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CHAPTER I

Introduction

In this dissertation, I investigate three important problems concerning propor-

tional hazards regression. In two cases, complexities in the data structure require

that new methodology be developed; in the third case, existing methods are applied

in an interesting and non-standard manner.

In Chapter II, statistical methods are developed for case-cohort designs for clus-

tered failure time data. The case-cohort design is commonly used in large cohort

studies. Under this design, covariate data are collected for a random sample (named

the subcohort) from the entire cohort, and for any additional subject who experi-

enced the event of interest (cases) outside the subcohort. Therefore, this design is

appealing for large cohort studies because of its cost savings, in particular when the

disease is rare. It is also useful when multiple disease outcomes are of interest, since

the same subcohort can be used as control group for each of the outcomes.

A number of methods have been proposed in the literature for the analysis of

case-cohort data. For example, different approaches for estimating the regression

parameters and variance estimators have been proposed under the proportional haz-

ards model by Prentice (1986), Self and Prentice (1988), Wacholder et al. (1989),

Lin and Ying (1993), Barlow (1994), Chen and Lo (1999), Borgan et al. (2000),
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Sorensen and Anderson (2000), Chen (2001b), and Samuelsen, Anestad, and Skro-

ndal (2007). Computation through standard statistical software of the regression

parameter and corresponding variance estimators have been described by Therneau

and Li (1999) and Langholz and Jiao (2007) in the context of case-cohort data. Many

other regression models have also been developed to analyze case-cohort data, includ-

ing the additive hazards regression model of Kulich and Lin (2000), Sun, Sun, and

Flournoy (2004), and Ma (2007); semiparametric transformation models of Chen

(2001a), Kong, Cai, and Sen (2004, 2006); and accelerated failure time models of

Nan, Yu, and Kalbfleisch (2006) and Nan, Kalbfleisch, and Yu (2009).

Each of the afore-listed methods of analysis for case-cohort data has concerned

the analysis of univariate failure time data. However, clustered failure time data

are often encountered in public health studies. For example, patients treated at the

same center are unlikely to be independent. In general, two approaches are proposed

dealing with clustered failure time data. A conditional model is more appropriate

when the within-cluster covariate effect is of interest, e.g., Moger, Pawitan, and Bor-

gan (2008). When the population-averaged covariate effect is of interest, a marginal

model is appealing. This model leaves the unobservable correlation structure of

clustered data unspecified. Examples include Wei, Lin, and Weissfeld (1989); Lee,

Wei, and Amato (1992); Cai and Prentice (1995); Spiekerman and Lin (1998); Lu

and Wang (2005). Of particular note, Lu and Shih (2006) considered a marginal

approach to extend case-cohort designs for clustered failure time data.

In Chapter II, we develop methods based on estimating equations for case-cohort

designs for clustered failure time data. We assume a marginal hazards model, with

a common baseline hazard and common regression coefficient across clusters. The

proposed estimators of the regression parameter and cumulative baseline hazard are
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shown to be consistent and asymptotically normal, and consistent estimators of the

asymptotic covariance matrices are derived. The regression parameter estimator is

easily computed using any standard Cox regression software that allows for offset

terms. The proposed estimators are then investigated in simulation studies, and

demonstrated empirically to have increased efficiency relative to some existing meth-

ods. The proposed methods are applied to a study of mortality among Canadian

dialysis patients. Therefore, the methods developed in this chapter will complement,

if not substitute, current methods in treating complex case-cohort data that are

encountered more commonly.

The case-cohort design is a special case of what is known as an outcome-dependent

sampling (ODS) design, wherein subjects are selectively sampled based on the out-

comes of interest (e.g., death, survival). Efficient and cost-saving sampling schemes

can be derived through ODS. Most methods for analyzing ODS-based data have an

underlying assumption that, given covariate information, the censoring and failure

times are independent. However, this assumption is sometimes violated in public

health studies. For example, wait-listed end-stage liver disease (ESLD) patients may

receive a liver transplant and therefore not die on the wait-list, an issue which could

produce substantial bias in the estimation of wait-list mortality if treated as inde-

pendent censoring. The Inverse Probability of Censoring Weighting (IPCW) method

has been widely used for the analysis of dependently censored data. There is much

literature dealing with the IPCW method; e.g., Robins and Rotnitzky (1992); Robins

(1993a); Robins and Finkelstein (2000) ; Scharfstein and Robins (2002a); Matsuyama

and Yamaguchi (2008).

In Chapter III, we consider failure time data in the setting with both ODS and

dependent censoring. We propose hazard regression methods based on weighted es-
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timating equations which employ a double-inverse-weighting scheme. The proposed

weights correspond to the probability of being sampled and the probability of remain-

ing uncensored. The proposed estimators of the regression parameter are shown to

be consistent and asymptotically normal, and consistent estimators of the asymptotic

covariance matrices are derived. Finite sample properties of the proposed estimators

are examined through simulation studies. The proposed methods are applied to in-

vestigate liver wait-list mortality using data obtained from the Scientific Registry of

Transplant Recipients (SRTR).

Chapter IV deals with the challenges of fitting complex models used in the real

data analysis in Chapter II to data from the smaller countries participating in the

Dialysis Outcomes and Practice Patterns Study (DOPPS), a well-known interna-

tional cohort study. Hemodialysis (HD) is the most common method of renal replace-

ment therapy. Under a thrice weekly HD schedule (Mon/Wed/Fri, Tue/Thu/Sat) the

highest risk of death is thought to be on Mondays and Tuesdays since these days fol-

low the longest intervals without the benefit of dialysis. Many studies have assessed

the association between day-of-week-specific mortality risk and dialysis schedule.

Examples include Bleyer, Russell, and Satko (1999); Karnik et al. (2001); Bleyer

et al. (2006). These studies show that there is an increased risk of sudden death on

Monday for MWF schedule patients, and on Tuesday for TTS schedule patients.

However, this phenomenon of highest risk of mortality on Monday for MWF

schedule patients, and on Tuesday for TTS schedule patients has rarely been studied

in large databases. Moreover, no previous study has addressed whether the day-

of-week effect is similar across countries. Most importantly, the logistic regression

model, the most commonly used model for the analysis of HD studies, is difficult to

adjust for time-dependent covariates or appropriately account for censoring. Survival
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analysis (Cox regression) is the natural choice, since the endpoint is time-to-death.

In Chapter IV, we proposed a Cox model with time-dependent covariates to eval-

uate the association between dialysis schedule and day-of-week-specific mortality for

DOPPS patients from the U.S., European countries and Japan. Three models were

fitted, distinguished by the factor of interest: (i) day of the week (ii) day of dialysis

schedule (iii) days since last dialysis. The models are compared and contrasted, with

special attention given to the setting where the sample size is small. We addressed

whether the Monday/Tuesday effect is similar across countries. Our results indicate

that in all three regions, HD patients have a higher death risk on Mondays if they

are on a MWF schedule, or Tuesdays if they are on TTS schedule. Our results imply

that there may be advantages to a more frequent dialysis schedule, an idea which

has not been evaluated frequently in the nephrology literature.



CHAPTER II

Proportional Hazards Regression for the Analysis of

Clustered Survival Data from Case-Cohort Studies

2.1 Introduction

The case-cohort design is commonly used in large cohort studies. The design en-

tails collecting covariate data for all subjects who experienced the event of interest

(cases) in the full cohort, and for a random sample (the subcohort) from the entire

cohort. Therefore, the most important advantage of this design is cost savings, espe-

cially when the disease is rare. A second advantage of the case-cohort design is that

the subcohort can be used as the comparison group for multiple disease outcomes.

A number of methods have been proposed for regression analysis of case-cohort data

under the proportional hazards model. Prentice (1986) proposed a pseudo-likelihood

method for estimating the regression parameter. Self and Prentice (1988) and Lin

and Ying (1993), using different approaches, derived large sample properties of the

pseudo-likelihood related estimators. Wacholder et al. (1989) presented variance es-

timators for the log relative hazard through a bootstrap resampling plan. Barlow

(1994) proposed a computationally convenient robust variance estimator. Chen and

Lo (1999) suggested a class of estimating functions which in many cases offered im-

proved efficiency. Therneau and Li (1999) and Langholz and Jiao (2007) described

the computation of parameter and variance estimates using common software pack-

6
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ages, such as SAS and R/S-PLUS. Borgan et al. (2000), Chen (2001b) and Samuelsen

et al. (2007) obtained more efficient estimators by different approaches. Sorensen and

Anderson (2000) considered competing risks analysis of case-cohort data.

The case-cohort design has also been studied in the context of other regression

models. For example, Kulich and Lin (2000), Sun et al. (2004) and Ma (2007) studied

the case-cohort design under an additive hazards regression model. Chen (2001a)

and Kong et al. (2004, 2006) considered semiparametric transformation models in the

case-cohort design. Nan et al. (2006) and Nan et al. (2009) considered accelerated

failure time models and rank based analyses in case-cohort designs.

Each of the studies in the preceding paragraphs focused on univariate failure time

data. However, clustered failure time data are commonly encountered in biomedical

research. For example, in a family disease study, members from the same family

may be correlated due to shared genetic and/or environmental factors. Similarly,

outcomes of patients treated at the same center may be correlated. In these cases,

valid statistical inference requires that one account for the intra-cluster dependence.

Methods proposed for handling clustered failure time data can generally be catego-

rized into two approaches: conditional models and marginal models. As an example

of a conditional approach, frailty models specify the correlation structure by pos-

tulating a random effect (frailty) that is common to individuals within the same

cluster. The regression parameter for such models is interpreted conditional on the

random effect. For example, Moger et al. (2008) proposed frailty based case-cohort

methods for analyzing family survival data with families as the sampling unit. If

the investigator is interested in population averaged covariate effects, a marginal

model is appealing; such a model leaves the dependence structure unspecified in the

model formulation, but adjusts for the dependence in the inference. Several methods
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have been proposed for fitting marginal proportional hazards models; e.g, Wei et al.

(1989); Lee et al. (1992); Cai and Prentice (1995); Spiekerman and Lin (1998); Lu

and Wang (2005). Lu and Shih (2006) considered case-cohort designs adapted to

clustered failure time data under a marginal model and developed inference proce-

dures.

Our proposed method is motivated by a retrospective cohort study of a pos-

sible day-of-week effect on death rates among patients receiving hemodialysis to

treat advanced kidney failure. Patients treated at the same renal center are likely

to be correlated due to center-specific practice patterns as well as a tendency to

share socio-economic and environmental characteristics. The dialysis schedule, Mon-

day/Wednesday/Friday (M/W/F) or Tuesday/Thursday/Saturday (T/T/S), may

put patients at higher risk of death on certain days. For example, patients may

have higher risk of death on Monday and Tuesday since, on average, these days

follow the longest intervals without dialysis.

In this chapter, we propose methods based on estimating equations for three

case-cohort designs that are applicable to clustered survival data. We assume a

marginal proportional hazards model with a common baseline hazard and common

regression coefficient across clusters. The case-cohort sampling designs we consider

are similar to those proposed by Lu and Shih (2006). However, the designs we propose

feature Bernoulli sampling, which is convenient for establishing theoretical properties.

More importantly, we construct the risk sets using not only the information in the

subcohort, but also the information collected on future deaths, similar to Chen and

Lo (1999). As a result, the proposed estimators have increased efficiency relative to

those of Lu and Shih (2006).

The remainder of this chapter is organized as follows. In Section 2, we describe the
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proposed estimation procedures. In Section 3, we derive large sample properties for

the proposed estimators. We conduct simulation studies in Section 4 to investigate

the finite sample properties of the proposed estimators. In Section 5, we apply the

proposed methods to a national organ failure database. The chapter concludes with

some discussion in Section 6. All proofs are presented in the Web Appendix.

2.2 Proposed Methods

We first describe case-cohort designs with Bernoulli sampling for clustered failure

time data. The full cohort consists of n independent clusters, and the ith cluster

(i = 1, . . . , n) has mi correlated subjects. We assume that subjects within the same

cluster are exchangeable. In advance of follow-up, a random sample of the entire

cohort, called the subcohort, is selected. Covariate data are then collected from

individuals in the subcohort as well as those observed to fail in the entire cohort.

Three designs are considered to obtain the subcohort:

• Design A: Randomly sample individuals from each cluster with Bernoulli sam-

pling. That is, each individual in each cluster has an independent fixed proba-

bility of being selected to the subcohort.

• Design B: Randomly sample clusters from the full cohort with Bernoulli sam-

pling.

• Design C: Randomly sample clusters from the full cohort with Bernoulli sam-

pling, then randomly sample subjects with Bernoulli sampling from the selected

clusters.

These are the same designs proposed by Lu and Shih (2006), except that we con-

sider Bernoulli sampling, which greatly simplifies asymptotic derivations. Note that

Design A and Design B are special cases of Design C.
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Let Tij and Cij be the failure time and censoring time, where (i, j) represents the

jth subject in the ith cluster. Let Zij(t) be the p-vector of possibly time-dependent

covariates; with any time-dependent covariates assumed to be external (Kalbfleisch

and Prentice, 2002). We assume that Tij and Cij are independent conditional on the

observed covariates. Let Xij = Tij ∧Cij , Yij(t) = I (Xij ≥ t), δij = I (Tij < Cij), and

Nij(t) = I (Tij ≤ Cij ∧ t), where I(·) is the indicator function and a∧ b = min {a, b}.

We assume that {Nij(·), Yij(·),Zij(·), mi :

j = 1, . . . , mi} are independently and identically distributed for i = 1, . . . , n. Let Hi

indicate whether or not cluster i is selected into the subcohort, and let Hij be the

indicator for subject (i, j) being sampled as a potential individual in the subcohort.

Subject (i, j) is selected into the subcohort if and only if HiHij = 1. The variates Hi

and Hij are assumed to be independent of {Nij(·), Yij(·),Zij(·), mi : j = 1, . . . , mi},
for all i, j. Under Design A, B, and C, the Hi’s are independent Bernoulli variables

with E(Hi) = γ for all i = 1, . . . , n, where E(·) denotes expectation, and the Hij’s

are independent Bernoulli variables with E(Hij) = θ, for all i = 1, . . . , n and j =

1, . . . , mi. Under Design A, Hi = 1, for all i = 1, . . . , n, i.e., γ = 1. Under Design B,

Hij = 1, for all i = 1, . . . , n, j = 1, . . . , mi; i.e., θ = 1.

Let the marginal hazard of failure of individual (i, j) be specified by a proportional

hazards model (Cox (1972)),

λij(t) = λ0(t)e
βT
0 Zij(t),(2.1)

where λ0(·) is an unspecified marginal baseline hazard function and β0 is a p-

dimensional regression parameter. Since we are primarily interested in the estimation

of β0, we leave the dependence structure of individuals within a cluster unspecified.

Many authors have studied the estimation of the regression parameters under

model (2.1). Under a working independence assumption, Lee, Wei and Amato (1992)
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proposed the estimating function

ULWA(β) =
n∑

i=1

mi∑
j=1

∫ τ

0

{Zij(u)−ELWA(β, u)}dNij(u),

where τ < ∞ equals the maximum follow-up time, ELWA(β, u) = S
(1)
LWA(β, u)/

S
(0)
LWA(β, u), S

(d)
LWA(β, u) = n−1

∑n
i=1

∑mi

j=1 Yij(u)e
βTZij(u)Zij(u)

⊗d, with a⊗0 = 1,

a⊗1 = a, and a⊗2 = aaT . Then, β0 of model (2.1) can be estimated with β̂LWA, the

solution to the estimating equation ULWA(β) = 0. Lu and Shih (2006) considered

case-cohort designs for clustered failure time data under model (2.1) and proposed

to estimate β0 with β̂LS, the root of the estimating equation ULS(β) = 0, where

ULS(β) =

n∑
i=1

mi∑
j=1

∫ τ

0

{Zij(u)−ELS(β, u)} dNij(u),

where ELS(β, u) = S
(1)
LS(β, u)/S

(0)
LS(β, u) and

S
(d)
LS(β, u) = n−1

∑n
i=1

∑mi

j=1HiHijYij(u)e
βTZij(u)Zij(u)

⊗d.

Lu and Shih (2006) used only subcohort subjects to construct the risk set. Since

information on all failures in the full cohort are available, failures outside the sub-

cohort can also contribute to the risk set, as proposed by Chen and Lo (1999) for

independent subjects. We propose three procedures to estimate β0, the procedures

differing with respect to their treatment of the marginal observed-event probability,

Pr(δij = 1), which we denote by p0. In the first proposed procedure, p0 is assumed

known, which follows the Chen and Lo (1999) approach. Usually, p0 is not known,

but this gives a baseline to which other approaches can be compared. We estimate

β0 by β̂t, the solution to U(β, p0) = 0, where

U(β, p) =
n∑

i=1

mi∑
j=1

∫ τ

0

{
Zij(u)−E(β, p, u)

}
dNij(u)(2.2)

E(β, p, u) =
S

(1)
(β, p, u)

S
(0)
(β, p, u)
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S
(d)
(β, p, u) =

n∑
i=1

mi∑
j=1

{
p

N1

δij +
1− p

n0

(1− δij)HiHij

}
Yij(u)e

βTZij(u)Zij(u)
⊗d

with N1 =
∑n

i=1

∑mi

j=1 δij , and n0 =
∑n

i=1

∑mi

j=1(1 − δij)HiHij. The motivation for

building estimating equation (2.2) is that E(β, p0, u) is a consistent estimator of

E {Zij(u)|Xij = u, δij = 1}, where

E {Z(u)|X = u, δ = 1}

=
E
{
Y (u)Z(u)eβ

TZ(u)
}

E {Y (u)eβ
TZ(u)

}
=

p0E
{
Y (u)Z(u)eβ

TZ(u)|δ = 1
}
+ (1− p0)E

{
Y (u)Z(u)eβ

TZ(u)|δ = 0
}

p0E
{
Y (u)eβ

TZ(u)|δ = 1
}
+ (1− p0)E

{
Y (u)eβ

TZ(u)|δ = 0
} .

(2.3)

The first (second) conditional means in numerator and denominator can be estimated

by their respective empirical counterparts from all failures in the whole cohort (con-

trols in the subcohort). A derivation of (2.3) is given in the Web Appendix.

In almost all settings, the population failure probability, p0, is unknown but can be

estimated using the subcohort case proportion, p̂s, or the full cohort case proportion,

p̂w. These give rise to estimating functions U(β, p̂s) and U (β, p̂w), with solutions

β̂s and β̂w, respectively. In cases where the study cohort is well defined, p̂w can be

computed and used to obtain β̂w, which has the most practical value. When the

study cohort is less well-defined, β̂s is a suitable alternative. For example, if the

study does not have a roster for the full cohort (such that the cohort size, N , is not

known), then β̂s can still be used.

Some simple algebra shows that

S
(d)
(β, p̂s, u) =

q̂1
n0 + n1

n∑
i=1

mi∑
j=1

{
δij +

1

q̂1
(1− δij)HiHij

}
× Yij(u)e

βTZij(u)Zij(u)
⊗d
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S
(d)
(β, p̂w, u) =

1

N

n∑
i=1

mi∑
j=1

{
δij +

1

q̂0
(1− δij)HiHij

}
Yij(u)e

βTZij(u)Zij(u)
⊗d,

where N = N0+N1, q̂1 = n1/N1, and q̂0 = n0/N0, with n1 =
∑n

i=1

∑mi

j=1HiHijδij and

N0 =
∑n

i=1

∑mi

j=1(1 − δij). The estimating equations are similar, therefore, to those

arising from inverse sampling probability weighting (ISPW), such as that proposed

by Kalbfleisch and Lawless (1988) and Borgan et al. (2000) for the Cox model;

Kulich and Lin (2000) for the additive hazards model; and Nan, Kalbfleisch and Yu

(2009) for the accelerated failure time model. These studies focused on univariate

failure time data.

The cumulative baseline hazard function, Λ0(t) =
∫ t

0
λ0(u)du, can be consistently

estimated by

Λ̂0(t; β̂, p̂) =

∫ t

0

dN(u)

μ̂S
(0)
(β̂, p̂, u)

,(2.4)

where N(u) = n−1
∑n

i=1

∑mi

j=1Nij(u), μ = E(mi), and μ̂ = n−1
∑n

i=1mi. In (2.4),

either p̂s, p̂w or p0 could be used.

The proportional hazards assumption may be violated for one or more covariates,

which could be individual level covariates such as age or time since first dialysis, or

cluster level covariates such as center size. Our proposed methods can be extended to

allow for stratification on such covariates; details can be found in the Web Appendix

Section A.5.

2.3 Asymptotic Properties of the Proposed Estimators

We make the following assumptions:

(a) {Nij(·), Yij(·),Zij(·), mi : j = 1, . . . , mi} , i = 1, . . . , n are independently and iden-

tically distributed.

(b) P {Yij(t) = 1} > 0 for t ∈ (0, τ ], i = 1, . . . , n, j = 1, . . . , mi, and all mi .
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(c) |Zijh(0)| +
∫ τ

0
|dZijh(t)| < BZ < ∞ for i = 1, . . . , n, j = 1, . . . , mi, and all mi,

where Zijh is the hth component of Zij and BZ is a constant.

(d) There exists a neighborhood B of β0 such that sup
u∈[0,τ ],β∈B

‖S(d)(β, u)−s(d)(β, u)‖
P−→ 0 for d = 0, 1, 2, where s(d)(β, u) = E

{
S(d)(β, u)

}
is absolutely continuous,

for β ∈ B, uniformly in u ∈ (0, τ ]. Moreover, s(0)(β, u) is assumed to be bounded

away from zero.

(e) For d = 0, 1, 2, sup
u∈[0,τ ],β∈B

‖S(d)
(β, p, u)− μ−1s(d)(β, u)‖ P−→ 0.

(f) The matrix A(β0) is positive definite, where

A(β) =

∫ τ

0

{
s(2)(β, u)/s(0)(β, u)− e(β, u)⊗2

}
dF (u)

with e(β, u) = s(1)(β, u)/s(0)(β, u), and F (u) = E {N(u)
}
.

(g) Λ0(τ) <∞, and λ0(t) is absolutely continuous for t ∈ (0, τ ].

Our main results are given in Theorems 1 - 4 below, the proofs of which are given

in the Web Appendix. We provide only brief summary remarks about the proofs

below.

Theorem 1: Under conditions (a) − (g), as n → ∞, n−1/2U(β0, p0) converges

to a mean zero Normal distribution with covariance Σ(β0, p0) = E {W 1(β0, p0)
⊗2},

with

W i(β, p) =

mi∑
j=1

∫ τ

0

{Zij(u)− e(β, u)}

×
[
dNij(u)−

{
1

μ
δij +

1

μγθ
(1− δij)HiHij

}
Yij(u)e

βTZij(u)

× {
μ−1s(0)(β, u)

}−1
dF (u)

]
+D1(β)G1i(p) +D2(β)G2i(p)

D1(β) = E
[

m1∑
j=1

∫ τ

0

{Z1j(u)− e(β, u)} δ1j
μ2p

Y1j(u)e
βTZ1j(u)
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×
∑n

k=1

∑mk

l=1 dNkl(u)

μ−1s(0)(β, u)

]
D2(β) = E

[
m1∑
j=1

∫ τ

0

{Z1j(u)− e(β, u)}

×(1− δ1j)H1H1j

(μγθ)2(1− p)
Y1j(u)e

βTZ1j(u)

∑n
k=1

∑mk

l=1 dNkl(u)

μ−1s(0)(β, u)

]
G1i(p) = n−1

(
mi∑
j=1

δij − μp

)

G2i(p) = n−1

{
mi∑
j=1

(1− δij)HiHij − μγθ(1− p)

}
.

In the Web Appendix, we show that n−1/2U(β0, p0) = n−1/2
∑n

i=1W i(β0, p0)+op(1);

hence, n−1/2U(β0, p0) is essentially a scaled sum of n independent and identically

distributed random quantities with mean zero and finite variance. The proof of

asymptotic normality follows from the Multivariate Central Limit Theorem (MCLT)

and various results from empirical process theory. The result in Theorem 1 is used

to derive the limiting distribution of the proposed estimators.

Theorem 2: Under conditions (a) − (g), β̂t converges in probability to β0 and

n1/2(β̂t − β0) converges in distribution to a mean zero normal distribution with co-

variance matrix A(β0)
−1Σ(β0, p0)A(β0)

−1.

The proof of the consistency of β̂t follows by the Inverse Function Theorem (Foutz,

1977). The proof of asymptotic normality follows from a Taylor series expansion and

the Cramèr-Wold device.

Theorem 3: Under conditions (a) − (g), both β̂s and β̂w converge in prob-

ability to β0, and each of n1/2(β̂s − β0) and n1/2(β̂w − β0) converges in distribu-

tion to a zero-mean Normal with covariance matrices A(β0)
−1Ωs(β0)A(β0)

−1 and

A(β0)
−1Ωw(β0)A(β0)

−1 respectively, where Ωa(β) = E {ψa
1(β, p0)

⊗2} and ψa
i (β, p)
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=W i(β, p) +B(β)Qa
i (p) for a = s or w, with Qs

i (p) = {μγθ}−1 ×∑mi

j=1HiHij(δij −

p), Qw
i (p) = μ−1

∑mi

j=1(δij − p), and

B(β) =

∫ τ

0

{
s(1)(β, u)r(0)(β, u)

s(0)(β, u)2
− r(1)(β, u)

s(0)(β, u)

}
dF (u)

r(d)(β, u) =
1

p0
E
{
δ11Y11(u)e

βTZ11(u)Z11(u)
⊗d
}

− 1

1− p0
E
{
(1− δ11)Y11(u)e

βTZ11(u)Z11(u)
⊗d
}
.

The results in Theorem 1, combined with two Taylor series expansions, the MCLT

and Slutsky’s Theorem, conclude the proof of asymptotic normality of β̂s and β̂w

in Theorem 3. The covariance matrices in Theorems 2 and 3 can be consistently

estimated from the observed case-cohort data, as described in the Web Appendix.

We now describe asymptotic results pertaining to the proposed baseline cumula-

tive hazard estimator.

Theorem 4: Under conditions (a) − (g), Λ̂0(β̂, p̂, t) converges in probability

to Λ0(t) uniformly in t ∈ [0, τ ], and n1/2
{
Λ̂0(β̂, p̂, t)− Λ0(t)

}
converges weakly

to a Gaussian process with mean zero and covariance function at (s, t) given by

E {φ1(β0, p0, s)φ1(β0, p0, t)}, where

φi(β, p, t) = k(β, p, t)Qi(p) + h
T (β, p, t)A(β)ψi(β, p) + χi(β, p, t)

χi(β, p, t) =

mi∑
j=1

∫ t

0

1

s(0)(β, u)
dMij(u)

+

mi∑
j=1

∫ t

0

1

s(0)(β, u)2

{
1− δij − 1

γθ
(1− δij)HiHij

}
× Yije

βTZij(u)dF (u)

k(β, p, t) = −
∫ t

0

μr(0)(β, p, u)

s(0)(β, u)
dΛ0(u)

h(β, p, t) = −
∫ t

0

e(β, u)dΛ0(u).
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A sketch of the proof is given in Web Appendix A.

2.4 Numerical Studies

We conducted simulation studies to investigate the finite sample properties of

the estimators proposed in Section 2, and to compare the proposed methods with

those of Lu and Shih (2006). We generated clustered failure time data from n = 100

clusters. Cluster sizes, mi, were simulated from a Binomial (50,0.8) distribution for

i = 1, . . . , n, with μ = E(mi) = 40. The covariate Zij took values 1 and 0, with

probabilities 0.5 and 0.5 respectively. The failure time for the jth subject within the

ith cluster was simulated from a distribution with conditional hazard function

λij(t|Zij, Qi) = Qih0(t) exp {ξ0Zij} ,

where Qi is a frailty variable following a positive stable distribution with index

α = 0.8. The variate Qi is generated following the method in Chambers et al.

(1976),

Qi =
sin(αQ1i)

{sin(Q1i)}1/α
[
sin {(1− α)Q1i}

Q2i

](1−α)/α

,

where Q1i follows a U(0, π) distribution, Q2i follows an exponential distribution with

mean 1, and Q1i and Q2i are independent. The baseline hazard function is given

by h0(t) = α−1tα
−1−1, with ξ0 set to log(0.5)/α = −0.8664 or 0. The resulting

marginal hazard function is λij(t|Zij) = λ0(t) exp {β0Zij}, and the marginal baseline

hazard function is given by λ0(t) = 1, 0 ≤ t < ∞, β0 = αξ0 = log(0.5) or 0. The

censoring times Cij were constant and equal to 1, which led to average observed

event probabilities of p = 0.51 or p = 0.63. For each data generation, for Design

A, individuals within each cluster were selected into the subcohort by Bernoulli

sampling with equal probability 0.2 or 0.15. For Design B, we selected clusters by
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Bernoulli sampling with probability 0.2 or 0.15. For Design C, we first sampled

clusters by Bernoulli sampling with probability 0.4 or 0.3, then sampled individuals

from those selected clusters by Bernoulli sampling with probability 0.5. Therefore for

each design, we would expect approximately 800 or 600 individuals in the subcohort.

In another data configuration, β0 = log(0.5), the marginal baseline hazard function

is given by λ0 = 0.2. The covariates Zij follows either a Bernoulli distribution,

which takes value 1 with probability 0.5, or a Normal distribution with mean 0 and

variance 1. The other settings were the same except that only approximately 800

individuals were sampled in the subcohort. In this data configuration, the average

observed event probabilities are p = 0.14 and p = 0.21. Each data configuration was

replicated 1000 times. The true case percentage, p0, would typically be unknown in

real world settings; however, it is of course available in our simulation study and is

evaluated for comparison purposes.

Tables 2.1 and 2.2 display the results of our proposed estimators and those of

Lu and Shih (2006). For each data configuration, we list the empirical bias (BIAS)

and standard deviation (ESD), average asymptotic standard error (ASE), asymp-

totic relative efficiency (ARE) with respect to the full cohort and empirical coverage

probability (CP). Each of the estimators is approximately unbiased, and the variance

estimators appear to be reasonably accurate. The 95% empirical coverage probabil-

ities are generally close to the nominal value. In Table 2.1, for Design B, slight

under-estimation of the standard error and under-coverage occur when β0 = 0 and

ns = 600. This is due to the small number of clusters in the subcohort. For Design

B, clusters are sampled and all individuals in the selected clusters are kept in the

subcohort. Little extra information is gained when more subjects in the same cluster

are included, since subjects within cluster are correlated. However, more information
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is available when the number of sampled clusters increases and, correspondingly, the

under-coverage is reduced when ns is increased to 800.

In Table 2.1, the proposed method appears to be more efficient than that of Lu

and Shih (2006), at least for the examples considered. In comparing the proposed

sampling designs, for approximately equal subcohort sizes, it appears that Design

A is more efficient than Design C, which is more efficient than Design B. This can

be attributed to differences in the number of clusters sampled and the resulting

differences in the amount of independent information contained in the subcohort.

This efficiency gain is more obvious when the covariate is cluster-specific (Web Table

6). In Table 2.2, the efficiency gain of the proposed methods over those of Lu and

Shih (2006) is less evident in the presence of a lower event rate. This can be explained

by there being fewer failures outside the subcohort to include in the risk sets.

Additional scenarios have been evaluated in order to examine various aspects, such

as continuous covariates, stronger correlation among failure times, smaller number

of clusters, smaller subcohort size, lower event rate, as well as the performance of

the stratified methods. Results of several of these numerical studies are available in

the Web Appendix. In the examples we evaluated, the proposed methods generally

work well.

Also in the Web Appendix, the estimates based on the proposed methods are com-

pared to those based on simple random sampling (SRS), and to an inverse sampling

probability weighting (ISPW) method. The proposed methods do not lose efficiency

relative to the SRS or ISPW methods, at least for the set-ups considered.

For the data settings with β0 = log(0.5), λ0(t) = 1 and ns = 800, we calculated

the average of the estimate of Λ0(t) at t = 0.02, t = 0.04, · · · , t = 1.0 based on

1000 replications. Figure 2.1 displays the average point estimate for the cumulative
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Table 2.1: Simulation results based on 1000 replications: β0 = log(0.5).

Design & n = 100, ns = 800 n = 100, ns = 600
Method Bias ESD ASE ARE CP Bias ESD ASE ARE CP

β0 = log(0.5)

FC -0.001 0.053 0.054 1.000 0.959 -0.001 0.053 0.054 1.000 0.959

A SC -0.003 0.083 0.082 0.434 0.954 -0.002 0.092 0.091 0.352 0.956
WC -0.003 0.082 0.082 0.434 0.953 -0.002 0.091 0.091 0.352 0.958
T -0.004 0.080 0.079 0.467 0.951 -0.003 0.089 0.088 0.377 0.950
LS -0.003 0.091 0.089 0.368 0.933 -0.003 0.103 0.100 0.292 0.941

B SC -0.001 0.083 0.084 0.413 0.946 -0.001 0.094 0.093 0.337 0.943
WC -0.003 0.086 0.086 0.394 0.940 -0.004 0.096 0.095 0.323 0.941
T -0.004 0.084 0.083 0.423 0.933 -0.004 0.094 0.093 0.337 0.929
LS -0.002 0.091 0.091 0.352 0.954 -0.004 0.104 0.102 0.280 0.943

C SC 0.000 0.084 0.083 0.423 0.955 -0.001 0.093 0.092 0.345 0.941
WC -0.001 0.083 0.083 0.423 0.945 -0.002 0.093 0.092 0.345 0.942
T -0.002 0.082 0.080 0.456 0.942 -0.003 0.092 0.090 0.360 0.942
LS -0.002 0.090 0.090 0.360 0.944 -0.004 0.102 0.101 0.286 0.945

β0 = 0

FC 0.000 0.040 0.040 1.000 0.942 0.000 0.040 0.040 1.000 0.942

A SC 0.002 0.035 0.036 0.298 0.954 0.001 0.082 0.082 0.238 0.952
WC 0.002 0.035 0.036 0.297 0.955 0.001 0.082 0.082 0.238 0.943
T 0.002 0.035 0.036 0.297 0.952 0.001 0.083 0.082 0.238 0.943
LS 0.006 0.038 0.041 0.225 0.967 0.003 0.095 0.095 0.177 0.951

B SC 0.005 0.037 0.036 0.302 0.936 0.001 0.085 0.080 0.250 0.929
WC 0.005 0.036 0.036 0.292 0.939 0.001 0.087 0.079 0.256 0.915
T 0.005 0.036 0.036 0.293 0.939 0.001 0.087 0.079 0.256 0.913
LS 0.002 0.041 0.041 0.231 0.946 0.002 0.099 0.093 0.185 0.922

C SC 0.008 0.035 0.036 0.297 0.950 0.002 0.086 0.081 0.244 0.928
WC 0.008 0.035 0.036 0.298 0.947 0.002 0.086 0.081 0.244 0.927
T 0.008 0.035 0.036 0.298 0.947 0.002 0.086 0.081 0.244 0.922
LS 0.012 0.040 0.041 0.225 0.939 0.003 0.097 0.095 0.177 0.937

Estimate of β0 from 5 methods: Method FC = full cohort analysis; SC = estimating p0 using the subcohort, p̂s;
WC = estimating p0 using whole cohort, p̂w; T = using true value, p0; LS = Lu and Shih (2006) estimator.
The number of clusters n = 100, mi follows a Bin(50,0.8) distribution, α=0.8, λ0=1, censoring time C=1, Z follows
a Bernoulli(0.5) distribution. The number of individuals in the subcohort is either ns = 800 or ns = 600.
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Table 2.2: Simulation results with p0 = 0.14 and p0 = 0.21 based on 1000 replications.

Design & Z ∼ Bernoulli(0.5) Z ∼ N(0, 1)
Method Bias ESD ASE ARE CP Bias ESD ASE ARE CP

FC -0.010 0.111 0.106 1.000 0.934 -0.004 0.055 0.054 1.000 0.932

A SC -0.011 0.127 0.123 0.743 0.937 -0.006 0.068 0.068 0.631 0.944
WC -0.011 0.127 0.123 0.743 0.935 -0.006 0.068 0.067 0.650 0.940
T -0.011 0.125 0.121 0.767 0.935 -0.005 0.063 0.063 0.735 0.944
LS -0.011 0.127 0.124 0.731 0.940 -0.008 0.074 0.072 0.563 0.937

B SC -0.010 0.129 0.123 0.743 0.928 -0.006 0.069 0.069 0.612 0.943
WC -0.011 0.130 0.124 0.731 0.922 -0.007 0.069 0.069 0.612 0.938
T -0.011 0.128 0.122 0.755 0.927 -0.006 0.065 0.065 0.690 0.941
LS -0.011 0.129 0.124 0.731 0.930 -0.007 0.073 0.074 0.533 0.948

C SC -0.011 0.129 0.123 0.743 0.929 -0.004 0.071 0.068 0.631 0.936
WC -0.011 0.129 0.124 0.731 0.932 -0.003 0.070 0.068 0.631 0.930
T -0.011 0.127 0.122 0.755 0.929 -0.002 0.065 0.064 0.712 0.932
LS -0.011 0.130 0.124 0.731 0.937 -0.004 0.077 0.072 0.563 0.930

Estimate of β0 from 5 methods: Method FC = full cohort analysis; SC = estimating p0 using the subcohort, p̂s;
WC = estimating p0 using whole cohort, p̂w; T = using true value, p0; LS = Lu and Shih (2006) estimator.
The number of clusters n = 100, mi follows a Bin(50,0.8) distribution, α=0.8, λ0=0.2, censoring time C=1,
β=log(0.5), Z follows either a Bernoulli(0.5) distribution or a N(0,1) distribution, which corresponds to a marginal
event rate of p0 = 0.14 or p0 = 0.21, respectively. The number of individuals in the subcohort is ns = 800.

baseline hazards. The true cumulative baseline hazard is also included for compar-

ison purposes. There appears to be no bias for our proposed estimators. We next

assumed that the marginal baseline hazard function is given by λ0(t) = t. Under

this configuration, the proposed estimate is approximately unbiased.

2.5 Application

We applied the proposed methods to the estimation of the day-of-week effect

among Canadian hemodialysis (HD) patients. The 1,276 patients who initiated

HD between January 1, 1990 and December 31, 1990 were included in the analy-

sis. Patients were followed from the time they first received HD until the time of

death caused by cardiovascular disease (CVD), receiving transplantation, switching

to peritoneal dialysis, loss to follow up, or last day of observation (December 31,

1998), whichever occurred first. Patients were clustered by center. In total, there

were 70 centers yielding clusters with 1 to 75 patients and a mean of 18.2. Design A
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Method SC = estimating p0 using the subcohort, p̂s; WC = estimating p0 using whole cohort, p̂w; T = using
true value, p0; True = true cumulative baseline hazard function. The lines correspond to the average of ̂Λ0(t) at
each time point, and the points denote the confidence intervals of Λ0(t) based on the empirical standard deviation
(ESD) at t = 0.2, t = 0.4, t = 0.6 and t = 0.8.

Figure 2.1: Simulation results to examine the cumulative baseline hazard estimators based on 1000
replications.

was chosen since, all else equal, it is generally at least as efficient as Designs B and

C.

The primary outcome of interest is CVD death, and the covariate of interest is day

of week (Sunday, Monday, . . . , Saturday), which was coded using time-dependent

covariates, where Zij1(t) = I {day t, for subject (i, j), is a Monday}, . . . ,Zij6(t) =



23

I {day t, for subject (i, j), is a Saturday}, with Sunday chosen as the reference day,

where t is the time since initiation of HD for patient (i, j). Adjustment covariates

included age, gender, region, comorbid conditions and primary renal diagnosis. Age

was categorized into 6 groups: <18, 18-39, 40-49, 50-59, 60-69, and ≥70, and was

adjusted for through stratification. Patients from the same renal center may be

correlated due to shared practice patterns. Therefore, one needs to account for

such intra-cluster dependence for valid statistical inference. In total, there were 249

observed CVD deaths; hence, the event fraction for the full cohort was 0.195. In

stratum 1 to 6, the numbers of CVD deaths were 0 (out of 24), 13 (out of 253),

14 (out of 179), 54 (out of 232), 87 (out of 313) and 81 (out of 275), respectively.

We analyzed the data using Design A with sampling probability of 0.2. A total of

251 patients was selected into the subcohort. The point estimates were obtained

using PROC PHREG in SAS with OFFSET terms, while the variance estimates

were calculated using PROC IML. For comparison purposes, we also carried out a

full cohort analysis and an analysis with the method of Lu and Shih (2006).

Results of the analysis are shown in Table 2.3. Using p̂s, patients are estimated to

have 1.36 and 1.68 times higher hazards of CVD death on Mondays and Tuesdays,

respectively, compared to Sundays. Results based on p̂w were similar. Results from

the full cohort analysis were close to those from our case-cohort analyses, with smaller

standard errors. Results based on the method of Lu and Shih (2006) were also similar

to ours, with larger standard errors.

The cumulative baseline hazards for each age-specific stratum are exhibited in

Figure 2.2. Each sub-figure contains 3 lines, which correspond to the cumulative

baseline hazards for Design A methods SC and WC, as well as the full cohort analysis.

Since no CVD deaths occurred in stratum 1, cumulative baseline hazard estimation
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Table 2.3: Estimate of day-of-week effect on CVD mortality among dialysis patients.

Design A
SC WC

Day β̂ SE exp(β̂) β̂ SE exp(β̂)
Sunday 0.00 0.00 1.00 0.00 0.00 1.00
Monday 0.31 0.27 1.36 0.33 0.26 1.39
Tuesday 0.52 0.28 1.68 0.51 0.28 1.67
Wednesday -0.02 0.26 0.98 -0.004 0.25 1.00
Thursday 0.23 0.29 1.26 0.24 0.29 1.27
Friday 0.12 0.27 1.13 0.14 0.26 1.15
Saturday -0.11 0.30 0.90 -0.09 0.29 0.91

Full Cohort LS

Day β̂ SE exp(β̂) β̂ SE exp(β̂)
Sunday 0.00 0.00 1.00 0.00 0.00 1.00
Monday 0.39 0.21 1.48 0.33 0.38 1.39
Tuesday 0.55 0.24 1.73 0.79 0.37 2.20
Wednesday -0.08 0.22 0.92 0.02 0.35 1.02
Thursday 0.27 0.25 1.31 0.23 0.40 1.26
Friday 0.14 0.22 1.15 0.16 0.33 1.17
Saturday -0.02 0.25 0.98 -0.05 0.37 0.95

is not available for this stratum. In general, the proposed cumulative baseline hazard

estimates are close to those for full cohort analysis. The exception was stratum 4, for

which the SC and WC estimators are considerably above the full cohort estimator.

To examine this phenomenon further, we reanalyzed the data several times (results

not shown) which of course involves selecting different subcohorts. Based on this

exercise, it appears that the disparity between the SC or WC estimator and the full

cohort estimator in any stratum (including stratum 4) is due to sampling variation.

In fact, when we drew several bootstrap samples and carried out full-cohort analyses

of each, the variability in the estimates of the cumulative hazards was quite large.

This suggests that the sampling variation we observed in the case-cohort cumulative

hazard estimators was largely inherited from that in the full cohort analysis.
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Figure 2.2: Cumulative baseline hazard estimators for the study of CVD mortality among dialysis
patients.

Method SC = estimating p0 using the subcohort, p̂s, WC = estimating p0 using whole cohort, p̂w.

2.6 Discussion

The case-cohort design has been widely studied for univariate failure time data.

Lu and Shih (2006) extended the case-cohort design to clustered failure time data.

With respect to parameter estimation, compared to Lu and Shih’s methods, the

methods we propose feature risk sets which use future cases in addition to subcohort
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subjects. We demonstrate empirically that the proposed estimators have increased

efficiency relative to the methods of Lu and Shih (2006), and that our asymptotic

results are applicable to finite samples. The point estimates of our proposed methods

are easily computed using standard Cox regression software.

Our simulation results suggest that the proposed methods gain efficiency relative

to existing methods (Lu and Shih, 2006) when sampling a smaller number of subjects,

or having longer censoring times. This is due to the inclusion of a larger number of

failures in the risk sets which are outside the subcohort.

If subcohort sizes are approximately equal, it appears that Design A results in

more efficient estimators than Design C, and that Design C has greater efficiency than

Design B. This can be attributed to differences in the number of sampled clusters in

the subcohort. This trend is stronger when the covariate is cluster-specific. However,

the choice between Designs A - C also depends on the cluster size and the availability

of data on all clusters.

For each of Designs A - C, we propose three estimation methods which differ based

on their treatment of p0, the marginal probability of the observed event. When β0

is away from zero, the general superiority of β̂t over β̂w, and of β̂w over β̂s, may be

explained by the more accurate estimation of the marginal event probability, p0. Such

superiority is more pronounced when β0 is further from the null (data not shown), as

in Chen and Lo (1999). If β0 = 0, β̂t and β̂w should gain no efficiency over β̂s, since

no information about β0 is provided by p0. In most real-data applications, the true

case percentage p0 is unknown, and it is not feasible to use β̂t. However, in cases

where the study cohort is well-defined, p̂w can be computed and used to obtain β̂w,

which has the most practical value. In other cases, p0 can be estimated using the

subcohort.
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For set-ups with a smaller number of clusters and smaller subcohort size, the

proposed methods generally work well, though there is some slight under-coverage

for Designs B and C. The asymptotic properties are based on increasing the number

of clusters, but Design B samples the smallest number of clusters. Correspondingly,

this under-coverage is reduced as the number of clusters increases.

Studies with low event rates often motivate case-cohort sampling. As such, we

carried out simulations where the marginal event rate was around p0 = 0.03 (Web

Table 4). With a reasonable subcohort sample size, β̂s appears to work as well as

other estimators. In the presence of a very low failure rate, the proposed methods do

not gain much efficiency over those of Lu and Shih (2006). This would be expected

since, in such settings, the subcohort would tend to contain fewer events; meaning

that little efficiency gain would be expected by including future failures in the risk

sets. Note that the case-cohort design may still be beneficial for studies with a

frequently occurring event. For example, one may need to retrospectively collect

additional information from a large database (e.g., disease registry). Case-cohort

sampling could then result in substantial cost savings, especially when the collection

of detailed covariate information is expensive. The design might also be altered to

sample only a fraction of the cases.

The proposed stratified methods appear to perform well with a reasonable number

of strata. The baseline cumulative hazard estimator was also examined and performs

well.

Point estimates based on simple random samples (SRS) for some non-rare event

settings are provided (Web Table 7). It appears that the ESDs of the point estimates

based on SRS are very close to those based on Bernoulli sampling. Therefore, one

would not gain much efficiency by using SRS, at least for the examples we considered.
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Based on our analysis in Section 5, Canadian hemodialysis (HD) patients appear

to be at increased risk of cardiovascular disease death on Monday and, in particular

Tuesday. Peritoneal dialysis (PD) is an alternative to hemodialysis as a treatment

method for kidney failure. A useful follow-up to our analysis would be to study

the day-of-week effect on death among PD patients. Unlike HD patients who receive

dialysis only 3 days per week, PD patients can get treatments daily at home, at work,

or on trips. Therefore, we would expect that the risk of death would be constant from

day to day within the week. For HD patients, days on which mortality is increased

may depend on schedule (M/W/F or T/T/S), but the dialysis schedule information

is not available in the CORR database.

We propose sampling designs which construct the subcohort by independent

Bernoulli sampling; in contrast, Lu and Shih (2006) construct the subcohort through

sampling without replacement. The subcohort from simple random sampling can

only be constructed when accrual into the cohort has ended, while the subcohort

from Bernoulli sampling can be formed concurrently. Therefore, case-cohort de-

signs with Bernoulli sampling may be particularly appealing in a prospective study.

However, with fixed sample size, case-cohort designs using simple random sampling

can improve efficiency, although asymptotic derivations would be more delicate than

those in this chapter particularly because of the dependence between sampled clusters

induced by Designs B and C.

The proposed methods are based on a marginal proportional hazards model, which

does not formulate the within-cluster dependence structure. A proportional hazards

frailty model specifies the dependence structure explicitly. Such a model, combined

with maximum likelihood estimation, may result in increased efficiency and would

be worth investigating.



CHAPTER III

Semiparametric Methods for the Analysis of Failure Time

Data with Outcome-Dependent Sampling and Dependent
Censoring

3.1 Introduction

Outcome-dependent sampling (ODS) is a cost-saving sampling scheme to enhance

study efficiency. In an ODS design, one collects covariate information from a sample

by allowing selection probabilities to depend on individuals’ outcomes (e.g., death,

survival). An ODS design concentrates resources on observations carrying the great-

est amount of information. There is a large literature on analyzing data arising from

ODS; see for example Breslow and Holubkov (1997a), Zhou et al. (2002), Zhou and

You (2007), Schildcrout and Heagerty (2008), Song, Zhou, and Kosorok (2009), and

Wang et al. (2009).

The case-control study and case-cohort design are two simple and familiar ex-

amples of ODS designs. A number of methods have been proposed for the regres-

sion analysis of case-control and case-cohort studies under the proportional hazards

model; see Prentice (1986), Breslow and Cain (1988), Self and Prentice (1988), Wa-

cholder et al. (1989), Lin and Ying (1993), Barlow (1994), Breslow and Holubkov

(1997b), Chen and Lo (1999), Therneau and Li (1999), Borgan et al. (2000), Langholz

and Goldstein (2001), Scheike and Juul (2004) , Scheike and Martinussen (2004), and

29
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Lu and Shih (2006).

Inverse probability of selection weighting (IPSW) is a natural way to generate

consistent estimators of population parameters to overcome biased samples, including

those generated through ODS designs. In IPSW, each subject is weighted by the

inverse of their probability of being sampled. Various authors have proposed IPSW

methods for settings in which sampling probability is independent of outcome. For

example, for survey data, Binder (1992) proposed an IPSW estimator under Cox’s

proportional hazards models with weights being treated as fixed; Lin (2000) further

studied the case and developed an alternative inference procedure which accounts

for the random variation corresponding to the representative population. For two-

phase stratified samples, Breslow andWellner (2007) considered the solution of IPSW

likelihood equations with two-phase stratified samples under semiparametric models.

For biased samples, Pan and Schaubel (2008) proposed a two-stage weighted method

under the proportional hazards model, which estimates the weight using logistic

regression at the first stage. For Case-cohort design under Cox’s proportional hazards

models, Barlow (1994) proposes a pseudolikelihood function with time-dependent

weights; Borgan et al. (2000) presented several IPSW estimators for the analysis

of exposure stratified case-cohort samples. Kulich and Lin (2000) proposed IPSW

estimators for the additive hazards model for case-cohort studies. Nan et al. (2009)

presented outcome-dependent weighted estimators for accelerated failure time model

in case-cohort studies.

Each of the afore-listed methods for analyzing ODS-based data under the pro-

portional hazards model has an underlying assumption that subjects are censored

in a manner independent of the failure rate. However, dependently censored data

are commonly encountered in public health studies. For example, wait-listed end-
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stage liver disease patients may receive a liver transplant, which censors their wait-

list death. In liver transplantation, medical urgency (which is inherently time-

dependent) is the criterion by which patients are prioritized for deceased-donor liver

transplantation. Therefore, an analysis of baseline factors affecting wait list mortality

(i.e., recorded at wait listing and not updated) could result in substantial bias if trans-

plantation were treated as independent censoring. One commonly used method to

accommodate dependent censoring is to conduct a weighted analysis, with weights in-

versely proportional to the probability of remaining uncensored. Such methods have

been proposed by Robins and Rotnitzky (1992), Robins (1993b), Robins and Finkel-

stein (2000), and Scharfstein and Robins (2002b); each of whom showed that Inverse

Probability of Censoring Weighting (IPCW) corrects for the dependence between

censoring and failure times. Matsuyama and Yamaguchi (2008) applied the IPCW

approaches to settings with more than one cause of censoring. Zhang and Schaubel

(2011) used IPCW method to estimate group-specific differences in restricted mean

lifetime for studies with dependent censoring.

This chapter is motivated by the desire to compare wait-list survival for patients

with end-stage liver disease (ESLD). Chronic ESLD patients wait listed for liver

transplantation are ordered primarily based on their current (i.e., most recent) Model

for End-stage Liver Disease (MELD) score, which is calculated as a log linear com-

bination of bilirubin, creatinine, and international normalized ratio for prothrombin

time (Wiesner et al., 2001). As such, the higher a patient’s MELD score, the higher

their priority to receive a liver transplant. However, higher MELD scores are also

associated with an elevated risk of wait-list death, as shown by many previous au-

thors (e.g., Kremers et al., 2004, Huo et al., 2005, Merion et al., 2005, Basto et al.,

2008, Subramanian et al., 2010). Thus liver transplantation results in dependent
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censoring of wait-list death, due to the correlation between MELD score and both

wait-list survival and liver transplant rate. This and other related issues in the liver

transplant setting are discussed by Schaubel et al. (2009).

In certain cases, special exceptions are made under which a wait-listed patient

may be assigned a MELD score which is higher than that calculated, in an attempt

to reflect the patient’s actual medical urgency. The most frequent occurrence of such

MELD exceptions is for patients with hepatocellular carcinoma (HCC, a form of

liver cancer). HCC patients are usually assigned a MELD score of at least 22, which

is often considerably higher than the score based on their laboratory measures. To

our knowledge, no existing analyses in the liver transplant literature have quanti-

fied whether the MELD score of 22 accurately reflects the true wait-list mortality

risk faced by HCC patients. As a primary example in this chapter, we carry out

such an analysis, with patients classified by their baseline HCC status and MELD

scores. Since MELD affects both death and liver transplantation probabilities, liver

transplantation is handled as dependent censoring of wait-list death time in this

analysis.

In this chapter, we propose methods based on estimating equations for the analysis

of failure time data generated by ODS and subject to dependent censoring. We

employ a double-inverse-weighting scheme, which combines weights corresponding

to the probability of remaining uncensored and the probability of being sampled. A

proportional hazards model is assumed for the death process, with the covariate of

interest being that observed at baseline (time 0). It is assumed that a longitudinal

sequence of measures is observed for each subject, and a proportional hazards model

based on such measures is assumed for the dependent censoring process.

The remainder of this chapter is organized as follows. In Section 3.2, we describe
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the proposed estimation procedures. In Section 3.3, we derive large sample prop-

erties for the proposed estimators. We conduct simulation studies in Section 3.4

to investigate the finite sample properties of the proposed estimators. Section 3.5

provides an application of the methods to wait-list survival data obtained from a

national organ failure registry. The chapter concludes with a discussion in Section

3.6.

3.2 Proposed Methods

Let Z1i denote the q1-vector of time-constant covariates for subject i (i = 1, . . . , n).

Let Z2i(t) be the q2-vector of time-dependent covariates at time t, Zi(t) = {ZT
1i,

Z2i(t)
T}T , and Z̃i(t) = {Zi(u) : 0 ≤ u ≤ t} denote the history of Zi(·) up to time

t. Let Ti and Ci be the potential failure and censoring times, respectively. We

suppose that Ci = C1i ∧ C2i, where a ∧ b = min {a, b}, C1i is the censoring time

due to mechanisms that are independent of Ti given Zi(0), and C2i denotes the

dependent censoring time; that is, C2i is dependent on Ti given Zi(0). Let Xi =

Ti ∧ Ci, Yi(t) = I (Xi ≥ t), Δ1i = I (Ti ≤ Ci), Δ2i = I (C2i ≤ C1i, C2i < Ti), Δ3i =

(1 − Δ1i)(1 − Δ2i), Ni(t) = I (Xi ≤ t,Δ1i = 1), and NC
i (t) = I (Xi ≤ t,Δ2i = 1),

where I(·) is the indicator function. The observable data are assumed to be n

independently and identically distributed copies of {Ni(·), NC
i (·), Yi(·), Zi(·)}. Let ξi

indicate whether or not subject i is sampled. The variate ξi is allowed to depend on

Δ1i, Δ2i and Δ3i so that the sampling probability can be different for subjects who

fail, subjects who are dependent censored and those who are independent censored.

Let the cohort be divided into 3 strata according to the outcome (Δ1,Δ2,Δ3) such

that Lk = {i : Δki = 1}, k = 1, 2, 3. Let pk = pr(ξi = 1 | i ∈ Lk), p = (p1, p2, p3)
T ,

and ρi(p) =
∑3

k=1Δkiξi/pk. Note that ρi(p) weights the ith subject by the inverse
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probability that the subject is sampled.

We assume that the hazard of failure of individual i is specified by the following

proportional hazards model (Cox, 1972),

λi {t | Zi(0)} = λ0(t) exp{βT
0 Zi(0)},(3.1)

where λ0(t) is an unspecified baseline hazard function for failure time, and β0 is a

(q1 + q2)-dimensional regression parameter. Note that, we are chiefly interested in in-

ferring the role of Zi(0) on the death hazard, as opposed to {Zi(t) : t > 0}, for reasons

of interpretation. For example, it is straightforward to predict survival probability

using a pre-specified value of Zi(0) along with parameter estimates from model (3.1).

To do so using a model based on Z̃i(t) would be much more complicated, unless all

time-dependent elements are assumed to be external (Kalbfleisch and Prentice, 2002)

which is not assumed in the data structure of interest (as previously described).

If it were also the case that C2i was independent of Ti given Zi(0) (unlike the

setting of interest), then β0 could be consistently estimated by β̂ODS, the root of the

estimating equation UODS(β) = 0, where

UODS(β) =

n∑
i=1

∫ τ

0

ρi(p){Zi(0)− ZODS(β, t)}dNi(t),(3.2)

where τ < ∞ is the maximum follow-up time, ZODS(β, t) = S
(1)
ODS(β, t)/S

(0)
ODS(β, t),

S
(d)
ODS(β, t) =

∑n
i=1 ρi(p)Yi(t)Zi(0)

⊗d exp{βTZi(0)}, with a⊗0 = 1, a⊗1 = a, and

a⊗2 = aaT . Estimating equations of the same general structure as (3.2) and arising

from IPSW have been proposed by several previous authors; e.g., Kalbfleisch and

Lawless (1988), Binder (1992), Borgan et al. (2000) and Lin (2000) for the Cox

model; Kulich and Lin (2000) for the additive hazards model; and Nan et al. (2009)

for the accelerated failure time model. In IPSW, sampled subjects are weighted by

the inverse of their respective probabilities of being selected.
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However, since Zi(t) affects both the event and censoring times, and Zi(t) is not

incorporated into model (3.1), C2i would generally not be independent of Ti given

Zi(0). In this case, the estimate β̂ODS derived from (3.2) could be substantially

biased because (3.2) does not accommodate the dependence between C2i and Ti. We

assume that conditional on the covariate history Z̃i(t), the hazards of dependent

censoring C2i at time t does not further depend on the possibly unobserved failure

time Ti; that is,

λCi {t | Z̃i(t), Ci ≥ t, Ti ≥ t, Ti} = λCi {t | Z̃i(t), Ci ≥ t, Ti ≥ t}.(3.3)

This fundamental assumption is called “no unmeasured confounders for censoring”

(Rubin, 1977; Robins, 1993). Borrowing terminology from the competing risks lit-

erature, assumption (3.3) allows us to identify the cause-specific hazard for C2i. We

assume a time-dependent Cox proportional hazards model for the right-hand side of

equation (3.3),

λCi {t | Z̃i(t), Xi ≥ t} = λC0 (t) exp{αT
0 Vi(t)},(3.4)

where λC0 (t) is an unspecified baseline hazard function for dependent censoring, Vi(t)

is a s-vector consisting of functions of Zi(t), and α0 is a s-dimensional regression

parameter.

We propose the following estimating function,

U(β) =

n∑
i=1

∫ τ

0

Ri(t){Zi(0)− Z(β,R, t)}dNi(t),(3.5)

where

Z(β,R, t) =
S(1)(β,R, t)

S(0)(β,R, t)

S(d)(β,R, t) = n−1
n∑

i=1

Ri(t)Yi(t)Zi(0)
⊗d exp{βTZi(0)}
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Ri(t) = ρi(p)Wi(t)

Wi(t) = eΛ
C
i (t)κ(t),

where ΛC
i (t) =

∫ t

0
exp{αTVi(u)}dΛC

0 (u) and the function κ(t) in the weight Wi(t) is a

stabilization factor. We consider three choices of κ(t). One choice is κ1(t) = 1. How-

ever, when the censoring is heavy, eΛ
C
i (t) could be quite large and lead to instability in

the estimation. In this case, the choice of κ2(t) = exp
[
− ∫ t

0
exp{αTVi(0)} dΛC

0 (u)
]

or κ3(t) = exp[−Λ†
i{t | Zi(0)}] may be more appropriate, where Λ†

i(t) is based on

a time-to-censoring model that uses only the baseline covariate values, Zi(0). Here-

after, we denote Wji(t) = eΛ
C
i (t)κj(t), j = 1, 2, 3, and correspondingly estimate β0

with β̂W1 , β̂W2 and β̂W3, the solutions to U(β) = 0 with weights W1i(t), W2i(t) and

W3i(t), respectively.

The weight W1i(t) can be estimated using exp{Λ̂C
i (t)}, where

Λ̂C
i (t) =

∫ t

0

exp{α̂TVi(s)}dΛ̂C
0 (s, α̂)

Λ̂C
0 (t, α) =

n∑
i=1

∫ t

0

[
n∑

j=1

ρj(p)Yj(s) exp{αTVj(s)}
]−1

ρi(p)dN
C
i (s),

where α̂ is the partial likelihood estimate of α0 and is computed under assumption

(3.4) as the root of UC(α) = 0; where

UC(α) =

n∑
i=1

∫ τ

0

{Vi(t)− V (α, p, t)}ρi(p)dNC
i (t),

is an IPSW-based estimating function, with V (α, p, t) = S
(1)
C (α, p, t)/S

(0)
C (α, p, t) and

S
(d)
C (α, p, t) = n−1

∑n
i=1 ρi(p)Yi(t)Vi(t)

⊗deα
T Vi(t).

The weight W2i(t) can be estimated using κ̂2i(t) exp{Λ̂C
i (t)}, where κ̂2i(t) =

exp[−Λ̂C
i {t, α̂ | Zi(0)}]; i.e., κ2i(t) is estimated using the same model (3.4), but

only using baseline covariate values,

Λ̂C
i {t, α̂ | Zi(0)} =

∫ t

0

exp{α̂TVi(0)}dΛ̂C
0 (s, α̂).
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The weight W3i(t) can be estimated by κ̂3i(t) exp{Λ̂C
i (t)}, where κ̂3i(t) = exp

{−Λ̂†
i (t)}, with κ3i(t) estimated using an additional baseline model for C2i,

λ†i{t | Zi(0), Ci ≥ t, Ti, Ti ≥ t} = λ†0(t) exp{α†TVi(0)},

such that we have

Λ̂†
i(t) =

∫ t

0

exp{α̂†TVi(0)}dΛ̂†
0(s, α̂

†),

Λ̂†
0(t, α

†) =

n∑
i=1

∫ t

0

[
n∑

j=1

ρj(p)Yj(s) exp{α†TVj(0)}
]−1

ρi(p)dN
C
i (s),

and α̂† is the partial likelihood estimate of α† under the model for dependent cen-

soring with hazard λ†i (t). Weight stabilizers analogous to κ3i(t) have been suggested,

for example, by Robins and Finkelstein (2000) and Hernán, Brumback, and Robins

(2000). We propose the stabilizer κ2i(t) as an alternative. The performance of each

of W1i(t), W2i(t) and W3i(t) are compared through simulations studies described in

Section 3.4.

3.3 Asymptotic Properties of the Proposed Estimators

The following conditions are assumed throughout this section.

(a) {Ni(·), NC
i (·), Yi(·), Zi(·)}, i = 1, . . . , n are independently and identically dis-

tributed.

(b) P {Yi(τ) = 1} > 0 for i = 1, . . . , n.

(c) |Zij(0)|+
∫ τ

0
|dZij(t)| < BZ <∞ for i = 1, . . . , n, where Zij is the jth component

of Zi and BZ is a constant.

(d) There exists a neighborhood B of β0 such that supu∈[0,τ ],β∈B ‖S(d)(β,R, u) −

s(d)(β,R, u)‖ −→ 0 in probability for d = 0, 1, 2, where s(d)(β,R, u) =
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E{S(d)(β,R, u)} is absolutely continuous, for β ∈ B, uniformly in u ∈ (0, τ ],

E (·) denotes expectation. Moreover, s(0)(β,R, u) is assumed to be bounded

away from zero.

(e) There exists a neighborhood BC of α0 such that supu∈[0,τ ],α∈BC ‖S(d)
C (α, p, u) −

s
(d)
C (α, u)‖ −→ 0 in probability for d = 0, 1, 2, where for α ∈ BC , s

(d)
C (α, u) =

E{S(d)
C (α, p, u)} is absolutely continuous, uniformly in u ∈ (0, τ ]. Moreover,

s
(0)
C (α, u) is assumed to be bounded away from zero.

(f) The matrices A(β0) and A
C(α0) are positive definite, where

A(β) =

∫ τ

0

{
s(2)(β,R, u)/s(0)(β,R, u)− z(β,R, u)⊗2

}
dF (u)

AC(α) =

∫ τ

0

{
s
(2)
C (α, u)/s

(0)
C (α, u)− v(α, u)⊗2

}
dFC(u)

with z(β,R, u) = s(1)(β,R, u)/s(0)(β,R, u), v(α, u) = s
(1)
C (α, u)/s

(0)
C (α, u), F (u) =

E{Ri(u)Ni(u)}, FC(u) = E{ρi(p0)NC
i (u)}.

(g) Λ0(τ) <∞, ΛC
0 (τ) <∞.

We describe the asymptotic properties of the proposed estimators in the following

theorems.

Theorem III.1. Under conditions (a)− (g), as n→ ∞, n1/2 (α̂− α0) converges to

a mean zero Normal distribution with covariance AC(α0)
−1Ω(α0)A

C(α0)
−1, where

Ω(α) = E {ψi(α, p)
⊗2
}

ψi(α, p) = Ki(α, p) +BC(α, p)Qi(p)

Ki(α, p) =

∫ τ

0

{Vi(t)− v(α, t)} ρi(p)dMC
i (t)

BC(α, p) =

∫ τ

0

{
s
(1)
c (α, p, t)

s
(0)
c (α, p, t)2

r(0)(α, p, t)− 1

s
(0)
c (α, p, t)

r(1)(α, p, t)

}
×dFC(t) + d(α, p)
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r
(d)
k (α, p, t) = − 1

pk
E
{
Δk1Y1(t)V1(t)

⊗deα
T V1(t)

}
, d = 0, 1

r(d)(α, p, t) =
(
r
(d)
1 (α, p, t) r

(d)
2 (α, p, t) r

(d)
3 (α, p, t)

)
, d = 0, 1,

where we further define

dk(α, p) = − 1

pk
E
[∫ τ

0

{V1(t)− v(α, t)}Δk1dN
C
1 (t)

]
d(α, p) = (d1(α, p) d2(α, p) d3(α, p))

Qki(p) = η−1
k Δki(ξi − pk)

ηk = pr(Δk = 1), k = 1, 2, 3

Qi(p) = (Q1i(p) Q2i(p) Q3i(p))
T ,

with dMC
i (t) = dNC

i (t)− Yi(t)dΛ
C
i (t).

In Web Appendix B.2, we show that n1/2 (α̂− α0) = n−1/2
∑n

i=1 ψi(α0, p0)×AC(α0)
−1

+op(1); hence n
1/2 (α̂− α0) is essentially a scaled sum of n independent and identi-

cally distributed random quantities with mean zero and finite variance. By the Mul-

tivariate Central Limit Theorem (MCLT) and empirical process theory, one proves

the asymptotic normality.

Theorem III.2. Under conditions (a)− (g), as n→ ∞, n1/2
(
β̂W1 − β0

)
, converges

to a mean zero Normal distribution with covariance A(β0)
−1Σ(β0, R)A(β0)

−1, where

A(β) =

∫ τ

0

{
s(2)(β,R, t)

s(0)(β,R, t)
− z(β,R, t)⊗2

}
dF (t)

Σ(β,R) = E {Θi (β,R)
⊗2}

Θi (β,R) = O(β,R)Qi(p0)

+H(β,R)AC(α0)
−1ψi(α0, p0)

+

∫ τ

0

χ(u, τ)dΦi(α0, p0, u)

O(β,R) = E
[∫ τ

0

{Zi(0)− z(β,R, t)}μi(p0)W1i(t)dMi(t)

]
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μki(p) =
dρi(p)

dpk
= −Δkiξi

p2k

μi(p) = (μ1i(p) μ2i(p) μ3i(p))
T

H(β,R) = E
[∫ τ

0

{Zi(0)− z(β,R, t)}ΨT
i Ri(t)dMi(t)

]
Ψi(t) =

∫ t

0

Vi(u)dΛ
C
i (u)

χ(t1, t2) = E
[
eα

T
0 Vi(t1)

∫ t2

t1

{Zi(0)− z(β,R, t)}Ri(t)dMi(t)

]

dΦi(α, p, u) = s
(0)
C (α, u)−1

{
dJ(u)− r(0)(α, p, u)dΛC

0 (u)
}
Qi(p)

−vT (α, u)dΛC
0 (u)A

C(α)−1ψi(α, p)

+s
(0)
C (α, u)−1ρi(p)dM

C
i (u)

dJ(u) = E {μi(p0)
TdNC

i (u)
}
,

with dMi(t) = dNi(t)− Yi(t)dΛi(t).

The proof begins by decomposing n1/2{Λ̂C
0 (t) − ΛC

0 (t)} into n1/2{Λ̂C
0 (t; α̂, p̂) −

Λ̂C
0 (t; α̂, p0)}+ n1/2{Λ̂C

0 (t; α̂, p0)− Λ̂C
0 (t;α0, p0)}+ n1/2{Λ̂C

0 (t;α0, p0)− ΛC
0 (t)}. Then

n1/2{Λ̂C
0 (t) − ΛC

0 (t)} can be expressed asymptotically as a sum of independent and

identically distributed zero-mean variates, as n → ∞. Combining this result and

the Functional Delta Method, we can show that n1/2{R̂i(t) − Ri(t)} can be writ-

ten asymptotically as a sum of independent and identically distributed zero-mean

variates, as n → ∞. Finally, through Functional Delta Method, the asymptotic

normality of n1/2(β̂W1 − β0) is demonstrated.

The expression for the asymptotic covariance of β̂W1 is very complicated and

difficult to implement numerically. A practical way to estimate the variance of the

proposed estimators is to treat the weights Ri(t) as known rather than estimated.

Based on results derived in the Web Appendix B that, in the setting where the weight
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function is known,

n1/2(β̂ − β0) = A(β0)
−1n− 1

2

n∑
i=1

U ‡
i {β0, R}+ op(1)(3.6)

with U ‡
i (β0, R) =

∫ τ

0
{Zi(0) − z(β,R, t)}Ri(t)dMi(t); hence, n

1/2(β̂ − β0) is asymp-

totically a scaled sum of independent and identically distributed zero-mean ran-

dom quantities with finite variance. Therefore, the variance of β̂W1 is estimated by

Â(β̂)−1Σ̂‡(β̂, R̂)Â(β̂)−1, where Σ‡(β,R) = E{U ‡
i (β,R)

⊗2}, Â(β̂) and Σ̂‡(β̂, R̂) are cal-

culated by replacing limiting values with their corresponding empirical counterparts.

By similar arguments, the asymptotic normality holds for n1/2(β̂W2 − β0) and

n1/2(β̂W3 − β0). However, the covariance will be even more complicated than that

of n1/2(β̂W1 − β0). Therefore, similarly, we can treat Ri(t) as fixed to calculate the

variance of β̂W2 and β̂W3. Note that (3.6) holds when using W2 orW3, such that each

of the variance of β̂W2 and β̂W3 is estimated by Â(β̂)−1Σ̂‡(β̂, R̂)Â(β̂)−1, with Ri(t)

being replaced by ρi(p̂)Ŵ2i(t) and ρi(p̂)Ŵ3i(t), respectively.

3.4 Numerical Studies

We investigated the finite sample properties of the estimators proposed in Sec-

tion 2 through a series of simulation studies. We generated failure time data from

n = 2500 subjects. A treatment group indicator Z1i and baseline time-dependent

covariate Z2i(0) were generated as independent Bernoulli variables each with prob-

abilities 0.5. The independent censoring times C1i were constant and equal to 100.

After generating a U(0, 1) variable, UT , the event time T was generated from a Cox

model with hazard function

λi(t) = λ0(t) exp {β1Z1i + β2Z2i(0)} ,(3.7)
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by solving the equation
∫ T

0
λ0(u) exp {β1Z1i + β2Z2i(0)} du = − logUT for T , so that

UT corresponds to the survival function at T . The baseline hazard function for event

time is given by λ0(t) = 0.1, 0 ≤ t <∞ and (β10, β20) is set to {log(1.5), log(1.5)} =

(0.4055, 0.4055). The time-dependent covariate Z2i(t) was generated as

Z2i(0)I (UT ≤ 0.3) + {Z2i(0) + UT × int(t)} I (0.3 < UT ≤ 0.6)

+ {Z2i(0) + UT/2× int(t)} I (UT > 0.6) ,(3.8)

where int(t) is the integer part of t. The dependent censoring time C2i was generated

from a Cox model with hazard function

λCi (t) = λC0 (t) exp [α1Z1i + α2Z2i(t)I {Z2i(0) = 1}+

α3Z2i(t)I {Z2i(0) = 0}] ,(3.9)

where λC0 (t) = 0.1, 0 ≤ t < ∞ and (α1, α2, α3) = {−0.5, log(2), log(1.1)} = (−0.5,

0.6931, 0.0953). In this data configuration, the time-dependent covariate Z2i(t) is

correlated with the event time Ti through equation (3.8). In addition, Z2i(t) also

affects the censoring time C2i via model (3.9). Since only the baseline value of Z2i(t),

i.e. Z2i(0), is adjusted for in the model (3.7), the censoring time C2i is dependent on

Ti given Z1i and Z2i(0). In another data configuration, the baseline hazard function

for event time is given by λ0 = 0.2, with (β10, β20) set to {log(1.5), log(1.5)} =

(0.4055, 0.4055) or {0, 0}, which leads to a lower dependent censoring rate. All the

other settings were the same as those used in the previous configuration.

Additional scenarios have also been evaluated in order to examine the performance

of the proposed methods with different dependent censoring models. Specifically, the

dependent censoring time C2i was generated from a Cox model with hazard function

λCi (t) = λC0 (t) exp {α1Z1i + α2Z2i(t)} ,(3.10)
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Table 3.1: Simulation results based on 1000 replications: λC
i (t) is given by (3.9) and λ0 = 0.1.

Weight Estimator Bias ESD ASE CP

– β̂ODS
1 0.055 0.173 0.169 0.932

W1 β̂W1
1 0.040 0.205 0.189 0.927

W2 β̂W2
1 0.018 0.175 0.171 0.941

W3 β̂W3
1 0.016 0.173 0.170 0.944

– β̂ODS
2 -0.085 0.172 0.169 0.918

W1 β̂W1
2 -0.024 0.202 0.190 0.934

W2 β̂W2

2 -0.007 0.172 0.173 0.958

W3 β̂W3
2 -0.006 0.172 0.173 0.960

n = 2500, β1 = β2 = log(1.5), Spearman correlation between T and C2 is 0.14. Approximately 47% of subjects
are dependently censored. There were ≈ 300 individuals in the subcohort.

in which the censoring model depends on Z2i(t) in the same way for both baseline

Z2(0) groups. Other settings were the same as those used in the first data configu-

ration except that λ0 = 0.2. Each data configuration was replicated 1000 times.

Tables 3.1, 3.2 and 3.3 display the results of our proposed estimators and those ig-

noring the dependent censoring. As expected, the estimators ignoring the dependent

censoring are biased in some settings. Each of the proposed estimators is approxi-

mately unbiased, and the average asymptotic standard errors (ASEs) are generally

close to to the empirical standard deviations (ESDs). Correspondingly, the 95%

empirical coverage probabilities (CPs) are generally close to the nominal value. In

addition, simulation results suggest that, at least in the examples we evaluated, the

stabilized estimators using weights W2i(t) and W3i(t) are more efficient than the

unstabilized estimator using weight W1i(t). In general, the performance of the esti-

mators using weightsW2i(t) andW3i(t) are comparable. In some data configurations,

one may appear to be more efficient than the other. However, differences were usually

small and appeared to vary by data set-up.
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Table 3.2: Simulation results based on 1000 replications: λC
i (t) is given by (3.9) and λ0 = 0.2.

Weight Estimator Bias ESD ASE CP
β1 = β2 = 0.4055

– β̂ODS
1 0.017 0.146 0.146 0.955

W1 β̂W1
1 0.004 0.152 0.148 0.944

W2 β̂W2
1 0.002 0.145 0.145 0.952

W3 β̂W3
1 0.002 0.145 0.145 0.952

– β̂ODS
2 -0.012 0.152 0.148 0.944

W1 β̂W1
2 0.009 0.158 0.152 0.933

W2 β̂W2
2 0.009 0.152 0.148 0.944

W3 β̂W3
2 0.009 0.152 0.148 0.944

β1 = β2 = 0

– β̂ODS
1 0.014 0.160 0.156 0.949

W1 β̂W1
1 0.005 0.180 0.167 0.923

W2 β̂W2
1 0.002 0.160 0.156 0.946

W3 β̂W3
1 0.002 0.159 0.156 0.947

– β̂ODS
2 -0.080 0.161 0.157 0.914

W1 β̂W1

2 0.000 0.172 0.168 0.950

W2 β̂W2
2 0.002 0.158 0.158 0.951

W3 β̂W3
2 0.001 0.159 0.158 0.953

n = 2500, β1 = β2 = log(1.5) or β1 = β2 = 0, which corresponds to a Spearman correlation between T and
C2 of 0.14 and 0.11. Approximately 29% and 39% of subjects were dependently censored, respectively. Numbers of
individuals in the subcohort were ≈ 280 and ≈ 290.
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Table 3.3: Simulation results based on 1000 replications: λC
i (t) is given by (3.10) and λ0 = 0.2.

Weight Estimator Bias ESD ASE CP
β1 = β2 = 0.4055

– β̂ODS
1 0.038 0.147 0.147 0.951

W1 β̂W1
1 0.005 0.153 0.150 0.945

W2 β̂W2
1 0.002 0.146 0.146 0.949

W3 β̂W3
1 0.002 0.146 0.147 0.948

– β̂ODS
2 0.015 0.154 0.149 0.940

W1 β̂W1
2 0.012 0.162 0.153 0.933

W2 β̂W2
2 0.011 0.154 0.148 0.940

W3 β̂W3
2 0.011 0.154 0.149 0.942

β1 = β2 = 0

– β̂ODS
1 0.027 0.163 0.158 0.942

W1 β̂W1
1 0.004 0.181 0.169 0.929

W2 β̂W2
1 0.001 0.162 0.158 0.952

W3 β̂W3
1 0.002 0.161 0.158 0.949

– β̂ODS
2 -0.034 0.165 0.159 0.938

W1 β̂W1

2 -0.003 0.178 0.170 0.936

W2 β̂W2
2 0.004 0.163 0.159 0.947

W3 β̂W3
2 0.003 0.164 0.159 0.949

n = 2500, β1 = β2 = log(1.5) or β1 = β2 = 0, which corresponds to a Spearman correlation between T and C2

of 0.20 and 0.20. Respectively, 30% and 41% of subjects are dependently censored. Numbers of individuals in the
subcohort were ≈ 280 and ≈ 290.
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3.5 Application

We applied the proposed methods to analyze wait-list mortality for patients with

end-stage liver disease (ESLD). Data were obtained from the Scientific Registry of

Transplant Recipients (SRTR). The n = 55, 943 patients who initially wait-listed for

liver transplantation in the United States at age ≥ 18 between March 1, 2002 and

December 31, 2008 were included in the analysis. Patients were followed from the

date of initial wait-listing until the earliest of death, receiving liver transplantation,

loss to follow-up, or last day of the observation period (December 31, 2008).

The Model of End-stage Liver Disease (MELD) score is time-dependent and is

updated based on a frequency that ranges from weekly to yearly and that may

depend on the last reported MELD. In the current liver allocation system, patients

are ordered on the wait-list primarily by descending MELD. That is, patients with

higher MELD are considered to be at greater medical urgency and, therefore, get

higher priority for transplantation. However, for hepatocellular carcinoma (HCC)

patients, the calculated MELD based on laboratory measures has generally been

considered by the field to understate actual medical urgency. As such, a MELD score

of 22 is usually assigned to an HCC patient if the laboratory MELD is less than 22.

The primary objective of our analysis is to determine which range of (calculated)

MELD score is actually consistent with the HCC wait-list mortality hazard.

In many studies, it has been shown that MELD is the dominant risk factor for

liver wait-list mortality. Moreover, as stated in the previous paragraph, MELD

also strongly affects the liver transplant hazard. Therefore, unless the death model

adjusts for time-dependent MELD, the wait-list mortality and decease-donor liver

transplantation will be correlated. However, HCC is a diagnosis category; an under-
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lying cause of end-stage liver disease, which is usually recorded at time 0. Therefore,

given our analytic objective and in the interests of interpretation, it is appropriate

to adjust for other characteristics known at t = 0, but not factors realized at t > 0.

Therefore, we must account for liver transplantation as dependent censoring.

There are additional issues regarding the data structure which must be taken

into account. In particular, a patient who is too sick to receive a transplant can be

inactivated (usually a temporary measure) or removed (permanent) from the wait-

list. During these intervals, the patient is ineligible to receive a transplant. Therefore,

an appropriate Cox model in this setting is given by the following,

λCi (t) = Ai(t)λ
C
0 (t) exp{αTVi(t)},(3.11)

where Ai(t) is an indicator of being active on the wait list (i.e., as opposed to being

inactive or having been previously removed) as of time t. When fitting model (3.11),

we delete patient subintervals with Ai(t) = 0. The time-dependent covariate vector

Vi(t) includes MELD at time t (grouped into intervals: [6,8], [9,11], [12,13], [14,15],

[16,17], [18,19], [20,22], [23,24], [25,29], [30,39], and 40) with HCC patients chosen as

the reference group. The vector Vi(t) also includes the following baseline covariates:

age, gender, race and blood type; with age less than 40, Female, Caucasian and blood

type O as references, respectively. Note that, for the intervals where the patient was

either inactivated or removed, the transplant hazard was treated as 0, as indicated by

equation (3.11). However, since the inactivated or removed patients are still at risk

of pre-transplant death, such that patient subintervals with Ai(t) = 0 are included in

the wait-list mortality model. In addition, for both the time-to-death and time-to-

transplant models, we adjusted for Organ Procurement Organization (OPO) through

stratification, since it may not be appropriate to assume proportionality with respect

to the approximately 60 OPO-specific hazard functions, transplant or death.
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Table 3.4: ODS design for the analysis of liver wait-list mortality.

Patients OPO size p1 p2 p3

HCC all 1.00 1.00 1.00
Non-HCC

≤ 400 1.00 1.00 1.00
(401, 1300] 0.30 0.10 0.10
> 1300 0.15 0.10 0.10

The primary outcome of interest is wait-list mortality. Loss to follow up, living-

donor transplantation and administrative censoring are considered to be independent

censoring. Dependent censoring occurred through deceased-donor liver transplanta-

tion. Among the n = 55, 951 patients wait listed for liver transplantation, a total of

4,475 (8%) were diagnosed with HCC. In term of events, 10,584 (19%) patients died

on the wait-list, while 28,621 (51%) received a deceased-donor liver transplant.

To illustrate our methods, we selected an ODS and allowed the sampling rate to

depend on the baseline HCC status and OPO size. The sampling rate is shown in

Table 3.4. Note that patients who are diagnosed with HCC are selected into the

subcohort with probability 1.

Results of the analysis are shown in Table 3.5. Since the IPCW weights could be

very large toward the tail of the observation time, we truncated IPCW weights with

10. In general, we use the results based on W2 or W3 since they are more stable than

those based on W1. Table 3.5 shows that when the dependent censoring is ignored,

MELD group [16, 17] is consistent with the HCC group. By using W2, MELD group

[14, 15] is consistent with the HCC group.

The result based on using W3 was similar to that based on W2, except that both

MELD groups [14, 15] and [16, 17] are consistent with the HCC group (result not

shown). By using W1, MELD groups [14, 15] and [16, 17] are consistent with the

HCC group (result not shown). However, since the unstabilized weight W1 may be
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Table 3.5: Analysis of wait-list mortality by MELD group: HCC group (assigned MELD of 22) is
chosen to be the reference.

Unweighted Weighted: W2

β̂ SE p-value exp{β̂} β̂ SE p-value exp{β̂}
HCC 0 – – 1 0 – – 1
MELD
[6, 8] -1.07 0.12 < 0.0001 0.34 -1.02 0.15 < 0.0001 0.36
[9, 11] -0.60 0.09 < 0.0001 0.55 -0.48 0.11 < 0.0001 0.62
[12, 13] -0.53 0.09 < 0.0001 0.59 -0.40 0.11 0.0002 0.67
[14, 15] -0.25 0.09 0.005 0.78 0.002 0.11 0.98 1.00
[16, 17] 0.10 0.10 0.32 1.10 0.24 0.12 0.0498 1.28
[18, 19] 0.26 0.12 0.02 1.30 0.63 0.15 < 0.0001 1.88
[20, 22] 0.55 0.11 < 0.0001 1.73 0.83 0.12 < 0.0001 2.29
[23, 24] 0.90 0.17 < 0.0001 2.47 1.41 0.21 < 0.0001 4.12
[25, 29] 1.59 0.16 < 0.0001 4.88 1.93 0.19 < 0.0001 6.92
[30, 39] 2.38 0.16 < 0.0001 10.81 2.69 0.17 < 0.0001 14.74
40 3.68 0.29 < 0.0001 39.56 3.65 0.37 < 0.0001 38.67

quite large toward the tail of the observation time, the result from using stabilized

weights W2 or W3 would be of more interest than those from using W1. According

to the results in Table 3.4, an assigned MELD score between 14 and 15 for HCC

patients would be consistent with the wait-list mortality rates for such patients, and

therefore may be more appropriate than the MELD exception score of 22 that is

currently being used.

3.6 Discussion

In this chapter, we propose methods for analyzing failure time data under an ODS

design with dependent censoring. The proposed methods employ a double-inverse-

weighting scheme, through which the proposed estimators adjust for the sampling

bias and overcome dependent censoring. Simulation studies show that the proposed

estimators are approximately unbiased and that our asymptotic results are applicable

to finite samples. The proposed estimates can be computed using standard software

(e.g., PROC PHREG in SAS with WEIGHT statement) with a counting process

input file structure.
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We propose three different weights to correct the bias induced by dependent cen-

soring. In general, when the dependent censoring is light or moderate, the unsta-

bilized weight W1(t) works well. However, when censoring is heavy, W1(t) may be

quite large toward the tail of the observation time resulting in unstable estimates. In

this case, stabilized weights, W2(t) and W3(t), may be preferable and usually result

in more efficient estimator than that from using the unstabilized weight W1(t). We

found little difference in the performance of W2(t) and W3(t).

In simulation studies, we treated the IPCW weights and IPSW weights as fixed to

simplify the computation, which would result in conservative covariance estimators

because those weights are actually estimated as opposed to being known. However,

simulation results suggest that the proposed ASEs by treating the IPCW weights

and IPSW weights as fixed are quite accurate.

The proposed methods require the consistency of the IPCW weight. Therefore,

the proportional hazards model for dependent censoring should be correctly specified.

This may be approximately true when a sufficient number of covariates is collected.

In addition to depending on the outcome, (Δ1i,Δ2i,Δ3i), we can also allow ξi to

depend on Zi(0). For example, in order to obtain reasonably precise estimates of the

properties of a rare type, we can oversample subjects of this type.

Applying our methods to ESLD patients wait listed for liver transplantation, we

found that (calculated) MELD score group of [16, 17] is consistent with the HCC

wait-list mortality hazard if no adjustment was made for dependent censoring. How-

ever, the consistent MELD score range changes to [14, 15] after we consider dependent

censoring by using weightW2. Therefore, our results indicate that the current MELD

exception score of 22 granted to at wait listing to HCC patients overstates the ac-

tual medical urgency; and that an assigned MELD score of 14 or 15 may be more
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appropriate.

The proposed methods generally work well for set-ups with light and moderate

dependent censoring. However, when the dependent censoring rate is very high, say

60% or more, the proposed estimators may perform more poorly, at least for the

data settings we considered. No studies in the literature seem to have considered

such high censoring rates and further study of data with heavy dependent censoring

would be valuable.



CHAPTER IV

Hazard Regression Models for Estimating the Effect of an

External Time-Dependent Covariate

4.1 Introduction

Hemodialysis (HD) is the most common treatment for advanced kidney failure.

HD removes harmful waste products such as potassium, urea and free water from

the blood, which would normally be eliminated in the urine. Typically, HD patients

are required to follow a strict treatment regimen that involves receiving dialysis on

either a Monday-Wednesday-Friday (MWF) or a Tuesday-Thursday-Saturday (TTS)

schedule. During the interval between dialysis sessions, electrolytes and fluids may

accumulate and increase the risk of mortality. Therefore, patients may be at higher

risk of death on certain days, due to the intermittent nature of the dialysis schedule.

For example, death risk may be elevated on Monday for MWF schedule patients

or Tuesday for TTS schedule patients since these days are preceded by the longest

intervals without dialysis.

The association between day-of-week-specific mortality risk and dialysis schedule

has been investigated in various studies. Using crude death rates, Bleyer et al. (1999)

revealed that there was an increased risk of sudden death and cardiac-related death

on Monday for MWF schedule patients, and on Tuesday for TTS schedule patients.

The authors used logistic models to investigate whether mortality was accentuated
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for patients with increased age, coronary artery disease, diabetes mellitus, and/or

congestive heart failure. Karnik et al. (2001) performed two-tailed binomial tests to

study whether the risk of cardiac arrest was elevated on Monday for MWF schedule

patients, and on Tuesday for TTS schedule patients. The authors found that the

risk of cardiac arrest on Monday was higher for MWF schedule patients. Bleyer

et al. (2006) studied the association between occurrences of sudden death among

HD patients and the timing of HD. They performed χ2 tests to test for differences

between observed and expected frequencies in day and timing of deaths of patients.

This study also showed that there was an increased risk of sudden death on Monday

for MWF schedule patients, and on Tuesday for TTS schedule patients.

However, each of the studies referenced in the preceding paragraph was based on

crude death rates and logistic regression models. Such approaches make it difficult (if

not impossible) to adjust for time-dependent covariates or appropriately account for

censoring. Since the endpoint is time-to-death, survival analysis (e.g., Cox regression)

is well-suited for this purpose.

The data studied here were obtained from Dialysis Outcomes and Practice Pat-

terns Study (DOPPS), an international prospective observational study of hemodial-

ysis patients and facilities. DOPPS-I (1996-2001) contained more than 17,000 pa-

tients from seven countries including France, Germany, Italy, Japan, Spain, United

Kingdom, and the U.S., while DOPPS-II (2002-2004) included more than 12,000

patients from the seven countries above as well as Australia/New Zealand, Belgium,

Canada, and Sweden. In each phase, over 300 dialysis facilities were involved. At

each facility, a random sample of HD patients was selected into the DOPPS.

In this chapter, we propose Cox models to evaluate the association between Mon-

day/Tuesday mortality and dialysis schedule. Three models were fitted, each dis-
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tinguished by the factor of interest: (i) day of the week (ii) day of dialysis sched-

ule (iii) days since last dialysis. In each case, the factor of interest is coded as a

time-dependent covariate. The models are compared and contrasted, with special

attention given to the setting where the sample size is small. We address whether

the Monday/Tuesday effect is similar across countries.

The remainder of this chapter is organized as follows. In Section 4.2, we describe

the study population and the proposed methods for analyzing HD patients in the

DOPPS. In Section 4.3, we present the results of the proposed models. The chapter

concludes with some discussion in Section 4.4.

4.2 Methods

We use data from the DOPPS-I and DOPPS-II with U.S., Japanese and Euro-

pean (Belgium, France, Germany, Italy, Spain, Sweden, United Kingdom) patients

composing three regional strata. Details of the DOPPS design have been reported

previously; see for example Young et al. (2000), and Pisoni et al. (2004). The total

study population consisted of 22,163 patients (9,227 U.S. patients, 4,419 Japanese

patients, and 8,517 European patients). Patients were followed from the time they

entered DOPPS until the death, receipt of a kidney transplant, loss to follow-up, or

the end of the observation period, whichever occurred first.

At the start of participation in the DOPPS, demographic characteristics and co-

morbid conditions were obtained. Follow-up information was collected every four

months. The date dialysis was received is also reported in the four-month period. In

the current study, the dialysis schedule was defined to be MWF in the four-month

interval if the reported date was a Monday, Wednesday or Friday. The TTS dialysis

schedule was defined similarly. If the reported date was missing or a Sunday, the
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date from the preceding four-month reporting interval was used to define the dialysis

schedule.

The primary outcome of interest is all-cause mortality. We assume the time-

dependent Cox proportional hazards model for all-cause mortality,

λ {t|Z(t)} = λ0(t) exp
{
βT

0Z(t)
}
,(4.1)

where λ0(t) is an unspecified baseline hazard, Z(t) is a p-vector of possibly time-

dependent covariates, and β0 is a p-dimensional regression parameter. Three models

were fitted with a view to assessing the primary questions of interest. In each model,

the factor of interest was coded as a time-dependent covariate, and Table 4.1 shows

the detailed coding used. In Model 1, the covariate of interest is day of the week

(Sunday, Monday, ..., Saturday). Each day was compared to the average of the seven

days of the week, where Zi1(t) = I (day t for subject i is a Monday) − I (day t for

subject i is a Sunday), . . . , Zi6(t) = I (day t for subject i is a Saturday) − I (day t

for subject i is a Sunday), where t is the time since the first ever HD day for patient

i. In addition, ZMWF (t) = I ( Patient receives MWF dialysis schedule at day t ) was

used in this model as a covariate of stratification variable. In Model 2, the covariate

of interest is day of dialysis schedule (1st, 2nd, ..., 7th), each was compared to the

average of the seven days of the week, where Zi1(t) = I (day t for subject i is the 1st

day of dialysis schedule)− I (day t for subject i is the 7th day of dialysis schedule),

. . . , Zi6(t) = I (day t for subject i is the 6th day of dialysis schedule) − I (day t for

subject i is the 7th day of dialysis schedule). In Model 3, the covariate of interest

is days since last dialysis (1, 2, 3), where Zi1(t) = I (day t for subject i is 1 day

since last dialysis ), . . . , Zi3(t) = I (day t for subject i is 3 days since last dialysis ).

Let αj be the covariate coefficient for Zij, j = 1, 2, 3. Each covariate was compared

to the average of the seven days of the week. Therefore, the parameters of interest
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in Model 3 are βj = αj − 1/7 (3α1 + 3α2 + α3) for j = 1, 2, 3. In Models 2 and 3,

ZMWF (t) was fitted in the model as a covariate of stratification variable.

Since patients were not under observation until they entered the DOPPS study,

our model took patient vintage (previous time on dialysis at entry into DOPPS)

into account through left-truncation. Baseline adjustment covariates included the

following factors: gender, race, 14 comorbid conditions (coronary heart disease, can-

cer other than skin, other cardiovascular disease, cerebrovascular disease, congestive

heart failure, diabetes, gastrointestinal bleeding, HIV/AIDS, hypertension, lung dis-

ease, neurologic disease, psychiatric disorder, peripheral vascular disease, and recur-

rent cellulitis), body mass index (grouped as <20, [20-25), [25-30), ≥30 kg/m2), and

vascular access (catheter use). Country, phase, age group (18-29, 30-39, 40-44, 45-49,

50-54, 55-59, 60-64, 65-69, ≥70 years) and dialysis schedule were adjusted through

stratification. Since patients from the same facility are not likely independent due

to shared practice patterns, we accounted for intra-cluster dependence by using a

robust (“sandwich”) estimator to draw valid statistical inference. Cox models were

fitted to each region (U.S., Europe and Japan) separately.

In Model 1, Z1I {ZMWF (t) = 1}, . . . , Z6I {ZMWF (t) = 1}, Z1I {ZMWF (t) = 0},

. . . , and Z6I {ZMWF (t) = 0} were fitted in the model. With dialysis schedule being

adjusted through stratification, this model has the advantage of estimating the spe-

cific day-of-week effect on mortality for each dialysis schedule. However, sufficient

sample size and events are needed to draw reliable conclusions in fitting this com-

plex model. In particular, in our study, conclusions drawn for Japanese HD patients

may be unstable due to the smaller sample size and lower event rate. This limi-

tation of Model 1 motivates the other two models which, although less detailed in

nature, retain the ability to look at the primary questions concerning the effect of
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time since last dialysis on mortality. Model 2 provides day-of-week effect on all-cause

mortality. In this model, the Monday effect on all-cause mortality for MWF sched-

ule patients is assumed to be identical to the Tuesday effect on all-cause mortality

for TTS schedule patients with a similar equivalence for all subsequent days during

the schedule. Model 3 specifically emphasizes the time elapsed since last dialysis

as a predictor of mortality. In this model, the Monday effect on all-cause mortality

for MWF schedule patients and the Tuesday effect on all-cause mortality for TTS

schedule patients share the same magnitude, both being three days since the last

dialysis treatment. Similarly, only the average effect of Tuesday, Thursday and Sat-

urday from the MWF schedule and Sunday, Wednesday and Friday from the TTS

schedule is represented in Zi1(t) = 1; the average effect of Sunday, Wednesday and

Friday from the MWF schedule and Monday, Thursday and Saturday from the TTS

schedule is represented in Zi2(t) = 1. This model provides a macroscopic view that

facilitates easy comparison of the three regions.

The choice between Models 1-3 can be made according to the availability of data.

In general, Model 1 assesses the effect of the day on mortality more precisely than

Model 2, and Model 2 provides more detailed interpretation than Model 3. However,

achieving readily interpreted parameters could result in loss of stability on the con-

clusion, especially when the sample size is small and event rate is low. In addition,

the likelihood ratio tests are performed to compare the proposed three models in

each of the three regions.

4.3 Results

For each region, Cox regression models were used to estimate the covariate-

adjusted Monday/Tuesday effect on all-cause mortality. Table 4.2 contains three
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sets of covariate-adjusted relative hazards of all-cause mortality for U.S. patients.

Model 1 analysis shows all-cause mortality by day-of-week. It indicates that patients

from the U.S. are estimated to have significant 1.41 and 1.39 times higher hazards of

all-cause death on Mondays with MWF schedule and Tuesdays with TTS schedule,

respectively, compared to the average of the seven days of the week (p < 0.0001 and

p < 0.0001, respectively). Model 2 gives all-cause mortality by day of dialysis sched-

ule. Results from the Model 2 analysis show that U.S. patients had a significant 1.40

times higher risk of all-cause death on Mondays with MWF schedule and Tuesdays

with TTS schedule compared to overage average (p < 0.0001). Model 3 provides all-

cause mortality by days since last dialysis. The analysis from Model 3 reveals that,

in the U.S., patients experienced a significant 1.40 times higher all-cause mortality

hazard on Monday (for MWF schedule) and Tuesdays (for TTS schedule) relative to

the overall average (p < 0.0001).

In Table 4.3, relative hazards of all-cause mortality for European patients are

displayed. Under Model 1, European patients had significant 1.34 and 1.22 times

higher hazards of all-cause death on Mondays (for patients on a MWF schedule) and

on Tuesdays (for patients on a TTS schedule) (p = 0.001 and p = 0.043, respec-

tively); in each case the comparison is made with the average over the seven days.

The effect of Tuesdays on all-cause mortality with TTS schedule is only marginally

significant in this region. Results based on Model 2 show that European patients

experienced a significant 1.29 times higher risk of all-cause death on Mondays (with

MWF schedule) and Tuesdays (with TTS schedule) when compared to the overall

average (p = 0.0004). Results from Model 3 show that, in Europe, all-cause mor-

tality risk was significantly 1.28 times higher on Mondays with MWF schedule and

Tuesdays with TTS schedule compared to the overall average (p = 0.0005). The
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Table 4.2: Anslysis of DOPPS data: U.S. patients

Covariates β̂ SE exp(β̂) p-value

Model 1

MWF Schedule Patients
Sunday -0.14 0.07 0.87 0.030
Monday 0.34 0.05 1.41 < 0.0001
Tuesday 0.02 0.06 1.02 0.77
Wednesday 0.03 0.06 1.03 0.61
Thursday -0.22 0.08 0.81 0.004
Friday 0.04 0.07 1.04 0.53
Saturday -0.07 0.06 0.93 0.26

TTS Schedule Patients
Sunday -0.15 0.08 0.86 0.086
Monday 0.11 0.08 1.12 0.16
Tuesday 0.33 0.07 1.39 < 0.0001
Wednesday -0.19 0.08 0.83 0.027
Thursday -0.06 0.07 0.94 0.41
Friday -0.10 0.08 0.90 0.19
Saturday 0.05 0.08 1.05 0.54

Model 2

First 0.34 0.04 1.40 < 0.0001
Second -0.06 0.05 0.94 0.19
Third -0.008 0.05 0.99 0.86
Fourth -0.17 0.05 0.84 0.002
Fifth 0.04 0.05 1.04 0.41
Sixth -0.10 0.05 0.90 0.051
Seventh -0.03 0.05 0.97 0.49

Model 3

One -0.11 0.02 0.89 < 0.0001
Two 0.0005 0.02 1.00 0.98
Three 0.34 0.04 1.40 < 0.0001
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differences estimated by Models 2 and 3 are more significant than those from Model

1.

Corresponding results for Japanese patients are shown in Table 4.4. The Model

1 analysis shows that in Japan, compared to the overall average, all-cause mortality

was estimated to be 1.27 and 1.43 times higher on Mondays with MWF schedule

and Tuesdays with TTS schedule, respectively. These differences, however, are not

significant or only marginally significant in this region (p = 0.15 and p = 0.044,

respectively). The Model 2 analysis shows that Japanese patients experienced a

significant 1.34 times higher hazard of all-cause mortality on Mondays with MWF

schedule and Tuesdays with TTS schedule compared with the overall average. The

difference here are more significant (p = 0.017) compared to the result of Model 1.

Model 3, as noted, emphasizes the time since last dialysis and we find that Japanese

patients had a 1.31 times higher hazard of all-cause mortality on Mondays with

MWF schedule and Tuesdays with TTS schedule compared to the overall average.

This result is also more significant (p = 0.027) compared to the corresponding result

from Model 1.

Our results from DOPPS with U.S., European, and Japanese patients fromModels

1-3 indicate that in all three regions, HD patients have a higher hazard of all-cause

mortality on Mondays with MWF schedule, or Tuesdays with TTS schedule. In

general, Model 1 does not fit the data as well as Models 2 and 3 for European and

Japanese patients since, in these regions, the Monday and Tuesday effects under

Model 1 may not be statistically significant; such effects may be highly significant

in Models 2 and 3. Results of Model 3 are consistent among all three regions, which

provide a good macroscopic view of the Monday/Tuesday effect; however, this model
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Table 4.3: Anslysis of DOPPS data: European patients

Covariates β̂ SE exp(β̂) p-value

Model 1

MWF Schedule Patients
Sunday -0.11 0.10 0.90 0.30
Monday 0.30 0.09 1.34 0.001
Tuesday 0.03 0.11 1.03 0.80
Wednesday -0.01 0.10 0.99 0.89
Thursday -0.19 0.10 0.83 0.067
Friday 0.02 0.10 1.02 0.87
Saturday -0.02 0.09 0.98 0.78

TTS Schedule Patients
Sunday -0.04 0.11 0.96 0.69
Monday -0.03 0.10 0.97 0.77
Tuesday 0.20 0.10 1.22 0.043
Wednesday 0.03 0.11 1.03 0.80
Thursday -0.20 0.12 0.82 0.097
Friday -0.22 0.11 0.80 0.052
Saturday 0.17 0.11 1.30 0.013

Model 2

First 0.25 0.07 1.29 0.0004
Second 0.03 0.08 1.03 0.75
Third -0.09 0.07 0.91 0.21
Fourth -0.21 0.08 0.81 0.007
Fifth 0.13 0.07 1.14 0.070
Sixth -0.04 0.06 0.96 0.58
Seventh -0.07 0.07 0.93 0.28

Model 3

One -0.07 0.03 0.93 0.026
Two 0.01 0.03 0.99 0.74
Three 0.25 0.07 1.28 0.0005
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Table 4.4: Anslysis of DOPPS data: Japanese patients

Covariates β̂ SE exp(β̂) p-value

Model 1

MWF Schedule Patients
Sunday -0.09 0.18 0.92 0.63
Monday 0.23 0.16 1.27 0.15
Tuesday 0.09 0.22 1.09 0.69
Wednesday 0.005 0.17 1.01 0.98
Thursday -0.44 0.22 0.65 0.043
Friday 0.37 0.18 1.44 0.041
Saturday -0.17 0.20 0.84 0.39

TTS Schedule Patients
Sunday -0.46 0.23 0.63 0.057
Monday -0.38 0.23 0.68 0.095
Tuesday 0.36 0.18 1.43 0.044
Wednesday 0.19 0.17 1.21 0.27
Thursday 0.13 0.23 1.14 0.57
Friday -0.19 0.23 0.83 0.41
Saturday 0.36 0.20 1.43 0.075

Model 2

First 0.29 0.12 1.34 0.017
Second 0.13 0.14 1.14 0.34
Third 0.06 0.14 1.06 0.66
Fourth -0.32 0.16 0.73 0.055
Fifth 0.36 0.14 1.43 0.010
Sixth -0.29 0.15 0.75 0.056
Seventh -0.24 0.14 0.79 0.10

Model 3

One -0.15 0.07 0.86 0.023
Two 0.06 0.07 1.07 0.36
Three 0.27 0.12 1.31 0.027
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does not have enough precision. If the sample size is large and the event rate is high,

Model 1 would be preferred since it provides precise Monday/Tuesday effect.

Likelihood ratio tests indicate that, in each of the three regions, Model 1 is not

significantly better than Model 2. In addition, the difference between Models 2 and

3 is not significant, except in Japan.

4.4 Discussion

In this chapter, we investigated the association between Monday/Tuesday effect

on all-cause mortality and dialysis schedule. In practice, the analysis of such data

has been limited to crude death rate or logistic regression models. We used Cox

models with the covariate of interest serving as a time-dependent covariate. Three

models were fitted, distinguished by the covariate of interest: (i) day of the week

(ii) day of dialysis schedule (iii) days since last dialysis. With these models, one

gains a thorough understanding of the Monday/Tuesday effect on all-cause mortality.

Further, the Cox model appropriately accounts for right censoring, whereas other

methods (e.g., such as logistic regression) do not track such events accurately. In

particular, Green and Symons (1983) concluded that when the follow-up period is

long, the Cox model is superior to the logistic model because the Cox model explains

more variability of the data than logistic regression. In addition, Cox models with

time-dependent covariates can appropriately use the covariate information that varies

over time, whereas logistic regression can not gain such benefit easily.

If the sample size is large, Model 1 results in a more detailed Monday/Tuesday

effect on all-cause mortality than Model 2, and Model 2 has more precise Mon-

day/Tuesday effect on all-cause mortality than Model 3. However, if the sample size

is small and the event rate is low, inferences drawn from Model 1 are subject to
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substantially more uncertainty than Model 2, and Model 2 leads to more unreliable

conclusions than Model 3. Therefore, the choice between Models 1-3 depends on

the sample size and the precision of the conclusion one intends to gain. In addition,

Models 2 and 3 provide an overall insight of the Monday/Tuesday effect on all-cause

mortality and make the comparison of the three regions easily. The commonality

among the three regions is more pronounced in Model 3 than in Model 2. Though

results from Model 2 contains more information than those from Model 3, the likeli-

hood ratio tests show that Model 2 is not significantly better than Model 3 except in

Japan. If one needs to get even more detailed Monday/Tuesday effect on all-cause

mortality, Model 1 can be used; however, the difference between Models 1 and 2 is

not significant in the three regions.

With Models 1-3, our results indicate that in all three regions (U.S., Europe, and

Japan), HD patients have a higher hazard of all-cause mortality on Mondays with

MWF schedule, or Tuesdays with TTS schedule. This implies that there may be an

advantage to a more frequent dialysis schedule in these regions.

In summary, we believe that the time-dependent Cox model provides a useful

methodology for estimating the association between the Monday/Tuesday effect on

all-cause mortality and dialysis schedule. Our results imply that there may be an

advantage to a more frequent dialysis schedule in the U.S., Europe and Japan.

The proposed methods are based on a proportional hazards model. However,

in certain situations, the proportional hazards model may not be appropriate. The

accelerated failure time (AFT) model is an alternative method and may be appealing

since the parameters can be interpreted easily. Such a model with an external time-

dependent covariate that rotates regularly would be worth investigating.



CHAPTER V

Conclusion

This dissertation proposes three novel statistical methods for analyzing failure

time data, targeting four important issues that frequently arise in observational data:

(i) study subjects are clustered, (ii) subjects are sampled in a manner which explicitly

depends on the outcome (e.g., death, illness), (iii) subjects are censored in a manner

independent of the failure rate, and (iv) covariate of interest is an external time-

dependent covariate that rotates regularly. Chapter II proposes methods that are

based on estimating equations for case-cohort designs for clustered failure time data.

Chapter III considers the setting with outcome-dependent sampling and dependent

censoring. Chapter IV estimates the effect of an external time-dependent covariate

under a proportional regression model.

Under a marginal hazards model, the methods in Chapter II feature tractable

asymptotic derivations. The risk set includes not only subcohort members in the

case-cohort design, but future failures outside the subcohort, resulting in potentially

increased efficiency relative to some existing methods. Chapter III employs a novel

double-inverse-weighting scheme which combines weights corresponding to the prob-

ability of remaining uncensored and the probability of being sampled. Chapter IV

performs a comprehensive investigation of the association between the day-of-week-

66
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specific death rates and the dialysis schedule in the U.S., several European countries

and Japan. The covariate of interest is an external time-dependent covariate that

rotates regularly.

The methods developed in Chapters II-IV were motivated by real research ques-

tions regarding mortality on dialysis among end-stage renal disease patients and

wait-list mortality among patients with end-stage liver disease. Hence, the contribu-

tion of this research is both clinical and statistical. Each method proposed in this

dissertation was applied to a real medical research question. In Chapter II, by apply-

ing the proposed methods to a study of mortality among Canadian dialysis patients,

we found that Canadian HD patients appear to be at an increased risk of CVD death

on Monday and Tuesday. In Chapter III, the proposed methods were applied to end-

stage liver disease data. We observed that MELD score group of [14, 15] is consistent

with HCC wait-list mortality. Therefore, the current MELD exception score of 22

assigned to HCC patients overstates the true wait-list mortality. In Chapter IV, we

studied the association between day-of-week-specific mortality and dialysis schedule

for DOPPS patients from the U.S., European countries and Japan. We found that

in the three regions, HD patients have a higher hazard of all-cause mortality on

Mondays with MWF schedule, or Tuesdays with TTS schedule.

Several possible extensions to the methods proposed in this dissertation may be

worth consideration. For example, the methods in Chapter II are under a marginal

proportional hazards model. A proportional hazards frailty model combined with

maximum likelihood estimation would be valuable. The performance of the proposed

methods in Chapter III may be poor when the dependent censoring rate is very high,

implying that future studies of data with heavy dependent censoring would be worth

investigating.
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APPENDIX A

Proof of Theorems and addition simulation studies in

Chapter II

A.1 Proof of Theorem 1

Evaluated at the true values, the estimating function is given by

U(β0, p0) =

n∑
i=1

mi∑
j=1

∫ τ

0

{
Zij(u)− S

(1)
(β0, p0, u)

S
(0)
(β0, p0, u)

}
dNij(u).

By some simple algebra, we have

n−1/2U(β, p0) = n−1/2
n∑

i=1

mi∑
j=1

∫ τ

0

{Zij(u)− e(β, u)} dNij(u)

−n1/2

∫ τ

0

{
S

(1)
(β, p0, u)

S
(0)
(β, p0, u)

− e(β, u)
}
dF (u)

−n1/2

∫ τ

0

{
S

(1)
(β, p0, u)

S
(0)
(β, p0, u)

− e(β, u)
}{

dN(u)− dF (u)
}
.

By a functional Taylor expansion of S
(1)
(β, p0, u)/S

(0)
(β, p0, u) with respect to

S
(1)
(β, p0, u) and S

(0)
(β, p0, u) around μ

−1s(1)(β, u) and μ−1s(0)(β, u), respectively,

combined with Conditions (d), (e) and the fact that n1/2
{
N(u)− F (u)

}
converges

in distribution to a zero-mean Gaussian process, n−1/2U(β, p0) can be written as

n−1/2
n∑

i=1

mi∑
j=1

∫ τ

0

{Zij(u)− e(β, u)} dNij(u)

−n1/2

∫ τ

0

n∑
i=1

mi∑
j=1

{Zij(u)− e(β, u)}Yij(u)eβTZij(u)
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×
{
p0
N1

δij +
1− p0
n0

(1− δij)HiHij

}{
1

μ
s(0)(β, u)

}−1

dF (u)

+op(1)

= n−1/2
n∑

i=1

mi∑
j=1

∫ τ

0

{Zij(u)− e(β, u)} dNij(u)

−n−1/2 p0
N1/n

∫ τ

0

n∑
i=1

mi∑
j=1

{Zij(u)− e(β, u)} δijYijeβTZij(u)

×
{
1

μ
s(0)(β, u)

}−1

dF (u)(A.1)

−n−1/2 1− p0
n0/n

∫ τ

0

n∑
i=1

mi∑
j=1

{Zij(u)− e(β, u)} (1− δij)HiHijYije
βTZij(u)

×
{
1

μ
s(0)(β, u)

}−1

dF (u) + op(1),(A.2)

followling a parallel setting described by van der Vaart and Wellner (1996) (example

2.11.16 on p.215). By another functional Taylor expansion, we get

p0
N1/n

=
1

μ
− 1

μ2p0

(
N1

n
− μp0

)
+ op(1)

1− p0
n0/n

=
1

μγθ
− 1

(μγθ)2 (1− p0)

{n0

n
− μγθ(1− p0)

}
+ op(1),

such that (A.1) can be written as

−n−1/2

n∑
i=1

mi∑
j=1

∫ τ

0

{Zij(u)− e(β, u)} δij
μ
Yij(u)e

βTZij(u)

×
{
1

μ
s(0)(β, u)

}−1

dF (u)

+n−1/2

(
N1

n
− μp0

) n∑
i=1

mi∑
j=1

∫ τ

0

{Zij(u)− e(β, u)} δij
μ2p0

Yij(u)e
βTZij(u)

×
{
1

μ
s(0)(β, u)

}−1

dF (u) + op(1).

It is easy to show that

n−1/2

(
N1

n
− μp0

)
= n−1/2

n∑
i=1

∑mi

j=1 δij − μp0

n

= n−1/2
n∑

i=1

G1i(p0),(A.3)
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where G1i(p) is as defined in Theorem 1, and that

n∑
i=1

mi∑
j=1

∫ τ

0

{Zij(u)− e(β, u)} 1

μ2p0
δijYij(u)e

βTZij(u)

{
1

μ
s(0)(β, u)

}−1

dF (u)

=
n∑

i=1

mi∑
j=1

∫ τ

0

{Zij(u)− e(β, u)} 1

μ2p0
δijYij(u)e

βTZij(u)

{
1

μ
s(0)(β, u)

}−1

dN(u)

−
n∑

i=1

mi∑
j=1

∫ τ

0

{Zij(u)− e(β, u)} 1

μ2p0
δijYij(u)e

βTZij(u)

{
1

μ
s(0)(β, u)

}−1

× d
{
N(u)− F (u)

}
= n−1

n∑
i=1

mi∑
j=1

∫ τ

0

{Zij(u)− e(β, u)} 1

μ2p0
δijYij(u)e

βTZij(u)

{
1

μ
s(0)(β, u)

}−1

×
n∑

k=1

mi∑
l=1

dNkl(u) + op(1).(A.4)

Combining (A.3), (A.4) and using the fact that (A.4) converges in probability to

D1(β), (A.1) can be written as

−n−1/2

n∑
i=1

mi∑
j=1

∫ τ

0

{Zij(u)− e(β, u)} 1

μ
δijYij(u)e

βTZij(u)

{
1

μ
s(0)(β, u)

}−1

× dF (u) +D1(β)× n−1/2
n∑

i=1

G1i(p0) + op(1).

Similarly, we can show that (A.2) can be written as

−n−1/2

n∑
i=1

mi∑
j=1

∫ τ

0

{Zij(u)− e(β, u)} 1

μγθ
(1− δij)Yij(u)e

βTZij(u)

×
{
1

μ
s(0)(β, u)

}−1

dF (u) +D2(β)× n−1/2
n∑

i=1

G2i(p0) + op(1).

Therefore, it follows that

n−1/2U(β, p0)

= n−1/2

n∑
i=1

mi∑
j=1

∫ τ

0

{Zij(u)− e(β, u)} dNij(u)

−n−1/2
n∑

i=1

mi∑
j=1

∫ τ

0

{Zij(u)− e(β, u)}
{
1

μ
δij +

1

μγθ
(1− δij)HiHij

}
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× Yij(u)e
βTZij(u)

{
1

μ
s(0)(β, u)

}−1

dF (u)

+D1(β)× n−1/2

n∑
i=1

G1i(p0) +D2(β)× n−1/2

n∑
i=1

G2i(p0) + op(1)

= n−1/2
n∑

i=1

W i(β, p0) + op(1),

with W i(β, p) as defined in Theorem 1.

The quantity W i(β0, p0) can be written as

W i(β0, p0) =

mi∑
j=1

∫ τ

0

{Zij(u)− e(β0, u)} dMij(u)

+

mi∑
j=1

∫ τ

0

{Zij(u)− e(β0, u)} (1− δij)(1− 1

γθ
HiHij)Yij(u)

× eβ
T
0 Zij(u)λ0(u)du+D1(β0)G1i(p0) +D2(β0)G2i(p0),

where Mij(t) = Nij(t)−
∫ t

0
Yij(u)e

βT
0 Zij(u)λ0(u)du is a mean-zero process.

Note that E {1− (γθ)−1HiHij} = 0, E {dMij(u)} = 0, E {G1i(p0)} = 0 and E {G2i(p0)}
= 0, such that E {W i(β0, p0)} = 0, for i = 1, . . . , n. Hence under the assumed con-

ditions, asymptotically, {W i(β0, p0)}ni=1 are independent and identically distributed

random quantities with mean zero and finite variance, E {W 1(β0, p0)
⊗2}. By the

Multivariate Central Limit Theorem (MCLT), n−1/2U(β0, p0)
D−→ N (0,Σ(β0, p0)),

where Σ(β0, p0) is defined in Theorem 1.

A.2 Proof of Theorem 2

To prove the consistency of β̂t, we use the Inverse Function Theorem (Foutz (1977))

by verifying the following conditions:

(i) ∂U (β, p0)/∂β
T exists and is continuous in an open neighborhood B of β0.

(ii) −n−1∂U (β, p0)/∂β
T
∣∣
β=β0

is positive definite with probability 1 as n→ ∞.
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(iii) −n−1∂U (β, p0)/∂β
T converges in probability to a fixed function, A(β), uni-

formly in an open neighborhood B of β0.

(iv) Asymptotic unbiasedness of the estimating function: −n−1U(β0, p0)
P−→ 0.

Conditions (i), (ii) and (iii) follow from Conditions (d), (e), (f) and (g). Using

the result in the proof of Theorem 1, n−1U(β0, p0)
P−→ 0 by Chebyshev’s inequality.

Then, Condition (iv) holds under the assumed model. Having now verified conditions

(i) to (iv), we conclude that β̂t converges in probability to β0.

A.3 Proof of Theorem 3

Here we prove results for β̂s only, since results for β̂w can be proved similarly. By a

Taylor expansion of the score function U(β̂s, p̂s) with respect to β and around β0,

and by a Taylor expansion of U(β0, p̂s) with respect to p around p0,

n−1/2U(β̂s, p̂s) = n−1/2U(β0, p̂s)− Â(β∗, p̂s) n
1/2(β̂s − β0)

n−1/2U(β0, p̂s) = n−1/2U(β0, p0) + B̂(β0, p∗) n
1/2(p̂s − p0),

where β∗ is on the line segment between β̂s and β0, p∗ is on the line segment between

p̂s and p0, and

Â(β, p) = −n−1 ∂

∂β
U(β, p)

= n−1

n∑
i=1

mi∑
j=1

∫ τ

0

⎡⎣S(2)
(β, p, u)

S
(0)
(β, p, u)

−
{
S
(1)
(β, p, u)

S
(0)
(β, p, u)

}⊗2
⎤⎦ dNij(u)

B̂(β, p) = n−1 ∂

∂p
U(β, p)

= n−1
n∑

i=1

mi∑
j=1

∫ τ

0

{
S
(1)
(β, p, u)

S
(0)
(β, p, u)2

∂

∂p
S
(0)
(β, p, u)

− 1

S
(0)
(β, p, u)

∂

∂p
S
(1)
(β, p, u)

}
dNij(u).



74

Since β̂s
P−→ β0 and ‖β∗ − β0‖ ≤ ‖β̂s − β0‖, β∗

P−→ β0. Using the fact that

p̂s
P−→ p0, Condition (e) and continuity,

Â(β∗, p̂s)
P−→

∫ τ

0

{
s(2)(β0, u)

s(0)(β0, u)
− e(β0, u)

⊗2

}
dF (u)

≡ A(β0).

Since p̂s
P−→ p0 and ‖p∗−p0‖ ≤ ‖p̂s−p0‖, we obtain that p∗

P−→ p0. We can express

R(d)(β, p, u) as follows,

R(d)(β, p, u) =
∂

∂p
S

(d)
(β, p, u)

=

n∑
i=1

mi∑
j=1

{
1

N1
δij − 1

n0
(1− δij)HiHij

}
Yij(u)e

βTZij(u)Zij(u)
⊗d(A.5)

=
1

N1/n
× n−1

n∑
i=1

mi∑
j=1

δijYij(u)e
βTZij(u)Zij(u)

⊗d

− 1

n0/n
× n−1

n∑
i=1

mi∑
j=1

(1− δij)HiHijYij(u)e
βTZij(u)Zij(u)

⊗d,

such that

R(d)(β0, p0, u)
P−→ 1

p0
E
{
δ11Y11(u)e

βT
0 Z11(u)Z11(u)

⊗d
}

− 1

1 − p0
E
{
(1− δ11)Y11(u)e

βT
0 Z11(u)Z11(u)

⊗d
}

= r(d)(β0, u).

Then, by continuous mapping,

B̂(β0, p∗)
P−→

∫ τ

0

{
s(1)(β0, u)

s(0)(β0, u)
⊗2
r(0)(β0, u)−

1

s(0)(β0, u)
r(1)(β0, u)

}
dF (u)

≡ B(β0).
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Using the fact that

p̂s − p0 =

∑n
i=1

∑mi

j=1HiHijδij∑n
i=1

∑mi

j=1HiHij
− p0

=

∑n
i=1

∑mi

j=1HiHij(δij − p0)∑n
i=1

∑mi

j=1HiHij

= n−1

∑n
i=1

∑mi

j=1HiHij(δij − p0)∑n
i=1

∑mi

j=1HiHij/n
,

it follows that

n1/2(p̂s − p0) = n−1/2

∑n
i=1

∑mi

j=1HiHij(δij − p0)

μγθ
+ op(1)

= n−1/2

n∑
i=1

{
1

μγθ

mi∑
j=1

HiHij(δij − p0)

}
+ op(1)

= n−1/2
n∑

i=1

Qi(p0) + op(1).

Note that E {HiHij(δij − p0)} = 0, such that E {Qi(p0)} = 0. Therefore,

n−1/2U(β0, p̂s) = n−1/2
n∑

i=1

{W i(β0, p0) +B(β0)Qi(p0)}+ op(1)

= n−1/2
n∑

i=1

ψi(β0, p0) + op(1),

where ψi(β, p) is as defined in Theorem 3.

Since E {ψi(β0, p0)} = 0, by the MCLT,

n−1/2U(β0, p̂s)
D−→ N (0,Ω(β0)) ,

where Ω(β0) = E {ψi(β0, p0)
⊗2}. We then have

n1/2(β̂s − β0) = Â(β∗, p̂s)
−1 × n−1/2U(β0, p̂s),

since U(β̂s, p̂s) = 0. Note that Â(β∗, p̂s)
P−→ A(β0). Therefore by Slutsky’s Theo-

rem, n1/2(β̂s − β0)
D−→ N (0,A(β0)

−1Ω(β0)A(β0)
−1), completing the proof.

A.4 Covariance Matrix Estimators

We now describe he consistent estimates of the covariance matrices in Theorems
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2 and 3. Let γ̂ = n−1
∑n

i=1Hi, and θ̂ =
∑n

i=1

∑mi

j=1HiHij/
∑n

i=1Himi. The co-

variance matrices A(β0)
−1Σ(β0, p0)A(β0)

−1 and A(β0)
−1Ωa(β0)A(β0)

−1 can be

consistently estimated by Â(β̂t, p0)
−1Σ̂(β̂t, p0)Â(β̂t, p0)

−1 and Â(β̂a, p̂a)
−1Ω̂a(β̂a)

×Â(β̂a, p̂a)
−1, respectively, where Σ̂(β̂t, p0) = n−1

∑n
i=1 Ŵ i(β̂t, p0), Ω̂a(β̂a) = n−1∑n

i=1 ψ̂
a

i (β̂a, p̂a), ψ̂
a

i (β̂a, p̂a) = Ŵ i(β̂a, p̂a)+B̂(β̂a, p̂a)Q̂
a
i (p̂a), Ŵ i(β̂a, p̂a) =

∑mi

j=1 Ŵ ij(β̂a, p̂a),

and

Ŵ ij(β, p) =
{
Zij(Xij)−E(β, p,Xij)

}
δij

−n−1
n∑

k=1

mk∑
l=1

{
1

μ̂
δij +

1

μ̂γ̂θ̂
(1− δij)HiHij

}
Yij(Xkl)e

βTZij(Xkl)

×
{
S
(0)
(β, p,Xkl)

}−1 {
Zij(Xkl)−E(β, p,Xkl)

}
δkl

+D̂1(β)G1i(p) + D̂2(β)G2i(p)

B̂(β, p) = n−1
n∑

i=1

mi∑
j=1

{
S
(1)
(β, p,Xij)R

(0)(β, p,Xij)

S
(0)
(β, p,Xij)2

− R(1)(β, p,Xij)

S
(0)
(β, p,Xij)

}
δij

Q̂s
i (p) =

1

μ̂γ̂θ̂

mi∑
j=1

HiHij(δij − p)

Q̂w
i (p) =

1

μ̂

mi∑
j=1

(δij − p)

D̂1(β) = n−1
n∑

i=1

mi∑
j=1

n∑
k=1

mk∑
l=1

{
Zij(Xkl)−E(β, p,Xkl)

} δij
μ̂2p

×Yij(Xkl)e
βTZij(Xkl)

{
1

μ̂
S
(0)
(β, p,Xkl)

}−1

δkl

D̂2(β) = n−1
n∑

i=1

mi∑
j=1

n∑
k=1

mk∑
l=1

{
Zij(Xkl)−E(β, p,Xkl)

} (1− δij)HiHij

(μ̂γ̂θ̂)2(1− p)

×Yij(Xkl)e
βTZij(Xkl)

{
1

μ̂
S
(0)
(β, p,Xkl)

}−1

δkl,

and R(d)(β, p, u) is as defined in (A.5).

A.5 Proof of Theorem 4

We can decompose αn(t) = Λ̂0(β̂, p̂, t) − Λ0(t) into three parts, αn(t) = α1:n(t) +
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α2:n(t) + α3:n(t), where

α1:n(t) = Λ̂0(β̂, p̂, t)− Λ̂0(β̂, p0, t)

α2:n(t) = Λ̂0(β̂, p0, t)− Λ̂0(β0, p0, t)

α3:n(t) = Λ̂0(β0, p0, t)− Λ0(t).(A.6)

Taking a Taylor expansion of α1:n(t),

α1:n(t) =
∂Λ̂0(β̂, p, t)

∂p

∣∣∣∣∣
p=p∗

× (p̂− p0)

= −
∫ t

0

1

μS
(0)
(β̂, p, u)2

∂

∂p
S
(0)
(β̂, p, u)dN(u)

∣∣∣∣∣
p=p∗

× (p̂− p0)

= −
∫ t

0

R(0)(β̂, p∗, u)

μS
(0)
(β̂, p∗, u)2

dN(u)× (p̂− p0),

where p∗ lies between p̂ and p0, and R(0)(β, p, u) is as defined in (A.5). Under assump-

tions (a)-(g), S
(0)
(β, p, u), R(0)(β, p, u) and N(u) are all bounded and S

(0)
(β, p, u) is

bounded away from 0. Using the fact that p̂ converges in probability to p0 implies

that α1:n(t)
P−→ 0.

With respect to the second term of (A.6), applying a Taylor expansion,

α2:n(t) = (β̂ − β0)
T ∂Λ̂0(β, p0, t)

∂β

∣∣∣∣∣
β=β∗

= −(β̂ − β0)
T

∫ t

0

S
(1)
(β, p0, u)

μS
(0)
(β, p0, u)2

∣∣∣∣∣
β=β∗

dN(u)

= −(β̂ − β0)
T

∫ t

0

E(β∗, p0, u)

μS
(0)
(β∗, p0, u)

dN(u),

where β∗ lies between β̂ and β0. SinceE(β, p0, u) andN(u) are bounded, S
(0)
(β, p0, u)

is bounded away from 0, and β̂
P−→ β0, it follows that α2:n(t)

P−→ 0.
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Now, considering the last term in (A.6),

α3:n(t) =

∫ t

0

dN(u)

μS
(0)
(β0, p0, u)

−
∫ t

0

λ0(u)du

=

∫ t

0

dN(u)

μS
(0)
(β0, p0, u)

−
∫ t

0

n−1
∑n

i=1

∑mi

j=1 Yij(u)e
βT
0 Zij(u)λ0(u)

S(0)(β0, u)
du

=

∫ t

0

dN(u)

μS
(0)
(β0, p0, u)

−
∫ t

0

1

S(0)(β0, u)
n−1

n∑
i=1

mi∑
j=1

{dNij(u)− dMij(u)}

=

∫ t

0

{
1

μS
(0)
(β0, p0, u)

− 1

S(0)(β0, u)

}
dN(u) +

∫ t

0

1

S(0)(β0, u)
dM(u)

=

∫ t

0

{
1

μS
(0)
(β0, p0, u)

− 1

S(0)(β0, u)

}
d
{
N(u)− F (u)

}
+

∫ t

0

{
1

μS
(0)
(β0, p0, u)

− 1

S(0)(β0, u)

}
dF (u) +

∫ t

0

1

S(0)(β0, u)
dM(u)

=

∫ t

0

{
1

μS
(0)
(β0, p0, u)

− 1

S(0)(β0, u)

}
dF (u) +

∫ t

0

1

S(0)(β0, u)
dM(u)

+op(n
−1/2).

Since
{
μS

(0)
(β0, p0, u)

}−1

−S(0)(β0, u)
−1 P−→ 0, with F (u) bounded, S(0)(β0, u)

P−→

s(0)(β0, u), which is bounded away from 0, and since
∫ t

0
dM(u) = n−1

∑n
i=1

∑mi

j=1∫ t

0
dMij(u)

P−→ 0 for t ∈ [0, τ ], it follows that α3:n(t)
P−→ 0. Combining results for

α1:n(t), α2:n(t) and α3:n(t), it follows that Λ̂0(β̂, p̂, t)
P−→ Λ0(t).

With respect to convergence to a Gaussian process, note that, by the consistency

of β̂, p∗ and Lemma 1 in the Appendix in Lin et al. (2000), − ∫ t

0
R(0)(β̂, p∗, u)

×
{
μS

(0)
(β̂, p∗, u)2

}−1

dN(u)
P−→ k(β0, p0, t), where k(β, p, t) = − ∫ t

0
μr(0)(β, p, u)

/s(0)(β, u)dΛ0(u). It then follows that

n1/2α1:n = k(β0, p0, t) n
1/2(p̂− p0) + op(1)

= n−1/2

n∑
i=1

k(β0, p0, t)Qi(p0) + op(1).

Similarly, − ∫ t

0
E(β∗, p0, u)

{
μS

(0)
(β∗, p0, u)

}−1

dN(u)
P−→ h(β0, p0, t), where
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h(β0, p0, t) = − ∫ t

0
e(β0, u)/s

(0)(β0, u)dF (u). We then have that

n1/2α2:n = hT (β0, p0, t) n
1/2(β̂ − β0) + op(1)

= hT (β0, p0, t)Â(β∗, p̂)
−1 n−1/2U(β0, p̂) + op(1)

= n−1/2

n∑
i=1

hT (β0, p0, t)A(β0)
−1ψi(β0, p0) + op(1).

Considering n1/2α3:n,

n1/2α3:n = n1/2

∫ t

0

{
1

μS
(0)
(β0, p0, u)

− 1

S(0)(β0, u)

}
dF (u)

+n1/2

∫ t

0

1

S(0)(β0, u)
dM(u) + op(1)

= n1/2

∫ t

0

{
1

μS
(0)
(β0, p0, u)

− 1

S(0)(β0, u)

}
dF (u)

+n−1/2
n∑

i=1

mi∑
j=1

∫ t

0

1

s(0)(β0, u)
dMij(u) + op(1).

Applying Taylor expansions of
{
μS

(0)
(β0, p0, u)

}−1

and S(0)(β0, u)
−1
,

1

μS
(0)
(β0, p0, u)

− 1

S(0)(β0, u)

=

{
1

μμ−1s(0)(β0, u)
− S

(0)
(β0, p0, u)− μ−1s(0)(β0, u)

μ(μ−1s(0)(β0, u))
2

}

−
{

1

s(0)(β0, u)
− S(0)(β0, u)− s(0)(β0, u)

s(0)(β0, u)
2

}
+ op(1)

=
μ−1S(0)(β0, u)− S

(0)
(β0, p0, u)

μ−1s(0)(β0, u)
2

+ op(1)

=
1

μ−1s(0)(β0, u)
2
× n−1

n∑
i=1

mi∑
j=1

{
1

μ
− p0
N1/n

δij − 1− p0
n0/n

(1− δij)HiHij

}
× Yije

βT
0 Zij(u) + op(1)

=
1

s(0)(β0, u)
2
× n−1

n∑
i=1

mi∑
j=1

{
1− δij − 1

γθ
(1− δij)HiHij

}
Yije

βT
0 Zij(u) + op(1).

It then follows that

n1/2α3:n = n−1/2
n∑

i=1

ϑi(β0, p0, t) + op(1),
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where

ϑi(β0, p0, t) =

mi∑
j=1

∫ t

0

1

s(0)(β0, u)
dMij(u)

+

mi∑
j=1

∫ t

0

1

s(0)(β0, u)
2

{
1− δij − 1

γθ
(1− δij)HiHij

}
Yije

βT
0 Zij(u)

× dF (u).

Combining the above results, one obtains n1/2
{
Λ̂0(β̂, p̂, t)− Λ0(t)

}
= n−1/2×∑n

i=1 φi(β0, p0, t)+op(1), where φi(β, p, t) = k(β, p, t)Qi(p)+h
T (β, p, t)A(β)ψi(β, p)

+ϑi(β, p, t). It then follows from the MCLT that n1/2
{
Λ̂0(β̂, p̂, t)− Λ0(t)

}
converges

to a multivariate normal with mean zero and covariance function at (s, t) given by

E {φ1(β0, p0, s)φ1(β0, p0, t)}. Using similar arguments to Spiekerman et al. (1998),

tightness can be verified. Therefore, by the Functional Central Limit Theorem (Pol-

lard (1990)), n1/2
{
Λ̂0(β̂, p̂, t)− Λ0(t)

}
converges to a Gaussian process with mean

zero and covariance function at (s, t) given by E {φ1(β0, p0, s)φ1(β0, p0, t)}.

A.6 Derivation of Equation (3)

Let Z̃(u) = {Z(s) : 0 < s ≤ u}. Equation (3) of the chapter can be derived as follows:

E {Z(u)|X = u, δ = 1}

=

∫
z(u)

fX=u,δ=1|z̃(u)∫
fX=u,δ=1|z̃(u)dFz̃(u)

dFz̃(u)

=

∫
z(u) λ0(u)e

βT z̃(u)P (T ≥ u| z̃(u))P (C ≥ u| z̃(u))dFz̃(u)∫
λ0(u)eβ

T z̃(u)P (T ≥ u| z̃(u))P (C ≥ u| z̃(u))dFz̃(u)

=

∫
z(u) eβ

T z̃(u)E {Y (u)| z̃(u)} dFz̃(u)∫
eβT z̃(u)E {Y (u)| z̃(u)} dFz̃(u)

=
E
{
Y (u)Z(u)eβ

TZ(u)
}

E {Y (u)eβTZ(u)
} .

A.7 Extension of proposed methods to a stratified model

Let Vij denote the stratum for subject (i, j) and set Vijk = I {Vij = k}, k = 1, . . . , K,
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where there are K mutually exclusive strata. If subject (i, j) is in the kth stratum,

the marginal hazard of failure is specified as

λij(t|Vijk = 1) = λ0k(t)e
βT
0 Zij(t),(A.7)

where λ0k(·) is an unspecified stratum-specific baseline hazard function. Under model

(A.7), let p0k = Pr(δij = 1|Vij = k) for k = 1, . . . , K and set p0 = (p01, . . . , p0K)
T .

Let N1k =
∑n

i=1

∑mi

j=1 Vijkδij be the total number of failures in stratum k in the

full cohort and let n0k =
∑n

i=1

∑mi

j=1 Vijk(1 − δij)HiHij be the total number of non-

failures in stratum k in the subcohort. We assume that {Nij(·), Yij(·),Zij(·), Vij, mi :

j = 1, . . . , mi} , i = 1, . . . , n are independent and identically distributed, and for each

k, let mik =
∑mi

j=1 Vijk, and E [mik] = μk.

The parameter β0 can be estimated by β̃, the solution to Ũ(β,p) = 0, where

Ũ(β,p) =
K∑
k=1

n∑
i=1

mi∑
j=1

∫ τ

0

Vijk

{
Zij(u)− Ẽk(β, pk, u)

}
dNij(u)

with Ẽk(β, pk, u) = S̃
(1)

k (β, pk, u)/S̃
(0)
k (β, pk, u), S̃

(d)

k (β, pk, u) =
∑n

i=1

∑mi

j=1 Vijk×[
N−1

1k pkδij + n−1
0k (1− pk)(1− δij)HiHij

]
Yij(u)e

βTZij(u)Zij(u)
⊗d for d = 0, 1, 2. We

can estimate p0k by the subcohort case percentage in stratum k, p̃ks, or by the full

cohort case percentage in stratum k, p̃kw, or p0k itself if it is known. Let β̃s, β̃w and β̃t

be the solutions of corresponding estimating equations, respectively. The cumulative

baseline hazard function, Λ0k(t) =
∫ t

0
λ0k(u)du, can be estimated by Λ̃0k(t; β̃, p̃k),

where

Λ̃0k(t;β, pk) =

∫ t

0

dNk(u)

μ̂kS̃(0)(β, pk, u)
,

with Nk(u) = n−1
∑n

i=1

∑mi

j=1 VijkNij(u).

To establish the asymptotic properties of β̃t, β̃s and β̃w, we need to modify

Conditions (a), (e), (f) and (g) as follows:
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(a′) {Nij(·), Yij(·),Zij(·), Vij, mi : j = 1, . . . , mi} , i = 1, . . . , n are independently and

identically distributed.

(e′) For each k, sup
u∈[0,τ ],β∈B

‖S̃(d)

k (β, pk, u)− μ−1
k s

(d)
k (β, u)‖ P−→ 0 for d = 0, 1, 2, where

s
(d)
k (β, u) is an absolutely continuous function of β ∈ B and uniformly in u ∈

(0, τ ], and s
(0)
k (β, u) is bounded away from zero, k = 1, . . . , K.

(f ′) I(β0) =
∑K

k=1

∫ τ

0

[
s
(2)
k (β0, u)/s

(0)
k (β0, u)−

{
s
(1)
k (β0, u)/s

(0)
k (β0, u)

}⊗2
]

×dFk(u) is positive definite, where Fk(u) = E {Nk(u)
}
.

(g′) Λ0k(τ) <∞ for each k, and λ0k(t) is absolutely continuous for t ∈ (0, τ ].

Conditions (b′), (c′), and (d′) are the same as (b), (c), and (d) respectively.

Theorem A.7.1: Under conditions (a′) − (g′), β̃t converges in probability to

β0, and n1/2(β̃t − β0) converges in distribution to a mean zero Normal with co-

variance matrix I(β0)
−1Ωt(β0,p0)I(β0)

−1, where Ωt(β0,p0) = E {W 1·(β0,p0)
⊗2},

W i·(β,p) =
∑K

k=1W ik(β, pk), and W ik(β, pk) is the same as W i(β,p) except that

W ik(β, pk) is calculated within stratum k.

Theorem A.7.2: Under conditions (a′)−(g′), both β̃s and β̃w converge in proba-

bility to β0, and each of n1/2(β̃s−β0) and n
1/2(β̃w−β0) is asymptotically a zero-mean

Normal with covariance matrix I(β0)
−1Ωs(β0,p0)I(β0)

−1 and I(β0)
−1Ωw(β0,p0)×

I(β0)
−1, respectively, where for a = s and w, Ωa(β0,p0) = E {ϕa

1(β0,p0)}, ϕa
i (β,p) =

W i·(β,p) +
∑K

k=1 {Bk(β)Q
a
ik(p)}, Qs

ik(p) = (μkγθ)
−1 ∑mi

j=1 VijkHiHij(δij − pk),

Qw
ik(p) = μ−1

k

∑mi

j=1 Vijk (δij − pk), Bk(β) =
∫ τ

0

{
s
(1)
k (β, u) ×r(0)k (β, u)/s

(0)
k (β, u)2−

r
(1)
k (β, u)/s

(0)
k (β, u)

}
dFk(u), with

r
(d)
k (β, u) = p−1

k E
{
δijYij(u)e

βTZij(u)Zij(u)
⊗d
∣∣∣Vijk = 1

}
− (1− pk)

−1 E
{
(1− δij)Yij(u)e

βTZij(u)Zij(u)
⊗d
∣∣∣Vijk = 1

}
.
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Table A.1: Simulation results to evaluate the estimate of β0 with a continuous covariate based on
1000 replications.

Design & β0 = log(0.5)
Method Bias ESD ASE ARE CP

FC -0.002 0.033 0.034 1.000 0.947

A SC -0.002 0.042 0.044 0.597 0.955
WC -0.003 0.041 0.042 0.655 0.943
T -0.002 0.037 0.038 0.801 0.935
LS -0.005 0.057 0.057 0.356 0.957

B SC -0.003 0.049 0.048 0.502 0.940
WC -0.004 0.046 0.045 0.571 0.923
T -0.004 0.044 0.041 0.688 0.916
LS -0.006 0.066 0.063 0.291 0.939

C SC -0.003 0.046 0.046 0.546 0.944
WC -0.004 0.043 0.043 0.625 0.939
T -0.003 0.040 0.040 0.723 0.937
LS -0.008 0.061 0.060 0.321 0.944

Estimate of β0 from 5 methods with a continuous covariate: Method FC = full cohort analysis; SC = estimating
p0 using the subcohort, p̂s; WC = estimating p0 using whole cohort, p̂w; T = using true value, p0; LS = Lu and
Shih (2006) estimator.
100 clusters, mi follows a Bin(50,0.8) distribution, α=0.8, λ0=1, censoring time C=1, β=log(0.5), Z follows a N(0,1)
distribution. The number of individuals in the subcohort is ns = 800.

The proofs of Theorems A.7.1 and A.7.2 are very similar to those of Theorems 2

and 3, respectively. The asymptotic properties of Λ̃0k(β̃, p̃k, t) and the derivations

thereof are analogous to those of Λ̂0(β̂, p̂, t).

A.8 Additional simulation results

Table A.1 gives some results with a continuous covariate. The proposed methods

appear to perform well.

In the chapter, we considered α = 0.8, which corresponds to Kendall’s τ of 0.2

for weak intracluster association. Here we conducted some simulation studies with

α = 0.5, which leads to Kendall’s τ of 0.5 for fairly strong intracluster association.

(Table A.2). The proposed methods still perform well, at least in the examples we

considered.

We conducted some simulation studies with smaller number of clusters, smaller

number of subjects within clusters, and smaller subcohort size. Table A.3 summa-
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Table A.2: Simulation results with α = 0.5 based on 1000 replications.

Design & Z ∼ Bernoulli(0.5) Z ∼ N(0, 1)
Method Bias ESD ASE ARE CP Bias ESD ASE ARE CP

FC -0.004 0.068 0.070 1.000 0.949 -0.003 0.049 0.049 1.000 0.949

A SC -0.003 0.094 0.093 0.567 0.946 -0.002 0.057 0.057 0.739 0.947
WC -0.004 0.093 0.092 0.579 0.950 -0.003 0.056 0.055 0.794 0.944
T -0.006 0.090 0.089 0.619 0.947 -0.003 0.053 0.051 0.923 0.939
LS -0.005 0.099 0.099 0.500 0.948 -0.004 0.067 0.067 0.535 0.954

B SC -0.001 0.102 0.102 0.471 0.937 -0.007 0.066 0.066 0.551 0.941
WC -0.006 0.109 0.108 0.420 0.928 -0.009 0.063 0.064 0.586 0.936
T -0.008 0.107 0.105 0.444 0.923 -0.010 0.061 0.059 0.690 0.924
LS -0.007 0.106 0.107 0.428 0.954 -0.013 0.085 0.083 0.349 0.935

C SC -0.005 0.098 0.097 0.521 0.929 -0.002 0.061 0.060 0.667 0.937
WC -0.008 0.100 0.099 0.500 0.942 -0.003 0.060 0.059 0.690 0.936
T -0.011 0.098 0.095 0.543 0.925 -0.003 0.056 0.055 0.794 0.930
LS -0.007 0.104 0.103 0.462 0.946 -0.010 0.076 0.074 0.438 0.943

Estimate of β0 from 5 methods: Method FC = full cohort analysis; SC = estimating p0 using the subcohort, p̂s;
WC = estimating p0 using whole cohort, p̂w; T = using true value, p0; LS = Lu and Shih (2006) estimator.
100 clusters, mi follows a Bin(50,0.8) distribution, α=0.5, λ0=1, censoring time C=1, β=log(0.5), Z follows either
a Bernoulli(0.5) distribution or a N(0,1) distribution. The number of individuals in the subcohort is ns = 800.

rized these results. This illustrates that the proposed method generally works well,

though there is some slight under-coverage for Designs B and C, which is reduced as

the number of clusters increases.

We also did some simulation studies with smaller marginal event rate of p0 = 0.03

(Table A.4). The results display that even when the event rate is small, β̂s still

performs well.

Next, we examined the stratified method proposed in Section (A.7). As shown in

Table A.5, the proposed stratified method appears to perform well with a reasonable

small number of strata.

The results in Table A.6 show that the efficiency gain of the proposed method

over that of Lu and Shih (2006) is more obvious when the covariate is cluster-specific.

Next, the performance of an inverse sampling probability weighted (ISPW) esti-

mator and the proposed estimator were compared through simulation (Table A.7).

The ISPW method used the true sampling probability, while the methods proposed
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Table A.3: Simulation results to evaluate the performance of the proposed method with a smaller
number of clusters and a smaller cluster size based on 1000 replications.

Design & Z ∼ Bernoulli(0.5) Z ∼ N(0, 1)
Method Bias ESD ASE ARE CP Bias ESD ASE ARE CP

FC -0.005 0.099 0.098 1.000 0.938 -0.006 0.055 0.056 1.000 0.950

A SC -0.009 0.161 0.159 0.380 0.943 -0.006 0.077 0.079 0.502 0.951
WC -0.009 0.158 0.158 0.385 0.940 -0.007 0.074 0.075 0.558 0.947
T -0.010 0.156 0.155 0.400 0.938 -0.006 0.070 0.070 0.640 0.933
LS -0.013 0.175 0.173 0.321 0.940 -0.015 0.107 0.108 0.269 0.947

B SC -0.003 0.166 0.155 0.400 0.923 -0.009 0.084 0.081 0.478 0.921
WC -0.006 0.172 0.156 0.395 0.907 -0.012 0.082 0.076 0.543 0.912
T -0.007 0.169 0.153 0.410 0.900 -0.011 0.077 0.071 0.622 0.899
LS -0.008 0.185 0.172 0.325 0.929 -0.028 0.127 0.111 0.255 0.910

C SC -0.014 0.166 0.156 0.395 0.920 -0.005 0.086 0.079 0.502 0.924
WC -0.014 0.168 0.156 0.395 0.913 -0.008 0.079 0.075 0.558 0.929
T -0.015 0.165 0.153 0.410 0.911 -0.007 0.075 0.070 0.640 0.918
LS -0.013 0.185 0.170 0.332 0.909 -0.021 0.120 0.109 0.264 0.924

Estimate of β0 from 5 methods: Method FC = full cohort analysis; SC = estimating p0 using the subcohort, p̂s;
WC = estimating p0 using whole cohort, p̂w; T = using true value, p0; LS = Lu and Shih (2006) estimator.
50 clusters, mi follows a Bin(25,0.8) distribution, α=0.8, λ0=1, censoring time C=1, β=log(0.5), Z follows either a
Bernoulli(0.5) distribution or a N(0,1) distribution. The number of individuals in the subcohort is ns = 200.

Table A.4: Simulation results with p0 = 0.03 based on 1000 replications.

Design & Z ∼ Bernoulli(0.5) Z ∼ N(0, 1)
Method Bias ESD ASE ARE CP Bias ESD ASE ARE CP

FC -0.041 0.242 0.214 1.000 0.909 -0.017 0.139 0.116 1.000 0.867

A SC -0.043 0.248 0.224 0.913 0.903 -0.023 0.153 0.128 0.821 0.883
WC -0.042 0.248 0.224 0.913 0.902 -0.023 0.153 0.128 0.821 0.885
T -0.042 0.247 0.223 0.921 0.903 -0.022 0.149 0.125 0.861 0.884
LS -0.042 0.249 0.224 0.913 0.901 -0.024 0.153 0.128 0.821 0.885

B SC -0.041 0.248 0.223 0.921 0.919 -0.021 0.150 0.126 0.848 0.885
WC -0.041 0.249 0.224 0.913 0.920 -0.021 0.150 0.127 0.834 0.889
T -0.041 0.247 0.223 0.921 0.920 -0.021 0.147 0.125 0.861 0.891
LS -0.042 0.249 0.224 0.913 0.919 -0.022 0.151 0.128 0.821 0.888

C SC -0.042 0.250 0.224 0.913 0.920 -0.023 0.150 0.127 0.834 0.886
WC -0.042 0.250 0.224 0.913 0.919 -0.024 0.150 0.127 0.834 0.886
T -0.042 0.248 0.223 0.921 0.920 -0.023 0.147 0.125 0.861 0.886
LS -0.042 0.250 0.224 0.913 0.919 -0.024 0.150 0.128 0.821 0.890

Estimate of β0 from 5 methods: Method FC = full cohort analysis; SC = estimating p0 using the subcohort, p̂s;
WC = estimating p0 using whole cohort, p̂w; T = using true value, p0; LS = Lu and Shih (2006) estimator.
100 clusters, mi follows a Bin(50,0.8) distribution, α=0.8, censoring time C=1, β=log(0.5), λ0=0.04 when Z follows
a Bernoulli(0.5) distribution, λ0=0.0025 when Z follows a N(0,1) distribution, the marginal event rate is p0 = 0.03.
The number of individuals in the subcohort is ns = 800.
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Table A.5: Simulation results to evaluate the performance of the proposed stratified methods based
on 1000 replications.

Design & Z ∼ Bernoulli(0.5) Z ∼ N(0, 1)
Method Bias ESD ASE ARE CP Bias ESD ASE ARE CP

FC -0.014 0.110 0.104 1.000 0.929 -0.004 0.055 0.054 1.000 0.932

A SC -0.011 0.133 0.124 0.703 0.924 -0.006 0.068 0.068 0.631 0.944
WC -0.012 0.134 0.124 0.703 0.922 -0.006 0.068 0.067 0.650 0.940
T -0.011 0.132 0.122 0.727 0.926 -0.005 0.063 0.063 0.735 0.944
LS -0.011 0.135 0.125 0.692 0.926 -0.008 0.074 0.072 0.563 0.937

B SC -0.016 0.133 0.124 0.703 0.925 -0.006 0.069 0.069 0.612 0.943
WC -0.016 0.134 0.125 0.692 0.927 -0.007 0.069 0.069 0.612 0.938
T -0.016 0.132 0.123 0.715 0.929 -0.006 0.065 0.065 0.690 0.941
LS -0.016 0.134 0.125 0.692 0.930 -0.007 0.073 0.074 0.533 0.948

C SC -0.013 0.131 0.124 0.703 0.926 -0.004 0.071 0.068 0.631 0.936
WC -0.013 0.131 0.125 0.692 0.929 -0.003 0.070 0.068 0.631 0.930
T -0.013 0.129 0.123 0.715 0.930 -0.002 0.065 0.064 0.712 0.932
LS -0.014 0.131 0.126 0.681 0.927 -0.004 0.077 0.072 0.563 0.930

Estimate of β0 from 5 methods: Method FC = full cohort analysis; SC = estimating p0 using the subcohort, p̂s;
WC = estimating p0 using whole cohort, p̂w; T = using true value, p0; LS = Lu and Shih (2006) estimator.
100 clusters, mi follows a Bin(50,0.8) distribution, α=0.8, censoring time C=1, β=log(0.5), Z follows either a
Bernoulli(0.5) distribution or a N(0,1) distribution, Z2 ∼ U(0, 1), stratum k=1,2 or 3 if Z2 ≤ 0.33,0.33 < Z2 ≤ 0.67
or Z2 > 0.67, respectively. λ0k=0.1×k, for k=1,2,3. The number of individuals in the subcohort is ns = 800.

Table A.6: Simulation results with a cluster-level covariate based on 1000 replications.

Design & β0 = log(0.5) β0 = 0
Method Bias ESD ASE ARE CP Bias ESD ASE ARE CP

FC 0.000 0.145 0.147 1.000 0.939 0.002 0.126 0.127 1.000 0.940

A SC 0.002 0.160 0.159 0.855 0.944 0.003 0.141 0.141 0.811 0.951
WC 0.002 0.160 0.159 0.855 0.946 0.003 0.141 0.141 0.811 0.952
T 0.001 0.159 0.157 0.877 0.948 0.003 0.141 0.141 0.811 0.952
LS 0.000 0.163 0.163 0.813 0.949 0.002 0.147 0.146 0.757 0.948

B SC 0.008 0.365 0.350 0.176 0.947 0.005 0.315 0.302 0.177 0.944
WC 0.013 0.353 0.334 0.194 0.934 0.005 0.315 0.300 0.179 0.929
T 0.013 0.353 0.333 0.195 0.934 0.005 0.315 0.300 0.179 0.930
LS 0.015 0.483 0.465 0.100 0.962 0.019 0.483 0.463 0.075 0.962

C SC -0.003 0.253 0.247 0.354 0.936 -0.001 0.222 0.215 0.349 0.937
WC 0.001 0.246 0.240 0.375 0.934 -0.001 0.222 0.215 0.349 0.938
T 0.000 0.246 0.238 0.381 0.935 -0.001 0.222 0.215 0.349 0.939
LS -0.004 0.313 0.306 0.231 0.944 -0.002 0.306 0.299 0.180 0.949

Estimate of β0 from 5 methods: Method FC = full cohort analysis; SC = estimating p0 using the subcohort, p̂s;
WC = estimating p0 using whole cohort, p̂w; T = using true value, p0; LS = Lu and Shih (2006) estimator.
100 clusters, mi follows a Bin(50,0.8) distribution, α=0.8, λ0=1, censoring time C=1, β=log(0.5), Z follows a
Bernoulli(0.5) distribution. The number of individuals in the subcohort is ns = 800.
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Table A.7: Simulation results to compare the proposed methods with the ISPW and SRS methods
based on 1000 replications.

SC WC T
Design FC BER SRS BER SRS BER SRS ISPW

Z ∼ Ber(0.5)
A 0.053 0.083 0.083 0.082 0.084 0.080 0.082 0.083
B 0.053 0.083 0.083 0.086 0.086 0.084 0.084 0.088
C 0.053 0.084 0.083 0.083 0.084 0.082 0.082 0.085

Z ∼ N(0, 1)
A 0.033 0.042 0.042 0.041 0.041 0.037 0.038 0.042
B 0.033 0.049 0.049 0.046 0.045 0.044 0.042 0.061
C 0.033 0.046 0.046 0.043 0.043 0.040 0.039 0.050

Empirical standard deviation of the estimate of β0 from following methods: Method FC = full cohort analysis;
SC = estimating p0 using the subcohort, p̂s; WC = estimating p0 using whole cohort, p̂w; T = using true value, p0;
ISPW = inverse sampling probability method; BER = Bernoulli sampling; SRS = simple random sampling.
100 clusters, mi follows a Bin(50,0.8) distribution, α=0.8, λ0=1, censoring time C=1, β=log(0.5), Z follows either
a Bernoulli(0.5) distribution or a N(0,1) distribution. The number of individuals in the subcohort is ns = 800.

here used estimates of the sampling probability. The results show that the ESD of

the ISPW method is generally comparable to that of our proposed method.

In addition, the point estimates based on simple random samples (SRS) for some

non-rare event settings are provided (Table A.7). This investigation showed that the

ESDs of the point estimates based on SRS are very close to those based on Bernoulli

sampling. Therefore, one does not gain much efficiency by using SRS, at least for

the examples we considered.
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APPENDIX B

Proof of Theorems in Chapter III

We provide a proof of Theorem 2 and an examination of the corresponding vari-

ance estimator. We begin with a review of the notation.

B.0 Notation

i = subject (i = 1, . . . , n)

Ti = failure time

C1i = independent censoring time

C2i = dependent censoring time

Ci = C1i ∧ C2i

Xi = Ti ∧ C1i ∧ C2i

Yi(t) = I {Xi ≥ t}

Δ1i = I (Ti ≤ Ci)

Δ2i = I {C2i ≤ C1i, C2i < Ti)}

Δ3i = (1−Δ1i)(1−Δ2i)

Ni(t) = I {Xi ≤ t,Δ1i = 1}
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NC
i (t) = I {Xi ≤ t,Δ2i = 1}

Z1i = time-constant covariate vector

Z2i(t) = time-dependent covariate vector

Zi(t) =
{
ZT

1i, Z
T
2i(t)

}T
Zi(t) = {Zi(u) : 0 ≤ u ≤ t}

Vi(t) = {V1i(t), . . . , Vqi(t)} = functions of Zi(t)

λi(t) = λ0(t)e
βTZi(0)

λCi (t) = λC0 (t)e
αT Vi(t)

ξi = I (individual i is selected for the subcohort)

pk = Pr(ξi = 1 | Δki = 1), k = 1, 2, 3

ρi(p) =
∑3

k=1Δkiξi/pk

dMi(t) = dNi(t)− Yi(t)e
βTZi(0)λ0(t)dt

dMC
i (t) = dNC

i (t)− Yi(t)e
αT Vi(t)λC0 (t)dt

The following is a proof of Theorem 2, for the case where Ŵ1i is used in the

proposed estimators. The proofs for stabilized weights, Ŵ2i and Ŵ3i, proceed through

steps analogous to those listed below.

B.1 n− 1
2UC(α0, p0)

The estimating function for the dependent censoring model is

UC(α0, p0) =

n∑
i=1

∫ τ

0

{
Vi(t)− V (α0, p0, t)

}
ρi(p0)dN

C
i (t),
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where

V (α, p, t) =
S
(1)
C (α, p, t)

S
(0)
C (α, p, t)

S
(d)
C (α, p, t) = n−1

n∑
i=1

ρi(p)Yi(t)Vi(t)
⊗deα

T Vi(t).

Let s
(d)
C (t, α) = E{Y1(t)V1(t)⊗deα

T V1(t)} and let v(α, t) = s
(1)
C (t, α)/s

(0)
C (t, α). We

define dMC
i (t) = dNC

i (t) − Yi(t)e
αT Vi(t)λC0 (t)dt. By van der Vaart & Wellner (1996,

Example 2.11.16), Hn(t) = n− 1
2

∑n
i=1 ρi(p0)M

C
i (t) converges weakly to a tight Gaus-

sian process H(t) with continuous sample paths on [0, τ ].

By some simple algebra, we have

n− 1
2UC(α0, p0) = n− 1

2

n∑
i=1

∫ τ

0

{Vi(t)− V (α0, p0, t)}ρi(p0)dMC
i (t)

= n− 1
2

n∑
i=1

∫ τ

0

{Vi(t)− v(α0, t)}ρi(p0)dMC
i (t)

−n− 1
2

n∑
i=1

∫ τ

0

{
V (α0, p0, t)− v(α0, t)

}
ρi(p0)dM

C
i (t)

= n− 1
2

n∑
i=1

∫ τ

0

{Vi(t)− v(α0, t)} ρi(p0)dMC
i (t) + op(1)

= n− 1
2

n∑
i=1

Ki(α0, p0) + op(1),

with Ki(α, p) =
∫ τ

0
{Vi(t) − v(α, t)}ρi(p)dMC

i (t). Note that E{ρi(p0)dMC
i (t)} = 0,

such that E{Ki(α0, p0)} = 0, for i = 1, · · · , n.

B.2 n1/2(α̂− α0)

Using a Taylor expansion, we can show that

n−1/2UC(α0, p̂) = n−1/2UC(α0, p0) +BC
n (α0, p∗)n1/2 (p̂− p0) ,
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where p∗ is on the line segment between p̂ and p0, and

BC
n (α, p) = n−1 ∂

∂p
UC(α, p)

= n−1

n∑
i=1

∫ τ

0

{
S
(1)
C (α, p, t)

S
(0)
C (α, p, t)2

∂

∂p
S
(0)
C (α, p, t)

− 1

S
(0)
C (α, p, t)

∂

∂p
S
(1)
C (α, p, t)

}
ρi(p)dN

C
i (t)

+n−1

n∑
i=1

∫ τ

0

{
Vi(t)− V (α, p, t)

} ∂

∂p
ρi(p)dN

C
i (t).

We define R
(d)
k (α, p, t), d = 0, 1 and Dk(α, p) as follows,

R
(d)
k (α, p, t) =

∂

∂pk
S
(d)
C (α, p, t)

= n−1

n∑
i=1

−Δkiξi
p2k

Yi(t)Vi(t)
⊗deα

T Vi(t)

such that

R
(d)
k (α, p, t) −→ − 1

pk
E{Δk1Y1(t)V1(t)

⊗deα
T V1(t)}

≡ r
(d)
k (α, p, t)

in probability. We then have

Dk(α, p) = n−1
n∑

i=1

∫ τ

0

{Vi(t)− V (α, p, t)} ∂

∂pk
ρi(p)dN

C
i (t)

= −n−1

n∑
i=1

∫ τ

0

{Vi(t)− V (α, p, t)}Δkiξi
p2k

dNC
i (t)

= −n−1
n∑

i=1

∫ τ

0

{Vi(t)− v(α, t)}Δkiξi
p2k

dNC
i (t)

+

∫ τ

0

{V (α, p, t)− v(α, t)}n−1

n∑
i=1

Δkiξi
p2k

dNC
i (t)

such that

Dk(α, p) −→ − 1

pk
E [
∫ τ

0

{V1(t)− v(α, t)}Δk1dN
C
1 (t)]

≡ dk(α, p)
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in probability. Let r(d)(α, p, t) =
[
r
(d)
1 (α, p, t) r

(d)
2 (α, p, t) r

(d)
3 (α, p, t)

]
and let

d(α, p, t) = [d1(α, p, t) d2(α, p, t) d3(α, p, t)]. Then by continuous mapping,

BC
n (α, p) −→

∫ τ

0

{
s
(1)
c (α, p, t)

s
(0)
c (α, p, t)2

r(0)(α, p, t)− 1

s
(0)
c (α, p, t)

r(1)(α, p, t)

}
dFC(t)

+d(α, p)

≡ BC(α, p)

in probability, where FC(t) = E{ρi(p)NC
i (t)}. It is easy to show that

n1/2(p̂k − pk0) = n1/2

(∑n
i=1Δkiξi∑n
i=1Δki

− pk0

)
= n1/2n

−1
∑n

i=1Δki(ξi − pk0)

n−1
∑n

i=1Δki

= n−1/2

n∑
i=1

η−1
k Δki(ξi − pk0) + op(1)

= n−1/2
n∑

i=1

Qki(p0) + op(1),

where Qki(p0) = η−1
k Δki(ξi − pk0), ηk = pr(Δk = 1), k = 1, 2, 3. Let Qi(p) =

(Q1i(p) Q2i(p) Q3i(p))
T . Note that E {Qki(p0)} = 0, therefore,

n−1/2UC(α0, p̂) = n−1/2
n∑

i=1

{
Ki(α0, p0) + BC(α0, p0)Qi(p0)

}
+ op(1)

= n−1/2

n∑
i=1

ψi(α0, p0) + op(1),

where ψi(α, p) = Ki(α, p) + BC(α, p)Qi(p). Since E {ψi(α0, p0)} = 0, by the Multi-

variate Central Limit Theorem (MCLT),

n−1/2UC(α0, p̂) −→ N(0,Ω(α0)),

in distribution, where Ω(α0) = E{ψi(α0, p0)
⊗2}.

We then have

n1/2(α̂− α0) = AC
n (α∗, p̂)−1n−1/2UC(α0, p̂),
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where AC
n (α, p) = n−1

∑n
i=1

∫ τ

0
{S(2)

c (α, p, t)/S
(0)
c (α, p, t) − V (α, p, t)⊗2}ρi(p)dNC

i (t)

and α∗ is on the line segment between α̂ and α0. Note the fact that n−1
∑n

i=1 ρi(p)

×dNC
i (t) converges to dF

C(t) in probability, such that AC
n (α∗, p̂) converges in proba-

bility to AC(α0), with A
C(α) =

∫ τ

0
{s(2)c (α, t)/s

(0)
c (α, t)−v(α, t)⊗2}dFC(t). Therefore,

by Slutsky’s Theorem, n1/2(α̂−α0) converges in distribution to a zero-mean normal

variate with covariance AC(α0)
−1Ω(α0)A

C(α0)
−1 .

B.3 n1/2{Λ̂C
0 (t)− ΛC

0 (t)}

We can decompose n1/2{Λ̂C
0 (t)− ΛC

0 (t)} as follows,

n1/2{Λ̂C
0 (t)− ΛC

0 (t)}

= n1/2{Λ̂C
0 (t; α̂, p̂)− Λ̂C

0 (t; α̂, p0)}(B.1)

+n1/2{Λ̂C
0 (t; α̂, p0)− Λ̂C

0 (t;α0, p0)}(B.2)

+n1/2{Λ̂C
0 (t;α0, p0)− ΛC

0 (t)}.(B.3)

Applying a Taylor expansion of ρi(p̂)/S
(0)
C (α̂, p̂, t) around ρi(p0)/S

(0)
C (α̂, p0, t), we can

write (B.1) as

n1/2

n∑
i=1

∫ t

0

{
ρi(p̂)

S
(0)
C (α̂, p̂, u)

− ρi(p0)

S
(0)
C (α̂, p0, u)

}
n−1dNC

i (u)

= n−1
n∑

i=1

∫ t

0

{
1

S
(0)
C (α̂, p0, u)

dρi(p)

dp
|p=p0 −

ρi(p0)

S
(0)
C (α̂, p0, u)2

∂

∂p
S
(0)
C (α̂, p, u) |p=p0

}
×dNC

i (u)n
1/2 (p̂− p0) + op(1)

=

∫ t

0

{
n−1

∑n
i=1 μ

T
i (p0)dN

C
i (u)

s
(0)
C (α0, u)

− r(0)(α0, p0, u)dΛ̂
C
0 (u; α̂, p0)

s
(0)
C (α0, u)

}

×n−1/2
n∑

i=1

Qi(p0) + op(1)

= L(α0, p0, t)n
−1/2

n∑
i=1

Qi(p0) + op(1),
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where

μki(p) =
dρi(p)

dpk
= −Δkiξi

p2k

μi(p) = (μ1i(p) μ2i(p) μ3i(p))
T

L(α0, p0, t) =

∫ t

0

s
(0)
C (α0, u)

−1
{
dJ(u)− r(0)(α0, p0, u)dΛ

C
0 (u)

}
,

with dJn(u) = n−1
∑n

i=1 μ
T
i (p0)dN

C
i (u), which converges to dJ(u) in probability.

Considering (B.2),

(B.2) = n1/2

n∑
i=1

∫ t

0

{
1

S
(0)
C (α̂, p0, u)

− 1

S
(0)
C (α0, p0, u)

}
n−1ρi(p0)dN

C
i (u)

= n−1

{
n∑

i=1

∫ t

0

− S
(1)
C (α0, p0, u)

S
(0)
C (α0, p0, u)2

ρi(p0)dN
C
i (u)

}T

n1/2(α̂− α0) + op(1)

=

{
−
∫ t

0

V (α0, p0, u)dΛ̂
C
0 (u;α0, p0)

}T

AC(α0)
−1n−1/2

n∑
i=1

ψi(α0, p0)

+op(1)

= ĥTC(t;α0, p0)A
C(α0)

−1n−1/2

n∑
i=1

ψi(α0, p0)

= hTC(t;α0, p0)A
C(α0)

−1n−1/2
n∑

i=1

ψi(α0, p0) + op(1),

where

ĥC(t;α0, p0) = −
∫ t

0

V (α0, p0, u)dΛ̂
C
0 (u;α0, p0)

hC(t;α0, p0) = −
∫ t

0

v(α, u)dΛC
0 (u).

Moreover,

(B.3) = n−1/2

n∑
i=1

∫ t

0

S
(0)
C (α0, p0, u)

−1ρi(p0)dM
C
i (u)

= n−1/2
n∑

i=1

∫ t

0

s
(0)
C (α0, u)

−1ρi(p0)dM
C
i (u) + op(1).
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Combining the above results, one obtains

n1/2{Λ̂C
0 (t)− ΛC

0 (t)} = n−1/2

n∑
i=1

Φi(α0, p0, t) + op(1)

= n−1/2
n∑

i=1

∫ t

0

dΦi(α0, p0, u) + op(1)

where

Φi(α0, p0, t) = L(α0, p0, t)Qi(p0) + hTC(t;α0, p0)A
C(α0)

−1ψi(α0, p0)

+

∫ t

0

s
(0)
C (α0, u)

−1ρi(p0)dM
C
i (u)

dΦi(α0, p0, u) = s
(0)
C (α0, u)

−1
{
dJ(u)− r(0)(α0, p0, u)dΛ

C
0 (u)

}
Qi(p0)

−vT (α0, u)dΛ
C
0 (u)A

C(α0)
−1ψi(α0, p0)

+s
(0)
C (α0, u)

−1ρi(p0)dM
C
i (u).

Note that E{Qi(p0)} = 0, E{ψi(α0, p0)} = 0 and E{ρi(p0)dMC
i (u)} = 0, such that

E{dΦi(α0, p0, u)} = 0.

B.4 n1/2{Λ̂C
i (t)− ΛC

i (t)}

We can decompose n1/2{Λ̂C
i (t)− ΛC

i (t)} as follows,

n1/2{Λ̂C
i (t)− ΛC

i (t)}

= n1/2{
∫ t

0

eα̂
T Vi(u)dΛ̂C

0 (u)−
∫ t

0

eα
T
0 Vi(u)dΛ̂C

0 (u)}(B.4)

+n1/2{
∫ t

0

eα
T
0 Vi(u)dΛ̂C

0 (u)−
∫ t

0

eα
T
0 Vi(u)dΛC

0 (u)}.(B.5)

By a Taylor expansion,

(B.4) = n1/2

∫ t

0

{
eα̂

T Vi(u) − eα
T
0 Vi(u)

}
dΛ̂C

0 (u)

=

∫ t

0

V T
i (u)eα

T
0 Vi(u)dΛ̂C

0 (u)n
1/2(α̂− α0) + op(1)

=

∫ t

0

V T
i (u)dΛC

i (u)A
C(α0)

−1n−1/2

n∑
l=1

ψl(α0, p0) + op(1).
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Now considering the second term (B.5),

(B.5) = n1/2

∫ t

0

eα
T
0 Vi(u)d{Λ̂C

0 (u)− ΛC
0 (u)}

=

∫ t

0

eα
T
0 Vi(u)n−1/2

n∑
l=1

dΦl(α0, p0, u) + op(1).

It follows that

n1/2{Λ̂C
i (t)− ΛC

i (t)} =

∫ t

0

V T
i (u)dΛC

i (u)A
C(α0)

−1n−1/2
n∑

l=1

ψl(α0, p0)

+

∫ t

0

eα
T
0 Vi(u)n−1/2

n∑
l=1

dΦl(α0, p0, u) + op(1)

= n−1/2

n∑
l=1

Gl(t) + op(1),

where

Gl(t) = ΨT
i (t)A

C(α0)
−1ψl(α0, p0) +

∫ t

0

eα
T
0 Vi(u)dΦl(α0, p0, u)

Ψi(t) =

∫ t

0

Vi(u)dΛ
C
i (u)

B.5 n1/2{R̂i(t)−Ri(t)}

Letting Ri(t) = ρi(p)W1i(t), we have

n1/2{R̂i(t)− Ri(t)} = n1/2{ρi(p̂)êΛC
i (t) − ρi(p0)e

̂ΛC
i (t)}

+n1/2{ρi(p0)êΛC
i (t) − ρi(p0)e

ΛC
i (t)}

= μi(p0)
T eΛ

C
i (t)n1/2(p̂− p0)

+ρi(p0)e
ΛC
i (t)n1/2{Λ̂C

i (t)− ΛC
i (t)}+ op(1)

= μi(p0)
TW1i(t)n

−1/2
n∑

l=1

Ql(p0) +Ri(t)n
−1/2

n∑
l=1

Gl(t)

+op(1).
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B.6 n1/2(β̂ − β0)

It is easy to show that

n1/2(β̂ − β0) = An(β0)
−1n−1/2

n∑
i=1

Ui{β0, R̂i(t)}+ op(1),

where

Ui {β,R} =

∫ τ

0

{
Zi(0)− Z(β,R, t)

}
Ri(t)dNi(t)

Z(β,R, t) =
S(1)(β,R, t)

S(0)(β,R, t)

S(d)(β,R, t) = n−1
n∑

i=1

Ri(t)Yi(t)Zi(0)
⊗deβ

TZi(0), d = 0, 1, 2

s(d)(β,R, t) = E
{
Ri(t)Yi(t)Zi(0)

⊗deβ
TZi(0)

}
z(β,R, t) = s(1)(β,R, t)/s(0)(β,R, t).

We then write

An(β) = n−1
n∑

i=1

∫ τ

0

{
S(2)(β,R, t)

S(0)(β,R, t)
− Z(β,R, t)⊗2

}
Ri(t)dNi(t)

−→
∫ τ

0

{
s(2)(β,R, t)

s(0)(β,R, t)
− z(β,R, t)⊗2

}
dF (t)

≡ A(β)

in probability, with n−1
∑n

i=1Ri(t)dNi(t) converging in probability to dF (t).

We can decompose n−1/2U(β, R̂) as follows,

n−1/2U
(
β0, R̂

)
= n−1/2

n∑
i=1

∫ τ

0

{
Zi(0)− Z(β, R̂, t)

}
R̂i(t)dMi(t)

= n−1/2

n∑
i=1

∫ τ

0

{
Zi(0)− Z(β,R, t)

}
Ri(t)dMi(t)(B.6)

+n−1/2
n∑

i=1

∫ τ

0

{
Zi(0)− Z(β,R, t)

}{
R̂i(t)−Ri(t)

}
dMi(t)(B.7)

−n−1/2
n∑

i=1

∫ τ

0

{
Z(β, R̂, t)− Z(β,R, t)

}
R̂i(t)dMi(t)(B.8)
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It is easy to show that (B.6) = n−1/2
∑n

i=1

∫ τ

0
{Zi(0)− z(β,R, t)}Ri(t)dMi(t)+op(1).

The third term (B.8) converges in probability to 0. We can express (B.7) as follows,

(B.7) = n−1/2

n∑
i=1

∫ τ

0

{
Zi(0)− Z(β,R, t)

}
{
μi(p0)

TW1i(t)n
−1

n∑
l=1

Ql(p0) +Ri(t)n
−1

n∑
l=1

Gl(t)

}
dMi(t) + op(1)

= n−1
n∑

i=1

∫ τ

0

{
Zi(0)− Z(β,R, t)

}
μi(p0)

TW1i(t)dMi(t)n
−1/2

n∑
l=1

Ql(p0)(B.9)

+n−1/2
n∑

i=1

∫ τ

0

{
Zi(0)− Z(β,R, t)

}
Ri(t)

×n−1

{
n∑

l=1

ΨT
i (t)A

C(α0)
−1ψl(α0, p0)

}
dMi(t)(B.10)

+n−1/2

n∑
i=1

∫ τ

0

{
Zi(0)− Z(β,R, t)

}
Ri(t)

×n−1
n∑

l=1

∫ t

0

eα
T
0 Vi(u)dΦl(α0, p0, u)dMi(t).(B.11)

We can show that

(B.9) = Ô(β,R)n−1/2
n∑

i=1

Qi(p0)

= O(β,R)n−1/2
n∑

i=1

Qi(p0) + op(1),

where

Ô(β,R) = n−1
n∑

i=1

∫ τ

0

{
Zi(0)− Z(β,R, t)

}
μi(p0)

TW1i(t)dMi(t)

O(β,R) = E
[∫ τ

0

{Zi(0)− z(β,R, t)}μi(p0)
TW1i(t)dMi(t)

]
.

Moreover,

(B.10) = n−1

[
n∑

i=1

∫ τ

0

{
Zi(0)− Z(β,R, t)

}
Ri(t)Ψ

T
i (t)dMi(t)

]

AC(α0)
−1n−1/2

n∑
l=1

ψl(α0, p0)
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= Ĥ(β,R)AC(α0)
−1n−1/2

n∑
l=1

ψl(α0, p0)

= H(β,R)AC(α0)
−1n−1/2

n∑
l=1

ψl(α0, p0) + op(1),

where

Ĥ(β,R) = n−1

[
n∑

i=1

∫ τ

0

{
Zi(0)− Z(β,R, t)

}
ΨT

i (t)Ri(t)dMi(t)

]

H(β,R) = E
[∫ τ

0

{Zi(0)− z(β,R, t)}ΨT
i (t)Ri(t)dMi(t)

]
.

Changing the orders of integration and summation,

(B.11) = n−1/2

n∑
l=1

∫ τ

0

[
n−1

n∑
i=1

eα
T
0 Vi(u)

∫ τ

u

{
Zi(0)− Z(β,R, t)

}
Ri(t)dMi(t)

]
× dΦl(α0, p0, u)

= n−1/2
n∑

l=1

∫ τ

0

χ̂(u, τ)dΦl(α0, p0, u)

= n−1/2

n∑
l=1

∫ τ

0

χ(u, τ)dΦl(α0, p0, u) + op(1),

where

χ̂(t1, t2) = n−1
n∑

i=1

eα
T
0 Vi(t1)

∫ t2

t1

{
Zi(0)− Z(β,R, t)

}
Ri(t)dMi(t)

χ(t1, t2) = E
[
eα

T
0 Vi(t1)

∫ t2

t1

{Zi(0)− z(β,R, t)}Ri(t)dMi(t)

]
.

Combining the above results,

n1/2
(
β̂ − β0

)
= A(β0)

−1n−1/2

n∑
i=1

Θi (β0, R) + op(1),

where

Θi (β,R) = O(β,R)Qi(p0)

+H(β,R)AC(α0)
−1ψi(α0, p0)

+

∫ τ

0

χ(u, τ)dΦi(α0, p0, u).
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Note that E{Θi(β,R)} = 0. By the MCLT and Slutsky’s Theorem, n1/2(β̂ − β0)

converges in distribution to a N(0, A(β0)
−1Σ(β,R)A(β0)

−1) variate, where Σ(β,R) =

E{Θi(β,R)
⊗2}.

B.7 Estimating var(β̂)

The variance of β̂ can be consistently estimated by n−1
∑n

i=1 Θ̂i (β,R), with

Θ̂i (β,R) being obtained by substituting limiting values in Θi (β,R) with the sample

analogs. However, as shown in the Web Appendix, the computation of Θ̂i (β,R) is

very complicated and difficult to implement numerically. A useful alternative is to

estimate the variance of the proposed estimators by treating the weights Ri(t) as

known rather than estimated.

By some simple algebra, we have

n−1/2U (β0, R) = n−1/2

n∑
i=1

∫ τ

0

{
Zi(0)− Z(β,R, t)

}
Ri(t)dNi(t)

= n−1/2
n∑

i=1

∫ τ

0

{
Zi(0)− Z(β,R, t)

}
Ri(t)dMi(t)

= n−1/2

n∑
i=1

∫ τ

0

{Zi(0)− z(β,R, t)}Ri(t)dMi(t)(B.12)

−n−1/2
n∑

i=1

∫ τ

0

{
Z(β,R, t)− z(β,R, t)

}
Ri(t)dMi(t).(B.13)

Note that E {W1i(t)dMi(t) | Z(0)} = 0, such that

E {Ri(t)dMi(t) | Z(0)} = E {ρi(p)W1i(t)dMi(t) | Z(0)}

= E [E {ρi(p)W1i(t)dMi(t) | Δ1i,Δ2i,Δ3i, Z(t)} | Z(0)]

= E {W1i(t)dMi(t) | Z(0)}

= 0.
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Therefore, (B.13) converges in probability to 0. It follows that

n−1/2U (β0, R) = n−1/2
n∑

i=1

U ‡
i (β0, R) + op(1),

where U ‡
i (β0, R) =

∫ τ

0
{Zi(0)− z(β,R, t)}Ri(t)dMi(t). Hence, under the assumed

conditions, {U(β0, R)} is asymptotically a sum of independent and identically dis-

tributed zero-mean random quantities. By the MCLT, n−1/2U (β0, R) converges

asymptotically to a N(0,Σ‡(β0, R)) distribution, where Σ‡(β,R) = E
{
U ‡
i (β,R)

⊗2
}
.

By the Functional Delta methods,

n1/2
(
β̂ − β0

)
= A(β0)

−1n−1/2

n∑
i=1

U ‡
i {β0, R}+ op(1),

Therefore, the variance of β̂ is estimated by Â(β̂)−1Σ̂‡(β̂, R̂)Â(β̂)−1, where Â(β̂)

and Σ̂‡(β̂, R̂) are calculated by replacing limiting values with their corresponding

empirical counterparts.
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