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Abstract 
 

 

 Spinal and bulbar muscular atrophy (SBMA) is a progressive neurodegenerative 

disease caused by a CAG/glutamine (polyQ) expansion in the androgen receptor (AR). 

Like many other age-dependent neurodegenerative diseases, SBMA is characterized by 

the buildup of misfolded proteins into nuclear aggregates and neurodegeneration. The 

mutant protein disrupts several cellular pathways, and decreasing levels of disease 

causing protein may circumvent several of the downstream pathological processes. Here 

we investigate the effects of manipulating protein quality control pathways in cell and 

animal models of SBMA, identifying novel therapeutic targets and advancing our 

understanding of molecular chaperones and their role in protein triage.  

 Cells degrade proteins through two main pathways, autophagy and the ubiquitin 

proteasome pathway. Autophagy degrades cytosolic proteins in bulk, and increased 

autophagy has been shown to be beneficial in some models of protein aggregation 

diseases. Our results however, show that activating autophagy increases muscle wasting, 

while inhibiting autophagy significantly increases the lifespan and size of muscle fibers 

in a mouse model of SBMA.  Our findings are surprising, and suggest that activation of 

autophagy in SBMA may exacerbate disease progression. 

 The Hsp90/Hsp70-based chaperone machinery regulates the stabilization and 

degradation of Hsp90 clients through the proteasome, and presents an alternative 
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therapeutic target to modulate proteostasis. Little is known however, about how this 

machinery functions to triage misfolded proteins, and few modulators of Hsp70 exist. 

Here we advance our understanding of chaperone machinery function, and present novel 

strategies to target Hsp70‟s substrate affinity. We demonstrate that inhibiting Hsp70 

function leads to accumulation of toxic AR, while increasing Hsp70 substrate affinity 

through overexpression of the co-chaperone Hip, or through treatment with a newly 

identified small molecule allosteric activator, promotes client protein ubiquitination and 

polyQ AR clearance. Both genetic and pharmacologic approaches to increase Hsp70 

activity rescue disease phenotype in a Drosophila model of SBMA. Our results reveal a 

new therapeutic strategy of targeting Hsp70 to treat SBMA and perhaps other 

neurodegenerative diseases, while providing insights into the role of the chaperone 

machinery in protein quality control. 
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Chapter 1  

 

 

 

Introduction 

 

 A diverse group of neurodegenerative diseases that affect the aging population are 

characterized by accumulations of abnormally processed or mutant proteins that misfold 

and aggregate.  Among these are nine genetic disorders caused by expansions of a 

trinucleotide CAG repeat within the coding regions of disease-causing genes (Table 1.1). 

As CAG codes for glutamine, this group of diseases is referred to as polyglutamine repeat 

diseases (polyQ diseases).  

 In these nine disorders, the polyQ expansion occurs within unrelated genes and 

affects different neuronal subtypes, yet these polyQ diseases share several clinical and 

pathological features 
1
. Disease onset occurs most often in middle age despite lifelong 

expression of mutant protein, and exhibits an inverse correlation with CAG repeat length. 

The longer the glutamine expansion, the earlier the patient becomes symptomatic, and the 

more acute the disease progression. These expanded polyglutamine repeats unfortunately 

are also highly unstable, making them prone to genetic anticipation in which instability 

leads to an increase in length with each successive generation. The expanded repeat is 

inherited in an autosomal dominant manner in all polyglutamine diseases except spinal 
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bulbar muscular atrophy (SBMA), which is X-linked, suggesting that pathology is due in 

part to a toxic gain of function 
1
. 

Table 1.1 Polyglutamine Diseases 

Disease  Protein Normal 

repeat 

length 

Pathogenic 

repeat 

length 

Brain 

region/neurons 

affected 

SBMA Spinal Bulbar 

Muscular 

Atrophy 

androgen 

receptor 

6-36 38-62 Lower motor neurons 

and dorsal root 

ganglion 

HD Huntington‟s 

disease 

huntingtin 11-34 40-121 Striatum and cortex 

DRPLA Dentatorubral-

pallidoluysian 

atrophy 

atrophin-1 7-34 49-88 Globus pallidus, 

dentate-rubral and 

subthalamic nucleus 

SCA 1 Spinocerebellar 

ataxia 1 

ataxin-1 6-39 40-82 Purkinje cells, 

dentate nucleus and 

brainstem 

SCA 2 Spinocerebellar 

ataxia 2 

ataxin-2 15-24 32-200 Cerebellum, pontine 

nuclei, substantia 

nigra 

SCA 3 

(MJD) 

Spinocerebellar 

ataxia 

3/Machado-

Joseph disesae 

ataxin-3 

 

13-36 61-84 Substantia nigra, 

globus pallidus, 

pontine nucleus, 

cerebellar cortex 

SCA 6 Spinocerebellar 

ataxia 6 

P/Q-type 

calcium 

channel 

subunit 1A 

4-20 20-29 Cerebellum, 

brainstem 

SCA 7 Spinocerebellar 

ataxia 7 

ataxin-7 4-35 37-306 Photoreceptor and 

bipolar cells, 

cerebellum, 

brainstem 

SCA 17 Spinocerebellar 

ataxia 17 

TATA-box-

binding 

protein 

25-42 47-63 Gliosis and Purkinje 

cell loss  

 

 The unstable polyglutamine expansion can adopt an abnormal -sheet 

conformation leading to the formation of insoluble aggregates, and these polyglutamine 

diseases are characterized by the accumulation of nuclear and/or cytoplasmic protein 

inclusions. In SBMA, these inclusions are seen in the remaining motor neurons of patient 



 

3 

 

spinal cords, and are composed of the mutant AR protein, as well as heat shock proteins 

(Hsps) and ubiquitin 
2
. There is considerable debate in the field whether aggregates are 

toxic or protective, or whether their presence simply reflects the end stage of 

accumulation, with the toxic species being the precursors to aggregates such as oligomers 

or proteolyzed monomer 
3-6

. Regardless, the presence of aggregates in SBMA patients 

and mouse models is associated with the late stages of disease pathogenesis, and implies 

that the accumulation of misfolded toxic proteins may be a key step in degeneration.  

SBMA Pathology 

 SBMA is a progressive neuromuscular disorder that affects only men, and is 

characterized by proximal limb and bulbar muscular weakness, atrophy and fasiculations 

7
. Symptom onset is typically between 30-60 years of age, but muscle weakness is often 

preceded by muscle cramping and tremor. The clinical features of SBMA correlate with 

loss of lower motor neurons in the brainstem and spinal cord, and with marked myopathic 

and neurogenic changes in skeletal muscle 
8
. Patients may also exhibit partial androgen 

insensitivity such as gynecomastia, testicular atrophy and decreased fertility 
9
. Disease 

progression is slow, but many patients eventually require assistance to walk, and risk for 

aspiration pneumonia increases as bulbar paralysis develops. Currently, very few 

treatment options exist for SBMA patients, the most promising of which are testosterone 

blockade therapies 
10-12

.  

 The endogenous function of the androgen receptor has been well characterized, 

making it an ideal context in which to study the effects of a toxic polyQ tract. In SBMA, 

the toxic glutamine tract expansion occurs in the first exon of the androgen receptor (AR) 

13
. The repeat length found in the normal population is 9-36 glutamines, with an 
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expansion to a length between 38 and 62 glutamines in SBMA patients. In addition to the 

glutamine tract in the N-terminal transactivation domain, the AR contains a nuclear 

localization sequence, and a central DNA binding domain (DBD) linked to the C-

terminal ligand binding domain (LBD) by a hinge region. (Figure 1.1) Without ligand, 

the nuclear localization signal is masked, and the AR is localized to the cytoplasm where 

it is held in a high affinity ligand binding state by molecular chaperones. Binding of 

testosterone to the ligand binding domain exposes a nuclear localization signal within the 

hinge region of the AR, allowing for the binding of importin-and the subsequent 

trafficking and import of the AR into the nucleus 
14

. Once in the nucleus, ligand-bound 

AR dimerizes and binds to androgen responsive elements (AREs), triggering 

transcription or repression of androgen dependent genes 
15,16

.  

 

Figure 1.1 Androgen receptor domain structure 

The AR protein consists of 3 functional domains: the N-terminal transactivation domain containing 
the glutamine tract, the DNA-binding domain (DBD), and the ligand binding domain (LBD). The 
nuclear localization signal (NLS) is found within the hinge region that links the DBD and the LBD. 
(modified from Katsuno et al, 2004) 

 

 In the presence of an abnormally expanded glutamine tract, the AR suffers from 

both a partial loss of endogenous function as well as a toxic gain of function. Expansion 

of the polyglutamine tract mildly suppresses transcriptional activities of the AR 
17-19

. This 

loss of function likely contributes to the partial testosterone insensitivity seen in SBMA 
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patients. However, patients with other types of loss of function mutations in the AR gene 

and mouse models with similar loss of function mutations in the AR show androgen 

insensitivity and testicular feminization, without the motor impairment observed in 

SBMA 
20

. Evidence for a toxic gain of function by the pathogenic AR is robust. Several 

SBMA mouse models have been created in which transgenic expression of the aberrant 

AR leads to hormone and glutamine length dependent muscular atrophy and motor 

dysfunction in the continued presence of the wild type protein 
21-24

. Similarly, exogenous 

expression of the mutant AR in transformed cell lines and primary neurons leads to 

altered cellular processes and cell death 
25,26

. Taken together, these data indicate that the 

polyglutamine tract expansion in the AR leads to both a toxic gain of function and a 

partial loss of normal function, and suggest that toxic effects of the mutant protein are the 

main drivers of disease pathogenesis. 

Mechanisms of Toxicity 

 The mutant protein in SBMA, as in other polyglutamine disorders, disrupts 

multiple cellular pathways, and toxicity is likely due to the cumulative effects of altering 

a diverse array of downstream cellular processes (summarized in Figure 1.2). A brief 

summary of the data implicating disruption of these pathways in SBMA follows: 

Transcriptional Dysregulation  

 Several polyglutamine diseases require nuclear localization of the mutant protein 

and exhibit altered transcription prior to phenotypic onset 
27,28

. A SCA1 mouse model in 

which the polyQ Ataxin-1 is cytoplasmically retained shows neither the characteristic 

ataxia nor Purkinje cell loss, while allowing nuclear transport, but prohibiting nuclear 

aggregation in the same model leads to pathogenesis, establishing nuclear events as a 
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requirement for polyglutamine toxicity 
29

. Similarly, cytoplasmic retention of the AR 

rescues the disease in an SBMA mouse, while nuclear localization of an unliganded AR 

in cell models is insufficient to cause the toxicity seen in the presence of ligand 
30

. The 

endogenous function of the AR as a nuclear transcription factor lends weight to the idea 

that transcriptional dysregulation underlyies disease pathogenesis in SBMA. Ligand 

binding, nuclear translocation and DNA binding have all been shown to be requirements 

in SBMA toxicity 
30-32

. 

 The mutant AR abnormally interacts with transcriptional co-regulators, and has 

been shown to alter transcription in both fly and cellular models of SBMA 
18,19,26,31,33

.  

Several of these co-regulators are transcription factors that modify the acetylation state of 

the histones that package and compact nuclear DNA, thus modifying the accessibility of 

DNA to the transcriptional machinery. Further, the acetylation state of the AR itself has 

been suggested to regulate the subcellular localization and misfolding of the receptor 
34

 as 

well as interaction with co-regulators 
35

.   One of these co-regulators, CREB-binding 

protein (CBP), is a histone acetyltransferase and an important co-activator. CBP is 

functionally sequestered in the nuclear inclusions seen in cell culture, animal models and 

tissue derived from SBMA patients, resulting in downregulation of CBP mediated 

transcription 
36

. Overexpression of CBP rescues polyQ AR mediated toxicity in cell and 

drosophila models restoring normal transcription and histone acetylation levels 
36,37

. 

Similarly, inhibiting histone deacetylases has also been shown to decrease the toxicity of 

a truncated fragment of the expanded AR 
38

, further implicating transcriptional 

dysregulation as one pathogenic mechanism in SBMA.   
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 Post-transcriptional changes in gene expression also affect protein expression and 

can produce dysfunction in much the same way as altered transcription. Toxic forms of 

RNA have been implicated in other repeat expansion diseases, such as myotonic 

dystrophy, where they alter RNA splicing by affecting expression of splicing factors 

and/or by sequestering RNA binding proteins 
39

. Aberrant RNA processing can have 

widespread effects on many transcripts, and can amplify existing transcriptional 

dysregulation. RNA missplicing has also been shown to contribute to SBMA 

pathogenesis in a knock-in mouse, where changes in RNA binding protein expression and 

mRNA splicing have been observed 
40

.   

Mitochondrial Dysfunction  

 Mitochondrial dysfunction has also been implicated in polyQ disease 

pathogenesis. In vitro and in vivo models of SBMA show altered expression of 

peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1), a transcription 

factor that governs mitochondrial biogenesis and function. Mitochondria in cells 

expressing pathogenic polyQ AR are lower in number and exhibit decreased 

mitochondrial membrane potential. This occurs in conjunction with higher levels of 

reactive oxygen species (ROS) 
41

. Mitochondrial abnormalities are also detectable in the 

leukocytes of SBMA patient samples, highlighting the role of mitochondrial 

bioenergetics in polyglutamine disease 
42

.  

Axonal Trafficking   

  Neurons, and especially motorneurons, with their long axonal projections, are 

highly reliant upon fast axonal transport to shuttle nutrients and molecular signals 

between the nucleus and the cell periphery, and defects in axonal transport have been 
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reported in several neurodegenerative and polyglutamine diseases 
43-45

. Furthermore, 

specific disruption of this pathway by dynactin mutations causes an inherited form of 

motor neuron disease 
46

. Controversy exists as to the extent of axonal trafficking defects 

in SBMA models. Axonal trafficking defects caused by the polyQ AR occur in isolated 

squid axons, where impaired fast transport occurs secondary to activation of JNK 

signaling 
44,47

 Defects have also been documented in several, but not all, SBMA mouse 

models that have been studied. Dynactin 1 is a regulator of retrograde axonal transport, 

and is expressed at lower levels in SBMA transgenic mice that show perturbed axonal 

trafficking 
48

.  Early deficits in retrograde transport also occur in both SBMA knock-in 

mice and a myogenic mouse model that overexpresses wild type AR exclusively in 

muscle 
49

. In contrast, YAC transgenic SBMA mice show no change in retrograde 

transport or dynactin levels 
50

 suggesting that these defects may not be necessary for the 

occurrence of a disease phenotype.  
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Figure 1.2 Mechanisms of Toxicity in SBMA 

PolyQ AR affects many cellular processes, both nuclear and cytoplasmic. (Modified from Ross, 
Neuron, 2002). Proteasomal degradation is shown occurring in the cytoplasm, but also occurs 
within the nucleus. (DBD) DNA binding domain, (NLS) nuclear localization sequence, (ARE) 
androgen responsive elements, (ROS) reactive oxygen species. 

 

  With such a diverse array of cellular processes affected by the presence of the 

mutant AR, therapeutic treatments targeting individual pathways are likely to be 

unsuccessful. The common upstream factor in all the toxic mechanisms is the activation 

of the abnormal AR. Therefore, diminishing levels of the misfolded protein could 

abrogate multiple downstream effects. Perhaps the most promising route to achieving this 

is to enhance the cell‟s natural protein quality control pathways. This machinery contains 
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several distinct and interacting components, including molecular chaperones, the 

ubiquitin-proteasome system and autophagy.  

Protein Degradation 

 The two main protein degradation pathways in eukaryotic cells are the ubiquitin-

proteasome system (UPS) and autophagy. Both of these degradation pathways serve to 

modulate protein homeostasis and have been identified as potential therapeutic targets in 

neurodegenerative diseases. The UPS degrades damaged or misfolded proteins in both 

the cytoplasm and nucleus, while autophagy is responsible for bulk degradation of long-

lived proteins and organelles in the cytosol.  

The Ubiquitin Proteasome System 

 The ubiquitin proteasome system (UPS) governs the selective and tightly 

regulated process of degrading soluble cytosolic and nuclear proteins into short peptide 

chains. By selectively degrading short lived and misfolded or damaged proteins, the UPS 

is able to govern localized protein concentrations allowing for regulation of cell cycle and 

growth regulators, signal transduction, metabolic enzymes and general housekeeping 

functions 
51

. Degradation of a protein through the UPS requires 2 steps; the covalent 

attachment of multiple ubiquitin molecules, and the degradation of the ubiquitinated 

protein by the proteasome.  

 Ubiquitination of the target protein is achieved in a stepwise process. In the first 

ATP-dependent step, an E1 ubiquitin activating enzyme activates the ubiquitin molecule 

and forms a transient E1-S~ubiquitin intermediate prior to recognition by an E2 ubiquitin 

conjugating enzyme. The E2 ubiquitin conjugating enzyme then transfers the ubiquitin 
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from the transient E1-S~ubiquitin intermediate to a residue within the E2 enzyme 

forming another transient thioester intermediate. Finally, the ubiquitin molecule is 

transferred by an E3 ubiquitin ligase to a lysine residue on the targeted substrate 
52

. The 

E3 ubiquitin ligase is what confers specificity to the reaction, binding to the target 

molecule while recruiting the E2-Ub molecule for covalent binding to a lysine residue on 

the substrate. This process repeats itself, allowing for sequential addition of ubiquitins 

upon the initial ubiquitin. Once a protein incurs a chain longer than four ubiquitins, it is 

targeted to the 26S proteasome for degradation 
53

. 

 The 26S proteasome is a multi-subunit, multi-catalytic protease found in both the 

nucleus and cytoplasm. It is comprised of a 20S core catalytic complex flanked by two 

19S regulatory components forming a barrel shaped structure (20S) with a lid (19S). In a 

highly energy dependent manner, the 19S subunit functions to identify and bind 

polyubiquitinated proteins, open the pore of the 20S proteasome, unfold the substrate, 

remove the ubiquitin chain and finally feed the unfolded target protein into the 20S pore. 

Once inside the 20S proteasome, the protein is degraded into oligopeptides ranging from 

4-25 amino acids which are then released from the 20S proteasome for reuse 
54

. 

  Steroid hormone receptor degradation occurs through the proteasome, and 

harnessing the cell‟s innate degradation pathways to decrease levels of polyQ AR is a 

promising therapeutic strategy. Components of the UPS, as well as the molecular 

chaperones Hsp70 and Hsp40, are found in the nuclear aggregates of SBMA models and 

patients, indicating the recognition of the misfolded protein and cellular attempt at 

degradation 
2,23,55

. Accumulation of UPS components in aggregates has also been 

implicated in proteasome inhibition, where sequestration of the components in inclusions 
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would lead to downregulation of proteasomal degradation 
56

. Importantly for therapeutic 

purposes, the activity of the UPS in an SBMA model mouse is preserved and even 

upregulated in late stages of disease 
57

. As discussed below, manipulating the expression 

or function of certain molecular chaperones and chaperone-dependent ubiquitin ligases 

ameliorates the disease phenotype in SBMA mice, consistent with the notion that 

clearance of the polyQ AR through the UPS is critically important to the disease. 

Autophagy 

 Autophagy, or “self eating”, is a process in which a cell is able to engulf contents 

of cytoplasm and deliver them to the lysosome for degradation and recycling 
58

. Several 

forms of autophagy have been identified, demonstrating more selective degradation 

pathways than originally thought. Microautophagy is a process in which the lysosome 

itself takes up small portions of the cytoplasm through invaginations in the lysosomal 

compartment 
59

. Chaperone mediated autophagy allows for selective uptake of proteins 

containing a KFERQ motif. Hsp70 recognizes this same domain, and allows for the 

targeting to the lysosome via the lysosomal integral membrane protein LAMP-2A 
60

. 

Macroautophagy is the mechanism by which cells are able to engulf large portions of 

cytosol within double membrane vesicles that fuse to late endosomes or lysosomes for 

degradation 
58

. From here on, macroautophagy will be the subtype discussed in this 

dissertation and will be referred to as autophagy.  

 Activation of autophagy involves tightly regulated stepwise induction of a double 

membraneous autophagic vesicle that grows to engulf cytoplasmic components the 

proteasome cannot degrade, such as mitochondria and protein aggregates, as well as long-

lived proteins. This mechanism consists of several discrete steps executed by autophagy 
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related (Atg) proteins, that are analogous to the cascade required to attach ubiquitin to 

target proteins. Once the autophagosome is completed, it fuses with lysosomes where the 

contents of the autophagosome are enzymatically broken down for reuse by the cell 
61

. 

 Upstream of the formation of the autophagic vesicle, autophagy is regulated 

primarily by two proteins, the mammalian target of rapamycin (mTOR) and Beclin-1. 

mTOR negatively regulates autophagy and is responsive to cellular signals indicating the 

energy and nutrient status of the cell. In periods of excess energy, mTOR inhibits 

autophagy; nutrient deprivation leads to a release of this inhibition, allowing for 

autophagy induction and an increase in nutrients via this recycling pathway.  Beclin-1 is 

required for both autophagosome formation and autophagic flux 
62

. It associates with the 

class III phosphatidylinositol-3-kinase (PI3K) complex to generate PI(3)P, a lipid 

component of the autophagosome membrane 
63

. Beclin-1 also binds to the anti-apoptotic 

bcl-2 family of proteins. This binding inhibits the induction of autophagy by sequestering 

Beclin-1 away from the PI3K complex. Thus, activation of autophagy by Beclin-1 can be 

initiated by transcriptional regulation or by disruption of binding to bcl-2 by 

phosphorylation of either binding partner 
64

. In chapter 3 of this dissertation, we will 

explore the role of macroautophagy in SBMA pathogenesis.   

Molecular Chaperones 

Hsp90 

  In the absence of ligand, the AR resides in the cytoplasm where it forms a multi-

protein heterocomplex, bound to heat shock proteins, co-chaperones, and 

tetratricopeptide repeat (TPR)-containing proteins 
65

. The Hsps are molecular chaperones 
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that bind to, and stabilize the AR in a high-affinity state primed for ligand binding 
66

.  

The interaction of Hsp90 with the AR, and the regulation of AR proteostasis by Hsp90, 

makes it an Hsp90 “client” protein, and puts the AR in a class with many other steroid 

hormone receptors and signaling molecules. Much of what is known about the action of 

Hsp90 on its client proteins has come from work on other signaling molecules that are 

Hsp90 clients, such as the glucocorticoid receptor (GR) and neuronal nitric oxide 

synthase (nNOS) 
65

.  

 Hsp90 is an abundant molecular chaperone that controls the maturation, function, 

and turnover of its client proteins. Binding of Hsp90 to its client protein is preceded by 

the binding of Hsp70 to hydrophobic residues found on partially unfolded client proteins. 

Once Hsp70 has primed the steroid binding cleft, Hsp90 binds and stabilizes the binding 

cleft in an open conformation with high affinity for ligand 
67

. Both Hsp70 and Hsp90 

have intrinsic ATPase activity that is required in the stepwise assembly of the chaperone 

machinery. The binding affinity of these molecular chaperones to their protein substrates 

is mediated by their nucleotide binding state, with the ATP-bound form being the low 

affinity state and the ADP-bound form being the high affinity state 
68

 Once ligand binds 

to the accessible ligand binding cleft of the primed AR, interaction with Hsp90 is 

required to help traffic the client protein to the site of its action, the nucleus 
34,69,70

. 

 Hsp90 inhibitors, which target the ATPase activity of Hsp90, have been shown to 

have beneficial effects in several models of SBMA. 17-AAG or geldanamycin, both 

Hsp90 inhibitors, ameliorate disease pathology in cell culture and mouse models of 

SBMA 
57,71

. These drugs promote degradation of the mutant AR protein through the 

ubiquitin-proteasome system by inhibiting Hsp90‟s ATP-dependent progression toward 
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the stabilized heterocomplex. They decrease accumulation of aggregated mutant receptor 

by enhancing its degradation and ameliorate the motor phenotype of SBMA mice 
57,72

. 

These drugs also serve to induce a stress response, which upregulates the levels of several 

heat shock proteins, including the inducible form of Hsp70 
73

. The beneficial effects of 

Hsp90 inhibition however, are independent of the heat shock response, as AR112Q 

expressing mouse embryonic fibroblasts (MEFs) deficient in HSF-1 (the Hsp90-regulated 

transcription factor required to induce a heat shock response) still clear6 polyQ AR after 

treatment with Hsp90 inhibitors, even in the absence of a stress response 
69

.  

 Hsp70 

 While Hsp90 binds to and stabilizes client proteins in their native conformation, 

Hsp70 binds to hydrophobic residues exposed by partially unfolded or misfolded proteins 

in non-native conformations, and targets them for degradation by the ubiquitin 

proteasome system. In fact, Hsp70 is required for both ubiquitination and the subsequent 

degradation of ubiquitinated proteins 
74

. The best studied chaperone-dependent ubiquitin 

E3 ligase is the CHIP (carboxy terminus of Hsp70-interacting protein). CHIP interacts 

with Hsp70 through its amino-terminal TPR domain and with E2 ubiquitin conjugating 

enzymes through a carboxy-terminal U-box domain 
75

. In this manner, it is thought that 

CHIP is able to initiate the ubiquitination and promote the degradation of proteins that 

have been identified as unfolded or misfolded by Hsp70. (Figure 1.3) CHIP is also 

associated with nuclear inclusions characteristic of polyglutamine disease, including 

SBMA 
76

, and overexpression of CHIP has been shown to rescue both a Drosophila 

model of SCA1
77

 and a mouse model of SBMA 
78

. Notably, although CHIP plays an 
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important role in client protein degradation, other chaperone-dependent ligases, such as 

Parkin, can function redundantly with CHIP to promote client protein degradation 
76

. 

 Like Hsp90 inhibition, Hsp70 over-expression has been shown to have beneficial 

effects in a variety of neurodegenerative diseases including the polyglutamine diseases. 

Hsp70, in conjunction with its co-chaperone Hsp40, inhibits aggregation of the truncated 

huntingtin protein (Htt) in both in vitro and cellular and yeast models of polyglutamine 

aggregation 
79

. Overexpression studies in disease models have also indicated that these 

particular chaperones may be promising therapeutic targets. Hsp70 suppresses both 

apoptosis and aggregation in neurons expressing a truncated form of the AR with an 

expanded polyQ tract 
80

. Further, when Hsp70 is overexpressed in a mouse model of 

SBMA, there is decreased aggregated and soluble AR, indicating that increased levels of 

Hsp70 promote degradation of the AR. Importantly, these mice also showed improved 

survival and motor phenotype when compared to SBMA mice that were not 

overexpressing Hsp70 
81

.  

 These data have led to our working model of chaperone machinery function. In 

this model, Hsp70 and Hsp90 operate in opposing manners upon client proteins (Figure 

1.3). Association with Hsp90, or overexpression of p23, allows for the stable formation 

of the complete heterocomplex 
69

 and stabilization of the client protein in its native 

conformation.  In contrast, inhibition of Hsp90 disrupts the complex and allows for 

substrate bound Hsp70 to recruit chaperone-dependent ubiquitin ligases to target the 

client protein for degradation through the proteasome. In this model, increasing the 

affinity of Hsp70 for misfolded substrates could serve to increase the degradation of 
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Hsp90 client proteins like the polyQ AR. This model will be probed in chapters 3 and 4 

of this dissertation.  

 

Figure 1.3 Model of the Hsp90-based chaperone machinery and regulation 
of polyQ AR degradation. 

Hsp90 forms a heterocomplex to stabilize the polyQ AR, enable ligand binding and guide 
intracellular localization (top left). Dissociation of Hsp90, as after treatment with an Hsp90 
inhibitor, permits polyQ AR unfolding. Substrate-bound Hsp70 then recruits chaperone dependent 
ligases such as CHIP to promote degradation through the proteasome. (AR) Androgen receptor, 
(IMM) Immunophilin binding protein, (E2) E2 ubiquitin conjugating enzyme, (CHIP) carboxy 
terminus of Hsp70-interacting protein. 

 

Modulating Hsp70 

 Hsp70 interacts with several co-factors or co-chaperones in the course of 

recognizing, binding and targeting misfolded proteins to the proteasome. These co-factors 

serve to modulate Hsp70 activity and substrate binding affinity. In particular, Hsp40 is a 

well characterized family of Hsp70 co-chaperones that affect substrate binding by 

enhancing Hsp70s ATPase activity 
82

. Experimental modulation of Hsp70 activity has 
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proven difficult, and small molecules specifically targeting Hsp70 have been identified 

only recently 
83-85

. Due to this, much of the evidence probing Hsp70 as a modulator of 

neurodegeneration has come from overexpression studies. In chapter 3, we characterize 

methylene blue as a small molecule inhibitor of Hsp70, and show its utility in probing 

Hsp70-dependent roles in the quality control of the Hsp90 client proteins nNOS and the 

polyQ AR.  

Hsp70-Interacting Protein 

 One way to modulate Hsp70 activity in a more physiologically relevant manner is 

by altering its nucleotide binding state through interaction with its endogenous co-

regulators. Hip (hsc70-interacting protein) is a co-chaperone that interacts with the 

ATPase domain of Hsp70/ Hsc70 and stabilizes it in its ADP bound state 
86

. Hip and 

BAG-1 (Bcl-2-associated gene product-1), a nucleotide exchange factor, compete for 

binding to separate sites on the ATPase domain of Hsp70, and both have been recovered 

in small amounts from Hsp90-hop-Hsp70 complexes 
87,88

. This suggests that their 

association may be indicative of two subtypes of heterocomplex assembly, with BAG-1 

association promoting ATP-bound Hsp70 and Hip association stabilizing ADP-bound 

Hsp70. As ADP-bound Hsp70 binds substrates with high affinity, our model of 

chaperone machinery function predicts that Hip overexpression will be beneficial in 

SBMA models. Consistent with this idea, Hip expression in yeast enhances the Hsp70-

dependent maturation of the GR 
89

, and Howarth et al showed that overexpression of Hip, 

especially in conjunction with Hsp70, decreased aggregates formed by an expanded 

polyglutamine tract in mouse neuroblastoma cells 
90

. Importantly, Hip also decreases the 

formation of fibrils by another Hsp90 client protein, -synuclein, the protein that 
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aggregates in Parkinson disease (PD). Knock down of Hip in a C. elegans model of PD 

leads to an increase in inclusion formation, and reduced expression of HIP is found in 

serum from PD patients 
91,92

. The extent to which Hip may be a therapeutic target in 

SBMA is unknown, and will be investigated in chapter 4.    

Research Objectives 

 Despite advances in understanding the etiology of numerous neurodegenerative 

diseases, efficacious therapies still remain elusive. Harnessing cells‟ protein quality 

control pathways to degrade toxic proteins is an attractive therapeutic target and may 

serve to halt disease progression upstream of several pathological features of protein 

aggregation diseases. The work presented in this dissertation probes the role of two 

different protein quality control pathways in modulating disease pathogenesis. The first 

objective is to determine the extent to which autophagy modulates the SBMA phenotype 

through Beclin-1. This work, presented in chapter 2, demonstrates that, contrary to our 

expectations, upregulating autophagy may not be therapeutically beneficial. Our data 

show that genetically impairing autophagy by Beclin-1 haploinsufficiency increases 

lifespan and muscle fiber size in a mouse model of SBMA. The second objective of this 

dissertation is to elucidate the mechanism by which modulation of Hsp70‟s nucleotide 

binding domain promotes degradation of the polyQ AR protein (Figure 1.3). In chapter 

3, I show that pharmacologically inhibiting Hsp70‟s intrinsic ATPase activity in our 

cellular model of SBMA increases aggregation of the expanded full-length receptor. 

Building upon this data, in chapter 4 I show that stabilizing Hsp70 in its ADP-bound state 

by both pharmacological and genetic manipulation serves to decrease the amount of 

aggregated AR in cellular and Drosophila models. Further, these pharmacologic and 
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genetic manipulations rescue the SBMA phenotype in Drosophila. Taken together, these 

data indicates that targeting Hsp70‟s activity may be a successful therapeutic strategy in 

SBMA. 
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Chapter 2  

 

 

 

Macroautophagy is regulated by the UPR-mediator CHOP and 

accentuates the phenotype of SBMA mice 
 

Abstract 

Altered protein homeostasis underlies degenerative diseases triggered by misfolded 

proteins, including spinal and bulbar muscular atrophy (SBMA), a neuromuscular 

disorder caused by a CAG/glutamine expansion in the androgen receptor.  Here we show 

that the unfolded protein response (UPR), an ER protein quality control pathway, is 

induced in skeletal muscle from SBMA patients, AR113Q knock-in male mice and 

surgically denervated wild type mice.  To probe the consequence of UPR induction, we 

deleted CHOP (C/EBP homologous protein), a transcription factor induced following ER 

stress.  CHOP deficiency accentuated atrophy in both AR113Q and surgically denervated 

muscle through activation of macroautophagy, a lysosomal protein quality control 

pathway.  Conversely, impaired autophagy due to Beclin-1 haploinsufficiency decreased 

muscle wasting and extended lifespan of AR113Q males, producing a significant and 

unexpected amelioration of the disease phenotype. Our findings highlight critical cross-

talk between the UPR and macroautophagy, and indicate that autophagy activation 

accentuates aspects of the SBMA phenotype.  
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Introduction 

 Many adult onset neurodegenerative disorders are characterized by the 

accumulation of abnormally folded proteins that self-associate into soluble oligomeric 

species or coalesce into insoluble protein aggregates.  Among these disorders are ones 

caused by expansions of CAG/glutamine tracts
1,93

.  Spinal and bulbar muscular atrophy 

(SBMA), a member of this group, is a progressive neuromuscular disorder caused by an 

expanded glutamine tract near the amino terminus of the androgen receptor (AR) 
94

.  This 

mutation leads to hormone-dependent AR unfolding, and to the predominant loss of 

lower motor neurons in the brainstem and spinal cord of affected males.  Clinical onset 

occurs in adolescence to adulthood and is characterized initially by muscle cramps and 

elevated serum creatine kinase 
10,95

.  These myopathic features commonly precede muscle 

weakness, which inevitably develops as the disease progresses and is most severe in the 

proximal limb and bulbar muscles.  Late in the course of disease, the pathologic features 

of SBMA include loss of motor neurons in the brainstem and spinal cord and the 

occurrence of myopathic and neurogenic changes in skeletal muscle 
7,8

. 

 Studies in mouse models have defined several general principles that guide our 

understanding of SBMA pathogenesis.  Transgenic over-expression of the expanded 

glutamine AR leads to disease, consistent with the notion that toxicity is predominantly 

mediated through a gain-of-function mechanism 
22,32

.  This toxicity is androgen-

dependent in mice and in SBMA patients, an observation that led to recent clinical trials 

with anti-androgens 
11,12,96

.  To model SBMA in mice, our laboratory used gene targeting 

to exchange 1340 bp of mouse Ar exon 1 with human sequence containing 21 or 113 

CAG repeats 
97,98

.  Mice expressing the expanded glutamine AR (AR113Q) develop 
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androgen-dependent neuromuscular and systemic pathology that models SBMA 
98,99

, 

whereas AR21Q males are similar to wild type littermates 
97,98

.  In AR113Q mice, 

denervation and muscle pathology occur early in life, prior to detectable motor neuron 

loss, indicating that neuronal dysfunction or distal axonal degeneration and myopathy are 

early disease manifestations.  The notion that pathology arising in muscle contributes to 

disease is consistent with findings in transgenic mice in which over-expression of the 

wild type AR in skeletal muscle leads to hormone-dependent myopathy and motor axon 

loss 
100

, and with data showing a rescue of the disease phenotype in SBMA transgenic 

mice by over-expressing IGF-1 in skeletal muscle 
101

.  Taken together, these observations 

focused our attention on the role of skeletal muscle in disease pathogenesis. 

 The cellular pathways by which the expanded glutamine AR mediates toxicity are 

complex and incompletely understood, with evidence in several model systems showing 

disruption of gene expression 
17-19,26,33,36

, alterations in RNA splicing 
40

, impairments in 

axonal transport 
43,44,48

 and defects in mitochondrial function 
41

. Toxicity likely results 

from the cumulative effects of altering a diverse array of cellular processes, indicating 

that potential treatments targeting a single downstream pathway are likely to be 

unsuccessful. These findings prompted us to concentrate instead on understanding the 

proximal mechanisms that regulate degradation of the mutant protein. Work in cellular 

and mouse models has established that degradation and aggregation of the polyglutamine 

AR are regulated by the Hsp90-based chaperone machinery 
69,71

, and that manipulating 

the expression or function of Hsp70-dependent E3 ubiquitin ligases markedly affects AR 

turnover through the ubiquitin-proteasome pathway 
76,78,85

. 
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 In addition to the chaperone machinery, other pathways regulating protein quality 

control have been implicated in SBMA pathogenesis.  Here we explored the role of the 

unfolded protein response (UPR), an integrated signal transduction pathway that 

transmits information about protein folding within the ER lumen to the nucleus and 

cytosol to regulate protein synthesis and folding and to influence cell survival
102,103

.  Prior 

studies showed that amino-terminal fragments of the polyglutamine AR activate the UPR 

in vitro 
104

, but little is known about the role of this pathway in more complex models of 

disease.  We now show that the UPR is activated in skeletal muscle from SBMA patients 

and AR113Q mice.  Moreover, genetic disruption of the ER stress response by deletion of 

the gene encoding the transcription factor C/EBP homologous protein (CHOP), a 

mediator of the UPR 
102

, accentuates skeletal muscle atrophy in AR113Q mice.  Further, 

we show that enhanced muscle wasting in the setting of CHOP deficiency is due to 

increased macroautophagy (hereafter referred to as autophagy), a lysosomal protein 

quality control pathway implicated in the pathogenesis of polyglutamine and motor 

neuron diseases.  In contrast, diminished autophagy due to Beclin-1 haploinsufficiency 

decreased muscle wasting and extended the lifespan of AR113Q males, unexpectedly 

ameliorating the disease phenotype. Our findings highlight cross-talk between the UPR 

and autophagy, and demonstrate that increased autophagy promotes atrophy of SBMA 

muscle. 

Results 

The UPR is activated in SBMA muscle. 

To determine whether the ER stress response is activated in SBMA we obtained 

skeletal muscle from patients and male controls.  Gene expression analysis by qPCR 
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demonstrated that SBMA muscle contained significantly higher levels of several mRNAs 

that are induced in response to ER stress (Figure 2.1A) 
102,103

.  These encoded the ER 

chaperone immunoglobulin binding protein (BiP), the transcription factors activating 

transcription factor-4 (ATF4) and its target CHOP, and the ER folding enzyme protein 

disulfide isomerase (PDI).  Further, increased splicing of mRNA encoding X-box binding 

protein-1 (XBP1) was detected (Figure 2.1B), indicating that activation of the proximal 

UPR sensor inositol-requiring protein-1 (IRE1) had occurred.  

 Analysis of proximal hind limb muscle from adult AR113Q male mice similarly 

demonstrated the induction of mRNAs encoding BiP, ATF4, CHOP and PDI (Figure 

2.1C).  This was associated with increased expression of BiP and PDI proteins, as 

demonstrated by western blot (Figure 2.1D).  As the neuromuscular phenotype of these 

mice is both hormone and glutamine-length dependent 
98

, we sought to determine 

whether the occurrence of ER stress was similarly regulated.  Surgical castration at 5 – 6 

wks ameliorated the induction of these transcripts in adult AR113Q males, demonstrating 

that UPR activation was responsive to levels of circulating androgens (Figure 2.1C).  

Further, direct comparison with mice generated using the same gene targeting strategy 

but with only 21 CAG repeats in the Ar gene 
97

 confirmed that UPR activation was 

dependent upon the presence of an expanded glutamine tract (Figure 2.1E).  In contrast, 

we did not detect induction of ER stress-induced mRNAs such as BiP and CHOP in 

spinal cords of AR113Q males (Figure 2.1F), nor did we detect increased expression of 

BiP or PDI proteins in spinal motor neurons (not shown).  We conclude that the UPR is 

activated in skeletal muscle from SBMA patients and knock-in mice. 
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Figure 2.1 The UPR is activated in SBMA muscle. 

(A) Relative mRNA expression in skeletal muscle from SBMA patients (white bars, n=3) and 
controls (black bars, n=3) (mean  +/- SEM).  * p<0.05, ** p<0.01 by Student’s t test. (B) Splicing 
of XBP1 mRNA was assessed by RT-PCR.  Products from unspliced (XBP1u) and spliced 
(XBP1s) transcripts were resolved on a nondenaturing polyacrylamide gel and stained with SYBR 
green. (C) Relative mRNA expression in proximal hind limb muscle (mean +/- SEM).  Mice 
evaluated were littermate WT (n=6), AR113Q (n=6), castrated WT (C-WT, n=6) and castrated 
AR113Q males (C-AR113Q, n=5) on a mixed C57BL/6J-129 genetic background.  *p<0.05 by 
ANOVA. (D) Western blot of BiP and PDI expression in proximal hind limb muscle.  Right panels 
show quantification of signal relative to loading control (mean +/- SEM).  * p<0.05 by Student’s t 
test. (E) Relative mRNA expression in proximal hind limb muscle of AR21Q (n=5) and AR113Q 
(n=3) males backcrossed to C57BL/6J.  ** p<0.01, ***p<0.001 by Student’s t test. (F) Relative 
mRNA expression in spinal cord of AR21Q (n=5) and AR113Q (n=3) males (mean +/- SEM).  n. 
s. = not significant by Student’s t test. Experiments performed by Zhigang Yu. 
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CHOP deletion increases AR113Q muscle atrophy and activates autophagy. 

 As the UPR plays a central role in protein homeostasis in the ER and influences 

survival in a cellular model of SBMA 
104

, we sought to determine its role in disease 

pathogenesis in vivo.  To accomplish this, we generated AR113Q males deficient in 

CHOP, a regulator of cell survival during ER stress that we found to be up-regulated in 

SBMA muscle.  CHOP null mice exhibit impaired programmed cell death following 

pharmacological induction of ER stress 
105

.  Further, CHOP deficiency accentuates the 

phenotype of Pelizaeus-Merzbacher Disease mice 
106

 yet rescues the motor deficits of 

Charcot-Marie-Tooth 1B mice 
107

, demonstrating that deletion of this transcription factor 

is an informative approach to probing the role of the UPR in model systems.  Notably, 

CHOP null mice do not display neuromuscular pathology, thereby enabling us to assess 

the outcome of genetic disruption of the UPR on the SBMA phenotype.   

CHOP deficiency markedly affected AR113Q muscle, the site of UPR activation, 

by accentuating skeletal muscle atrophy (Figure 2.2A, B).  This unexpected effect on 

muscle fiber size yielded a significant shift in the distribution of fibers towards a smaller 

cross sectional area, resulting in a mean fiber size that was ~1/3 smaller than that 

measured in AR113Q males.  In contrast, CHOP null males expressing the wild type AR 

had muscle fibers that were similarly sized to age matched wild type males (Figure 

2.2C).  Although CHOP deficiency did not alter AR113Q total body mass or survival 

(not shown), our data show that disruption of the UPR by CHOP deletion increased 

muscle wasting in AR113Q male mice. 

To determine the mechanism by which CHOP deficiency increased skeletal 

muscle atrophy, we initially considered the possibility that motor neuron degeneration 
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was more severe in AR113Q mice deficient in CHOP, resulting in enhanced neurogenic 

atrophy.  However, we found no evidence of increased motor neuron loss in the spinal 

cords of these double mutants (not shown).   Furthermore, skeletal muscle expression of 

mRNAs induced following denervation 
108

, including those encoding myogenin and 

MyoD, was similar in AR113Q and AR113Q, CHOP null males (Data not shown).  

These findings suggested that enhanced muscle atrophy in animals deficient in CHOP 

was not mediated by increased motor neuron loss, but rather reflected augmented 

activation of a pathway that mediates muscle wasting.  To directly test this notion, we 

first examined the expression of muscle RING-finger protein 1 (MuRF1) and 

Atrogin1/Muscle Atrophy F-box (MAFbx) (Figure 2.3A), two E3 ubiquitin ligases that 

are induced in atrophying skeletal muscle and mediate enhanced protein degradation 

through the proteasome
109

.  While modest induction of MuRF1 mRNA was observed in 

AR113Q muscle, its expression was not further increased by CHOP deficiency.  No 

significant change in MAFbx expression was detected.  Additionally, CHOP deficiency 

did not alter expression of the 20S proteasome subunit in skeletal muscle (Data not 

shown).  We conclude that enhanced atrophy of hind limb muscle in AR113Q, CHOP 

null mice was not associated with a significant induction of E3 ligases that promote 

muscle protein degradation through the ubiquitin-proteasome pathway.  
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Figure 2.2 CHOP deletion accentuates muscle atrophy in AR113Q mice.  

(A) Muscle fiber size (100 fibers/mouse) was quantified from proximal hind limb muscle of 
AR113Q (black) or AR113Q, CHOP -/- mice (white) at 12 wks.  Left panel shows fiber size 
distribution, middle panel shows cumulative percent of fibers as a function of fiber area, and right 
panel shows relative fiber cross sectional area (mean +/- SEM).  Left, middle panels, p<0.0001 by 
Mann-Whitney test.  Right panel, p<0.001 by Student’s t test. (B) Representative image of muscle 
fibers following NADH stain. Bar = 20 µM. (C) Distribution of proximal hind limb muscle fiber size 
from wt (black) and CHOP -/- (white) mice at 12 wks.  Difference not significant by Mann-Whitney 
test. Experiments performed by Zhigang Yu.  

 

   These findings prompted us to consider the possibility that another protein 

degradation pathway underlies the increased atrophy triggered by CHOP deficiency.  As 

recent studies demonstrate that autophagy contributes to skeletal muscle wasting 
110

, we 

next examined the activity of the autophagic pathway following disruption of the UPR.  

Western blot demonstrated a ~3-fold increase in the autophagosome marker LC3-II 

(microtubule-associated protein 1, light chain 3-II) in skeletal muscle from AR113Q, 

CHOP null mice (Figure 2.3B).  No accumulation of p62 was detected (Figure 2.3B) 

consistent with the notion that flux through the autophagic pathway was intact following 
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disruption of the UPR.  Consistent with the notion that CHOP deficiency induced 

autophagy in AR113Q muscle, we detected increased expression of mRNAs encoding the 

autophagy regulators Atg5, Atg9B, LC3B and UVRAG (Figure 2.3C).  Notably, 

induction of autophagy was not associated with altered levels of AR protein (Figure 

2.3D) or the appearance of AR immunoreactive intranuclear inclusions in skeletal muscle 

nuclei (Figure 2.3E).  These observations are consistent with a prior report 

demonstrating that the androgen receptor largely escapes autophagic degradation 

following its translocation into the nucleus 
30

, and indicate that enhanced muscle atrophy 

in CHOP null mice is independent of changes in AR protein levels.  CHOP deficiency did 

not alter phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2 alpha) or 

splicing of XBP1 mRNA (Figure 2.3F), signals generated by the proximal UPR sensors 

protein kinase RNA-like ER kinase (PERK) and IRE1 that have been linked to the 

regulation of autophagy
111,112

.  In contrast, we observed a modest, but significant increase 

in the phosphorylation of c-Jun N-terminal kinases (JNK) (Figure 2.3F), suggesting that 

signaling through JNK may contribute to enhanced activation of autophagy in AR113Q, 

CHOP null muscle, as observed in other systems
113

.  
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Figure 2.3 Autophagy is increased in AR113Q, CHOP -/- muscle.  

(A) Relative expression of MurRF1 and MAFbx mRNAs in proximal hind limb muscle of 12 wk 
mice (n=5-6/genotype).  *p<0.05 by ANOVA, n. s. = not significant. (B) LC3 and p62 expression 
in proximal hind limb muscle of 12 wk mice was assessed by western blot.  Right panels show 
quantification of signal relative to GAPDH. **p<0.01 by Student’s t test. (C) Relative expression of 
mRNAs encoding autophagy regulators in proximal hind limb muscle. *p<0.05 by Student’s t 
test.(D) Androgen receptor protein expression in skeletal muscle of 12 wk mice.  Hsp90 serves as 
a loading control.  Right panel shows quantification of relative signal intensity (n=3/genotype). (E) 
Proximal hind limb muscles stained for the androgen receptor (in red) exhibit intranuclear 
inclusions.  Nuclei are stained by DAPI (in blue). (F) P-JNK and P-eIF2 alpha expression (top, 
middle) and XBP1 mRNA splicing (bottom) in proximal hind limb muscle of 12 wk mice.  Right 
panels show quantification of signal relative to loading control. **p<0.01 by Student’s t test.  n. s. 

= not significant. Experiments performed by Zhigang Yu.  
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CHOP deficiency increases autophagy-induced atrophy of denervated 

muscle. 

 Our observation of robust UPR activation in AR113Q skeletal muscle raised the 

possibility that muscle denervation induces ER stress, and that disruption of the UPR by 

CHOP deficiency enhances wasting by altering the cellular response to ER stress.  To 

first test whether denervation is sufficient to activate the UPR in skeletal muscle, wild 

type male mice underwent unilateral sciatic nerve transection, and denervated and intact 

gastrocnemius muscles were harvested at 3 or 7 days post surgery.  Denervation 

significantly increased phosphorylation of eIF2 alpha and splicing of XBP1 mRNA 

(Figure 2.4A) indicating that activation of the proximal UPR sensors PERK and IRE1 

had occurred.  Further, gene expression analysis by qPCR demonstrated a significant 

induction of BiP and CHOP mRNAs in denervated muscle, while ATF4 mRNA levels 

exhibited a similar trend that failed to reach statistical significance (Figure 2.4B).  We 

conclude that denervation activated the UPR in skeletal muscle. 

These results encouraged us to use this system to further explore the relationship 

between the UPR and autophagy, and to test the notion that CHOP deficiency enhances 

muscle wasting through the induction of autophagy.  Surgical denervation of male mice 

expressing the wild type AR demonstrated that CHOP deficiency significantly increased 

activity of the autophagic pathway, similar to our findings in AR113Q muscle.  

Denervated CHOP null muscle harvested 7 days post surgery contained ~2.5 fold more 

LC3-II than did wild type muscle (Figure 2.4C).  p62 did not accumulate in CHOP 

deficient muscle, indicating that flux through the autophagic pathway was intact.  CHOP 

deficiency also accentuated skeletal muscle atrophy following denervation, producing a 

significant decrease in mean fiber size (Figure 2.4D).  Our findings demonstrate that 
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CHOP deficiency enhances autophagy and increases muscle wasting following 

denervation. 

 

Figure 2.4 CHOP deficiency increases denervation-induced atrophy 
through autophagy.  

Denervated gastrocnemius muscles or contralateral intact controls were harvested at the 
indicated times following unilateral sciatic nerve transection in 6 wk male mice. (A)  Western blot 
shows enhanced eIF2 alpha phosphorylation (top) and RT-PCR demonstrates increased XBP1 
mRNA splicing (bottom) in denervated muscle.  Right panels show relative quantification of signal 
intensity.  *p<0.05 by Student’s t test. (B) Relative expression of BiP, ATF4 and CHOP mRNA 
(n=3).  *p<0.05 by Student’s t test (C) Following surgical denervation of wild type or CHOP-/- 
mice, LC3 and p62 expression was assessed by western blot.  Right panels show quantification 
of signal relative to GAPDH.  ***p<0.001 by ANOVA, n. s. = not significant. (D) Muscle fiber size 
(100 fibers/mouse) was quantified from wild type (black, n=5), CHOP -/- (white, n=3) and Beclin-1 
+/- (grey, n=3) mice 7 days post sciatic nerve transection. Shown is relative fiber cross sectional 
area (mean +/- SEM).  ***p<0.001 by ANOVA.(E) Muscle fiber size (100 fibers/mouse) was 
quantified from CHOP -/- (black, n=6) or CHOP -/-, Beclin-1 +/- mice (white, n=6) 7 days post 
sciatic nerve transection.  Left panel shows fiber size distribution, middle panel shows cumulative 
percent of fibers as a function of fiber area, and right panel shows relative fiber cross sectional 
area (mean +/- SEM). Left, middle panels, p<0.0001 by Mann-Whitney test. Right panel, p<0.001 
by Student’s t test. Experiments performed by Zhigang Yu.  
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To confirm that autophagy contributes to muscle atrophy following surgical 

denervation, we transected the sciatic nerve of Beclin-1 haploinsufficient male mice 
114

.  

Beclin-1 (encoded by Becn1) is a critical regulator of autophagy that binds class III 

phosphoinositide 3-kinase and is both required for the initiation of autophagosome 

formation and contributes to autophagosome maturation 
115

.  Mice haploinsufficient for 

Beclin-1 form fewer autophagosomes in skeletal muscle 
116

 and therefore allowed us to 

probe the role of autophagy in the response of muscle to sciatic nerve transection.  

Muscle haploinsufficient for Beclin-1 exhibited significantly increased mean fiber size 

compared to either wild type or CHOP null muscle following surgical denervation 

(Figure 2.4D) supporting a role for autophagy in muscle wasting.  To directly test the 

notion that CHOP deficiency enhanced muscle wasting by activating autophagy, we 

generated CHOP null mice haploinsufficient for Beclin-1 (Figure 2.4E). Following 

denervation, these mice exhibited significantly less atrophy than CHOP null males, 

demonstrating that the effects of CHOP deficiency on muscle wasting were mediated 

through autophagy. 

 Beclin-1 haploinsufficiency attenuates the phenotype of AR113Q males. 

 Our finding that enhanced autophagy triggered by CHOP deficiency promoted 

muscle wasting in AR113Q mice prompted us to determine the consequences of limiting 

autophagy on the SBMA phenotype.  To accomplish this, we generated AR113Q males 

haploinsufficient for Beclin-1.  Similar to effects following surgical denervation, Beclin-1 

haploinsufficiency significantly increased AR113Q muscle fiber size, although in this 

case the effect was less robust (Figure 2.5A).  Limiting activity of the autophagic 

pathway did not alter levels of either the wild type or polyglutamine AR protein (Figure 



 

35 

 

2.5B), consistent with the notion that other protein quality control pathways, such as the 

proteasome, degrade the receptor once localized to the nucleus.   

 

Figure 2.5 Effects of Beclin-1 haploinsufficiency on AR113Q muscle.  

(A) Muscle fiber size (100 fibers/mouse) was quantified from proximal hind limb muscle of 
AR113Q (red, n=6) or AR113Q, Beclin-1 +/- (blue, n=6) mice at 16 wks.  Left panel shows fiber 
size distribution, and right panel shows relative fiber cross sectional area (mean +/- SEM).  Left 
panel, p<0.0001 by Mann-Whitney test.  Right panel, p<0.0001 by Student’s t test. (B) AR 
expression in skeletal muscle of 16 wk mice was assessed by western blot. GAPDH controls for 
loading.  Right panel shows quantification of signal relative to GAPDH (mean +/- SEM).  
Differences not significant (n. s.). 

 

 Despite the limited changes in AR113Q muscle, Beclin-1 haploinsufficiency had 

a striking effect on survival.  The lifespan of AR113Q males haploinsufficient for Beclin-

1 was extended on average by ~10 wks compared to AR113Q, Beclin-1 wild type 

littermates (Figure 2.6A).  AR113Q males exhibited a mean survival of 21.6 wks; 
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Beclin-1 haploinsufficiency extended mean lifespan by ~44% to 31.1 wks.  Lifespan 

extension was not associated with rescue to wild type levels of body mass or motor 

performance as measured by grip strength (Figure 2.6B, C).  However, AR113Q males 

haploinsufficient for Beclin-1 aged over 20 weeks maintained motor function while 

AR113Q, Beclin-1 wild type littermates exhibited a marked drop-off (Figure 2.6C).  

Consistent with the notion that the effects of Beclin-1 haploinsufficiency on motor 

function were most manifest in older mice, we found no change in the age of disease 

onset (defined as the point at which grip strength was 5% less than controls) due to 

Beclin-1 haploinsufficiency (Figure 2.6D).  Our data indicate that Beclin-1 

haploinsufficiency significantly extended the duration of disease by prolonging survival 

and maintaining motor function of SBMA mice. 
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Figure 2.6 Beclin-1 haploinsufficiency extends lifespan in AR113Q males.  

(A) Left panel, Kaplan-Meyer survival curve of AR113Q males. (red line, n=12) and AR113Q 

*p<0.05 by log-rank analysis. Right panel, mean survival +/- SEM. *p<0.05 by Student’s t-test. 
(B,C) Body weight (panel B) and grip strength (panel C) at different ages for wild type (wt, green 
line, n=7), Beclin-1 +/- (yellow line n=9), AR113Q (red line, n=12), and AR113Q, Beclin-1 +/- 
(blue line, n=15) male mice. (D) Age of disease onset as measured by a decrease of 5% or more 

in forelimb grip strength (not significant by log rank analysis).    

 

Discussion 

 The accumulation of misfolded, mutant proteins is a common basis for adult onset 

neurodegenerative diseases including those caused by CAG/glutamine tract expansions 

1,93
, and pathways controlling protein homeostasis are central to the cellular response to 

these stressors.  Here we investigated the role of the UPR, a regulator of ER protein 

quality control 
102,103

, in the pathogenesis of SBMA, a neuromuscular disease caused by a 

glutamine tract expansion in the AR.  Our findings demonstrate the occurrence of ER 

stress in skeletal muscle from SBMA patients, AR113Q mice, and wild type mice 

following surgical denervation.  To identify the functional consequence of this response, 

we generated AR113Q mice deficient in the UPR-mediator CHOP, a transcription factor 
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induced downstream of ATF4 following ER stress.   We show that CHOP deletion 

accentuates muscle atrophy in both AR113Q mice and in surgically denervated wild type 

males.  Notably, in both cases, enhanced muscle wasting due to CHOP deficiency is 

mediated by increased autophagy, a lysosomal protein quality control pathway that has 

emerged as a central regulator of proteostasis in several protein aggregation 

neurodegenerative diseases.  While CHOP deficiency activates autophagy and enhances 

muscle wasting in SBMA mice, limiting autophagy by Beclin-1 haploinsufficiency 

diminishes muscle atrophy, maintains motor function in aged animals and markedly 

extends lifespan.  Our data highlight the central role of the UPR in remodeling the 

activity of the protein quality control machinery, and indicate that robust activation of 

autophagy accentuates the muscle atrophy of SBMA. 

 Activation of the UPR has been reported previously in yeast and mammalian cell 

culture models of polyglutamine disease 
104,117,118

, and the induction of ER stress 

responsive transcripts has been noted in Huntington disease mice 
119

.  The findings 

reported here extend these observations, demonstrating that the ER stress response is 

triggered in skeletal muscle from both SBMA patients and knock-in mice.  Further, we 

define new aspects of the functional link between the UPR and autophagy.  Several 

mechanisms by which the UPR regulates autophagy have been proposed based on studies 

in mammalian models, but a role for CHOP has not been identified previously.  Data 

from a cellular model of polyglutamine disease indicate that phosphorylation of eIF2 

alpha by PERK mediates the induction of LC3-II 
112

, while a recent study in cellular and 

mouse models of superoxide dismutase 1 (SOD1)-linked ALS show that XBP1 deletion 

activates autophagy 
111

.  As CHOP deficiency altered neither phosphorylation of eIF2 
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alpha nor splicing of XBP1 in AR113Q mice, we suggest that the effects identified here 

occur through a distinct mechanism.  JNK, a downstream target of IRE1
120

, can also 

stimulate LC3-II formation 
113

, and the occurrence of increased JNK phosphorylation in 

AR113Q, CHOP null muscle raises the possibility that this signaling pathway contributes 

to autophagy activation.  

The functional consequences of altered autophagy in SBMA mice were 

unexpected and suggest that limiting activity of this pathway is beneficial for certain 

aspects of the disease phenotype.  As the polyglutamine AR resides in the nucleus in the 

presence of ligand and largely escapes degradation through this pathway
30

, we found that 

soluble and aggregated species of the mutant AR do not change when mice are deficient 

in CHOP or haploinsufficient for Beclin-1. We suggest that this reflects predominant 

degradation of the AR by the proteasome, a protein quality control pathway active in the 

nucleus.  The extension of AR113Q lifespan by Beclin-1 haploinsufficiency contrasts 

with findings in Drosophila showing that disruption of autophagy exacerbates 

degeneration when the polyglutamine AR is expressed in the eye 
121

.  This difference 

may reflect variations in the extent to which autophagy is disrupted, as Beclin-1 

haploinsufficiency decreases autophagosome number but does not completely block this 

pathway.  Additionally, small molecule activators of autophagy reportedly promote 

survival of cultured motor neurons expressing the polyglutamine AR
30

, raising the 

possibility that the findings described here in AR113Q mice reflect predominant effects 

outside the CNS, such as in skeletal muscle.  While activation of autophagy following 

UPR disruption exacerbates atrophy of SBMA muscle in mice, recent studies in SOD1 

models of ALS show that autophagy induction following XBP1 deletion ameliorates the 
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disease phenotype
111

.  Mutant SOD1, a cytosolic protein, is a target for autophagic 

degradation and stimulating this pathway clears aggregates of the mutant protein.  

Of the clinical symptoms experienced by SBMA patients, muscle wasting is a 

substantial contributor to morbidity.  Here we show that activation of autophagy 

significantly enhances atrophy of surgically denervated and AR113Q muscle.  In 

contrast, limiting autophagy prolongs lifespan and maintains motor function in SBMA 

mice. While the effects of Beclin-1 haploinsufficiency are relatively mild in AR113Q 

muscle, lifespan extension is striking, and likely reflects benefits of limited autophagy in 

cell types other than muscle fibers, perhaps including effects on metabolism.  Defining 

the targets affected by Beclin-1 haploinsufficiency that mediate lifespan extension 

remains an important goal for future work.  Notably, strategies to modulate the activity of 

the autophagic pathway have attracted considerable attention as studies in several 

polyglutamine disease models have documented degradation of cytoplasmic protein 

aggregates through autophagy
122

.  Efforts are now underway to identify small molecules 

that activate the autophagic pathway in hopes of ameliorating the phenotypes of these 

diseases 
123,124

.  Our data suggest that autophagy activators are unlikely to be effective 

therapeutics for the subset of protein aggregation disorders where nuclear localization of 

the mutant protein is required for toxicity.  Furthermore, in SBMA, the effects of disease 

on muscle may be accentuated by activation of autophagy.  We suggest that alternative 

approaches to stimulate other components of the protein quality control machinery, such 

as the Hsp90-based chaperone machinery, are more likely to yield clinical benefits in 

SBMA and related protein aggregation disorders.   
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Materials and Methods 

Mice 

Derivation of mice with targeted Ar alleles containing 21 or 113 CAG repeats in exon 1 

was described previously
98,99

.  Briefly, mice were generated by recombining a portion of 

human exon 1 encompassing amino acids 31–484 with the mouse Ar gene in CJ7 

embryonic stem cells.  Male chimeras were mated with C57BL/6J females, and females 

heterozygous for the targeted Ar allele were backcrossed to C57BL/6J to generate mice 

used in this study.  Surgical castration of 5-6 wk old males was as previously described 

98
.  Unless otherwise specified, skeletal muscles were harvested from adult AR113Q male 

mice at 3 – 5 months, except from castrated AR113Q males, in which case animals were 

18 months of age.  CHOP deficient mice (B6.129S-Ddit3
tm1Dron

/J) 
105

 were purchased 

from the Jackson Laboratory and backcrossed to C57BL/6J ten or more generations.  

Mice with a Becn1 null allele were previously reported 
114

 and backcrossed to C57BL/6J 

ten or more generations.  All procedures involving mice were approved by the University 

of Michigan Committee on Use and Care of Animals, in accord with the NIH Guidelines 

for the Care and Use of Experimental Animals. 

Sciatic nerve transaction 

7 wk old C57BL/6J, CHOP deficient or Becn1 haploinsufficient male mice congenic to 

C57BL6/J were used for studies of denervated muscle.  Under deep inhaled anesthesia 

with 2% isoflurane, the right sciatic nerve was exposed at the thigh just below the sciatic 

notch. Both the proximal and distal sides were ligated with monocryl 4-0 suture, and 

about 2 mm of sciatic nerve was cut between the ligations to prevent axonal regeneration. 

At 3 and 7 days after surgery, the right gastrocnemius and tibialis anterior muscle were 
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dissected and frozen for histology or RNA and protein analysis. The contralateral side 

was used as control. 

Human Skeletal Muscle Samples 

Anonymized SBMA muscle and control biopsy samples were obtained from the 

University of Michigan Medical School in accordance with IRB procedures and in a 

manner that assured patient privacy.  Additionally, anonymized skeletal muscle was 

harvested from SBMA patients at autopsy, as approved by the ethics committee of the 

Nagoya University Graduate School of Medicine and in accordance with the Declaration 

of Helsinki (Hong Kong Amendment).  

Muscle fiber size quantification 

Muscle was frozen in isopentane chilled by liquid nitrogen, cut in cross section at a 

thickness of 5 µm and stained by H&E.  Digital images were captured using a Zeiss 

Axioplan 2 imaging system.  The area of each muscle fiber was defined using Adobe 

Photoshop CS4 or ImageJ, and the pixel number was converted to µm
2
 according to 

scale.  100 adjacent fibers from each section were measured. 

RNA analysis 

Total RNA isolated from tissues with Trizol (Invitrogen, Carlsbad, CA) served as a 

template for cDNA synthesis using the high capacity cDNA archive kit from Applied 

Biosystems (Foster City, CA).  Gene-specific primers and FAM labeled probes (Human: 

BiP, Hs99999174_m1; CHOP, Hs99999172_m1; ATF4, Hs00909568_g1; PDI, 

Hs00168586_m1; Mouse: BiP, Mm00517691_m1; CHOP, Mm00492097_m1; ATF4, 

Mm00515324_m1; PDI: Mm01243184_m1; MAFbx, Mm00499518_m1; MuRF1, 

Mm01185221_m1; α-acetylcholine receptor, Mm00431627_m1; Myod1, 
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Mm00440387_m1; Myog, Mm00446194_m1; Atg5, Mm00504340_m1; Atg9b, 

Mm01157883_g1; Maplc3b, Mm00782868_sH; Uvrag, Mm00724370_m1) were 

purchased from Applied Biosystems.  TaqMan assays were performed in duplicate using 

5 ng aliquots of cDNA on an ABI 7500 Real Time PCR system.  Relative expression 

levels were calculated comparing with the expression of 18S rRNA.  Semi-quantitative 

RT-PCR analysis of Xbp1 RNA splicing was performed using primers (mouse: 5’-

GAACCAGGAGTTAAGAAC-3’ and 5’-AGGCAACAGTGTCAGAGT-3’; human: 5'-

GAATGAGTGAGCTGGAACAG-3’ and 5’-GAGTCAATACCGCCAGAATC-3’) to 

amplify 10 ng of cDNA through 22 cycles.  One tenth of the total PCR products were 

resolved on 15% nondenaturing polyacrylamide gels and stained with SYBR Green 1 

(Invitrogen, Eugene, OR) after electrophoresis.  Bands were visualized on a Typhoon 

Trio+ scanner (Amersham Biosciences, Pistcataway, NJ) and analyzed with AlphaImager 

2200 software (Alpha Innotech Corporation, San Leandro, CA). 

Protein expression analysis 

Muscle tissue was homogenized in RIPA buffer containing complete protease inhibitor 

cocktail (Roche, Indianapolis, IN) and phosphatase inhibitor (Thermo scientific, 

Rockford, IL) using a motor homogenizer (TH115, OMNI International, Marietta, GA).  

Sample lysates were incubated on a rotator at 4
o 
C for 1 hour and the pre-cleared by 

centrifugation at 15,000 g for 15 minutes at 4° C.  Samples were resolved by 7 or 10% 

SDS-PAGE and transferred to nitrocellulose membranes (Bio-Rad, Hercules, CA).  Blots 

were probed with primary antibodies and proteins were visualized by chemiluminescence 

(Thermo Scientific, Rockford, IL).  The AR (N-20), HSP90 and eIF2α antibodies were 

from Santa Cruz Biotechnology (Santa Cruz, CA), phospho-eIF2α (Ser51) and phospho-
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JNK antibodies were from Cell Signaling Technology (Danvers, MA), LC3B antibody 

was from Novus Biologicals (Littleton, CO), GAPDH, BiP and PDI antibodies were from 

AbCam (Cambridge, MA), 20S proteasome antibody was from Calbiochem (Gibbstown, 

NJ) and p62 antibody was from American Research Products (Belmont, MA).  Western 

blot quantification was performed using ImageJ. 

Muscle histochemistry and immunofluorescence 

Frozen muscle tissue was sectioned at 5 µm with a cryostat and stained with H&E or 

NADH.  For immunofluorescence, 5 µM frozen sections were stained with an antibody 

against AR and an Alexa Fluor 594 conjugated secondary antibody (Invitrogen). 

Confocal images were captured with a Zeiss LSM 510 microscope and a water 

immersion lens (×63). 

Grip strength analysis 

The grip strength meter (Columbus Instruments) was positioned horizontally and mice 

were lowered toward the apparatus.  Mice were allowed to grasp the smooth metal 

triangular pull bar with their fore limbs only, and then were pulled backward in the 

horizontal plane.  The force applied to the bar at the moment the grasp was released was 

recorded as the peak tension (kg). The test was repeated 5 consecutive times within the 

same session, and the highest value from the 5 trials was recorded as the grip strength for 

that animal.   

Statistics 

Statistical significance was assessed by two-tailed Student’s t-test or by ANOVA with the 

Newman-Keuls multiple comparison test. The distribution of muscle fiber size was 
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analyzed by Mann-Whitney test.  All statistics was performed by the Prism 5 (GraphPad 

Software, San Diego, CA).  P values less than 0.05 were considered significant. 
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Chapter 3  

 

 

 

Inhibition of Hsp70 by Methylene Blue Affects Signaling Protein 

Function and Ubiquitination and Modulates Polyglutamine 

Protein Degradation 
 

 

Abstract 

The Hsp90/Hsp70-based chaperone machinery regulates the activity and 

degradation of many signaling proteins. Cycling with Hsp90 stabilizes client proteins, 

whereas Hsp70 interacts with chaperone-dependent E3 ubiquitin ligases to promote 

protein degradation. To probe these actions, small molecule inhibitors of Hsp70 would be 

extremely useful, however few have been identified. Here we test the effects of 

methylene blue, a recently described inhibitor of Hsp70 ATPase activity, in three well-

established systems of increasing complexity. First, we demonstrate that methylene blue 

inhibits the ability of the purified Hsp90/Hsp70-based chaperone machinery to enable 

ligand binding by the glucocorticoid receptor and show that this effect is due to specific 

inhibition of Hsp70. Next, we establish that ubiquitination of neuronal nitric oxide 

synthase by the native ubiquitinating system of reticulocyte lysate is dependent upon both 

Hsp70 and the E3 ubiquitin ligase CHIP and is blocked by methylene blue. Finally, we 

demonstrate that methylene blue impairs degradation of the polyglutamine expanded 

androgen receptor, an Hsp90 client mutated in spinal and bulbar muscular atrophy. In 
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contrast, degradation of an amino-terminal fragment of the receptor, which lacks the 

ligand-binding domain and therefore is not a client of the Hsp90/Hsp70-based chaperone 

machinery, is enhanced through homeostatic induction of autophagy that occurs when 

Hsp70-dependent proteasomal degradation is inhibited by methylene blue. Our data 

demonstrate the utility of methylene blue in defining Hsp70-dependent functions and 

reveal divergent effects on polyglutamine protein degradation depending on whether the 

substrate is an Hsp90 client.  

Introduction 

The Hsp90/Hsp70-based chaperone machinery that regulates a wide variety of 

Hsp90 „client‟ proteins (reviewed in 
67

) is also a part of the cellular defense against 

unfolded proteins 
125

. In this machinery, Hsp90 and Hsp70 have opposing effects on 

client protein stability. Hsp90 stabilizes client proteins, and, when their cycling with 

Hsp90 is blocked by specific Hsp90 inhibitors, like geldanamycin and radicicol, the client 

proteins undergo rapid degradation through the ubiquitin/proteasome pathway 
126

. In 

contrast, Hsp70, along with its cochaperone Hsp40, is required for the degradation of 

many proteins 
74,127

. 

 Similar opposing roles of Hsp90 and Hsp70 are seen with signaling proteins that 

are canonical Hsp90 client proteins such as the glucocorticoid receptor (GR) and with 

signaling proteins that undergo dynamic cycling with Hsp90 such as neuronal nitric oxide 

synthase (nNOS) 
128

. Opposing roles of Hsp90 and Hsp70 also regulate protein turnover 

in some of the polyglutamine expansion disorders. This group of neurodegenerative 

diseases is characterized by the accumulation of aberrant proteins, and includes 

Huntington disease (HD), spinal and bulbar muscular atrophy (SBMA), and several 
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autosomal-dominant spinocerebellar ataxias (e.g. SCA1, SCA3). Some of the mutant 

proteins that misfold and aggregate in these diseases, including huntingtin 
129

 in HD and 

the androgen receptor in SBMA 
69

, form heterocomplexes with Hsp90 and Hsp70. 

Inhibition of Hsp90 by geldanamycin prevents aggregation of these proteins in animal 

models of HD 
130

 and SBMA 
71

. Because Hsp90 binding to heat shock factor 1 (HSF1) 

maintains this transcription factor in an inactive state and treatment of cells with 

geldanamycin induces an HSF1-dependent stress response 
131,132

, it is often proposed that 

geldanamycin alleviates the phenotype and accumulation of misfolded proteins in 

neurodegenerative disease models by inducing a stress response 
73,130,133

. This 

explanation however, cannot be correct because geldanamycin promotes proteasomal 

degradation of the polyglutamine expanded androgen receptor (polyQ AR) in Hsf1
–/–

 

cells that cannot mount a stress response 
69

. Further, overexpression of Hsp70 or Hsp40 

decreases polyglutamine protein levels and improves viability in cellular models of HD 

134
 and SBMA 

135
, and overexpression ameliorates polyglutamine disease phenotypes in 

Drosophila and mouse models of neurodegenerative disease (
81,136,137

, reviewed in 
133

). 

These observations raise the possibility that Hsp70 plays a critical role in diminishing 

polyglutamine toxicity when Hsp90 function is inhibited. 

 There is considerable evidence that Hsp70 promotes degradation of the 

polyglutamine expanded proteins by promoting ubiquitination mediated by chaperone-

dependent E3 ubiquitin ligases. The most studied of these is CHIP (carboxy terminus of 

Hsc70-interacting protein), a 35-kDa U-box E3 ubiquitin ligase 
138

. CHIP binds to 

Hsc/Hsp70 through its amino-terminal tetratricopeptide repeat (TPR) domain 
75,139

, and it 

binds to the UBCH5 family of E2 ubiquitin conjugating enzymes through a carboxy-
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terminal U-box 
140

. Parkin is another E3 ligase 
141

 that is targeted to substrate by Hsp70 

142
. For some proteins, such as the GR, only CHIP promotes degradation, whereas for 

others, such as nNOS, CHIP and parkin are functionally redundant in promoting 

degradation 
76

. Overexpression of either CHIP or parkin increases ubiquitination of 

polyglutamine-expanded ataxin-3 and reduces its cellular toxicity in a manner that is 

promoted by Hsp70 
134,142

. Interest has focused on CHIP because it is found in aggregates 

of huntington, androgen receptor, ataxin-1 and ataxin-3 
34,77,134,143

, and CHIP 

overexpression suppresses aggregation and protein levels in cellular disease models 

77,134,143
. The notion that CHIP is a critical mediator of the neuronal response to misfolded 

proteins is buttressed by the observations that overexpression of CHIP in a Drosophila 

model of SCA1 
77

 and a mouse model of SBMA 
78

 suppresses toxicity, and that HD 

transgenic mice haploinsufficient for CHIP display an accelerated disease phenotype 
143

. 

 Most of what is known about Hsp70‟s role in the degradation of polyglutamine-

expanded proteins comes from Hsp70 overexpression experiments. To enhance 

mechanistic understanding of Hsp70-dependent processes in general, it would be useful 

to have small molecule inhibitors of Hsp70, analogous to geldanamycin in probing 

Hsp90-dependent effects. To this end, the Gestwicki laboratory employed a high-

throughput chemical screen to identify compounds that inhibit Hsp70 ATPase activity. 

An inhibitor identified in the compound library was methylene blue, which was shown to 

interact with purified Hsp70 by NMR spectroscopy 
84

. Methylene blue reduced tau levels 

in both cellular and animal models of tauopathy 
84

, although it was not established that 

this effect was due to an effect of methylene blue on Hsp70.  Methylene blue has been 
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demonstrated to affect multiple systems, most notably cGMP signaling; thus, its action is 

not directed against Hsp70 as a single target. 

 Our goal here is to determine the usefulness of methylene blue as a research tool 

for probing Hsp70-dependent effects in three well-established systems of increasing 

complexity, from the purified Hsp90/Hsp70-based chaperone machinery, to an 

ubiquitinating system from reticulocyte lysate, to inhibition of polyQ AR degradation in 

cells. We first show that methylene blue inhibits the generation of steroid binding activity 

of the glucocorticoid receptor, an established physiological action of Hsp70 
67

. Activation 

of GR steroid binding activity by purified chaperones requires Hsp70 
144

, and we show 

that the methylene blue inhibition of activation is specific for the Hsp70 component of 

the Hsp90/Hsp70-based, multiprotein chaperone machinery. We then use methylene blue 

as a tool to probe the pathway regulating ubiquitination of neuronal nitric oxide synthase. 

Using the canonical system that was originally used to resolve the components of the 

ubiquitin-protein ligase pathway 
52

, we show that nNOS ubiquitination by the DE52-

retained fraction of rabbit reticulocyte lysate is Hsp70-dependent. Methylene blue 

inhibits nNOS ubiquitination, and the blocked ubiquitination is overcome by addition of 

purified Hsp70. Additionally, nNOS ubiquitination is inhibited by anti-CHIP serum. This 

suggests that Hsp70-directed CHIP E3 ligase activity is responsible for nNOS 

ubiquitination in this system. Finally, we examine the effects of methylene blue in cells 

on the degradation of the polyQ AR with 112 glutamines (AR112Q) and a truncated 

amino-terminal fragment of the androgen receptor containing the expanded 

polyglutamine tract (trAR112Q). We show that inhibition of Hsp70 by methylene blue 

impairs AR112Q degradation and enhances ligand-dependent aggregation. In contrast to 
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effects on the full-length androgen receptor, we show enhanced degradation of an amino-

terminal fragment of the expanded glutamine androgen receptor in the presence of 

methylene blue, and that this is mediated by homeostatic induction of macroautophagy. 

Results 

Methylene Blue Inhibits Hsp70 Action on the GR   

To bind steroid with high affinity the GR must be assembled into a heterocomplex 

with Hsp90 
67

. These heterocomplexes are assembled by a multichaperone machinery 

present in lysates of all eukaryotic cells. Fig. 3.1A shows that incubation of an Hsp90-

free GR immunopellet with rabbit reticulocyte lysate generates GR•Hsp90 

heterocomplexes that bind steroid, and both formation of heterocomplexes and generation 

of steroid binding activity are reduced when the Hsp90 inhibitor geldanamycin is present. 

Methylene blue also inhibits the generation of steroid binding activity by reticulocyte 

lysate in a concentration dependent manner (Fig. 3.1B). The formation of GR•Hsp90 

heterocomplexes by reticulocyte lysate requires Hsp70 
67

, and our presumption was that 

if methylene blue is acting as an Hsp70 inhibitor, it might inhibit Hsp70 binding to the 

GR. However, in the presence of 30 µM methylene blue, which inhibits generation of a 

majority of the steroid binding activity, the same amount of Hsp70 is bound to the GR as 

in control incubations without methylene blue (Fig. 3.1C). Surprisingly, the methylene 

blue treated samples also contain the same amount of Hsp90 (Fig. 3.1C), distinguishing 

this effect from the action of the Hsp90 inhibitor geldanamycin. 
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Figure 3.1 Methylene blue inhibits generation of steroid binding activity but 
not GR•Hsp90 heterocomplex assembly by reticulocyte lysate. 

(A) The assay. GR stripped of Hsp90 (Str) was incubated with reticulocyte lysate (RL) in the 
absence or presence of 10 µM geldanamycin (GA). Immunopellets were washed and Western 
blotted for GR and Hsp90. Duplicate pellets were incubated with [3H]dexamethasone to assay 
steroid binding activity. (B) Methylene blue inhibits generation of GR steroid binding activity. 
Stripped GRs were reactivated by reticulocyte lysate in the presence of the indicated 
concentrations of methylene blue. **Different from control at p<0.01. (C) Methylene blue does not 
inhibit GR•Hsp90 heterocomplex assembly. Stripped nonimmune (NI) or immune (I) GR pellets 
were incubated with reticulocyte lysate in the absence or presence of 30 µM methylene blue. 
Immunopellets were washed and Western blotted for GR, Hsp90, and Hsp70. A typical radiogram 
of a Western blot is shown above the bar graph. GR specific Hsp90 (solid bars) and Hsp70 (open 
bars) were determined in six separate experiments and are presented in the graph relative to the 
0 methylene blue control set at 100%. Experiments performed by Yoshinari Morishima.  
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 To determine if methylene blue inhibition of steroid binding activity is specific to 

an effect on Hsp70, we examined the effect of methylene blue on generation of steroid 

binding activity by a purified 5-protein assembly system composed of Hsp90, Hsp70, 

Hop, Hsp40 and p23 
67

. In this system, both Hsp90 and Hsp70 are required for steroid 

binding 
67,144

, and maximal generation of steroid binding activity in this system requires 

15 µg Hsp90 and 15 µg Hsp70 in the incubation mixture. In the experiment of Fig. 3.2A, 

the stripped GR was incubated with the 5-protein system containing low amounts (0.5–5 

µg) of Hsp70 in the presence or absence of 30 µM methylene blue. As the concentration 

of Hsp70 is increased, there is more generation of steroid binding activity both in the 

presence and absence of methylene blue (Fig. 3.2A). However, when the percent 

inhibition of reactivation of GR steroid binding is plotted as a function of the amount of 

Hsp70, we find that the extent of inhibition decreases as the amount of Hsp70 is 

increased (Fig. 3.2B), supporting the notion that Hsp70 function is inhibited by 

methylene blue. Consistent with this interpretation is the finding that methylene blue is a 

more potent inhibitor of steroid binding reactivation at lower Hsp70 concentration (Fig. 

3.2C).  In contrast, when Hsp70 is present in a nonlimiting amount but Hsp90 is limiting, 

methylene blue has the same potency at each Hsp90 concentration (Fig. 3.2D). 
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Figure 3.2 Methylene blue inhibition of generation of steroid binding 
activity by the purified five-protein assembly system varies with the 
concentration of Hsp70. 

(A) Stripped GR immune pellets were incubated with Hsp90, Hop, Hsp40 and p23 in the 
presence of the indicated concentrations of Hsp70 and in the presence or absence of 30 µM 
methylene blue. Immune pellets were washed and steroid binding activity was assayed. (B) Plot 
of the data of Panel A as % inhibition of reactivation of steroid binding activity by methylene blue 
at each concentration of Hsp70. (C) Concentration dependency of methylene blue inhibition of 
GR reactivation in the presence of 1 (●) or 15 (○) µg Hsp70. **Different from control at p<0.01. 

(D) Concentration dependency of methylene blue in the presence of 15 g Hsp70 and limiting 
amounts of Hsp90.  Upper panel presents cpm of steroid bound, and lower panel presents 
binding as a % of the control without methylene blue. Experiments performed by Yoshinari 
Moishima.  
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 These data suggest that it is the Hsp70 component of the multiprotein chaperone 

machinery that is inhibited by methylene blue. Methylene blue does not inhibit Hsp70 

binding to the GR (Fig. 3.1C), but it may affect Hsp70 function once it has bound to the 

receptor. The first step in GR•Hsp90 heterocomplex assembly is the ATP-dependent 

priming of the GR to form a GR•Hsp70 complex that can interact with Hsp90 and Hop. 

This complex undergoes another ATP-dependent step to yield the high affinity steroid 

binding form of the receptor 
145

. Hsp90 is required to open the steroid binding cleft in the 

GR, and the amount of steroid binding activity generally reflects the amount of Hsp90 

recovered in GR heterocomplexes. Notably, this is not what is seen in Fig. 3.1C. 

 Hop binds independently via an N-terminal tetratricopeptide repeat (TPR) domain 

to Hsp70 and via a central TPR domain to Hsp90 
146

. This brings the two essential 

chaperones together into a more efficient machinery for heteroprotein complex assembly 

144
. Hsp90 can be present in GR heterocomplexes because it is bound via Hop to receptor-

bound Hsp70. This does not require a direct interaction of Hsp90 with the Hsp70-primed 

receptor to yield steroid binding activity 
144

. This is illustrated with the Hsp90 inhibitor 

geldanamycin in Fig. 3.3A. When GR•Hsp90 heterocomplexes are assembled with the 5-

protein system containing Hop, a substantial amount of Hsp90 is present in the GR 

immune pellet formed in the presence of geldanamycin (lane 3). However, when 

heterocomplexes are assembled without Hop, only a trace amount of Hsp90 is present in 

the geldanamycin-treated sample (lane 5). To test if this is the case with methylene blue, 

we incubated stripped GR with the 5-protein system minus Hop in the presence and 

absence of the inhibitor. As shown in Figs. 3.3B and C, both in the presence and absence 

of Hop, steroid binding is inhibited by methylene blue, but the amount of Hsp90 in GR 
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immunopellets is similar to that in the controls. This suggests that methylene blue does 

not inhibit Hsp70 promotion of Hsp90 binding to the GR, but it inhibits priming of the 

receptor by Hsp70 that allows the GR to interact productively with Hsp90 to open the 

steroid binding cleft. 

 

Figure 3.3 Effect of methylene blue on GR•Hsp90 heterocomplex assembly 
in the presence and absence of Hop. 

Stripped GR was incubated in the presence of the 5-protein system containing 15 µg Hsp70 
(+Hop) or in the presence of the system minus Hop (–Hop) with or without 10 µM geldanamycin 
(GA) in (A) or 30 µM methylene blue in (B). Immunopellets were washed and immunoblotted for 
GR and Hsp90. Lane 1, stripped GR; lanes 2–5, stripped GR incubated with chaperone mix for 
20 min. The bar graph shows the results of four experiments where duplicate pellets were 
assayed for steroid binding activity and the relative amount of GR-bound Hsp90 was determined 
by scanning immunoblots as in Fig. 3.1C. GR-bound Hsp90 in methylene blue samples is 
presented as a % of the untreated controls. **Different from control at p<0.01. Experiments 

performed by Yoshinari Morishima.  
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Use of Methylene Blue as a Tool to Determine Hsp70 Dependence of nNOS 

Ubiquitination 

Because a good Hsp70 inhibitor has not been available, it has been difficult to 

establish whether or not ubiquitination events are Hsp70-dependent. It is known, for 

example, that the reaction of certain inactivators in the heme/substrate binding cleft of 

nNOS triggers its ubiquitination and degradation 
147,148

 and that overexpression of either 

CHIP or parkin promotes nNOS degradation 
76,149

. These data suggest that Hsp70 may be 

involved. Ubiquitination of purified nNOS by a purified ubiquitinating system using 

CHIP as the E3 ligase is promoted by purified Hsp70 
149,150

, but it is not known if nNOS 

ubiquitination by a physiological ubiquitinating system is Hsp70-dependent. Thus, we 

used this system to test the effectiveness of methylene blue in detecting the Hsp70 

dependence of nNOS ubiquitination. 

 We have previously reported that nNOS is ubiquitinated in human embryonic 

kidney cells and in rat brain cytosol 
147

 and that the ubiquitination is mimicked by 

incubating purified nNOS with an extract of rabbit reticulocyte lysate, ubiquitin and ATP 

147,150
. The extract of reticulocyte lysate contains all material that is retained by a DE52 

column, and this DE52-retained fraction is the same as lysate „fraction II‟ that has been 

extensively used to study protein ubiquitination 
52

. The DE52-retained fraction contains 

Hsp70 and its cochaperone Hsp40, as well as the ubiquitinating enzymes, with all of the 

components being present in the same ratios as exist in reticulocyte lysate 
147,151

. To 

determine if ubiquitination by this system requires Hsp70, nNOS was incubated with the 

DE52-retained fraction in the presence of increasing concentrations of methylene blue. 

As shown in Fig. 3.4A, methylene blue inhibits nNOS ubiquitination. The concentration 

of Hsp70 in this ubiquitinating system is ~5% of Hsp70 in the reticulocyte lysate 
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experiments of Fig. 3.1, and therefore, much lower concentrations of methylene blue are 

effective at inhibiting ubiquitination. Importantly, the inhibition produced by 1 µM 

methylene blue is largely overcome when purified Hsp70 is added to the incubation mix 

(Fig. 3.4A, lane 7). This indicates that methylene blue is inhibiting the Hsp70-dependent 

E3 ligase step in ubiquitination and not the E1 or E2 enzymes, which are not Hsp70-

dependent. These data suggest that methylene blue may be a useful reagent to detect 

Hsp70-dependent effects, much as geldanamycin has been useful to probe for Hsp90-

dependent effects. 
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Figure 3.4 nNOS ubiquitination by the DE52-retained fraction of reticulocyte 
lysate requires Hsp70 and CHIP.  

(A) Methylene blue inhibits nNOS ubiquitination. Purified nNOS was incubated 1 h at 37º C with 
the DE52-retained fraction of reticulocyte lysate, ATP, GST-ubiquitin and the indicated 
concentrations of methylene blue. In addition 8 µM purified Hsp70 was added to a sample of the 
DE52-retained fraction containing 1 µM methylene blue. Samples were western blotted by 
probing with anti-nNOS. Lane 1, incubation time 0; lanes 2–7, incubation time 1 h. For bar graph, 
the relative amount of monoubiquitinated nNOS (nNOS-Ub) in replicate experiments was 
determined by scanning and expressed as % of the one hour control without methylene blue. The 
values are the mean ± S.E. (n=3). Asterisks over the columns denote significantly different from 
control and asterisks over the line denote that condition 7 is significantly different from condition 
5. The top inset shows controls without GST-Ub and without added ATP.  (Note: the stock, DE52-
retained fraction contains 0.5 mM ATP.) The bottom inset (top row) shows an aliquot of input 

(INP) ubiquitinated nNOS of which 50 l aliquots were immunoadsorbed with nonimmune (NI) or 

-GST (I) IgG and immunoblotted with -nNOS.  The bottom row shows the effect of 3 M 

methylene blue on samples immunoadsorbed with -GST and immunoblotted with -nNOS.  (B) 
CHIP is the major E3 ligase for nNOS ubiquitination. Purified nNOS was incubated with the 
DE52-retained fraction of reticulocyte lysate as above but in the presence of 1% nonimmune 
serum or 1% anti-CHIP serum. Lane 1, incubation time 0; lanes 2–4, incubation time 1 h. 
Experiments performed by Yoshinari Morishima.  
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 Although overexpression of CHIP promotes nNOS degradation 
149

 and CHIP 

directs nNOS ubiquitination in a purified ubiquitination system 
149,150

, it is not known if 

CHIP is the dominant E3 ligase for nNOS ubiquitination by a physiological 

ubiquitination system. To assess this, purified nNOS was incubated with the DE52-

retained fraction of reticulocyte lysate in the presence of anti-CHIP antibody. As shown 

in Fig. 3.4B, nNOS ubiquitination is markedly reduced in the presence of anti-CHIP 

serum (lane 4) compared to nonimmune serum (lane 3). Taken together, the data of Fig. 

3.4 suggest that nNOS ubiquitination by this model physiological ubiquitinating system is 

both Hsp70-dependent and CHIP-dependent, with the ubiquitinating activity being 

inhibited by methylene blue. 

Effect of Methylene Blue on polyQ AR Degradation in Cells.  

 Because transient overexpression of Hsp70, Hsp40 or CHIP reduces levels of 

polyQ AR in models of SBMA 
76,78,135

, it seems clear that the mutant AR can undergo 

Hsp70/CHIP-dependent proteasomal degradation. However, it is not known whether this 

is the major pathway or a minor pathway of polyQ AR degradation in the absence of 

overexpression of major proteins of the degradation pathway. To determine if Hsp70 

normally plays a role in polyQ AR degradation, HeLa cells expressing AR112Q were 

treated first with the AR agonist R1881 to activate the receptor, and then with 10 µM 

methylene blue to inhibit Hsp70 dependent degradation.  As shown in the immunoblot of 

total cellular AR112Q in Fig. 3.5A, methylene blue promotes accumulation of AR112Q 

both in the absence (lane 3) and presence (lane 4) of R1881. The accumulation of AR is 

particularly striking in the sample treated with both R1881 and methylene blue where 

there is also the accumulation of high molecular weight AR112Q oligomers seen with 
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ligand-dependent aggregation. The quantitation of the methylene blue effect on the full-

length AR112Q is shown in Fig. 3.5B. The fact that the proteasome inhibitor MG132 

produces similar AR112Q accumulation (Fig. 3.5C) supports the model that methylene 

blue is inhibiting Hsp70-dependent degradation by the ubiquitin proteasome pathway.  

 

Figure 3.5 Methylene blue inhibits AR112Q degradation in HeLa cells. 

(A) HeLa cells expressing AR112Q were incubated at 4 ºC, and treated sequentially with 
R1881for 30 min and then with 10 µM methylene blue for 30 min. Cells were then incubated at 37 
ºC for 8 hr.  Protein lysates were collected and analyzed by western blot for AR expression. 
GAPDH controls for equal loading. (B) Shown is a short exposure of the western blot in panel A 
(top), and quantification of the AR signal (bottom) relative to the amount in cells treated with 
R1881 plus methylene blue. Data are mean ± SEM. (C) Same conditions as above except that 10 

µM MG132 was substituted for methylene blue. 

 

While methylene blue inhibited degradation of the full-length androgen receptor, 

it had opposite effects on amino-terminal fragments of the receptor containing a 
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glutamine tract flanked by approximately 50 amino acids. These truncated fragments lack 

the receptor‟s ligand binding domain and therefore are not clients of the Hsp90/Hsp70-

based chaperone machinery. As shown in Fig. 3.6A, expression of both trAR16Q and 

trAR112Q were markedly decreased by methylene blue. This effect was dose dependent 

(Fig. 3.6B) and abrogated glutamine-length dependent cytotoxicity (Fig. 3.6D). As 

similar fragments of mutant huntingtin are preferentially degraded by macroautophagy, 

we sought to determine whether the protective effect of methylene blue was associated 

with the induction of this alternative protein degradation pathway. We found that 

methylene blue increased levels of LC3-II, a marker of autophagosomes (Fig. 3.6A), and 

that the dose-dependence of this induction coincided with diminished trAR112Q levels 

(Fig. 3.6B). We observed a similar induction of LC3-II in cells treated with either 

methylene blue or MG132 (Fig. 3.7A), indicating that inhibition of Hsp70-dependent 

ubiquitination is as potent an inducer of macroautophagy as blockade of the proteasome. 

The notion that methylene blue increased autophagic flux is supported by the super-

induction of LC3-II in cells treated with both methylene blue and the lysosomal protease 

inhibitors E64d and pepstatin A (Fig. 3.7B) and by the observation that p62 did not 

accumulate in methylene blue treated cells (Fig. 3.6A). Methylene blue also increases 

LC3-II in cells expressing full-length AR112Q (Fig. 3.6C). However the full-length AR 

is not efficiently degraded by autophagy since ligand-dependent nuclear translocation 

moves the receptor to a compartment devoid of this degradation pathway. We conclude 

that inhibition of Hsp70 by methylene blue leads to the compensatory induction of 

macroautophagy, a pathway that preferentially degrades truncated androgen receptor 

fragments and thereby diminishes toxicity.  
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Figure 3.6 Methylene blue enhances degradation of amino-terminal AR 
fragments and activates autophagy.  

HeLa cells expressing trAR16Q or trAR112Q were treated with indicated concentrations of 
methylene blue or vehicle control for 24 hr. (A) Protein lysates were collected and analyzed by 
western blot for expression of AR, LC3 and p62.  GAPDH controls for loading. (B) Dose-
dependent effects of methylene blue on trAR112Q and LC3 expression were determined by 
western blot. (C) Effect of methylene blue on LC3-II levels in cells expressing full-length AR112Q. 
(D) Caspase activity was determined by measuring cleavage of the fluorescent substrate DEVD-

AFC. Data are reported as mean ± SEM.  ** Different from all other samples at p<0.01. 
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Figure 3.7 Autophagic flux is increased by methylene blue. 

(A) HeLa cells were treated with 10 μM methylene blue or MG132 for 24 hr.  Protein lysates were 
collected and analyzed by western blot for expression of LC3 and GAPDH (top). Quantification of 
LC3-II/GAPDH signal relative to the amount in cells treated with methylene blue (bottom). Data 
are mean ± SEM.  Different from control at (*) p<0.05 or (***) p<0.001. (B) HeLa cells were 
treated as indicated with 10 μM methylene blue, 10 μg/ml E64d plus pepstatin A, or in 
combination. LC3 and GAPDH levels were determined by western blot. 

 

Finally, to confirm that cellular effects of methylene blue were mediated by the 

inhibition of Hsp70, we over-expressed Hsp70 along with full-length AR112Q. Over-

expressed Hsp70 inhibited the accumulation of high molecular weight AR112Q 

oligomers and the induction of LC3-II that occurred following methylene blue treatment 

(Fig. 3.8).  These data indicate that methylene blue acts through Hsp70 in cells to target 

these protein quality control pathways. 
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Figure 3.8 Over-expression of Hsp70 diminishes the effects of methylene 
blue on levels of AR112Q and LC3-II.  

Hela cells expressing AR112Q alone (lanes 1-3) or with His-tagged Hsp70 (lanes 4-6) were 

incubated at 4ºC, and treated sequentially with R1881 for 30 min and then with 0.5 or 1 M 
methylene blue for 30 min. Cells were then incubated at 37º C for 8 hr. Protein lysates were 
collected and analyzed by western blot for AR, Hsp70 and LC3. His-tagged Hsp70 migrates 
slightly more slowly than the endogenous protein. Endogenous Hsp70 and LC3-I levels serve as 
loading controls.  

 

Discussion 

Several laboratories have been interested in developing small molecule inhibitors 

of Hsp70 for potential use in the treatment of cancers as well as neurodegenerative 

diseases characterized by the accumulation of aberrant proteins 
83,151-155

. Methylene blue 

was identified in a screen for compounds that inhibit Hsp70 ATPase activity 
84

. Unlike 

geldanamycin, which binds in the unique nucleotide binding pocket of Hsp90 and 

produces effects that are quite specific for inhibition of Hsp90 family proteins in 

eukaryotes 
67

, methylene blue has multiple cellular and molecular targets, including 

multiple neurotransmitter systems, ion channels and enzymes (reviewed in 
156

). Although 

modulation of cGMP signaling is often considered its most significant effect, the redox 

properties of methylene blue are utilized in the treatment of methemoglobinemias and 
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ifosfamide-induced encephalopathy, and probably account for its use as an antimicrobial 

agent 
156

. Given its multiple molecular targets, methylene blue would seem a priori to be 

an imprecise research tool for probing Hsp70-dependent effects. Yet, we indicate here 

that this readily available compound can be used in both subcellular and cellular systems 

for this purpose. 

 Using an established subcellular system where both Hsp70 and Hsp90 are 

required components, we show that the generation of steroid binding activity by the GR 

is inhibited by methylene blue. The effect occurs without inhibition of the binding of 

either Hsp70 or Hsp90 to the receptor (Fig. 3.1). Using the purified five-protein•Hsp90 

heterocomplex assembly system, we show that methylene blue inhibition of the activation 

of steroid binding activity depends upon the concentration of Hsp70 (Fig. 3.2). Although 

steroid binding activity is inhibited in the presence or absence of Hop, there is no 

depletion of GR-bound Hsp90 under either condition (Fig. 3.3). This suggests that the 

Hsp70 priming of the receptor, which is required for Hsp90-dependent opening of the 

steroid binding cleft, is inhibited by methylene blue. This priming step requires the 

ATPase activity of Hsp70 
157

, and the ATPase activity is inhibited by methylene blue 
84

. 

Taken together, the GR experiments suggest that methylene blue inhibits an established 

physiological action of Hsp70 in a cell-free system. 

 Overexpression of CHIP has been shown to promote proteasomal degradation of a 

wide variety of normal and aberrant proteins. Although overexpression of CHIP promotes 

the proteasomal degradation of nNOS 
149

, there is clear redundancy in E3 ligase action on 

nNOS  
76

, and overexpression of one E3 ligase could favor a normally minor pathway of 

ubiquitination. Thus, it was not previously established that Hsp70-dependent CHIP 
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activity is the principal physiologic pathway for nNOS ubiquitination. Methylene blue 

causes virtually complete inhibition of nNOS ubiquitination by the DE52-retained 

fraction of reticulocyte lysate (Fig. 3.4A). This finding suggests that all of the nNOS 

ubiquitination by the reticulocyte system may be Hsp70-dependent. Similarly, inhibition 

of ubiquitination by anti-CHIP antibody (Fig. 3.4B) suggests that CHIP is a major E3 

ligase for nNOS in reticulocytes. Even though methylene blue affects a variety of 

biochemical process, including a well established inhibition of the NOS enzymes 
158,159

, 

these data demonstrate that it can be used as a research tool to identify Hsp70-mediated 

processes in cell-free systems. 

 Using this tool, we explore the role of Hsp70 in controlling the proteostasis of the 

expanded glutamine androgen receptor in a cellular system. The Hsp90/Hsp70-based 

chaperone machinery binds to the C-terminal domain of the receptor, and like its action 

on the GR, regulates opening of the steroid-binding cleft to permit ligand binding 
67,128

. In 

this system, Hsp90 functions to prevent androgen receptor unfolding. The extent to which 

this activity regulates stability of the expanded glutamine androgen receptor was 

previously demonstrated in Hsf1
-/-

 cells that cannot mount a stress response 
69

. Treatment 

of these cells with geldanamycin or radicicol promotes androgen receptor degradation, 

demonstrating that Hsp90 normally functions to stabilize the receptor. Our data support a 

model in which ligand-dependent activation of the polyglutamine androgen receptor leads 

to Hsp70-dependent degradation through the ubiquitin proteasome pathway. 

Ubiquitination of the androgen receptor may be mediated by CHIP and other Hsp70-

dependent E3 ligases that function redundantly 
76

. Here we show that methylene blue 
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prevents degradation of the expanded glutamine androgen receptor and promotes the 

accumulation of aggregated species in an Hsp70-dependent manner.  

 The contrasting effects of methylene blue on degradation of trAR112Q are 

striking. We show that methylene blue promotes degradation of amino-terminal 

fragments of the receptor, thereby ameliorating glutamine-length dependent toxicity. 

These androgen receptor fragments include the glutamine tract flanked by approximately 

50 amino acids 
25

 and therefore lack the ligand-binding domain. In the absence of this 

domain, these proteins are not Hsp90 clients whose stability is regulated by the 

Hsp90/Hsp70-based chaperone machinery. Truncated fragments of the huntingtin protein 

are primarily degraded by macroautophagy 
122,160

, and it is likely that these androgen 

receptor fragments are handled similarly. We show that methylene blue promotes 

induction and flux through the autophagic pathway. This homeostatic response likely 

reflects impairment of Hsp70-dependent degradation through the ubiquitin proteasome 

pathway. Others have observed similar induction of macroautophagy with genetic 

mutants that block degradation by the proteasome 
121

. These results suggest that 

degradation of trAR112Q is facilitated by methylene blue due to the compensatory 

activation of the pathway through which it is normally degraded. 

 Our findings demonstrate the effectiveness of methylene blue as a chemical tool 

to study Hsp70-dependent functions in well-established systems. Few other small 

molecule inhibitors of Hsp70 are available, and their potential use as chemical probes to 

define Hsp70-mediated effects in models of neurodegenerative diseases and cancer offers 

great promise. Small molecule inhibitors could be used to define the role of Hsp70 in 

regulating the function, trafficking and turnover of proteins that are clients of the 
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Hsp90/Hsp70-based chaperone machinery, and may be used to probe the role of Hsp70 in 

protein quality control decisions. For example, 2-phenylethynesfulonamide (PES), a 

recently described inhibitor of Hsp70, is reported to decrease the CHIP-Hsp70 

association and alter autophagy, though in this case, autophagic flux may be impaired 
83

.  

In contrast to PES, methylene blue treatment of cells did not decrease the amount of 

CHIP co-immunoadsorbed with Hsp70 (data not shown), suggesting that the two 

compounds inhibit Hsp70 by quite different mechanisms.  Future studies will help define 

the experimental and therapeutic utility of this emerging class of small molecules. 

 

Materials and Methods 

Materials   

HeLa cells were purchased from the American Type Culture Collection. Phenol 

red-free Dulbecco‟s modified Eagle‟s medium was from Invitrogen (Carlsbad, CA), and 

charcoal-stripped calf serum was from Thermo Scientific Hyclone Products (Thermo 

Fisher Scientific, Waltham, MA). Untreated rabbit reticulocyte lysate was purchased 

from Green Hectares (Oregon, WI). [1,2,4,6,7-
3
H]Dexamethasone (85 Ci/mmol) was 

from GE Healthcare (Amersham Place, UK), Fugene 6 was from Roche (Indianapolis, 

IN), and MG132, E64d, pepstatin A, anti-GST IgG and methylene blue (M9140) were 

from Sigma (St. Louis, MO). 
125

I-conjugated goat-anti-mouse IgG was obtained from 

Perkin Elmer Life Sciences (Boston, MA). HRP-tagged goat anti-rabbit IgG was from 

Millipore (Temecula, CA). The N27F3-4 anti-72/73-kDa Hsp70 monoclonal IgG (anti-

Hsp70) and the AC88 monoclonal against Hsp90 were from StressGen Biotechnologies 
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(Ann Arbor, MI). Affinity-purified IgG against nNOS was from BD Transduction 

Laboratories (Lexington, KY). The FiGR monoclonal IgG used to immunoadsorb the 

mouse GR was provided by Dr. Jack Bodwell (Dartmouth Medical School, Lebanon, 

NH). The BuGR2 monoclonal IgG used to immunoblot the mouse GR and rabbit anti-

CHIP antibody were from Affinity Bioreagents (Golden, CO). The AR antibody (N-20) 

was from Santa Cruz Biotechnology (Santa Cruz, CA), GAPDH antibody from Abcam 

(Cambridge, MA), LC3 antibody from Novus Biologicals (Littleton, CO), and p62 (C-

terminal) antibody from American Research Products (Belmont, MA). GST-tagged 

ubiquitin was from Boston Biochem (Cambridge, MA). The cDNA for rat nNOS was 

provided by Dr. Solomon Snyder (The Johns Hopkins Medical School, Baltimore, MD). 

Plasmid encoding AR112Q was provided by Dr. Kenneth Fishbeck (N.I.H.), and 

plasmids encoding amino-terminal truncated AR16Q and AR112Q were from Dr. Diane 

Merry (Thomas Jefferson University, Philadelphia, PA). 

Expression and purification of nNOS, Hsp90, Hsp70, Hsp40, HOP and p23   

Rat nNOS was expressed in Sf9 insect cells using a recombinant baculovirus and 

purified by 2′,5′-ADP Sepharose and gel-filtration chromatography as described 

previously 
161

. Heme was added as an albumin conjugate during the expression to convert 

all of the nNOS to the holo-nNOS dimer 
161

. Hsp90 and Hsp70 were purified from rabbit 

reticulocyte lysate by sequential chromatography on DE52, hydroxylapatite, and ATP-

agarose as described previously 
162

. YDJ-1, the yeast ortholog of Hsp40, was expressed in 

bacteria and purified by sequential chromatography on DE52 and hydroxylapatite as 

described previously 
163

. Recombinant human Hop (Hsp organizing protein) and p23 

were purified as described by Kanelakis and Pratt 
164

.  For over-expression of Hsp70, the 
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full-length human Hsp70 cDNA was amplified by PCR from clone pET23hsp70, kindly 

provided by Dr. David Toft (Mayo Clinic, Rochester, MN) using a 5‟ primer encoding a 

polyhistidine tag followed by an HA epitope.  The 1.9-kb PCR fragment was digested 

with EcoRI and XhoI and cloned into pcDNA4/HisMax-C vector (Invitrogen).  The entire 

coding region of Hsp70 was verified by sequencing. 

GR•Hsp90 heterocomplex reconstitution   

Mouse GR was expressed in Sf9 cells and cytosol was prepared as described 

previously 
145

. Receptors were immunoadsorbed from aliquots of 50 µl (for measuring 

steroid binding) or 100 µl (for Western blotting) of Sf9 cell cytosol by rotation for 2 h at 

4 ºC with 14 µl of protein A-Sepharose precoupled to 8 µl of FiGR ascites suspended in 

300 µl TEG buffer (10 mM TES, pH 7.6, 50 mM NaCl, 4 mM EDTA, 10% glycerol). 

Immunoadsorbed GR was stripped of endogenously associated Hsp90 by incubating the 

immunopellet for an additional 2 h at 4 ºC with 350 µl of 0.5 M NaCl in TEG buffer. The 

pellets were then washed once with 1 ml of TEG buffer followed by a second wash with 

1 ml of Hepes buffer (10 mM Hepes, pH 7.4). For GR•Hsp90 heterocomplex 

reconstitution by reticulocyte lysate, immunopellets containing GR stripped of 

chaperones were incubated with 50 µl of lysate and 5 µl of an ATP-regenerating system 

(50 mM ATP, 250 mM creatine phosphate, 20 mM magnesium acetate, and 100 units/ml 

creatine phosphokinase). For heterocomplex reconstitution with purified proteins, 

immunopellets containing stripped GR were incubated with 15 µg of purified Hsp90, the 

indicated µg of purified Hsp70, 0.6 µg of purified HOP, 6 µg of purified p23, 0.125 µg of 

purified YDJ-1 adjusted to 55 µl with HKD buffer (10 mM Hepes, pH 7.4, 100 mM KCl, 

5 mM dithiothreitol) containing 20 mM sodium molybdate and 5 µl of the ATP-
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regenerating system. The assay mixtures were incubated for 20 min at 30 ºC with 

suspension of the pellets by shaking the tubes every 2 min. At the end of the incubation, 

the pellets were washed twice with 1 ml of ice-cold TEGM buffer (TEG with 20 mM 

sodium molybdate) and assayed for steroid binding capacity and for GR-associated 

Hsp90. 

Assay of steroid binding capacity   

Washed immune pellets to be assayed for steroid binding were incubated 

overnight at 4 ºC in 50 µl HEM buffer (10 mM Hepes, pH 7.4, 1 mM EDTA, 20 mM 

molybdate) plus 50 nM [
3
H]dexamethasone. Samples were then washed three times with 

1 ml of TEGM buffer and counted by liquid scintillation spectrometry. Steroid binding is 

expressed as counts/min of [
3
H]dexamethasone bound/FiGR immunopellet prepared from 

50 µl of Sf9 cell cytosol. 

Ubiquitination of nNOS by DE52-retained fraction of reticulocyte lysates   

The DE52-retained fraction of rabbit reticulocyte lysate was prepared as described 

by Hershko et al. 
52

. Purified nNOS (0.6 µg) was incubated for 1 h at 37 ºC with 4.5 µl of 

DE52-retained fraction of rabbit reticulocyte lysate (final concentration 7 mg protein/ml), 

0.3 mg/ml bovine serum albumin, 8.3 µM GST-tagged ubiquitin, 1 mM dithiothreitol, 2 

µl of the ATP-regenerating system, 1 µl of Complete Mini protease inhibitor cocktail, 0.6 

mM N-Acetyl-Leu-Leu-Nle-CHO, and 0.8 µM ubiquitin aldehyde (deubiquitination 

inhibitor), adjusted to a final volume of 20 µl with 50 mM Tris, pH 7.5. Methylene blue 

was added to yield the indicated final concentration, with all samples containing a final 

concentration of 0.1% ethanol vehicle. Incubations were terminated by boiling with an 

equal volume of SDS-sample buffer containing 8 M urea and 2 M thiourea. 
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Gel electrophoresis and Western blotting   

GR immune pellets were resolved on 12% SDS-polyacrylamide gels and 

transferred to Immobilon-P membranes. The membranes were probed with 0.25 µg/ml 

BuGR2 for GR, 1 µg/ml AC88 for Hsp90, or 1 µg/ml anti-Hsp70. The immunoblots were 

then incubated a second time with 
125

I-conjugated counterantibody to visualize the 

immunoreactive bands. For experiments with nNOS, aliquots (25 µl) from the 

ubiquitination reactions boiled in SDS-sample buffer were resolved on 5% SDS-

polyacrylamide gels, transferred to nitrocellulose membranes, and probed with anti-

nNOS (1:8000), followed by horseradish peroxidase-conjugated counterantibody. 

Immunoreactive bands were visualized with the use of enhanced chemiluminescence 

reagent (Super Signal, Pierce) and X-Omat film (Eastman Kodak Co.). The 

monoubiquitinated nNOS bands were scanned and the relative densities were determined 

with ImageJ software (http://rsb.info.nih.gov/ij/). Relative densities for 3 experiments are 

presented in bar graphs as percent of control ± S.E. Statistical probability is expressed as 

*p<0.05, **p<0.01, ***p<0.0001. 

For analysis of AR protein expression, HeLa cells were grown in 6-well dishes in 

phenol red-free DMEM supplemented with 10% charcoal/dextran-stripped fetal calf 

serum. Cells were transfected with Fugene 6 transfection reagent using 3 μl Fugene 6 and 

1μg DNA. Twenty four hours post-transfection, cells were pooled and replated, then 

treated as indicated starting 48 hours post-transfection. Following incubation, cells were 

washed with PBS, harvested and lysed by sonication in RIPA buffer containing 

phosphatase and proteinase inhibitors. Protein samples were electrophoresed through 4 – 

20% SDS-polyacrylamide gradient gels and transferred to Immunobilon-P membranes 
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using a semi-dry transfer apparatus. Immunoreactive proteins were detected by 

chemiluminescence, and relative densities of bands were quantified as described above. 

Assay of caspase activity   

Caspase activity was determined by measuring cleavage of the fluorescent 

substrate DEVD-AFC using the ApoTarget caspase-3/CPP 32 fluorometric protease 

assay kit (Invitrogen) 48 hr post-transfection. Fluorescence intensity was measured using 

a Fluoroskan Ascent FL fluorometer (Thermo Electron Corp.). 

Abbreviations used  

CHIP, carboxy terminus of Hsc70-interacting protein; GR, glucocorticoid receptor; 

HSF1, heat shock factor 1; HD, Huntington disease; nNOS, neuronal nitric oxide 

synthase; polyQ AR, polyglutamine androgen receptor; PES, phenylethynesfulonamide; 

SBMA, spinal and bulbar muscular atrophy; SCA, spinocerebellar ataxia; TPR, 

tetratricopeptide repeat; trAR112Q, amino-terminal fragment of the androgen receptor 

with 12 glutamines. 
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Hsp70 by Methylene Blue Affects Signaling Protein Function and Ubiquitination 

and Modulates Polyglutamine Protein Degradation.  J Biol Chem. 2010 May 21; 

285(21): 15714–15723 with AW and YM as co first authors. YM contributed figures 1-4, 

and AW contributed figures 5-8.   
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Chapter 4  
 
 
 
 

Allosteric activators of Hsp70 promote polyglutamine androgen 
receptor clearance and rescue toxicity in a Drosophila model of 

spinal and bulbar muscular atrophy 
 

 

Abstract 

Pathways regulating degradation of unfolded proteins are prime therapeutic 

targets for protein aggregation neurodegenerative diseases, including those caused by 

CAG/polyglutamine tract expansions. We sought novel strategies to target the 

Hsp90/Hsp70-based chaperone machinery and increase degradation of the polyglutamine 

androgen receptor (polyQ AR) to achieve therapeutic benefits in models of spinal and 

bulbar muscular atrophy (SBMA). We demonstrate that over-expression of Hip, a co-

chaperone that enhances Hsp70 substrate binding affinity, promotes client protein 

ubiquitination and polyQ AR clearance. Furthermore, we identify a small molecule 

allosteric activator of Hsp70 that acts similarly to Hip by promoting Hsp70 binding to 

unfolded substrates, enhancing client protein ubiquitination and stimulating polyQ AR 

clearance. Both genetic and pharmacologic approaches of targeting Hsp70 alleviate 

toxicity in a Drosophila model of SBMA. Our findings highlight the therapeutic potential 
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of Hsp70 allosteric activators, and provide new insights into the role of the chaperone 

machinery in protein quality control. 

Introduction 

The CAG/polyglutamine disorders are a family of nine neurodegenerative 

diseases caused by similar microsatellite expansions in coding regions of unrelated genes 

1
. These disorders are currently untreatable, with symptom onset typically in midlife and 

death 15 – 20 years later. Among these diseases is spinal and bulbar muscular atrophy 

(SBMA), a progressive neuromuscular disorder that affects only men and is characterized 

by proximal limb and bulbar muscle weakness, atrophy and fasciculations 
7
. The clinical 

features of SBMA correlate with a loss of lower motor neurons in the brainstem and 

spinal cord, and with marked myopathic and neurogenic changes in skeletal muscle 
7,8

. 

The causative mutation in SBMA is a CAG repeat expansion in the first exon of the 

Androgen Receptor (AR) gene 
13

. The expanded glutamine tract promotes hormone-

dependent AR unfolding and oligomerization, steps that are critical to toxicity. In SBMA, 

as in other CAG/polyglutamine disorders, the mutant protein disrupts multiple 

downstream pathways, and toxicity likely results from the cumulative effects of altering a 

diverse array of cellular processes including transcription, RNA splicing, axonal transport 

and mitochondrial function 
17-19,26,33,36,40,41,44,49,165

. The existence of divergent 

mechanisms of toxicity indicates that potential treatments targeting a single downstream 

pathway are likely to be unsuccessful.  

These observations prompted us to focus instead on understanding the proximal 

mechanisms that regulate degradation of the polyglutamine AR (polyQ AR), with the 

goal of harnessing these pathways to diminish levels of the toxic protein and ameliorate 
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the disease phenotype. The cellular machinery that plays the dominant role in regulating 

proteostasis of the AR is the Hsp90/Hsp70-based chaperone machinery, in which Hsp90, 

Hsp70, and co-chaperones function together as a multiprotein complex 
67,166

. In contrast 

to the classic model of chaperones interacting with unfolded proteins to facilitate their 

refolding, the Hsp90/Hsp70-based chaperone machinery instead acts on pre-folded 

proteins in their native conformations to assist in the opening and stabilization of ligand 

binding clefts, an action that forms the basis for the role of the chaperone machinery in 

the triage of damaged proteins for degradation 
128,166

. Indeed, access of ligand to the 

steroid binding clefts of nuclear receptors, including the AR, is dependent upon the 

Hsp90/Hsp70 chaperone machinery 
67,128

. Furthermore, as a client of the chaperone 

machinery, the polyQ AR is stabilized by its interaction with Hsp90. When Hsp90 is 

inhibited, the polyQ AR no longer associates with Hsp90 and is rapidly degraded 
57,69

. 

Through this mechanism, Hsp90 inhibitors ameliorate the phenotype of SBMA 

transgenic mice 
57,71

. Although Hsp90 inhibitors concurrently induce a stress response, 

their beneficial effects are independent of the stress response. AR112Q expressing mouse 

embryonic fibroblasts deficient in HSF-1, which cannot induce a stress response, still 

clear the polyQ AR after treatment with Hsp90 inhibitors 
69

.  The chaperone machinery 

plays a central role in the triage of unfolded proteins, but the mechanism by which this 

triage is accomplished is incompletely understood. 

Genetic evidence indicates that Hsp70 plays a central role in promoting clearance 

of the polyQ AR. Over-expression of Hsp70 or its co-chaperone Hsp40, promotes polyQ 

AR degradation and diminishes toxicity in cellular models of SBMA 
80,135

. Similarly, 

transgenic over-expression of Hsp70 
81

 or the Hsp70-dependent E3 ubiquitin ligase CHIP 
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(C-terminus of Hsc70-interacting protein) 
78

 rescues the phenotype of SBMA mice. Here, 

we test an alternative approach to modulating chaperone machinery function by targeting 

Hsp70 with allosteric activators. Our strategy is based on the observation that over-

expression of Hip (Hsp70 interacting protein), a co-chaperone that stabilizes Hsp/Hsc70 

in its ADP-dependent conformation exhibiting high substrate affinity 
86,167

, prevents the 

accumulation of polyglutamine inclusions in a cellular model 
90

. Although it was 

suggested that Hip acts by promoting the Hsp70 refolding cycle, we demonstrate that Hip 

facilitates the CHIP-mediated ubiquitination of an Hsp90 client and promotes 

proteasomal degradation of the polyQ AR. Furthermore, we identify a small molecule 

allosteric activator of Hsp70 that acts similarly to Hip by promoting Hsp70 binding to 

unfolding substrates to facilitate their CHIP-mediated ubiquitination. We show that both 

genetic and pharmacologic approaches of targeting Hsp70 promote polyQ AR clearance 

and alleviate toxicity in a Drosophila model of SBMA. Our findings highlight the 

therapeutic potential of this novel strategy to allosterically activate Hsp70 in a protein 

aggregation neurodegenerative disorder, and provide new insights into the role of the 

chaperone machinery in protein quality control. 

Results 

Hip increases client protein ubiquitination and degradation.  

We reasoned that stabilizing Hsp70 in its high-affinity substrate binding state 

would increase CHIP-mediated ubiquitination and degradation of Hsp90-client proteins. 

Our approach was based on the observation that Hip, or Hsp70-interacting-protein, is a 

co-chaperone that stabilizes Hsp70 in its ADP-dependent confirmation 
86

. As ADP-bound 

Hsp70 recognizes denatured or damaged substrates with high affinity 
167

, we 
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hypothesized that Hip over-expression would facilitate Hsp70-mediated degradation. To 

test this notion, we first studied a well-characterized Hsp90 client protein, neuronal nitric 

oxide synthase (nNOS). nNOS ubiquitination is dependent upon Hsp70 
85

 and is 

mediated by CHIP 
85,149,168

. Using an established system to study nNOS ubiquitination 

147
, we found that Hip over-expression yielded a significant, dose-dependent increase in 

the accumulation of ubiquitinated nNOS species in cells treated with the proteasome 

inhibitor lactacystin (Fig. 4.1a). This observation suggested that a similar strategy could 

also promote clearance of toxic proteins that are clients of the Hsp90/Hsp70 chaperone 

machinery. To test this notion, we over-expressed Hip with the polyQ AR. Hip over-

expression promoted clearance of soluble and RIPA-insoluble AR112Q that formed after 

addition of the synthetic androgen ligand R1881 (Fig. 4.1b), and diminished the 

frequency of androgen-dependent intranuclear inclusions in cells stably expressing 

tetracycline (tet)-regulated AR112Q (Fig. 4.1d). As these effects were blocked by 

inhibition of protein degradation with MG132 (Fig. 4.1c), we conclude that Hip over-

expression enhanced client protein ubiquitination and degradation. 
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Figure 4.1 Hip increases client protein ubiquitination and promotes 
AR112Q clearance. 

(a) Hip promotes nNOS ubiquitination. HEK293T cells transiently expressing nNOS, HA-ubiquitin 
(HA-Ub) and increasing amounts of Hip were treated with lactacystin (24hr). nNOS was 
immunoprecipitated (IP) from cytosolic lysates (input, on left; IP in middle), and western blots 
were probed as indicated. At right, Ub-nNOS signal (in area indicated by rectangle) from three 
separate experiments was quantified (mean + SEM). ***P<0.001. (b) Hip promotes AR112Q 
clearance. HeLa cells transiently expressing AR112Q and increasing amounts of Hip were 
treated with R1881 (10 nM) for 24 hr. Lysates were separated into supernatant and 15,000 g 
pellet fractions, then analyzed by western blot (left). At right, pelleted AR from three experiments 
was quantified. n.s. = not significant. (c) Hip promotes AR112Q degradation. HeLa cells were co-
transfected with AR112Q and Hip, then treated with R1881 (10 nM) for 24 hrs prior to 8 hr 

treatment with MG132 (10 M). (d) Hip diminishes AR112Q aggregates. PC12 cells expressing 
tet-regulated AR112Q were transfected with FLAG-Hip were visualized by confocal microscopy 
(left). The expression of Hip significantly decreased the frequenct of polyQ AR intranuclear 
inclusions (right, mean + SEM).  
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YM-1 is a small molecule allosteric activator of Hsp70. 

These observations prompted us to seek small molecules that increase the affinity 

of Hsp70 for denatured proteins, with the expectation that they could act like Hip to 

promote client protein ubiquitination and degradation. To accomplish this, we 

synthesized a limited set of compounds using MKT-077 as a chemical scaffold (Fig. 

4.2a), as this compound was reported previously to bind Hsp70 
169

. NMR spectroscopy 

recently established that MKT-077 binds with low micromolar affinity to the nucleotide-

binding domain of ADP- but not ATP-bound Hsp70 
170

. Furthermore, limited trypsin 

proteolysis confirmed that MKT-077 binding favors the ADP-bound conformation of 

Hsp70 
170

. Based on these observations, we screened MKT-077 derivatives for their 

ability to increase the affinity of Hsp70 binding to a denatured target protein. Using an 

ELISA-like assay, we identified YM-1 (Fig. 4.2a) as a potent activator of Hsp70 binding 

to denatured luciferase (Fig. 4.2b). Moreover, we found that biotin-labeled MKT-077, a 

probe for the YM-1 binding site, competes with Hip for binding to Hsp70 (Fig. 4.2c). 

Based on these data, we propose that YM-1 acts similarly to Hip to bind Hsp70 and favor 

accumulation of the ADP-bound form, which has tight affinity for its substrates. 
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Figure 4.2 YM-1 increases Hsp70 binding to a denatured substrate. 

(a) Chemical structures of a generic MKT-077-like scaffold (left) and YM-1 (right). (b) YM-1 

promotes binding of Hsp70 to denatured luciferase. ELISA plates were coated with denatured 

luciferase, and binding of Hsp70 was measured using an HRP-coupled Hsp70 antibody. Data are 

mean + SEM. (c) YM-1 and Hip bind competitively to Hsp70. Binding of biotin-labeled MKT-077 

(a probe of the YM-1 binding site) to immobilized Hsp70 is diminished by pre-incubation with 

increasing amounts of Hip. Data are mean + SEM. Experiments performed by Yoshi Miyata. 

 

YM-1 increases client protein ubiquitination and degradation. 

Given that YM-1 acts upon Hsp70 to increase its affinity for denatured substrates, 

we next sought to characterize its effects on the Hsp90 client proteins nNOS and 

AR112Q. To investigate the influence of YM-1 on ubiquitination, we treated cells stably 

expressing nNOS with increasing concentrations of YM-1 in the presence of lactacystin 

(Fig. 4.3a). Similar to the effects of Hip over-expression, YM-1 treatment led to a dose-

dependent accumulation of high molecular weight, ubiquitinated nNOS species. 

Additionally, YM-1 diminished polyQ AR levels in tet-inducible PC12 cells in a manner 

similar to that mediated by Hip over-expression. YM-1 significantly decreased the 
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accumulation of RIPA-insoluble AR112Q (Fig. 4.3b) and diminished the occurrence of 

AR intranuclear inclusions in the presence of ligand (Fig. 4.3c). In contrast to this 

decrease of insoluble and aggregated polyQ AR species, treatment with YM-1 only 

slightly diminished levels of soluble AR112Q, suggesting that unfolded AR species were 

most sensitive to its action. 
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Figure 4.3 YM-1 increases client protein ubiquitination and diminishes 
AR112Q aggregation. 

(a) YM-1 promotes nNOS ubiquitination. HEK293 cells stably expressing nNOS were treated with 
increasing amounts of YM-1 and lactacystin for 24 hrs. Short exposure of input (on left) shows 
unmodified nNOS, while longer exposure shows an accumulation of a higher molecular weight 
(MW) species representing mono-ubiquitinated nNOS 

168
 (highlighted in rectangle). Quantification 

of mono-ubiquitinated nNOS rom four separate experiments is shown in the middle, **P<0.01, 
***P<0.001. Immunoprecipitation (on right) shows increased nNOS poly-ubiquitination in the 
presence of YM-1. (b) YM-1 decreases insoluble AR112Q. PC12 cells expressing tet-regulated 
AR112Q were treated with R1881 (10 nM) and YM-1 for 24 hrs. Immunoblot analysis shows 
soluble and pelleted (15,000 g) AR112Q. At right, pelleted AR112Q from three separate 
experiments was quantified. *P<0.05, **P<0.01. (c) PC12 cells were treated as in (b), AR was 

visualized by fluorescence microscopy and cells with nuclear inclusions quantified **P<0.01. 

 

We postulated that YM-1 exerted these effects by increasing polyQ AR 

degradation. To test this notion, we induced AR112Q expression in tet-regulated PC12 

cells in the presence of ligand for 48 hrs to allow for robust expression and ligand-

dependent unfolding. Transgene expression was then shut off by washing out 

doxycycline, and cells were incubated for an additional 72 hrs with or without YM-1 
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(Fig. 4.4a). YM-1 significantly promoted the clearance of AR112Q as reflected by the 

loss of immunofluorescence staining (Fig. 4.4b). Immunoblot analysis revealed that YM-

1 promoted the clearance of both RIPA-insoluble AR112Q and high molecular weight 

oligomers that remained in the soluble fraction after ultracentrifugation (Fig. 4.4c). These 

oligomers formed in a hormone-dependent manner and were detected only in cells 

expressing the polyQ AR (data not shown). The effects of YM-1 were blocked by 

inhibition of protein degradation with MG132 (Fig. 4.4d), supporting the interpretation 

that YM-1 enhanced polyQ AR degradation. Unlike previously described small molecule 

inhibitors of Hsp90, such as geldanamycin, YM-1 exerted these effects without 

increasing the expression of the stress-responsive molecular chaperones Hsp70, Hsp40 or 

Hsp25 (Fig. 4e). Notably, the activity of YM-1 was abrogated by siRNA knock-down of 

Hsp70, thus identifying Hsp70 as its critical cellular target (Fig. 4.4f). 

Allosteric activators of Hsp70 rescue toxicity in a Drosophila model of 

SBMA.  

The potency of YM-1 in promoting polyQ AR degradation in cells prompted us to 

test its efficacy in a Drosophila model of SBMA in which the UAS/Gal4 system drives 

expression of hAR52Q 
171

. When hAR52Q was expressed by the eye-specific GMR 

promoter, flies exhibited a dihydrotestosterone-dependent (DHT-dependent) rough eye 

phenotype characterized by ommatidial degeneration and extranumerary inter-ommatidial 

bristles, particularly in the posterior aspects of the eye (Fig. 4.5a, b). We found that 

DHT-dependent eye degeneration in this line was relatively modest, and was partially 

rescued by rearing flies on YM-1 (Fig. 4.5c).  
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Figure 4.4 YM-1 increases Hsp70-dependent degradation of AR112Q. 

(a) Experimental time-line for analysis of AR112Q degradation. PC12 cells were induced to 
express AR112Q in the presence of R1881 (10 nM) for 48 hr, then washed to remove doxycycline 
to turn off the transgene. Cells were incubated an additional 72 hrs in the presence or absence of 
YM-1, then stained for AR (b) or lysed for analysis of oligomeric species (c). (b) YM-1 promotes 
AR112Q clearance. Cells were treated as in (a) and stained for AR. Quantification of signal 
intensity at (right) shows a significant decrease in the presence of YM-1. ***P<0.001. (c) YM-1 
promotes clearance of insoluble and oligomeric AR112Q. Lysates were prepared from cells 
treated as in (a). Immunoblot shows decreased AR112Q monomer in the 15,000 g pellet and 
diminished high MW oligomers in the soluble fraction after ultracentrifugation. Quantification of 
signal intensity at right (mean + SEM). *P<0.05. (d) YM-1 promotes AR112Q degradation. 
Immunoblot of AR112Q in supernatant and pellet shows that effects of YM-1 are blocked by 24 hr 

treatment with MG132 (10 M). (e) YM-1 does not induce a stress response. HeLa cells treated 
with vehicle, YM-1, or geldanamycin (GA) for 24hr were probed for expression of inducible 
Hsp70, Hsp40, and Hsp25. (f) YM-1 effects are dependent upon Hsp70. PC12 cells expressing 
tet-regulated AR112Q were transfected with siRNAs targeted at inducible Hsp70 or non-targeted 
control. Effects of YM-1 on pelleted AR112Q are shown on left and quantified on right. *P<0.05. 



 

88 

 

 

Figure 4.5 Hsp70 allosteric activators rescue toxicity in Drosophila 
expressing AR52Q. 

(a - c) Representative scanning electron micrographs of eyes from GMR-Gal4;UAS-hAR52Q flies 
reared at 29° C. Lower panels show high magnification images from posterior aspects of eyes.(a) 
Normal eyes in flies reared on food supplemented with vehicle control. (b) Eye degeneration in 
flies reared on food containing dihydrotestosterone (1 mM DHT). (c) Suppression of degeneration 
in flies reared on food containing DHT plus YM-1 (1 mM). (d) DHT-dependent toxicity is rescued 
by YM-1. Reported are the percent of pupae that fail to eclose (mean + SEM) when reared on 
DHT or vehicle. Flies compared are BG380-Gal4;;WCS (white bars), BG380-Gal4;;UAS-hAR52Q 
(black bars), and BG380-Gal4;;UAS-hAR52Q reared on YM-1 (gray bars). **P<0.01, ***P<0.001. 
(e) Over-expression of HIP-R suppresses toxicity. Reported are the percent of pupae that fail to 
eclose (mean + SEM) when reared on DHT or vehicle. Flies compared are OK371-Gal4;WCS 
(white bars), HIP-R;OK371-Gal4 (striped bars), OK371-Gal4;UAS-hAR52Q (black bars), and HIP-
R;OK371-Gal4;UAS-hAR52Q (gray bars). ***P<0.001. (f) Immunoblot analysis of AR52Q 
expression in adult fly heads under control of the OK371-Gal4 driver. Expression of AR52Q 
(middle lane) is not diminished when expressed in conjunction with HIP-R (far right lane) in flies 
reared on food supplemented with vehicle control. 

  

 We sought a more readily quantifiable and robust phenotype that was mediated by 

polyQ AR expression in motor neurons to test the effects of targeting Hsp70. Eclosion is 

the final stage of Drosophila development in which adult flies escape from their pupal 
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case. When hAR52Q was expressed in motor neurons by the BG380 or OK371 

promoters, a significant percentage of flies failed to eclose in a DHT-dependent manner 

(Fig. 4.5d, e). In contrast, flies expressing the wild type AR in motor neurons exhibited 

no hormone-dependent toxicity in this assay (P>0.05, not shown). Strikingly, DHT-

dependent toxicity of the polyQ AR was significantly rescued by rearing flies on YM-1 

(Fig. 4.5d). Similarly, polyQ AR toxicity was rescued by the presence of a UAS-

responsive enhancer element just upstream of the coding sequence of HIP-R (Fig. 4.5e), a 

Drosophila ortholog of Hip. Although we considered the possibility that a second UAS 

might confound this analysis by diminishing polyQ AR expression in these double 

transgenics, we found that this was not the case (Fig. 4.5f). We conclude that allosteric 

activation of Hsp70 by a small molecule or genetic manipulation rescued toxicity in a 

Drosophila model of SBMA. 

 

Discussion 

 We sought to manipulate endogenous cellular systems that regulate polyQ AR 

protein degradation to alleviate the toxicity that underlies a protein aggregation 

neurodegenerative disorder. For the AR, the major chaperones involved in protein quality 

control decisions are Hsp90 and Hsp70, which act together in a multichaperone 

machinery to regulate its function, trafficking and turnover 
67,128

. Prior attempts at 

identifying small molecules to target this pathway focused primarily on inhibitors of 

Hsp90 ATPase activity, such as geldanamycin and its derivatives. We describe an 

alternative approach using allosteric activators of Hsp70. This strategy is based on the 

observation that Hip, an Hsp70 co-chaperone, interacts with the ATPase domain of 
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Hsp70 and stabilizes it in its ADP-bound state 
86

 to promote binding to unfolded 

substrates 
167

. The therapeutic potential of targeting Hip was suggested by prior studies 

showing that its over-expression in cell culture diminishes aggregation of a long 

glutamine tract 
90

. Hip over-expression also decreases the formation of fibrils by another 

Hsp90 client protein, synuclein, and its knock-down in C. elegans increases 

synuclein aggregation 
91

. Here we extend these observations to SBMA models and 

characterize a novel small molecule that acts similarly to Hip to allosterically modulate 

Hsp70. We show that YM-1, which binds and stabilizes Hsp70 in its ADP-bound state 

170
, promotes Hsp70 affinity for denatured proteins, enhances client protein 

ubiquitination, stimulates clearance of the polyQ AR, and rescues toxicity in a 

Drosophila model of SBMA.   
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Figure 4.6 Model of the Hsp90/Hsp70-based chaperone machinery and 
regulation of polyQ AR degradation. 

Hsp90 and Hsp70 form a heterocomplex to stabilize the polyQ AR, enable ligand binding and 
guide intracellular localization (top left). Dissociation of Hsp90, such as following the addition of 
small molecule inhibitors or due to ligand-dependent conformation change of the polyQ AR, 
permits unfolding of the mutant protein. Substrate-bound Hsp70 then recruits chaperone 
dependent ubiquitin ligases such as CHIP to promote degradation through the proteasome. We 
demonstrate here that allosteric activators of Hsp70, including Hip and YM-1 (in green), increase 
substrate binding affinity, facilitate client protein ubiquitination and promote polyQ AR clearance 
by the proteasome. This strategy alleviates polyglutamine toxicity by facilitating degradation of the 
mutant protein. IMM, immunophilin. 

Our findings support a model of chaperone machinery function whereby Hsp90 

and Hsp70 have essentially opposing roles in the triage of unfolded proteins 
150,166

, in that 

Hsp70 promotes substrate ubiquitination whereas Hsp90 inhibits ubiquitination (Figure 

4.6). We envision that as the mutant AR undergoes ligand- and polyQ length-dependent 

conformational change, Hsp90 can no longer interact with it to inhibit ubiquitination. E3 

ligases interacting with substrate-bound Hsp70 then target ubiquitin-charged E2 enzymes 

to the nascently unfolding substrate. In this way the Hsp90/Hsp70-based chaperone 

machinery can function as a comprehensive protein management system for quality 
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control of damaged proteins. Support for this model is provided by the observation that 

stabilizing the Hsp90 chaperone complex with the polyQ AR by over-expressing the co-

chaperone p23 decreases ligand-dependent unfolding and aggregation 
69

. This model 

predicts that in the absence of Hsp90, AR-associated Hsp70 recruits chaperone-

dependent E3 ubiquitin ligases, such as CHIP, to promote degradation 
76

. Consistent with 

this notion, we found previously that a small molecule inhibitor of Hsp70, methylene 

blue, impairs polyQ AR degradation 
85

. Here we show that genetic or pharmacologic 

allosteric activators of Hsp70 promote client protein ubiquitination, enhance clearance of 

the polyQ AR and alleviate toxicity in a SBMA flies. 

  In addition to the polyQ AR, other proteins that unfold and aggregate in age-

dependent neurodegenerative disorders are clients of the Hsp90 chaperone machinery.  In 

addition to synuclein, evidence indicates that huntingtin and tau are also Hsp90 clients 

129,172,173
. Accumulation of these unfolded proteins causes a variety of disorders, for 

which available treatment options are largely supportive. Our model of chaperone 

machinery function suggests that the strategies identified here for SBMA may have more 

far-reaching applicability. We suggest that, like the use of Hsp90 inactivators, targeting 

Hsp70 with allosteric activators may lead to new therapeutic approaches for many of the 

protein aggregation disorders that occur in the aging population by increasing 

degradation of the mutant protein. 
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Materials and Methods 

Materials 

HeLa cells were from the American Type Culture Collection. PC12 cells expressing tet-

inducible forms of the AR were characterized previously 
174

. Phenol red-free Dulbecco‟s 

modified Eagle‟s medium (DMEM) was from Invitrogen (Carlsbad, CA), charcoal-

stripped calf serum was from Thermo Scientific Hyclone Products (Waltham, MA) and 

horse serum was from Invitrogen.  Fugene 6 was from Roche (Indianapolis, IN), and 

DHT and MG132 were from Sigma (St. Louis, MO). Geldanamycin and the anti-72/73-

kDa Hsp70 (N27F3-4), stress-inducible Hsp70, Hsp40, Hsp25 and Hip antibodies were 

from Enzo Life Sciences (Plymouth Meeting, PA). The AR (N-20), FLAG, and GAPDH 

antibodies were from Santa Cruz Biotechnology (Santa Cruz, CA), Sigma, and Abcam 

(Cambridge, MA) respectively. The HRP-tagged secondary antibodies were from Biorad, 

and the Alexa Flour 594 and 488 conjugated secondary antibodies were from Invitrogen. 

Plasmid encoding Hip was from GeneCopoeia and modified by the addition of a triple 

FLAG tag. Hsp70 siRNAs were ON-TARGETplus SMART pool rat HSPA1A or non-

targeting control (Dharmacon).  

Cell culture and transfection 

HeLa cells were grown in phenol red-free DMEM supplemented with 10% 

charcoal/dextran-stripped fetal calf serum. Cells were transfected with 3 μl Fugene 6 and 

1 μg DNA. Twenty-four hours post-transfection, cells were pooled and replated, then 

treated as indicated. PC12 cells were grown in phenol red-free DMEM supplemented 

with 5% charcoal/dextran-stripped fetal calf serum, 10% charcoal-stripped horse serum, 

G418 (Gibco) and hygromycin B (Invitrogen). AR expression was induced with 0.5 
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g/mL doxycycline (Clontech). PC12 cells were transfected by electroporation with the 

Lonza Nucleofector kit. HEK293T cells were grown in DMEM and transfected using 

Ca
2+

-phosphate.  

Analysis of protein expression 

Cells were washed with PBS, harvested, and lysed by sonication in RIPA buffer 

containing phosphatase and proteinase inhibitors. For analysis of oligomers, cells were 

lysed in high salt lysis buffer (20 mM HEPES, pH 7.5, 400mM NaCl, 5 mM EDTA, 1 

mM EGTA, 1% NP-40). Lysates were centrifuged at 4°C for 15 min at 15,000 g and 

protein concentration was determined by a BCA protein assay. Samples for oligomer 

analysis were subjected to ultracentrifugation at 100,000 g for 30 min at 4°C. Protein 

samples were electrophoresed through 10% SDS-polyacrylamide or 4%-20% gradient 

gels and transferred to nitrocellulose membranes using a semi-dry transfer apparatus. 

Immunoreactive proteins were detected by chemiluminescence. Signal intensity was 

normalized to GAPDH, and densitometric analysis was performed using ImageJ (NIH).  

nNOS ubiquitination 

HEK293T cells were transfected with cDNAs for HA-ubiquitin, nNOS, Hip or vector 

plasmid. Lysates were collected after 48 hrs for western blot and immunoprecipitation. 

HEK293 cells stably expressing nNOS were treated with increasing amounts of YM-1 for 

24 hrs in the presence of 10 M lactacystin prior to western blot and 

immunoprecipitation. Immunoblots were probed as indicated and densitometric analysis 

was performed using ImageJ.  
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Immunofluorescence  

PC12 cells were transfected with 3xFLAG-Hip as indicated. Following induction and 

small molecule treatment, cells were fixed, stained and mounted using Vectashield 

mounting medium with DAPI (Burlingame, CA). Fluorescence images were captured 

using a Zeiss Axio Imager.Z1 microscope, and nuclear signal intensity was quantified by 

ImageJ (NIH). Data are from at least 3 fields per condition in 3 experiments. Confocal 

microscopy was performed using a Zeiss LSM 510-META Laser Scanning Confocal 

Microscopy system.  

Luciferase Binding Assay 

Binding of Hsp70 to immobilized firefly luciferase was performed as previously 

described 
175

. YM-1 was added from a stock solution of 2.5 mM and diluted to a final 

DMSO concentration of 4%. All results were compared to an appropriate solvent control. 

Experiments were performed in triplicate. 

Hip and MKT-077 scaffold binding assay 

Human Hsp72 and Hip were purified as previously described 
176,177

 and the Hsp70-

binding assay was carried out using an adaptation of a previously described assay 
178

. 

Briefly, Hsp72 (2.3 µM) was immobilized on ELISA plates (ThermoFisher brand, clear, 

non-sterile, flat bottom). The treated wells were pre-incubated with Hip (0 – 6 M) for 5 

min prior to addition of biotin-labeled MKT, a probe of the YM-1 binding site 
170

. The 

labeled probe was incubated in the wells for 2 hrs at room temperature, followed by three 

washes with 150 L tris-buffered saline with Tween 20 (TBST) and incubation with 100 

mL 3% bovine serum albumin (BSA) in TBST for 5 min. The BSA solution was 

discarded and the wells were incubated with streptavidin-horseradish peroxidase for 1 hr. 
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Following three additional washes with TBST, the wells were incubated with 100 L 

3,3′,5,5′-tetramethylbenzidine substrate (Cell Signaling Technology, Danvers, MA) for 

30 min. After addition of stop solution, the absorbance was read in a SpectraMax M5 

plate reader at 450 nm. Results were compared to control wells lacking Hsp70. 

Experiments were performed in triplicate and at least two independent trials were 

performed for each condition.  

Drosophila stocks and phenotypes 

The following strains were used in this study: White Canton-S (wild type), BG380-Gal4 

179
, GMR-Gal4 

180
, OK371-Gal4 

181
, HIP

EY14563 
(Bloomington), HIP-R

EY01382
 

(Bloomington). UAS-hAR52Q flies were provided by Ken-ichi Takeyama 
171

.  

Drosophila stocks were maintained on yeast glucose media at 25°C and experimental 

flies were kept on Jazz-Mix food at 29°C. Food was cooled to <50°C, then supplemented 

with 1 mM DHT, 1 mM YM-1, or vehicle (ethanol) control. The eclosion phenotype was 

scored by marking existing pupal cases at 10 days post addition of parents. Following 7 

days at 29°C, the percentage of marked pupal cases that failed to eclose was determined 

for 200-800 flies of each condition. Scanning electron micrographs were captured by the 

University of Michigan Microscopy & Image Analysis Core on 1 - 2 day old GMR-

Gal4;UAS-hAR52Q adult female flies reared on food supplemented as indicated.   

Statistics 

Statistical significance was assessed by ANOVA with Newman-Keuls multiple 

comparison test, or unpaired Student‟s t- test using the software package Prism 5 

(GraphPad Software). P values less than 0.05 were considered significant. 
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Chapter 5  

 

 

 

 

Conclusion 
 

 In this dissertation, I discuss the roles of two different protein degradation 

pathways in modulating disease pathogenesis in SBMA. We established that activation of 

autophagy in SBMA accentuates muscle wasting and that limiting activity of the 

autophagic process by genetically decreasing Beclin-1 expression decreases the observed 

muscular atrophy, while extending lifespan in our mouse model. In addition to 

investigating the role of autophagy on disease pathogenesis, we also probed our model of 

chaperone machinery activity in protein quality control, wherein Hsp90 binds client 

proteins, stabilizing them against ubiquitination. In contrast, inhibition of Hsp90 or 

activation of Hsp70 allows E3 ligases to interact with Hsp70 and ubiquitinate the 

unstable client protein. We focused on the effects of modulating Hsp70‟s substrate 

affinity, targeting in particular its nucleotide binding state both genetically and 

pharmacologically, to control degradation of unfolded substrate. Our results 

demonstrated that the expanded polyQ AR undergoes Hsp70 dependent degradation, and 

that pharmacologically inhibiting Hsp70‟s intrinsic ATPase activity led to accumulation 

of the polyQ AR, and inhibition of CHIP mediated ubiquitination. The remainder of this 

Discussion will address remaining questions and future directions.  
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Autophagy inhibitors in muscle wasting  

 Loss of muscle mass can exacerbate some neurodegenerative and age-related 

diseases, and several studies indicate that muscle pathology contributes to disease 

pathology 
98,182,183

.  Myopathic changes in muscle, as well as changes in protein 

expression reflective of denervation, manifest early in disease progression in AR113Q 

knock-in mice, prior to detectable loss of motor neurons 
98

. Lending more support to a 

non-cell autonomous disease process, overexpression of wild-type AR in skeletal muscle 

mimicks the hormone dependent myopathy and motor axon loss seen in SBMA knock-in 

mice 
100

. Further, overexpression of IGF-1 in skeletal muscle alone rescues disease 

phenotype in SBMA transgenic mice 
101

, highlighting the importance of muscle health in 

disease progression.   

 Denervation atrophy is characterized by an increase of protein degradation with a 

concomitant decrease in protein synthesis
184

. Autophagy is activated in muscle following 

denervation, and has been shown to contribute to the process of protein degradation in 

atrophying muscle 
185

. Additionally, gene expression changes in atrophying muscle 

include several autophagy related genes, consistent with the observation that lysosomal 

proteases are upregulated following denervation 
186,187

. Together these studies indicate a 

potential role of autophagy in maintaining muscle mass. In Chapter 2, we probe the role 

of autophagy in SBMA, and help to further establish a link between atrophy and 

autophagy. Our results demonstrate that activation of autophagy leads to increased 

atrophy, while limiting activation of autophagy leads to a significant increase in lifespan, 

with a concurrent increase in muscle fiber size. Though we establish an important link 

between autophagy and muscle wasting, the effects of inhibiting Beclin-1 expression 
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upon muscle fiber size are modest. However, the lifespan extension is striking, and is 

likely reflective of the benefits of limiting autophagy in other cell types as well as 

muscle. An important direction for future work will be the identification of the cellular 

targets through which Beclin-1 haploinsufficiency exerts its lifespan extending effects.  

 The results in Chapter 2 contrast with findings in other neurodegenerative models 

that activation of autophagy can be beneficial. Many age-related neurodegenerative 

diseases are characterized by the accumulation and aggregation of misfolded proteins, 

several of which appear to be targets of the autophagic pathway 
188

. For example, in some 

familial forms of amyotrophic lateral sclerosis (ALS), mutant superoxide dismutase-1 

(SOD1) aggregates and leads to motor neuron degeneration 
189

, and activation of 

autophagy in this disease context ameliorates the disease phenotype in SOD1 mutant 

mice 
111

. The difference in the effects of increased autophagy on these two different 

disease models is likely reflective of differences in the pathways used to degrade the 

individual mutant proteins. SOD1 is largely degraded through autophagy 
111

 while the 

AR is a proteasomal substrate 
57,85

. Subcellular localization of the protein is also 

important; while SOD1 is cytosolic and accessible to the autophagic machinery, the 

disease causing AR translocates to the nucleus, where it escapes autophagic degradation 

30
. Similarly, in Huntington disease, where aggregates are largely cytoplasmic, increased 

autophagy has been shown to be beneficial in both cell and fly models of the disease 
122

. 

This difference in localization and degradation further highlights the importance of 

disease context in the search for therapeutics in protein aggregation diseases. It is 

possible that inducing autophagy in patients, while increasing degradation of the disease 

causing protein, may accelerate degeneration of muscle and exacerbate devastating 
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aspects of the disease phenotype. Taken together, our data indicate that targeting protein 

degradation through other components of the protein quality control machinery, such as 

the Hsp90-based chaperone machinery may be a more beneficial therapeutic target than 

autophagy in SBMA and in other diseases caused by misfolded substrates of the Hsp90 

machinery.  

Activation of Hsp70 

 The results of chapter 3, in which we established that inhibiting the ATPase 

activity of Hsp70 increased aggregation of the polyQ AR, led us to investigate the effects 

of activating Hsp70 through pharmacological and genetic means. While our results in 

Chapter 4 establish that enhancing Hsp70‟s affinity for substrate increases degradation of 

the polyQ AR and decreases toxicity in a Drosophila model of SBMA, there are many 

questions left to be answered. Will activation of Hsp70 ameliorate disease phenotype in 

SBMA mice? What is the mechanism by which Hip and YM-1 increase degradation of 

the polyQ AR? Is it the same Hsp70-specific mechanism for both described in our 

model?  

Furthering our understanding of Hsp90 chaperone machinery 

 Mechanistically, our model predicts that association of the polyQ AR with Hsp90 

stabilizes the receptor, while increased association of the mutant AR with Hsp70 allows 

for increased ubiquitination and degradation in the absence of Hsp90 (Figures 1.3 and 

4.6). We have shown that inhibitors of Hsp90 lead to increased degradation of the mutant 

receptor that can be monitored by western blot 
69

, and several Hsp90 inhibitors are 

currently in late-phase clinical trials for the treatment of cancer 
11,190

. According to our 

model, Hsp90 inhibition would act synergistically with Hsp70 activation, destabilizing 
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the AR further, and increasing degradation. We hypothesize that activating Hsp70 

degradation through treatment with YM-1, or over-expression of Hip, would sensitize 

cells and animal models to Hsp90 inhibition. This line of investigation into a synergistic 

effect of targeting the two arms of the chaperone machinery would reinforce our model of 

protein triage and perhaps provide two targets for a more efficacious therapy.  

 Although our data imply that Hip and YM-1 are acting similarly to bind Hsp70 

and increase its activity, the mechanism by which they increase degradation of client 

proteins remains to be defined. One possible mechanism could be that keeping Hsp70 in 

its ADP-bound, high-substrate-affinity state increases the dwell time of substrate within 

the binding cleft of Hsp70, favoring increased ubiquitination and subsequent degradation, 

but this remains to be tested. While our results establish the effects of Hip and YM-1 on 

ubiquitination of a more manageable Hsp90 client, nNOS, confirmation of a similar 

increase in polyQ AR ubiquitination would support our model of protein triage. This 

question can be addressed by overexpression and knock down studies of Hip, or 

treatment with YM-1in cell culture, assaying for ubiquitin, analogous to the nNOS 

immunoprecipitation experiments performed in Chapters 3 and 4. Additionally, 

confirmation that other Hsp90 client proteins are triaged in the same manner as nNOS 

and AR would bolster our model, and increase the impact of these findings across several 

other neurodegenerative diseases.   

 Our preliminary data indicate that YM-1 and Hip compete for the same binding 

domain on Hsp70, but the specificity of action by each on Hsp70 needs to be confirmed. 

In chapter 4, we show that knockdown of Hsp70 abrogates the effects of YM-1 on 

insoluble AR112Q in PC12 cells, but this knockdown also has several off-target effects. 
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A more physiologically relevant study of whether Hsp70 is the biological target of YM-1 

would require single amino acid substitutions in the YM-1/Hip binding domain of Hsp70. 

This would allow for knock down of endogenous Hsp70 in tet-inducible PC12 cells while 

simultaneously expressing the Hsp70 mutant that should have all other physiological 

activity except Hip or YM-1 binding. Specificity of YM-1in vivo could be assayed in 

Drosophila through use of existing Hsp70 dominant negative or RNAi expressing flies 

crossed to the SBMA model flies. Our expectation is that flies expressing downregulated 

or dominant negative Hsp70 with AR52Q in motorneurons would not respond to YM-1 

treatment as seen by the eclosion rescue shown in Chapter 4. However, this particular set 

of experiments could prove to be technically challenging, as noted, knock down of Hsp70 

leads to several adverse effects upon both Drosophila and cellular models 
191,192

, and 

could result in toxicity too severe to be able to rescue or assay.  

Testing the validity of Hsp70 as a therapeutic target   

 Our results in cell and Drosophila models of SBMA indicate that modulating the 

activity of Hsp70 is a promising therapeutic target in SBMA. Our laboratory has 

generated a knock-in mouse model of SBMA in which much of the mouse AR gene was 

swapped with human sequence, including 113 CAG repeats in the first exon of the 

androgen receptor gene. This insertion resulted in an expanded glutamine tract AR under 

control of endogenous mouse regulatory elements, and the mouse model reproduces the 

neuromuscular and systemic manifestations of Kennedy disease 
98

. These mice exhibit 

androgen dependent muscle weakness, weight loss and early death, display neurogenic 

muscle atrophy and myopathy, and develop AR immunoreactive intranuclear inclusions 

in spinal cord and skeletal muscle. This phenotype allows for ready analysis of the effects 
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of activating Hsp70 in a mammalian model system. Overexpressing Hip or dosage of 

YM-1 in this model should rescue our well-characterized disease phenotype, as measured 

by survival, weight, grip strength, muscle fiber size, and occurrence of intranuclear 

inclusions in muscle and spinal cord. Of immediate interest would be the 

pharmacokinetics of YM-1, with assays to measure its permeability of the blood-brain 

barrier, half-life, and toxicity to determine the appropriate dosage.  

 In addition to polyQ AR, other disease causing proteins that unfold and aggregate 

are also Hsp90 clients. Our work was initially based on the observation that Hip over 

expression in cell culture decreased aggregation of an expanded glutamine tract 
90

, and 

the aggregation of another Hsp90 client, the disease-causing protein in familial Parkinson 

disease, -synuclein 
91

. Conversely, knockdown of Hip in C. elegans increased -

synuclein aggregation 
91

. In addition to -synuclein in familial Parkinson disease, there is 

evidence that huntingtin, the mutant protein that causes Huntington disease, and tau, a 

disease causing protein in Alzheimer disease and some frontotemporal lobe dementias, 

are also clients of the Hsp90 chaperone machinery 
129,172,173

. Our model of chaperone 

machinery function would predict that the strategies identified in this dissertation may be 

beneficial in a wide range of protein aggregation diseases caused by Hsp90 clients, like 

Huntington or Parkinson disease, for which therapeutic options are limited.  

 In conclusion, my graduate work has made a number of important contributions 

towards the understanding of protein degradation pathways in SBMA. These projects 

identified novel therapeutic targets which promise to bring us closer to directed therapies 

for a number of diseases for which current treatments are largely supportive. In addition 

to the potential clinical applications identified here, our results have furthered our 
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knowledge of the Hsp90 based chaperone machinery, establishing a more unified theory 

of protein triage for Hsp90 client proteins.  
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