one or more hurricane-hit 

counties, but not all have data series on prices and vacancy rates. These data are typically 

restricted to the largest 75 MSAs in the U.S., which limits the number of in-FEMA MSAs 

that can be included in my sample. Therefore, the treatment group in my sample consists 

of the maximum number of cities for which price data are available: there are 13 of these.  

The remainder of the panel forms a comparison group. Comparison cities lie 

within a 550 mile radius around New Orleans (excluding Florida1

                                                           
1 Florida is not a homogeneous housing market to New Orleans.  It regularly experiences large in-migration 
of retirees which likely influences its demand and supply in a way that is different from the rest of the cities 
in my sample.  

).  As the analysis 

below will show, the comparison cities display no divergence in migration, price and 

investment trends from the treatment group prior to the hurricane date and are 

geographically similar to the treatment group.  See Map 1 for a visual representation of 

all included MSAs.  The full list of MSAs in the panel together with distance in miles 

from the hurricane’s epicenter in New Orleans can be found in Appendix Table 3.8.  
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Housing Stock Damage Estimates 

Hurricane Katrina occurred on August 29, 2005.  The worst-hit cities were New Orleans, 

Louisiana; Gulfport-Biloxi and Pascagoula in Mississippi; and Beaumont-Port Arthur in 

Texas, where from 25 to 38 percent of the housing stock was severely damaged or 

destroyed.  These cities also saw massive outmigration immediately following the 

hurricane, much of which remains unreversed in New Orleans to date. 

To establish the size of the shock to the housing market from the hurricane, I use 

estimates of housing stock destroyed produced by the Federal Emergency Management 

Agency (FEMA) at the county level across Texas, Louisiana, Mississippi and Alabama.  

In Table 3.1, I aggregate county level estimates to show estimated loss of housing stock 

at the MSA level.  Total destruction of housing stock is clearly the worst in New Orleans 

where the breaking of the levees submerged 80 percent of the city, with water rising up to 

20 feet high in places. The estimates do not include damaged vacant or seasonal housing 

and also exclude second homes. 

Table 3.1 also provides data on total housing stock, number of occupied units, 

population in occupied units and occupancy by tenure for affected MSAs, from the 

Census Bureau’s American Community Survey and population estimates.  

For the reader interested in further breakdowns, Table 3.6 in the Appendix shows 

the breakdown of damage by county in these MSAs and Table 3.7 shows damage by 

tenure. This is helpful in illustrating geographical focus of damage and clarifying that in 

general, the owner-occupied housing stock was affected more than rental units.  

 

Regression Model 

To analyze the impact of the hurricane on migration patterns, price, investment and 

vacancy rates, I estimate difference-in-differences regressions for each series.  Equations 

[8] and [9] are cross-sectional representations of the estimating equations for a single 

MSA i.   

 

𝑦𝑖𝑡 = ∑ 𝛽𝑗𝑇𝑗𝑡
2008
𝑗=2000 + ∑ 𝛽𝑗𝐹𝐸𝑀𝐴𝐹𝐸𝑀𝐴𝑖 ∗ 𝑇𝑗𝑡

2008
𝑗=2000 + 𝑢𝑖𝑡   [8] 

 

𝑦𝑖𝑡 = ∑ 𝛽𝑗𝑇𝑗𝑡
2008
𝑗=2000 + ∑ 𝛽𝑗𝑛𝑁𝑒𝑎𝑟𝑖 ∗ 𝑇𝑗𝑡

2008
𝑗=2000 + ∑ 𝛽𝑗𝑚𝑀𝑒𝑑𝑖𝑢𝑚𝑖 ∗ 𝑇𝑗𝑡

2008
𝑗=2000 + 𝑢𝑖𝑡         [9] 
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In these equations, 𝑇𝑗 are time dummies, j=2000, 2001, …, 2008. In equation [8], 

FEMA interacted with time is a binary variable that takes value 1 if MSA i lies in the 

FEMA sub-sample of MSAs and the date is j; it takes value 0 otherwise.  In equation [9] 

an MSA lies at ‘Near’ distance to the epicenter of the Hurricane if it lies within 100 miles 

of New Orleans.  An MSA lies at ‘Medium’ distance if it is between 100 and 200 miles 

away from New Orleans. The interaction variables Near*Time and Medium*Time take 

value 1 if an MSA is ‘Near’ or ‘Medium’ respectively and the date is j.  

In both specifications, the time trend captures the average time path for the 

comparison group of MSAs that are either non-FEMA or further than 200 miles from 

New Orleans city, respectively. The FEMA interaction terms isolate the impact of the 

Hurricane in excess of the trend, for all affected MSAs identified by FEMA as eligible 

for receiving public and individual assistance.  ‘Near’ and ‘medium’ dummies similarly 

measure impact in excess of the trend on areas close to the epicenter of the storm.  

I expect to see that the lower the proximity to New Orleans MSA, the less of an 

estimated deviation there will be for a particular group from the average trend, i.e. 

𝛽𝑗𝑁𝐸𝐴𝑅 > 𝛽𝑗𝑀𝐸𝐷𝐼𝑈𝑀 for all j.  Since the FEMA group comprises MSAs at varying 

distances from New Orleans, I also expect that  𝛽𝑗𝑁𝐸𝐴𝑅 > 𝛽𝑗𝐹𝐸𝑀𝐴 for all j. 

Regression equations [8] and [9] are estimated by pooled OLS, or Prais-Winsten 

regression if there is serial correlation in the residuals.  Variance estimates are corrected 

for panel-heteroskedasticity and serial correlation in the residuals where appropriate. I do 

not allow contemporaneous correlation in the errors across MSAs.   

 

Migration 

Approximately 40 percent the population in occupied housing units in New Orleans 

moved from or within the metro area during September to December 2005.  While 28 

percent of movers relocated within the New Orleans area, 4.5 percent moved to Houston, 

TX and 11.6 percent to the remainder of Texas.  8.1 percent of movers from New Orleans 

moved to Baton Rouge, LA and 20.6 percent moved to the remainder of the U.S. 

excluding Gulf Coast states (Koerber, 2006).  Less detailed data is available on migration 

patterns in other cities.   
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To analyze migration dynamics in hurricane-affected cities I use annual estimates 

from the Census Bureau from 2000 onwards.  For the full panel of 57 MSAs, I estimate 

regression models [8] and [9] with net migration as a percentage of total population as the 

dependent variable.  Coefficient estimates and panel-corrected standard errors are 

presented in Table 3.2.  

Figure 3.1 plots the estimated FEMA and distance coefficients for net migration. 

Migration estimates are made from mid-year to mid-year, hence the vertical line 

indicating the hurricane date in both panels is drawn at mid-2006. This corresponds to 

estimated migration from mid-2005 to mid-2006.   

Plots of the estimated FEMA and NEAR effects tell the same story and are 

equally stark.  MSAs that bore the brunt of Hurricane Katrina can be seen to follow the 

trend prior to the hurricane. Between 2005 and 2006 in-FEMA MSAs clearly experience 

a large and statistically significant outflux of population, which is estimated at 9.7 

percent in NEAR MSAs and 3.8 percent across FEMA metro areas. After 2006, net 

migration recovers only slightly in the treated group, indicating a persistent effect on the 

population in affected cities.  

Notice that point estimates plotted for MEDIUM cities are statistically significant 

and smaller than the corresponding NEAR estimates.  Hence, the greater the distance at 

which a city lies from New Orleans, the lower is the effect on its population size and 

hence, the market for housing.  

 

House Price 

I use the MSA-level quarterly Housing Price Index (HPI) from the Federal Housing 

Finance Authority (FHFA) website, formerly maintained by OFHEO.  The HPI is a 

repeated-sales index and records the sales prices of only those houses that have been sold 

at least twice over.  This price index provides data on the largest number of MSAs, which 

makes it preferable to other publicly available price index series. 

Figure 3.2 presents estimated FEMA and distance coefficients for the housing 

price index from regressions [8] and [9].  NEAR and MEDIUM plotted estimates are 

normalized to zero in 2000Q1, so the plot in the lower panel in Figure 3.2 can be 

interpreted as the change in price in percentage points.   
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Just as with the migration data, FEMA coefficient estimates pre-2005Q3 illustrate 

the similarity of MSAs included in the sample.  House prices in FEMA cities pre-Katrina 

were consistently within a 2 to 4 index point range above the trend for the comparison 

group.  The subsequent increase above trend for in-FEMA cities can thus be attributed to 

the only completely unpredictable event that occurred after 2005Q2 in the treatment 

group: Hurricane Katrina. Had the shock been foreseeable or had the underlying change 

been region-wide, the pre-2005Q2 pattern suggests that prices across the whole sample 

would have moved in concord.  

There is a similar clear and statistically significant positive effect on prices for 

NEAR MSAs after the hurricane date, starting in 2005Q4.  Prices in FEMA MSAs 

increase by 3 percent from 2005Q3, while the jump is 7 percent for NEAR MSAs. As 

expected, there is a much smaller increase in MEDIUM cities of 1 percent right after the 

hurricane. In NEAR MSAs prices continue to rise, peaking at 24 percentage points above 

their 2005Q2 level at the end of 2007.  Comparing this trajectory to that of the MEDIUM 

cities, Figure 3.2 clearly bears out the hypothesis that the closer the MSA lies to the 

epicenter of the hurricane, the higher the post-shock house price increase it will 

experience. Selected point estimates for these regressions are presented in Table 3.3. 

 

Investment 

I use annual data from the Census Bureau on building permits to proxy for residential 

investment in new single-family units. Due to sample size restrictions, the Census does 

not produce estimates of starts for geographic units below the Census Regions.  However, 

since permits are the fundamental series on which Census estimates of housing starts are 

formed, they provide a second-best estimate of residential building activity even though 

they cannot be interpreted directly as housing starts.   

Permits data provide a complete count of intended new residential building 

activity in the U.S., as opposed to a survey estimate.  The Census notes that only about 

2.5 percent of housing starts in the United States are built in non-permit areas.  Building 

permits are issued only for new construction and do not include remodeling or repair to 

existing houses. The average lag between issuance of permit and start of construction for 

new residential buildings is 0.8 months, for 1976-2008.  Averaging between 1994 and 
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2008, only 9.5 percent of projects for which residential permits are issued are not 

observed to have started construction by end of year (regardless of month of issue).  

Using log permits by MSA as the dependent variable, I estimate regressions [8] 

and [9].  Selected point estimates and standard errors from these regressions are presented 

in Table 3.4.  Figure 3.3 plots selected coefficient estimates for both specifications. In 

these plots, distance coefficient estimates for 2000 are normalized to zero so the plots can 

be interpreted as percent change in log permits over the previous year.  The bottom panel 

of Figure 3.3 shows that NEAR MSAs saw an increase of 35 percent from 2005 to 2006, 

while permits issued in-FEMA MSAs increased by 19 percent after the hurricane which 

is marked by the red vertical line in each plot.  These results establish that in the 

aftermath of Hurricane Katrina residential investment increased above average in affected 

cities.  

 

Elasticity of Supply of Housing 

The estimated change in prices and permits after the hurricane effectively provide 

an instrumental variables estimate of the flow elasticity of supply for areas near Katrina’s 

epicenter. The destruction of housing stock by the hurricane provides an instrument for a 

shift in the demand for housing along a stable upward sloping flow supply curve.   If 

Hurricane Katrina resulted in a shift of the flow supply curve as well as a shift in the 

demand curve, then the estimate would be unreliable due to simultaneity bias.  Looking at 

the data, however, my estimations show that after Katrina permits recovered from the 

initial drop and continued to rise, while prices also increased. This would suggest that 

construction firms were travelling up the supply curve in response to a shift in demand 

alone.  Had the hurricane shifted the supply curve inward, permits and prices would vary 

non-positively.  

For conformity with the frequency of permits, I re-estimate [9] for log prices at 

annual frequency.  Taking the ratio of the change in estimated coefficients on NEAR, 

between the date immediately prior to Katrina (annual observation for 2004) and 

immediately after Katrina (the observation for 2006), I have the estimated change in log 

permits over the change in log prices. This yields an estimated elasticity of 2 for flow 

supply of new housing units.   
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Ownership Vacancy Rate 

Time series data for ownership vacancy rates are available from 1986 to 2008 from the 

Housing Vacancy Survey for roughly the highest-populated 75 MSAs in the U.S. Only 2 

hurricane-affected MSAs are covered, namely New Orleans and Houston. Of the 

remaining sample, there are 6 comparison MSAs for which vacancy rates are available.  

Although the number of cities for which vacancy data are available is smaller, the 

advantage of using panel data is that there are still a sufficiently large number of 

observations to make regression analysis viable for the subset of my sample. Appendix 

Table 3.8 lists the cities for which vacancy data are available.  

The survey has varying sample size at quarterly frequencies, so I use annual 

observations.  I also correct for shifting geographical boundaries of MSA definitions over 

the sample period by calculating heteroskedasticity-robust standard errors in the vacancy 

rate regressions.  

Figure 3.4 illustrates clearly that there is a statistically significant rise in vacancy 

rates in New Orleans MSA in 2007 and 2008.  Even though the estimated coefficient for 

NEAR2005 is not statistically significant, the difference between NEAR2004 and 

NEAR2005 is significantly different from zero, with a χ2(1) value of 26.57 (p-value of 0).   

In-FEMA point estimates show a decline in the ownership vacancy rate after 

2005, but coefficient estimates are never significantly different from zero.  The plot is an 

average of the ownership vacancy rate between Houston (where the vacancy rate fell as 

Houston experienced immigration from New Orleans) and New Orleans (where the 

vacancy rate rose after the hurricane).   

Table 3.5 reports regression results for data on ownership vacancy rates. The 

NEAR coefficient isolates the effect on the ownership vacancy rate for New Orleans, 

since that is the only city in the sub-sample used for these regressions to lie within 100 

miles of the hurricane’s epicenter. Vacancy rates are the average of quarterly rates, 

recorded at the end of the calendar year, so the vacancy rate in both 2005 and 2006 will 

show the effects of the hurricane on the ownership housing market.  

Vacancy rates in general are a very small fraction of the housing stock, on the 

order of 1 to 2 percent nationally, for instance. A sizeable treatment effect in the city 

where the hurricane caused the greatest destruction to housing stock itself is not apparent.  
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Even if it were, it would be unclear whether vacancy rates have risen because the overall 

stock of housing has shrunk or because more houses lie vacant due to lower demand for 

existing housing units.  

To emphasize the effect of large fractions of the stock of housing being destroyed 

by the hurricane on vacancies, I re-estimate the regressions after adjusting all in-FEMA 

observations for the percentage damage incurred. Since non-FEMA MSAs experience no 

damage to housing stock, each observation is multiplied by 1 (i.e. it is included without 

adjustment).  I place a greater weight on New Orleans and Houston proportional to the 

percentage of occupied housing units destroyed there. In this way, the MSA that 

experienced more damage receive greater weight in the regression across all years.  

Results for actual weighted data in Table 3.5 show a positive and statistically significant 

FEMA coefficient in 2005.  All estimated coefficients for specification [9] are 

statistically significant.  Thus we can conclude that a rise in vacancy rates is observed in 

New Orleans after the hurricane, but in absolute magnitude the increase is not a sizeable 

one.  

 

Summary of Results 

To summarize these findings, metro areas that lie in the path of Hurricane Katrina have 

experienced significantly higher prices and higher residential investment activity since 

2005.  Disaster-hit metro areas experienced a large out-migration of their resident 

population which has only been partially reversed thus far. The further a city lay from the 

epicenter of the hurricane, the lower the out-migration and resulting impact on housing 

demand is observed there. On average, vacancy rates show non-negative movement after 

the hurricane.  
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IV. Hurricane Katrina in the Search and Matching Model of 

Housing 

As in Chapter 2, I use the Andersen Moore algorithm to solve for a saddle point 

equilibrium for the log-linearized model. The model is calibrated at the quarterly 

frequency and all parameters values are taken from Chapter 2, Table 2.1.  In steady state 

equilibrium, price and relative supply are normalized to equal 1 and searchers and 

vacancies are 5.8 percent of the total population and housing stock respectively.  

The simulation exercise is as follows. For each of the 57 cities in my regression 

sample, I calibrate the model’s baseline parameters to the same general specification as in 

Table 2.1 of Chapter 2.  All cities are assumed to have a flow supply elasticity of 2, 

which is the estimated post-disaster elasticity discussed in Section III above. For each 

city, the model is in steady state when Hurricane Katrina arrives unanticipated at date t.  

When the hurricane occurs, the indicator variable κ takes value 1 and returns to zero 

immediately thereafter. In the quarter when κ takes the value 1, depreciation of the 

housing stock in each city rises above the steady state level to 𝛿 + 𝜂𝜅, which is set equal 

to actual data on the percentage of housing stock destroyed by the hurricane for each city.  

Hence for all comparison cities, 𝜂 = 0, when 𝜅 = 1, so depreciation is equal to its steady 

state level even when the hurricane occurs.  When κ returns to 0, depreciation returns to 

its steady state level of 𝛿 = 0.014 for all cities. 

The second aspect of the shock from the hurricane is the dramatic increase in out-

migration from affected cities, as the empirical results in Section III show.  To 

incorporate this into the model simulation, I use net migration data for my entire sample 

and input the actual observed in- and out-migration as a percentage of steady state 

population for the 𝐼𝑀𝑡 and  𝐸𝑀𝑡 shocks for each city in each period. Hence, 𝐸𝑀𝑡 jumps 

up from zero for in-FEMA MSAs when 𝜅 = 1, and 𝐼𝑀𝑡 rises in non-FEMA MSAs, per 

actual observed movements in each city. Once 𝜅 = 0,  𝐼𝑀𝑡 and  𝐸𝑀𝑡 do not return to 

zero, but follow the actual pattern of migration observed in each MSA in my sample.  

In total, 32 percent of the total population of New Orleans emigrated after the 

hurricane.  The number of owner-occupiers who left amounted to 7.6 percent of the pre-

hurricane population. Since the matching model has no place for permanent renters, it is 

important to account for the large percentage of renters that comprise the total emigration 
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from the city who should have no impact on the demand for ownership vacancies.  I 

therefore mimic the number of owner-occupiers leaving New Orleans in the model to 

actual data and force all searchers (who are renters) to leave when the shock hits. While 

migration shocks for all other cities are exactly equal to observed data, migration into and 

out of New Orleans in the model is net of permanent renters and set to 42 percent of 

actual migration.   

Simulating the model also requires an assumption about the fraction of emigrants 

whose houses are destroyed in Hurricane-hit MSAs. This requires choosing a value for 

the parameter 𝜌 in the equation of motion of vacancies [3].  If 𝜌 is zero, the correlation 

between destruction of housing and emigration is zero.  For 𝜌 = 1, all owner-occupier 

emigrants must have their houses destroyed.  For the benchmark calibration, I set 𝜌 to 0.5 

and present robustness checks later in this section.  

Under these assumptions, I run 57 replications of the model, one per MSA, and 

generate artificial data for from the model for the 13 quarters between 2005Q3 and 

2008Q4. I discuss the implications of the shock for a single MSA and then proceed to 

summarize findings for all MSAs through regressions on simulated data that mimic those 

in Section III.  

 

Impulse Response Function for New Orleans 

Figure 3.5 displays impulse responses for New Orleans for the benchmark calibration. 

When the shock hits the city, the housing stock and population in the model fall by the 

amount they actually did. While emigration implies a decline in the number of searchers 

next period, the increase in demand for housing due to the magnitude of destruction of 

housing stock far outweighs this negative effect. Consequently searchers increase by 600 

percent relative to steady state. Vacancies initially rise a mere 16 percent above steady 

state when the shock occurs, but plummet after that as θ falls, raising the hazard rate for 

vacant units.  

The matching friction induces inertia in the evolution of housing demand as 

captured by the number of searchers. Excess demand bids up price and the likelihood of 

selling a vacant house increases almost fourfold. Flow investment only increases by 

enough in this forward-looking model to produce the number of housing units the market 
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will match each period, rather than the number of total searchers looking for a house. 

This eliminates the stock of vacant housing upfront and raises the probability of selling a 

house over threefold. Since the matching technology does not allow immediate 

reallocation of housing units across searchers, the effects on price and investment are 

perpetuated as long as housing demand persists away from the steady state level.  

The behavior of price in relation to the likelihood of selling is important to 

illustrate a more general point about the model’s mechanisms. All else equal, the lower is 

the hazard rate for a vacant house, the lower the bargained price it will receive. In the 

impulse responses here, the ratio of vacancies to searchers falls on impact and slowly 

rises over time.  Thus, the duration of vacancy for available housing units falls and the 

price a house is able to fetch rises dramatically. The model is therefore able to capture the 

effect of time-on-market on sales prices in a dynamic aggregate equilibrium framework.  

 

Regressions on Simulated Data 

To summarize the results of the Monte Carlo simulations and illustrate the predictive 

capability of the model, I create a combination panel dataset for prices, investment and 

the vacancy rate. Per MSA, I combine artificial data generated by the model for 13 

quarters following the shock (2005Q4 to 2008Q4) with actual data for that MSA for the 

sample period before Katrina. Using these combination series for the whole panel of 

MSAs, I re-estimate the regressions for prices, vacancy rates and log investment.   

I plot the simulated-data estimation results against actual results for prices, 

permits and vacancy rates in Figures 3.6 to 3.8, maintaining the convention that estimates 

based on actual data alone are represented by solid lines while simulated data estimates 

are represented by dotted lines.  For the FEMA specification in each figure, I also present 

results from robustness checks in the simulations.  These plots are stacked and are read as 

follows. The line labeled “Simulated “FEMA” BM” lies directly above the line labeled 

“Actual “FEMA””. For example, the point estimate for “Simulated “FEMA” BM” for 

2005Q4 is equal to the vertical distance between the “Simulated “FEMA” BM” line and 

data point directly below it on the “Actual “FEMA”” line at 2005Q4.  For ease of 

comparison, relevant point estimates for 2005 and 2006 for each calibration are also 

labeled in figures to show the jump predicted by the model on impact of the Hurricane. 
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Since point estimates prior to the Hurricane are identical for all specifications and 

simulations, by construction, the figures only plot coefficient estimates from simulated 

and actual data after 2005(Q3). Bottom panels in Figures 3.6 to 3.8 plot NEAR and 

MEDIUM point estimates for simulated and actual data sets.   

Figure 3.6 presents point estimates for prices. In actual data, in-FEMA MSAs 

experience a 3.4 percent increase in 2005Q4 over the previous quarter. In contrast, prices 

in the model overshoot, increasing by 39 percent for in-FEMA MSAs in the benchmark 

calibration. The overshooting is even more pronounced in NEAR MSAs, where prices 

rise by 68 percent in the model, compared to about 7 percent in the data. The model 

seems to perform better for MEDIUM MSAs.  This overshooting behavior is due to the 

size of the shift in demand for housing after the Hurricane. Even though a fraction of 

former homeowners leave affected cities after the shock, the remaining former owner-

occupiers push up demand up to sevenfold because the destruction of housing stock is so 

large.  The top panel in Figure 3.6 shows that the overshooting behavior of price in 

FEMA MSAs is robust to any assumption about the correlation of emigration and 

destruction of housing (captured by 𝜌).  By construction, the model returns to steady state 

after a shock, so simulated prices decline over time in Figure 3.6.  In actual data, by 

contrast, prices in the affected metro areas continue to rise after the Hurricane. 

Figure 3.7 similarly compares simulation and actual results for log permits.  Here 

too, the change in permits predicted by the model between 2005 and 2006 is higher than 

that seen in the data.  For in-FEMA MSAs permits rise by 33 percent in simulations 

while they rise by 19 percent in the data.  In NEAR MSAs, the overshooting is more 

pronounced, but the model performs relatively well for MEDIUM cities. These effects 

are robust to any value chosen for 𝜌.   Once more, however, permits in the model start to 

decline towards steady state, while they are seen to continue to rise above trend in actual 

data.  

Finally, Figure 3.8 shows that the response of vacancy rates is predicted to be 

more extreme by the model compared to the data:  predicted in-FEMA vacancy rates fall 

by more than in actual data. For in-FEMA areas, the vacancy rate falls by 24 basis points 

after the Hurricane, while in the model the vacancy rate declines by 2 percent.  For New 
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Orleans alone, as summarized by the NEAR point estimates, the prediction of the model 

is counterfactual altogether.  

 

Discussion  

The model’s predicted path for prices is incongruous with the data, both in magnitude of 

change and in the pattern of adjustment. In the model, perfect foresight dictates that price 

jumps up when the shock hits and then adjust slowly back to equilibrium. By contrast, in 

the data, price is still rising at the end of the sample period.  In magnitude, the price 

response observed empirically is likely tempered by employment changes and financial 

constraints not included in the model. As for the observed timepath of prices in the data,  

it could be interpreted as the effect of learning about the extent of demand changes over 

time. Equally, actual price in affected cities could rise over time in response to repaired 

units coming on the market over time, improving prices of those units for sale post-

hurricane.  

Other concerns must be acknowledged about the price data itself.  There might be 

a compositional effect in the data, biasing the observed response of prices.  For instance, 

if the HPI excludes destroyed units located in a low-income residential area, like the 

badly-impacted lower Ninth Ward in New Orleans, this will result in a jump up in prices 

merely due to the exclusion. However, the HPI is constructed using a repeated-sales 

methodology which could potentially control for this effect. Similarly, though, while 

rents may have increased in affected cities, the intervention of FEMA would have 

dampened the response of rents by providing subsidized housing.  Depending on whether 

emigrants from affected cities are the richest or the poorest households, rents could also 

behave unpredictably and drive the price response away from the model’s prediction.  

 

Robustness Checks 

The top panels in Figures 3.6 to 3.8 also show the effect of assuming lower magnitude of 

migratory flows in all MSAs than in the benchmark model. Specifically, I restrict 

migration shocks to be 40 percent of actual size, which reflects the split between renters 

and owner-occupiers in emigrants from New Orleans. In this case, denoted 𝜏 = 0.42 in 

the figures, prices and permits overshoot by a couple of percentage points more in FEMA 
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areas, while the vacancy rate overshoots by less than the benchmark model, compared to 

actual data.  This illustrates the incremental effect of migration on the housing market, in 

addition to that of destruction of housing units.  Specifically, the lower is reallocation of 

households across MSAs, the more upward pressure there is on prices and permits to 

respond to higher demand for housing. More houses are produced for sale and sales from 

the stock of vacancies are replaced at a higher rate in affected MSAs because investment 

jumps to meet higher demand.   

 

Summary of Simulation Results 

The model propagates the effects of an unforeseen shock over time through slow moving 

searchers and vacancies, which are restricted in their speed of adjustment by the matching 

friction.  The model’s predicted response for prices and investment overshoots relative to 

the data.  The model’s predictions are driven by the assumption that hurricane impacted 

households immediately search for another house to purchase, causing demand to 

increase by several orders of magnitude in affected MSAs. In addition, the model makes 

the simplifying assumptions of exogenous rents and no policy interventions.  Both of 

these assumptions are not true in the data.  Rents in New Orleans increased in the 

aftermath of the hurricane.  FEMA’s response to the crisis would also impact rents and 

prices, by absorbing a fraction of the demand for housing that would otherwise have 

impacted private investment and price. 

 

 

V. Conclusion 

This paper contributes a new model of the housing market to macroeconomic literature 

and provides evidence of its predictive capability.  The model is a dynamic quantitative 

matching model relating new housing supply to existing vacancies, and forecasts the path 

of prices, vacancies and flow investment after an unanticipated shock to the housing 

stock from Hurricane Katrina.  It propagates the effects of the shock over time through 

slow moving searchers and vacancies which are restricted in their speed of adjustment by 

the matching technology.  The burden of adjustment therefore lies on jump variables, 

namely prices and investment.  While investment tracks observed data quite closely, price 
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responses tend to be higher in magnitude relative to actual movement in the data for 

MSAs affected by Hurricane Katrina.  

Considering simulation results for New Orleans as a case study of the worst-

affected city in the sample, a number of important observations can be made about the 

model’s dynamics. New Orleans experienced both the highest fraction of loss of housing 

stock and population due to Hurricane Katrina. While emigration implies a decline in the 

number of searchers in the model, the increase in demand for housing due to the 

magnitude of destruction of housing stock far outweighs this negative effect. Excess 

demand bids up price and the likelihood of selling a vacant house increases almost 

fourfold. The behavior of price in relation to the likelihood of selling illustrates a more 

general point about the model’s mechanisms. All else equal, the higher is the hazard rate 

for a vacant house, the lower its duration of vacancy, and the higher the bargained price it 

will receive. When demand rises after the shock, relative supply of vacancies and hence 

the duration of vacancy for available units both fall and the price a house is able to fetch 

rises dramatically. The model is therefore able to capture the effect of time-on-market on 

sales prices in a dynamic aggregate equilibrium framework.  

After the shock, the matching friction induces inertia in the evolution of housing 

demand as captured by the number of searchers. Flow investment only increases by 

enough in this forward-looking model to produce the number of housing units the market 

will match each period, rather than the number of total searchers looking for a house. 

Since the matching technology does not allow immediate reallocation of housing units 

across searchers, the effects on price and investment are perpetuated as long as housing 

demand persists away from the steady state level.  

The model in this paper does not analyze the effects of movement in the rental 

price of houses.  Furthermore, there is a possibility that the relatively small gap between 

the predicted response of new investment in the model and observed private residential 

investment in the data is being filled by public investment in housing after the Hurricane.  

Future work will address both of these issues. 
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Table 3.1 – Estimated Number of Housing Units Damaged in MSAs Affected by Hurricane Katrina 

 

Owner-
Occupied 
Housing 

Units 

Renter-
Occupied 
Housing 

Units 

Number of 
Housing 

Units with 
Major 

Damage 

Number of 
Housing 

Units with 
Severe 

Damage 

Total 
Number of 

Housing 
Units 

Damaged 

Major & 
Severely 

Damaged 
Houses as  a 
Percentage 

of Occupied 
Housing 

Units  
(%) 

Total 
Damaged 

Houses as  a 
Percentage 

of Occupied 
Housing 

Units  
(%) 

Baton Rouge, LA 190,591 83,389 855 117 36,004 0.35 13.14 
Beaumont-Port Arthur, TX 97,507 47,055 32,752 5,318 122,494 26.33 84.73 
Gulfport-Biloxi, MS 67,109 34,077 24,446 12,330 67,067 36.34 66.28 
Hattiesburg, MS 31,822 16,806 1,805 237 21,167 4.20 43.53 
Houma-Bayou Cane-Thibodaux, LA 52,458 17,515 2,803 162 20,728 4.24 29.62 
Houston-Sugar Land-Baytown, TX 1,146,283 674,668 1,038 172 37,166 0.07 2.04 
Jackson, MS 131,145 62,059 479 73 18,554 0.29 9.60 
Lafayette, LA 65,859 29,745 193 25 7,213 0.23 7.54 
Lake Charles, LA 52,597 22,271 6,678 2,285 47,411 11.97 63.33 
Mobile, AL 101,298 49,293 2,814 363 44,869 2.11 29.80 
New Orleans-Metairie-Kenner, LA 305,339 174,513 79,711 103,110 319,458 38.10 66.57 
Pascagoula, MS 42,954 14,042 14,624 2,119 34,388 29.38 60.33 
Tuscaloosa, AL 49,173 30,222 17 9 1,551 0.03 1.95 

 
Notes: Counties are assigned to MSAs per November 2007 definitions by U.S. Office of Management & Budget (OMB). Major damage refers to flooding of up 
to 2 feet or where less than 50 percent of a house is damaged and requires extensive repair work for future occupancy.  Severely damaged housing units are 
completely destroyed or flooded 2 feet or more. 
Source:  FEMA count of damaged units from HUD Report (2006); Estimated total housing units American Community Survey 2005, U.S. Census Bureau  



 

 

61 

Table 3.2 – Pooled OLS Estimates for Net Migration as a Percentage of Population 

 
 FEMA Specification  Distance Specification 

   FEMA  Near Medium 
2003  -0.28  -0.4 -0.23 
   (0.9)  (1.97) (0.28) 
2004  -0.28  -0.21 -0.34 
   (0.9)  (1.97) (0.28) 
2005  -0.32  -0.56 -0.31 
   (0.9)  (1.97) (0.28) 
2006  -3.8***  -9.69*** 0.09 
   (0.9)  (1.97) (0.28) 
2007  0.17  0.56 -0.33 
   (0.9)  (1.97) (0.28) 
2008  0.01  0.04 -0.28 

   (0.9)  (1.97) (0.28) 
 
Notes:  Coefficient estimates are starred to indicate statistical significance: *** indicates significance at 1% level; ** indicates significance at 5%; and * indicates 
significance at 10% level.  All estimates have panel-corrected standard errors in parentheses adjusted for panel-heteroskedasticity.  
This table displays selected coefficient estimates from the pooled cross sectional regression for net migration in my sample of 57 MSAs, which includes 13 in-
FEMA metro areas. The estimated regression is of the form   𝑦𝑖𝑡 =  ∑ 𝛽𝑗𝑇𝑗2008

𝑗=2000 + 𝛽𝑗𝐷𝐷𝑖𝑇𝑗 + 𝑢𝑖𝑡 , where i subscripts MSA. 𝑇𝑗are time dummies, j=2000, 2001, 
…, 2008 and 𝐷𝑖  are dummies capturing the effect of distance from New Orleans city in three different ways. The alternative specifications are as follows: 1) Di is 
a dummy identifying in-FEMA MSAs and is interacted with time.  2) Di is further divided into dummies indicating ‘near’ distance (for an MSA that lies within 
100 miles of New Orleans) or ‘medium’ distance (100-200 miles from New Orleans city) and interacted with time.  See also Figure 3.1. 
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Table 3.3 – Pooled OLS Estimation Results for the Housing Price Index  

 
 FEMA Specification  Distance Specification 

Date  FEMA  Near Medium 
2005Q1  2.84  10.11* -1.04 
   (2.86)  (5.28) (1.82) 
2005Q2  3.52  11.53** -0.48 
   (2.86)  (5.28) (1.82) 
2005Q3  3.39  11.57** 0.58 
   (2.86)  (5.28) (1.82) 
2005Q4  6.83**  18.55*** 1.55 
   (2.86)  (5.28) (1.82) 
2006Q1  8.8***  20.88*** 3.13* 
   (2.86)  (5.28) (1.82) 
2006Q2  12.45***  26.19*** 6.33*** 
   (2.86)  (5.28) (1.82) 
2006Q3  14.08***  29.25*** 8.48*** 
   (2.86)  (5.28) (1.82) 
2006Q4  14.86***  30.62*** 8.51*** 
   (2.86)  (5.28) (1.82) 
2007Q1  15.8***  33*** 8*** 
   (2.86)  (5.28) (1.82) 
2007Q2  15.14***  32.41*** 8.63*** 
   (2.86)  (5.28) (1.82) 
2007Q3  16.53***  32.92*** 9.85*** 
   (2.86)  (5.28) (1.82) 
2007Q4  17.17***  35.11*** 9.76*** 
   (2.86)  (5.28) (1.82) 
2008Q1  17.29***  35.07*** 10.42*** 
   (2.86)  (5.28) (1.82) 
2008Q2  17.82***  34.3*** 10.4*** 
   (2.86)  (5.28) (1.82) 
2008Q3  16.49***  30.54*** 9.81*** 
   (2.86)  (5.28) (1.82) 
2008Q4  17.68***  31.99*** 9.5*** 
   (2.86)  (5.28) (1.82) 

Notes: Statistical significance: *** indicates significance at 1% level; ** indicates significance at 5%; and 
* indicates significance at 10% level.  Panel-corrected standard errors are in parentheses, adjusted for 
panel-heteroskedasticity and serial correlation in residuals. This table displays selected coefficient 
estimates from the pooled cross sectional regression for house price index in 57 MSAs, which includes 13 
in-FEMA metro areas. The estimated regression is of the form   𝑦𝑖𝑡 =  ∑ 𝛽𝑗𝑇𝑗2008

𝑗=2000 + 𝛽𝑗𝐷𝐷𝑖𝑇𝑗 + 𝑢𝑖𝑡  , where 
i subscripts MSA.  𝑇𝑗are time dummies, j=2000, 2001, …, 2008 and 𝐷𝑖  are dummies capturing the effect of 
distance from New Orleans city in three different ways. The alternative specifications are as follows: 1) Di 
is a dummy identifying in-FEMA MSAs and is interacted with time.  2) Di is further divided into dummies 
indicating ‘near’ distance (for an MSA that lies within 100 miles of New Orleans) or ‘medium’ distance 
(100-200 miles from New Orleans city) and interacted with time.  See also Figure 3.2. 
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Table 3.4 – Pooled Cross Section OLS Estimates for Log Residential Building Permits  
Actual 

 Log Residential Building Permits 
   

 Damage-Weighted Actual 
 Log Residential Building Permits 

 

 

FEMA 
Specification Distance Specification 

 
 

FEMA 
Specification Distance Specification 

 
FEMA Near Medium 

 
 FEMA Near Medium 

2005 0.33* 0.33 -0.34   2005 0.46** 0.53** -0.17 
  (0.2) (0.22) (0.24)     (0.2) (0.23) (0.24) 

2006 0.52*** 0.68*** -0.2   2006 0.66*** 0.89*** -0.03 
  (0.2) (0.22) (0.24)     (0.2) (0.23) (0.24) 

2007 0.58*** 0.55*** -0.1   2007 0.72*** 0.76*** 0.08 
  (0.2) (0.22) (0.24)     (0.2) (0.23) (0.24) 

2008 0.76*** 0.68*** 0.12   2008 0.89*** 0.89*** 0.29 
  (0.2) (0.22) (0.24)     (0.2) (0.23) (0.24) 

 
 

Notes:  Coefficient estimates are starred to indicate statistical significance: *** indicates significance at 1% level; ** indicates significance at 5%; and * indicates 
significance at 10% level.  All estimates have panel-corrected standard errors in parentheses adjusted for panel-heteroskedasticity.  
This table displays selected coefficient estimates from the pooled cross sectional regression for log permits in my sample of 57 MSAs, which includes 13 in-
FEMA metro areas. The estimated regression is of the form  𝑦𝑖𝑡 =  ∑ 𝛽𝑗𝑇𝑗2008

𝑗=2000 + ∑ 𝛽𝑘𝐷𝑖𝑇𝑘2008
𝑘=2000 + 𝑢𝑖𝑡 , where i subscripts MSA.  𝑇𝑗are time dummies, j=2000, 

2001, …, 2008 and 𝐷𝑖  are dummies capturing the effect of distance from New Orleans city in three different ways. The alternative specifications are as follows: 
1) Di is a dummy identifying in-FEMA MSAs and is interacted with time.  2) Di is further divided into dummies indicating ‘near’ distance (for an MSA that lies 
within 100 miles of New Orleans) or ‘medium’ distance (100-200 miles from New Orleans city) and interacted with time.  See also Figure 3.3. 
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Table 3.5 – Pooled Cross Section OLS estimates for Ownership Vacancy Rates 

 
Actual Vacancy Rate  

 
Damage-Weighted Vacancy Rate 

 

 

FEMA 
Speciation 

Distance 
Specification 

 
 

FEMA 
Specification 

Distance 
Specification 

   FEMA Near     FEMA Near    
2000 0.72* 1.81***   2000 1.21*** 2.78***   

  (0.42) (0.23)     (0.49) (0.24)   
2001 -0.5 -0.14   2001 -0.25 0.36   

  (0.42) (0.23)     (0.49) (0.24)   
2002 -0.97** -1***   2002 -0.86* -0.79***   

  (0.42) (0.23)     (0.49) (0.24)   
2003 -0.73* -1.31***   2003 -0.63 -1.13***   

  (0.42) (0.23)     (0.49) (0.24)   
2004 -0.35 -1.56***   2004 -0.21 -1.32***   

  (0.42) (0.23)     (0.49) (0.24)   
2005 0.62 -0.21   2005 0.95** 0.39*   

  (0.42) (-0.23)     (0.49) (0.24)   
2006 0.38 0.21   2006 0.76 0.94***   

  (0.42) (0.23)     (0.49) (0.24)   
2007 0.82** 1.21***   2007 1.4*** 2.34***   

  (0.42) (0.23)     (0.49) (0.24)   
2008 0.08 0.64***   2008 0.61 1.68***   

  (0.42) (0.23)    (0.49) (0.24)   
Notes: *** indicates significance at 1% level; ** indicates significance at 5%; and * indicates significance at 10% level.  Panel-corrected standard errors in 
parentheses adjusted for panel-heteroskedasticity.  Table displays selected estimates from pooled cross sectional regression for ownership vacancy rate for 8 
MSAs, including 2 in-FEMA areas. Regression equation: 𝑦𝑖𝑡 =  ∑ 𝛽𝑗𝑇𝑗2008

𝑗=2000 + 𝛽𝑗𝐷𝐷𝑖𝑇𝑗 + 𝑢𝑖𝑡  , where i subscripts MSA.  𝑇𝑗are time dummies, j=2000:2008; 𝐷𝑖  
are dummies capturing distance from New Orleans city in two alternative specificiations: 1) Di is 1 for in-FEMA MSAs  2) Di dummies indicating ‘near’ distance 
to New Orleans(shown) or ‘medium’ distance (not shown). The table displays estimation results for the regression run on actual vacancy rates and for an 
alternative specification that ranks vacancy rates in each MSA by the damange incurred in each MSA.  See also Figure 3.4. 
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Figure 3.1 – Estimated Treatment Effect on Net Migration as a Percentage of Total Population 

 

 

Notes: This figure plots point estimates for FEMA, NEAR and MEDIUM dummies interacted with time from regressions for actual migration data.  See Table 
3.2 for regression results and details on estimation.  
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Figure 3.2 – Estimation Results for Quarterly House Price Index (1995Q1=100) 

 

 

Notes: This figure plots point estimates for FEMA, NEAR and MEDIUM dummies interacted with time from regressions for actual price data.  See Table 3.4 for 
regression results and details on estimation.  
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Figure 3.3 – Estimation Results for Log Residential Building Permits for Single-Family Units 

 

 

Notes: This figure plots point estimates for FEMA, NEAR and MEDIUM dummies interacted with time from regressions for actual permits data.  See Table 3.5 
for regression results and details on estimation.  
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Figure 3.4– Estimation Results for Annual Ownership Vacancy Rate

 

             

Notes: This figure plots point estimates for FEMA and NEAR dummies interacted with time from regressions for actual ownership vacancy rates.  See Table 3.5 
for regression results and details on estimation.  
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Figure 3.5 – FEMA MSAs Simulated Impulse Responses to Katrina Shock  

 
Notes: This figure plots impulse responses from the model simulation for New Orleans MSA.  The top panel shows the depreciation shock, which is equal to 38 
percent of the housing stock by construction from the data. Also in the top panel is the shock to population, which falls 13.4 percent in New Orleans on impact of 
the Hurricane.  The second and third panels plot the impulse response for 10 years following the Hurricane, for selected variables from the model.  Note that 
actual data are only available for 3 y ears after the Hurricane, which occurred on 29 August 2005, for comparison with these simulations.   
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Figure 3.6 – Estimation Results for Actual HPI and Simulated House Prices (Percentage) 

 

 

Notes: This figure plots regression results of actual versus artificial data on house prices.  The dotted lines represent point estimates from artificial data. The top 
panel compares simulation results across different calibrations of the model and stacks each set of regression estimates one on top of the other. Hence the vertical 
distance between points at 2006Q1 for Actual FEMA and Simulated FEMA BM is the point estimate for Simulated FEMA BM.  For the sake of graphical clarity, 
estimates prior to 2005Q3 are omitted in the top panel, because these are equal across actual and simulated data and across calibrations, by construction.  
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Figure 3.7 – Estimation Results for Actual Log Permits and Simulated Flow Log Investment

 

 

Notes: This figure plots regression results of actual versus artificial data on house prices.  The dotted lines represent point estimates from artificial data. The top 
panel compares simulation results across different calibrations of the model and stacks each set of regression estimates one on top of the other. Hence the vertical 
distance between points at 2006Q1 for Actual FEMA and Simulated FEMA BM is the point estimate for Simulated FEMA BM.  For the sake of graphical clarity, 
estimates prior to 2005Q3 are omitted in the top panel, because these are equal across actual and simulated data and across calibrations, by construction.  
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Figure 3.8 – Estimation Results for Actual and Simulated Ownership Vacancy Rate 

 

 
Notes: This figure plots regression results of actual versus artificial data on ownership vacancy rates.  The dotted lines represent point estimates from artificial 
data. The top panel compares simulation results across different calibrations of the model and stacks each set of regression estimates one on top of the other. 
Hence the vertical distance between points at 2006Q1 for Actual FEMA and Simulated FEMA BM is equal to the numerical value of the point estimate for 
Simulated FEMA BM.  For the sake of graphical clarity, estimates prior to 2005Q3 are omitted in the top panel, because these are equal across actual and 
simulated data and across calibrations, by construction. 
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Figure 3.9 - Map for Data Panel Sample Selection 

 
Source: Census Atlas of the United States, http://www.census.gov/population/www/cen2000/censusatlas 
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Appendix to Chapter 3 

FEMA Damage Estimates by County 

Table 3.6 presents FEMA housing damage estimates by county for hurricane-affected 

MSAs. Out of a total of 117 counties affected by the hurricane, destruction of housing 

units was concentrated in 11 counties along the Louisiana and Mississippi coastlines. 

These counties mostly comprise New Orleans-Metairie-Kenner, LA and Gulfport-Biloxi, 

MS metropolitan statistical areas. Worst hit in New Orleans were Orleans, St. Bernard 

and Plaquemines Parishes, which lost between 35 and 50 percent of their housing stocks 

due to flooding.  In Gulfport MSA, Hancock County was worst affected and lost almost 

20 percent of its housing stock.   

 

FEMA Damage Estimates by Tenure 

Appendix Table 3.7 shows the breakdown of damage estimates by tenure, across the 

states affected by the hurricane. Damage estimates are calculated as a percentage of total 

occupied housing units estimated in the American Community Survey 2005.  This 

breakdown by tenure gives an indication of how much of the displaced population from 

these states could be classified as ‘permanent renters’, outside the scope of our analysis. 

FEMA inspections lasted until 12 February 2006, so these estimates include 

damage from Hurricane Rita. Hurricane Rita occurred on 24 September 2005 and caused 

repeated flooding of areas affected by Katrina.  For the use of FEMA estimates in this 

paper, this does not pose an issue since other data series used are annual (or, in case of 

price data, quarterly).  Having damage estimates for the third quarter of 2005 makes them 

more consistent with the rest of the analysis. 
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Table 3.6 – Appendix: Estimated Number of Housing Units Damaged in Core Counties* Affected by Hurricane Katrina 

  Major Damage Severe Damage 
Total Housing 

Units as of  
July 1, 2005 

Percentage of 
Total Housing 

Stock Destroyed 
(%) 

Percentage of Total 
Housing Stock with 

Major or Severe 
Damage (%) 

Louisiana           
LAKE CHARLES MSA           

Cameron Parish 914 1,665 5,724 29.09 45.06 
NEW ORLEANS-METAIRIE-KENNER MSA          

Jefferson Parish 29,643 4,677 192,373 2.43 17.84 
Orleans Parish 26,405 78,918 213,137 37.03 49.42 
Plaquemines Parish 1,190 3,994 11,290 35.38 45.92 
St. Bernard Parish 5,938 13,748 27,292 50.37 72.13 
St. Tammany Parish 15,948 1,682 88,791 1.89 19.86 

ABBEVILLE MICROPOLITAN STATISTICAL AREA         
Vermilion Parish 2,372 207 23,562 0.88 10.95 

            

Mississippi           
GULFPORT-BILOXI MSA           

Hancock County 7,185 4,611 23,530 19.60 50.13 
Harrison County 16,829 7,618 88,138 8.64 27.74 
Stone County 432 101 5,602 1.80 9.51 

PASCAGOULA MSA    
 

      
Jackson County 14,259 2,043 56,732 3.60 28.74 

Notes:*Louisiana is divided into parishes, analogous to counties elsewhere.  Counties are assigned to MSAs per November 2007 definitions by  
U.S. Office of Management & Budget (OMB).  These estimates were finalized by February 12, 2006 & include storm surge damage from Rita. Hurricane Katrina 
hit New Orleans & Gulfport-Biloxi metro areas with unequaled force & most of this damage was initiated in September 2005. Lake Charles MSA lay directly in 
Rita’s path & Rita also caused repeated flooding in areas previously hit by Katrina.  Major damage refers to flooding of up to 2 feet or where less than 50 percent 
of a house is damaged and requires extensive repair work for future occupancy.  Severely damaged housing units are completely destroyed or flooded ≥ 2 feet. 
Source:  FEMA count of damaged units from HUD Report (2006); Estimated total housing units from Population Division, U.S. Census Bureau. 
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Table 3.7 Appendix: State-Level Estimated Damage to Occupied Housing Units in Hurricanes Katrina and Rita by Tenure 

   Alabama  Louisiana  Mississippi  Texas 

  
Owner-

Occupied 
Units 

Renter-
Occupied 

Units 

 
Owner-

Occupied 
Units 

Renter-
Occupied 

Units 

 
Owner-

Occupied 
Units 

Renter-
Occupied 

Units 

 
Owner-

Occupied 
Units 

Renter-
Occupied 

Units 

Flood Damage                    
Major Damage 1,829 470  40,434 25,881  18,752 10,285  391 140 
Severe Damage/Destroyed 156 56  61,137 41,361  7,366 4,707  37 17 
                     
Wind Damage                    
Major Damage 765 172  18,589 13,182  12,137 4,602  7,700 2,292 
Severe Damage/Destroyed 162 74  2,432 1,721  2,252 1,285  1,146 380 
                     

 
Total Occupied Units 1,261,475 527,217  1,136,873 539,726  757,446 326,588  5,162,604 2,815,491 

   
 

  
 

  
 

  Severe Damage  
as Percentage of  
Occupied Units (%) 0.03 0.03 

 

5.59 7.98 

 

1.27 1.84 

 

0.02 0.01 
Severe & Major Damage  
as Percentage of  
Occupied Units (%) 0.23 0.15 

 

10.78 15.22 

 

5.35 6.39 

 

0.18 0.11 

Source: HUD Report (2006) ; American Community Survey 2005 
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Table 3.8 – Appendix: List of MSAs in Panel Data used for Empirical Analysis 

CBSA 
Code MSA Name 

Miles to  
New Orleans  

HVS 
Sub-
Sample 

35380 New Orleans-Metairie-Kenner, LA 0.00 Yes 
26380 Houma-Bayou Cane-Thibodaux, LA 45.75 

 25060 Gulfport-Biloxi, MS 64.96 
 12940 Baton Rouge, LA 72.68 
 37700 Pascagoula, MS 95.33 
 25620 Hattiesburg, MS 103.37 
 29180 Lafayette, LA 118.22 
 33660 Mobile, AL 130.85 
 27140 Jackson, MS 162.64 
 10780 Alexandria, LA 170.04 
 29340 Lake Charles, LA 188.67 
 33740 Monroe, LA 213.29 
 13140 Beaumont-Port Arthur, TX 241.86 
 46220 Tuscaloosa, AL 269.62 
 33860 Montgomery, AL 278.73 
 43340 Shreveport-Bossier City, LA 280.24 
 20020 Dothan, AL 292.04 
 13820 Birmingham-Hoover, AL 311.47 Yes 

38220 Pine Bluff, AR 314.89 
 26420 Houston-Sugar Land-Baytown, TX 318.07 Yes 

30980 Longview, TX 326.10 
 12220 Auburn-Opelika, AL 326.80 
 45500 Texarkana, TX-Texarkana, AR 336.49 
 17980 Columbus, GA-AL 346.96 
 46340 Tyler, TX 351.04 
 30780 Little Rock-North Little Rock-Conway, AR 353.23 
 11500 Anniston-Oxford, AL 353.85 
 32820 Memphis, TN-MS-AR 357.61 Yes 

26300 Hot Springs, AR 358.35 
 22520 Florence-Muscle Shoals, AL 364.11 
 19460 Decatur, AL 365.13 
 23460 Gadsden, AL 367.03 
 10500 Albany, GA 367.91 
 17780 College Station-Bryan, TX 378.02 
 26620 Huntsville, AL 387.20 
 27180 Jackson, TN 398.45 
 27860 Jonesboro, AR 405.94 
 46660 Valdosta, GA 409.95 
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Table 3.8 (Contd.)  
Appendix: List of MSAs in Panel Data used for Empirical Analysis 

CBSA 
Code MSA Name 

Miles to  
New Orleans  

HVS 
Sub-
Sample 

40660 Rome, GA 412.26 
 47580 Warner Robins, GA 422.70 
 12060 Atlanta-Sandy Springs-Marietta, GA 424.30 Yes 

47020 Victoria, TX 425.58 
 31420 Macon, GA 428.28 
 47380 Waco, TX 433.58 
 19124 Dallas-Plano-Irving, TX  (MSAD) 442.75 Yes 

19140 Dalton, GA 445.91 
 16860 Chattanooga, TN-GA 450.43 
 12420 Austin-Round Rock, TX 460.13 Yes 

18580 Corpus Christi, TX 467.82 
 34980 Nashville-Davidson--Murfreesboro--Franklin, TN 468.18 Yes 

17420 Cleveland, TN 470.76 
 23580 Gainesville, GA 472.36 
 12020 Athens-Clarke County, GA 480.08 
 15260 Brunswick, GA 518.69 
 15180 Brownsville-Harlingen, TX 530.82 
 12260 Augusta-Richmond County, GA-SC 534.74 
 42340 Savannah, GA 552.00 
  

Notes: This table displays the list of metropolitan statistical areas (MSAs) that comprise the sample for 
empirical analysis in this paper, sorted by “Miles to New Orleans”. The first column shows the CBSA code 
– the standard geographic identifier for each MSA per November 2007 MSA definitions. The last column 
indicates with entry “Yes” if the MSA is in the sub-sample for which ownership vacancy rates are available 
from the Housing Vacancy Survey.  
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Chapter 4 
The Impact of the U.S. Federal Housing Tax Credit Scheme  

in a Search and Matching Model with Heterogeneous Matches 

 

 

I. Introduction 

In the aftermath of the subprime mortgage and financial crises, most cities across the U.S. 

economy have experienced falling prices and rising inventories of unsold vacant housing 

units.  Between 2008 and 2010 the U.S. Federal government initiated the Home Buyer’s 

Tax Credit policy to lower the cost of purchase for prospective home buyers with a lump 

sum tax credit. According to the IRS, in 2010 the program cost an estimated $16 billion 

to the U.S. Treasury Department, with more than 2.2 million people filing for the credit, 

and $3.6 billion in 2009 with just 479,622 claimants. This paper investigates the impact 

of such policy intervention on housing prices, time to sale and housing unit sales.  

In this paper, I present a search and matching model of housing that incorporates 

searcher-buyer heterogeneity and durable housing units that are held vacant for sale in 

equilibrium. The crux of the model is that a searcher matched with a vacancy finds out 

whether or not it is a good fit for him.  For a poor fit, the match is discarded and the 

searcher continues the search.  For a good fit, the match proceeds to sale.  Every time the 

market meets, a distribution of fits is realized and a cutoff fit can be identified below 

which there are no sales.  When there is a positive incentive to purchase that lowers the 

effective price paid by the searcher, the market accepts sales of a lower quality that it 

otherwise would have.  In the absence of such an incentive, the market prefers sales at a 

higher price, for a higher (average) fit.  

In steady state, the equilibrium market average price and the marginal fit value are 

positively correlated.  There is no determinate steady state correlation, however, between 

time to sale and the marginal fit value.  A higher cutoff fit value does not necessarily 

imply that the market will have a higher equilibrium time to sale.  The relationship 
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between time to sale and marginal fit value depends on the matching efficiency of the 

market, which is exogenous.  In the absence of a matching friction with heterogeneous 

demand, equilibrium time to sale predicted by the model is 4 weeks, which is half the 

length of search typically observed for U.S. households.  

In dynamic analysis, I observe that there is a composition effect in response to an 

adverse demand shock that mitigates the response of observed price to less than what it 

would be in the absence of searcher heterogeneity. I show that a failure to adjust prices 

down to reach equilibrium quickly is a reflection of the fact that when faced with a 

demand shock sellers can adjust in other respects rather than price alone.  In the presence 

of heterogeneity and matching frictions, sellers endure a longer time to sale given the 

likelihood of finding a buyer with a higher fit in future. Reinforcing this point, model 

simulations illustrate that as the heterogeneity of fit increases, market average price 

becomes less variable.  

The model shows that a tax credit scheme can successfully raise sales and the 

average price in the market while it is in place. Moreover, it lowers the selectivity that 

searchers and sellers display, by causing a lower cutoff fit value in the market and a 

commensurately shorter time to sale, given a fixed degree of matching efficiency. 

In the model, all vacant units are assumed to be built to a homogeneous standard 

and heterogeneity stems from the searcher side of the market.  For each seller-searcher 

paired by the market mechanism, the match surplus varies by the quality of fit between 

the housing unit and searcher. Fit value captures those elements of product differentiation 

which are not standardized by a seller or producer of housing ex ante and are 

idiosyncratic to the searcher-buyer matched with a particular housing unit.   

As in the basic search and matching model, housing demand is exogenously 

determined by Poisson processes whereby a given fraction of the population enters the 

state of search each period. Hence, searchers leave their existing housing units when they 

receive an exogenous move or depreciation shock, automatically creating new demand 

for housing each period.  Moreover, these shocks also partly drive the supply of vacant 

housing units.  Since all searchers who enter the market thus are previously home-

owners, their housing units also become vacant for sale if they have not depreciated.  The 

stock supply of vacancies for sale also receives a flow of new vacant units from new 
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investment in housing.  The total supply of vacancies is therefore generated by the 

fraction of homeowners exogenously separated from their housing units and new 

investment undertaken by profit maximizing construction firms.  

Using the technology of the matching function, the market rations vacancies 

across searchers coincidentally yielding a random draw of fit values for all matched pairs. 

There is a positive probability of no match for any vacancy which increases in the ratio of 

vacancies to searchers.  This externality effect generates persistence in the stock of vacant 

housing in the dynamic environment of this model.  

In this paper, the quality of fit per searcher-vacancy pair is an independent 

identically distributed variable.  Since fit value is i.i.d., neither the market nor the 

searcher can predict future fit values based on the current draw, which forces the searcher 

to consider a current match independently of all other future draws. So the model here is 

still a random search model wherein sellers cannot price discriminate ex ante to ensure a 

transaction through self-selection by searchers, unlike directed search models (see Shi, 

2002, for an example of the latter).   

Match surplus is increasing in quality-of-fit: the higher the fit value a searcher 

realizes with a matched vacancy, the higher is the searcher’s payoff from purchasing the 

unit, and the higher is the total surplus associated with the match. Both parties to a 

transaction know the value of the searcher-buyer’s realized fit once a match is made. For 

any matched searcher-vacancy pair with a non-negative surplus, the match culminates in 

a sale.  The match which yields zero total surplus defines the cutoff fit value below which 

matches do not result in a sale. This marginal fit value thus becomes a sufficient statistic 

to determine the number of sales that will occur each period.  

In this paper I present dynamic simulation results as well as comparative steady 

state analysis using the model.  I also provide a policy application by analyzing the 

impact of the recent federal home buyers’ tax credit scheme on market price, time to sale 

and sales.   

In 2008, federal housing tax credits for new homebuyers were introduced as part 

of stimulus measures to revitalize the U.S. housing market in the aftermath of the 

subprime mortgage crisis.  They were enacted as part of the 2008 American Housing 
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Rescue and Foreclosure Prevention Act; 2009 Worker, Homeownership and Business 

Assistance Act; and 2009 American Recovery and Reinvestment Act.   

The so called first time home buyer tax credits were extended from April 9, 2008 

through the end of May 1 2010, being in effect for just over two years in total. They were 

extended to qualifying first-time home buyers for a credit worth 10 percent of the housing 

unit’s purchase price, capped at $7500 in 2008 and $8000 in 2009 and 2010.  The credit 

was also extended to qualifying non-first-time home buyers, who could receive a 

maximum tax credit of $6500. Additionally, the credit was available only to buyers 

whose gross income is less than $95,000.  The limit was revised in November 2009 to 

$145,000.  Finally, the maximum purchase price of a housing unit allowable under the 

tax credit scheme was $800,000.  Ignoring the finer details of the tax code, the terms of 

the scheme require that owners retain their housing units for 3 years after the purchase 

date, or repay the credit if they sell before then.  

According to the IRS, in 2010 the program cost an estimated $16 billion to the 

U.S. Treasury Department, with more than 2.2 million people filing for the credit, and 

$3.6 billion in 2009 with just 479,622 claimants. An official audit of the program has 

revealed widespread misuse of the program, with people claiming the benefit on housing 

not yet purchased or without a valid purchased address; claiming the benefit in the name 

of people below the age of 18; claiming the benefit on housing units previously filed as 

being owned by a spouse, etc.  This paper does not comment on the fraudulent 

application for funds from the scheme. 

I apply the model to conduct the policy experiment qualitatively by introducing a 

housing tax credit for 2 years, at 10 percent of the average steady state price of a housing 

unit.  Since the model is dynamic I can trace out the qualitative impact on time to sale, 

the marginal fit value, prices, and supply in response to a tax credit shock. 

 By distorting the effective surplus of a match upwards, the credit allows searcher-

buyers with lower fit values to bid high enough that sellers agree to a sale.  Hence, the 

threshold or marginal quality of matches in the market is lowered by the policy shock and 

it is effective in raising the number of sales.  Since the model is in steady state prior to the 

shock, investment rises with the credit, keeping the number of vacancies per searcher 

roughly level.  However, since people become more willing to accept lower-fit matches 
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to take advantage of the credit, time on market for a vacancy falls.  All else equal, the 

model predicts that the tax credit effectively greases the wheels of the housing market by 

raising sales and new flow investment in the market and decreasing the time to sale.  

This paper brings together many elements that have featured in other search and 

matching models. Novy-Marx (2009) points out that a typical search and matching model 

equilibrium is a dual of a price and a vacancy rate.  In response to a shock, the market 

adjusts both, rather than achieving clearing through price movements alone.  In this paper 

I show that there are three endogenous variables that determine equilibrium if one 

explicitly takes heterogeneity into account: namely, price, vacancy rate and the minimum 

fit between searcher-buyer and vacant units.  

Toshihiko and Sahin (2006) consider a heterogeneous labor-market model where 

transactions are rejected for any match with a negative surplus, leading to a natural cutoff 

match type in the market.  This is in agreement with the way I analyze searcher-buyer 

heterogeneity in the housing market.   

Shimer and Smith (2001) agree that introducing heterogeneity is an important part 

of analyzing whether matching is successful but ex ante heterogeneity makes the market 

solution inefficient (and renders the Hosios condition irrelevant).  Since my paper models 

ex post heterogeneity, it skirts both the issue of ex ante directed search and the problem 

of inefficiency in a decentralized equilibrium with heterogeneity.   

Lazear (2010) points out that downward price rigidity is observed and quite 

idiosyncratic to the housing market, in contrast with other major asset markets. I show 

with my model that the measured price in the housing market moves slowly in response 

to an adverse demand shock because of a composition effect. In particular, an unexpected 

decrease in rental rates does not elicit the full reduction in prices that a Walrasian market 

with identical agents might dictate, just as Lazear contends. However, I show that this 

failure to adjust prices down to reach equilibrium quickly is a reflection of the fact that 

sellers adjust in other respects rather than price alone: they withstand a longer time to 

sale, because of the possibility that they might sell to a searcher-buyer with a higher fit 

value in a downturn, as compared to the steady state. In other words, the heterogeneous 

matching model shows that the search and matching friction, as well as the additional 

friction imparted on the market from heterogeneous matches, widen the set of variables 
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that adjust in response to a negative demand shock and dampen the response of price 

alone.   

The paper proceeds as follows. Section II lays out the search and matching model 

with heterogeneous matches.  In Section III, I discuss numerical calibration of the model.  

Section IV analyzes the steady state solution of the model.  In Section V, I use the model 

for a dynamic analysis of the impact of exogenous rental shocks in the housing market, 

discussing summary statistics from Monte Carlo simulations of the model and illustrating 

the composition effect in the market.  In Section VI, I analyze the home buyers’ tax credit 

scheme using the heterogeneous matching model. Section VII concludes.  

 

 

II. A Search and Matching Model with Heterogeneous Matches in the Housing 

Market 

This section presents the search model with variable ‘fit’ between a matched searcher-

vacancy pair.  Matches are heterogeneous because searchers have idiosyncratic 

preferences in housing realized after a match has been made.  When a searcher is 

matched with a vacancy, he realizes the degree to which the vacancy meets his 

preferences, which is reflected in an i.i.d quality-of-fit random variable. After the market 

pairs searchers and vacancies together matches can be ranked by their fit, even though 

both are ex ante homogenous.  

A match only becomes a sale if it generates non-negative total surplus.  This 

implies that the value of fit for the searcher is at least as high as a threshold value at 

which total match surplus would be zero.  Should a searcher pass up a match he is 

currently offered, the market cannot predict his future fit based on his current fit with a 

vacancy because fit is a random independent and identically distributed variable.  Hence, 

the continuation value of the search state is a probability weighted average of future fit 

outcomes, above the expected minimum fit next period.  Since all searchers are identical 

before they are matched, the payoff from being in the search state is identical across 

searchers. 
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Analogously, the payoff from having a vacancy to sell is also based on the 

expected average sales price in the future compared to the current price if the vacancy is 

sold immediately. 

The fit of a match is modeled as a stationary stochastic continuous variable, 𝜁, 

with a cumulative distribution function denoted 𝐺(𝜁) and a probability distribution 

function 𝑔(𝜁).  A higher realized value corresponds to a higher quality match for the 

searcher.  The threshold fit value at which total surplus from a match is zero is denoted 

by 𝜁.̅  

 

Market Technology 

The market matching technology is identical to the Cobb-Douglas constant returns to 

scale specification assumed in the basic model, where total matches, M, depend on the 

total number of searchers, S, and the total number of vacancies, V. The parameter 

𝑚� ∈ (0,1) captures the efficiency of the market technology in pairing each searcher with 

a vacancy.  The smaller the value of 𝑚� , the greater the degree of matching friction in the 

market.  

𝑀(𝑆,𝑉) = 𝑚�𝑆𝛾𝑉1−𝛾 

The number of vacancies per searcher, which I will interchangeably refer to as 

relative supply, is denoted by  𝜃 = 𝑉
𝑆
.   The rate at which a vacancy is matched with a  

searcher can be written as the ratio of total matches to total vacancies available, denoted 

by 𝑞(𝜃) = 𝑀
𝑉

= 𝑚�𝜃−𝛾.   

Relative supply provides a measure of market saturation and allows a 

characterization of time-to-sale, which is the inverse of the hazard rate for vacancies.  

Unlike the basic search and matching model, in a heterogeneous matches environment 

𝑞(𝜃) is not the hazard rate for a vacancy.  The hazard rate for a vacancy must account for 

the fit value of each matched vacancy-searcher pair and how it compares to some 

marginal fit value, 𝜁,̅ which will be explained and derived shortly.  Thus, the hazard rate 

for a vacancy is its matching rate multiplied by the probability that the match fit value 

equals or exceeds a cutoff fit value. 

Pr(𝑣𝑎𝑐𝑎𝑛𝑐𝑦 𝑠𝑒𝑙𝑙𝑠) = �1 − 𝐺(𝜁)̅� ∗ 𝑞(𝜃). 
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Analogously, the rate at which a searcher is matched with a vacancy is given by 

the ratio of total matches to total searchers in the market.  It is denoted by 𝜇(𝜃) =

 𝑚�𝜃1−𝛾.  The hazard rate for a searcher is the matching rate for a searcher multiplied by 

the probability that the match fit value equals or exceeds the cutoff fit value. 

Pr(𝑠𝑒𝑎𝑟𝑐ℎ 𝑒𝑛𝑑𝑠) = �1 − 𝐺(𝜁)̅� ∗ 𝜇(𝜃). 

Finally, if every match need not materialize in a sale, the total number of sales is 

also conditional on the marginal fit value in the market.  Hence, total sales per period are 

given by the number of matches per period times the fraction of matches that lie above 

the cutoff value,  

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑙𝑒𝑠 = �1 − 𝐺(𝜁)̅� ∗ 𝑇𝑜𝑡𝑎𝑙 𝑀𝑎𝑡𝑐ℎ𝑒𝑠. 

 

Demand 

As in the basic model, I assume that each owner-occupier has an equal chance of 

receiving a shock that separates him from his current housing unit, which is denoted by 

the Poisson rate λ.  Each owner-occupier also faces an exogenous likelihood of complete 

depreciation, denoted by the Poisson rate δ.  Complete depreciation is essentially the exit 

of a house from the resale and ownership market and changes the state of an owner-

occupier into that of a searcher. Since this is an aggregate model, this assumption allows 

for a non-zero level of new construction in steady state equilibrium investment.1

Given this predictable inflow into housing demand each period, we can express 

the number of searchers in the market next period, 𝑆𝑡+1 , as the sum of searchers unable 

to transact in the previous period, which is the first and second terms in [1], and the 

number of new searchers due to separation and depreciation of the remaining population, 

which is the third term in the equation. 

 Since 

both the separation and depreciation shocks are Poisson rates, they can be interpreted as 

the fractions of the aggregate population that experiences separation and depreciation 

each period and enters the search state.   

                                                           
1 One can also interpret this as a fraction δ of each housing unit suffering wear and tear each period, but the 
maintenance costs being accumulated over time and realized by the owner occupier only at the point of sale 
as a cumulative loss in value. Hence, individual owners do not undertake maintenance expenditures in this 
model, thereby just ‘eating through’ their assets. 
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𝑆𝑡+1 = (1 − 𝜇𝑡)𝑆𝑡 + 𝜇𝑡𝐺(𝜁𝑡�)𝑆𝑡 + �𝜆 + 𝛿(1 − 𝜆)�(𝑁𝑡 − (1 − 𝜇𝑡)𝑆𝑡 − 𝜇𝑡𝐺(𝜁𝑡�)𝑆𝑡)

 [1] 

In the first two terms, out of current searchers, 𝑆𝑡, the fraction (1 − 𝜇𝑡) are those 

not matched with a vacant unit by the market and the fraction 𝜇𝑡𝐺(𝜁𝑡�) are matched but do 

not finalize a sale.  In the third term, 𝑁𝑡 is the total population.  From 𝑁𝑡, we can subtract 

the total number of searchers still searching in time t. The remaining population 

comprises owner-occupiers, who are then subject to the exogenous separation and 

depreciation shocks.    

 

Supply 

Housing supply in this model comes from new construction, referred to as investment, 

and the resale of existing housing units.   Given the durable nature of housing, there is a 

distinction between the inflow of units into the available vacant stock, the outstanding 

number of vacancies that comprise the stock supply for sale, and the stock of total 

housing available in the aggregate.   

The flow supply curve for new housing units in equation [2] is an upward sloping 

schedule that equates the expected sales value of a vacancy to the marginal cost of new 

construction.  In the market for housing units in this model, vintage does not make a 

difference to the sales price. Hence 𝐴𝑡 is the expected sales value of any vacancy for sale 

today, be it newly constructed or an existing unit coming onto the market.  𝑋𝑡 refers to 

the number of new units constructed in period t, also referred to as investment.  Finally, 

1/𝜉 is the elasticity of flow supply, which is less than 1. The shift parameter α can be 

used to capture exogenous cost shocks for new construction and can be normalized to 1 

without loss of generality.  

𝐴𝑡 = 𝛼𝑋𝑡
𝜉      [2] 

The stock supply of vacancies for sale evolves according to equation [3].  The 

number of vacancies for sale next period, 𝑉𝑡+1 , is the sum of unsold vacancies this period 

and new construction and existing housing units coming on to the market for sale.   

𝑉𝑡+1 = (1 − 𝑞𝑡)(1− 𝛿)𝑉𝑡 + 𝑞𝑡(1− 𝛿)𝐺(𝜁𝑡�)𝑉𝑡 +  𝜆(1 − 𝛿)[𝐻𝑡 − (1 − 𝑞𝑡)𝑉𝑡 − 𝑞𝑡𝐺(𝜁𝑡̅)𝑉𝑡] +  𝑋𝑡 

       [3] 
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In the first term on the right hand side of [3] are included all vacancies that remained 

unmatched in period t and escape depreciation.  In the second term are vacancies that were 

matched by the market but did not proceed to sale and do not depreciate.  In the third term, 

inside the square brackets, is the total housing stock net of unsold vacancies, all of which is 

owner-occupied in period t.  A fraction 𝜆(1 − 𝛿) of these owner-occupied units enters the 

state of vacancy each period as their owners receive the exogenous move shock but escape 

the depreciation shock.  Finally, new housing construction in period t,  𝑋𝑡, enters the stock of 

vacancies for sale in t+1.  

Given new construction Xt, the total stock of housing evolves according to 

equation [4]. 

     𝐻𝑡+1 = 𝐻𝑡(1 − 𝛿) + 𝑋𝑡                 [4] 

 

Continuation Values for Owner, Sellers and Searchers  

This model divides agents in the housing market in to four categories: searchers, owner-

occupiers, sellers and firms. Firms are engaged in new construction and their optimal 

condition is described by the upward sloping supply curve in equation [2].  The optimal 

decision of the remaining three categories of agents depends on value functions that 

describe their expected real payoffs.  These value functions are forward looking and 

recursive in structure.  

Existing owner-occupiers are assumed to earn a continuation value, 𝑊𝑡, that is 

identical for all owner-occupiers, in equation [5].  

𝑊𝑡 = 𝑅𝑡 + 𝑏 + 𝜆(𝐿𝑡 + (1 − 𝛿)𝐴𝑡) + 𝛿(1 − 𝜆)𝐿𝑡 + (1−𝜆)(1−𝛿)
1+𝑟

𝐸𝑡𝑊𝑡+1   [5] 

The owner-occupier in period t earns implicit rent 𝑅𝑡 and an additional benefit from 

owning his place of residence b that captures the ability to customize fixtures and fittings 

to his taste and make minor structural changes.  In the third term, if the owner-occupier 

receives an exogenous move shock this period, he becomes a searcher looking for a 

replacement housing unit and earning a payoff 𝐿𝑡 and a seller of his existing housing unit, 

also earning a seller’s payoff, 𝐴𝑡.  Similarly, the fourth term describes the agent’s payoff 

should he lose his current housing unit to depreciation, only earning the payoff of a 

searcher in that case.  The last term is the owner-occupier’s expected payoff next period, 

which the agent receives if he does not experience the move shock or the depreciation 
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shock.  The last term is discounted to present value at the discount rate 𝑟, which is 

common across all risk-neutral owner-occupiers. 

Next, consider the value function of a seller. Whether by new construction or a 

separation shock, once a vacancy is created, the seller receives the opportunity to sell it 

only when the market meets at the start of next period.  Given that the opportunity to sell 

does not arise until the following period, the value function for a seller is a forward 

looking equation that anticipates the payoffs from a successful sale, an unsuccessful 

match and no match at all next period.   

When the market meets and searcher-vacancy pairs are matched, the idiosyncratic 

realization of fit for the searcher in the matched pair becomes known to both parties.  The 

searcher earns the value of the fit at the time of sale if the match is successful and hence 

the fit value constitutes part of the match surplus.  The sales price of a vacancy therefore 

depends on the fit value of the match and determines the seller’s payoff in a successful 

match.  

For any current match with fit value, 𝜁𝑡 , , I will denote the idiosyncratic price as 

𝑃(𝜁)𝑡.  The expected value of a vacancy for sellers is denoted by 𝐴𝑡.   The following 

equation describes 𝐴𝑡 as the present discounted sum of the contingent payoffs received 

by the seller next period.   

𝐴𝑡 =
1

1 + 𝑟
𝐸𝑡 �𝑞𝑡+1 �� 𝑃(𝜁)𝑡+1𝑔(𝜁)𝑑𝜁

∞

𝜁�𝑡+1

� + 𝑞𝑡+1𝐺(𝜁�𝑡+1)(1− 𝛿)𝐴𝑡+1

+  (1 − 𝑞𝑡+1)(1− 𝛿)𝐴𝑡+1� 

[6] 

Recall that a vacancy is matched by the market technology at a Poisson rate 𝑞𝑡+1 

in time period (𝑡 + 1).  The first term inside the square bracket in [6] captures the event 

that a vacancy is matched with fit value above the market cutoff.  Then, the seller’s 

expected payoff is the price he receives for any fit value greater than or equal to the 

expected market cutoff fit in (𝑡 + 1).  Since the fit of the match he will make in (𝑡 + 1) 

is not known ex ante, his payoff is the expected price over all possible fit values above 

the cutoff.   A match may not always become a successful sale.  The searcher’s realized 

fit value will lie below the market cutoff value at date (𝑡 + 1) with probability mass 
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𝐺(𝜁𝑡̅+1). The second term thus writes the payoff to the searcher with an unsuccessful 

match, which is simply the expected value of a vacancy to sell next period if there is no 

depreciation shock.  In the final term, with probability (1 − 𝑞𝑡+1) a vacancy is not 

matched by the market at all. In this event, too, the seller simply receives the expected 

value of a vacancy to sell next period if there is no depreciation shock. 

We can simplify the expression for the seller’s payoff by defining the conditional 

average price in the market as follows in equation [7].   

𝑃�𝑡 = �� 𝑃(𝜁)𝑡𝑔(𝜁)𝑑𝜁
∞

𝜁�𝑡
� �1 −  𝐺(𝜁𝑡̅)��                                             [7] 

Thus, 𝑃�𝑡+1 is just the average of the observed prices in the market at time 𝑡.  Since the 

market does not allow the sale of matches with fit values below the marginal fit value, the 

observed distribution of prices is truncated at the bottom at 𝑃(𝜁)̅𝑡. Hence the average 

observed price is simply the conditional mean of the distribution of prices, corresponding 

to all 𝜁𝑡 > 𝜁𝑡̅.  Substituting [7] into the seller’s payoff in equation [6] and collecting 

terms, I simplify 𝐴𝑡 as follows.  

𝐴𝑡 =
1

1 + 𝑟
𝐸𝑡�(1−𝐺(𝜁�𝑡+1))𝑞𝑡+1 𝑃�𝑡+1 +  �1 − 𝑞𝑡+1(1− 𝐺�𝜁�𝑡+1�)�(1 − 𝛿)𝐴𝑡+1� 

 Finally, the value function for ex ante homogeneous searchers in the model is 

written as the sum of payoffs across different contingencies in the next period.  Flow 

rental payments are excluded from the searcher’s payoff and included instead as imputed 

rent in the owner-occupier’s value function.  Treating rental payments like this focuses 

the model on the market for housing sales alone, rather than explicitly including a rental 

market as well.  

The timing of the model dictates that an agent who is in the search state in period 

𝑡 will next have the opportunity to match with and purchase a vacancy in 𝑡 + 1.  At time 

𝑡 + 1, with probability 𝜇𝑡+1, a searcher is matched with a vacancy and realizes a random 

fit value 𝜁𝑡+1. Because 𝜁 is independent and identically distributed, the searcher’s 

previous realizations are no indication of what fit value he will realize in period 𝑡 + 1.  

The match is successful and results in a sale if 𝜁𝑡+1 ≥ 𝜁𝑡̅+1.   

Hence, the searcher’s continuation value, 𝐿𝑡, is the present discounted value of 

expected contingent payoffs from purchasing or searching next period, as in equation [8].  
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Because all searchers are ex ante homogeneous and 𝜁 is independent and identically 

distributed, the continuation value of the search state is identical across searchers.   

𝐿𝑡 =
1

1 + 𝑟
𝐸𝑡 �𝜇𝑡+1 �� (𝑊𝑡+1 − 𝑃(𝜁)𝑡+1 + 𝐶𝑡+1 + 𝜁𝑡+1)𝑔(𝜁)𝑑𝜁

∞

𝜁�𝑡+1
� + 𝜇𝑡+1𝐺(𝜁𝑡̅+1)𝐿𝑡+1

+ (1 − 𝜇𝑡+1)𝐿𝑡+1�                                                                                                [8] 

The market technology matches a searcher with a vacancy at Poisson rate 𝜇𝑡+1.  If 

the searcher has a fit above the marginal fit value for the market at 𝑡 + 1, he will 

purchase the housing unit and earn the payoff of an owner-occupier, 𝑊𝑡+1, plus the 

housing tax credit, 𝐶𝑡+1, and the fit value of the match, 𝜁𝑡+1 , less the sales price paid, 

𝑃(𝜁)𝑡+1.  This is captured by the first term of equation [8]. Since the searcher does not 

know ex ante what the realized fit will be, his payoff from purchasing is an expectation 

over all potentially successful fits.   The second term in [8] captures the payoff from 

finding a match with fit below the market cutoff in period 𝑡 + 1.  In that event, the 

searcher earns the continuation value of searching into the next period, with the 

composite probability weight 𝜇𝑡+1𝐺(𝜁𝑡̅+1).  The last term in equation [8] shows that a 

searcher will also earn the continuation value of searching into the next period if he is not 

matched at all in 𝑡 + 1.  

Just as I simplified equation [6], I can simplify the integral in [8].  Notice that 

𝑊𝑡+1 and 𝐶𝑡+1 are independent of 𝜁.  Also, equation [7] provides us with a substitution 

for the conditional mean price in 𝑡 + 1.   Hence, using that substitution and collecting 

terms, I can rewrite equation [8] as follows.  

𝐿𝑡 =
1

1 + 𝑟
𝐸𝑡 �𝜇𝑡+1�1 − 𝐺(𝜁𝑡̅+1)� �𝑊𝑡+1 − 𝑃�𝑡+1 + 𝐶𝑡+1

+ � 𝜁𝑡+1𝑔(𝜁)𝑑𝜁
∞

𝜁�𝑡+1
�1 − 𝐺(𝜁𝑡̅+1)�� � + �1 − 𝜇𝑡+1�1 − 𝐺(𝜁𝑡̅+1)�� 𝐿𝑡+1� 

These closed form expressions for the continuation values of each state in the 

owner-occupier, seller and searcher categories enable us to specify the surplus created by 

a match and solve for the equilibrium sales price for any successful match in the market.   
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Prices and Threshold Fit Value 

The total surplus created by any match is the sum of the net payoffs to searchers 

and sellers. For the searcher-buyer, the net payoff is the incremental earning from 

becoming an owner-occupier over the continuation value of the search state.  For the 

seller, the net payoff is the difference between the sales price earned from a successful 

match this period and the continuation value of remaining a seller until next period.  At 

time 𝑡, the total surplus created by a match with fit value 𝜁 is the sum of the searcher-

buyer’s and seller’s surplus, as follows.  

𝑇𝑆𝑡 = (𝑊𝑡 +  𝐶𝑡 + 𝜁𝑡 − 𝑃(𝜁)𝑡 − 𝐿𝑡) + (𝑃(𝜁)𝑡 − (1 − 𝛿)𝐴𝑡). 

The searcher’s surplus from a match linearly increases in the quality-of-fit, so 

matches can be ranked by the realized values of 𝜁 across the market. In each period, a 

distribution of 𝜁 values is realized and, therefore, there is a corresponding distribution of 

equilibrium sales prices, 𝑃(𝜁), which we must determine.  Since only those prices are 

observed which correspond to fit values above the market cutoff fit, it is necessary to 

identify this marginal fit value each period.  

The market cutoff fit, or marginal fit value, is one where the total surplus from a 

match equals zero as in [9]. 

𝜁𝑡̅ =  𝐿𝑡 + (1 − 𝛿)𝐴𝑡 −  (𝑊𝑡 +  𝐶𝑡).                                                   [9] 

For any fit value above the threshold, 𝜁𝑡�  , the searcher and seller proceed to Nash 

bargaining over the surplus.  The Nash bargaining problem maximizes the weighted 

product of the surplus earned by searcher-buyer and seller with respect to the fit-specific 

price.   

𝑃(𝜁)𝑡 = 𝑎𝑟𝑔max
𝑃(𝜁)𝑡

(𝑊𝑡 − 𝑃(𝜁)𝑡 + 𝐶𝑡 + 𝜁𝑡 − 𝐿𝑡)𝜙 (𝑃(𝜁)𝑡 − (1 − 𝛿)𝐴𝑡)1−𝜙    

The first term of the Nash product is the searcher-buyer’s surplus from the match, 

where the searcher’s bargaining weight is ϕ.  The second term is the seller’s surplus.  For 

𝜁𝑡 > 𝜁𝑡� , an equilibrium sales price is  

𝑃(𝜁)𝑡 = 𝜙(1 − 𝛿)𝐴𝑡 + (1 − 𝜙)(𝑊𝑡 + 𝐶𝑡 − 𝐿𝑡 + 𝜁𝑡).         [10] 

In each period a distribution of sales prices is observed that satisfies [10].  In this 

forward-looking model, however, both sellers’ and searchers’ continuation values rely on 



93 
 

the future market average price conditional on the future marginal fit value. Hence, the 

market average price is a sufficient statistic and one of the three key endogenous 

variables in the solution of the model.   

To specify the market average price explicitly, I combine equations [7] and [10] 

as follows.    

𝑃�𝑡 = �� �𝜙(1 − 𝛿)𝐴𝑡 + (1 − 𝜙)(𝑊𝑡 + 𝐶𝑡 − 𝐿𝑡 + 𝜁𝑡)�𝑔(𝜁)𝑑𝜁
∞

𝜁�𝑡
� �1 −  𝐺(𝜁𝑡̅)��  

Once more, 𝑊𝑡 and 𝐶𝑡 are independent of 𝜁. Moreover, 𝐴𝑡 and 𝐿𝑡 are independent of 𝜁𝑡 

and 𝜁𝑡̅.  Hence, the market average price at time t simplifies to the weighted sum of the 

seller, owner and searcher’s continuation values plus the housing tax credit and 

conditional mean fit of all successful matches in the market, as expressed in equation 

[11].    

𝑃𝑡� =  𝜙(1 − 𝛿)𝐴𝑡 + (1 − 𝜙)(𝑊𝑡 + 𝐶𝑡 − 𝐿𝑡) + (1 − 𝜙)�
𝜁𝑡𝑔(𝜁)𝑑𝜁

(1 − 𝐺(𝜁𝑡�))
                [11]

∞

𝜁𝑡�
 

 

 

III. Model Calibration 

In this section, I will briefly relate the sources for parameter values to which the model is 

calibrated, as laid out in Table 4.1, which I refer to as the benchmark calibration of the 

model.  This calibration assists in numerically solving the for the steady state solution of 

the model, which is discussed in Section IV.   

Numerical calibration of the model allows quantitative analysis of the tax credit 

shock using the Anderson-Moore algorithm.  I use this algorithm to derive the reduced 

form from the log-linearized version of the structural equations.  In the reduced form 

representation, each variable is expressed in terms of its own lags and the lags of other 

variables and shocks, in terms of deviation from the steady state solution.  These are the 

impulse response functions of the model to any shock that moves it away from its steady 

state equilibrium.  

The baseline model calibration outlined in Chapter 2, Table 2.1, is replicated in 

this chapter.  Choosing values for the population N and joy-of-ownership b that will fix 

steady state average market price and θ each at 1, I solve for the steady state threshold 
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value, 𝜁,̅ by assuming that it is normally distributed with a standard deviation of 10 

percent of the average sales price, and mean 0.   

Given 𝜃 = 1, 𝑚 is calibrated to yield a search duration for the representative 

household in the model that matches the median observed length of search for home 

buyers in the U.S. according to the National Association of Realtors of 8 weeks.  

I choose γ, the elasticity of the matching function with respect to searchers, to be 

0.5.  This implies that searchers and vacancies are equally substitutable in the matching 

function.  Hence, an increase in the number of searchers or vacancies of the same 

magnitude will affect the total number of matches made to an equal extent. 

In a centralized market, the substitution of vacancies for searchers depends only 

on the parameters of the matching function, mainly 𝛾. Hosios (1990) shows that for a 

decentralized framework, both the Nash bargaining weight of searchers and their weight 

in the matching function will dictate the flexibility of the market to substitute between 

searchers and vacancies in equilibrium.  He establishes that to achieve the social 

planner’s solution in a decentralized market, a necessary and sufficient condition is that 

the searchers’ Nash bargaining weight should equal the Cobb Douglas searcher elasticity 

of the matching function (Hosios, 1990).  I therefore choose ϕ to equal 𝛾 = 0.5.  The 

results of the model are invariant to changing ϕ and γ.  

  The frequency of separation for owner-occupiers from their existing housing unit 

is set to match the 6-year median length of stay in one house in the U.S. reported by the 

National Association of Realtors.   

The depreciation rate is fixed to 1.14% per year, which implies a service life of 80 

years for the average house, as reported by the Bureau of Economic Analysis (February 

2008).  

The subjective discount rate is fixed to the time-average of the real federal funds 

rate since agents are risk-neutral in the model.  In the calibration of the model with 

heterogeneous matches, the joy of ownership parameter is tied to the equilibrium value 

chosen for the average price.  Moreover, the sum of the rental rate and b is inversely 

related to the marginal fit value, so I choose an equilibrium annual rental rate at the lower 

range of observed real rents of 3 percent of average price so as to ensure a non-zero 

benefit of ownership.   
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Finally, a neutral steady state value 𝛼 = 1 is fixed for the shifter in the firm’s 

marginal cost.  The firm’s elasticity of supply for new units is fixed based on my own 

estimates in the basic search and matching model (see Chapters 1 and 2).    

 

 

IV. Steady State Equilibrium & Comparative Statics 

The steady state counterparts for equations [1] through [11] can be written in terms of 

three key variables in the model (𝑃�,𝜃, 𝜁)̅ and exogenous parameters.  There are 10 

endogenous variables and 10 exogenous parameters and variables including the rental 

rate.  Hence, to solve for the steady state I have sufficient degrees of freedom to choose 

𝑃� = 𝜃 = 1 and solve for the corresponding marginal fit value, given parameter values 

listed in Table 4.1.   

I normalize the steady state value of the home buyer’s tax credit to zero, 

essentially treating it as an exogenous policy shock variable that is zero in expectation.   

 

Graphical Analysis of Steady State 

To analyze the steady state of the model it is helpful to present the three key equations 

expressing steady state values of the market average price, relative supply and marginal 

fit value in terms of exogenous variables and parameters in equations [12], [13] and [14], 

respectively.  The steady state equilibrium is completely characterized by these three 

equations in three unknowns.2

First, I can write the steady state counterpart of equation for the market average 

price in equation [11] by substituting in the steady state payoff values of selling, search 

and owner-occupation and steady state expected fit value. The steady state equilibrium 

market average bargained price can be expressed as a function of 𝜃 and 𝜁 ̅as in equation 

[12].

   

3

                                                           
2 For all steady state values that I will discuss I substitute out 𝜇(𝜃) and 𝑞(𝜃) in terms of 𝑚�  ,𝛾 and 𝜃 to 
keep the number of variables under discussion to a minimum. 

    

3 Note that I use the following substitution to simplify the algebra and presentation in the text for the 
remainder of this chapter: 𝜓 = 𝜆 + 𝛿(1 − 𝜆).  Hence, 𝜓 is just the composite probability of separation and 
depreciation in one period. 
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𝑃�(𝜃, 𝜁)̅

=
(1 − 𝜙) �𝑟 + 𝛿 + 𝑚�𝜃−𝛾�1− 𝐺(𝜁)̅�(1− 𝛿)� �(1 + 𝑟)(𝑅 + 𝑏) + (𝑟 + 𝜓)

(1 − 𝐺(𝜁)̅)∫ 𝑠𝑔(𝑠)𝑑𝑠∞
𝜁� �

(𝑟 + 𝛿) �𝑟 + 𝜓 + 𝜙𝑚�𝜃1−𝛾�1− 𝐺(𝜁)̅�(1− 𝜓) + (1 −𝜙)𝑚�𝜃−𝛾�1− 𝐺(𝜁)̅�(1 −𝜓)�
 

[12] 

The average bargained price as a function of relative supply is a downward sloping 

schedule, 𝜕𝑃�(𝜃, 𝜁)̅/𝜕𝜃 < 0.  This curve specifies the average equilibrium price a housing 

unit will fetch for each equilibrium ratio of vacancies to searchers.  As expected, the 

average bargained price schedule illustrates that the higher the number of vacancies per 

searcher, the greater the supply relative to demand and the lower the equilibrium price 

paid on average for a vacancy. It is illustrated in (𝑃�,𝜃) space as the solid downward 

sloping line in Figure 4.1.   

Second, the steady state counterpart of equation [2] is the steady state equilibrium 

flow supply curve for new housing units, written as the market average price as a 

function of 𝜃 and 𝜁,̅ in equation [13].  This is derived by substituting in the steady state 

level of housing stock and investment 

𝑃�(𝜃, 𝜁)̅ =
𝛼𝛿𝜉𝑁𝜉

𝑚�𝜃−𝛾�1 − 𝐺(𝜁)̅�
�𝑟 + 𝛿 +𝑚�𝜃−𝛾�1− 𝐺(𝜁)̅�(1

− 𝛿)� �
𝜃𝜓 + 𝑚�𝜃1−𝛾�1 − 𝐺(𝜁)̅�(1 − 𝜓)
𝜓 + 𝑚�𝜃1−𝛾�1− 𝐺(𝜁)̅�(1− 𝜓)

�
𝜉

 

[13] 

The steady state supply curve expresses the relationship between equilibrium average 

price and supply of vacancies per searcher. The slope 𝜕𝑃�(𝜃, 𝜁)̅/𝜕𝜃 is positive in (𝑃�,𝜃) 

space, verifying that vacancies per searcher follow the law of supply.  This curve is also 

represented as the dashed upward sloping line in Figure 4.1.  

Finally, I write the steady state marginal fit value as a function of 𝑃�, 𝜃 and 

exogenous parameters by substituting out the steady state continuation values of selling, 

searching and owner-occupation in equation [9] which defines the marginal fit value.  

This yields equation [14], the steady state marginal fit value. 
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𝜁(̅𝜃,𝑃�) =
1

�𝑟 + 𝜓 + 𝑚�𝜃1−𝛾(1− 𝜓)�1 − 𝐺(𝜁)�� �𝑟 + 𝛿 + 𝑚�𝜃−𝛾(1− 𝛿)�1 − 𝐺(𝜁)��
∙ 

�(𝑟 + 𝛿)(1 − 𝜓)�1 − 𝐺(𝜁)̅�(𝑚�𝜃−𝛾 − 𝑚�𝜃1−𝛾)𝑃�

− (1 + 𝑟) �𝑟 + 𝛿 + 𝑚�𝜃−𝛾(1− 𝛿)�1 − 𝐺(𝜁)̅�� (𝑅 + 𝑏)

+ (1 − 𝜓) �𝑟 + 𝛿 + 𝑚�𝜃−𝛾(1− 𝛿)�1 − 𝐺(𝜁)̅��𝑚�𝜃1−𝛾 � 𝑠𝑔(𝑠)𝑑𝑠
∞

𝜁�
�  

                 [14] 
Figure 4.1 shows the steady state equilibrium in (𝑃�, 𝜃) space for the benchmark 

calibration of the model, as laid out in Table 4.1.  In Figure 4.1, market average price is 

varied independently in exchange for endogenizing the joy-of-ownership parameter 𝑏; 

relative supply is varied along the x-axis in exchange for endogenizing the size of the 

total population 𝑁.  Given calibrated values of the match efficiency, depreciation and 

separation, the risk-free interest rate and the equilibrium rental rate as in Table 4.1, the 

corresponding equilibrium value of the cutoff fit is 5.29 percent of the market average 

price. Hence, in Figure 4.1 both the average bargained price schedule and the flow supply 

curve are drawn holding the value of the cutoff fit constant 𝜁̅ = 0.0529, given an 

exogenously determined matching efficiency rate, 𝑚� .   

In this paper, searcher-buyer heterogeneity augments the basic matching friction 

whereby not all matched vacancy-searcher pairs proceed to a successful sale transaction.  

Hence, demand heterogeneity introduces a market cutoff for the match fit quality and 

associated price, below which vacancies are not traded in equilibrium. An analysis of the 

steady state equilibrium therefore must include an analysis of the static relationship 

between market average price and cutoff fit value, and between relative supply and cutoff 

fit value.   

Since there are three endogenous variables, one way to do this might be to present 

a three-dimensional graph with 𝜁 ̅ represented along the z-axis.  An alternative way to 

show the same impact is to present the steady state equilibrium in (𝑃�, 𝜃) space, for 

different equilibrium values of 𝜁.̅  In other words, I will demonstrate how the average 

bargained price schedule and the supply curve are affected by different values of the 

marginal fit value in equilibrium. 
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In order to vary the cutoff value thus, I vary the matching efficiency parameter to 

satisfy the steady state equation for 𝜁 ̅ in equation [14].  The underlying distribution and 

variance of the fit variable is unchanged and lies at its benchmark value as in Figure 4.1, 

𝜎𝜁2 = 0.01.   In Figure 4.2A, I show the impact of a higher cutoff value on the two curves 

and in Figure 4.2B, the impact of a lower cutoff value.  Notice that when 𝑚�  is thus 

endogenized, it affects the slopes of both the average bargained price and the flow supply 

curves, noticeably reducing the slope of the latter in Figure 4.2 compared to Figure 4.1.  

In varying 𝜁,̅ I am interested in answering two questions.  First, does the 

equilibrium relationship between the market cutoff fit and the market average price 

reflect the relationship between price and fit at the individual level?  In other words, one 

expects that the higher the cutoff fit value, the higher is the cutoff price and hence the 

higher the resulting market average price.  Second, is there an analogous static 

relationship between searcher heterogeneity and relative supply, 𝜃?  

Figure 4.2 answers both of these questions.  In each of the two panels, the 

benchmark equilibrium value of 𝜁̅ = 0.0529 is associated with the dashed curves. The 

solid curves in Figure 4.2A represent the average bargained price schedule and supply 

curve corresponding to a higher equilibrium value of 𝜁̅ = 0.0729.  Similarly, the solid 

lines in Figure 4.2B represent the average bargained price schedule and supply curve 

corresponding to a lower equilibrium value of 𝜁̅ = 0.0329.  

Figure 4.2A illustrates that for a higher equilibrium marginal fit value, the market 

average price curve shifts to the right and the equilibrium price at the intersection of the 

‘demand’ and supply curves is higher than before. Figure 4.2B shows that for a lower 

equilibrium marginal fit value the market average price curve shifts to the left and the 

equilibrium price at the intersection of the ‘demand’ and supply curves is lower than 

before.  Thus, the relationship between market price and marginal fit value is positive, as 

expected. 

Figure 4.2A shows that a higher marginal fit value causes the supply curve to shift 

inwards.  Hence, for a higher marginal fit value, new construction of housing is offered at 

a higher price because a higher cutoff fit implies fewer successful sales each period.  

Figure 4.2B shows the opposite is also true. While this does demonstrate that the supply 

schedule shifts to the left, it does not imply that the equilibrium level of 𝜃 will deviate 



99 
 

from 1.  The market average price curve and the supply curve still intersect at 𝜃 = 1 in 

both Figures 2A and 2B.  Indeed, the endogenous change in matching efficiency for 

alternative values of 𝜁 ̅ ensures that relative supply remains largely unchanged in 

equilibrium and it is equilibrium price rather than relative supply (and hence vacancy 

rates) that adjust in response to different values of the cutoff.   

One might infer that for a higher marginal fit value, equilibrium duration will be 

higher.  That would be true assuming a constant matching efficiency parameter. Choosing 

alternate values of 𝜁  ̅in the comparative statics of Figure 4.2 requires the use of one 

degree of freedom. I choose to vary matching efficiency endogenously in place of 𝜁.̅  

Figure 4.3 illustrates the changes in 𝑚�  and hence vacancy duration that accompany the 

shifts of the market price and supply schedules (shown in Figure 4.2) for alternative 

values of 𝜁.̅  

The underpinnings of Figure 4.3 are identical to those of Figure 4.2: in order to 

vary the cutoff value thus, I vary the matching efficiency parameter to satisfy the steady 

state equation for 𝜁 ̅in equation [14].  The underlying distribution and variance of the fit 

variable is unchanged and lies at its benchmark value as in Figure 4.1, 𝜎𝜁2 = 0.01. The 

top panel of Figure 4.3 plots the equilibrium value of 𝑚�  for the corresponding value of 𝜃, 

given 𝜁̅ = 0.039 (dotted curve) or 𝜁̅ = 0.0529 (benchmark case, solid line) or 𝜁̅ =

0.0729 (dashed line).   

The bottom panel of Figure 4.3 plots vacancy duration, given in weeks by  

𝑉𝑎𝑐𝑎𝑛𝑐𝑦 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
1

𝑚�𝜃−𝛾�1 − 𝐺(𝜁)̅�
 

for each of the three values assumed for 𝜁.̅  Again, the line markers correspond to the 

three cases: 𝜁̅ = 0.039 (dotted curve) or 𝜁̅ = 0.0529 (benchmark case, solid line) or 

𝜁̅ = 0.0729 (dashed line).  

 Since the steady state equilibrium is where 𝜃 = 1, consider the values for 𝑚�  and 

vacancy duration at this point, for the different values of 𝜁.̅  Figure 4.3 illustrates that for 

a higher cutoff fit value, the equilibrium matching efficiency rate is also higher.  Hence, 

as searchers become more selective in terms of fit value in a match, the market 

compensates for it by increasing the rate at which it pairs searchers with vacancies.   



100 
 

The bottom panel of Figure 4.3 shows that there is a static tradeoff between time 

to sale and the marginal fit value in equilibrium. For an unchanged spread of possible fit 

values, a higher cutoff fit value is more than compensated for by the matching efficiency 

rate, so that the corresponding time to sale is actually lower. Moreover, notice that the 

three curves plotting vacancy duration against relative supply in the bottom panel of 

Figure 4.3 are not parallel.  The margin for change of vacancy duration rises as the 

equilibrium number of vacant units per searcher increase.  Market efficiency increases by 

more the higher the equilibrium vacant units per searcher, and vacancy duration falls by 

more, as the equilibrium cutoff fit increases.   

Figure 4.3 illustrates two things.  First, all else equal, as searchers become less 

choosy (there is a low marginal fit value) the market rations vacancies more actively by 

having a low matching efficiency in equilibrium.  When searchers themselves are 

extremely picky, the market performs its matching function more efficiently to such an 

extent that the average vacant unit has a shorter time to sale in equilibrium.  Second, 

however, the figure underlines that this static tradeoff between time to sale, the market 

cutoff fit and matching efficiency is under the assumption of relatively low demand 

heterogeneity.  The remaining question is whether this equilibrium tradeoff will persist at 

higher degrees of heterogeneity among searchers? 

 

Mean-Preserving Spread, Equilibrium Marginal Fit Value and Equilibrium Time to Sale 

To understand the effect of distributional assumptions, it is also important to see how a 

mean-preserving increase in the spread of the fit variable will impact the equilibrium 

cutoff fit value and hence the fraction of matches converting into sales.  Figure 4.4 shows 

three related aspects of changing the variance of fit in three subplots.  Each subplot is 

drawn for the static equilibrium where all parameter values are as laid out in Table 4.1 

and 𝑃� = 𝜃 = 1.  All that changes in each subplot is the exogenously determined variance 

of 𝜁, which is reported along the x-axis in each panel, in units of standard deviation.   

The line plotted in the top panel of Figure 4.4 shows combinations of standard 

deviation of 𝜁 and equilibrium 𝜁 ̅.  To make this plot, I calculate the equilibrium value of 

𝜁 ̅from equation [14] as the variance of 𝜁 changes, given all other exogenous variable and 
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parameter values per Table 4.1 and 𝑃� = 𝜃 = 1.  The top panel clearly illustrates that as 

the spread of the fit variable increases, the market cutoff fit value also rises.   

In the middle panel of Figure 4.4, I plot the cumulative probability of the 

equilibrium cutoff fit, 𝐺(𝜁)̅, against the standard deviation of 𝜁. Again, the parameter 

values are unchanged from Table 4.1 and 𝑃� = 𝜃 = 1. This plot shows clearly that as the 

spread of 𝜁 , there is greater probability mass under the cutoff fit value. All else equal, 

particularly the degree of matching efficiency in the market, this would suggest that 

higher heterogeneity in the market lowers the hazard rate for vacancies and searchers and 

raise time to sale in equilibrium.  

In the bottom panel in Figure 4.4, I plot the conditional expected fit value for 

matches that proceed to sale in equilibrium, (∫ 𝑠𝑔(𝑠)𝑑𝑠∞
𝜁� )/(1− 𝐺(𝜁)̅), against the 

standard deviation of 𝜁.    This plot illustrates that the greater the variation in fit values 

and the higher the equilibrium cutoff fit value, the higher the expected quality of fit will 

be for each match that proceeds to sale.   

In summary, Figure 4.4 shows that the greater is searcher heterogeneity, as 

captured by a higher spread in distribution of 𝜁, the higher is the cutoff fit value required 

for a successful match, the lower is equilibrium likelihood of sales.  Moreover, given 

constant matching efficiency, greater searcher heterogeneity causes longer duration of 

vacancy in equilibrium.  

 

Robustness Check: Varying Matching Efficiency as Spread Increases 

Figure 4.3 illustrated that matching efficiency could offset rationing in the market 

stemming from heterogeneity. I conclude there that market efficiency can offset increases 

in the marginal fit value to maintain or reduce vacancy duration.  In this sub-section, I 

recalibrate the model for each alternative value of 𝜁,̅ by matching moment of the model to 

the data.  I therefore allow 𝜁 ̅and 𝑚�  to vary as long as duration equals observed duration.   

In the homogeneous search and matching model of housing developed in Chapter 

2 of this dissertation, steady state search and vacancy duration are given by �𝜇(𝜃)�
−1

=

1/(𝑚�𝜃1−𝛾) and �𝑞(𝜃)�
−1

= 1/(𝑚�𝜃−𝛾) . Also, 𝜃=1, which implies there is only one 

vacancy per searcher in existence in the market.   
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In the heterogeneous matching model, by contrast, steady state duration of search 

is given by �𝜇(𝜃)�1 − 𝐺(𝜁)̅��
−1

= 1/�𝑚��1 − 𝐺(𝜁)̅�� , given 𝜃 = 1.  Analogously, 

steady state vacancy duration under heterogeneous matching is given by �𝜇(𝜃)�1 −

𝐺(𝜁)̅��
−1

= 1/�𝑚��1 − 𝐺(𝜁)̅�� .   Thus the only difference between the steady states of 

the two types of matching models is the absence of the cutoff fit value in the former.  The 

steady state solution of each model is 𝑃� = 𝜃 = 1, given 𝑚� = 0.8238 at a quarterly 

frequency.  Both versions of the matching model are calibrated on the empirical 

observation that it takes the average U.S. family 8 weeks to purchase a housing unit (see 

Table 4.1).  In the heterogeneous matching model this implies an equilibrium value of 

𝜁̅ = 0.0529.   

I use two steady state equations that jointly express the steady state relationship 

between time to sale, matching efficiency and the marginal fit value.  Because I am 

analyzing the steady state and only changing the exogenous time to sale, I maintain 

steady state 𝑃� = 𝜃 = 1 and remaining parameter values per Table 4.1. The first 

equilibrium equation I employ is the equilibrium vacancy duration as a function of 𝑚�  and 

𝜁.̅   

𝑆𝑡𝑒𝑎𝑑𝑦 𝑆𝑡𝑎𝑡𝑒 𝑉𝑎𝑐𝑎𝑛𝑐𝑦 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  
1

𝑚�(1 − 𝐺(𝜁)̅)
 

Second, I use the steady state equation for the marginal fit value in equation [13] with the 

substitution of  𝑃� = 𝜃 = 1.  

�𝑟 + 𝜓 + 𝑚��1 − 𝐺(𝜁)̅�(1 − 𝜓)�𝜁 ̅+ (1 + 𝑟)(𝑅 + 𝑏) − (1 − 𝜓)𝑚� � 𝑠𝑔(𝑠)𝑑𝑠
∞

𝜁�
= 0  

As before, 𝜓 = 𝜆 + 𝛿(1 − 𝜆) and 𝑠 is the dummy of integration. I now need only to 

make an assumption about the variance of 𝜁 and solve these two equations 

simultaneously for any exogenously given vacancy duration.   

Figure 4.5 plots these solutions for three possible values of 𝑣𝑎𝑟(𝜁).  The solid 

blue line is the benchmark case, where 𝑠.𝑑. (𝜁) = 0.1, that is, 10 percent of the market 

average price.  The green lines with circle markers in each subplot correspond to 

𝑠.𝑑. (𝜁) = 0.17.  Finally, the black dotted lines correspond to 𝑠.𝑑. (𝜁) = 0.22.  
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The first observation about Figure 4.5 is that as spread increases, both loci of 

equilibrium values of 𝑚�  and  𝜁 ̅ shift outward.  For higher demand heterogeneity, the 

marginal fit value and the matching efficiency of the market are higher at every duration.  

We are interested in determining how a higher spread for the fit variable will impact 

equilibrium vacancy duration when matching efficiency is allowed to adjust 

endogenously to market conditions.  

The benchmark calibration of the model uses the empirical observation that the 

average U.S. household searches for 8 weeks before purchasing a housing unit.  When 

𝜃 = 1, as it is in the steady state of the model, search and vacancy duration are identical.  

The top panel of Figure 4.5 shows that equilibrium vacancy duration of 8 weeks 

corresponds to a negative marginal fit value if 𝑠.𝑑. (𝜁) = 0.1.   

A negative marginal fit value, while theoretically possible, does not seem entirely 

reasonable.  It implies that a searcher will purchase a housing unit even when it yields 

disutility for him, simply because the market offers them the opportunity to do so at a low 

price.  Imposing the requirement that the market cutoff fit should at least be non-negative 

implies that the equilibrium duration of vacancy will actually be shorter at 6.5 weeks, 

when at least 33 percent of the market values a vacancy differently from the sales price 

by 10 percent (i.e. 𝑠.𝑑. (𝜁) = 0.1).  In other words, the market compensates for 

differences in valuation of searchers by raising the matching efficiency and lowering time 

to sale in equilibrium.   

As the spread of the fit variable increases, however, equilibrium 𝜁 ̅and 𝑚�  are both 

higher for any length of vacancy duration.  Consider the second alternative, where the 

spread of the fit variable increases to 𝑠.𝑑. (𝜁) = 0.17.  If the market cutoff fit value is 

zero, equilibrium vacancy duration is 11 weeks.  For a higher market cutoff, matching 

efficiency is higher and vacancy duration is lower in equilibrium.  

There is also a limit to which the matching efficiency parameter can rise.  A 

matching efficiency of 1 eliminates the role of the search and matching friction in the 

model, by ensuring that all searchers and vacancies will meet in the market. Hence, the 

lowest possible equilibrium vacancy duration must coincide with 𝑚� = 1, given the 

negative relationship between 𝜁 ̅ and duration.  Figure 4.5 shows that for any assumed 
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spread of the fit variable and no matching inefficiency, the lowest possible time to sale in 

the model is roughly 4 weeks.  

To summarize the findings of this robustness check, the greater the degree of 

heterogeneity in the market, the more of a role idiosyncratic difference in valuation will 

play in determining the equilibrium time to sale.  Taking demand heterogeneity and 

market matching frictions into account, time to sale will depend inversely on how 

selective searchers are.  If searchers are more selective, the cutoff fit value is high.  To 

compensate for this, the market has high matching efficiency thereby yielding a shorter 

duration of vacancy in equilibrium.  If the matching friction is removed altogether, 

searcher heterogeneity accounts for at least half of the empirically observed length of 

search by U.S. households, i.e. duration of just over 4 weeks in equilibrium.  

 

 
V. Dynamic Behavior of the Model: Rental Shocks and Summary Statistics 

I now turn to dynamic analysis of the model, using the Anderson Moore algorithm to 

solve for the reduced form of the model. I use this reduced form to provide summary 

statistics of the model in response to shocks to the rental rate, which is an exogenous 

variable of the model.  This allows us to gain a sense of whether the model behaves 

reasonably in response to unforeseen macroeconomic shocks, and can credibly provide 

quantitative analysis of the home buyers’ tax credit policy shock.  

Table 4.2 displays summary statistics of the heterogeneous matching model.  The 

statistics reported here are population averages over 1000 Monte Carlo simulations of the 

model.  To do the simulations, I start by drawing 200 random, normally distributed 

shocks to the rental rate.  The rental rate is assumed to follow an AR(1) process with 

persistence of 0.97 and a standard deviation of 4 percent (of sales price) at annual 

frequency, based on the seasonally adjusted BLS index of owner-occupied rents across 

all U.S. cities from 1990-2010.   

For every Monte Carlo iteration, the model starts from steady state equilibrium 

and then is hit with a new shock to rent each quarter, for 15 years.  In other words, each 

iteration is a realization of one “lifetime” of the housing market, which is 15 years long.  

As exogenous rental rates change by random amounts each quarter in a lifetime, 
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endogenous market variables are impacted.  I record the resulting values of the variables 

of the model in terms of deviations away from steady state, which I refer to as “simulated 

data”.  From these data, I obtain the mean deviation from steady state (here-onward 

referred to as the “mean gap”), standard deviation and autocorrelations for variables of 

interest. I repeat this process for a total of 1000 Monte Carlo iterations, in effect 

imagining 1000 different lifetimes for the housing market, and record the mean gap, 

standard deviation and correlations in each lifetime. For the results presented in Table 

4.2, I finally average over the 1000 lifetimes to get a population mean gap, standard 

deviations and correlations.  

Table 4.2 reports these summary statistics for the fundamental variables of the 

model, namely market average price, relative supply (i.e. vacancies per searcher) and the 

market cutoff fit value. There are three specifications of the housing search and matching 

model presented here, by column.  Each column show results for the heterogeneous 

matches model developed in this paper, with a different assumption for 𝑠.𝑑. (𝜁).  In rows, 

the table reports mean deviation from steady state, average standard deviation and 

average first order autocorrelation from the Monte Carlo simulations.  

First, the table verifies the stationarity of the model: each of the reported variables 

has a mean zero deviation from steady state, for all model specifications.  This verifies 

that the calibrated model is functioning correctly and returns to the steady state after it 

has completely adjusted to a macroeconomic shock. 

Next, Table 4.2 reports standard deviations for each variable of interest. 

Comparing the three specifications of the heterogeneous model, it is clear that as the 

spread of the underlying distribution of fit values 𝐺(𝜁) increases, the variability of 

average price decreases.  When the marginal fit value in a high variance distribution 

changes in response to a rental shock, there will be less of a change in the proportion of 

matches converted into sales because there will be a smaller change in the weight under 

the cutoff value compared to a low-variance distribution. Hence there is a lower 

variability of average price when the spread of 𝐺(𝜁) is higher.  

Finally, Table 4.2 presents population estimates of the persistence of average 

price, relative supply and the marginal fit value.  We would expect that all three variables 

are highly persistent: price is known to follow a random walk; the persistence of 
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vacancies due to search and matching frictions as well as market heterogeneity is also to 

be expected. Since the marginal fit value is essentially reflective of the sales price and 

market saturation, it will also be persistent, if both average price and relative supply are 

highly autocorrelated.  This is borne out in the quantitative estimates.   

 

Dynamic Response to Rental Rate Shocks 

In order to provide a clearer picture of how an exogenous shock is propagated through 

the model, Figure 4.6 displays plots of the impulse responses of key variables from an 

unexpected 10 percent decline in the rental rate.  The market is in steady state equilibrium 

prior to the shock and the graphs start at the impact responses to the shock, leading on to 

subsequent periods in time.   

The negative and persistent rental shock lowers the value of ownership 

immediately, by almost 0.5 percent below the steady state value.  In comparison, the 

values of searching and having a vacancy to sell decrease by far less, between 0.1 and 0.2 

percent, respectively, because the impact of lower rental payments is enters into these 

payoffs with small probabilities.  By lowering the payoff to owner-occupation, the rental 

rate shock decreases the surplus of all matches, for any realized fit.  While this would 

have caused a decline of about 0.8 percent away from steady state in the homogeneous 

matches model, it causes the price to move by roughly half that in the heterogeneous 

matches model. The price subplot in Figure 4.6 also shows the adjustment in discounted 

stream of rental payments from a housing unit (red line with asterisk markers).  This is 

the reaction of the neoclassical price to the shock, which is unequivocally larger than the 

matching bargained price response. Furthermore, the negative rental shock causes a jump 

up in the marginal fit value and an increase in time to sale.   

The combined responses of price, marginal fit value and vacancy duration in 

Figure 4.6 tell a significant story. The muted response of the matching price compared to 

its neoclassical and homogeneous matching counterparts, is due to a compositional effect 

as follows.  With lower rental rates earned from any housing unit, the price offered by a 

searcher of any fit will be lower.  Were all searcher-buyers identical, sellers would have 

to accept a lower price for vacancies in order to sell (namely, the homogenous matching 

model price). With heterogeneous matches, however, sellers are not obliged to sell to a 
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searcher with the same fit value as they did prior to the shock. Instead, as rental rates fall, 

sellers adjust the marginal fit value upwards and sustain a longer time to sale of vacant 

units rather than adjusting to the shock through lower prices.  Thus, the whole market 

becomes more selective, which is reflected in a smaller decline in the average price than 

would be observed with homogeneous demand.  

 Indeed, while the marginal fit value and hence the duration of vacancies show a 

smooth path of adjustment back down towards steady state after the impact response, the 

stock of searchers and vacancies rises for several quarters, reflecting the results of fewer 

sales each period  after the shock and a decrease in new investment from its steady state 

level.  As the average price rises back while investment is still below steady state, 

vacancies and searchers slowly recover towards the steady state too.  

 This analysis offers a simple explanation of why prices are observed to fall slowly 

while vacancies high and rising after an adverse demand shock.  Failure to lower prices 

and reach equilibrium quickly is a reflection of the fact that sellers adjust in other 

respects rather than price alone: in a downturn, they will withstand a longer time to sale, 

if it implies that they can sell to a searcher-buyer with a higher fit value.   

 Table 4.3 presents population level correlations between average price, relative 

supply and marginal fit value based on the Monte Carlo simulations described above.  

These correlations represent the dynamic correlations between these variables as they 

adjust to rental shocks, much as in Figure 4.6, replicated 1000 times and then averaged.  

As Figure 4.6 illustrates, there is a negative correlation between average price and 

relative supply.  Similarly, as we expect, the correlation between average price and 

marginal fit value in Table 4.3 is negative, while there is a positive correlation between 

marginal fit value and relative supply.   

 

 

VI. A Policy Experiment: Simulated Impact of the Home Buyer Tax Credit 

Shock 

The heterogeneous matching model of the housing market introduces the important 

element of fit in a search and matching context, which cannot be affected by the supply 

side of the market.  Because fit is idiosyncratic and random, construction firms cannot ex 
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ante target a particular consumer base by customizing housing units to individual tastes 

and pursuing price discrimination.  This means that once the market has performed the 

matching function, only those matches with non-negative total surplus actually proceed to 

sale. It is natural, then, to analyze government interventions in the market that change 

searcher-buyer payoffs and raise total match surplus, to see if they are effective in raising 

sales and possibly lowering time to sale. One such intervention is the Home Buyers’ Tax 

Credit offered by the U.S. federal government to assist the housing market in the 

aftermath of the subprime mortgage and financial crises. 

The so called “first time” home buyer tax credits were extended from April 9, 

2008 through the end of May 1 2010, being in effect for just over two years in total. They 

were extended to qualifying first-time home buyers for a credit worth 10 percent of the 

housing unit’s purchase price, capped at $7500 in 2008 and $8000 in 2009 and 2010.  

The credit was also extended to qualifying non-first-time home buyers, who could 

receive a maximum tax credit of $6500. Additionally, the credit was available only to 

buyers whose gross income is less than $95,000.  The limit was revised in November 

2009 to $145,000.  Finally, the maximum purchase price of a housing unit allowable 

under the tax credit scheme was $800,000.  Ignoring the finer details of the tax code, the 

terms of the scheme require that owners retain their housing units for 3 years after the 

purchase date, or repay the credit if they sell before then.  

According to the IRS, in 2010 the program cost an estimated $16 billion to the 

U.S. Treasury Department, with more than 2.2 million people filing for the credit.  The 

number of claimants in 2009 was far smaller at 479,622, which amounted to a total of 

$3.6 billion in payments by the IRS. 

Figure 4.7 shows the impact of a tax credit shock equal to 10 percent of the steady 

state purchase price of a housing unit. I choose a 10 percent shock rather than 4 percent 

since the model scales up the effects linearly.  In reality the credit shock equaled 

approximately 4 percent of the median U.S. house price.  The dynamic response of the 

model discussed here is therefore suggestive of the directions of change in the U.S. 

housing market following the shock, and not the actual magnitude of the impact of the tax 

credit shock.   
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The model starts in steady state equilibrium where the tax credit is 0.  The figure 

plots the model’s response to an unexpected increase in the tax credit in percentage 

deviations from steady state for each variable, starting from the quarter in which the 

credit is first introduced.   

When the credit shock occurs it exogenously raises the total surplus of any match, 

thereby allowing searcher with fit values below the pre-shock marginal fit value to pay a 

price acceptable to sellers.  Hence, the marginal fit value in the market jumps down by 

about 8 percent compared to steady state, and the remainder of the credit shock being 

reflected in a 3.8 percent increase in average price.   

The higher expected sales price over the life of the credit raises the expected value 

of a vacancy by 2.8 percent above steady state.  Since the connection between new 

investment and expected sales value is mechanical in this model, with no credit 

constraints or other supply side restrictions, investment automatically jumps up in 

response to higher expected sales value.   

Overall, the increase in match surplus and decrease in the market cutoff fit results 

in more sales being made, which lowers both the number of vacancies and searchers 

below steady state. These move in tandem sufficiently to keep the change in relative 

supply minimal at 0.5 percent above steady state.   

Even though the tax credit is discontinued abruptly at the end of 2 years, the 

market’s response to the shock is smoothed, given the assumptions of perfect foresight 

and perfect information in this model.  Since sellers know the length of time for which 

the credit is in place, they only allow the average price of a vacancy to fall gradually over 

time.  Thus progressively lower fit values, hence lower match surplus, is accepted only as 

the time for the credit to end draws near.  Thus, in Figure 4.7 marginal fit value is 

gradually declining over the life of the tax credit shock, allowing more sales to occur for 

lower fits at lower prices as the credit shock draws to an end.   

Nearly all variables return abruptly back to steady state when the tax credit 

expires. This is reasonable for each variable. All payoffs and prices are forward looking. 

The forward-looking behavior of sellers in the market drives average price back towards 

its steady state gradually, reflecting a forward looking expectation that the surplus from 

each match will be lower when the credit is eliminated completely.  The payoffs to 
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owner-occupation, search and having a vacancy to sell all reflect this forward-looking 

pricing.  

As soon as contribution of the tax credit to total surplus is removed, the marginal 

fit value returns to its steady state level because each matched searcher-seller pair 

receives the true surplus from the match, unaugmented by the lump sum credit payment.  

As soon as the market cutoff returns to steady state, time to sale also returns to its steady 

state level, reflecting the change in probability of a successful sale due to the greater 

probability mass that lies below the steady state cutoff.   New investment is tied to price 

and once price returns to steady state, new investment does as well. 

Indeed, the only two variables that do not immediately reflect the discontinuation 

of the credit are vacancies and searchers.  Both of these are stock variables, which are 

very persistent and experience large declines while the credit is in effect.  With 

investment back at steady state level when the credit ends and the stock of vacancies far 

below equilibrium, it takes several quarters for vacant units to make up for the depletion 

of vacant units during the shock period.  Similarly, the stock of searchers is lower than 

equilibrium and begins to recover only slowly since new demand depends solely on 

separation and depreciation per quarter.  

 Hence, this model shows that a tax credit scheme can successfully raise sales and 

the average price in the market while it is in place. Moreover, it lowers the selectivity that 

searchers and sellers display, as summarized by a lower cutoff fit value in the market and 

a commensurately shorter time to sale. Since the market starts in steady state, the model 

also predicts an increase in new housing investment while the stimulus is in place. Once 

the tax stimulus is removed, vacancies per searcher, new investment and average price all 

return to their steady state equilibrium levels.  

 

 
VII. Conclusion 
In this final chapter I have presented a modification of the search and match model of 

housing that allows for variable quality of fit in matches, to reflect underlying 

heterogeneous preferences of searchers.   
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With idiosyncratic and random valuation by  buyers, construction firms cannot ex 

ante target a particular consumer base or customize housing units to individual tastes. 

Searcher-buyers in a match with too low a fit value remain in the search state because 

their offer price is too low to guarantee non-negative total surplus.  Hence, only those 

matches with a non-negative total surplus can proceed to sale, which identifies a marginal 

fit value below which matches by the market mechanism fail.   

Comparative static analysis shows that there is a positive static relationship 

between the equilibrium market average price and the marginal fit value.  However, 

equilibrium relative supply remains unchanged for alternative values of the cutoff fit.   

The relationship between time to sale and the marginal fit value is mediated by 

the matching efficiency of the market.  As the market becomes more selective and has a 

high equilibrium cutoff fit value, the market compensates by lowering the matching 

friction and hence lowering vacancy duration. In the absence of a matching friction, 

equilibrium time to sale predicted by the model is 4 weeks.  

Monte Carlo simulations of the model illustrate that as the spread of the fit 

variable increases, market average price becomes less variable.  This is the dynamic 

counterpart of the composition effect on price observed in response to demand shocks.  In 

the impulse responses from a negative shock to the rental rate, the observed price 

decreases by less than a homogeneous model would predict because sellers increase the 

cutoff fit value and sell to higher fit-value searchers than before in exchange for a longer 

time to sale.  

The model also allows one to discern the qualitative impact of the 2008-2010 

home-buyers tax credit on the housing market.  I find that because the credit distorts 

upwards the potential surplus of a match, it actually lowers the threshold quality of 

matches in the market and raises the number of sales.  As market participants become 

more willing to accept lower valued matches to take advantage of the credit, the duration 

of vacancy and search commensurately falls.  Hence, all else equal, the model predicts 

that the tax credit effectively greases the wheels of the housing market and raises sales in 

the market.  

 All of these results are presented in a scenario where demand and supply are 

essentially deterministic and agents are not financially constrained.  To make the model 
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amenable to further policy application, one can incorporate endogenous move decisions 

and financial constraints for buyers and sellers.  This would make future market 

conditions stochastic for sellers, which might provide quantitatively informative results. 

Introducing financial constraints on sellers would also temper the deterministic link 

between new construction and higher prices to bring issues of timing and financing to the 

fore.   

On the searcher-buyer side, introducing financial constraints will allow analysis 

of the rent-versus-buy decision.  Endogenizing the decision to move for searcher-buyers 

will provide greater policy insight into the housing market cycle.  It might also allow a 

more direct analysis of housing slumps which feature overbuilding and credit-constrained 

bargain-shoppers who bid low in distressed markets.   

Finally, the heterogeneous matching model also opens the door to a search model 

of housing that explicitly incorporates location, which commands a premium in the match 

surplus and is reflected in the distribution of prices.  This chapter presents, therefore, an 

important precursor to a more complex model of heterogeneous matches in housing that 

focuses on location-based differentiation in the housing market.   

The modified search and matching model presented in this paper is therefore an 

effective framework in which to think about macroeconomic shocks that impact the 

housing market business cycle. With the incorporation of the features mentioned above, 

we might begin to gain a better grasp of what drives housing market inventories, sales 

and construction.  
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Table 4.1 

Benchmark Calibration Values of the Matching Model with Heterogeneity 

Symbol Description Value 
𝑚�  Matching efficiency 0.125 per quarter 

𝛾 Searchers’ elasticity in match function 0.5 

𝛼 Supply shifter 1 

1/𝜉 Elasticity of flow supply 2 

𝜆 Separation rate 0.2  per annum 

𝛿 Depreciation rate 0.0114  per annum 

𝛿𝑟𝑒𝑛𝑡 Depreciation rate of rental unit 0.0228 per annum 

𝜙 

 

 

Nash bargaining weight of households 0.5 

𝑟 Real discount rate 0.02  per annum 

R Steady state exogenous real rental rate 0.03  per annum 

z Cost of converting vacancy to rental unit 10 percent of steady state 

sales price 
𝜎𝜁 Standard deviation of fit value 0.1 

 

Notes:  This table shows the baseline values chosen for parameters and exogenous variables in the 
quantitative solution of the matching model. 
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Table 4.2  

Summary Statistics from Monte Carlo Simulations 

Specification 

 
 

  Standard Deviation of Fit          0.1 0.173 0.224 
Equilibrium Marginal Fit Value         0.0529 0.148 0.221 

    Mean Deviation from Steady State Level 
   Market Average Price                             0.001 0.00 0.00 

    Relative Supply (Vacancies per Searcher)                  -0.026 0.000 0.007 

    Marginal Fit Value                      -0.002 0.000 0.001 

    Standard Deviation 
   Market Average Price  0.019 0.008 0.006 

    Relative Supply (Vacancies per Searcher)                       0.375 0.283 0.245 

    Marginal Fit Value                           0.029 0.022 0.019 

    First Order Autocorrelation 
   Market Average Price 0.946 0.956 0.960 

    Relative Supply (Vacancies per Searcher) 0.995 0.996 0.996 

    Marginal Fit Value  0.936 0.944 0.946 

     
Notes: This table shows summary statistics of the dynamic search and matching model with heterogeneity, 
using Monte Carlo simulations of the model with random shocks to the rental rate.  The first three columns 
of data (from left to right) represent alternative assumptions about the distribution of fit values in the 
searcher-buyer population.  The final column shows summary statistics for the search and matching model 
with homogeneous demand, using the same random rental shocks for Monte Carlo simulations.  
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Table 4.3   

Dynamic Cross-Correlations for Monte Carlo Simulations  

Specification 
   Standard Deviation of Fit  0.1 0.173 0.224 

Equilibrium Marginal Fit Value 0.0529 0.148 0.221 

    Correlation 
   Market Average Price/Relative Supply -0.776 -0.818 -0.836 

    Marginal Fit Value/Relative Supply 0.726 0.755 0.769 
    Market Average Price/Marginal Fit Value -0.996 -0.994 -0.992 

    
 
Notes: This table shows summary statistics of the dynamic search and matching model with heterogeneity, 
using Monte Carlo simulations of the model with random shocks to the rental rate.  The first three columns 
of data (from left to right) represent alternative assumptions about the distribution of fit values in the 
searcher-buyer population.  The final column shows summary statistics for the search and matching model 
with homogeneous demand, using the same random rental shocks for Monte Carlo simulations. 
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 Figure 4.1   
Steady State Equilibrium in the Search and Matching Model  

with Hetereogeneous Matches 

 
Notes: This figure plots the market average price schedule for different values of vacancies per searcher, 
given a steady state marginal fit value of 5 percent of the average price of a housing unit and        
𝑠.𝑑. (𝜁 ) = 0.1.  It also plots the flow supply curve and the reserve price curve, which is the minimum price 
a housing unit must obtain in order for the seller to stay in the market and not convert the unit permanently 
to a rental unit. This minimum price is defined as 𝑃�𝑅𝑒𝑠𝑒𝑟𝑣𝑒 = ℛ � 1+𝑟

(1−𝛿)(𝑟+𝛿𝑟𝑒𝑛𝑡)
� − 𝑧

1−𝛿
.  This price is 

derived in Chapter 2 and parameter values used to plot the price in this figure are provided in Table 4.1 of 
this paper. 

  

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
vg

 M
kt

 P
ric

e

Vacancies per Searcher (Theta)

 

 
Bargained Price
Reserve Price
Supply Curve



 

 

118 

Figure 4.2 – Equilibrium Relationship Between Average Price, Relative Supply and Fit Value 
Figure 4.2A                  Figure 4.2B 

 
Notes: This figure shows comparative static results where alternative values of  𝜁  ̅are assumed and matching efficiency is adjusted in response.  The figure plots 
the steady state equilibrium market average price schedule and flow supply curve for alternative equilibrium values of 𝜁 .̅ Fig.2A shows that a higher equilibrium 
𝜁  ̅shifts the market average price curve shifts right and the supply curve inwards. Fig. 2B shows a lower 𝜁  ̅shifts the market price curve left and supply curve to 
the right. Comparing the equilibrium points for alternative assumed cutoff values, there is a positive relationship between equilibrium 𝜁  ̅and 𝑃� but equilibrium 𝜃 
(at the intersection point) is unchanged given alternative values of 𝜁 .̅  
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Figure 4.3 – Equilibrium Relationship Between Match Efficiency, Vacancy Duration and Fit Value

 
Notes: This figure is the companion to Figure 4.2 and shows the endogenous changes in equilibrium matching efficiency and equilibrium vacancy duration when 
alternative values of  𝜁  ̅are assumed.  The top panel shows combinations of the matching efficiency parameter and relative supply for different given values of 
𝜁 ̅ = [0.0329; 0.0529; 0.0729].  The benchmark cutoff value is 0.0529, and the other two are labeled ‘high’ and ‘low’ correspondingly.  For a high cutoff value, 
matching efficiency is higher in equilibrium for every possible value of 𝜃. The opposite is also true.  The bottom panel similarly shows combinations of vacancy 
duration and 𝜃 that occur in equilibrium, for the three alternative values of  𝜁 .̅  Because matching efficiency has a positive static relationship with 𝜁 ,̅ vacancy 
duration has a negative static relationship with 𝜁 .̅ 
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Figure 4.4 – Steady State Equilibrium Marginal Fit Value For Mean-Preserving Changes in Spread 

 
Notes: This figure shows equilibrium 𝜁  ̅and its associated probability mass and conditional expectation of fit for different spreads assumed for the distribution of 
𝜁.    The top panel in this figure plots equilibrium 𝜁  ̅against different spreads of 𝜁 (in units of s.d.), given 𝑃� = 𝜃 = 1. The middle panel plots 𝐺(𝜁)̅ against sd(𝜁).  
The bottom panel plots ∫ 𝑠 𝑔(𝑠)𝑑𝑠∞

𝜁� /(1 − 𝐺(𝜁)̅), where 𝑠 is the dummy of integration.   The figure shows that as the spread of the fit variable increases in the 
model, the cutoff fit value is higher (top panel) and hence the average expected fit that proceeds to sale, conditional on meeting the cutoff fit, is also higher 
(bottom panel).   
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Figure 4.5 Robustness Check: Varying Equilibrium Match Efficiency and Marginal Fit Value Given Vacancy Duration 

 
 
Notes: This figure plots the steady state relationship of matching efficiency, marginal fit value & vacancy duration, given by 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =  1 𝑚��1 − 𝐺(𝜁)̅�⁄  and 
the steady state solution of  𝜁  ̅in equation [13] of the text. Vacancy duration is exogenously determined and the two specified equations and parameter values are 
used to determine equilibrium matching efficiency and the market cutoff. The three curves in each subplot refer to different variances of the random fit variable.  
The solid blue line is the benchmark case, where s.d.(𝜁)=0.1, i.e. 10% of average price.  The green lines with circle markers in each subplot correspond to 
s.d.(ζ)=0.17; the black dotted lines correspond to sd(ζ)=0.22. In the benchmark case, each curve plots the corresponding equilibrium values of marginal fit value 
and match efficiency on the y-axis, for a given length of vacancy duration, marked along the x-axis.  As the spread of the fit variable increases, each curve shifts 
outwards.  If 𝜁 ̅ ≥ 0 and 𝑚� ≤ 1, the duration of vacancy may be as low as 3.8 weeks or longer than a quarter, depending on the spread of 𝜁.  Time to sale depends 
inversely on searcher selectivity.  If searchers are more selective, 𝜁 �  is high.  To compensate for this, 𝑚�  is high and equilibrium duration is shorter.  If the 
matching friction is removed altogether, searcher heterogeneity accounts for at least half of the empirically observed length of search by U.S. households, i.e. a 
duration of just over 4 weeks in equilibrium.  
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Figure 4.6 – Impulse Responses of Key Variables to 10 Percent Shock to Rental Rate with Heterogeneous Matching 

  
Notes: This graph shows impulse responses of key model variables to a 10 percent decrease in the rental rate above steady state.  The model is calibrated 
according to Table 4.1with 𝑠.𝑑. (𝜁 ) = 0.1. The top leftmost window plots the neoclassical price (i.e. present discounted rental stream (red asterisked line)), as 
well as the bargained price of the matching model. The plot clearly illustrates that when sellers can choose over multiple equilibrating variables, the matching 
bargained price will not fall to the extent we would expect in a neoclassical setting; marginal fit value and vacancy duration both jump upwards.   
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Figure 4.7 – Home Buyers Tax Credit Shock in the Search and Matching Model with Heterogeneous Matching 

 
Notes: This graph shows impulse responses of key model variables to a 10 percent housing tax credit in place for 2 years. The model is calibrated 
according to Table 4.1with 𝑠.𝑑. (𝜁 ) = 0.1 
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Chapter 5 

Conclusion 

 

This dissertation contributes two original dynamic structural models of 

decentralized search and matching in the housing market that incorporate demand and 

supply of existing vacancies and new residential investment and relate them to observed 

price and time on market.  I have illustrated in Chapters 3 and 4 that these quantitative 

models are suitable for policy analysis, with ready empirical applications.  

The success of the models developed in this dissertation lies in capturing the 

quality of price movements and investment responses correctly.  It is also lies in the 

insight the search and matching framework provides about the basic of the dynamic 

relationship established between price, time to sale and vacancy rates, particularly under 

heterogeneity.   

The models developed herein take a partial equilibrium approach in a perfect 

foresight setting and with no constraints on new construction.  To develop the themes I 

have initiated in this dissertation further, I intend to model the locational choice of 

searcher-buyers, also perhaps incorporating income constraints.  Also, the models can be 

strengthened by modifying new investment to account for time to plan, adjustment costs 

and financing constraints.  By incorporating the relationship with employment and credit 

availability, the search and matching will be better suited to an analysis of the role of the 

housing sector in the business cycle.  
 


