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ABSTRACT

On Detection of Current and Next-Generation Botnets

by

Yuanyuan Zeng

Chair: Kang G. Shin

Botnets are one of the most serious security threats to the Internet and its end users.

A botnet consists of compromised computers that are remotely coordinated by a

botmaster under a Command and Control (C&C) infrastructure. Driven by finan-

cial incentives, botmasters leverage botnets to conduct various cybercrimes such as

spamming, phishing, identity theft and Distributed-Denial-of-Service (DDoS) attacks.

There are three main challenges facing botnet detection. First, code obfuscation is

widely employed by current botnets, so signature-based detection is insufficient. Sec-

ond, the C&C infrastructure of botnets has evolved rapidly. Any detection solution

targeting one botnet instance can hardly keep up with this change. Third, the prolif-

eration of powerful smartphones presents a new platform for future botnets. Defense

techniques designed for existing botnets may be outsmarted when botnets invade

smartphones.

Recognizing these challenges, this dissertation proposes behavior-based botnet

detection solutions at three different levels—the end host, the edge network and the

Internet infrastructure—from a small scale to a large scale, and investigates the next-

generation botnet targeting smartphones. It (1) addresses the problem of botnet

xii



seeding by devising a per-process containment scheme for end-host systems; (2) pro-

poses a hybrid botnet detection framework for edge networks utilizing combined host-

and network-level information; (3) explores the structural properties of botnet topolo-

gies and measures network components’ capabilities of large-scale botnet detection at

the Internet infrastructure level; and (4) presents a proof-of-concept mobile botnet

employing SMS messages as the C&C and P2P as the topology to facilitate future

research on countermeasures against next-generation botnets.

The dissertation makes three primary contributions. First, the detection solutions

proposed utilize intrinsic and fundamental behavior of botnets and are immune to

malware obfuscation and traffic encryption. Second, the solutions are general enough

to identify different types of botnets, not a specific botnet instance. They can also be

extended to counter next-generation botnet threats. Third, the detection solutions

function at multiple levels to meet various detection needs. They each take a different

perspective but are highly complementary to each other, forming an integrated botnet

detection framework.
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CHAPTER I

Introduction

1.1 The Botnet Threat

A botnet consists of bots, which are computers compromised by malware such as

worms, trojan horses or backdoors without user consent or knowledge. The botnet

herder or the botmaster remotely controls a botnet via a Command and Control

(C&C) infrastructure. As illustrated in Figure 1.1, botnets are usually rented and

sold in the underground market by the botmasters for financial gains. They can

cooperatively launch various cyber crimes: sending out huge volumes of spam emails,

hosting phishing web pages, stealing users’ identities and mounting Distributed Denial

of Service (DDoS) attacks. Botnets are one of today’s most serious security threats

to the Internet and its end users. According to a recent Symantec report [28], botnets

accounted for 77% of all spam sent out in 2010, which was about 10 billion per day

on average. Botnet infections are a global pandemic. Microsoft alone detected and

removed 6.5 million bot infections from Windows machines around the world in the

2nd quarter of 2010, and the most infections—2.2 million—were in the U.S. [27].

The huge number of bot infections worldwide and the serious damage they have

caused make detecting such a threat a pressing and critical task. Botnet detection has

been a major topic in the cyber security community for over half a decade. Numerous

solutions have been proposed to defend against the botnet threat. Nevertheless, there
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Figure 1.1: The botnet threat

is always arms race between defenders and attackers. State-of-the-art botnets take

advantage of multiple techniques and evolve at an unprecedented speed. They present

considerable challenges to existing botnet detection approaches.

First, like other types of malware, current botnets commonly employ obfuscation

techniques such as polymorphism and metamorphism. Using these techniques, the

bot code can mutate without changing the functions or the semantics of its pay-

load. Usually, in the same botnet, bot binaries are different from each other. Since

signature-based detection schemes look for specific data patterns in binaries, it is

difficult for them to identify all obfuscated bots.

Second, the C&C infrastructure has evolved in recent years. To control a botnet,

the botmaster needs a channel to issue commands and coordinate bots. Traditional

botnets utilize centralized C&C mechanisms such as Internet Relay Chat (IRC) or

HTTP protocols. In the IRC’s case, usually, the botmaster takes advantage of an IRC

server in a public IRC network by specifying a channel via which bots connect to and

2



listen on to receive commands. HTTP-based botnets are similar to the IRC-based

ones. After infection, bots contact a web-based C&C server and notify the server with

their system-identifying information via HTTP. This server sends back commands via

HTTP responses. IRC- and HTTP-based C&C have been widely used in conventional

botnets, but both of them are vulnerable to a single-point-of-failure. That is, once

the central IRC or HTTP servers are identified and removed, the entire botnet will

be disabled. To be more resilient, attackers have recently utilized decentralized C&C

infrastructures such as P2P, where bots do not directly contact any particular servers

for commands, but rather retrieve commands from informed peer bots. A well-known

example is the Storm botnet [22] which was constructed by the propagation of Storm

worm via email spam and is known to be the first malware to seed a botnet in a

P2P fashion. Storm utilized Kademlia [61], a decentralized Distributed-Hash-Table

(DHT) protocol. The Storm botnet was estimated to run on between 250,000 and

1 million compromised systems in 2007 and was primarily used for sending spam

emails. Other noteworthy recent P2P botnets include Waledac [25] and Conficker [6].

In these botnets, a botmaster can join, publish commands and leave at any time at

any place. Simply tracking a compromised host can hardly expose the botmaster.

Moreover, disabling a certain number of bots does no substantial harm to the botnet

as a whole. Thus, botnet detection approaches designed specifically for centralized

botnets become less effective for decentralized botnets. Also, given different C&C

infrastructures the botmaster can employ, a detection mechanism targeting one C&C

instance is not sufficient.

Last but not least, to date, although almost all botnets have been targeting per-

sonal computers (PCs), attackers are constantly searching for new opportunities such

as new platforms to host botnets. We should be aware that defense techniques tar-

geting state-of-the-art PC-based botnets are likely to be outsmarted when botnets

move to a new domain. As the popularity of smartphones such as the iPhone and

3



Android-based phones grows rapidly, we expect that the botnets are likely to invade

smartphones sooner or later. Similar to PC-based botnets, mobile botnets also re-

quire three key components: propagation, C&C and topology. Considering the unique

features mobile devices have, mobile botnets could take advantage of such features

to be more stealthy and resilient to disruption. First, mobile devices can communi-

cate via multiple vectors including SMS/MMS messages, Bluetooth, aside from the

conventional IP network. Second, mobile devices move around frequently, and it is

generally difficult to find vantage points that can observe all devices’ activities. Third,

current smartphone users tend to download and share many third-party applications

and user-generated contents, but compared to PCs, smartphones have insufficient

security protection features, opening doors for cyber crimes. These features together

present a good opportunity for future botnets to exploit. Thus, it is important to take

the attacker’s perspective and think ahead on how to construct the mobile botnets

and how to defend against them before they become reality.

1.2 Research Goals

To address these challenges, this dissertation proposes solutions to detect current

and next-generation botnets. There are three goals we would like to achieve while

designing these solutions.

1. We have observed that bots conduct malicious activities in a coordinated man-

ner so that they demonstrate similar behavior and could distinguish themselves

from benign programs or hosts. To successfully combat bots that employ obfus-

cation techniques, our solutions need to capture invariant properties of botnet

behavior without relying on string signatures of binaries or packet payloads.

2. Since state-of-the-art botnets are able to utilize various types of C&C, our solu-

tions should be general enough to detect different botnets instead of targeting

4



a specific botnet instance and could be extended to counter next-generation

botnet threats.

3. Depending on where the detector is deployed, activities that can be captured for

use of detection vary from one place to another. For example, in an end-host,

fine-grained, OS-level activities such as those in the file system and network

stack are all visible, whereas in the Internet infrastructure only traffic flow

summaries without packet contents could be recorded. Our solutions must take

into consideration the availability of information at different scales (the host,

the edge network and the Internet infrastructure) and make the most of the

available information to enhance detection accuracy.

1.3 Overview of Existing Approaches

In the literature, numerous approaches have been proposed to detect and mitigate

the botnet threat targeting PCs. We briefly overview them based on where the

detector is deployed: in the host or in the network.

• Host-Based Detection: A bot-infected host behaves similarly to other malware-

infected hosts, so general host-based malware detection approaches can be ap-

plied. Such approaches either use signature matching or behavior analysis.

The latter is of more interest as it can be immune to malware polymorphism

and obfuscation. Some behavior-analysis approaches rely on static analysis or

examination of executables, such as [34] and [57]. Semantics-aware detection

[34] tries to characterize different variations of worms by looking for semanti-

cally equivalent instructions in malware variants. In [57], a static analysis is

used to identify particular system calls or Internet Explorer API calls that are

predefined as malicious. In terms of constructing behavior features, observing

system call sequences to identify anomalies is a common approach. Many host-
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based behavioral approaches [39, 75, 80] focus on profiling the normal behavior

by system call sequences and looking for deviations for detection. There are

also efforts leveraging runtime analysis. For example, Lee et al. [58] collected

a sequence of application events at run-time and constructed an opaque object

to represent the behavior for further clustering.

• Network-Based Detection: Most existing network-based solutions target

centralized botnets, i.e., IRC-based and HTTP-based. Gu et al. [45] used a

network-based anomaly detection to identify centralized botnet C&C channels

based on their spatial-temporal correlation. Binkley et al. [29] combined an IRC

mesh detection component with a TCP scan detection heuristic. Rishi [43] is a

detection system that relies on IRC nickname matching. Karasaridis et al. [56]

proposed the detection of botnet controllers by flow aggregation and feature

analysis. Livadas et al. [60, 83] utilized supervised machine learning to classify

network packets in order to identify the C&C traffic of IRC-based botnets. As

P2P botnets emerged, researchers studied the Storm botnet and proposed ap-

proaches tailored to P2P-based botnet detection. Holz et al. [48] measured the

size of the Storm botnet by infiltrating through a crawler, and proposed mit-

igation strategies that introduce controlled peers to join the network to either

separate or pollute the content of the Storm network. Porras et al. [70] tried to

detect the Storm bot by constructing its dialogue lifecycle model and identify-

ing the traffic that matches this model. All of the above-mentioned approaches

only apply to specific types of botnets requiring in-depth understanding of the

C&C profiles prior to their detection. There are only a few general approaches.

BotMiner [44] is designed for protocol- and structure-independent botnet de-

tection. It clusters similar communication and malicious traffic, and performs

cross-plane correlation to identify the hosts that share both patterns. TAMD

[96] aims to detect infected hosts within a network by finding those that share
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common and unusual network communications.

Although most of network-based detection approaches aim to detect bot-infected

hosts, there is also a body of research that focuses on identifying botnet-based

hosting services, especially fast-flux domains in which the IPs associated with

these domains in the DNS (Domain Name System) records change frequently.

Such IPs normally belong to bots that serve as proxies or redirection servers,

the goal of which is to hide the phishing and malware delivery websites behind

the ever-changing network. Holz et al. [47] presented an empirical study of

fast-flux service networks (FFSNs) and developed metrics to effectively detect

FFSNs based on the number of unique A (address) records, NS (name server)

records and ASN (AS) records for a specific domain. By continuously mining

live data, Nazario and Holz [68] identified over 900 fast-flux domains, and also

measured their lifetimes and botnet sizes. Hu et al. [49] proposed a system

named RB-Seeker that incorporates NetFlow data, spam emails and DNS logs

to discover redirection domains.

Note that both of the host-based and network-based approaches have their advantages

and disadvantages. The host-based solutions can monitor, capture and analyze fine-

grained information in host systems. They are able to know exactly what is going

on in the system, so the detection can be targeted and more accurate. However,

it is susceptible to compromise by host-resident malware. On the other hand, the

network-based approaches are difficult to be subverted but may only have limited

view of the botnets, because only network activities are observable in the network.

1.4 Overview of the Dissertation

This dissertation proposes behavior-based botnet detection solutions at three dif-

ferent levels—the end host, the edge network and the Internet infrastructure—from
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a small scale to a large scale, and investigates the next-generation botnet targeting

smartphones. To serve multiple detection purposes, one of our solutions is host-

based, one is host-network hybrid and the last one is network-based. Figure 1.2 gives

an overview of the dissertation. Each piece of work is summarized as follows:

• Behavior-Based Worm Containment at the End Host: We start from

end hosts because bots are mostly created and spread by network worms from

host systems—they propagate by scanning hosts with the same vulnerabilities

or by sending emails with malicious attachments or links pointing to nefarious

websites. Cutting off such propagation is an important first step in combating

the botnet threat. We thus design and implement a behavior-based per-process

containment framework on end-host systems. The framework leverages the dis-

tinction of OS-wide behavior between benign and malicious processes to gen-

erate corresponding traffic-limit policies. The OS-level behavior patterns are

monitored and captured at the file system, Registry and network stack. These

patterns are further examined by a machine learning algorithm to quantify

their suspicion levels. Each suspicion level is finally transformed into a thresh-

old for traffic limiting. Our evaluation results show that the proposed scheme
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can easily accommodate legitimate applications while effectively containing the

propagation of bots and other network worms. This is especially important

for mission/service critical systems, because when these systems are infected,

completely shutting them down would incur significant loss. The limitation of

this host-based solution is that malware can go below our monitoring level and

manipulate the information received by our framework. If we can incorporate

some external information that is hard to be compromised such as network-level

information, it will be more effective.

• Botnet Detection Using Combined Host- and Network-Level Informa-

tion in the Edge Network: Considering that a host-based approach alone

may not be reliable enough, we shift our focus to the local network where bots

reside in to see if network-level information would be helpful. By studying bot-

nets’ behavior, we find that bots within the same botnet usually get the same

input from the botmaster and take similar actions thereafter. This coordinated

behavior is essential and invariant to all types of botnets irrespective of their

underlying C&C structures. Capturing such behavior would facilitate detec-

tion, but relying solely on network-level information only has a limited view of

botnets’ behavior. We believe that incorporating both sources of information

will create a synergy. Based on two invariants of botnets—coordination at the

network level and malicious behavior at the host level, we design and develop a

C&C protocol independent botnet detection framework for edge networks. The

evaluation based on real-world traces demonstrates that the framework is able

to detect various types (IRC, HTTP and P2P) of botnets with minimal impact

on benign hosts, achieving low false alarm rates.

• Large-Scale Botnet Detection at the Internet Infrastructure: By moni-

toring and analyzing fine-grained host and network-level information, the combined-
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detection framework works well in small-scale networks, such as edge networks.

However, current botnet sizes are in the order of hundreds of thousands and

bots are distributed over different networks, only detection at the edge is un-

likely to harm the functioning of the entire botnet. Moreover, implementing the

combined-detection framework is impractical at a large scale. To substantially

disrupt a botnet, one must consider detection at a high level—the Internet in-

frastructure level—to identify as many bots as possible. Following this direction,

we construct three types of P2P botnet topologies, investigate the visibility of

the botnet overlay traffic at different network components at the Internet in-

frastructure, measure the effectiveness of detection at such places by exploiting

the structural properties of P2P botnets, and evaluate different P2P structures’

capabilities of hiding the botnet traffic. This thorough analysis allows us to

not only come up with detection strategies from defenders’ perspective but also

suggest resilient overlay structures from the botnet design’s or attackers’ view-

point.

• The Next-Generation Botnet: The rapidly-growing popularity of smart-

phones attracts cyber attackers’ attention. Envisioning possible future devel-

opment of cyber threats targeting smartphones, we devise a proof-of-concept

decentralized mobile botnet utilizing SMS messages for all C&C communica-

tions and a P2P structure to construct its topology. We simulate two P2P

topologies—the structured and the unstructured—for our mobile botnets with

200 nodes and 2000 nodes. We find that the structured topology is a bet-

ter choice for mobile botnets in terms of message overhead, delay, and load-

balancing. As mentioned previously, mobile botnets share some common traits

with PC-based botnets, but also have their unique properties. With modifica-

tions and extensions, our behavior-based botnet detection solutions aiming at

current botnets can be applied to counter this future threat as well.
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1.5 Contributions and Organization of the Dissertation

This dissertation mainly makes the following contributions.

1. The botnet detection solutions proposed in this dissertation utilize intrinsic

and fundamental behavior of botnets: malicious OS activities at the host level,

coordination at the network level and structural topology at the Internet in-

frastructure level. Without relying on signatures of binaries or packet payloads,

these solutions are immune to malware obfuscation and traffic encryption.

2. The detection solutions are general enough to identify different types of botnets,

not a specific botnet instance, requiring almost no a priori knowledge of C&C

protocol details. They can also be extended to counter future botnet threats.

For example, the host-based behavioral detection can be modified to deploy

to mobile devices to identify mobile malware. Another example is that the

principles of detection at the infrastructure level can be applied to 3G or 4G

cellular networks to capture mobile devices whose communication graphs have

structural properties.

3. The detection solutions function at multiple levels—the host, the edge network

and the Internet infrastructure—from a small scale to a large scale. They each

take a different perspective but are highly complementary to each other, forming

an integrated botnet detection framework.

The remainder of the dissertation is organized as follows. Chapter II addresses the

problem of worm propagation that is used to seed botnets by devising a behavior-

based per-process containment scheme on end-host systems. Chapter III proposes a

C&C protocol independent framework for botnet detection in edge networks. Using

combined host- and network-level information, this framework is able to detect differ-

ent types of botnets with minimal impact on benign hosts. Chapter IV considers the
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scalability issue in botnet detection and exploits the structural properties of botnet

topologies from a graph perspective at a high level. It focuses on measuring different

network components’ capabilities for large-scale P2P botnet detection at the Internet

infrastructure level. Chapter V presents the design of a next-generation botnet tar-

geting smartphones. The botnet employs SMS messages as C&C and utilizes a P2P

topology to be stealthy and resilient. Countermeasures against this threat are also

discussed in this chapter. Chapter VI concludes this dissertation.
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CHAPTER II

Behavior-Based Worm Containment at the End

Host

2.1 Introduction

In recent years, there has been an exponential surge in both the number of network

worms and the severity of damage they have inflicted [84]. Fast-spreading worms, such

as Blaster (2003), MyDoom (2004), Zotob (2005), Storm (2007), propagated at an

unprecedented rate and could infect most vulnerable systems within a short period

of time. The intent of a worm has evolved from simply replicating itself to installing

malicious payload in the victim systems for collecting confidential information and

perpetrating other attacks. Current worms are mostly used to seed botnets, one of

the most serious security threats to the Internet and its end users. Worms propagate

either through vulnerability scanning or through social engineering schemes such as

sending out spam emails with malicious attachments or links pointing to nefarious

websites. For example, the Storm worm came out in early 2007; it spread via infected

email attachments and once accounted for 8% of all malware infections on Microsoft

Windows computers globally. Each compromised machine then merged into the well-

known Storm botnet under a decentralized P2P C&C. The Storm botnet remained

active for two years, infecting millions of machines to conduct spamming and DDoS
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attacks. Evidently, to nip the botnet in the bud, alleviating the problem of worm

propagation from end host systems is an important first step.

To combat fast-spreading worms, numerous solutions have been proposed to de-

tect and automatically respond to worm outbreaks. A widely-used approach is the

signature-based detection, which looks for specific signatures (usually raw byte se-

quences) in the application executables. The disadvantage of this scheme is that it can

only detect previously-known worms and can be evaded even with simple variations

thereof. Behavior-based detection has recently received considerable attention due

to its capability of identifying new attacks [34, 39, 57, 75, 80, 88]. Most of prior work

requires direct analysis of the binaries [34, 57] or system call sequences [39, 75, 80].

Also, the purpose of behavior-based detection is to classify each application as mali-

cious or benign, which may result in high false-alarm rates due to the ambiguity of

behavior-matching.

For fast and effective containment of worms, an automatic response is of particular

interest because any method that requires human intervention is much slower than the

spreading speed of current worms. The detect-and-block approaches could eliminate

the human intervention in the loop, but they may not be an option for mission- or

service-critical systems such as air traffic control systems, life support systems and

servers running critical business services. Obviously, when such systems are infected

by worms, immediately taking them offline will incur significant loss to businesses

and even pose danger to peoples’ lives. Under these scenarios, we would like to

contain the malicious network traffic as much as possible and still keep the benign

services and applications running until the critical tasks are finished or taken over

by other healthy systems. That’s why we resort to rate-limiting—an alternative

to the detect-and-block approaches. The main idea of rate-limiting is to block the

propagation of worms while allowing legitimate traffic to go through, by differentiating

traffic patterns between legitimate applications and network worms. Rate-limiting
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cannot completely block worms, but can significantly slow down the propagation of

(especially new) worms, allowing for other countermeasures to kick in.

A key element to worm containment is the selection of a metric based on which

the traffic is rate-limited. Previous research results [33, 74, 93] suggest several metrics

derived from host-level network activities, such as distinct IP connection ratio, failed

connection ratio, the number of connections without DNS queries, etc. Another key

aspect of rate-limiting is the use of a threshold beyond which the outgoing traffic

is blocked. Most existing containment schemes impose a static threshold rate on

the entire host, such as several distinct IP connections per second. Sekar et al. [76]

proposed use of different detection thresholds during different time windows for each

host. Rate-limiting on a per-host basis has advantages and drawbacks. The advan-

tages are: (1) the mechanism can be implemented in the network without the trouble

of deploying monitors in each host; (2) it is relatively difficult for malware to tamper

with the network traffic statistics. The drawbacks are also obvious. First, rate-

limiting on the entire host is likely to cause both false-positives and false-negatives.

False-positives stem from the coarse-grained rate-limiting policies applied indiscrim-

inately to both normal and malicious processes. Legitimate traffic will therefore be

affected significantly during a worm outbreak. It is likely that all legitimate traffic

is dropped because the amount of malicious traffic exceeds the threshold, defeating

the purpose of rate-limiting. This is undesirable especially when infected mission- or

service-critical systems need to keep certain applications or services uninterrupted.

False-negatives may result from the evasion of detection by worms that have traffic

patterns similar to that of normal applications. This is undesirable either. Second,

sometimes it is necessary to scrutinize where and how the worm infection starts and

pinpoint which application/process is responsible for that. Only monitoring traffic

in the network can hardly provide such information. Fine-grained monitoring and

analysis is needed at the host level. This prompts us to consider per-process behavior
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in the worm containment to enhance rate-limiting accuracy.

We propose a per-process-based containment framework. We define behavior at a

higher level than others: a sequence of events rather than that of system calls or API

calls. Moreover, the behavior profiles of both worms and normal programs are char-

acterized to utilize the notion of anomaly as well as misuse analysis. Our framework

considers not only network activities but also a variety of notable behaviors common

to network worms, such as creating AutoRun Registry key, overwriting system direc-

tories, etc. To compensate for the inaccuracy of behavior analysis and make the best

of behavioral information, we use a machine-learning algorithm, instead of making

a clear-cut (binary) decision of malice or innocence, to assign a suspicion level to

each process based on the comprehensive analysis of its behavior. The suspicion level

is then transformed into a threshold to rate-limit the process. Since the generation

of a suspicion level incorporates many more process-related properties than network

activities alone, the containment scheme can make an accurate and flexible decision

on how to rate-limit a process, thus lowering false-positive and false-negative rates.

2.1.1 Contributions

Our contributions are three-fold. First, we propose a framework incorporating

both behavior analysis and containment for automatic defense against fast-spreading

network worms. Our framework differs from others in that, instead of per-host rate-

limiting based solely on network activities, it incorporates a comprehensive analysis

of processes’ behavior and performs customized rate-limiting on each process. This

fine-grained monitoring and analysis significantly improve the effectiveness of rate-

limiting. Second, we apply a machine-learning classification algorithm to generate a

suspicion level for each process and develop a heuristic to find an optimal function

that maps each suspicion level to a threshold for rate-limiting. Third, we conduct

in-depth analysis and simulation using the traces of real-world worm samples plus
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their variants and normal programs. Our evaluation results show that the proposed

scheme can easily accommodate legitimate applications while effectively containing

the propagation of network worms. Our fine-grained per-process thresholding can

achieve much lower false-positive and false-negative rates than the per-host approach.

2.1.2 Organization

The remainder of the chapter is organized as follows. Section 3.2 provides an

overview of our system architecture. Section 2.3 details the process-level behavior

analysis. Section 2.4 presents the principles of containment. Implementation and

evaluation results are presented in Section 4.4. Section 2.6 discusses the limitations

of our work and their solutions. This chapter concludes with Section 2.7.

2.2 System Architecture

Our framework (Figure2.1) primarily consists of two building blocks: behavior

analysis and containment. The behavior analysis component includes several sys-

tem monitors and a suspicion-level generator. Runtime behavior for each process is
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monitored at the OS level, such as Registry, file system and network stack. Pro-

cess correlation is tracked as well. The suspicion-level generator assigns a suspicion

level to each running process by applying the SVM algorithm based on the analy-

sis of its system-wide activities. The suspicion level links process-level behavior to

containment. For containment, the mapping function optimizer generates the most

appropriate function of transforming the suspicion level to a containment threshold.

Both the suspicion-levels and the mapping function are taken as the input to the

containment model which then outputs a customized threshold for each process. In

what follows, we will detail each component.

2.3 Behavior Analysis

The first step to combat the propagation of worms is to identify processes conduct-

ing malicious activities in a host system. Previous containment techniques confine

themselves to network activities, such as high failure rate and the absence of DNS

query, in order to identify suspicious traffic. In this paper, we employ behavior-based

analysis that focuses on application run-time behavior including Registry, file system

and network. By studying contemporary worms’ behaviors, we have observed that

they do share certain behavior patterns (e.g., creating autorun registry key, scanning

random host IPs) that are different from normal applications.

2.3.1 Behavior Signature Specification

We define a behavior signature as the description of an application’s activities in

terms of its resource access patterns. Our goal is to develop a simple yet efficient

representation of application behavior that maximally differentiates legitimate appli-

cations from worms so that suspicion-level information can be generated to facilitate

per-process containment. Note that a single activity—such as network access, a file

read or written during a worm’s life time—alone may appear harmless, while the com-
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bination of these activities may reveal a malicious intent. We thus specify a behavior

signature as the aggregation of suspicious activities that can potentially be exploited

by network worms. To design an efficient specification of worm activities, we need to

extract the “common” behavior of network worms, which can be understood better

by looking at a few notable examples. From real-world worms and their variants,

we found that the worm actions can be grouped into 3 categories, taking place at

Registry, file system and network stack, where our behavior monitors are deployed.

Registry : A common target of worms is the AutoRun Key HKLM\Software \Microsoft\

Windows\CurrentVersion\Run. Most, if not all, worms will add an entry under

this key to automatically run themselves when Windows starts up. Examples in-

clude Zotob, Win32-Blaster, and W32-Bozori. Some worms also create Registry

keys such as HKEY_CLASSES_ROOT\CLSID\Random_CLSID\ InprocServer32\(Default)

to conceal its backdoor by injecting into other processes. By setting this reg-

istry value to the name of the backdoor DLL file, some benign processes (in the

above case, explorer.exe) will load the DLL as an extension when the system

starts up, so that the backdoor is not visible as a separate process. For example,

Mydoom sets this registry key to be “shimgapi.dll”—a backdoor it dropped in

the system directory listening on a port between 3127 and 3198.

File System : Once a system is infected, a worm always downloads its payload

from the network to the local file system so that it can be activated again

when the system reboots. Almost all worms choose the system directory (e.g.,

C:\WINDOWS) as an ideal place to drop themselves, because normal users seldom

inspect the system directory and the worm payload is less noticeable among

thousands of system files. For instance, Win32-Mydoom creates taskmon.exe

and Win32-Bobax drops bleh.exe into the system directory. Both of them

change the registry key to make these two files automatically execute. Based

on this observation, we closely monitor the create and write accesses in system
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Table 2.1: Index of behavior vectors
Index Signature Description

0 Number of First-Contact Connections

1 DNS-to-Connection Ratio

2 Number of Suspicious Ports

3 Average Packet Length

4 Number of Packets

5 Modify Dll in System Dir

6 Modify EXE in System Dir

7 Modify other files in System Dir

8 Create Dll to System Dir

9 Create EXE to System Dir

10 Create other files to System Dir

11 Create AutoRun key in Registry

12 Set AutoRun key Value in Registry

13 Create DLL injection key in Registry

14 Set DLL injection key Value in Registry

directories.

Network : This category of actions are taken by self-propagating worms, whose

goal is to infect as many hosts as possible. For example, Blaster probes 20

hosts at a time using a sequential scanning algorithm with a random starting

point. Zotob creates 300 threads to connect to random IP addresses within the

B-class network of the infected system. Slammer simply generates UDP packets

carrying copies of itself at the host’s maximum rate. Thus, intensive network

accesses are a good indicator for scanning activities.

Note that none of the above activities is inherently malicious, because they are also

performed frequently by many normal applications. However, the combination and

accumulation of these activities are essential to the detection of malicious intents with

a high degree of confidence, as very few legitimate applications will conduct these

activities altogether and intensively. We thus construct a vector of behavior features

for each process. we also consider process correlation to defend against sophisticated

worms that create multiple processes upon execution, which we will describe later.

Each feature in the behavior vector represents one type of application behavior of
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interest. Table 2.1 summarizes these behavior features that constitute the signature

vector. In addition to the behaviors that fall directly into the above three categories,

we also take advantage of some auxiliary network features that differentiate worm

activities from normal ones. These include DNS-to-connection ratio, suspicious port,

and average packet length. The DNS-to-connection ratio is of interest to us because

most worms scan random IP addresses without DNS queries. The average packet

length also provides a hint for suspicious behavior, as worms usually send many

identical short packets for both efficiency and fast propagation. Number of suspicious

ports records the number of connections initiated by the process to a set of potential

vulnerable ports such as 135 and 445. Each behavior feature is associated with a

numeric value indicating the number of occurrences of that behavior. The high-level

behavior signature for a process is constructed as a vector of all the features, which

is then used to determine the suspicion level of the process.

2.3.2 Suspicion-Level Generator

To respond quickly to fast-spreading (especially previously unknown) worms, we

build our behavior analysis upon the Support Vector Machine (SVM) [55, 87] that

learns the behavior models from both normal and malicious behavior signatures. We

collect behaviors from normal applications and worms and generate the corresponding

behavior vectors as training data. The SVM algorithm maps training data into a

higher-dimensional feature space using a kernel function and determines the maximal

margin hyperplane to best separate normal data from malicious data. The hyperplane

corresponds to the classification rule. Given a test sample, the SVM calculates the

distance of the sample from the separating hyperplane with a sign indicating which

class (malicious or benign) the test sample belongs to.

Previous research focused on the binary (malicious or benign) classification and

the results are likely to be inaccurate because of the learning procedure. To make the
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best of the learning model, we calibrate the distance score to a posterior classification

probability, which determines how likely a test example belongs to a certain class [59].

The posterior probability is then directly translated into the suspicion level between

0 and 1 where 0 (1) means benign (malicious). Apparently, the higher the suspicion

level, the more likely the process is malicious, and thus, a stricter containment action

should apply. The extension from binary classification to a suspicion level facilitates

customization of the containment method for each process. Worm traffic is more

likely to be strictly rate-limited while legitimate applications will experience a minor

traffic-limiting impact.

It is important to note that our suspicion-level generation is not a one-time rating

but a periodic check. It can capture all of runtime behaviors of interest and provide

a suspicion level for each process during every time window. Thus, a worm that

replaces its process ID with a normal program or attaches itself to a normal program

is unlikely to affect our decision. For example, if the Internet Explorer (IE) is the

target of the worm, its suspicion level will be high as long as it exhibits some bad

behaviors, and its traffic will thus be contained. Some legitimate traffic from IE may

be affected, but the process-level containment is the finest-grain one can achieve.

2.3.3 Process Correlation

Most worms to-date behave badly on their own, while some sophisticated worms

may have multiple processes collaboratively conduct malicious activities. To defend

against such a worm whose single processes are not malicious enough to trigger ef-

fective rate-limiting, we account for process correlation while building the behavior

vectors. We track the inter-process relationships and aggregate the behaviors from

correlated processes. The behavior vectors are the same for correlated processes such

as a parent process and its children. Accordingly, the whole group of correlated pro-

cesses is assigned the same suspicion level. By maintaining a white list, we can easily
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exclude some normal processes with correlation such as services and svchost. Thus,

it is not difficult to identify a group of processes behaving maliciously altogether.

2.3.4 Behavior Accumulation

Since the suspicion level is generated every time window, a worm can hide itself

by appearing benign for each window but malicious overall. In other words, it may

spread suspicious behavior over different time windows or reduce the intensity of

malicious activities within a single window, thus decreasing its suspicion level. To

deal with such worms, we selectively accumulate the value in each field of the behavior

vector. The behavior features worth accumulation are those seldom seen from normal

programs, such as creating an autorun key in the Registry or dropping a dll into the

system directory, etc. As for some behavior shared by both normal and malicious

programs such as outgoing connections, we do not accumulate the value in order

not to increase false-positives. The accumulation is straightforward. For example, a

worm registers an autorun entry in the registry in window 0 and drops a backdoor

in the system directory in window 1. Suppose the behavior vector’s first two fields

are ⟨autorun key, dll drop, . . .⟩. The vector in window 1 will be ⟨1, 1, . . .⟩ instead of

⟨0, 1, . . .⟩. This way, even if a worm does only one bad thing in each time window

to lower its suspicion level, the suspicion level will finally increase as more malicious

activities are exhibited. This mechanism also works for a worm spawning multiple

processes with each exhibiting malicious activities in different time windows.

As we do not have such a real-world worm sample available, to evaluate the

accumulation scheme we simulated a worm in experiment to illustrate the difference

of suspicion level between the original and the accumulated scheme. The results are

in Section 4.4.

We will next present a model and an algorithm used to transform the suspicion

level to an appropriate containment threshold.
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Figure 2.2: Static threshold vs. per-process threshold

2.4 Per-Process Containment

The containment scheme seeks to rate-limit the propagation of network worms

while allowing for the operation of normal programs on a host. As mentioned earlier,

each process’s suspicion level is computed for a time window based on the activi-

ties observed during the last time window. This suspicion-level information is then

mapped to a threshold. The threshold indicates a connection rate value beyond which

the outgoing connections will be blocked. The threshold for each process changes as

a process’s runtime behavior differs during each time window.

2.4.1 The Mapping Function

The key element in our approach is how to map each suspicion level to a threshold

beyond which the process is rate-limited. This mapping function can be of any form

but should have a common property; the set of thresholds for processes with higher

suspicion levels should be lower and for those with lower suspicion levels should be

higher. The rationale behind this is that when the suspicion level for a process is

high (low), we would like to block its outgoing traffic as much (little) as possible. The

mapping function should therefore be monotonically decreasing within [0,1]. Any type

of functions satisfying this property can be used for our purpose. For computation

and comparison convenience, linear functions are adopted in our model. Actually,
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linear functions are found to work well in Section 4.4. Specifically, we choose t =

h(l) = c + 0.5 ∗ a− a ∗ l, a, c ≥ 0, l ∈ [0, 1] as the class of mapping functions (Figure

2.2), where t denotes the threshold, l is the suspicion level, and a and c are two design

parameters. The smaller the a, the less suspicion-level information is used. When the

slope a→ 0, it is equivalent to using a static threshold to all processes, ignoring the

suspicion level. Parameter c reflects the tolerance to the false-positive rate. Given a,

the larger the c, the higher thresholds assigned to all processes. Given the form of the

mapping function, it is crucial to choose appropriate values of a and c. The criteria

for the efficacy of containment are false-positive and false-negative rates. To calculate

the false alarm rates, we develop a probabilistic model by assuming certain properties

of normal and malicious processes in order to obtain false-positive and false-negative

profiles in terms of a and c. Based on the false alarm profiles, an optimization

algorithm is designed to find the appropriate parameters for the mapping function.

Our model and algorithm are presented next.

2.4.2 Modeling False Alarms

2.4.2.1 Assumptions

The following assumptions are used in this model.

1. A process is either normal or malicious.

2. The suspicion level across all processes could be treated as a random variable

denoted by L0 (L1) for normal (malicious) processes, where L0, L1 ∈ [0, 1].

L0(L1) has cdf F0(F1) and pdf f0(f1).

3. A mapping function h is from L(L = L0 or L1) to T (threshold). The threshold

for normal (malicious) processes is denoted by T0 (T1).

4. First-contact outgoing connection (connection to an address the sender has not

recently contacted) rates denoted by R0 for normal and R1 for malicious pro-
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Table 2.2: Connection-rate statistics
Average Standard

Conn Rate Deviation
Normal 1.75 1.40
Malicious 6.08 5.00

cesses follow certain distributions: Fconn0(fconn0) for normal and Fconn1(fconn1)

for malicious processes. Those connections are of interest because malicious

programs tend to reach as many hosts as possible while normal programs have

the “locality” property in outgoing traffic.

2.4.2.2 Data Analysis

We estimated the distributions of first-contact outgoing connections based on real-

world traces. For normal programs, we used attack-free network traffic by tcpdump

that lasts 17187 seconds, including 585,000 frames. We have selected all new connec-

tions initiated, and filtered out other traffic. The connection rate is defined as the

number of connections per second. For malicious programs, due to relatively limited

access to the real-world network worms, we collect network activities from 10 types

of worms and some of their variants. We set up 3 virtual machines connected via a

virtual network as our test-bed to collect the network activity data. The connection

rate CDFs are shown in Figure 2.3. We find that 60% of the normal programs’ con-

nection rates are around 1/s and 100% of their rates are below 7/s. On the other

hand, 50% of malicious programs’ connection rates concentrate in the range from 5/s

to 8/s. The average and standard deviation across all normal and malicious processes

are given in Table 2.2. Clearly, worm’s connection rate is, in general, higher than

that of normal programs reflecting the fast propagation of network worms.
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2.4.2.3 False-Alarm Equations

A false-positive occurs when the connection rate of a normal process exceeds its

threshold. A false-negative occurs when the connection rate of a malicious process is

below its threshold. If the threshold is static for all processes in a host, it can not

effectively contain worms and accommodate normal applications at the same time.

Our proposed rate-limiting is to assign each process with a customized threshold,

which is much finer-grained. To compare it against static threshold approach in

terms of false alarms, we derive the false-alarm equations for both approaches. Those

equations are represented by the parameters defined in Section 2.4.2.1. In the static

threshold’s case, let c denote the constant threshold, then

False-positive: Pr(R0 ≥ c) = 1− Fconn0(⌈c− 1⌉)

False-negative: Pr(R1 < c) = Fconn1(⌈c− 1⌉)

False-positive and false-negative equations for per-process containment are calculated

as follows. The threshold in this case is a random variable, rather than a constant,

since L is a random variable and h(L) = T .

False-positive:

Pr(R0 ≥ T0) = Pr(T0 ≤ R0) =
∞∑
r=0

Pr(T0 ≤ r) Pr(R0 = r)

=
∞∑
r=0

FT0(r)fconn0(r). (2.1)
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Note that FT0 is the CDF of T0 when the process is normal and h(l) = t. We also

know L0 has CDF F0 and pdf f0 for normal processes. By the Change of Variables

Theorem [4],

fT0(t) = f0(h
−1(t))

1

h′(h−1(t))
t ∈ [h(1), h(0)]

FT0(t) =


0 t < h(1)∫ t

h(1)
f0(h

−1(t)) 1
h′(h−1(t))

dt t ∈ [h(1), h(0)]

l t > h(0)

Similarly, false-negative:

Pr(R1 < T1) = Pr(T1 > R1) =
∞∑
r=0

Pr(T1 > r) Pr(R1 = r)

=
∞∑
r=0

(1− FT1(r))fconn1(r). (2.2)

FT1(t) =


0 t < h(1)∫ t

h(1)
f1(h

−1(t)) 1
h′(h−1(t))

dt t ∈ [h(1), h(0)]

l t > h(0)

Each pair of a and c determines a mapping function. We plug in the connection-

rate and suspicion-level distributions as well as the mapping function into the equa-

tions (2.1) and (2.2) to calculate the false-positive and false-negative rates. Since a

pair of a and c corresponds to a pair of false-positive and false-negative, by varying

the values of a and c, we can plot a set of false-alarm profiles. As shown in Figure

2.4, given a, as the value of c decreases from 14 to 1, the curve descends from the

upper-left to lower-right direction meaning that the more restrictive the threshold

(the smaller the c), the higher the false-positive and the lower the false-negative,

showing a tradeoff between the two. Fixing the same set of c from 1 to 14, we vary
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Figure 2.4: Static threshold vs. per-process false alarm profiles

a’s value and generate a curve for each a. When a > 0 (we only draw a = 6.51 and

a = 9 for illustration), meaning that we make use of the suspicion-level information

and assign each process a customized threshold, the curves are always below the static

threshold approach (i.e., a = 0). In other words, given a false-positive rate, the a > 0

curves can always achieve lower false-negative rates than a = 0 curve does, indicating

that using per-process suspicion-level information results in an improved false alarm

curve.

2.4.3 Mapping Function Optimization

To find the most appropriate mapping function for a specific host system, we

develop an optimization algorithm. The required false-positive rate is the input to

the optimization algorithm that determines a and c to obtain the lowest false-negative

rate. We impose a constraint on the false-positive rate because users are affected most

by this rate. But this configuration is tunable such that false-negative rate could also

be constrained. Since it is difficult to derive explicit equations for a and c, we devise a

heuristic algorithm based on the observation of the numerically-obtained false alarm

curves. One property of the curve is that given a, the larger the c, the lower the

false-positive rate. Another property is that given c, there is an optimal a that could

achieve the lowest false-positive. Our algorithm consists of adjustment (steps 1–3)
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and refinement (steps 4–6). The first phase searches for the curve to the lowest-left

direction, while the second phase helps to jump out of the local optimum facing the

first phase, if any.

1. (Adjust): given the initial a and c, increase or decrease c to achieve the target

false-positive rate.

2. (Adjust): fix c at the value obtained from step 1, increase or decrease a to reach

the lowest false-positive rate.

3. (Adjust): repeat steps 1 and 2 until a cannot be changed any further.

4. (Refine): increase or decrease a if a lower false-negative rate can be achieved.

5. (Refine): adjust c to the target false-positive rate.

6. (Refine): repeat steps 4 and 5 until the lowest false-negative rate is reached.

The pseudocode for this algorithm is given below.

adjust c(&a,&c, Fconn0, targetFP )

1 if FP(a, c, Fconn0) > targetFP

2 then step← EPSILON

3 else step← −EPSILON

4 while FP(a, c, Fconn0) > targetFP

5 do c← c+ step or c← c− step

6 adjust a(a, c, Fconn0, targetFP )

adjust a(&a,&c, Fconn0, targetFP )

1 currenta← a

2 currentFP ← FP(a, c, Fconn0)

3 if FP(a+ step, c, Fconn0) < currentFP

4 then step← EPSILON
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5 else step← −EPSILON

6 while FP(a+ step, c, Fconn0) < currentFP

7 do a← a+ step

8 currentFP ← temp

9 if a− currenta < EPSILON

10 then return

11 adjust c(a, c, Fconn0, targetFP )

refine a(&a,&c, Fconn0, Fconn1, targetFP )

1 repeat

2 currentFN ← FN(a, c, Fconn1)

3 if FN(a+ EPSILON, c, Fconn1) < currentFN

4 then a← a+ EPSILON

5 if FN(a− EPSILON, c, Fconn1) < currentFN

6 then a← a− EPSILON

7 if FN(a+ EPSILON, c, Fconn1) == currentFN

8 then return

9 refine c(a, c, Fconn0, targetFP )

10 until FN(a, c, Fconn1) > currentFN

refine c(&a,&c, Fconn0, targetFP )

1 if FP(a, c, Fconn0) > targetFP

2 then step← EPSILON

3 else step← −EPSILON

4 while FP(a, c, Fconn0) > targetFP

5 do c← c+ step or c← c− step
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The EPSILON is set to be 10−2 and the call sequence is:

adjust c(a,c,Fconn0,targetFP)

refine a(a,c,Fconn0, Fconn1,targetFP)

2.5 Implementation and Evaluation

We have implemented four behavior monitors: Registry Activity Monitor (RAM),

File Activity Monitor (FAM), Network Activity Monitor (NAM), and Process Corre-

lation Monitor (PCM). These monitors capture each process’s behavior in real time.

The traces collected by these monitors are fed to our trace-driven simulation of the

proposed framework. The traces were collected from 20 real-world worms plus some

of their variants that are representative and reflect the evolution of contemporary

worms and 49 normal programs. We used a C++ implementation of SVM learn-

ing algorithm, called LibSVM [31], in the behavior analysis component and derived

suspicion-level distributions for normal and malicious processes. We also tested the

containment scheme’s false-positive and false-negative rates in evaluation.

2.5.1 System Monitors

The architecture of RAM resembles that of Sysinternals’ Regmon [18]. RAM was

implemented on Windows NT/XP, including a user-level logging application and a

kernel device driver which implemented the system-call hooking technique [2]. RAM

intercepts registry-related system calls and stores passed parameters and other status

information in a kernel buffer which is then periodically copied to the user-level

application. RAM logs complete information about every registry activity for all

processes running on a host, including timestamp, process name, process ID, request

type (create key, set key value, etc.) and path of the registry key. The implementation
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of FAM is similar to that of RAM. It records system-wide file-system activities in real

time. NAM is implemented based on WinPcap library, and continually monitors all

incoming and outgoing packets of the host. With WinPcap’s support, NAM provides

information on active connections (e.g., source address, port, destination address port,

process ID, etc.) and dynamically correlates each captured packet with the process

that initiates this connection. The data collected by NAM consists of timestamp,

process name and ID, connection type (TCP or UDP) and detailed packet header.

PCM uses the same technique as Sysinternals’ Process Explorer [16]. The idea is to

call a Windows Native API named NtQuerySystemInformation. This API retrieves

an array of SYSTEM PROCESS INFORMATION structures for processing running

in the system, in which each process’s parent ID can be obtained. Another set of

Windows APIs, Process Structure Routines, are used to track process creations and

terminations. These four monitors together characterize the detailed behavior of

all the running processes, which will be formalized into behavior feature vectors to

determine the per-process suspicion level by the machine learning algorithm.

2.5.2 Trace Collection

To collect worm traces in real time, we set up 3 virtual machines running Windows

XP systems connected via a virtual network as our test-bed. We also set up a DNS

server at the host machine to collect DNS statistics and configured it as the default

gateway for the virtual machines. By studying recent worm behaviors, we selected

20 real-world worms and their variants. The samples include notable worms such as

Blaster, MyDoom, Storm, etc. We ran the worm samples on our test-bed, gathering

their process correlation, file system, registry and network activities. The length of

trace for each worm is approximately 20 minutes. The normal traces were collected

from malware-free PCs in regular use. We selected applications with network access,

such as P2P, web browser, file download, etc. The traces captured the activities of 49
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normal processes which cover most commonly-used network applications, including

eMule, IE, firefox, sshclient, utorrent, etc., and each lasted 20 minutes as well. We did

not capture longer traces because most applications show relatively stable behavior.

We used part of both normal and worm traces to train the SVM to build profiles and

the rest as our test set. We intentionally selected variants of some worm samples into

the test set and the original worms in the training set. The accuracy of the learning

algorithm with regard to suspicion-level generation is demonstrated in Section 2.5.4.

2.5.3 Trace Formalization

We extracted useful features from the file system, registry and network activity

logs, and formalized them to feature vectors in a uniform format that can be analyzed

by the learning algorithm. A feature vector has 15 dimensions, each of which corre-

sponds to an atomic behavior feature represented with a tuple <feature index:value>.

A detailed description of the behavior feature vector is given in Section 2.3.1. As de-

scribed earlier, we kept track of the process relationships. The behavior features are

aggregated across correlated processes. For example, process A registers an autorun

entry in the registry and creates process B. Process B then drops a backdoor in the

system directory within the same time window. Suppose the behavior vector’s first

two fields are ⟨autorun key, dll drop, . . .⟩. Then, the vector in this window for both

will be ⟨1, 1, . . .⟩ instead of ⟨1, 0, . . .⟩ and ⟨0, 1, . . .⟩.

In addition, we selectively accumulated some feature fields in consideration of the

worms that may spread malicious activities to different time windows. Because we

did not find such a worm in the wild, we simulated one to show the difference in

suspicion levels. Without feature accumulation, the suspicion level ranges from 0.027

to 0.59, and 7 out of 8 are below 0.5 (Table 2.3). With feature accumulation over

5 time windows, the suspicion level becomes 0.89. Note that the simulated worm

is slowly propagated compared to fast-scanning worms that can generate hundreds
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Table 2.3: Suspicion levels with and without feature accumulation
Time Behavior Original Accumulated

Window SusLevel SusLevel
win0 Write exe to sys dir 0.59 0.59
win1 Write a dll 0.36 0.68
win2 Create an autorun key 0.20 0.72
win3 Create an Inprocserver key 0.22 0.80
win4 Initiate 20 connections 0.16 0.89
win5 None 0.027 0.89
win6 Initiate 20 connections 0.16 0.89
win7 None 0.027 0.89

of connections in a time window. Even so, due to its accumulated file system and

Registry activities, its suspicion level is high enough to trigger a strict rate-limiting

when it accesses the network.

For this feature accumulation, we need to determine how long to accumulate

behavior for each process. If this time window of accumulation is static, an attacker

may learn and evade it. If we accumulate over infinitely many windows, a total

number of false-positives may become very high. So, we dynamically change the

accumulation time window. For example, we randomly select a value between 1 and

50 min each time. By introducing this uncertainty, it makes evasion of behavior

monitoring harder.

2.5.4 Suspicion-Level Analysis

Recall that the suspicion level generated by the learning algorithm is denoted by

L0 for normal and L1 for malicious processes where L0, L1 ∈ [0, 1]. L0 (L1) has CDF

F0 (F1). We estimated the suspicion-level CDFs for normal and malicious processes

by applying the pre-trained SVM to the behavior vectors generated from the normal

and malicious traces. The suspicion-level CDFs are plotted in Figure 2.5. Clearly,

normal applications tend to have a lower degree of suspicion, while worms have much

higher suspicion levels. This demonstrates the SVM’s learning ability in determining

the suspicion level of a process, and also indicates that the thus-generated suspicion
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Figure 2.5: Suspicion-level CDFs for malicious/normal processes

level is indeed informative.

2.5.5 Overhead

One may want to know the overheads incurred by the runtime behavior cap-

ture and the periodical suspicion-level generation. We used a common Windows

benchmark PassMark Software, PerformanceTest [14], to measure the overheads of

the runtime system monitors on a host machine with Intel(R) Pentium IV 1.5GHz

CPU, 512MB memory, 19.5G disk, and Windows XP operating system. We ran

the corresponding benchmark program for CPU, memory and disk, respectively, 5

rounds each. The average overhead for CPU is 10.5%, memory 14.5% and disk 4.7%.

Considering the fact that memory of this machine is much smaller than that of a

today’s PC/laptop, all of these numbers are within an acceptable range. As to the

suspicion-level generation, since the classifier is pre-trained (i.e., the support vectors

are pre-loaded), the training time will not incur any runtime overhead to the host.

Calculation of the suspicion level is fast. For example, the suspicion levels of 10

processes are generated within half a second.
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2.5.6 Trace-Driven Evaluation

We simulated the running of different worms and normal processes based on the

real traces collected. To demonstrate the efficacy of our scheme, Williamson’s rate-

limiting [93] was implemented as a baseline in our evaluation. We specifically com-

pared the performance between Williamson’s and our per-process schemes when a

host was infected by the latest Storm worm. We also applied Williamson’s, static-

threshold (i.e., processes have the same threshold) and our customized per-process

to all other test-set data we collected including worms, their variants and normal

programs, to show the performance differences.

2.5.6.1 Case Study: Storm Worm

Storm worm (or W32.Peacomm, Nuwar, Zhelatin) spreads via email spam and is

known to be the first malware to seed a botnet in a P2P manner without any central-

ized control. The instance we obtained was from the Storm outbreak on Valentine’s

Day 2008. The trace shows that Storm first connects to the P2P network by con-

tacting peers in a hard-coded peer list containing more than 100 IPs. After joining

the network, the bot sends out search requests to find a specific secondary injection

for spamming. We observed that it started to behave as a SMTP server and to send

spam email in 5 minutes upon execution.

In our experiment, we applied both Williamson’s rate-limiting and our per-process

schemes. Williamson’s approach applied to the entire host. A working set of specified

size (n = 4 in our case, as commonly used by others) is maintained to keep track of

all IPs the host has contacted. When a new connection is initiated, the destination

IP is compared with those in the working set. If it is in that set, the connection can

pass through. Otherwise, it is placed in a delay queue and will be sent out later. At

periodic intervals (every second as Williamson proposed), one connection is dequeued

and a new destination address is added to the working set. There is a pre-determined
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Figure 2.6: False alarm profiles for Storm worm under Williamson and our approaches

threshold for the delay queue. Whenever this value is exceeded, all new connections

are dropped.

We mixed the normal trace including P2P, web browser applications with storm

trace in the simulation of Williamson’s per-host scheme. We varied the delay queue

threshold in each round to get a pair of false-positive and false-negative rates. In our

per-process scheme, we used the mapping function h(l) = c+0.5∗a−a∗l. The optimal

mapping is generated by the algorithm described in Section 2.4. We obtained several

pairs of false-positives and false-negatives via different mapping functions and then

drew the false alarm profiles. Figure 2.6 compares false alarms of the two approaches,

showing that our scheme outperforms Williamson’s. In Williamson’s scheme, when

the delay queue threshold is set to a small value, Storm can saturate the delay queue

in tens of seconds, thus causing normal traffic to be dropped. When there are some

network-intensive normal applications, the false-positive is considerable. Specifically

in the experiment, the false-negative rate is controlled within 10% at the expense

of more than 70% false-positive rate. On the other hand, given a generous delay

queue threshold to accommodate normal traffic, a majority of Storm’s connections

can pass through too. The problem lies in treating all processes indiscriminately. In

per-process scheme, different thresholds are assigned to different processes accord-

ing to their suspicion levels. In the normal case, the average suspicion level for all

normal applications is around 0.3 despite that some network-intensive applications
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are included. On the other hand, Storm has acted maliciously at the Registry and

file system resulting in a suspicion level of 0.95 and hence a low rate-limiting thresh-

old. By imposing customized rate-limiting to Storm and normal traffic, our scheme

achieves lower false-positive and false-negative rates.

2.5.6.2 Evaluation of Three Schemes

Note that Williamson’s use of a per-host static threshold is slightly different from

the static-threshold approach mentioned before. The latter assigns the same threshold

to all processes, while the former does not discriminate at the process level. To

compare these two and our schemes, either false-positive or false-negative rate has

to be fixed as there is always a tradeoff between the two. We set the false-positive

rate to be 5% and input the parameters to the optimization algorithm. The resulting

optimal mapping function, which can generate the lowest false-negative rate is h(l) =

7.32 + 0.5 ∗ 6.51 − 6.51 ∗ l(a = 6.51, c = 7.32). Based on the numerically-obtained

false alarm profiles introduced in Figure 2.4, the static threshold rate is set to 8

per second to meet the false-positive rate requirement. Since a suspicion level is

generated for each process every t minutes (t is set to 1 in our experiment), the

threshold value calculated by the mapping function is also updated dynamically in

the order of minutes. While applying Williamson’s scheme, we chose the well-adopted

parameters (working set length=4 and release rate of delay queue= 1 connection/s).

We varied the delay queue threshold imposed to mingled normal and worm traces to

find the one that can reach a 5% false-positive rate. The appropriate value is found

to be 200.

Recall that the false-positive rate is defined as the fraction of normal connections

blocked. Figure 2.7 plots real false-positive rates for each normal program in the

test set under Williamson’s, the static threshold, and the customized per-process

schemes. They have some fluctuations process-wise but the average values are close
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Figure 2.8: False-negatives on worms

to 5% (see Table 2.4). Figure 2.8 shows the false-negative curve for each scheme. The

false-negative rate is calculated as the percentage of evaded connections of worms.

Given false-positive rates shown in Table 2.4, the average false-negative rate across all

worms under Williamson’s scheme is the highest, 72.12%, and the per-process scheme

4.15%, the best. The static scheme produces 20.14%, in the middle. Williamson’s

is even worse than the static threshold scheme for the following reason. During a

worm outbreak, the per-host delay queue is mostly occupied by the worm. When

the threshold is set to a larger value to accommodate normal applications, the worm

benefits more, leading to a high false-negative rate. As for the static threshold scheme,

the threshold is assigned to each process, which is relatively small (in our case, 8 versus

200) and thus more restrictive, compared to the per-host threshold.

Although progress is made from the per-host to the static threshold scheme, our

customized per-process threshold can perform even better than the static threshold
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Table 2.4: Average FPs and FNs under three schemes
Avg FP Avg FN

Williamson 5.56% 72.12%
Static 4.87% 20.14%

Per-Process 3.24% 4.15%

scheme by using suspicion-level information. The suspicion levels for worms are rela-

tively high and their thresholds are accordingly low so that most of malicious connec-

tions may be blocked, whereas normal applications are assigned low suspicion levels

but high rate-limiting thresholds to let most traffic pass through. Compared to the

customized threshold, the static threshold scheme must compromise one false alarm

rate for another. Thus, the customized per-process scheme performs best among the

three.

2.5.6.3 Optimality of the Mapping Function

We now want to show that the performance improvement from use of a static

threshold to a customized per-process threshold is not a coincidence and that the

mapping function used is optimal in the sense that it can achieve the lowest false-

negative rate given a false positive rate. We selected 12 pairs of a and c, i.e., 12

mapping functions, and measured the false-positives and false-negatives on the same

data set. Figure 2.9 plots the false-alarm profiles for different a and c values based on

the real-world traces. As we expected, the curves are quite similar to the numerically-

computed false-alarm profiles (Figure 2.4). The curve in the lower-left direction is the

one with the optimal a because given a false-positive rate, the false-negative rate on

this curve is always lower than other curves, and it is the same case when false-negative

is fixed. In this figure, a = 6.51 is obviously better than smaller or larger values of a.

This is the value our optimization algorithm yielded. In particular, on this curve, c =

7.32 is the one close to our required false-positive rate 5%. This c value is also identical

to that generated from the optimization. Moreover, when a = 0 which represents the

static scheme, the false-negatives on this curve are generally higher than those on
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Figure 2.9: Optimality of the mapping function

other curves. All of these observations confirm that our empirical results obtained

from real-world traces are consistent with the numerical results obtained from false-

alarm modeling, indicating that the mapping function selected by the optimization

algorithm is indeed optimal and the per-process scheme performs significantly better

than the static threshold scheme in terms of false-alarm rates.

2.6 Limitations and Fixes

In this section, we would like to discuss two fundamental limitations of not only

our scheme but all host- and behavior-based worm defense and response mechanisms.

The first limitation is the circumvention of a pre-defined list of behaviors. Since

our behavior list that can best discriminate normal and malicious programs is based

on the study of existing network worms, our scheme works effectively for malicious

processes having typical “worm” behavior. Even if some worms change their behaviors

a little bit, such as installing in a different directory, our scheme can still work since

we account for a set of behavior features, not just one feature. As worms evolve, we

can simply extend or modify our behavior list of monitoring. However, if all of the

behaviors of a worm are the same as those of normal programs or completely different

from existing worms, we can hardly capture it. However, such a scenario will be rare

as our behavior list reflects the fundamentals of network worm behavior.
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The second limitation is the vulnerability of a host-based mechanism to worms’

adaptivity. As mentioned before, there is always a tradeoff between deploying worm

defense at the network and at the end-host systems. A network-based scheme is not

easy to be disabled by a worm but only gets coarser-grained information, i.e., network

activities on a host basis, resulting in less accurate and efficient response. A host-

based solution, on the other hand, can obtain finer-grained information and achieve

finer-grained and accurate response as we have demonstrated. This guarantees that

critical services and applications will remain uninterrupted even during an worm out-

break. Moreover, since in-host monitors keep track of run-time activities for each

process, when and how a system is infected can be traced back for further investiga-

tion. However, a worm can get around our scheme by sitting below the monitoring

level and modifying or subverting the information our monitor receives by using the

rootkit technique for example. One countermeasure is to search for the discrepancy

between the information returned by the Windows API or system calls and that seen

in the raw scan of the file system or Registry hive [20]. With the help of secure hard-

ware [26] or secure VMM [41], it is also possible to prevent or detect the rootkit from

altering the OS. Another possible evasion is that a worm can employ benign processes

to conduct malicious activities. For example, upon execution, a worm drops some

DLL files into the file system and registers a certain Registry key so that benign pro-

grams will automatically load these DLLs and do malicious activities for the worm.

In this case, simply tracking process creations and parent-child relationships will not

reveal the correlation between the benign process and the worm process. One possible

solution is to link the process that registers such a Registry entry with the process

that uses this entry, considering that our scheme already tracks the process injection

behavior at the Registry. This would add additional complexity to our framework.

We plan to study its feasibility and implications in the future.

While there is a possibility that a worm could attempt to evade our mechanism,
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in the evaluation section we have demonstrated how our system successfully contains

state-of-the-art worms that we were able to collet while minimizing the impact on

legitimate traffic. Therefore, our approach at least raises the bar significantly for

contemporary network worms.

2.7 Conclusion

We have proposed a novel automatic worm defense framework that combines per-

process behavior analysis and fine-grained containment. It automatically monitors

each process’s runtime behavior and generates its level of suspicion by a machine

learning algorithm. A mapping algorithm is developed to transform the suspicion level

to the appropriate rate-limiting threshold on a per-process basis. Our experimental

evaluation based on real-world worm samples and normal process traces demonstrates

the efficacy of per-process rate-limiting, which produces much fewer false-positives and

false-negatives in containing network worms than previously-known approaches. In

the future work, we would like to further investigate the evasion schemes an advanced

worm can utilize to get around our approach and how to defeat such schemes. For

example, it is worth examining how to extend our framework to identify benign

processes that are exploited by worms to conduct malicious tasks and correlate them

with those worm processes.
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CHAPTER III

Botnet Detection Using Combined Host- and

Network-Level Information in the Edge Network

3.1 Introduction

Botnets have now become one of the most serious security threats to Internet

services and applications. Botnets can cooperatively mount Distributed-Denial-of-

Service (DDoS) attacks, spamming, phishing, identity theft, and other cyber crimes.

To control a botnet, a botmaster needs a C&C channel to issue commands, and

coordinate bots’ actions. Traditional botnets utilize the IRC or HTTP protocol as

their C&C infrastructure, which are vulnerable to a single-point-of-failure. That is,

once the central IRC or HTTP servers are identified and removed, the entire botnet

will be disabled. To overcome this weakness, attackers have recently shifted toward

a new generation of botnets utilizing decentralized C&C protocols such as P2P. This

C&C infrastructure makes detection and mitigation much harder. A well-known

example is the Storm worm [22] which spread via email spam and is known to be the

first malware to seed a botnet in a P2P fashion. The first Storm worm came out in

early 2007 and the attackers then constantly changed the malicious code to create

multiple variants. Another spambot Waledac, which came to the wild at the end

of 2008, also spread via spam emails and formed its botnet using a C&C structure
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similar to that of the Storm botnet. Some researchers pointed out that Waledac was

the new and improved version of the Storm botnet [67].

To date, most botnet-detection approaches operate at the network level; a major-

ity of them target traditional IRC- or HTTP-based botnets [29, 43, 45, 56, 60, 83] by

looking for traffic signatures or flow patterns. We are aware of only one approach [44]

designed for protocol- and structure-independent botnet detection. This approach

requires packet-level inspection and depends solely on network traffic analysis, un-

likely to have a complete view of botnets’ behavior. We thus need the finer-grained

host-by-host behavior inspection to complement the network analysis. On the other

hand, since bots behave maliciously system-wide, general host-based detection can

be useful. One such way is to match malware signatures, but it is effective in de-

tecting known bots only. To deal with unknown bot infiltration, in-host behavior

analysis [34, 39, 57, 75, 80] is needed. However, since some in-host malicious behavior

is not exclusive to bots and in-host mechanisms are vulnerable to host-resident mal-

ware, host-based approaches alone can hardly provide reliable detection results and

thus we need external, hard-to-compromise (i.e., network-level) information for more

accurate detection of bots’ malicious behavior.

Considering the required coordination within each botnet at the network level and

the malicious behavior each bot exhibits at the host level, we propose a C&C protocol-

independent detection framework that incorporates information collected at both the

host and the network levels. The two sources of information complement each other

in making detection decisions. This framework is intended for use in edge networks

such as enterprise networks as it requires fine-grained information for analysis. The

framework first identifies suspicious hosts by discovering similar behaviors among

different hosts using network- flow analysis, and validates the identified suspects to be

malicious by scrutinizing their in-host behavior. Since bots within the same botnet

are likely to receive the same input from the botmaster and take similar actions,
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whereas benign hosts rarely demonstrate such correlated behavior, our framework

looks for flows with similar patterns and labels them as triggering flows. It then

associates all subsequent flows (action flows) with each triggering flow on a host-

by-host basis, checking the similarity among those associated groups. If multiple

hosts behave similarly in the trigger-action patterns, they are grouped into the same

suspicious cluster as likely to belong to the same botnet. Whenever a group of hosts

are identified as suspicious by the network analysis, the host-behavior analysis results

based on a history of monitored host behaviors are reported. A correlation algorithm

finally assigns a detection score to each host under inspection by considering both

network and host behaviors.

3.1.1 Contributions

Our work makes the following contributions. First, to the best of our knowledge,

this is the first framework that combines both network- and host-level information to

detect botnets. The benefit is that it completes a detection picture by considering

not only the coordination behavior intrinsic to each botnet but also each bot’s in-host

behavior. Moreover, we extract features from NetFlow data to analyze the similarity

or dissimilarity of network behavior without inspecting each packet’s payload, pre-

serving privacy. Second, our detection relies on the invariant properties of botnets’

network and host behaviors, which are independent of the underlying C&C protocol.

It can detect both traditional IRC and HTTP, as well as recent P2P botnets. Third,

our approach was evaluated by using several days of real-world NetFlow data from a

core router of a major campus network containing benign and botnet traces, as well

as multiple benign and botnet data sets collected from virtual machines and regular

hosts. Our evaluation results show that the proposed framework can detect different

types of botnets with low false-alarm rates.
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Figure 3.1: System architecture

3.1.2 Organization

This chapter is organized as follows. Section 3.2 provides an overview of our

system architecture. Section 4.3 presents the proposed detection methodology and

implementation details. Section 4.4 demonstrates evaluation results. Section 3.5

discusses limitations. The chapter concludes with Section 5.6.

3.2 System Architecture

Figure 4.1 shows the architecture of our system, which primarily consists of three

components: host analyzer, network analyzer, and correlation engine.

As almost all of current botnets target Windows machines, our host analyzer is

designed and implemented for Windows platforms. The host analyzer is deployed at

each host and contains two modules: in-host monitor and suspicion-level generator.

The former monitors run-time system-wide behavior taking place in the Registry,

file system, and network stack on a host. The latter generates a suspicion-level by

applying a machine-learning algorithm based on the behavior reported at each time

window and computes the overall suspicion-level using a moving average algorithm.

The host analyzer sends the average suspicion-level along with a few network feature
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statistics to the correlation engine, if required. The network analyzer also contains

two modules: flow analyzer and clustering. The flow analyzer takes the flow data from

a router as input and searches for trigger-action botnet-like flow patterns among dif-

ferent hosts. It then extracts a set of features that can best represent those associated

flows and transforms them into feature vectors. Those vectors are then fed to the

clustering module that groups similarly-behaving hosts into the same cluster, assum-

ing them likely to be part of a botnet. Whenever a suspicious group of hosts are

identified by the network analyzer, their host analyzers are required to provide the

suspicion-level and network statistics to the correlation engine, which verifies the va-

lidity of the host information by comparing the network statistics collected from the

network and those received from the host. The correlation engine finally assigns a

detection score to each host and produces a detection result.

3.3 Methodology and Implementation

Our framework consists of three main components: host analyzer, network ana-

lyzer, and correlation engine. Each of these components is detailed next.

3.3.1 Host Analyzer

The host-analyzer is composed of two modules: in-host monitor and in-host

suspicion-level generator.

3.3.1.1 In-Host Monitor

Each in-host monitor captures system-wide behavior in real time at different loca-

tions. By studying contemporary bots’ behaviors, we have observed that they share

certain behavior patterns that are different from benign applications, and that their

behaviors can be grouped into 3 categories taking place at the Registry, file system

and network stack. For example, when infecting a computer, a bot first creates an

exe or dll file in the system directory. It then registers an autorun key in the Registry
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to make itself run automatically whenever the host system boots up. It also injects

its code into other processes to hide its presence and disables anti-virus software and

the task manager, if necessary. Finally, it opens one or more ports for further commu-

nications and establishes connections with the botmaster or peers in order to launch

DDoS, spamming activities, etc. Note that a single activity mentioned above may

not be malicious because it is also likely to be performed by benign hosts. However,

the combination and aggregation of these activities can reveal that a host has been

infected, since chances are slim that a benign host conducts all of these activities.

Thus, the in-host suspicion-level analysis considers the behavior features altogether

while making decisions. The implementation of the in-host monitors was adapted

from the per-process monitors used in our previous work [97]. Every in-host monitor

consists of three sub-monitors. The sub-monitors at the Registry and file system im-

plemented system-call hooking that intercepts related-system calls, stores the passed

parameters and status information in a kernel buffer, and then copies them to the

user-level application. The two sub-monitors log complete information of every ac-

tivity of interest, including timestamp, request type and path. The sub-monitor at

the network stack was implemented based on WinPcap library and monitors all in-

coming and outgoing traffic of the host. It collects information including source and

destination IPs, ports, and the protocol.

To facilitate a further analysis, each host’s run-time behavior is transformed into

a uniform format known as a behavior vector . Each behavior vector consists of 9

behavior features as shown in Table 3.1; these features are intrinsic to bot-infected

hosts. Each feature is represented by a tuple <feature index:value>. For example,

the first tuple below means the host created 2 files in the system directory.

1:2 2:2 3:1 4:1 5:2 6:3 7:40 8:55 9:40 [00:10:51, 01:10:51] As each host’s network

activities can be captured and analyzed at the network level, the in-host monitor

should focus on behaviors that can’t be observed externally, such as file and Registry
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Table 3.1: In-host behavior features
Index Behavior Features
1 DLL or EXE Creation in System Directory
2 Modification of Files in System Directory
3 Creation of AutoRun Key in Registry
4 Creation of Process Injection Key in Registry
5 Modification of Critical Registry Key

(Disabling taskmgr; Overriding antivirus, etc.)
6 Number of Ports Opened
7 Number of Suspicious Ports
8 Number of Unique IPs Contacted
9 Number of SMTP Flows

operations, to complement the network-level information. However, since a host is

vulnerable to being compromised, we need some information that can be obtained

both internally and externally to validate the integrity of the data provided by a

host. Therefore, we have added a few network features (feature 7 to 9) for in-host

monitoring; these features will be compared against the same features generated by

the network-level analyzer.

3.3.1.2 In-Host Suspicion-Level Generator

Given each host’s behavior vector, we employ a supervised learning algorithm, or

the support vector machine (SVM), to quantify its suspicion level. SVM learns from

benign and malicious host behavior profiles prior to predicting unlabeled behavior

vectors. Since bots’ in-host behaviors are similar to other types of malware such as

network worms, we did not confine our training data to bot-infected hosts but also

included other malware-infected ones. Benign hosts’ training traces were obtained

directly from malware-free hosts in normal use. Based on the training data, the SVM

creates a hyperplane corresponding to a classification rule. Given a new behavior

vector, the SVM estimates the distance of the sample from the hyperplane and decides

which class it belongs to. Note that the training data were completely different from

the test set in the evaluation. To make the most of this learning model, we calibrate

the distance score to a posterior classification probability indicating how likely a test

51



behavior vector belongs to a particular class [59]. The posterior probability is then

translated into the suspicion level in [0, 1] where 0 is benign and 1 is bot-infected.

The higher the suspicion level, the more likely it is bot-infected.

Since the suspicion level for each host is generated at every time window, a bot

may intentionally reduce its suspicion level by spreading malicious activities into dif-

ferent time windows or even sleeping for a while. To counter such an evasion attempt,

we selectively accumulate the value in each field of the behavior feature vector. The

features worth accumulation are those typical to bot-infected hosts, such as creating

an autorun key in the Registry or injecting a piece of code into another process. In

addition, we use the Exponential Weighted Moving Average (EWMA) algorithm to

compute the average suspicion level at every time window. If Yn denotes the suspicion

level generated in the n-th time window, and Sn−1 is the estimated average suspicion

level at the (n− 1)-th window, the estimated average at the n-th window is given by

Sn = α ∗Yn+(1−α)∗Sn−1 where α is a constant smoothing factor. We define α as a

function of the time interval between two suspicion-level readings. α = 1− e−
tn−tn−1

W

where tn − tn−1 is the length of the time window of generating suspicion levels and

W is the the period of time over which the suspicion level is averaged. We chose

tn − tn−1 = 10 and W = 60 minutes, meaning that the in-host generator produces a

suspicion level every 10 minutes and reports the average to the correlation engine on

an hourly basis. The moving average is thus expressed as

Sn = (1− e−
1
6 ) ∗ Yn + e−

1
6 ∗ Sn−1. (3.1)

3.3.2 Network Analyzer

Considering privacy concerns and computational costs, our network analyzer,

which operates on the network traffic collected from a core router in a major cam-
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Table 3.2: Flow features
Index Flow Features
1 to 4 Duration Mean, Variance, Skewness and Kurtosis
5 to 8 Totalbytes Mean, Variance, Skewness and Kurtosis
9 to 12 Number of Packets

Mean, Variance, Skewness and Kurtosis
13 Number of TCP Flows
14 Number of UDP Flows
15 Number of SMTP Flows
16 Number of Unique IPs Contacted
17 Number of Suspicious Ports

pus network, only requires analysis of NetFlow [13] data without accessing packets’

payload. NetFlow is a network protocol developed by Cisco for summarizing IP traf-

fic information . A flow is defined as a sequence of packets between a source and

a destination within a single session or connection. A NetFlow record contains a

variety of flow-level information, such as protocol, source/destination IP and port,

start and end timestamps, number of packets, and flow size, but has no packet con-

tent information. The network analyzer takes flow records from the router as input

and generates host-clustering results. It consists of two modules: flow analyzer and

clustering, which were implemented in Perl and R.

3.3.2.1 Flow Analyzer

The flow analyzer processes the flow records of all hosts in a network to extract

trigger-action patterns of interest. Recall that bots within the same botnet usually

receive the same input from botmasters and take similar actions thereafter. Such

coordinated behaviors are essential and invariant to all types of botnets regardless of

their C&C structures.

The first step in flow processing is to filter out irrelevant flows including internal

flows and legitimate flows. Internal flows represent traffic within a network. Legiti-

mate flows are those with well-known destination addresses such as Google and CNN

which seldom function as C&C servers. Note that flow filtering is just an optional

operation and not essential to our network analyzer. It is only used to reduce the
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total number of flow records, and thus, the computational cost. It turns out that

the NetFlow data obtained from the core router in our campus network contained

an average of 3,900,000 flows per hour, and that the number could be reduced to an

average of 25,000 flows including 2,000 hosts per hour after filtering.

In the second step, our analyzer searches for trigger-action patterns at each time

window. In the monitored network, it looks for suspicious flows with the same des-

tination IP and protocol across all hosts which are presumably receiving commands,

and labels them as triggering flows. We found that bots within the same botnet all

connect to the same set of IPs. Evidently, IRC- and HTTP-based bots talk to their

C&C servers. In the hybrid-P2P-based case, Storm instances bootstrap by connecting

to the IPs in a hard-coded list, making their contacted IP lists look alike. Waledac in-

stances demonstrate a similar behavior. On the contrary, benign hosts rarely visit the

same IP with the same protocol after we filter out the internal and legitimate flows.

It is therefore reasonable to associate all of the flows that follow each triggering flow

on a host-by-host basis within a time window. These associated flows are considered

action flows initiated by triggering flows. Our analyzer then extracts a set of features

from each associated flow group to transform it into a flow feature vector for ease of

clustering. There is a possibility that benign hosts visit the same IP with the same

protocol. Even so, since their flow patterns are usually different, they cannot form

clusters among themselves. We detail this scenario in Section 3.4.4.

Since a flow record is only a brief summary of a session or a connection, the in-

formation provided is limited. We make the most of the information by selecting

17 features to constitute a flow feature vector which characterizes not only general

traffic patterns but also distinction between benign and malicious hosts at network

level. We did so because selecting features essential to all types of botnets can make

clustering more effective and accurate, even if our clustering algorithm searches for

similarly-behaving hosts and does not require a priori knowledge of benign and mali-
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cious behaviors. Table 3.2 shows our selections which are mostly statistical features.

Features 1 through 14 characterize flow patterns only, which are the sample mean,

variance, skewness and kurtosis of flow duration, total bytes transferred, the number

of packets transferred, and TCP & UDP break-downs. Features 15 through 17, which

are also captured at host level for validation purpose, reveal bots’ malicious intent to

some degree. Note that benign hosts seldom conduct above activities. Even if a group

of benign hosts visit the same destination themselves or the same as bot-infected hosts

do, and cannot be filtered out by the trigger-action association, they may be ruled

out by our clustering module because their network behaviors are usually different

among themselves and different from bot-infected hosts. Compared to bot-infected

hosts, benign hosts are less likely to take similar actions after visiting the same IPs

because they are not coordinated and commanded to do so.

3.3.2.2 Clustering

Using a vector representation, each associated group of flows becomes a flow fea-

ture vector at every time window; this facilitates the task of clustering. Our goal is

to group similarly-behaving hosts together by computing the closeness of their fea-

ture vectors. In the area of data clustering, two types of algorithms are available:

hierarchical and partitional. We use the hierarchical clustering because its clustering

result is deterministic and has a structure that is more informative than the result

generated by a partitional algorithm. Using the structured result, we can employ

a technique to find a good cut of clustering. Specifically, we use the pvclust pack-

age to calculate p-values via multi-scale bootstrap resampling for each cluster in the

hierarchical clustering. The p-value of a cluster is a value in [0, 1], indicating how

strong the cluster is supported by data. The package provides two types of p-values:

AU (Approximately Unbiased) p-value and BP (Bootstrap Probability) value. AU

p-value is computed by multi-scale bootstrap resampling, a better approximation to
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the unbiased p-value than the BP value computed by normal bootstrap resampling

[17]. For a cluster with AU p-value greater than 0.95, the hypothesis that “the cluster

does not exist” is rejected with a significant level (equal to or less than 0.05). We

thus accept a cluster if its AU p-value is greater than 0.95.

3.3.3 Correlation Engine

As described earlier, whenever a group of hosts is identified by the clustering

module as a cluster, the respective host analyzers are required to report the suspi-

cion levels along with network statistics to the correlation engine, since the results

generated by flow analysis alone may not be accurate and further in-host validation

is needed. Given the two sources of information as input, the correlation engine

produces a detection result for each host.

Based on the consistency check of network statistics, there are two possibilities.

First, the network features sent from a host are falsified and differ from those ob-

served at the network level. In such a case, the correlation engine considers the host

compromised and generates the detection result immediately. Another possibility is

that the network-level results are consistent, then we need to consider both the in-

host suspicion-level and the quality of the clustering. The detection result should be

a function of these two parameters. It is straightforward that the higher the suspicion

level the more likely a host is part of a botnet. To quantify the contribution of the

clustering quality, we need a measure to reflect the closeness of each host to its clus-

tered group. In other words, the more similar a host’s network behavior is to other

hosts in the same cluster the more likely it is part of a similarly-behaving botnet.

This measure can be the average distance from a specific host to other hosts. We

used the “correlation” method to gauge the distance. We do not use other distance

measures because the correlation values in our data set are mostly positive. A study

[42] has shown that in this scenario, the “correlation” method performs best.
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Assume that a cluster consists of n hosts each of which is represented by a 17-

dimensional flow feature vector, forming a 17 × n matrix X = {xij}. The i-th row

corresponds to the i-th feature of these hosts and the j-th column corresponds to a

flow feature vector. The distance between host u and host v is given by

Duv = 1−
∑17

k=1(xku − xu)(xkv − xv)√∑17
k=1(xku − xu)2

√∑17
k=1(xkv − xv)2

.

where xu = 1
17

∑17
k=1 xku and xv = 1

17

∑17
k=1 xkv. As the correlation is always in the

range of [-1,1], Duv belongs to [0,2] and so does the average distance Dn.

Now, we have two parameters in the correlation algorithm. One is the suspicion

level Sn, and the other is the average distance Dn. The final detection score is denoted

by Scoren and given by

Scoren = w1 ∗ Sn + w2 ∗ f(Dn). (3.2)

f is a function that maps each average distance Dn to a value in [0,1], having the

same range as that of Sn. w1 and w2 are weight factors. Recall that the smaller the

average distance, the more similarly-behaving a host to other hosts in the cluster and

the more likely it is part of a botnet. To reflect this concept, we selected a decreasing

function f(Dn) = 1− Dn

2
. Since at the beginning we cannot completely trust the host-

level information, we assign w1 to 0.1 and w2 to 0.9, making our detection rely more

on the network-level analysis, which is especially important when a host analyzer is

compromised. Every time the network feature consistency check passes, w1 increases

by 0.05 and w2 decreases by 0.05 until they reach 0.5. The final detection Scoren is

a value in [0,1].
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Table 3.3: Botnet traces
Trace Duration Number of Bots

IRC-rbot 24h 4
IRC-spybot 32m 4

HTTP-BobaxA 4h 4
HTTP-BobaxB 20h 4

Storm 48h 4
Waledac 24h 4

3.4 Evaluation

3.4.1 Data Collection

We have evaluated the performance of our framework in detecting 3 types of

botnets with real-world traces—IRC-based, HTTP-based, and hybrid-P2P. We set

up VMWare virtual machines running Windows XP, connected via a virtual network

to monitor and collect traces. While running these botnets, we also ran a variety of

benign applications at the same time to make these machines behave similarly to real

compromised hosts. Both the benign and malicious behaviors at the Registry, file

system, and network stack were captured. Table 3.3 shows the details of these botnet

traces, each containing 4 bot instances. The modified source code of IRC-rbot and

IRC-spybot were used in the virtual network to generate their respective traces. We

obtained the binaries of HTTP-based BobaxA and BobaxB, and hybrid-P2P-based

Storm and Waledac from public web sites. The IRC- and HTTP-based botnets’

network-level traces were captured within a controlled environment and transformed

from packet data to flow data in our experiment. Since Storm and Waledac botnets

were still active in the wild at the time when we collected data, we carefully configured

the firewall setting and connected virtual machines to the external network so that

the bots actually joined the real Storm and Waledac botnets, and our campus router

captured all of the bots’ traffic.

We also collected 5-day NetFlow data from a campus network core router which
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covered the flows generated by Storm and Waledac instances and all other hosts in

the network. Our campus network administrator confirmed that all hosts in the 5-day

flow data except for those running Storm and Waledac were benign, meaning that

there was no botnet traffic present in other hosts during that period. Thus, it is valid

to assume that these hosts are benign at both host- and network-level (other types

of malware might run on these hosts but they are not our detection targets). The

5-day data consist of three sets: (1) 2-day data containing 48-hour Storm traces; (2)

1-day data including Waledac; and (3) other 2-day data. We divided the third data

into two subsets, 1-day each. Note that overlaying malicious traffic on clean traffic

for evaluation has been commonly used in malware detection literature [44, 45, 96].

Although our botnet traces already contained benign traffic, the amount of such traffic

was limited and we wanted to add more to make it more realistic. Thus, we overlaid

the botnet network traces except Storm and Waledac, one at a time, on data set (3),

two traces on the first day, and two on the second day. For example, the IRC-rbot

included 4 bot instances, and we randomly selected 4 hosts from the clean 1-day

traffic and replaced the bots’ IPs with the selected IPs. We treated Storm traces in

the same way and intentionally overlaid the 1-day Waledac traffic on HTTP-intensive

benign hosts, the purpose of which will be described later. In addition, hosts running

P2P clients are important for the evaluation of our detection framework as one may

wonder if they will be misclassified as bots. Since NetFlow data could not reliably

identify which hosts had P2P activities, we ran P2P applications such as eMule and

BitTorrent on hosts under our control and collected their host- and network-level

traces. We obtained 4 sets of hour-long traces from hosts running eMule and 3 sets

from those running BitTorrent. While conducting P2P activities, these hosts also ran

other regular network-relevant applications, such as web-browsing, ssh and email-

checking. In what follows, we will show the overhead of the system, the detection

accuracy, and the benefit of combining both host- and network-level information.
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Figure 3.2: The change of detection scores for two benign hosts

3.4.2 Overhead

One may want to know the overhead incurred by the three components of our

framework. To measure the overhead of the host analyzer, we used a common Win-

dows benchmark PassMark Software, PerformanceTest [14]. Our host analyzer was

implemented on a machine with AMD Athlon 64 3200+ Processor 2.0GHz, 1GB of

memory, 80GB of disk, and Windows XP operating system. We ran the benchmark

program for CPU, memory and disk, respectively, 5 rounds each. The average over-

head for CPU is 3.1%, memory 3.5% and disk 4.7%. The in-host suspicion-level

generator can determine one host’s suspicion level in about 10 µs given the behav-

ior vector. Since the SVM is pre-trained (i.e., the support vectors are pre-loaded),

the training process will not incur any runtime overhead to the host. Our network

analyzer and correlation engine were implemented in Linux kernel 2.6.18 on an HP

ServerBlade with 2 Dual-Core AMD Opteron (tm) Processors 2.2 GHz, 4 GB of

RAM, and 260 GB of disk space. The network analyzer can parse 1-hour flow data

and cluster similarly-behaving hosts within 2 minutes on average. To assign the final

suspicion score and produce a detection result, the correlation engine spends 1 second

per host on average.
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Figure 3.3: Cluster dendrograms with AU/BP values (%) (Left graph: clustering of
bots and benign hosts; Right graph: clustering of benign hosts)

3.4.3 Detection Results

We now report the detection results on 6 botnets. The performance of our de-

tection framework was measured by false-alarm rates, i.e., false-positive (FP) and

false-negative (FN) rates. A false-positive is defined as a benign host mistakenly

classified as a bot-infected, and a false-negative means that an actual bot-infected

host fails to be detected. Recall that the detection score is in the interval [0,1]. The

detection threshold was set to 0.5 in our evaluation to strike a balance between FP

and FN rates, and this parameter is configurable. There is always a tradeoff between

FP and FN rates. A lower threshold can be set if FNs are a concern, while a higher

threshold is required if FPs are less desirable.

Table 3.4 shows our evaluation results where the average number of FP or FN

hosts is calculated during the entire period of evaluation. The average FP or FN

rate is the number of FP hosts divided by the total number of benign hosts (around

2,000), or the number of FN hosts divided by the total number of bot-infected hosts.

Our framework was able to identify almost all bot-infected hosts. There was only one

bot undetected, generating a false-negative.

Our framework also performs well in terms of false-positives. The highest false-
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Table 3.4: False alarm rates
Trace Avg FP Avg FP Avg FN Avg FN Duration

hosts Hosts
IRC-rbot 3.208 0.0016 0.125 0.0313 24h

IRC-spybot 2.833 0.0014 0 0 24h
HTTP-BobaxA 1.000 0.0005 0 0 24h
HTTP-BobaxB 1.083 0.0005 0 0 24h

Storm 2.563 0.0013 0 0 48h
Waledac 0.9167 0.0005 0 0 24h

positive rate was no greater than 0.16%. It turned out that almost all false-positive

hosts appeared during the first few hours of the traces due to the values of “untuned”

weight factors w1 and w2. As mentioned before, we set w1 (the weight of suspicion

level) to 0.1 and w2 (the weight of clustering quality) to 0.9 at the beginning to reflect

lack of confidence in the host-level information. During the first few hours our frame-

work relied more on the network-level analysis, resulting in detection inaccuracy when

a group of benign hosts demonstrated similar network behaviors among themselves

(e.g. they ran the same network applications) or behaved similarly to bot-infected

hosts. As the host-level information was verified to be trustable, w1 increased and w2

decreased so that host-level information gradually had a higher weight and was able

to correct the detection results. Figure 3.2 shows the change of the detection scores

on two benign hosts which have similar network traffic patterns and form a cluster

by themselves. At the beginning, both of them have greater than 0.5 detection scores

due to the high weight assigned to the clustering quality parameter, leading to false-

positives. As time goes by, the suspicion-level parameter receives a more balanced

weight. Since their suspicion levels are always low (0 to 0.1), their final detection

scores decrease below the 0.5 threshold and no longer incur false-positives. Network-

and host-level information indeed complement each other, and hence combining them

while making a detection decision is the key to reducing false alarm rates.
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3.4.4 Evaluation with Network Analyzer

Using the network analyzer that performs flow analysis and clustering, we found

some interesting results. The trigger-action association done by the flow analyzer can

significantly narrow the number of hosts for clustering because benign hosts rarely

visit the same IP with the same protocol after traffic filtering, while bot-infected hosts

connect to the same group of C&C servers or peers. Even if benign hosts cannot

be filtered out by trigger-action association, they are likely to be discarded by the

clustering module because their flow patterns are usually different among themselves

and different from bot-infected hosts. This fact makes the clustering module effective

in reducing the number of benign hosts appearing in the final clusters.

Figure 3.3 shows the hierarchical clustering dendrogram of scenarios in which a

few benign hosts were ruled out not by the trigger-action association but by the

clustering module. The graph on the left is the scenario when bot-infected and

benign hosts happened to visit the same destination and their flow feature vectors

were sent to the clustering module for grouping. There are 6 hosts to be clustered,

numbered from 1 to 6. 1 to 4 are bot-infected hosts, and 5 to 6 are benign hosts.

Recall that we use hierarchical clustering with AU p-values indicating how strong

the clustering is supported by data. Normally, clusters with p-values greater than

95% are considered reasonable clusters. The AU p-values and reasonable clusters are

highlighted by rectangles in the figure. In the left graph, 4 bot-infected hosts are

clustered together with 100% AU values, meaning that their flow feature vectors are

quite similar. The two benign hosts in the graph cannot form a cluster with them

because of the dissimilarity in flow patterns between the benign and bot-infected

hosts. The graph on the right represents the scenario when a few benign hosts visited

the same destination. 4 hosts, numbered from 1 to 4, are all benign. The 4 benign

hosts cannot make any cluster (low AU p-values), since their flow feature vectors

differ significantly.
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We also collected additional data from several benign hosts running P2P applica-

tions to see if false-positives would occur. Four hosts each ran an eMule client, and

three other hosts each ran a BitTorrent client named utorrent. Besides P2P file shar-

ing, these hosts also made other network accesses during the period of trace collection.

This is realistic because normally a P2P user does multi-tasking during file-sharing,

rather than solely waiting for the file-sharing to complete. We used the network an-

alyzer to perform flow analysis and clustering on these P2P data sets. It turned out

that the four eMule hosts did visit the same IPs (servers) so that they were not ruled

out by the trigger-action association and needed to be clustered. The same thing

happened to the three utorrent clients. However, during the clustering, those P2P

hosts could not make any cluster. We found that the AU p-values generated for the

four eMule hosts were no greater than 85% and for the three utorrent ones no greater

than 90%, both of which were below the 95% clustering threshold. That is, these

benign hosts did not behave similarly at the network level even though they ran the

same P2P client. One reason for this is that P2P file-sharing is a user-specific activity.

Users have different interests and download or upload different files so that the flow

features, such as total bytes, number of packets and number of TCP or UDP flows

are hardly similar. The other reason is that network activities other than P2P also

add some dissimilarity to the flow patterns among hosts running P2P applications.

Although in our experiment, P2P hosts were ruled out by the clustering module, we

still inspected their host-level behaviors to make sure that even if the network ana-

lyzer failed to distinguish them, the host analyzer could tell they were benign. The

results were in line with our expectation: the suspicion-levels for these hosts were

always much less than 0.5, because there was little malicious behavior demonstrated

at the host level. In this scenario, since the correlation engine considers both types of

information, it will generate correct detection results with the help of suspicion-levels

even if the network analyzer cannot rule them out.
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In summary, our network analyzer—the flow analyzer along with the clustering

module—is effective in forming suspicious clusters, but it may fail in some situations

in which the host analyzer needs to assist. We present such a case study next.

3.4.5 Evaluation with Host Analyzer: A Case Study of Waledac

Waledac worm spreads as an attachment to a spam email or through a link to

a malicious website. It came into the wild at the end of 2008 and has not yet been

completely taken down (as of March 2010). The Waledac botnet uses the HTTP

protocol for C&C traffic forwarding and the botmasters are well hidden behind a

P2P network [40]. We downloaded samples by following Waledac spam’s links to its

malicious domains in Feb 2009.

In our evaluation, we intentionally overlaid Waledac’s network traces on benign

hosts with heavy HTTP traffic. We did this because Waledac appeared stealthy in its

network activities, and we wanted to evaluate how well our framework can perform

in the situations where the network analyzer cannot distinguish between benign and

bot-infected hosts. We observed that these Waledac instances did not send any spam

email in the 24-hour period. The only activity was several HTTP sessions every hour

for C&C such as transferring locally-collected information. This type of malicious

traffic is easy to blend into benign HTTP flows but hard to isolate.

Over a few time windows, our network analyzer mistakenly clustered one benign

host into the same group as 4 Waledac bots. One reason lies in the way we mixed

benign and bot’s traffic for bot-infected hosts (we did this intentionally). It turned out

that the HTTP-intensive benign host and the 4 bot-infected hosts had visited the same

destination IP using the HTTP protocol. As shown before, only visiting the same IP

is not enough for forming a cluster. To be grouped into the same cluster, the hosts

should have similar traffic patterns. For most bot-infected hosts, although their flows

are mixed with benign flows, their malicious flow patterns may still be conspicuous
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because of their distinct and aggressive spam sending and scanning activities. In other

words, their network-level behaviors can be distinguished from those of benign hosts

during the clustering. However, in the Waledac’s case, the stealthy C&C traffic was

hidden and diluted into the benign HTTP traffic, and the clustering module failed

to differentiate bot-infected hosts’ network activities from those of the benign hosts,

which is the other reason for the incorrect clustering. Nevertheless, our framework

still correctly generated the detection results for Waledac bot instances, thanks to

the information obtained by the host analyzer. As the Waledac exhibited malicious

behavior at the host level, each bot-infected host’s suspicion level was 0.88 on average.

On the other hand, the benign host’s suspicion level was close to 0. The final detection

Scoren for bot-infected hosts was as high as 0.85, while that for benign hosts was

0.40. Without the host analyzer, benign hosts are likely to be misclassified as bot-

infected ones in the presence of bots that are stealthy at the network level. In other

words, relying solely on the network-level analysis cannot create a complete picture:

the inspection of in-host behavior by the host analyzer is critical in reducing false-

positives.

3.5 Discussions

One limitation of our approach is its scalability since the approach requires runtime

host-level analyzers. Our design is intended for use in edge networks such as enterprise

networks where a security framework can be enforced easily on all hosts. In large-scale

networks, if host analyzers cannot be installed on every host, we may use available

host analyzers to infer the suspicion levels at those without the analyzers if they form

the same suspicious cluster by network-level analysis.

Since our network analyzer looks for trigger-action patterns among hosts, bots may

delay their coordinated actions by waiting for random period of time. To counter this

evasion, we may lengthen our time window of analysis or randomly select a time
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window that cannot be figured out by attackers. As the goal of a botnet is to perform

malicious actions, if each bot does not act maliciously for a very long time, it will be

ineffective, causing few problems. Bots may also attempt to randomize their traffic

patterns such as injecting random number of packets in each flow or they can mimic

flow patterns of benign hosts. However, these techniques may not help bots much to

evade our detection because our framework also considers host-level behavior while

making detection decisions.

Since our framework is deployed in a monitored network, hosts within the network

are geographically close to one another. It is natural for bots to connect to, or

bootstrap from, the same set of nearby IPs to receive commands and take actions in

a coordinated manner. To intentionally evade our network analyzer, bots may use

different C&C servers or contact a different set of IPs. If there are a large number of

bots in our network, our approach may group them into several suspicious clusters.

However, if there is only one or a few bots (without contacting the same set of IPs),

our detection framework should obtain information from the host analyzers more

frequently. If a host’s suspicion level is high enough, the detection result can be

generated even without any suspicious cluster.

Another possible evasion of our framework is to compromise the host analyzers

and send falsified information to the correlation engine. This can happen only if the

bot sits below our host monitoring level and is able to modify or subvert the system-

wide information the in-host monitor receives. Our current solution is to gather a few

network statistics from the host to compare against those observed by the network

analyzer. A bot may keep the network statistics intact and modify the suspicion-level

information only to mislead the correlation engine. Even if this happens, there is

still a high possibility of capturing the bot, because the weight factor assigned to the

host-level information by the correlation engine is much lower than the weight factor

assigned to the network-level information (i.e., clustering quality) at the beginning.
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It means that with a high weight factor on network information, as long as the

compromised host exhibits correlated malicious network-level activities and forms a

suspicious cluster with other hosts, it will be detected with high probability despite

the falsified suspicion-level from the host analyzer. To further counter this attack, we

may use secure hardware or secure VMM to safeguard the OS as well as our monitors

in each host.

While it is likely that our framework could be evaded, the evaluation results

demonstrated that our system performed well in detecting state-of-the-art botnets

with minimal impact on benign hosts. Therefore, our system raises the bar against

botnets.

3.6 Conclusion

Considering the coordination of bots within a botnet and each bot’s malicious

behavior at the host level, we proposed a C&C protocol-independent botnet detection

framework that combines both host- and network-level information. Our evaluation

based on real-world data has shown the following results. The network analyzer is

effective in forming suspicious clusters of aggressive bots but fails to separate benign

hosts from bot-infected hosts if the latter are stealthy at the network level. When

the stealthy bots are present, it is the host analyzer that provides correct detection

results by generating distinguishing suspicion levels. By using combined host- and

network-level information, our framework is able to detect different types of botnets

with low false-positive and false-negative rates.
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CHAPTER IV

Large-Scale Botnet Detection at the Internet

Infrastructure

4.1 Introduction

A botnet consists of a group of coordinated bots that can mount attacks such as

Distributed Denial of Service (DDoS), spamming, phishing and identity theft. Botnets

are posing a serious security threat to the Internet users; they can bring down the

entire system and disrupt Internet services. In a botnet, a Command and Control

(C&C) channel, in which a botmaster disseminates commands to, and get response

from bots, is a key element. Attackers have recently devised a decentralized C&C

infrastructure exploiting the P2P protocol. A few noteworthy P2P botnets in recent

years include Storm [22], Waledac [25] and Conficker [6]. Their P2P implementations

are either based on an existing protocol (Storm utilized Kademila [61]) or completely

customized.

The decentralized nature of P2P botnets inevitably challenges detection attempts.

Approaches targeting centralized C&C structures [29, 43, 45, 56] become ineffective

under the new structure in which a botmaster can join, issue commands and leave

at any time at any place. Generic detection approaches [44, 98] relying on behavior

monitoring and traffic correlation analysis are mostly applicable at a small scale such
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as in edge networks and do not scale well because they require analyzing vast amounts

of fine-grained information. In addition, if there is only a small number of bots in

an edge network, detection based on bots’ coordination may fail due to the limited

number of instances in view. Given the fact that current botnets’ sizes are in the

order of hundreds of thousands, an effective and efficient large-scale detection needs

to function at a high level without requiring fine-grained information that can only be

obtained locally. As a P2P botnet has a structured overlay and connectivity patterns

different from other applications from a graph analysis perspective, naturally, we

consider detection at the Internet infrastructure level by assessing the impact imposed

by a P2P botnet at various network components and measuring the effectiveness of

detection at such places.

4.1.1 Contributions

In this chapter, we evaluate the feasibility of detecting large-scale P2P botnets

with different network components at the Internet infrastructure level. We construct

three types of P2P-botnet overlays, map them to the corresponding AS (Autonomous

System)-level underlays by inferring each overlay connection’s AS-path, and accord-

ingly determine the PoP (Point of Presence) path and geographical router rendezvous

(co-located routers in the infrastructure) each connection goes through. We then

take a close look at each individual AS, PoP and router rendezvous based on graph

analysis. In particular, we calculate a few P2P traffic classification metrics to see

whether the portion of botnet connections observed by a single network component

can be identified as P2P traffic. We would like to answer the following three questions

through our analysis: (1) which network component is the best place for detection?

(2) which P2P overlay structure can help hide the botnet traffic well? (3) what are

the limitations of detection at the infrastructure level? Our main contribution lies in

the thorough analysis of detection potential at the three infrastructure-level network
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components for three different P2P overlay topologies.

Our analysis has led to three key observations. First, a small number of ASes can

observe almost all overlay connections, but the AS-level detection is less practical.

PoPs can capture a large fraction of connections but the number of monitoring points

is limited. Router rendezvous strike a balance between detection capability and fea-

sibility. Second, a botnet has to make a tradeoff between resilience/efficiency and the

ability to evade detection. Third, the infrastructure-level detection is not a panacea

for all large-scale botnets: it needs to be integrated with detection schemes in edge

networks to complete a detection picture.

4.1.2 Organization

The remainder of the chapter is structured as follows. Section 5.2 describes related

work. Section 4.3 details our methodology. Section 4.4 presents analysis results.

Section 4.5 discusses a few challenges associated with our approach. The chapter

concludes with Section 5.6.

4.2 Related Work

Considering the fact that P2P botnets have structured overlay topologies, our

approach takes a global view, exploiting structural properties derived from graph

analysis and is thus not limited by the availability of fine-grained information. In

this regard, our work is closely related to graph-based traffic classification and anal-

ysis. Iliofotou et al. [53] proposed the use of Traffic Dispersion Graphs (TDGs) to

monitor, analyze, and visualize network traffic. TDGs focus on network-wide inter-

actions among hosts and show that graph features, such as the average degree and

directionality, can be utilized to distinguish different applications. Using TDGs, they

further classified P2P traffic at the Internet backbone [52]. Their scheme filters out

known traffic, forms traffic clusters roughly based on applications, and finally, uses
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some graph metrics to identify whether a cluster belongs to a P2P application. In our

analysis, we adopt some of their metrics to determine whether the portion of traffic

observed by a network component is P2P. BotGrep [65] analyzes structured graph

to locate bots by extracting P2P subgraphs from a communication graph containing

background traffic. This approach assumes the visibility of the entire botnet commu-

nication graph, whereas our detection is at a single network component where only a

fraction of botnet communication can be seen.

We are aware of two published results on AS-level underlays mapped from P2P

overlays. Rasti et al. [73] examined the global impact of the load imposed by a P2P

overlay on the AS-level underlay. They use Gnutella network snapshots to analyze

diversity and load on individual AS-paths, churn among the top transit ASes and

propagation of traffic within the AS-level hierarchy. Their focus was on the effect

of overlay on the underlay, while our work is concerned with whether the effect can

be utilized for detection. Jelasity et al. [54] constructed a modified Chord [82]

topology and showed that the visibility of P2P botnet traffic at any single AS is

limited and not sufficient for detection. Our method differs from theirs in the following

aspects. First, we consider bots’ geographical distribution in the overlay topology

while they assume that the number of overlay nodes in each AS is proportional to

the size of the AS. Second, our AS-level paths are not derived from the shortest-path

algorithm they used, but a more realistic scheme. Third, we simulate three P2P

overlay topologies and observe the traffic not only at the AS-level but also at PoPs

and router rendezvous, providing a more thorough analysis.
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Figure 4.1: Overview

4.3 Methodology

4.3.1 Overview

We would like to achieve the following two goals. First, from a defender’s perspec-

tive, we would like to see how much of the botnet connections can be observed at a

single network component and whether the respective communication graph has P2P

properties. Second, from an attacker’s perspective, we want to study which P2P over-

lay topology is stealthy enough so that at a single network component the graph-level

information is insufficient for detection. Our methodology consists of four main steps

as shown in Figure 4.1. In the first step, we construct a P2P overlay topology based

on simulation and learn which end-device talks to which, i.e., the overlay connections.

In the second step, to map the overlay to the AS-level underlay, we associate a con-

nection’s two end-devices’ IP addresses with the corresponding ASes and calculate

the AS-level path between the two ASes. Given the AS paths, we then determine

PoP-level paths and geographical router rendezvous paths. Knowing the paths of all

connections, in the third step, we break down the connections on per-AS, per-PoP,

and per-router-rendezvous bases. We are especially interested in the top ASes, PoPs

and router rendezvous ranked by the number of connections going through. In the

last step, we inspect those top network components individually. As in [54, 73], we

do not consider background traffic but focus only on the traffic coming from the P2P

overlay, which is the best scenario. It implies that if the P2P traffic cannot be iden-

tified under this situation, it will definitely not be captured when background traffic
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Table 4.1: Data sources used in our Internet infrastructure and end-device model
Model component Data sources

Backbone topology Skitter dataset: http://www.caida.org/tools/measurement/skitter/
Alias clustering data from the iPlane project:
http://iplane.cs.washington.edu/data/alias_lists.txt

IP geolocation dataset: http://www.ip2location.com/
Internet Point of Presence Telegeography co-location database: http://www.telegeography.com/

Internet end-devices US census data: census-block population in each 250×250m2 grid
in the US for a 24-hour duration [62]

Internet access routers Dial-up service aggregators per each zip code:
http://www.findanisp.com

Broadband ISP market share:
http://www.leichtmanresearch.com/press/081108release.html

DSL central office locations:
the LERG (Local Exchange Routing Guide) dataset from Telcordia
Cable company service locations: Dun & Bradstreet (D&B) dataset

Internet routing BGP routing information from the University of Oregon
Route Views Project: http://www.routeviews.org/
AS prefix sets: http://www.fixedorbit.com/
AS-level path inference: Qiu and Gao’s algorithm [71]

is present. We analyze several graph properties of the communication patterns at

each top network component and determine whether it has the characteristics of P2P

traffic.

4.3.2 Internet Infrastructure and End-Device Modeling

Before detailing the four main steps, we would like to briefly describe the Inter-

net infrastructure and end-device modeling, which lays a basis for our methodology.

We use multiple real-world datasets to construct a realistic model of the US Internet

infrastructure. Table 4.1 lists all data sources in the model construction. In total,

73,884,296 residential computers are generated in the entire US (except Hawaii and

Alaska). The distribution of Internet access routers including dial-up, DSL and Cable

is based on the market share of top US broadband companies and dial-up service ag-

gregators, and how these access routers connect to the backbone topology at Internet

PoP locations is derived from AS peering relationships. We refer interested readers

to [95] for details of this modeling.
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4.3.3 Overlay Topology Construction

In recent years, P2P overlays have become popular in botnet construction due to

their decentralized nature. Many existing P2P overlays can be utilized to facilitate

botnets’ C&C. We construct three types of P2P overlays: a widely-used Kademlia

[61], a modified Chord [82] and a simple ring structure. We will later compare the

structural properties of these three overlay topologies at each network component,

the results of which will be presented in Section 4.4. Next, we will briefly introduce

each P2P overlay followed by the way we construct the topology.

4.3.3.1 Kademlia

Kademlia is a Distributed-Hash-Table (DHT)-based P2P overlay protocol. Under

this protocol, there is no central server and resource locations are stored throughout

the network. Nodes are identified by node IDs and data items are identified by keys

generated from a hash function; node IDs and keys are of the same length. Data items

are stored in nodes whose IDs are close to data items’ keys. The distance between

two IDs, X and Y , is calculated by bitwise exclusive or (XOR) operation: X ⊕ Y .

To search a data item, a node queries its neighbors for nodes whose IDs are close to

this data item’s key. After getting responses from its neighbors, the node continues

to query those nodes that are closer to the key. This iterative process repeats until

no closer nodes can be found. The benefit of Kademlia is its resilience to disruptions.

Even if a few nodes are shut down or removed, the network will still be able to

function. Kad network is an implementation of Kademlia. A few major P2P file

sharing networks adopt the Kad implementation, such as Overnet and eMule. The

Storm botnet was built upon Overnet.

An ideal way to construct the botnet overlay topology is to collect traffic traces

from a real network, such as the Storm botnet. Since the Storm botnet is decentral-

ized (i.e., there are no central venues where all communications can be observed),
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traces captured from the Storm botnet fall into two categories each of which has its

drawbacks. In the first category, the traffic data were collected from a single or a

few vantage points. They can only provide partial views of the entire botnet. In

the second category, snapshots of the network were taken by network crawlers. The

snapshots contain information, such as which IPs are alive or dead but cannot tell

which IP connects to which IP. To characterize the effectiveness of detection at the

underlay, a full picture capturing the entire network’s connections is indispensable,

so we have to construct a Kad network by simulation.

We use a high-fidelity botnet simulator BotSim [46] which integrates a popular

P2P client named aMule [1], an implementation of Kad. Considering the fact that

simulating a large-scale botnet (100,000 bots) on a single or a few machines will take a

prohibitively long time, our simulator was run on a distributed platform consisting of

400 machines, each with 2 Pentium III CPUs and 4Gb RAM. The simulator is a com-

ponent of MIITS [91] which is built upon PRIME SSF [15], a distributed simulation

engine utilizing conservative synchronization techniques. To make aMule work seam-

lessly on our simulator, several modifications were made to the original aMule code

including intercepting time-related system calls and substituting them for simulated

time function calls, and replacing socket API calls with network functions developed

in MIITS. The rest of the code remains intact.

In a botnet, a majority of bots are compromised residential computers and not

necessarily geographically close, and hence we have to take locations into account.

Constrained by data availability, all bots in our simulation are in the US and their

locations follow the geographical distribution of 73 million residential computers by

state. The simulation of 100,000 bots executes for three days in simulation time. The

output files log timestamps and connections in the network. We discarded the first

day in which bots bootstrap and the entire botnet stabilizes, and kept the second and

the third day for analysis. With log files keeping track of which node talks to which
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other node and each node’s state information, we need to obtain the IP address of

each end-device to completely construct the overlay topology. For this, we randomly

chose an end-device address from the state a bot resides in. This way, we created two

Kad overlay topologies with 100,000 nodes, one day each.

4.3.3.2 Modified Chord

Chord is a DHT-based P2P protocol under which nodes form a ring structure.

Each node has a predecessor and a successor and a few long range links. For example,

there are a total of N nodes in the ring. Node i connects to nodes (i−1) mod N and

(i+1) mod N . It also connects to nodes (i+2k) mod N for k = 1, 2, . . . , log2N − 1

to form long-range links. In [54], modifications to Chord are proposed so that it

is difficult to detect the botnet through graph analysis at any single AS. The main

modification is creating clusters in the ring each of which has log2N consecutive

nodes. This way, nodes in the same cluster can share the same set of long-range links

for routing. This topology is of interest to us because we want to see whether using

a more realistic AS-path calculation algorithm can make a difference in detection

and whether this topology can successfully hide itself at PoPs and router rendezvous

as well. Since this modified Chord’s topology is relatively simple, we constructed

its overlay with 100,000 nodes directly based on its protocol without simulation.

Following the same practice as in Kademlia, each end-device address is a random

draw from the state a bot belongs to.

4.3.3.3 Simple Ring

We also consider the simplest case: each node has only two neighbors—a prede-

cessor and a successor—to construct a ring structure. Presumably, this structure is

stealthier and harder to detect than the modified Chord due to lack lack of connec-

tivity at the overlay. We will verify this presumption in later analysis. Similar to

77



the modified chord, this overlay has 100,000 nodes constructed directly and the bots’

locations follow the same geographical distribution.

4.3.4 Overlay to Underlay Mapping

4.3.4.1 AS-Path

Given all overlay connections, the next step is to map each connection to an AS-

level path. Note that each end-device IP address is associated with an AS number

and determining an AS-path of a connection is actually to determine the AS-path

between two ASes. We use the AS-path inference algorithm in [71] for inter-domain

routing. The key idea is to infer AS paths from existing BGP routing tables.

4.3.4.2 PoP-Path

A PoP is an access point to the Internet. It is a physical location owned by an

ISP or located at Internet exchange points and co-location centers. The computa-

tion of a PoP-level path is based on the respective AS-level path. Given a pair of

source and destination end-device IPs, the algorithm first determines the AS-level

path AS1AS2 . . . ASn, then iteratively finds the shortest IP-level path between PoPs

connecting every neighboring pair of ASes and finally maps the IP-level path to the

PoP-level path. We refer interested readers to [95] for details of this algorithm.

4.3.4.3 Router Rendezvous Path

Given an IP-level path of a connection, the geographical router rendezvous along

this particular path can be determined directly.

4.3.5 Traffic Breakdown

Since our work focuses on structural properties of traffic graph at a single network

component (AS, PoP or router rendezvous), not the entire botnet overlay per se, we
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need to break the traffic down on a per AS, per PoP and per router rendezvous basis.

This breakdown process is straightforward. We then rank the three types of network

components by the number of connections going through, and take a close look at the

graph properties observed at each of the top 10 ASes, PoPs, and router rendezvous,

respectively, in our analysis.

4.3.6 Graph Analysis

After breaking down the traffic, we know all connections that traverse a particular

AS, PoP and router rendezvous. We can then generate directed graphs in which bots

are represented by vertices and connections among them are represented by edges.

For simplicity, all edges carry the same weight. Graph metrics to determine whether

the traffic is P2P are proposed in [52] and adopted to analyze the modified chord in

[54]. In our analysis, we inspect the same set of features as in [54] for consistency.

The features used to characterize P2P traffic include the number of weakly-connected

components, size of the largest weakly-connected component, average node degree

and InO (In Out) ratio. We introduce each of them as follows.

Number of Weakly-Connected Components: A weakly-connected compo-

nent is a maximal subgraph of a directed graph such that in the subgraph replacing

all of its directed edges with undirected edges produces a connected undirected graph.

For effective detection, we expect a small number of weakly-connected components.

As one can imagine, a large number of connected components usually means small-size

components that are less likely to exhibit typical P2P patterns.

Size of the Largest Weakly-Connected Component: This metric is mean-

ingful to us because as pointed in [53] the graph formed by a P2P network tends to

be densely connected and have a large connected component including the majority

of participating nodes.

Average Node Degree: This metric counts both the incoming and outgoing
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edges of a node, i.e., ignoring the directionality. A graph with a high average degree

tends to be tightly-connected and P2P networks normally have high average node

degrees.

InO Ratio: The metric calculates the percentage of nodes in the graph that

have both incoming and outgoing edges. This metric is of interest because under

client-server protocols such as HTTP and SMTP, clients usually initiate connections

(outgoing edges) whereas servers normally accept connections (incoming edges). But

nodes in P2P networks usually serve as both clients and servers so that P2P’s InO is

distinctively higher than others.

4.4 Analysis Results

This section presents our analysis results. Recall that we construct three different

P2P overlay topologies, namely, Kad, the modified Chord and the simple ring, and

examine their traffic graphs, respectively, at three types of network components.

As introduced in Section 4.3.6, the graph features characterizing P2P patterns are

the number of weakly-connected components, size of the largest weakly-connected

component, average node degree and InO ratio. We conduct graph analysis first at

the AS-level, then the PoP-level and finally, the router-rendezvous-level, and show

the graph features at the top 10 places of each level.

4.4.1 AS-Level Analysis

We first take a look at the AS-level graphs of three different topologies. Table

4.2 shows the Kad graph properties for day1 and day2, respectively, at top 10 ASes,

ranked by the number of unique connections going through. We map the AS numbers

to ISPs using the AS-name lookup list [3]. It turns out that from day1 to day2 the

top 10 order changes slightly but the 10 AS numbers remain the same. As expected,

these top ASes belong to large ISPs such as AT&T and Verizon. Note that the
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traffic percentage at a single AS is calculated by the number of unique connections

observed at that particular AS divided by the total number of unique connections

in the entire overlay topology. Since one connection usually can be seen at more

than on AS (this is why the third column of the table adds up to more than 100%),

we count each connection only once while calculating the number of connections

observed at multiple ASes altogether. Following such calculations, in both days, top

10 ASes aggregated together can observe 98.95%—almost all of the Kad overlay’s

unique connections. In particular, the top 1 AS (3356/Level3) alone can see two

thirds of the overlay traffic with all nodes (100000) in the picture in both days. Even

for ASes carrying fewer connections, they have at least 99912 nodes’ connections

traverse through. Most importantly, at each top AS, all nodes are weakly-connected

with each other, forming one giant weakly-connected component. This property can

facilitate detection because one single weakly-connected graph containing a majority

of connections is more likely to demonstrate P2P characteristics and easier to get

caught than a disconnected graph with many connected components of small sizes.

As suggested in [52], two metrics can characterize P2P traffic. One is a high average

degree (larger than 2.8), and the other is a high InO ratio (large than 1%). In both

days, at all top ASes, the average degrees and InO values are high enough for P2P

classification: the lowest value of average degree is 56.8 and that of InO is 87.75%.

Thus, as we can see, all top AS venues have high visibility of Kad’s overlay which

demonstrates typical P2P patterns, sufficient for detection.

Table 4.3 presents graph features of the modified Chord at top 10 ASes. Compared

to Kad, top 10 AS numbers remain the same but their ranks change a bit. They in

total observe 99.61%, an enormous fraction of overlay connections and the top 1 AS

is still 3356 witnessing 64.25% of all connections. Note that the AS observing the

most can see 80620 while the one observing the least can only see 13900 nodes. As

for the number of connected components, to the contrary of Kad, each AS’s graph
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Table 4.2: Kad AS-level

Kad Day1 # of
ISP AS Percentage # of Nodes # of Edges Avg Degree Conn Comp InO

Level3 3356 65.25% 100000 38192566 763.9 1 99.02%
AT&T 7018 35.33% 100000 20679083 413.6 1 99.02%
XO 2828 23.39% 100000 13691127 273.8 1 99.02%

Sprint 1239 8.32% 99983 4872140 97.5 1 99.01%
Verizon 19262 8.30% 100000 4859686 97.2 1 100.00%
Qwest 209 8.28% 100000 4848724 97.0 1 99.02%
NTT 2914 7.78% 99993 4556302 91.1 1 99.02%

BellSouth 6389 7.78% 100000 4554972 91.1 1 99.01%
AT&T 7132 6.78% 99995 3965587 79.3 1 100.00%
UUNET 701 5.38% 99937 3148400 63.0 1 88.13%

Kad Day2

Level3 3356 66.69% 100000 39628509 792.6 1 99.02%
AT&T 7018 34.96% 100000 20772860 415.5 1 99.02%
XO 2828 24.18% 100000 14367036 287.3 1 99.02%

Qwest 209 8.35% 100000 4959076 99.2 1 99.02%
Sprint 1239 7.76% 99969 4611389 92.3 1 99.01%

BellSouth 6389 7.59% 100000 4509341 90.2 1 99.01%
Verizon 19262 7.23% 100000 4294952 85.9 1 100.00%
NTT 2914 7.06% 99988 4196433 83.9 1 99.02%
AT&T 7132 6.33% 99990 3761651 75.2 1 100.00%
UUNET 701 4.78% 99912 2839591 56.8 1 87.75%

Table 4.3: Modified Chord AS-level

# of
ISP AS Percentage # of Nodes # of Edges Avg Degree Conn Comp InO

Level3 3356 64.25% 80620 112431 2.8 9639 66.22%
AT&T 7018 38.09% 54272 66650 2.5 10534 51.62%
XO 2828 22.73% 36234 39784 2.2 7470 47.03%

Verizon 19262 9.43% 17365 16494 1.9 3726 37.01%
NTT 2914 8.09% 15339 14151 1.8 3384 34.45%
Sprint 1239 7.64% 14908 13366 1.8 3602 31.16%
Qwest 209 7.20% 14642 12594 1.7 3757 27.99%
AT&T 7132 7.13% 13849 12482 1.8 2956 33.29%

BellSouth 6389 6.82% 13486 11934 1.8 3080 30.47%
UUNET 701 6.27% 13900 10978 1.6 4305 16.41%
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Table 4.4: Simple ring AS-level

# of
ISP AS Percentage # of Nodes # of Edges Avg Degree Conn Comp InO

Level3 3356 64.76% 79327 64755 1.6 14522 63.31%
AT&T 7018 37.51% 51316 37511 1.5 13805 46.20%
XO 2828 22.81% 32148 22805 1.4 9343 41.88%

Verizon 19262 9.30% 13632 9297 1.3 4335 36.40%
NTT 2914 8.05% 11867 8046 1.3 3821 35.60%
Sprint 1239 7.53% 11604 7532 1.3 4072 29.82%
Qwest 209 7.36% 11494 7362 1.3 4132 28.10%
AT&T 7132 7.07% 10430 7066 1.3 3364 35.49%

BellSouth 6389 6.73% 10193 6728 1.3 3465 32.01%
UUNET 701 6.17% 10831 6166 1.1 4665 13.86%
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is not well connected and has thousands of connected components. Figure 4.2 shows

in log scale the sizes of 10 largest weakly-connected components at top 5 ASes. Top

1 AS 3356’s largest component has 36532 nodes but all other components are very

small containing 15 nodes or so. Top 2 AS 7018 has two large components with

8729 and 7506 nodes respectively and other components’ sizes drop significantly. The

component sizes remain stable at other ASes, all in the order of hundreds. Due to the

relatively sparse structure of the modified Chord, unsurprisingly, the average degree

at each AS is low—from 2.8 to 1.6, though the InO values are high—from 66.22% to

16.41%. Taking all metrics into account, AS 3356 is able to detect the P2P overlay

since it can see a large portion of the overlay with typical P2P patterns, if not the

entire one. If we relax the average degree threshold a bit, AS 7018 may also be a good

venue to make detection efforts considering the two large connected components. We

think it is hard for the rest of the ASes to do so due to their relatively fragmented

views. Note that our observations on modified Chord are slightly different from

those in [54] which concludes that even at the most central (top) ASes the average

degrees are less than 2 and connected components are mostly of size 2 and 3 with

the maximal containing 29 nodes. This difference may be attributed to the way of

mapping the overlay to the underlay: they make the number of overlay nodes in

each AS proportional to the size of the AS whereas we consider the geographical

distribution of nodes. In addition, our AS-path inference algorithm is also different

from theirs: they assume shortest paths while our inter-domain AS-pathes are derived

from real-world BGP routing tables.

When it comes to the simple ring structure (Table 4.4), the top AS numbers do

not change, and their ranks are the same as those for the modified Chord. 99.62%

of overlay connections traverse through top 10 ASes. Though the top1 AS 3356 can

see 64.76% of the total traffic, the number of nodes visible (79327) are more than

the number of edges (64755), resulting in a great number of connected components
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(14522) and small component sizes. As seen in Figure 4.3, 3356’s largest component

only has 34 nodes. We also verify that a majority of 3356 connected components have

fewer than 10 nodes. The average degrees are all below 2, which is expected because

each node only has a predecessor and a successor so that the average degree of the

entire graph is only 2. Even though the InO values are high enough, detection based

on scattered information at a single AS is difficult.

4.4.2 PoP-Level Analysis

At the PoP level, we also present graph features at each top PoP of three P2P

structures. PoPs are represented by ID numbers and ranked by the number of unique

connections going through as well. In Table 4.5, as we can see, both the top 10 PoP

numbers and their ranks change slightly from day1 to day2. Top 10 PoPs account for

80.88% of overlay connections in day1 and 81.58% in day2, a slightly drop compared

to that observed at top 10 ASes which can see more than 98%. This makes sense

because PoPs, normally as traffic exchange points, are not able to see intra-domain

traffic taking place within ASes. The top PoP 74 alone is able to observe 53.78% and

54.84% of all connections respectively in each day. Similar to the AS-level, not only

almost all nodes (more than 99967) can be seen at each top PoP, but also they are

weakly connected forming one single component. The average degrees and InO ratios

are well above the P2P classification thresholds.
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Table 4.5: Kad PoP-level

Kad Day1
PoP Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

74 53.78% 100000 31479094 629.6 1 100.00%
7 10.29% 100000 6024939 120.5 1 99.94%
435 8.27% 100000 4837622 96.8 1 98.50%
11 8.14% 99998 4763870 95.3 1 99.86%
128 7.77% 99981 4550316 91.0 1 99.52%
282 7.37% 99995 4315967 86.3 1 100.00%
4 7.27% 99977 4257513 85.2 1 99.73%
267 6.72% 99992 3934199 78.7 1 100.00%
291 6.26% 99975 3661420 73.2 1 100.00%
295 6.25% 99997 3658911 73.2 1 99.97%

Kad Day2

74 54.84% 100000 32588327 651.8 1 100.00%
7 10.06% 100000 5976120 119.5 1 99.97%
128 8.22% 99991 4883282 97.7 1 99.66%
11 8.06% 100000 4790115 95.8 1 99.87%
291 7.49% 99997 4450255 89.0 1 100.00%
435 7.41% 100000 4404198 88.1 1 98.60%
267 7.20% 99996 4279914 85.6 1 100.00%
4 7.19% 99967 4271196 85.5 1 99.67%
282 7.07% 99992 4199285 84.0 1 99.99%
239 5.88% 99879 3491615 69.9 1 99.65%

Table 4.6: Modified Chord PoP-level

PoP Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

74 54.07% 77488 94629 2.4 16735 48.00%
7 9.27% 19927 16222 1.6 6095 21.91%
267 7.99% 14764 13981 1.9 3092 34.80%
11 7.98% 17225 13957 1.6 5334 18.75%
128 7.46% 17169 13058 1.5 5673 17.39%
4 7.25% 15962 12686 1.6 4834 20.36%
435 6.94% 13649 12151 1.8 3067 32.38%
282 6.81% 13677 11913 1.7 3184 31.41%
291 6.36% 12433 11137 1.8 2683 32.68%
295 5.84% 11877 10228 1.7 2803 29.32%
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Table 4.7: Simple ring PoP-level

PoP Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

74 54.51% 75999 54506 1.4 21493 43.44%
7 9.40% 16165 9400 1.2 6765 16.30%
11 7.78% 13648 7779 1.1 5869 13.99%
128 7.63% 13765 7631 1.1 6134 10.88%
267 7.52% 11079 7521 1.4 3558 35.77%
4 7.31% 12505 7305 1.2 5200 16.83%
435 7.13% 10568 7127 1.3 3441 34.88%
282 7.08% 10587 7078 1.3 3509 33.71%
291 6.37% 9392 6373 1.4 3019 35.71%
295 5.77% 8829 5774 1.3 3055 30.80%

Figure 4.6: Top 10 PoPs (pins) and router rendezvous (arrows)
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In the modified Chord’s case as shown in Table 4.6, top PoPs are almost the same

as those of Kad and only their ranks change, taking up 80.29% of overlay connections

aggregately. 74 is still the top 1 PoP observing 54.07% of total connections containing

77488 nodes, but all other PoPs observe fewer than 20000 nodes. As for sizes of weakly

connected components, shown in Figure 4.4 in log scale, PoP 74’s largest component

is of size 23153 and others are quite small. Other PoPs’ component sizes are fewer

than 300. Given all these statistics, if the average degree threshold can be relaxed a

bit, PoP 74 can be a good place for detection.

In simple ring’s case (Table 4.7), the PoP numbers are exactly the same as those

of modified Chord. Figure 4.6 shows the geographical locations of the top 10 PoPs

represented by pin icons. Note that they hardly change across the three structures

and their locations are distributed throughout the US. 89.25% of overlay connections

reach top 10 PoPs with 54.51% traversing PoP 74. Despite the fact that half of

overlay connections can be observed at PoP 74, similar to the AS-Level, the number

of edges is smaller than the number of nodes. The largest component of PoP 74 is

very small containing 22 nodes (Figure 4.5). It is the same case for all other top

PoPs. Though InO values are moderate, low average degrees and a good many small

connected components can prevent the P2P structure from being captured at any

PoP.

4.4.3 Router-Rendezvous-Level Analysis

At the router-rendezvous level, we present results the same way as before. Router

rendezvous are denoted by ID numbers and ordered by the number of unique overlay

connections observed. For the Kad structure, as shown in Table 4.8, the top 10

router rendezvous are the same throughout the two days, altogether, see 89.75% of

total connections in day1 and 89.27% in day2. The top 1 router rendezvous number

2 is reached by 68.77% of all connections in day1 and 68.91% in day2. A majority
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of nodes (more than 98579) appear in the graph as one giant component at each top

router rendezvous. In addition, high average degrees and InO values make detection

feasible.

Table 4.8: Kad router-rendezvous-level

Kad Day1
Router Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

2 68.77% 100000 40251799 805.0 1 100.00%
2164 14.91% 99959 8728267 174.6 1 98.96%
12 11.90% 99997 6967203 139.3 1 84.22%
98 11.75% 100000 6874621 137.5 1 100.00%
222 9.26% 100000 5419174 108.4 1 99.99%
8919 8.30% 100000 4855632 97.1 1 98.50%
745 7.82% 99997 4579803 91.6 1 99.85%
82 7.33% 99978 4288889 85.8 1 99.74%
47 6.99% 98858 4090556 82.8 1 92.32%
88 6.67% 99997 3904395 78.1 1 99.71%

Kad Day2

2 68.91% 100000 40945772 818.9 1 100.00%
2164 14.52% 99959 8626011 172.6 1 99.32%
12 11.57% 99989 6876147 137.5 1 83.77%
98 11.28% 100000 6702210 134.0 1 100.00%
222 9.05% 100000 5379049 107.6 1 99.98%
8919 7.41% 100000 4404198 88.1 1 98.60%
745 7.67% 100000 4559186 91.2 1 99.86%
82 7.24% 99973 4304038 86.1 1 99.68%
88 6.53% 99996 3881327 77.6 1 99.61%
47 6.18% 98579 3671730 74.5 1 90.15%

Let us take a look at the modified Chord at the router-rendezvous level (Table

4.9). There is one new router rendezvous in the top 10 list that does not appear

in that of Kad’s and the ranks of the two lists are quite similar. Top 10 router

rendezvous carry 89.96% of total connections and the top 1 router rendezvous is still

2 accounting for 68.76% of connections including 88913 nodes. As for the sizes of

weakly connected components, the trend does not differ much from that at the AS-

or PoP-level. The top 1 router rendezvous’s largest connected component is of a big

size—35943 nodes (Figure 4.7 in log scale) and other components have small sizes

(fewer than 15). With a distinctive average degree and high InO value, this router

rendezvous is a reasonable venue for capturing the modified Chord.
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Table 4.9: Modified Chord router-rendezvous-level

Router Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

2 68.76% 88913 120337 2.7 13816 59.33%
2164 15.00% 29299 26245 1.8 8964 25.60%
12 11.57% 23682 20247 1.7 7629 20.07%
98 11.33% 21641 19821 1.8 5586 31.07%
222 8.73% 17779 15280 1.7 4771 27.68%
745 7.59% 16673 13275 1.6 5286 17.14%
82 7.29% 16133 12758 1.6 4926 19.98%
8919 6.94% 13649 12151 1.8 3067 32.38%
88 6.26% 12913 10962 1.7 3364 25.96%
57 6.16% 13606 10784 1.6 4029 19.42%

Table 4.10: Simple ring router-rendezvous-level

Router Percentage # of Nodes # of Edges Avg Degree # of Conn Comp InO

2 68.89% 88161 68885 1.6 19276 56.27%
2164 15.12% 25513 15122 1.2 10391 18.54%
12 11.35% 20126 11351 1.1 8775 12.80%
98 11.28% 17720 11275 1.3 6445 27.26%
222 8.93% 14243 8933 1.3 5310 25.44%
745 7.42% 13218 7419 1.1 5799 12.26%
82 7.36% 12653 7356 1.2 5297 16.27%
8919 7.13% 10568 7127 1.3 3441 34.88%
88 6.10% 9762 6102 1.3 3660 25.02%
47 6.06% 9669 6061 1.3 3608 25.37%
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Finally, for the simple ring structure (Table 4.10), the top router rendezvous list

is the same as that of Kad. Figure 4.6 illustrates all top router rendezvous for the

three structures, each represented by an arrow with a star. Note that some of them

are co-located with the top PoPs: in fact, PoPs are a subset of router rendezvous.

Top 10 router rendezvous observe 80.54% of all connections and router 2 sees 68.89%

of them. With more nodes than edges at each top router rendezvous, it is difficult

to get a good view of the P2P overlay. Similar to AS- and PoP-level, the top 1

router rendezvous’s largest component contains 33 nodes. The average degrees are

unsurprisingly low, insufficient for detection.

4.4.4 Insights from Analysis

From the above analysis, we have several key observations worth noting. First,

the visibility of Kad’s overlay and structure at the top places of all three levels is

good enough for detection; the modified Chord’s P2P characteristics can be captured

by a few top locations but not all; and the information of the hypothetical simple

ring’s topology at all levels is quite fragmented and hardly useful for detection. From

the attacker’s viewpoint, in terms of efficiency, Kad has the most efficient routing:

contacting O(logN) nodes during a search (where N is the size of the network); the

modified Chord can achieveO(log2N) hops; and the simple ring is the worst, requiring

O(N) steps. From resilience’s perspective, the Kad network is shown to be robust to

a few types of mitigation strategies such as cutting off random nodes and removing

peers learnt from bots’ peer lists [36]; the simple ring structure is evidently fragile—

removing a couple of nodes can disconnect the overlay; and the modified Chord

structure hits the middle ground: not as resilient as Kad but better than the simple

ring. We believe that, while constructing a P2P botnet, the attacker needs to strike a

balance between resilience or efficiency and the ability to evade detection. Although

the simple ring can hide its traffic well at various network components, to build
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upon this structure the botnet has to compromise resilience and C&C efficiency. The

modified Chord makes a tradeoff though its structural properties cannot be concealed

at some locations. Kad was successfully utilized by the Storm botnet, but given our

detection strategy, to use it for a future botnet, the attacker has to come up with

techniques to mask its P2P patterns.

Second, from detection’s perspective, AS-level provides better overlay views than

PoP- and router-rendezvous-level do, but is less practical than the other two for actual

detection deployment. Since AS is only a logical concept, capturing all connections

within one single AS requires collaboration and synchronization among multiple phys-

ical devices at different geographical locations, which renders it highly impractical.

From our analysis, we can see that at the PoP-level, detecting Kad and the modified

Chord is very likely though the latter is only visible to the top 1 PoP. Compared to

ASes and router rendezvous, PoPs observe less traffic due to the invisibility of traffic

within ASes (intra-domain traffic). Moreover, the number of PoPs is small so that

the points available for monitoring are limited. Among the three, router rendezvous

make a tradeoff. Their detection capabilities are comparable to PoPs’ and they can

observe intra-domain traffic with more monitoring points available, making detection

more feasible.

4.5 Discussions

Thus far, we have measured the effectiveness of identifying P2P overlay traffic

at various network components. For actual implementation of the detection at the

Internet infrastructure, several challenges remain to be addressed.

First, since P2P networks implementing the same protocol may not be distinguish-

able at the structure-level via graph analysis, our techniques will also identify regular

P2P file-sharing topologies. To avoid misclassifying such regular P2P networks as

botnets, we can perform preprocessing including flow filtering and clustering [52]

92



based on known patterns of regular P2P networks such as port numbers. Also, bots

identified locally in edge networks are helpful as their presence in a communication

graph makes other nodes suspicious as well, so our approach may need assistance from

detection mechanisms at the edge to further confirm that a graph is indeed formed by

a botnet. However, if the botnet is immersed into an existing regular P2P network,

detecting it solely by graph analysis at the infrastructure level would be challenging

and other information is thus needed for effective detection.

Second, in the presence of a huge traffic volume, some connections could not be

captured due to sampling. For densely-connected topologies such as Kad, it may not

be a problem. But for the modified Chord and simple ring’s cases, it will complicate

the detection. We plan to dig deeper into this issue in the future.

Third, after identifying nodes of a botnet, to further mitigate or contain bots, we

need to come up with efficient and effective techniques that can accommodate a large

volume of traffic at the infrastructure level with minimal impact on the legitimate

traffic. In the edge or local networks, fine-grained information of a particular node is

available to detection mechanisms, and all incoming and outgoing traffic of the node

can be controlled. Thus, after detection, taking the suspected node offline is not a

difficult task. However, at the infrastructure level, a single network component may

not have the ability and the confidence to remove a node completely so that advanced

response mechanisms other than simply filtering or blacklisting are needed.

Finally, our models regarding the Internet infrastructure are abstracted from real-

world datasets, so the accuracy depends on how well the datasets characterize the

behavior and the state of the Internet, which could be error-prone. Moreover, some

datasets may be outdated and may not reflect the current state of the Internet due to

its fast-evolving nature. Therefore, these factors have to be taken into account when

the infrastructure-level detection is put in practice.
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4.6 Conclusion

As P2P structures become a popular choice for recent botnets, especially large-

scale ones, detection mechanisms have to keep up with this change and identify bots

in an efficient and effective manner. In this paper, we propose detection of P2P bot-

nets at a high-level—the infrastructure-level by analyzing their structural properties

from a graph perspective. We construct three different P2P overlay topologies: Kad,

the modified Chord and the simple ring. These overlays are mapped to the AS-level

underlays and their respective AS-, PoP- and router-rendezvous-paths are inferred.

Finally, we inspect these network components individually to measure their capability

in identifying the P2P botnets. We find that detection at any of the three network

components has its advantages and drawbacks. Overall, router-rendezvous-level de-

tection is able to strike a balance between detection capability and feasibility. Also,

a botnet needs to make a tradeoff between resilience and stealthiness.
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CHAPTER V

The Next-Generation Botnet

5.1 Introduction

Botnets have become a most serious security threat to the Internet and the per-

sonal computer (PC) world. Although they have not yet caused major outbreaks in

the wild, attacks on cellular networks and devices have recently grown in number

and sophistication. With the rapidly-growing popularity of smartphones, such as the

iPhone and Android-based phones, there has been a drastic increase in downloading

and sharing of third-party applications and user-generated content, making smart-

phones vulnerable to various types of malware. Smartphone-based banking services

have also become popular without protection features comparable to those on PCs,

enticing cyber crimes. There are already a number of reports on malicious appli-

cations in the Android Market [7]. Although the Android platform requires that

applications should be certified before their installation, its control policy is rather

loose—allowing developers to sign their own applications—so that attackers can easily

get their malware into the Android Market. The iPhone’s application store controls

its content more tightly, but it fails to contain jailbroken iPhones which can install

any application and even run processes in the background. As smartphones are in-

creasingly used to handle more private information with more computing power and

capabilities but without adequate security and privacy protection, attacks targeting
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mobile devices are becoming more sophisticated. Since the appearance of the first,

proof-of-concept mobile worm, Cabir, in 2004, we have witnessed a significant evolu-

tion of mobile malware. The early malware performed tasks, such as infecting files,

replacing system applications and sending out SMS or MMS messages. One malicious

program is usually capable of only one or two functions. Although the number of mo-

bile malware families and their variants has been growing steadily in recent years,

their functionalities have remained simple until recently.

SymbOS.Exy.A trojan [85] was discovered in February 2009 and its variant Sym-

bOS.Exy.C resurfaced in July 2009. This mobile worm, which is said to have “botnet-

esque” behavior patterns, differs from other mobile malware because after infection,

it connects back to a malicious HTTP server and reports information of the device

and its user. The Ikee.B worm [51] that appeared late November 2009 targets jail-

broken iPhones, and has behavior similar to SymbOS.Exy. Ikee.B also connects to

a control server via HTTP, downloads additional components and sends back the

user’s information. With this remote connection, it is possible for attackers to peri-

odically issue commands to and coordinate the infected devices to launch large-scale

attacks. In March 2011, over 50 applications found to contain a type of malware

called “DroidDream” were removed from the Android Market [7]. This malware was

able to root the infected device and steal sensitive information. It was speculated

that the end goal of DroidDream was to create a botnet [11]. Observing the trend

of recent mobile malware, we expect that mobile botnets will likely become a serious

threat to smartphone soon.

Similar to PC-based botnets, mobile botnets also require three key components:

vectors to spread the bot code to smartphones; a channel to issue commands; and a

topology to organize the botnet. Compared to their PC counterparts, mobile devices

have the following unique features that botnets can take advantage of: (1) they

communicate via multiple vectors including SMS/MMS messages, Bluetooth, aside
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from the conventional IP network. (2) they move around frequently, and it is generally

difficult to find vantage points that can observe devices’ all activities. (3) they have

limited security protection features both in the host and in the cellular network.

These features together present a good opportunity for next-generation botnets to

exploit. So in this chapter, we focus on the design of a proof-of-concept botnet that

makes the most of mobile services and is resilient to disruption. Within this mobile

botnet, all C&C communications are done via SMS messages since SMS can reach

almost every mobile phone anywhere anytime with little scrutiny and restriction from

mobile carriers. To hide the identity of the botmaster, there are no central servers

dedicated to command dissemination that is easy to be identified and then removed.

Instead, we adopt a P2P topology that allows botmasters and bots to publish and

search for commands in a P2P fashion, making their detection and disruption much

harder. We will also briefly discuss a few defensive strategies and how the detection

solutions proposed in previous chapters can be applied.

5.1.1 Contributions

Our contributions are three-fold. First, to the best of our knowledge, we are the

first to design mobile botnets with focuses on both C&C protocol and topology by

integrating the SMS service and the P2P topology. The main intent of this work

is to shed light on potential botnet threats targeting smartphones. Since current

techniques against PC botnets may not be applied directly to mobile botnets, our

proposed mobile botnet design makes it possible for security researchers to inves-

tigate and develop countermeasures before mobile botnets become a major threat.

Second, we present a method to carefully disguise C&C content in spam-looking SMS

messages. Using this approach, the botnet can stealthily transmit C&C messages

without being noticed by phone users. Third, we test and compare two P2P architec-

tures that can be used to construct the topology of our mobile botnet on an overlay
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simulation framework, and finally propose the architecture that best suits mobile

botnets.

5.1.2 Organization

The remainder of the chapter is organized as follows. Section 5.2 describes related

work in this domain. Section 5.3 details the proof-of-concept design of our mobile

botnet. Section 5.4 presents our simulation and evaluation results. Section 5.5 dis-

cusses potential countermeasures against the mobile botnets. The chapter concludes

with Section 5.6.

5.2 Related Work

The research areas most relevant to our work are P2P-based botnets and botnet

C&C evaluation. Wang et al. [89] proposed the design of an advanced hybrid P2P

botnet that implemented both push and pull C&C mechanisms and studied its re-

silience. In [90] they conducted a systematic study on P2P botnets including bot

candidate selection and network construction, and focused on index poisoning and

Sybil attacks. Overbot [81] is a botnet protocol based on Kademlia. The strength of

this protocol lies in its stealth in the communication between the bots and the bot-

master leveraging a public-key model. Davis et al. [36] compared the performance

of Overnet with that of Gnutella and other complex network models under three

disinfection strategies. Singh et al. [78] evaluated the viability of email communica-

tion for botnet C&C. Nappa et al. [66] proposed a botnet model exploiting Skype’s

overlay network to make botnet traffic undistinguishable with legitimate Skype traf-

fic. All of these dealt with botnets in the PC world, while our work targets mobile

botnets, in which C&C channel and network structure requirements are different, in

view of unique services and resource constraints on smartphones. Dagon et al. [35]

proposed key metrics to measure botnets’ utility for conducting malicious activities
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and considered the ability of different response techniques to disrupt botnets.

There are numerous efforts on mobile malware focusing on vulnerability analysis

and attack measurements. The former investigates ways of exploiting vulnerable

mobile services, such as Bluetooth and MMS [30, 72], while the latter characterizes

the feasibility and impact of large-scale attacks targeting mobile networks, mostly

Denial of Service (DoS) attacks [38]. There are a few recent papers treating the idea

of mobile botnets. In [86], the focus is on the attack aspect—whether compromised

mobile phones can generate sufficient traffic to launch a DoS attack. Singh et al.

[77] investigated using Bluetooth as a C&C to construct mobile botnets without

any analysis on their network structure. Hua et al. [50] proposed a SMS-based

mobile botnet using a flooding algorithm to propagate commands with the help of

an internet server. The use of the server may lead to single-point-of-failure, meaning

that whenever the server is identified and removed, the botnet is prone to disruption.

Mulliner et al. [64] demonstrated the ways to command and control botnets via

SMS or IP-based P2P networks using a tree topology. Under such topology, when

a node fails, all of its subnodes will be isolated from the botnet, difficult to get

commands. Weidman [92] also considered utilizing SMS messages for botnet C&C and

presented a method to conceal malicious SMS messages from users on smartphones.

It is worth noting that, different from all these works, our SMS-based botnet is built

upon a decentralized P2P topology, without assistance from any central servers. The

integration of SMS and P2P makes our botnet stealthy and resilient to disruption.

5.3 Mobile Botnet Design

We now present the detailed design of a proof-of-concept mobile botnet. The

botnet design requires three main components: (1) vectors to spread the bot code to

smartphones; (2) a channel to issue commands; (3) a topology to organize the botnet.

We will briefly overview approaches that can be used to propagate malicious code and
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then focus on C&C and topology construction.

5.3.1 Propagation

The main approaches used to propagate malicious code to smartphones are user-

involved propagation and vulnerability exploits.

In the first approach, the most popular vector is social engineering. Like their PC

counterparts, current smartphones have frequent access to the Internet, becoming

targets of malicious attacks. Thus, spam emails and MMS messages with malicious

content attachments, or with embedded links pointing to websites hosting the mali-

cious code, can easily find their way into a mobile phone’s inbox. Without enough

caution or warning, a mobile phone user is likely to execute the attachments or click

those links to download malicious programs. The advantage of such schemes is that

they can reach a large number of phones. Nevertheless, as smartphones run on a

variety of operating systems, we expect multiple versions of bot code prepared to

guarantee its execution. Another user-involved propagation vector can be Bluetooth,

which utilizes mobility. Mobile phone users move around so that the compromised

phones can use Bluetooth to search for devices nearby and after pairing with them

successfully, try to send them malicious files.

Exploiting vulnerabilities to spread malicious code is common in the PC world.

However, since there are various mobile platforms and most of them are closed-source,

it is difficult to find vulnerabilities in real deployments. To date, some vulnerabilities

have been discovered. For example, the HTC’s Bluetooth vulnerability, which allows

an attacker to gain access to all files on a phone by connecting to it via Bluetooth,

was disclosed by a Spanish security researcher [9]. Mulliner et al. [63] discovered a

way of directly manipulating SMS messages on different mobile platforms, without

necessarily going through the mobile provider’s network. In both cases, OS vendors

immediately released patches to the public after the vulnerabilities were publicized,
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leaving few opportunities for a real exploit in the wild. Once launched in their targets,

vulnerability exploits always have a higher success rate than that of user-involved ap-

proaches. As mobile platforms open up and mobile applications and services become

abundant, vulnerability exploits will play a major role in mobile malware propagation.

5.3.2 Command and Control

5.3.2.1 Why SMS

In our mobile botnet, SMS is utilized as the C&C channel, i.e., compromised mo-

bile bots communicate with botmasters and among themselves via SMS messages.

Botnets in the PC world mostly rely on IP-based C&C delivery. For example, tradi-

tional botnets use centralized IRC or HTTP protocol, whereas newly-emerged botnets

take advantage of P2P communication. Unlike their PC counterparts, smartphones

can hardly establish and maintain steady IP-based connections with one another. One

reason is that they move around frequently. Another reason is that private IPs are

normally used when smartphones access networks, especially EDGE and 3G networks,

meaning that accepting incoming connections directly from other smartphones is a

difficult task. Given this limitation, if a mobile botnet considers an IP-based channel

as C&C, it needs to resort to centralized approaches in which bots connect to central

servers to obtain commands. Such approaches, however, are vulnerable to disruption

because the servers are easy to be identified by defenders. Thus, to construct a mobile

botnet in a more resilient manner, a non-IP-based C&C is needed.

There are a few advantages for choosing SMS as a C&C channel. First, SMS is

ubiquitous. It is reported that SMS text messaging is the most widely used data

application on the planet, with 2.4 billion active users, or 74% of all mobile phone

subscribers sending and receiving text messages on their phones [79]. When a mo-

bile phone is turned on, this application always remains active. Second, SMS can

accommodate offline bots easily. For example, if a phone is turned off or has poor
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signal reception in certain areas, its SMS communication messages will be stored in a

service center and delivered once the phone is turned back on or the signal becomes

available. Third, malicious content in the C&C communication can be hidden in SMS

messages. According to a survey in China [5], 88% of the phone users polled reported

they had been plagued by SMS spamming. As SMS spamming becomes prevalent,

bots can encode commands into spam-looking messages so that users will not suspect.

Last but not least, currently there are multiple ways to send and receive free SMS

messages directly on smartphones [23, 24] or through some web interfaces. We will

describe such methods in Section 5.3.2.4. Even when the free texting is unavailable, as

many phone users use SMS plans to avoid per-message charge and in some countries

incoming messages are free of charge, with the design goal of minimizing the number

of SMS messages we expect that using SMS as C&C will not incur considerable costs.

5.3.2.2 SMS Overview

Before discussing how to use SMS for C&C, we briefly describe the implementation

of SMS. When a user sends a SMS message, the mobile phone sends it along with the

address of the Short Message Service Center (SMSC) over the air interface to a Base

Station Subsystem (BSS) of the service provider. The BSS then sends the text to the

Interworking Mobile Switching Center (MSC) of the SMSC. The Interworking MSC

returns an acknowledgment indicating success or failure, and passes the message to

the actual Service Center (SC) of the SMSC for its storage and/or delivery. When

it delivers the message, the SMSC queries a database called Home Location Register

(HLR) to determine the location of the mobile phone. If the phone is available, the

message is forwarded through a few steps to the MSC which finally delivers the text

message over the air interface through its BSS to the recipient’s phone.
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5.3.2.3 Protocol Design

Our goal is to let a phone that has installed our bot code perform activities

according to the commands in SMS messages without being noticed by the user, if

possible. In our design, every compromised phone has an 8-byte passcode. Only by

including this passcode into the SMS messages, can other phones successfully deliver

C&C information to this particular phone. Upon receipt of a SMS message, this

phone searches for its passcode and pre-defined commands embedded in the message

to tell if it is a C&C message. If found, the commands are immediately executed

by the phone. Two issues need to be addressed here. First, how are passcodes

allocated among compromised phones? Second, how to make C&C SMS messages

appear harmless so that users may not notice the malicious content?

In our botnet, passcodes are allocated by botmasters to segment a botnet into sub-

botnets, each with a different function. For example, one sub-botnet is responsible

for sending out spam messages, while another is in charge of stealing personal data

and transferring them to a malicious server. Each sub-botnet will be identified by

its unique passcode that is hard-coded into the bot’s binary. In other words, all bots

within the same sub-botnet share the same passcode so that they can communicate

with one another and also with the botmaster. Using a unique passcode for each

bot will be more secure than using one passcode for an entire sub-botnet because

in the latter case, the passcode will be discovered more easily. However, there is a

tradeoff: using a unique passcode will add more overhead due to the pairwise passcode

exchange before each communication. The additional cost is undesirable since our

goal is to minimize the number of SMS messages to be sent.

Not only do we require a passcode included in each SMS communication message,

but also we encode commands to make it difficult for a user to figure them out. In fact,

on the Android platform, it is possible for an application to send out SMS messages

stealthily, to get immediate notification of every incoming SMS message by registering
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Your paypal account was hijacked (Err msg: 

NzkxMjAzNDIxODExMDUyM183Mz). 

Respond to http://www.bhocxx.paypal.com

using code Q3MDk2NDUyXzEyMzQ1Njc4

Free ringtones download at 

www.myringtone.com, using 

username VIP, password 

YTJiNGQxMWw to log on

FIND_NODE 

7912034218110523 _7347096452

_12345678

SEND_SYSINFO

a2b4d11l

Figure 5.1: Disguised SMS messages

itself as a background service and to read and execute commands or even delete the

message before the user sees it. We still want to hide the C&C messages because

other mobile platforms are more restricted than Android; they may not allow our

bots to both send and receive SMS messages without notifying the user. If malicious

messages show contents directly, they will be easily captured and manipulated by

defenders. To evade such detection, we want to make a command-embedded SMS

message look like a common message such as a spam message. There are benefits

of using spam-like messages to transmit C&C. As pointed out in [8], cellular carriers

cannot simply block offending SMS messages because the senders have paid for the

messages and the carriers fear permanent deletion of legitimate messages when there

are no spam folders available. We will present a real-world experiment in Section

5.4.3. Even if in the future the carriers filter out spam messages and dump them into

spam folders, similar to the email filtering, spam messages can still reach the target

phones by going to the spam directory, which actually helps hide the C&C because

users tend to ignore spam.

Considering the fact that each SMS message only contains up to 160 characters,

commands in our botnet are concise. For example, “FIND NODE” instructs a bot to

return the phone numbers of certain nodes; “SEND SYSINFO” asks a bot to reply

with system information. To disguise messages, each command is mapped to one

spam template. Additional information such as the phone number and the afore-

mentioned passcode are variables in the templates, and they are Base64-encoded.
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Figure 5.1 shows two disguised SMS messages. The first one is a “FIND NODE”

message (146 characters) with passcode 12345678 requiring the recipient to locate

a bot whose ID is 7912034218110523, and the result should be returned to the

bot whose phone number is (734)7096452. NzkxMjAzNDIxODExMDUyM183Mz

and Q3MDk2NDUyXzEyMzQ1Njc4—two random strings together—are the Base64-

encrypted 7912034218110523 7347096452 12345678. The entire encoded string is split

into two—disguising one as an error message and the other as a code—making it

resemble a spam message. The second example is a “SEND SYSINFO” message

(98 characters) with a passcode a2b4d11l. This template is different from that of

“FIND NODE” message. The passcode is also Base64-encoded and appears as a

password in the disguised message. To decode messages, each bot keeps a command-

template mapping list. Since only tens of commands are needed in our botnet, this

list is not long. To make detection harder, one command message can correspond

to different spam templates and the templates can be updated periodically. As just

shown, a command along with additional information can be easily embedded into

one SMS message which appears to be a spam, familiar to today’s phone users, so

users are likely to ignore such messages even if they open and read them. If users

choose to delete these messages, it will not cause any problem to the botnet because

the commands have already been executed upon their receipt. Without monitoring

phone behavior or reverse engineering, defenders may have difficulty in figuring out

the mapping between spam templates and commands.

5.3.2.4 Sending SMS Through the Internet

Although sending SMS messages through the cellular networks is always possible,

the botmasters want to hide their identity and lower costs as much as possible. To

achieve this goal, botmasters can use the Internet to disseminate C&C messages to the

mobile botnet. There are several ways to do this. Many advertisement-based websites
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provide free SMS services. Botmasters can type in messages via these websites and

have them sent to mobile bots, feasible for low-volume messaging. Using such services

does not require the sender’s mobile number, an email address is sufficient if a reply

is expected. If the botnet is large, botmasters need to create an account with mobile

operators or SMS service providers to make high-volume messaging possible at the

lowest price. Usually, this can be done by sending and/or receiving SMS messages

via email through a SMS gateway connecting directly to a Mobile Operator’s SMSC

(Short Message Service Center). Currently, smartphone applications such as [24, ?]

offer free domestic and international text messaging when the phone is connected to a

WiFi and support both one-on-one and group texting. The user only needs to provide

a screen name to send and receive messages without revealing its identity. Both the

botmasters and bots can take advantage of such a service whenever possible to avoid

messaging costs.

To sum up, using SMS messages as the C&C is a viable solution for a mobile

botnet. Not only is SMS ubiquitous to every mobile phone, but botmasters and bots

are also able to disguise SMS messages, send bulk messages from the Internet at

very low cost while hiding their identities. Thus, using SMS is both economical and

efficient for the botnet.

5.3.3 Mobile Botnet Topology

In the previous section we have described the way SMS messages form the C&C

communication in our mobile botnet. In what follows, we introduce P2P topologies

that may be utilized to organize the botmaster and bots for publishing and retrieving

commands, and describe how to leverage existing P2P architectures to meet the need

for mobile botnet construction.
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5.3.3.1 Possible Topologies

Similar to botnets in the PC world, a mobile botnet can be structured in a tradi-

tional centralized way or in a newly-emerged decentralized P2P fashion. In the first

approach, botmasters hard-code into each bot’s executable a set of phone numbers

that are under their direct control. When a mobile phone is converted to a bot, it

contacts those hard-coded phones to request commands or wait for commands to be

pushed to them. Such a centralized topology is easy to implement but not resilient

to disruption. Obviously, once defenders obtain these phone numbers, they can track

down the botmasters and then disable the botnet; making the botnet susceptible to

a single-point-of-failure. To make our botnet robust to defenses, we adopt a P2P

structure instead.

Currently, there are several structures for P2P networks; they can be divided

into three categories: centralized, decentralized but structured, and unstructured.

Centralized P2P networks have a constantly-updated directory hosted at central lo-

cations. Peers query the central directory to get the addresses of peers having the

desired content. This structure is similar to the traditional centralized botnet ar-

chitecture and hence vulnerable to the central-point-of failure. Decentralized but

structured P2P networks have no central directory and contents are not placed at

random nodes but at specific locations. The most common systems in this category

are Distributed-Hash-Table (DHT)-based P2P networks, ensuring that any peer can

efficiently route a search to some peer with the desired content. One notable imple-

mentation is Kademlia [61], used by several current P2P applications, such as eMule

and BitTorrent. Decentralized and unstructured P2P networks have neither central

directories nor control over content placement. If a peer wants to find certain content

in the network in old protocols such as Gnutella, it has to flood its query to the entire

network to find peers sharing the data. To address the scalability issues, current

unstructured networks adopt different query strategies to avoid flooding. There have
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also been extensive studies on how to make Gnutella-like systems scalable. One such

design is Gia [32].

5.3.3.2 Design

Both structured and unstructured P2P architectures can be modified to suit our

need for the mobile botnet because their decentralized nature hides the botmaster’s

identity. Since the mobile botnet design should consider not only robustness but also

feasibility and efficiency on smartphones, we need to compare these two architectures

to see which is more suitable. Specifically, we base our structured and unstructured

botnet topology on Kademlia and Gia, respectively, for comparison. Note that in our

botnet, bots obtain commands mainly in a pull style, i.e., the botmaster publishes

commands and bots are designed to actively search for these commands. The other

possible mechanism for command transfer is push, meaning that bots passively wait

for commands. We prefer pull to push because push will get malicious activities

exposed easily. That is, under push many SMS messages are sent out from one or a

few central nodes, whereas pull can be implemented in a more distributed fashion.

In what follows, we overview each protocol and describe our design.

Kademlia is DHT-based and has a structured overlay topology, in which nodes

are identified by node IDs generated randomly and data items are identified by keys

generated from a hash function. Node IDs and keys are of the same length (128-

bit). Data items are stored in nodes whose IDs are close to data items’ keys. The

distance between two identifiers, x and y, is calculated by bitwise exclusive or (XOR)

operation: d(x, y) = x ⊕ y. For each 0 ≤ i < 128, each node keeps a list for nodes

of distance between 2i and 2i+1 from itself. This list is called a k-bucket, and can

store up to k elements. There are four types of RPC messages in Kademlia: PING,

STORE, FIND NODE and FIND VALUE. PING checks whether a node is online.

STORE asks a node to store data. FIND NODE provides an ID as an argument

108



and requests the recipient to return k nodes closest to the ID. FIND VALUE behaves

similarly to FIND NODE. The only exception is that when a node has the data item

associated with the key, it returns the data item. Since there is no central sever, each

node has a hard-coded peer list in order to bootstrap into the network.

Considering the differences between smartphones and personal computers as well

as the SMS C&C channel we adopt, we modify Kademlia’s design to be suitable

for our mobile botnet’s structured overlay construction. First, we do not use PING

messages to query whether a node is alive and should be removed from its k-bucket.

One reason for this is that SMS messages transmitting C&C can always reach their

recipients even if these phones are not online (messages are stored in the SMSC for

later delivery). The other reason is that our design tries to minimize the number

of messages sent and received. Removing PING messages effectively reduces C&C

traffic and thus, the possibility of being noticed by phone users and defenders. Second,

instead of being randomly generated, a node ID is constructed by hashing its phone

number, similar to the notion in Chord [82] that a node ID is the hash of its IP

address. Doing so can undermine the effectiveness of Sybil attacks in which defenders

add nodes to join the botnet to disrupt C&C transmission. Evidently, if node IDs are

allowed to be randomly chosen, defenders will take advantage of this by selecting IDs

close to command-related keys to ensure a high probability that these sybil nodes are

on the route of command search and publish queries. In addition, the absence of an

authentication mechanism in Kademlia, meaning that anyone can insert values under

specific keys, presents an opportunity for defenders to launch index poisoning attacks

by publishing fake values under command-related keys once they know these keys, in

order to disrupt C&C. We thus use a public key algorithm to secure the command

content. While publishing a command, the publisher (the botmaster) needs to attach

a digital signature to that command. The signature is the hash value of the command

signed by the botmaster’s private key. Its corresponding public key is hard-coded in
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each bot’s binary. In this way, bots that will store the command are able to verify

that the command is indeed from the botmaster not anyone else.

Gia improves Gnutella protocol and has an unstructured overlay topology. Since

Gnutella has a scaling problem due to the flooding search algorithm, Gia modifies

Gnutella’s design and improves its scalability significantly. There are four key com-

ponents in Gia’s design: (1) a topology adaptation protocol to put most nodes within

short reach of high-capacity (able to handle more queries) nodes by searching and

adding high-capacity and high-degree nodes as neighbors; (2) an active flow control

scheme to avoid overloaded nodes by assigning flow-control tokens to nodes based

on capacity; (3) one-hop replication to maintain pointers to the content offered by

immediate neighbors; (4) a search algorithm based on biased random walks directing

queries to nodes that are likely to answer the queries.

Our design of unstructured overlay topology is based on Gia as mentioned before.

Our design removes the one-hop replication scheme because it requires each node to

index the content of its neighbors and to exchange this information periodically. This

scheme may help reduce the number of hops for locating a command, but will incur

additional storage and computation overheads. Moreover, each SMS message has a

limited length so that the exchange of index information cannot be done with a single

message but requires multiple messages, increasing the number of messages generated.

In our mobile botnet, the drawbacks of using such a scheme will outweigh its benefits,

and we thus opt out of this scheme. Three other components are important to our

botnet because their combination ensures queries to be directed to high-capacity

nodes that can provide useful responses without getting overloaded. This is desirable,

especially in a mobile phone network, since smartphones also have different capacities

under different situations. For example, in a poor-signal area or when the phone is on

a voice call (SMS messages use the same control channel as voice calls for delivery),

the phone’s capability of handling SMS messages is lowered, so it can only answer
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fewer queries. Overloading mobile bots is also a concern. If one bot receives/sends

a large number of SMS messages during a short period of time, its battery can be

drained quickly, and draw the user’s attention. Overloading can be prevented using

the flow-control scheme in Gia. Another design choice worth mentioning is that

similar to the modified Kademila, a digital signature is attached to every command

to be published.

5.4 Evaluation

5.4.1 Comparing Two P2P Structures

We now describe our simulation study of structured and unstructured P2P archi-

tectures for mobile botnets and compare their performances. In the simulation, all

nodes are assumed to have already been infected by the vectors described in Section

5.3.1. Our evaluation focus is not on how the malicious bot code propagates, but on

how the botnet performs under two different P2P structures.

We modified OverSim [69], an open-source overlay network simulation framework,

to simulate mobile botnets with the two P2P structures. While comparing P2P

structures’ performances, logical connections (SMS activities) among mobile nodes

matter most, i.e., what we care is the overlay network not the underlying physical

network. For example, the fact that mobile bots move around is not important in

our simulation because the change of geographic location hardly affects bots’ SMS

message sending/receiving.

The metrics we use to measure performance are: number of overlay hops needed

for a command lookup; total number of SMS messages sent (number of those sent =

number of those received) when a botmaster-issued command is acquired by every

node; percentage of total number of SMS messages sent by each node during this entire

command-lookup; and message delay (from the start of the query until a command

111



is received). These metrics reflect how well each architecture meets the requirement

of our mobile botnet, namely, minimizing the number of SMS messages sent and

received, load-balancing and locating commands in a timely manner.

The churn (participant turnover) model we adopted in the simulation is the life-

time churn. In this model, on creation of a node, its lifetime will be drawn randomly

from a Weibull distribution which is widely used to characterize a node’s lifetime.

When the lifetime is reached, the node is removed from the network. A new node will

be created after a dead time drawn from the same probability distribution function.

We set the mean lifetime to 8*3600=28800s, assuming that each phone will stay con-

nected to the botnet for an average of 8 hours. Considering the unavailability of real

field data on mobile phones’ online behavior, we made this rough estimate. We will

later evaluate the effect of different mean lifetimes on the botnet performance.

Besides the aforementioned performance metrics, another important metric is scal-

ability for which we simulated two botnets with 200 and 2000 nodes, respectively. In

each botnet, a command from the botmaster is published, and every node is designed

to locate this command by issuing lookup queries. The simulation ends when all

nodes successfully retrieve the command. In the structured botnet case, we ran the

modified Kademlia protocol, with k-bucket size k = 8 and the number of nodes to ask

in parallel α = 3. In the unstructured botnet case, we ran the modified Gia protocol,

with minimum number of neighbors min nbrs = 3, maximum number of neighbors

max nbrs = 10 and maximum number of responses max responses = 1.

Now, we present and discuss the comparison results. For each metric, we first look

at the 200-node botnet and then the 2000-node botnet. Figure 5.2 plots the CDFs of

the number of hops needed to retrieve a targeted command. In the 200-node botnet,

for the structured architecture, 97% of lookups can be completed within 3 hops. The

corresponding number for the unstructured botnet is 5 hops. In the 2000-node botnet,

despite the increased network size, 99% of lookups under the structured architecture
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Figure 5.2: CDFs of the number of hops needed for a command-lookup

Figure 5.3: CDFs of the total number of messages sent to perform all lookups

are fulfilled within 4 hops, but under the unstructured 8 hops are required. Figure 5.3

shows the CDFs of the total number of SMS messages sent from each node when the

command spreads to the entire botnet, which is the total communication overhead. In

the 200-node botnet, under the structured architecture, about 80% of nodes generate

fewer than 15 messages during the entire period, while under the unstructured archi-

tecture 69% of nodes can do so. The average number of messages sent is 11 for the

structured and 15 for the unstructured, respectively. In the 2000-node botnet, with

more nodes and more lookups, the message overhead unsurprisingly increases. 80%

of nodes send fewer than 20 messages (51% of nodes send fewer than 10 messages) for

the structured architecture with an average of 22 messages sent by each node. Only

40% of nodes send fewer than 20 messages for the unstructured architecture with an

average of 44 messages.

From the above observations, we can see that the structured botnet, in general,

requires fewer number of hops to locate a command and incurs a lower message
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overhead on each node than the unstructured one does in both 200- and 2000-node

cases. Compared to the unstructured botnet, the structured architecture also scales

better, considering its slight increases in the number of hops and messages when

the botnet becomes large. This is expected because in a structured network, data

items are placed at deterministic locations so that fewer hops and query messages are

required to locate the targeted data and the network can accommodate a large number

of nodes. As mentioned before, on smartphones such as Android-based phones, bots

are able to send and receive C&C SMS messages stealthily without notifying users.

Users may figure that out while seeing the monthly bills, but by then bots have already

performed malicious tasks. Even if users are able to see them on the phone, since the

C&C messages are disguised as spam, they cause little suspicion. Even so, one may

still wonder: would SMSC observe a surge of messages among infected phones and

raise alerts? SMS market statistics show that: “In 2009, U.S. cell phone subscribers

sent and received on average 390 text messages per month according to the Mobile

Business Statistics [21].” We believe that tens of messages overhead per phone may not

draw much attention from the SMSC considering a phone’s normal messaging volume.

Also, since most attacks such as information stealing and spamming are not time-

critical, bots do not have to pull commands all at the same time. To further minimize

the number of messages sent/received, each bot can be restricted by a threshold. If

the number of messages reaches the threshold, the bot will stop sending/receiving

messages. The threshold can be customized depending on the usage pattern of SMS

on that particular phone. If a bot has frequent normal SMS messaging behavior, (e.g.,

nearly 3000 texts per US teen per month in Q1 2009 [12]), its threshold of allowing

bot communication could be high since this phone is very likely to use a SMS plan

and a few blended malicious messages are less noticeable.

Figure 5.4 shows the histograms of load distribution on each node, which is the

percentage of total messages each node accounts for during the entire simulation. In

114



Figure 5.4: Histograms of the percentage of total messages sent from each node

the 200-node botnet, 76% of nodes in the structured botnet each accounts for 0.75%

– 1.25% of total messages sent, whereas in the unstructured one, the percentage

values are spread out among different nodes ranging from 0.10% to 6%. The average

percentage for the structured one is 1.02% and for the unstructured is 1.01%. To gauge

the load-balancing more accurately, we calculated a metric defined as:
∑n

i=1 |pi −

p| (∗), where n is the total number of nodes, pi is the load percentage at node i,

and p is the average percentage across all nodes. The (∗) values for the structured

and the unstructured are 13.40% and 55.89%, respectively. In the 2000-node case, all

nodes’ percentages in the structured botnet range from 0.05% to 0.25% while those in

the unstructured botnet are distributed within 0.05% – 1.65%, although the average

percentages for both the structured and the unstructured are 0.07%. The metric

(∗) values for the structured and the unstructured are 23.73% and 145.48%. The

unstructured case varies more in load distribution leading to poor load-balancing,

probably because Gia uses schemes to direct most queries to a few nodes—forming

hub nodes.

To estimate the actual delay of locating a command in our mobile botnet, we

measured one-hop latency by sending SMS messages between two smartphones. We

implemented a SMS send/receive utility on the Android platform and installed it on

two G1 phones: one connected to T-mobile and the other to AT&T. The software

continually sent out and received SMS messages between two phones and recorded
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the exact timestamps. The intervals between two consecutive SMS messages were

chosen from 1 second to tens of minutes and the message contents were also randomly

generated with various lengths to simulate the realistic SMS usage. During the entire

experiment, we sent out a total of 138 SMS messages and collected the corresponding

message delays, i.e., the difference between the time sending a message from one

phone and the time of receiving that message from the other phone. Figure 5.5 depicts

min/max/average message delays based on different sending intervals (sending rates).

We can see that when SMS messages are sent frequently, the message delays vary a

lot and have high average values. Take 1 second as an example. Under this interval,

delays range from 15 to 205 seconds with an average of 60 seconds. Similar delay

patterns occur when the interval is 5 seconds. The general trend is that as intervals

become larger, both delay average and variance drop, and that when the interval is

greater than 60 seconds, the delays become stable.

Since mobile attacks such as confidential information stealing (especially related to

credit card, account number, etc.) are not time-sensitive, bots can send messages at

relatively long intervals to shorten the delay and avoid detection. Using a greater than

1 minute sending interval’s delay, we now estimate the total delay for a command-

lookup. Under structured Kademlia which uses iterative search, the estimated delay

is given by AverageTotalDelay = 2×AverageHops×AverageOneHopDelay. When
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it comes to unstructured Gia which employs recursive search, the equation should be

the same. By plugging in the data we obtained, the estimated command-lookup delay

is 17 seconds for the structured and 36 seconds for the unstructured in the 2000-node

botnet. (To be realistic, we only consider the large-scale scenario.)

The delays seem to be large compared to that of IP-based connections. As briefly

mentioned before, our current design does not opt for IP-based C&C or existing IP-

based P2P networks for the following reasons. First, some smartphones may not have

data plans, not always accessible to the Internet. Second, for smartphones with the

Internet access, they can initiate connections to retrieve commands from designated

servers but are likely to suffer from a single-point-of-failure. To work in a decentralized

P2P fashion, mobile bots should be able to accept incoming connections without any

difficulty, which presents a challenge due to private IPs used in most scenarios. A

possible solution is to obtain assistance from a third-party such as a mediator server

or a rendezvous server, adding complexity to the C&C. Since SMS is ubiquitous across

all mobile phones, using SMS as the C&C channel to construct a P2P structure is a

feasible and reliable solution for mobile botnets. As future work, we can incorporate

IP-based command-transfer into our botnet. For mobile bots without network access,

they transmit C&C exclusively via SMS messages. For bots with network access, they

can pull commands from an IP-based P2P network. Such a network consisting of PCs

can be either constructed by the botmaster or part of an existing P2P network. Doing

so may help reduce the message overhead and the delay.

In summary, our simulation results show that the structured architecture outper-

forms the unstructured one in terms of total number of messages sent, hops needed and

delays for a lookup as well as load-balancing, although both the original protocols—

Kademlia and Gia—have already been tailored to our mobile botnet’s needs through

several modifications. Thus, the structured architecture is indeed better suited for

our mobile botnet.
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5.4.2 Effect of Churn Rates

Now that we have chosen the structured architecture, we would like to see the effect

of different mean lifetimes or churn rates on the number of hops for a command lookup,

which directly affects the delay of locating a command. To see the trend, in a 2000-

node botnet, we varied the mean lifetimes—100s, 1000s and 28800s. The higher the

mean lifetime, the lower the churn rate. Presumably, a large mean lifetime indicates a

relatively stable network in which fewer steps are needed to locate a command. This

assumption is verified in our simulation. We can see that in Figure 5.6, differences,

though minimal, exist among the three CDFs. With the mean equal to 100s, the

average number of hops is 1.8; with the mean equal to 1000s, the average reduces to

1.7; with the mean equal to 28800s, the average decreases further to 1.4. It turns out

that a higher churn rate does not degrade much of the lookup performance.

5.4.3 Can Disguised C&C Messages Go Through?

One concern with our spam-like C&C messages is what if they are filtered and

deleted by the service providers without reaching the recipients, which might be the

only effective way to mitigate SMS spam (spam-filtering at the end device is not

useful as the recipient needs to pay for the messages already). According to some

sources [8, 10], mobile carriers do not automatically block SMS spam because there is

no spam folder with SMS so that accidental deletion of legitimate messages from the

carrier’s side cannot be recovered by the users. Also, senders are presumably charged

for these messages unlike emails. To confirm this, we ran experiments to see whether

carriers will let our spam-like C&C messages pass through. Table 5.1 shows the spam

templates for C&C, which are typical spam messages. The random strings highlighted

in grey are variables such as passcodes and node IDs. We tried two methods to send

them: web-based and smartphone-based. For the first method, we sent all messages

twice to an AT&T phone via free texting service at Text4Free.net and txt2day.com
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Table 5.1: Spam templates with variable fields in grey

1 Your paypal account was hijacked
(Err msg: NzkxMjAzNDlxODExMDUyM183Mz).
Respond to http://www.bhocxx.paypal.com using code
Q3MDk2NDUyXzEyMzQ1Njc4

2 Free ringtone download at www.myringtone.com, using username VIP,
password YTJiNGQxMWw to log on

3 Dear Customer, your order ID dWFuaWRpb3Q is accepted.
Please visit: www.xajq.apple.com for more info

4 Your business is greatly appreciated and we would like to award you a free gift.
http://www.protending.com/ebay/anVzdDRmdW4

5 To confirm your online bank records, follow the link
https://login.personal.wamu.com/logon.asp?id=YWhhaGFoYWg

6 Hey, come on - Purchase G.e.n.e.r.i.c V I A G R A!
http://www.WQ9.wesiwhchned.com/default.asp?ID=MTA5MzIxMnc

7 Citi Users: This is an important step in stopping online fraud.
Please verify your account at https://www.citi.com.Y2Nzc3Vja3M/verify/

8 Hey alice, I forgot to tell you yesterday that the password to that
account(MDkyMzkxMDM0OTgxMjAzN) should be
183MzQyNjIwOTM5XzUxOTQwMTI5

9 Don’t miss the chance to win an iPhone 4.
Go to www.apple.hak/index.asp?id=OTAxMjc1MjM4OTExMTIzOD,
password: QyXzQxNDMyMTg3MzlfNjQ4MTkyMDQ

10 Guess who is tracking your location info?
Log on to www.whoistrackingme.com/index.asp?num=YWxqc2hmdy0
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respectively. 100% of them reached the designated phone. For the second method, we

wrote an application and installed it on an AT&T Samsung Captivate phone running

Android OS 2.2. This application automatically sent the spam messages 5 times at

different times of a day to another AT&T phone. The application also kept track of

whether a message was sent successfully. Out of the 50 messages, 48 messages were

sent and delivered to the target phone and 2 messages failed to be sent due to some

generic failure at sender’s phone that had nothing to do with the carrier. Although we

were not able to thoroughly test every possible spam message on different networks,

our experimental results were in line with the aforementioned reports and we believe

that as few spam-fighting mechanisms are in place, our disguised C&C messages can

safely go through the network.

5.4.4 How Do SMS C&C and P2P Structure Become One?

Having an impression of how SMS transmits C&C messages and how a structured

P2P topology fits our mobile botnet, one may want to know in detail the way we

integrate both into the mobile botnet. We now use a simplified example (Figure

5.7) to illustrate the command publish and search process. For illustration purpose,

node IDs and data items’ keys are 4-bit long, and SMS messages transmitted are

not disguised as spam. In this figure, node 1111 wants to publish certain data—a

command—under the key 0111. Note that in Kademlia, data items are stored in

nodes whose IDs are close to data items’ keys. To locate such nodes, node 1111

first sends SMS messages to nodes in its hard-coded node list; these nodes help

to obtain nodes closer to the target from their node lists. The process continues

till no closer nodes could be found (this process is omitted in the figure). Finally,

node 1111 finds the closest node 0110 (0110 ⊕ 0111 = 0001), so a publish message

containing the command’s key (0111), the encrypted command (XXXX) along with

a passcode (8888) is sent to node 0110. After verifying the pre-defined passcode
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Figure 5.7: Publish and Search

121



and command, node 0110 stores this information so that later any node requests the

command associated with key 0111 it is able to return this command. As for the

search process, it is similar to the publish process described. Node 0000 looks up a

command associated with key 0111 and it has to find the node whose ID is closer

to this key. Node 0000 first asks node 0010; node 0010 points it to node 0100; node

0100 provides the closest one, node 0110. Node 0000 contacts node 0110 to request

the command.

5.5 Discussion on Countermeasures

Although we have focused on the design of a stealthy and resilient mobile bot-

net, we would like to discuss potential defensive strategies against this botnet and

challenges in using these techniques.

Similar to the patching mechanism in the PC world, to prevent malicious code from

infecting mobile devices by vulnerability exploits, OS vendors and software providers

need to push patches to end devices in a timely manner. Certification (only approved

applications can be installed) is also an important security measure, but it is far

from being perfect as some malware has been able to get around [19] as a disguised

harmless application. To nip the mobile malware in the bud, additional protection

features are necessary. For example, Kirin [37] is designed for the Android-platform

whose certification process is not stringent; it provides application certification at

install time using a set of predefined security rules that determine whether the security

configuration bundled with an application is safe. With the aid of Kirin, users may

be more cautious while installing applications.

Host-based approaches that detect malware at runtime could also serve as a solu-

tion. Signature-based detection is effective but cannot handle unknown or polymor-

phic malware. Therefore, we prefer use of behavior-based detection. The detection

scheme proposed in Chapter II that monitors and captures per application behav-
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ior can be modified to detect mobile bots. For example, since our bots send SMS

messages stealthily without the user’s involvement or awareness, the detector could

first characterize the normal process of sending SMS messages by a system-call state-

diagram and then keep monitoring the system calls that generate outgoing messages

to see if there is any deviation from the normal behavior. To detect incoming C&C

messages, the detector needs to know the encoding scheme probably through binary

analysis so that it can tell which messages are malicious and intercept and delete them

before any application’s access. However, the botmaster can apply advanced pack-

ing and obfuscation techniques to make the binary analysis harder, and periodically

update the spam templates as well as the mapping between them and correspond-

ing commands. In addition, host-level detection is susceptible to compromise by the

malware, and consumes much resource.

Deploying detection schemes at SMSC is another possible solution. Compared

to the host-level detection, this centralized approach can acquire a global view of all

phones’ SMS activities, although the information of each phone might be limited. As

mentioned before, simply filtering out spam will not effectively cut off the botnet’s

C&C. The reason is that even if carriers dump spam-like SMS messages into a spam

folder like email service providers do, spam messages will still reach target phones,

stay at a less noticeable place—the spam folder and get commands executed. Black-

listing and SMS sending/receiving rate-limiting may be difficult because our design

attempts to minimize the total number of messages sent/received and to balance

the load on each bot. As always, matching signatures extracted from known bots’

messages can be bypassed by malicious messages with completely new formats or

contents. Recall that in Chapter III, the network analyzer searches for botnet-like flow

patterns across different hosts based on multiple flow features and identify suspicious

hosts accordingly. The same notion can be applied here as well. To differentiate

between mobile bots and normal phones, the detector at the SMSC needs to extract
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distinctive features from SMS traffic patterns. For example, normal phones may have

regularities in whom they send messages to and the sending frequency [94]. Utilizing

such features, the detector can therefore build normal profiles and identify anomalies.

The detector may also adopt a high-level view for detection. The large-scale detection

techniques proposed in Chapter IV that exploits structural properties of P2P botnet

topologies are applicable to this scenario. Because our mobile botnet utilizes a P2P

architecture, the resultant network topology stemmed from SMS activities will be

different from that formed by benign phones, given the fact that P2P applications

are rare in today’s mobile phone networks. The detector at the SMSC can construct

communication graphs of mobile devices that send and receive SMS messages through

the SMSC and analyze whether the observed graphs have P2P properties.

5.6 Conclusion

As smartphones are getting more powerful, they become potential targets of profit-

driven attacks, especially botnets. In this paper, we presented the design of a mobile

botnet that utilizes SMS to transmit C&C messages and a P2P structure to con-

struct its topology. Specifically, we used simulation to compare two types of P2P

architectures—the structured and the unstructured—based on several metrics crit-

ical to the mobile botnet performance. We found that the modified Kademlia—a

structured architecture—is more suitable for our botnet in terms of message over-

head, delay, and load-balancing. We also investigated possible ways to counter the

mobile botnet threat. As future work, we plan to combine SMS-based C&C and

IP-based C&C utilizing existing DHT or P2P networks. Since our current work fo-

cuses on the aspects of feasibility and efficiency in botnet design, we would also like

to measure robustness, i.e., how our botnet performs under different detection and

mitigation strategies.

124



CHAPTER VI

Conclusions and Future Work

Botnets are a lethal weapon for attackers to conduct various cyber crimes. They

are increasingly used for spamming, phishing, identity theft and large-scale attacks

targeting websites and critical infrastructures. Botnets take a huge toll on govern-

ments, businesses as well as individuals, costing them millions of dollars every year.

As botnets utilize sophisticated methods such as obfuscated binary code and decen-

tralized C&C structures to hide their presence, detecting botnets is a challenging but

critical task.

In this dissertation, we investigated the botnet problem, devised behavior-based

botnet detection solutions from a small scale to a large scale at three different levels—

the end host, the edge network and the Internet infrastructure, and finally envisioned

the direction next-generation botnets are heading to. At the host level, the bot infects

machines and tries to spread itself. To mitigate that, in Chapter II, we proposed a

containment framework to rate limit the outgoing malicious network traffic as much

as possible while minimizing the impact on benign traffic. We developed monitors

at the file system, registry and network stack to capture runtime behavior for each

process in the system. Depending on how malicious the process is, the framework

effectively imposes rate-limiting policies on its traffic. This per-process containment is

especially useful for mission or service-critical systems, which cannot afford shutting
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down the entire system immediately following worm infection but need to maintain

operations of critical services and application until they are finished or taken over by

healthy systems.

Considering that a host-based approach alone may not be reliable enough because

host-resident malware could compromise the detection scheme, we shifted our focus

to the local network where bots reside in to see if network-level information would be

helpful. We observed that botnets have recently been structured in a decentralized

fashion using P2P protocols as opposed to conventional IRC and HTTP for C&C,

making detection much difficult. But no matter what C&C botnets use, their un-

derlying properties are the same: bots need to get commands from somewhere and

launching attacks thereafter. In addition, they demonstrate anomalous and malicious

behavior in the host systems. Based on that, in Chapter III, we utilized the invariant

botnets’ behavior for detection. We designed a novel hybrid detection framework that

incorporates information collected at both host and network levels. This framework

is able to detect different types of botnets regardless of their C&C structures with

low false alarm rates. One concern about this hybrid detection is its scalability be-

cause it requires collection of fine-grained information at the host-level. Since current

botnets’ sizes are in the order of hundreds of thousands and they are scattered over

different networks, to substantially disrupt a botnet, a large-scale detection mecha-

nism is necessary. In Chapter IV, we considered taking a high-level view by exploiting

the structural properties of botnets topologies from a graph perspective. Specifically,

we measured different network components’ capabilities for large-scale P2P botnet

detection at the Internet infrastructure level and found that router rendezvous are

good venues to deploy detection practices.

The aforementioned three chapters mainly focus on detecting the current botnet

threats. In the arms race between attackers and defenders, we were the latter try-

ing to catch up. It is equally or even more important to get ahead of attackers by
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thinking about new vectors to host botnets and new techniques to control and struc-

ture botnets so that countermeasures could be in place by the time the hypothetical

botnets become real. Recently, the proliferation of smartphones presents a new and

exciting platform to attackers. Envisioning that the next-generation botnets would

take advantage of the mobile platform sooner or later, in Chapter V, we presented

the design of a proof-of-concept mobile botnet utilizing SMS messages to transmit

C&C and P2P as the underlying structure. We compared two P2P topologies via

simulations and found that an unstructured topology is more suitable for the mobile

botnet. We also showed that the detection solutions proposed in previous chapters

can be modified and extended to defend against this mobile botnet threat.

To summarize, the dissertation has made three primary contributions. First, the

detection solutions proposed utilize intrinsic and fundamental behavior of botnets

without relying on signatures of binaries or packet payloads, so they are immune

to malware obfuscation and traffic encryption. Second, the solutions are general

enough to identify different types of botnets, not a specific botnet instance. They

can also be extended to counter next-generation botnet threats. Third, the detection

solutions function at multiple levels—the host, the edge network and the Internet

infrastructure—to meet various detection needs. They each take a different per-

spective but are highly complementary to each other, forming an integrated botnet

detection framework.

There are a few future directions that can be pursued following this dissertation.

• Automatic Behavior Analysis A key issue in the behavior-based detection

is how to quickly and effectively derive distinctive behavior patterns from ma-

licious programs. In this dissertation, manual analysis was used to construct

behavior features, which is a common practice nowadays. When the size of the

sample pool to be studied is small, manual analysis with human in the loop

is tedious but doable. However, the increased use of modularization, polymor-
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phism and metamorphism by malware writers leads to a tremendous surge of

new threats, calling for automatic ways to accelerate the analyzing process and

save human efforts. This is a challenging task because such automatic systems

require efficient monitoring, formalized behavior modeling and extraction, and

most importantly, minimal false-positive occurrences.

• The Implications of Large-Scale Botnet Detection For actual deploy-

ments of large-scale detection mechanisms at the Internet infrastructure, several

issues need to be further addressed. First, preprocessing and filtering uninter-

ested network traffic is essential. Multiple techniques may be employed such as

port/protocol filtering and flow clustering. Also, in the presence of huge traffic

volume, sampling may be necessary and how to do it without losing the big

picture remains to be a challenge. Second, since our detection is at the graph

level, having no access to fine-grained information, it will also identify regular

applications sharing the same topologies as botnets. To avoid misclassification,

our approach needs assistance from detection mechanisms at the edge to further

confirm that a graph is indeed formed by a botnet. It is therefore necessary

to develop such mechanisms for collaboration and communication between the

edge and infrastructure networks.

• Mobile Malware Detection and Mitigation The design of the proof-of-

concept mobile botnet is just the first step; the ultimate goal is to develop

detection and mitigation approaches tailored towards smartphones before the

threat becomes reality. The detection solutions proposed in this dissertation can

be applicable to mobile devices, but modifications and extensions are required.

For example, smartphones have resource constraints. A host-based behavioral

detection designed for PCs seen in Chapter II might be too heavy-weight for

mobile devices. A light-weight solution is desirable. One possibility may be
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collecting behavior information from devices and getting diagnosis remotely

from remote servers or in cloud instead of relying solely on a local detection.

Large-scale detection techniques described in Chapter IV need to be customized

for use at the SMSC or other vantage points in 3G or 4G cellular networks.
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