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ABSTRACT 
 

 
 

METAL-OXIDE ENRICHMENT AND GAS-PHASE CHARACTERIZATION OF 
SULFOPEPTIDES USING FOURIER TRANSFORM ION CYCLOTRON 

RESONANCE MASS SPECTROMETRY 
 
 

by 
 
 

Katherine E. Hersberger 
 
 
 
Chair: Kristina I. Håkansson 
 
 

Though not as well studied as phosphopeptides, sulfopeptides are important for 

many biological processes, including proper endocrine function and extracellular 

signaling.  The discovery of sulfopeptides dates back to the 1920s; however, their 

enrichment and characterization have only recently become of broader interest.  With a 

limited toolbox for analyzing sulfopeptides, we employ several chemistries to develop 

robust enrichment and characterization methods.  At the heart of each method lies Fourier 

transform ion cyclotron resonance mass spectrometry, a gas-phase detection method with 

the power to differentiate even the slightest mass differences, such as phosphate vs. 

sulfonate.  



 xx 

 

First, Lewis acid-base characteristics inherent to transition metal oxides are 

examined for the selective interaction and enrichment of sulfopeptides in the presence of 

mixtures of competing poly-oxyanions.  Careful control of the binding and elution pH 

with an optimized amount of sulfopeptide loaded onto the metal oxide surface can 

enhance enrichment selectivity of sulfopeptides up to 97% relative abundance compared 

to as low as 4% prior to enrichment. 

Second, the utility of gas-phase activation methods for structural characterization 

of sulfopeptides is investigated.  The sulfonate post-translational modification (PTM) is 

extremely labile at low pH, high temperature, and during gaseous collisional activation.  

This fragility has challenged researchers to discover new techniques for analysis of intact 

sulfonated biomolecules.  As recently as 2011, authors have accepted that the sulfonate 

modification is lost during mass spectrometric analysis.  We have found that a 

combination of different activation techniques can elucidate sulfopeptide sequence while 

keeping the labile sulfonate residue intact, allowing for unambiguous localization of this 

PTM.  In particular, negative ion electron capture dissociation was found to yield >50% 

fragmentation efficiency with complete sulfonate retention.  

Finally, ideas are explored for improving fragmentation efficiency in electron 

detachment dissociation, which commonly leads to extensive neutral loss from carboxylic 

acids, precluding efficient backbone fragmentation and subsequent structural elucidation.  

To block carbon dioxide loss, chemical derivatization and anion adduction were 

employed.  We found that chloride adduction to acidic peptides improves the 



 xxi 

 

fragmentation efficiency and provides nearly complete sequence coverage for several 

peptides.  In addition, N-acetylation was shown to alter observed fragmentation pathways, 

presumably through changes in peptide gas-phase structures.  



 1 
 

CHAPTER I 

Introduction 
 

1.1 Protein Sulfonation 

1.1.1 Biochemistry of Sulfopeptides and Sulfoproteins 

Sulfonation is the most prevalent post-translational modification (PTM) for 

tyrosine amino acid residues1 and is found in all eukaryotes.2  A wide variety of 

molecules such as hormones, xenobiotics, carbohydrates, lipids, and proteins can be O-

sulfonated,3 which refers to the transfer of a sulfonate group (SO3H) to a hydroxyl 

acceptor.4

Specifically, protein tyrosine sulfonation occurs on up to 1% of all tyrosine 

residues in eukaryotes.5  It is one of the last PTM events to occur in the Golgi apparatus 

in cells.1  In all animal species analyzed to date, this process is highly regulated by two 

membrane-associated enzymes: tyrosylprotein sulfotransferase (TPST) 1 and 2 that 

catalyze the transfer of a sulfonate group from a specific donor molecule (3’-

phosphoadenosine-5’-phosphosulfate, PAPS) to a tyrosine residue, as shown in Figure 

1.1.3-4, 6-7*  In animals TPSTs are trans-membrane proteins that are located near the trans-

                                                 
* This transfer is often misconstrued in the literature as the transfer of a sulfate group (SO4

2-), and the substrate is 
considered “sulfated.”  For the sake of consistency and accuracy, this thesis refers to the presence of SO3H/SO3

- on 
peptides as the chemically accurate sulfonate group and the modified peptides are referred to as sulfonated peptides or 
sulfopeptides.  
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Golgi network.8-11  Furthermore, the active site of the TPSTs is directed toward the lumen 

within the Golgi apparatus,8 which may explain why precursors to sulfonated species 

must be closely   

tyrosine sulfo-tyrosine

3’-Phosphoadenosine-5’-phosphosulfate (PAPS) Adenosine 3’, 5’-diphosphate (3’, 5’ ADP)

Tyrosylprotein
sulfotransferase

(TPST)

 
Figure 1.1.  Enzyme-mediated tyrosine sulfonation of peptides and proteins.  Image 
modified and recreated from Corbeil and Huttner12 and Stone, et al.13 
 

associated with this organelle.  The Golgi apparatus, specifically the trans-Golgi network, 

acts as a post-translational processing, sorting and packaging center that receives and 

processes proteins and peptides synthesized in the rough endoplasmic reticulum then 

sorts and sends the processed biomolecules to their final destinations.  Transportation 

throughout the cell is provided by secretory granules that deposit few sulfonated 

biomolecules within the cell or through the cell membrane while transporting the 

majority of sulfonated species into the extracellular matrix.  These sulfoproteins and 

sulfopeptides are membrane or secretory in nature7, 14 with the latter kind accounting for 
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approximately 65–95% of the total protein tyrosine sulfonation.1, 15  Furthermore, 

proteins and peptides destined to be sulfonated for membrane-related or secretory 

function must originate from the rough endoplasmic reticulum in order to pass through 

the trans-Golgi network in close proximity to the TPST enzyme and sulfonate donor 

molecule PAPS.  It has been proposed and observed experimentally that cytoplasmic, 

nucleoplasmic, as well as mitochondrial proteins and peptides are not sulfonated in vivo.1, 

14  TPSTs are also thought to be strictly localized to the trans-Golgi network, except for a 

single case in which TPST was found in human saliva.16 

1.1.2 Vertebrate Sulfopeptides and Sulfoproteins 

The very first sulfonated protein, fibrinogen, was discovered by Bettelheim in 

1954.17  Other sulfonated species began to surface in the literature throughout the 

1960s.18-22  However, it was not until 1982, nearly three decades after the initial 

sulfoprotein discovery, that the potential biological significance of sulfonation was first 

suggested by W. B. Huttner in his Nature report describing that tyrosine sulfonation is a 

widespread modification found in all tissues of all multicellular organisms examined.23 

Since this monumental discovery, researchers have found that the biological activities of 

sulfonated proteins and peptides are quite diverse despite the theorized limited 

localization for these species as mentioned above.  Moore has compiled a comprehensive 

list of over sixty tyrosine-sulfonated proteins and peptides from seventy-five different 

sources, suggesting that the functional role(s) of tyrosine sulfonation for the majority of 

the identified sulfonated species are currently unknown.7†  In this reference, the author 

categorizes sulfonated proteins and peptides by either a similar functional role, in the case 

                                                 
† This lack of knowledge may be due to the fact that there are little or no available non-sulfonated analogs for which to 
compare the function or loss-of-function of a particular species in vivo. 
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of G-protein-coupled receptors (GPCRs), or a similar localization such as matrix proteins.  

Several sulfonated proteins and peptides, such as cholecystokinin, gastrin and caerulein 

from the gastrin family21, 24-28 29-32 18, 20, 22, 33 as well as hirudin34-35 have been studied 

extensively for decades and are very well characterized.  Several sulfoproteins and 

peptides have been characterized in hemostasis,34, 36-40 inflammatory response,41-43 

protein-protein interactions,36, 44-45 as well as hormone regulation24-25 and certain 

diseases.46-49  

1.1.3 Invertebrate Sulfopeptides and Sulfoproteins 

From the 1980s–2000s, sulfopeptide discoveries in plants, insects, and other 

invertebrates suggest that sulfonation is not just a widespread PTM present in vertebrate 

animals.  Some of these invertebrate sulfopeptides include phytosulfokine from asparagus 

(Asparagus officinalis) and rice (Oryza sativa),50-51 pherophorins from green algae 

(Volvox carteri),52-53  sulfakinins54-55 and vitellogenins5, 56  from fruit flies (Drosophila 

melanogaster), leucosulfakinins from cockroaches (Leucophaea maderae)57-58 and 

CCK/gastrin homologs from roundworms (Caenorhabditis elegans)59 among other 

discoveries from crustaceans and insects.60  

Functional characterization of sulfonated peptides from invertebrates suggests a 

wide variety of functions similar to those of vertebrate-derived sulfopeptides.  In the first 

report of sulfonated plant hormones, Matsubayashi and Sakagami showed that sulfonated 

tyrosine residues in the doubly-sulfonated phytosulfakinin-α and –β  promote rapid 

growth of asparagus mesophyll cells.50  These rather short sequences (penta- and tetra-

peptide sequences, respectively) do not strictly follow the suggested guidelines for 

sulfonation observed in animal species,1, 61-64 perhaps indicating a different mechanism 
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for sulfonation in plants.  Other examples of sulfopeptides that promote growth include 

the pherophorins and a membrane glycoprotein from green algae.  During green algae 

embryogenesis, differentiation of the indeterminate embryo into somatic and reproductive 

cells (asexual, male or female spheroids) occurs at the 32-cell division upon which a 

specific pheromone “sexual inducer” influences the further differentiation of reproductive 

cells into egg and sperm.52-53  It was postulated by Wenzl and Sumper65 that a cell-surface 

component was needed to provide information to the cells regarding the embryo’s stage 

of division.  In their later work, this group discovered the sulfonated membrane 

glycoprotein SSG-18566 that may control cell-cell interactions during embryogenesis but 

prior to differentiation.52  Lee, et al.67 have shown that rice produces a sulfonated peptide 

near the N-terminus of a large protein called Ax21 (activator of gene XA21-mediated 

immunity).  The active peptide axYS22 requires tyrosine sulfonation for immunity against 

the bacterium Xanthomonas oryzae.67  Sulfopeptides from the cholecystokinin 

(CCK)/gastrin family, which includes the sulfakinins found in fruit flies and cockroaches 

and the CCK/gastrin homologs found in roundworms, share a common C-terminal active 

sequence motif with CCK and gastrin and, thus, exhibit a similar function.5, 57-59  More 

importantly, tyrosine sulfonation is critical for optimal activity of these peptides. 

Another recent discovery from Medzihradszky, et al.68 marks the first observation 

of serine- and threonine-sulfonated peptides from invertebrates.  The identification of 

HTTNV[I/L]SMFR (sulfonation site not indicated) from myosin light chain and 

LAGLQDEIGS(SO3H)LR, both from an intermediate filament protein digest from the 

nerve axoplasm of the freshwater snail Lymnaea stagnalis, as well as RIEVALT(SO3H)K 

from the Plasmodium falciparum malaria parasite suggests that sulfonation may be more 
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widespread than originally thought.23  This finding opens up a once-narrow field that 

focused only on tyrosine-sulfonated species and poses many unanswered questions about 

the production and biological function of these peptides. 

Not until recently did researchers understand how plant hormones were sulfonated.  

Matsubayashi, et al.69 reported the first plant TPST, which shares no sequence homology 

with animal TPST-1 or TPST-2.  The newly discovered TPST from Arabidopsis thaliana 

(mouse-ear cress) contains acidic amino acids in close proximity to the tyrosine residue, 

which is thought to be indicative of tyrosine sulfonation.1 

1.1.4 Cholecystokinin/Gastrin 

The Cholecystokinin/Gastrin family of proteins includes caerulein20, 22 as well as 

the namesake sulfoproteins gastrin18, 24, 32 and cholecystokinin21, 25 plus cionin.70‡  Each of 

these proteins contains a similar pentapeptide sequence at the C-terminus of the active 

peptide.  This common pentapeptide C-terminal sequence (GWMDF-NH2) is critical for 

proper biological activity and has been conserved over 500 million years,71 having 

descended from coelenterates.72-73  Cholecystokinin and gastrin are involved in regulation 

of enzyme secretion and stimulation of growth in the adult gastrointestinal system.46, 74  

As regulators of growth, gastrin and cholecystokinin have also been associated with 

cancer progression.  For an extensive review on this subject, see Rehfeld et al.46 as well 

as Rozengurt, et al.75 and references therein.  Another interesting development in this area 

suggests that cholecystokinin could play an important role in satiation and, thus, appetite 

                                                 
‡ The sulfakinins as well as FMRF-amide neuropeptides are not included in this family due to differences in the 
conserved pentapeptide sequence observed compared to that of the gastrin/cholecystokinin family.  For more details, 
please refer to Johnsen and Rehfeld, Cionin: a disulfotyrosyl hybrid of cholecystokinin and gastrin from the neural 
ganglion of the protochordate Ciona intestinalis. In J. Biol. Chem., 1990; Vol. 265, pp 3054-3058.  However, others 
consider the sulfakinins part of the gastrin/CCK family due to similar responses from sulfakinins to gastrin/CCK 
antisera. See Nachman, Holman, Haddon and Ling, Leucosulfakinin, a sulfated insect neuropeptide with homology to 
gastrin and cholecystokinin. In Science, 1986; Vol. 234, pp 71-73. 
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suppression.76-78  Thirty years ago, Kissileff, et al. showed that intravenous administration 

of the active N-terminal region of the cholecystokinin peptide (CCK-8) in man resulted in 

decreased food intake up to nearly 20%.76  Follow-up analyses of the satiation effects of 

CCK-8 and its potential use as a supplement have been discussed,77 but to our knowledge, 

there have been no recent developments for treatment of this kind to be used by 

consumers. 

For this particular family of sulfonated hormones, the presence of sulfonation is 

required for proper biological activity.  For instance, non-sulfonated CCK exhibits 

significantly lower hormonal activity than its sulfonated counterpart56, 79 while 

desulfonated caerulein does not properly inhibit acid secretion in the presence of gastrin 

nor does it stimulate gallbladder contraction to the same degree as its sulfonated 

counterpart.80-81  Of the aforementioned sulfopeptides, cionin is the only doubly-

sulfonated species with back-to-back sulfonated tyrosines,70 which is observed for only 

one other sulfopeptide found in the white shrimp Litopenaeus vannamei.82  The function 

of cionin is similar to that of CCK and gastrin, though it is reported to exhibit activity 

more closely related to CCK,83-84 while the biological significance of two sulfonation 

sites in a single active peptide is still unknown. 

1.1.5 Hirudin 

Hirudin is a naturally-occurring, 65-amino acid polypeptide extracted from the 

salivary glands of the leech Hirudo medicinalis.34, 85-89  It was first reported in the late 

1800s that a compound contained in medicinal leeches (later known as hirudin) acts as an 

anticoagulant.90-91  Since then, researchers have been able to propose a mechanism for 

preventing blood coagulation with hirudin as an inhibitor.  Markwardt, et al. reported that 
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hirudin binds to and inhibits thrombin,91-93 a serine protease responsible for the enzymatic 

digestion of fibrinogen into fibrin.  Though the full hirudin sequence is over 60 amino 

acids long, not all of the sequence is required for biological activity.  In fact, the acidic 

residues of the C-terminal sulfonated dodecapeptide are critical for binding hirudin to 

thrombin.86, 88  Specifically, when hirudin residues 59-65 or more (up to 22 residues in 

total) were eliminated by enzymatic digestion, there was a reduction in the inhibition of 

clotting activity by up to 90%.86  If the acidic C-terminal region of this polypeptide is 

included in its native form, the activity is unaffected.  The author concludes that this 

acidic region is important for facilitating binding to the recognition site of thrombin.  

Interestingly, this article also reports that sulfonation is not required for this interaction, 

but total thrombin inhibition activity decreased by a factor of two without tyrosine 

sulfonation.86 

1.1.6 Methionine- and Leucine-Enkephalin  

Another distinct family of peptides is the enkephalins, which are found in the 

brain and gastrointestinal tract of a variety of species as well as in the skin of 

amphibians.94  Satoh, et al. first suggested that the endogenous “morphine-like” agonist, 

later known as enkephalin, could be an inhibitory neurotransmitter.95  These particular 

peptides bind to opioid receptors in the brain in a similar way as morphine and other 

opioid drugs to regulate pain and pleasure.96-101  Extensive reviews on this subject are 

available from Erspamer94 and Amiche, et al.102 

1.1.7 Recent Discoveries in Sulfopeptide and Sulfoprotein Characterization 

Within the past ten to fifteen years, exciting discoveries regarding the function of 

sulfonated GPCRs103-106 and chemokine receptors47, 107-111 have reinvigorated research in 
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functional characterization of sulfonation.  GPCRs are transmembrane hormone-binding 

receptors that contain a large ectodomain with one or more sulfonated tyrosine residues.13  

It has been shown in several cases, regardless of the final function of the signaling event, 

that sulfonated tyrosines are critical for the binding of the agonist to its receptor.104-106  

Sulfonated chemokine receptors bind small, secreted proteins called chemokines that 

mediate the movement of leukocytes and the immune system response to viral 

infection.36, 112  In the past fifteen years, several authors report that the tyrosine-

sulfonated chemokine receptor CCR5 with help from the CD4 glycoprotein binds HIV-1 

protein gp120 (a 120 kDa glycoprotein in the HIV envelope), allowing the virus to enter 

cells.107-109, 113  More recently, Kwong, et al. published the structures of the unbound and 

bound sulfonated CCR5 to gp120,110 elucidating the sulfonation site through a conserved 

binding pocket in the V3 loop of gp120.  Though these specific results illustrate how 

structure and function are related, the majority of the reports cited here do not present a 

complete story.  This lack of finality further highlights the need to continue efforts for 

sulfonated protein and peptide structural and functional characterization.  

1.1.8 Trends for Identifying Potential Sulfonation Sites on Peptides and Proteins 

Following the structural characterization of many sulfonated proteins and peptides, 

much attention was focused on how to predict whether a protein or peptide will be 

sulfonated in a biological system.  Figure 1.2 shows several well-known sulfopeptides 

from the CCK/gastrin family that share a common C-terminal pentapeptide sequence.  

Striking similarities such as these and others prompted further investigation.  In the 

1980s-1990s, the existence of consensus features for detecting sulfonated proteins and 

peptides was a hotly debated area,1, 61-64 in which no true consensus features were ever 
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discovered but trends were suggested to explain observations of sulfonation events.  With 

the discovery of more sulfonated proteins and peptides from a variety of plant and animal 
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Figure 1.2.  Sequences of cholecystokinin-related sulfonated peptides. 

 

sources throughout the 1990s5, 50, 54, 57-58, 70, 99, 114 and most recently in 2009,67 it is clear 

that there are still no definitive consensus features that aid in identifying all sulfonated 

peptides/proteins.  However, there are several guidelines, widely accepted though also 

disputed, for suggesting which tyrosine residue(s) may be sulfonated.  In 1986, Hortin, et 

al.63 laid the foundation for the major trends observed for a short list of common 

sulfonated peptides.  His investigation utilized computational algorithms to predict 

sulfonation sites.  Hortin and many others have since concluded that no single trend could 

stand alone to predict sulfonation sites but the combination of these features would lead 

to the most accurate prediction.  In later years, several researchers refined, questioned, 
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and further extended these trends.  Several structural features that may promote tyrosine 

sulfonation are summarized in the text below.  It is important to note that the amino acid 

positions within a given peptide are relative to the site of sulfonation, which is assigned 

as position 0.  All residues N-terminal and C-terminal to position 0 are assigned -1 to -x 

and +1 to +y, respectively, where x, y are the total number of residues away from the 

sulfonation site in either direction.  

Acidic amino acid residues are common but not required in the region from -5 to +5.  

Most but not all sulfonated peptides contain acidic amino acid residues in the region from 

-5 to +5.  In many cases, there is either an aspartic or glutamic acid residue directly N-

terminal to the site of sulfonation at position -1.  This trend is seen for all sulfopeptides in 

the cholecystokinin/gastrin family with the exception of doubly-sulfonated cionin.  

Initially, Hortin, et al. reported that acidic residues were required at position -1 or -2 and 

there should be three or more acidic residues from -5 to +5 with only a few exceptions 

lacking Asp/Glu at -1 or -2 but complying elsewhere.63  Four years later, this assertion 

was rebuked with the discovery of cionin70 as it contains only one aspartic acid at 

position +4/+5 to the sites of sulfonation (see Figure 1.2 for sequence information.).  

However, the experimental support for the original hypothesis115 suggesting the 

importance of acidic residues and their position relative to the sulfotyrosine residue 

appeared a few years later in 1992.61  Lin, et al. have shown that removal of acidic 

residues at various positions relative to the sulfonation site from cholecystokinin, 

complement C4, heparin cofactor II, and α2-antiplasmin decreases the peptide substrate’s 

affinity for the TPST enzyme by up to 22-fold.61  These authors further reported that 

TPST interacts with more than 4-5 residues on either side of the sulfotyrosine, and 
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specifically, positions -1 and +1 are important for determining the peptide’s affinity for 

TPST.  Furthermore, site-directed mutagenesis of human gastrin has shown that replacing 

a neutral or acidic residue at position -1 with a basic residue completely inhibits 

sulfonation.62  Thus, one important aspect has remained unchallenged.  There have been 

0-1 basic residues and a low occurrence of hydrophobic residues (Ile, Leu, Phe, Val) 

observed within five residues of the sulfonation site.1  

Turn-inducing amino acid residues are observed near the sulfonation site.  Initially, 

turn-inducing amino acid residues such as proline or glycine can be observed near the 

sulfonation site as long as the sulfonation site is accessible to TPST, sulfonation can 

occur.63  That is, the residues in close proximity to the sulfonation site do not induce a 

complex secondary structure that may sterically hinder TPST’s access to the tyrosine 

residue.  This hypothesis was later refined by Huttner, who suggested that either one turn-

inducing Pro/Gly or at least two moderate turn-inducing Asp/Ser/Asn residues should be 

included from -2 to -7 and from +1 to +7 relative to the sulfonation site.1  He proposed 

that turn-inducing amino acids could possibly enhance exposure of the nearby tyrosine to 

TPST.  

No PTMs that may induce steric hindrance are found near the sulfonation site.  Along 

the same theoretical lines as with turn-inducing amino acids mentioned above, PTMs 

such as cysteine disulfide bond linkages and N-linked glycans may alter the secondary 

structure near the tyrosine sulfonation site.1  These modifications, however, are not 

observed.  Because these PTMs are incorporated in the protein sequence prior to 

sulfonation, they may act to sterically hinder TPST access to nearby tyrosine residues.  
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Recent computational efforts to predict sulfonation sites have shown promise in 

this area.  SulfoSite116 as well as Sulfinator117 and a new nearest neighbor algorithm from 

Niu, et al.118 provide up to 90% prediction accuracy.  Though the development of 

computational models for predicting sulfonation sites is a step in the right direction, a 

prediction accuracy of 90% may result in missed or incorrectly assigned sites.  

Furthermore, one fact remains: sulfonation site prediction alone cannot validate the 

occurrence of tyrosine sulfonation.  Other methods for isolation and identification of 

sulfopeptides from biological systems are thus needed. 

1.1.9 A Chemical Juxtaposition:  Sulfonation vs. Phosphorylation 

Post-translational modifications such as phosphorylation (R-OPO3H2) and 

sulfonation (R-OSO3H) are critically important for the proper function of proteins, 

metabolites, sugars, and other biomolecules.  Although phosphorylation and sulfonation 

are negatively-charged PTMs with an identical nominal mass (80 Da), there is not much 

else in common between them from a chemical and biological standpoint.119  The 

sulfonate group consists of a single sulfur atom and three oxygen atoms, two of which 

participate in π-bonding to the sulfur atom.  Consequently, sulfonates can exhibit only 

one negative charge from the single sulfur-oxygen σ-bond at a pH value greater than its 

pKa value of 1.54 while phosphonate groups have two ionizable protons with pKa values 

of 1.5 – 1.9 and 6.3 – 6.8 depending on the character of the variable substituent.120  

Sulfonation has also been found to be less stable than phosphorylation in solution-

phase reactions17 and gas-phase electrospray ionization tandem mass spectrometry (ESI-

MS/MS) reaction conditions.103  The sulfonate group is cleavable in 1 N HCl17 or 

with >90% TFA at high temperatures.121  Furthermore, sulfonation can be accidentally 
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hydrolyzed during sulfopeptide synthesis following common deprotection steps which 

require acid.103  Careful control of the reaction conditions during peptide deprotection can 

minimize the amount of sulfonate hydrolysis that occurs.121  Phosphorylation, on the 

other hand, is much more chemically resilient to highly acidic, solution-phase conditions 

and is removed primarily with phosphatases or alkali hydroxides.  

From a biological standpoint, sulfonation is an irreversible PTM which is 

conferred on a peptide/protein sequence as one of the last events to occur in the trans-

Golgi network prior to transport out of the cell.122  Phosphorylation, on the other hand, is 

a reversible modification added to peptide/protein sequences and functions primarily 

inside the cell.  Given the differences in origin and localization of these PTMs in 

multicellular organisms, one can postulate that their functional paths are divergent.  

Indeed, phosphorylation is implicated in regulation of intracellular cytosolic and nuclear 

protein activities while sulfonation is involved in extracellular protein-protein 

interactions.103 

1.1.10 Challenges of Peptide/Protein Sulfonation Analysis 

The identification and characterization of sulfonation in biological systems is 

hampered by the following: 1) sulfonate instability to heat and low pH, 2) low 

concentration of sulfonated species present only outside the cell, and 3) the isobaric mass 

of sulfonate compared to phosphorylation.  Since the discovery of the first sulfonated 

protein in the 1950s,17 there have been reports indicating that the sulfonate group is 

hydrolyzed above 90 oC under acidic conditions.121, 123  This lability presents a problem 

as many enzymatic digestion procedures for bottom-up proteomics approaches require 

high temperatures (>90 oC) to effectively denature the wide range of proteins present in a 
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given sample.  Furthermore, some derivatization procedures such as methyl 

esterification124 require concentrated, strong acids or produce them as a by-product of the 

reaction.  If sulfonation is present on the peptides or proteins of interest, alternative 

derivatizations must be used to prevent SO3 loss.  At present, no published reports 

suggest to what degree the sulfonate group is lost from the original biomolecule at milder 

temperatures and slightly less acidic pH values.  

Secondly, sulfonated peptides and proteins are mainly found outside of the cell as 

secreted species,1, 125 rendering common cellular fractionation approaches and cell lysate 

profiling improbable for determining the degree of sulfonation in biological systems.  

Despite these adverse conditions, scientists have been able to identify sulfonated peptides, 

proteins, and glycans in plasma78, 126 and in the retina.127-128  For example, Young, et al. 

quantified the amount of endogenous sulfonated cholecystokinin in hamster plasma and 

used their immunoprecipitation-based liquid chromatography method to monitor the 

changes in basal levels of CCKS after administering a high-fat diet.78  

Perhaps the most difficult task is differentiation of sulfonated and phosphorylated 

species by mass.  Mass spectrometry (MS) is a powerful tool that measures mass-to-

charge ratios of gaseous ions.  Due to the isobaric nature or identical nominal mass of 80 

Da for the sulfonate group compared with the more widely characterized phosphate group, 

misidentifications are possible with relatively low mass resolution instruments.129  These 

PTMs differ only slightly by mass, specifically less than a one-hundredth of an atomic 

mass unit (Δm = 0.0095 Da).130  This narrow difference arises from the mass difference 

between a hydrogen atom plus a phosphorous atom for phosphorylation (HPO3
-, 79.9663 

Da) versus a sulfur atom for sulfonation (OSO3
-, 79.9568 Da).  It may be for these several 
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reasons that sulfonation is less studied by the scientific community at large in favor of the 

more accessible, more widely characterized, and chemically resilient phosphorylation. 

1.1.11 Qualitative and Quantitative Methods for Determining Sulfonation without 
the use of Mass Spectrometry 
 

In the past 60 years since the first sulfopeptide was discovered, there have been 

only a few non-MS-based methods for sulfonation analysis, including both qualitative 

and quantitative approaches.  In the mid-20th century, radioactive labeling with 35S 

provided the only option for direct determination of tyrosine sulfonation in specimens 

from biological systems for many years and is still widely used today.  Once incorporated, 

the labeled sulfo-tyrosine residues are separated from other proteins and carbohydrates by 

a lengthy procedure involving a series of fractionation steps prior to phenol extraction, 

SDS-PAGE, and detection by autoradiography.123  A few problems with this approach 

include the difficulty and cost of conducting cell culture labeling methods in vitro as well 

as the number of complicated steps required to effectively separate and detect 35S-labeled 

sulfopeptides.  Also, direct localization of the tyrosine sulfonation site is not possible 

with this method.  

Perhaps the most promising method for determining sites of sulfonation on 

proteins, peptides, and other biomolecules without the use of mass spectrometry involves 

using anti-sulfo-tyrosine antibodies to selectively bind sulfo-tyrosine residues.  Initially, 

sulfopeptides of greater than 10 amino acid residues were needed to raise high-quality 

antibodies.131  However, because these antibodies cannot be produced in most animals 

due to the animal’s lack of an immune response to the common sulfo-tyrosine PTM, 

alternative methods have been suggested.  Recently, two reports indicate that anti-sulfo-

tyrosine antibodies raised from in vitro phage display methods have shown high 
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selectivity over phospho-tyrosine residues.132-133  However, these two approaches require 

both time and a considerable amount of money to generate these specialized antibodies.  

Furthermore, these aforementioned methods cannot measure the accurate mass of large, 

complex sulfonated biomolecules, nor can these methods precisely determine the location 

of the sulfonate group in the protein or peptide sequence.  For these reasons, mass 

spectrometry holds much promise for the complete characterization of sulfonated 

biomolecules.  

1.2 Mass Spectrometry 

1.2.1 Mass Spectrometry as a Method for Detection of Sulfopeptides 

Mass spectrometry (MS) is a technique that measures the accurate mass-to-charge 

(m/z) ratios of gas-phase ions.  The first mass spectrometer (known at the time as a 

parabola spectrograph) was built in 1912 by J. J. Thomson to measure the m/z values of 

various diatomic and low molecular weight gases with mass resolution of ~13 m/m.134  

This effort was soon followed by A. J. Dempster’s 180o magnetic sector instrument 

equipped with an electron ionization source developed in 1918, at which time the mass 

resolution was 100 m/m.135  As technology developed rapidly in the 1950s and 1960s 

and electrospray ionization was later introduced in the 1980s,136 mass spectrometers 

paved the way for analyzing larger molecules—from mass-to-charge ratios ranging from 

a few Daltons to greater than 20,000 Da over 20 years ago.  Today, the largest attainable 

mass resolving power (m/∆mFWHM) is obtained with Fourier transform ion-cyclotron 

resonance mass spectrometry (FT ICR-MS), e.g., 8,000,000 at a mass of ~8600 Da.137  

Another recent report from Nikolaev, et al. shows that a redesign of a traditional FT ICR 

trapped ion cell involving segmentation of the cylindrical surface of the ICR cell can 
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produce a resolving power (m/∆mFWHM) of 24,000,000 for reserpine at m/z 609.138  This 

improvement in resolving power was due only to the redesign of the ICR cell and not due 

to an increase in magnetic field strength. 

Current mass spectrometers contain three essential regions following sample 

introduction:  an ionization source, a mass analyzer, and a detector.  Samples can be 

introduced into the gas-phase from either the liquid phase (as in electrospray ionization or 

ESI)136 or the solid phase (as in matrix-assisted laser desorption/ionization or MALDI).139  

Analytes must be ionized to be guided through the instrument for detection.  MS 

instruments operate at very low pressure compared to atmosphere (10-3 to 10-10 mbar) in 

order to transfer ions to the detector, avoiding collisions and possible subsequent 

fragmentation events.  Many MS instruments including quadrupole MS (Q MS), time-of-

flight MS (TOF MS), and ICR MS differ in how ions are separated and subsequently 

detected.  Briefly, Q MS and ICR MS require time-varying electric fields or a static 

magnetic field, respectively, to manipulate and thus differentiate ions with varying mass-

to-charge ratios while TOF MS requires a field-free drift region for ions of identical 

kinetic energy to be separated based upon individual m/z values.  Current instrumentation 

in mass spectrometry varies quite widely for the intended application and desired 

instrument attributes.  High mass accuracy, high mass resolution, high sensitivity, large 

dynamic range, and fast detector response time (duty cycle) are all desirable features of 

mass spectrometers.  Unfortunately, all of these advantages cannot be realized 

simultaneously in a single instrument; thus, a compromise must be met.  Quadrupoles, for 

example, are inexpensive, relatively fast-scanning mass analyzers that are commonly 

used for single ion monitoring as well as collision-activated fragmentation events, but 
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these mass analyzers typically have an upper m/z limit of approximately 4000 and 

provide only unit resolution of 1 Da,140 which cannot differentiate phosphorylation and 

sulfonation (Δm = 0.0095 Da).  TOF MS instruments, on the other hand, have no m/z 

limit, very high sensitivity and extremely fast detection140 but also cannot provide a mass 

resolution great enough to routinely differentiate sulfonation and phosphorylation.  

Furthermore, ion trap mass spectrometry (IT-MS) and TOF-MS instruments are usually 

equipped to perform only collision activated dissociation (CAD) fragmentation, which 

leads to sulfonate loss in both positive and negative ion modes.§  A few instruments that 

provide the best combination of attributes for differentiating sulfonation from 

phosphorylation occurrence in biological samples are Orbitrap™ and FT-ICR MS 

instruments.  The latter instrument provides the highest mass accuracy and highest mass 

resolution of any mass spectrometer that is now commercially available.  These two 

attributes enable accurate and intact mass differentiation between isobaric 

phosphorylation and sulfonation, which cannot be attained with other MS instruments.  

Additionally, FT-ICR MS instruments are capable of performing a variety of 

fragmentation techniques, which allows for further investigation of the structural 

properties of sulfonated peptides.  These techniques are discussed in detail in Sections 

1.2.4 and 1.2.5. 

1.2.2 Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry 

Ion cyclotrons were first used in the early 20th century to accelerate elementary 

particles such as protons in order to investigate physical properties of the nucleus.141  E. 

                                                 
§ It is important to note that while CAD is the most common fragmentation technique for IT and TOF-MS instruments, 
some IT-MS instruments can now be modified to incorporate the ion-ion fragmentation technique of electron-transfer 
dissociation in positive (ETD) and negative (NETD) ion mode.  These techniques are discussed in more detail in 
Section 1.2.5. 
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O. Lawrence first reported that protons introduced into a magnetic field could be 

accelerated to kinetic energies in excess of 1x106 eV without the use of high voltages.  In 

fact, he applied high frequency oscillations (requiring no more than 4000 V) to opposing 

electrodes positioned normal to an applied magnetic field in order to accelerate ions 

multiple times as they repeatedly passed by these electrodes on an orbit bent into a 

circular path by the magnetic field.141  The applicability of ion cyclotron resonance (ICR) 

to mass spectrometry was first realized in 1949 by Sommer, et al.,142 and the first 

application of Fourier transformation in ICR MS was presented in 1974 by Comisarow 

and Marshall.143  Even then, the impact of this technique was not immediately realized 

due to the high cost and complicated yet required electronics.  However, there has been a 

steady growth in the interest of using ultra-high mass resolution FT-ICR MS instruments.  

As mentioned above, two clearly advantageous benefits above all other MS instruments 

are the high mass accuracy and high mass resolution.  A 7 Tesla (T) FT-ICR instrument 

that offers a resolution of 1,000,000 at m/z 400 can separate a mass-to-charge ratio of 

400.0000 from 400.0004.  Furthermore, the resolution increases with the strength of the 

magnetic field,144 which can range from as small as 3 T to as large as 25 T.  The high 

mass accuracy of this instrument results from precisely measuring the frequencies of ion 

motion in the cyclotron region.  A detailed explanation of this phenomenon is included in 

the following section.  

In FT-ICR MS, ion motion and subsequent ion separation is influenced by both a 

magnetic field and an electric field.  A magnetic field is used to measure ion orbital 

frequency for mass-to-charge ratio determination while an electric field is used to trap the 

ions axially in the detection region.  The total force exerted on an ion is equal to the sum 
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of the forces exerted by the magnetic and electric fields (Equation 1.1).  To calculate the 

magnetic field component, we consider an ion placed in a magnetic field.  The ion will 

move perpendicular to the magnetic field and experience a Lorentz force** perpendicular 

to both its direction of motion (i.e., its velocity vector) and the direction of the magnetic 

field as shown in Figure 1.3 and represented in Equation 1.2.144   Thus, its motion will be  

F

B
×

v

 

Figure 1.3.  Cartoon representing motion of a negative ion in a magnetic field.  The ion is 
shown as a black circle while its orbit is a red and black circle with the Lorentz force, 
magnetic field and velocity indicated.  Note that motion of a positive ion will be reversed.  
 
 

“bent” into a circular path, and it will orbit at a specific frequency (cyclotron frequency) 

which can be very accurately measured.  For a stable ion trajectory with a circular orbit, 

the force exerted by the magnetic field must also be equivalent to Equation 1.3.  By 

equating these expressions and substituting an expression for angular frequency 

(Equation 1.4), we find that the frequency at which an ion orbits in a magnetic field 

depends only upon the magnetic field and the mass-to-charge ratio (Equation 1.5).  The 

departure from velocity dependence differentiates ICR-MS from all other MS-based 

techniques and offers ICR-MS an upper hand on mass accuracy—so long that ions of the 

                                                 
** Note that the Lorentz force is a downward force toward the center of the ICR cell and is the centripetal force in this 
cyclic motion. 
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Ftotal = FE + FB = qE + q(v × B)

  Equation 1.1 

    
FB = qvB

    Equation 1.2 

    

FB = mv2
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    Equation 1.3 

         Equation 1.4 

 

          Equation 1.5 

same or similar cyclotron frequency are detected simultaneously.  From this equation, we 

can also see that the angular frequency is inversely proportional to the m/z of a particular 

ion.  Thus, ions with smaller m/z ratios will orbit at a higher frequency in the cell 

compared to larger m/z ratios.  Because the lighter and the heavier ions have different 

cyclotron frequencies, they will resonate with different applied excitation frequencies.  

This resonance is discussed in more detailed later in this section.  

The second component of the total force in Equation 1.1 belongs to the force 

exerted by the electric field, which can be represented simply by the elemental charge 

multiplied by the electric field vector.  This additional contribution to the force exerted 

on an ion also affects its motion.  Ions in an ICR MS instrument have three types of 

motion simultaneously in the cell—axial oscillations, cyclotron motion and magnetron 

ω
c
 =  v 

         r 

ω
c
 =  q  

         m 

B 
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motion.145  First, axial oscillations correspond to the movement of ions back and forth 

along the axis of the magnetic field (z-axis) as influenced by the trapping potentials 

applied to the end plates of the analyzer cell (see Figure 1.4).  As described earlier, 

cyclotron motion refers to the tight, circular orbit of ions influenced by the magnetic field 

in the ICR cell (Equation 1.5) while magnetron motion refers to the movement of ions 

about a central axis (z-axis) within the ICR cell due to combined electric and magnetic 

fields.144  Specifically, the magnetron motion reduces the measurable cyclotron frequency 

due to electric field repulsion of the ion radially toward the outer edges of the analyzer 

cell.  The outward force from the electric field directly opposes the inward Lorentz force  

 

Figure 1.4.  Illustration of a cylindrical ICR cell.  Trapping plates are placed 
perpendicular to the axis of ion motion prior to ion entry into the cell.  Detection and 
excitation electrodes are placed 180o out of phase (alternating) on the outer walls of the 
cell. 
 
discussed earlier, thus generating an additional ion orbit about the z-axis of the ICR 

cell.146  One way to imagine the combination of these ion motions is to compare them to 

the movement of the moon around the Earth and the Earth around the sun.  Figure 1.5 

shows how these motions are similar yet not the same.  It is important to note that 
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experimentally, magnetron frequencies are much smaller compared to cyclotron 

frequencies (1–100 Hz vs. 5000–5 x 106 Hz, respectively).  Because magnetron motion 

has no analytical utility,144 reducing its influence on the cyclotron motion and subsequent 

ion detection is desirable to maintain high mass accuracy.  When considering ion motion 

in a magnetic field, magnetron motion can cause a shift in the measurable cyclotron 

frequencies.  For this reason, calibration is used to reduce the frequency shift caused by 

magnetron motion by taking into consideration the applied electric field voltage.147  

Another way to reduce magnetron motion is to reduce the axial displacement of ions 

upon entry to the analyzer by keeping the sidekick voltages as close to zero as possible 

and using the lowest possible electric field. 

+

magnetron 
motion

cyclotron
motion

 

Figure 1.5.  Cartoons representing the difference between cyclotron motion (blue dotted 
line) and magnetron motion (black dotted line) of ions in an ICR MS instrument.  The 
cartoon on the left draws an analogy from the orbit of the moon (grey) around the earth 
(blue) and the orbit of the earth around the sun (yellow).  It is important to note that the 
ratio of the orbits of magnetron motion to cyclotron motion is exaggerated here for 
visualization. 
 

Experimentally, ions are introduced from either a matrix-assisted laser desorption 

ionization (MALDI) source under vacuum or an atmospheric pressure ionization source 

such as electrospray ionization (ESI), which is used exclusively in this thesis.  In the ESI 

process, charged analyte droplets generated from the electrospray source undergo a 



 25 
 

cascade of fission events due to Coulomb repulsion after solvent evaporation reduces the 

overall size of the droplets.  The fission events continue until the smallest stable unit is 

achieved (i.e., a single analyte ion containing a single charge or multiple charges 

commonly from protons or the loss of protons) or until ion evaporation occurs from the 

droplets.148 

Following ESI, gas-phase ions are guided through a hexapole-quadrupole-

hexapole region prior to ion focusing and entry to the ICR cell (see Figure 1.6).  Briefly, 

hexapoles contain six parallel rods in pairs of two while quadrupoles contain four parallel 

rods in two pairs of two.  These pairs of rods are connected electrically by a direct current.  

A superimposed alternating current is applied 180o out of phase to excite or resonate with 

ions of a chosen m/z ratio.  The first hexapole serves as a focusing region to guide ions 

into the quadrupole, which can act as a highly selective mass filter or as an additional 

focusing region (radio-frequency [RF] only mode).  The chosen m/z ratio will be guided 

through the quadrupole without energetic collisions whereas ions of other m/z ratios will 

have an unstable trajectory and will not be detected.  The second hexapole can be 

operated as a focusing region or a collision cell, where ions fragment after colliding with 

an inert gas such as helium or argon of a higher pressure (10-3 mbar).  This tandem mass 

spectrometry (MS/MS) fragmentation technique, referred to as collision activated 

dissociation (CAD),149 is discussed in more detail in Section 1.2.4.  Ions are then focused 

using a series of optical lenses and accelerated through the magnetic field into the ICR 

cell.   

As mentioned earlier, ion motion is “bent” into an orbit around the magnetic field 

due to a balance of centripetal and centrifugal forces for stable ion trajectory.  To detect 
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ions, radio frequencies in resonance with a large range of cyclotron frequencies (also 

known as a frequency sweep or “chirp”) or a single frequency must be applied to excite 

ions to orbit closer to the detection plates positioned at the outer walls of the ICR cell.  

The RF voltage applied will provide resonant energy to a particular m/z ratio, causing the 

ion to orbit the cell in an increasingly larger radius until it can be imaged by a detector.  

The detector is composed of a pair of opposing electrodes which are offset by 90o from a 

pair of excitation electrodes.  An image of the fast-moving ions is captured as a change in 

electrical current at the surface of the detection electrode as a function of time without 

relying upon collision of the ions into a detector.††  This non-destructive method of 

detection, also used in Orbitrap™ instruments, allows for multiple rounds of excitation 

and detection, increasing the overall sensitivity of the instrument.  The detection process 

is repeated for the entire m/z range of interest by scanning the range of radio frequencies 

appropriate for exciting ions in the ICR cell.  The image signal, or transient, is the time-

domain signal that results from the digital conversion of an analog signal corresponding 

to all the detected frequencies and their respective amplitudes.144  A transient may contain 

from 32,000 data points (low resolution) up to 1.24 million data points (high resolution) 

acquired over fractions of a second or several seconds.  To obtain frequency-domain data, 

the mathematical algorithm of Fourier transform (FT) is applied by instrument software 

to convert time-domain to frequency-domain signal, and the frequency data are converted 

to m/z values and displayed in a mass spectrum of ion abundance versus m/z. 

                                                 
†† It is important to note that while ions in ICR-MS do not collide into a device for detection, they may undergo 
collisions with other ions, which will decrease the time-domain signal as a function of time.  The average duration of a 
time-domain signal is on the order of seconds. 
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Figure 1.6.  Schematic of Bruker APEX-Q™ FT-ICR MS instrument. 
 

In this thesis, two commercially available FTMS instruments, the Bruker APEX-

Q™ and Bruker solariX™, were used to collect all MS and MS/MS data.  Figure 1.6 

shows a schematic of the APEX-Q™ instrument, which is a 7T hybrid Q-h-FT ICR-MS 

instrument equipped with an Apollo II ESI source and a indirectly heated hollow 

dispenser cathode for generating electrons during ion-electron activation.  The solariX™ 

is a newer, modified design similar to the APEX-Q™ but contains a split octopole prior 

to the quadrupole for allowing transfer of ion-ion activation reagents for negative- and 

positive-ion mode electron-transfer dissociation.  Additionally, the ion transfer optics 

have been replaced by a transfer hexapole prior to ion entry to the ICR cell.  The latter 

instrument is also equipped with a standard electrospray source as well as a hollow 

dispenser cathode for ion-electron reactions.   

1.2.3 Tandem Mass Spectrometry 

In single-stage mass spectrometry detection, intact mass-to-charge (m/z) ratios are 

measured without providing additional information regarding the primary structural 

identity of the ion.  Tandem mass spectrometry (or MSn, where n is the number of stages 

of subsequent mass spectral detection) allows the researcher to probe the primary 
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structure or sequence of the original ion.  Each stage of mass spectrometric detection is 

preceded by a fragmentation event in order to whittle away at the analyte structure.  

There are several ways to fragment a biomolecule, but each of these falls into two widely 

recognized classes, vibrational activation and electronic activation.  These two classes 

differ by how they induce dissociation of chemical bonds in the gas phase.  

1.2.4 Vibrational Activation with CAD  

Vibrational activation methods, such as low-energy CAD149-150 and infrared multi-

photon dissociation (IRMPD),151 impart upon the ion a relatively low energy, which is 

then redistributed evenly amongst all bonds.  This energy redistribution causes the bonds 

to vibrate until one or more of the weaker bonds becomes unstable and the ion dissociates.  

It is important to note that the vibrational activation process is thought to occur much 

faster than dissociation.152  In CAD, the additional energy is imparted from collisions of 

the analyte ions with a relatively high pressure of inert helium or argon gas (1 – 2 x 10-3 

mbar) whereas in IRMPD, an infrared laser irradiates the analyte ion, which absorbs a 

quantized amount of energy that is then redistributed amongst all bonds.  When 

employing vibrational activation methods, the weakest bonds dissociate, which in 

positive ion mode peptide and protein activation correspond to amide backbone bonds.  

This fragmentation leads to formation of b and y-type ions with occasional fragmentation 

at specific amino acid side chains for positive ion mode CAD while negative ion mode 

CAD can be more complicated.153-154  Figure 1.7 highlights the commonly observed 

cleavage points within the backbone of a peptide for different fragmentation techniques.  

For vibrationally activated fragmentation, my work utilized negative ion mode CAD only.  
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Figure 1.7.  Illustration of a generic peptide sequence with dotted lines indicating the 
location and identity of product ions formed using various types of activation techniques.  
The acronyms given for these techniques are discussed in Sections 1.2.4 – 1.2.5. 

 

Bond cleavage in negative ion mode peptide CAD is less predictable, and the 

fragmentation spectra are usually more complicated than in positive ion mode.154  In fact, 

product ions corresponding to a, b, c, x, y, z and internal pieces of the precursor ions are 

observed in negative ion mode CAD155 while positive ion mode commonly produces b- 

and y-ions only.  Furthermore, dominant neutral loss from amino acid side chains can 

lead to reduced structural information.  Out of the twenty amino acids naturally occurring 

in the human body, sixteen exhibit some form of neutral loss in negative ion mode CAD, 

making it difficult to interpret spectra.154  Furthermore, there are several ways in which 



 30 
 

backbone fragmentation can occur in negative ion mode.  Bowie, et al. suggest that a 

mobile proton, which is important in positive ion mode fragmentation,156 could also play 

a role in the formation of enolates to promote b- and y-ion formation in negative ion 

mode.‡‡154  The important conclusions that can be drawn from these reports are the 

following:  1) backbone fragmentation most commonly results in C-terminal y-ions 

which may contain the negative charge at the terminal carboxylic acid;154 2)  backbone 

cleavage at Asp/Glu157 and Asn/Gln residues is very abundant and is frequently 

accompanied by neutral loss of H2O and NH3, respectively;158 3)  amino acid side chain 

cleavage at Ser/Thr produces dominate neutral losses of CH2O and CH3CHO, 

respectively;159 and 4)  N-terminal loss of pyroglutamic acid resulting in a characteristic 

y-ion occurs for relatively short peptides (4 – 6 residues).160  

As discussed above, side chain losses represent common, and sometimes very 

abundant, fragmentation pathways in negative ion mode CAD.  Other side chains that 

could potentially be lost during CAD are acidic post-translational modifications such as 

sulfonation as well as CO2 from carboxylic acids.  Boontheung, et al. report that the 

sulfopeptide caerulein 2.2 [pEQDY(SO3H)TGAHFDF-NH2, where pE = pyroglutamic 

acid] electrosprayed in negative ion mode retains the sulfonate group during ESI yet not 

completely.161  It is possible that this particularly labile group could be lost during ion 

transfer from a higher pressure region of the source to a lower pressure region, e.g., while 

passing through the nozzle, skimmers, or ion funnels.  The fragmentation of ions in this 

region is referred to as “in-source” or “nozzle/skimmer dissociation.”162  To reduce in-

source fragmentation and retain the sulfonate group, source conditions such as the 

                                                 
‡‡ These authors propose a new, yet confusing, notation for negative ion mode fragmentation pathways.  Here, we will 
refer to the original notation first published by Biemann and Scoble, Characterization by tandem mass-spectrometry of 
structural modifications in proteins. In Science, 1987; Vol. 237, pp 992-998. 
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voltages applied to the first ion funnel and the second skimmer must be carefully tuned 

(personal findings).  Of the sulfonate-retaining precursor ion peaks in MS mode, very few 

if any remain following CAD.  Boontheung, et al. report that the most abundant fragment 

observed after CAD of the aforementioned peptide corresponds to the desulfonated 

caerulein 2.2 parent ion with a single backbone fragmentation peak observed.161  

For acidic peptides, the likely sites of deprotonation are carboxylic acids in the 

side chains of aspartic and glutamic acids as well as the C-terminus.163  Following CAD 

fragmentation of acidic peptides, cleavage is frequently observed at or near the site of 

negative charge,164 which may lead to neutral loss of CO2 if carboxylic acids are 

deprotonated.  Ewing and Cassady observed abundant CO2 loss following sustained off-

resonance irradiation (SORI) CAD of triply- and quadruply-deprotonated peptide 

precursors.155  These authors and others propose that sidechain carboxylates can promote 

fragmentation through cyclization of the precursor.155, 164  Another interesting feature of 

CAD fragmentation is the influence of charge state on fragmentation efficiency.  A 

particular trend of improved CAD fragmentation efficiency as a function of increasing 

charge state has been observed in positive ion mode for large proteins165-167 as well as 

negative ion mode CAD of peptides.155  Higher charge-state peptides and proteins should 

exhibit higher coulombic energy than lower charge-state peptides and, thus, require less 

applied energy for efficient dissociation.155  It is important to note, however, that the 

location of the charge also plays a critical role in fragmentation efficiency.  Summerfield 

and Gaskell reported that highly acidic groups such as cysteic acids can sequester the 

negative charge, thus driving CAD fragmentation away from the backbone and towards 

the amino acid side chain.157  Despite these shortcomings, CAD remains the most 
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commonly used technique for fragmenting ions in tandem mass spectrometry albeit 

mostly in positive ion mode due to the fragmentation pattern predictability and 

compatibility with common liquid chromatography solvents used in high-throughput 

proteomic analyses.   

1.2.5 Ion-Electron and Ion-Ion Activation Methods 

Mass spectrometers that can perform vibrational activation methods such as CAD 

have been commercially available since the 1970s.  However, a relatively new class of 

fragmentation methods employing ion-electron and ion-ion reactions is emerging.  Figure 

1.8 shows the different types of ion-electron and ion-ion reactions and organizes these by 

the charge state required for each reaction.  In several cases, more than a single charge is 

inherently required for these particular fragmentation mechanisms to work.  In general, 

ion-electron reactions require the irradiation of an ion of either positive or negative 

charge with electrons of varying energy whereas ion-ion reactions require a charge 

transfer of either an electron or a proton to an ion of positive or negative charge, 

respectively. 

[M – nH]n- fragments
collisionsCAD

[M – nH]n- +  e- (4 - 6 eV)             [M – nH](n + 1)- ● fragments

[M – nH]n- +  e- (>10 eV)             [M – nH](n - 1)- ● + 2e- fragments

[M – nH]n- +  F+ • [M – nH](n - 1)- ● + F            fragments
F = fluoranthene

 

Figure 1.8.  Vibrational, ion-electron, and ion-ion activation methods used for negative 
ion mode analysis. 

 

In electron detachment dissociation (EDD), multiply charged anions interact with 

high-energy electrons (> 10 eV) to detach an electron from the analyte, producing an 
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odd-electron, charge-reduced species.  This interaction forms a highly energetic, unstable 

radical ion which fragments, often at a backbone Cα–C bond N-terminal to the radical 

site,168 to form a• and x ions (Figure 1.9).§§168, 170-172  The fact that an electron is detached 

from the analyte limits what charge states are compatible with EDD:  only negative 

charge states of greater than 2- can generate charged product ions.  The first report of 

EDD by Budnik, et al.170 shows that fragmentation of the doubly-deprotonated sulfonated 

peptide caerulein, which normally loses SO3 in positive ion mode MS as well as in 

positive and negative ion CAD, resulted in SO3 retention in most product ions.  However, 

neutral loss of CO2 and SO3 was also observed.  

 

Figure 1.9.  EDD fragmentation mechanism modified from References 168 and 170. 
 

The proposed mechanism for this reaction suggests that the high-energy electron 

interacts with the negatively charged analyte to detach an electron and form a positively 

charged radical site.  This site acts as a sink to which an electron can be transferred from 

a nearby location that has a low-energy electron, mostly from likely a deprotonated 

carboxylate173 or a deprotonated backbone amide.  Budnik, et al. suggested that electron 

irradiation is energetic enough that electron detachment could occur from carboxylates 

and/or a backbone amide as their ionization energies (3.3 eV, ~8.5 eV, respectively)170, 174 

                                                 
§§ In the first reference in this series, the authors initially propose N—Cα bond cleavage due to observed a, c and z-ions. 
It was later shown by the same authors that Cα—C bond cleavage is the predominant cleavage in EDD. However, there 
are additional reports that suggest EDD is a radical-initiated yet charge-remote fragmentation process. For additional 
information, please refer to Laskin, Yang, Lam and Chu, Charge-remote fragmentation of odd-electron peptide ions. In 
Anal. Chem., 2007; Vol. 79, pp 6607-6614. and references therein. 
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are much lower than the incident electron energy (> 10 eV).170  The energy released from 

this recombination of the positively charged radical and the transferred electron (~ 5 

eV)175 corresponds to the difference between the energy cost of forming the radical site 

and the electron affinity of the carboxylate that lost the electron.  This amount of energy 

is more than sufficient to cause electronic excitation and subsequent fragmentation of the 

charge-reduced analyte ion.  However, one caveat is that electron detachment at or near a 

carboxylate results in facile loss of CO2,
168, 170-171 which is a low-energy pathway.  This 

fragmentation behavior differs from electron capture dissociation (ECD) of protonated 

precursors in that one of the lowest energy pathways is loss of acidic sulfonation.176  

Because EDD occurs much faster than vibrational techniques such as CAD, the excess 

energy does not have time to dissipate throughout the peptide, thus leaving PTMs intact 

as is evidenced by sulfonation170 and phosphorylation retention in peptide EDD 

fragments168, 177 as well as sulfonate retention in fragments from oligosaccharides.178  

Recently, Ganisl, et al. have shown that top-down EDD can fragment large, intact acidic 

proteins of nearly 150 residues.179  These reports suggest that there are many more 

possibilities for structural characterization using EDD.  

In negative electron transfer dissociation (NETD), a multiply deprotonated 

analyte ion transfers an electron to a radical cation of high electron affinity to generate a 

charge-reduced, odd-electron radical anion which fragments into EDD-like a• and x ions 

(Figure 1.10).  In their initial discovery, Coon, et al. used xenon cations to withdraw 

electrons and promote radical formation for subsequent fragmentation.180  These authors 

proposed that the resulting radical site following electron abstraction could be an acidic 

site such as a side-chain carboxylate that abstracts H• from a nearby amide nitrogen  
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Figure 1.10.  NETD mechanism modified from Reference 178. 

 

to affect rearrangement into a• and x ions.  This mechanism is similar to EDD in that it 

involves charge reduction by electron abstraction at an acidic site on the peptide, whether 

that be part of a PTM, a side chain of an amino acid residue, or the C-terminal 

carboxylate.  Also, both mechanisms suggest that these processes are charge-directed 

events in which cleavage of the Cα—C bond(s) is realized after proton transfer from the 

amide nitrogen to the neutral radical site.168, 180  Because NETD proceeds through a 

similar mechanism as EDD with simply a different method for electron abstraction, 

similar neutral losses are expected.  Indeed, loss of CO2 is a dominant pathway in NETD; 

however, the difference in excess energy following ion activation is far less in NETD 
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than in EDD, allowing different reaction pathways to be realized.180  Recently, Huzarska, 

et al. reported that the use of Xe+• radical cations can impart too much energy from the 

electron abstraction (transfer) process, leading to neutral loss of CO2 and H3PO4 from 

phosphopeptides.181  These authors found that use of a fluoranthene radical cation 

(C16H10
+•) with a lower electron affinity, thus a lower initial ionization potential for the 

corresponding neutral, than Xe+• imparts less recombination energy for fragmentation 

(2.5–4.5 eV for C16H10
+• vs. 6.7–8.7 eV for Xe+•), allowing for less complex spectra due 

to reduced neutral loss.181***  In other work, Wolff, et al. applied NETD to sulfonated 

glycans, specifically glycosaminoglycans (GAGs).178  Both glycosidic and cross-ring 

cleavages were observed, albeit with some neutral loss of CO2 and SO3.  Sulfonate loss 

could be reduced by using the gentler fluoranthene radical, fragmenting higher charge 

state ions, or adding sodium ions.  The latter of these three suggestions is in direct 

contrast to the second recommendation and can reduce the overall signal in negative ion 

mode.  These authors also reported that, despite the advantage of conducting NETD in an 

inexpensive ion trap, the relatively low mass resolution of an ion trap can preclude 

reliable interpretation of the MS/MS spectra.178 

 In negative ion electron capture dissociation (niECD), a negatively charged 

analyte ion captures a relatively low energy electron (4.5–6.5 eV) to form a charge-

increased radical species which fragments at N—Cα bonds, producing c′ and z• ions 

analogous to those formed in positive ion mode ECD.182  This seemingly improbable 

technique is believed to work for zwitterions of overall negative charge for m/z 1000.182  

What is particularly exciting about this m/z range is that it includes many acidic, post-

                                                 
*** These authors also note that not all of the calculated excess energy is imparted to the analyte ion.  Some of the 
energy will be carried off with the neutralized electron-transfer reagent. 
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translationally modified peptides such as phospho- and sulfopeptides, which are difficult 

to analyze in both positive and negative ion modes as discussed earlier.  Furthermore, this 

is the first report of a negative ion-electron activation method that can actually increase 

the charge state of the fragment ions.  Increased charge is of great interest for ion 

detection in ICR instruments because the generated image current is proportional to 

charge;183 thus, there is enhanced signal for higher charge states and possibly a better 

chance of detecting low abundance product ions using this technique.  

1.2.6 Primes and Dots:  Keeping Track of Hydrogens and Electrons in MS/MS 

 Roepstorff and Fohlman devised the first and still most widely used nomenclature 

for peptide fragmentation.184  In this report, they highlight the b- and y′-ion fragments 

which are the most frequently observed ions following positive ion mode CAD of 

peptides.  As discussed above in Section 1.2.5, electronic activation methods provide 

highly complementary product ions to those observed following vibrational activation.  

Specifically, a, a•, b (to some degree), c′, x, y′, z•, and z – 2H ions can be observed in 

EDD, NETD, and niECD.  Therefore, it is extremely important to keep track of the 

addition or subtraction of hydrogens and electrons in MS/MS product ions.  Radical a• 

ions differ from even-electron a-ions by one additional H• (or hydrogen atom), making 

the radical ion ~1.00837 Da heavier than an even-electron ion.  The primes (′) common in 

c′- and y′-ions indicate that the c- and y-ion contain an additional hydrogen atom, which 

does not confer a charge on the peptide.  

 In Figures 1.9 and 1.10, we can see that cleavage in ion-ion and ion-electron 

activation methods very closely resembles homolytic cleavage.  Figure 1.11 shows 

product ion structures with the appropriate notation (including a prime for one additional 
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hydrogen atom or a dot for a single-electron radical site) for a hypothetical tripeptide.  It 

can be seen that a• ions complement even electron x-ions in EDD and NETD while c′ ions 

with an additional hydrogen atom complement z• radical ions in niECD.  In vibrational 

 

Figure 1.11.  Structures of neutral products from MS/MS of a hypothetical tripeptide.  
Note that b-ions are cyclic in CAD, but b-ion structure is unknown in ECD.  
 

activation, even-electron b-ions complement y′ ions, which contain an additional 

hydrogen atom.  To observe an even-electron a-ion in ECD, an a• ion must gain a 

hydrogen atom (a• + H• = a). To observe c′ and z• ions from a homolytic cleavage in ECD, 

the c• ion must gain H• to form c′ while the z• remains the same.   
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1.2.7 Positive vs. Negative Ion Mode Mass Spectrometry 

Fragmentation techniques in positive ion mode have been used extensively to 

analyze sulfonated peptides.68, 185-196  In all but two cases,188, 193 direct sulfonate 

localization was not possible without the addition of metal ions to stabilize the sulfonate 

group.  Furthermore as discussed earlier, it is challenging to obtain enough signal 

abundance in positive ion mode for sulfonated ions when the analyte itself is naturally 

acidic.  Because negative ion mode has been used in far fewer accounts for sulfonation 

identification and characterization,161, 170, 190, 193 it may provide another avenue for 

exploration and discovery in this area.  

Complementary techniques to positive ion mode fragmentation methods have 

existed for decades in the case of vibrational activation methods such as negative ion 

mode CAD and IRMPD.  Only within the past decade have the parallel methods of 

electron transfer dissociation (ETD) and electron capture dissociation (ECD) been 

realized.  NETD180 was recently discovered in Professor Donald Hunt’s laboratory as the 

negative ion mode analogue to their previous discovery of positive ion mode ETD 

whereas197 EDD was first published by Zubarev and co-workers in 2001 and was 

suggested to be the negative ion mode equivalent of ECD.170  However, just recently, a 

breakthrough in this field discovered in our laboratory shows that there is yet another 

technique for negative ion mode MS/MS analysis of acidic biomolecules: niECD differs 

from positive ion mode activation methods in that it does not promote sulfonate loss 

during or after the activation stage, leading to direct sulfonate localization with sufficient 

backbone fragmentation to also obtain high sequence coverage.  Furthermore, niECD 

also differs from the other negative ion mode activation techniques because it involves 
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direct interaction with a positively charged residue within the peptide whereas other ion-

electron and ion-ion techniques involve initial interaction with a negatively charged site 

and subsequent movement of the radical site.  

1.2.8 Differentiation of Sulfonation and Phosphorylation using Mass Spectrometry 

The masses of phosphorylation and sulfonation as peptide PTMs at a basic pH 

differ by only 9.5 mDa (79.9663 Da for phosphorylation and 79.9568 Da for sulfonation), 

creating a challenge for researchers using mass spectrometry as the detection method.  It 

is important to note that this differentiation is not an impossible feat, but it requires a 

fairly high resolution of ~158,000 at a peptide mass-to-charge ratio of 1500 (see Figure 

1.12).  As shown by the equations in Figure 1.12, for constant resolution and resolving 

power over a wide m/z range, this differentiation requires a smaller ∆m as a function of 

increasing m/z, which is difficult to obtain in FT-ICR MS.  The most commonly used MS 

instruments such as IT, triple quadrupoles (QQQ) and Q-TOF instruments consistently 

achieve a resolution lower than ~ 40,000 in the m/z range from 200–2000.  Most of the 

Int.

m/z

Resolving power:  m/∆mFWHM

∆mFWHM
Resolution:  m/∂m

=  1500.0000 ≈  158,000
0.0095

∂m

1500.0000 1500.0095

 
Figure 1.12.  Hypothetical mass spectrum (intensity vs. m/z) of two peaks illustrating the 
difference between resolving power and resolution.198 
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 biologically relevant peptides exist well above 400 Da, even at higher charge states such 

as 3-/+ and 4-/+ while lower charge states such as 1-/+ and 2-/+ can be upwards of 1200–

1600 Da for the same peptide.  Furthermore, it is also difficult to isolate precursor ions of 

high charge from their neutral loss.  For example, water loss from a 1-/+ ion exists 18 Da 

away from the peptide ion and is easy to isolate; however, this same water loss from a 4-

/+ ion results in a difference of 18/4, or 4.5 Da, which is more difficult.  

As discussed earlier, there are several ion activation methods for biomolecule 

characterization.  However, many commercial MS instruments are not yet compatible 

with several fragmentation methods.  For instance, benchtop models of the most 

commonly used MS instruments (QQQ, Q-TOF, IT) are not equipped to conduct EDD or 

ECD, and special modifications to these instruments must be made to enable ETD and 

NETD as well as other laser-induced dissociative techniques.199  Originally, not all mass 

spectrometers could be equipped with each electronic activation technique due to the 

need of a magnetic field for electron confinement.  However, recent ion-trap EDD168 and 

QqQ ECD200 suggest that the need of a magnetic field is no longer an issue.  As 

highlighted above, very high mass resolution and mass accuracy are needed to 

differentiate sulfonation from phosphorylation.  The only commercially available mass 

spectrometers that can meet this demand are Orbitrap™ and FT ICR-MS instruments.  

Because these instruments also offer high sensitivity and moderate dynamic range,201-202 

Orbitrap™ and FT ICR-MS are the superior MS instruments for this application.  I have 

chosen to use FT ICR-MS throughout this thesis.  
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Sulfonation is lost during positive-ion mode CAD186 whereas phosphorylation can 

be somewhat preserved at low charge states.203  Nemeth-Cawley, et al. also reported that 

excess heat from the transfer capillary can result in desulfonation prior to single-stage 

MS detection.186  If MS source conditions are tuned carefully to affect a gentler 

transmission of ions into the high vacuum region of the mass spectrometer, sulfonate loss 

can be reduced but not completely averted (personal unpublished results).  

Differentiation of sulfonation and phosphorylation utilizing various MS-based 

techniques has been examined extensively (see Seibert and Sakmar103 and references 

therein).  Several of these techniques rely on the loss of the sulfonate group as a detection 

method.  Jedrzejewski and Lehmann204 and Rappsilber, et al.195 have differentiated 

phosphopeptides from sulfopeptides by comparing the unique m/z losses following 

skimmer-octopole CAD and by quadrupole CAD, respectively.  Sulfopeptides tend to 

lose only 80 Da, corresponding to the loss of SO3, while phosphopeptides can lose HPO3 

(80 Da) and/or H3PO4 (98 Da) during CAD.  More recently, Lehmann published again on 

these unique losses in CAD, this time adding “beam-type” CAD††† and ion-trap CAD on 

an Orbitrap™.206  In a departure from the traditional approach illustrated above, Yu, et al. 

devised an elegant synthetic method for unambiguously determining tyrosine sulfonation 

sites by labeling all non-sulfonated tyrosines with sulfosuccinimidyl acetate and 

subjecting the derivatized peptides to CAD.191  Because CAD induces complete loss of 

the sulfonate group, all sites that appear as free tyrosines in the MS/MS spectra are 

actually tyrosine sulfonation sites.191  At best, these are all subtractive approaches for 

                                                 
††† “Beam-type” CAD refers to the type of CAD which employs interacting a fast beam of ions with neutrals to induce 
fragmentation.  This type of fragmentation is typically performed in sector and triple quadrupole MS instruments. 
Wells and McLuckey, Collision-induced dissociation (CID) of peptides and proteins. In Methods Enzymol, 2005; Vol. 
402, pp 148-185. 
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which the overall efficacy is dependent upon the complete loss of a particular group as 

opposed to its direct detection.  In high mass resolution instruments such as Orbitraps™ 

and FT-ICR mass spectrometers, accurate mass is sufficient to differentiate these isobaric 

PTMs; however, these particular instruments are not as widely used as lower mass 

resolution ion trap, QQQ, and Q-TOF instruments that were used in the aforementioned 

experiments. 

1.3 Metal Oxide-Based Enrichment of Poly-Oxyanions 

 Lewis acid-base interactions involve the acceptance and donation of electrons, 

respectively, between chemical species.  These interactions can occur between 

coordinatively unsaturated cationic centers of metal oxides and negatively charged poly-

oxyanions.  The transition metal is usually coordinated to 1–5 oxygens for these types of 

surfaces.  To measure the surface Lewis acidity of metal oxides, researchers have focused 

much attention on the adsorption characteristics of small molecules such as carbon 

monoxide and carbon dioxide using infrared spectroscopy.207-209  Some of these metal 

oxides include transition metals such as titanium and zirconium as well as non-transition 

metals such as aluminum, gallium, and calcium to name a few.  In this thesis, I focus on 

titanium dioxide.  In the preparation of a titanium dioxide surface, hydrolysis of TiCl4 is 

carried out at low temperature and pH.210  Any residual chloride ions that are not 

separated from the Ti4+ metal ions will act as contaminant species on the metal oxide 

surface, potentially causing a change in surface morphology and functionality.  Once 

hydrolysis is completed with dialysis separation of the counter anion, the surface is 

dehydrated at high temperature (150–350 oC) as both excess water and hydroxyls on the 

metal oxide surface can serve as additional contaminant species.  The degree of heat 
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treatment determines the types of binding sites for coordination of Lewis bases.  If treated 

at a low temperature (150 oC), the TiO2 surface will contain adsorbed water while at a 

higher temperature (350 oC) there will be hydroxyls that dictate the binding 

interactions.207  It has also been suggested that water-adsorbed sites contain a four-

coordinate Ti4+ while the hydroxyl-adsorbed sites contain a five-coordinate metal 

center.209  The number of coordination sites may affect the shape of the metal-ligand 

complex, which in turn affects the type of interaction that it can form.  Furthermore as 

mentioned above, the specific TiO2 preparation steps determine the relative amounts of 

three crystalline forms of TiO2 (anatase, rutile and amorphous)207, 209 as well as the 

amount of contaminant species on the metal oxide surface.  These variable conditions can 

make it extremely difficult to develop reproducible identical surfaces. 

As stated earlier, the titanium(IV) cation can exist in a dioxide as a five- or four-

coordinate species with hydroxyls or water, respectively, adsorbed on the surface.209  The 

unsaturated metal ion has available coordination sites existing from its open-shell 

electronic configuration.  Empty d-orbitals of Ti4+ cationic centers with the help of 

hydroxyl groups and/or water facilitate a reversible Lewis acid-base interaction 

depending on the pH of the local environment.  Specifically, hydroxyl groups residing on 

the TiO2 surface following aggressive heat treatment interact with CO and CO2
207-208 as 

well as HPO4
2-.211  Early work by Muljadi, et al. suggested that phosphate interacts very 

strongly with aluminum hydroxide surfaces and that pH plays a critical role in binding 

reversibility.212  More recent studies considering phosphate binding to TiO2 show similar 

pH-dependent binding and reversible interactions.211, 213-214  Connor and McQuillan also 

reported that phosphates interact most favorably at pH 2.3 and do not interact appreciably 
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at pH 11.0.211  In a separate study, the acidities of the TiO2 surface for anatase and rutile 

crystalline forms in terms of pKa were calculated to be 0.5–2.0 and 6.5,215 respectively, 

indicating that a surface composed of mostly the anatase crystalline form was used in the 

previous study.  

Infrared spectroscopic studies showed that the binding modes of Lewis base 

coordination to a metal oxide surface can be determined by the different separations of 

stretch absorption bands for carboxylates and other interacting species.  Most notably, 

McQuillan determined the binding nature of many types of carboxylic acids216-217 as well 

as phosphates.211  Figure 1.13 displays the chemical interaction for each of the three 

binding modes: monodentate, chelating bidentate, and bridging bidentate.216  

Monodentate binding, which is seen for disubstituted and some monosubstituted 

phosphates, involves a single interaction point between the negatively charged oxygen 

and the positively charged metal ion.211  Dicarboxylic acids such as phthalic acid have 

been shown to coordinate to two metal ions via both carboxylates to form a  

 

Figure 1.13.  Chelating and bridging bidentate as well as monodentate binding modes 
(left–right, respectively) for poly-oxyanion species interacting with a generic metal oxide 
surface (M).  Left and middle images are recreated from Dobson and McQuillan217 while 
the right image was created based on information from Connor and McQuillan.211 
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bridging bidentate strucutre.217  As for phosphates, there is some ambiguity regarding 

exactly what binding interaction occurs.  Connor and McQuillian clearly state in their 

1999 Langmuir article:211  

“Analyses of the infrared spectra of the adsorbed phosphate, the adsorption 

kinetics, and the adsorption isotherm have indicated that phosphate binds strongly 

as a bidentate surface species, although the infrared spectra have not allowed 

bridging bidentate and chelate species to be distinguished.”  

According to this account, phosphates which have two relatively close negatively charged 

oxygens could interact via either bidentate binding mode (see Figure 1.14).  Yet, Larsen, 

et al. cite this very paper to conclude that phosphate anions coordinate to TiO2 via a 

bridging bidentate interaction.218  As for chelating bidentate interactions, they are the 

preferred interaction for lactic and glycolic acids, which interact through the carboxyl and 

the α-OH group.216  

 

Figure 1.14.  Possible metal ion (M) binding modes for phosphorylation and sulfonation 
on peptides. 
 

Recent attention within the past decade has been focused on applying the 

experimental work described above to the enrichment of phosphopeptides from biological 

samples.177, 213-214, 218-220  Larsen, et al. have shown that TiO2 microcolumns offer high 

enrichment selectivity when an aromatic substituted carboxylic acid such as 
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dihydroxybenzoic acid (DHB) is added to the enrichment solution.218  They report that 

DHB competes with non-phosphorylated carboxylate species to reduce non-specific 

binding.  The previously referenced reports from Larsen, et al. were conducted using a 

MALDI source, which is much more tolerant to DHB than ESI.  They comment that “a 

simple cleaning of the source” will suffice;213 however, such cleaning may not be a 

sustainable solution for high-throughput analyses.  This particular enrichment procedure 

may require an additional purification step prior to ESI-based MS analysis, effectively 

nullifying the protocol’s simplicity.   

More recently, Andrews and coworkers have presented improvements for 

phosphopeptide enrichment using TiO2.  Their results indicate that non-specific binding 

of acidic peptides can be reduced by methyl esterification of carboxylic acids.214  

Furthermore, they show that monophosphorylated and multiply phosphorylated peptides 

from human cyclin-dependent kinase 2 can be fractionated using a stepwise pH gradient 

elution from pH 8.5 to 11.5.  In previous reports, addition of DHB to the enrichment 

solution was effective for reducing non-specific binding for mixtures of α- and β-

casein218 but not for more complex mixtures.221
  Instead of using small organic acid 

additives in the enrichment solution to prevent carboxylate interactions, Andrews and 

coworkers pursued methyl esterification of carboxylic acids as an alternative.  The 

improved binding selectivity for methyl-esterified phosphopeptides outweighed any 

issues associated with lack of complete esterification or side reactions.214  The Håkansson 

group has also evaluated the use of titanium and zirconium dioxide for the enrichment of 

phosphopeptides.  Kweon and Håkansson reported that highly selective phosphopeptide 

enrichment can be obtained from microtips coated with 50 µg of zirconium and titanium 
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dioxide.  In this report, the authors showed that singly-phosphorylated peptides were 

preferentially enriched from ZrO2 while TiO2 performed better for enrichment of 

multiply-phosphorylated peptides.220  Additionally, phosphopeptide enrichment improved 

the signal-to-noise ratio of multiply-charged precursor ions for MS analysis, enabling 

tandem MS analyses such as EDD and ECD for reliable localization of the 

phosphorylated residues.177 

Though free sulfonates have been shown to interact with various metal oxide 

surfaces under acidic conditions,222-225 there are no published reports indicating that these 

metal oxides have been used to enrich sulfopeptides.  In this thesis, I optimize our 

original phosphopeptide enrichment procedure for the selective enrichment of 

sulfopeptides, including determination of the minimum amount of sulfopeptides loaded 

onto the TiO2 microtips as well as the binding and elution pH values.  

1.4 Current Methods for Enrichment of Sulfonic Acids and 
Sulfopeptides 
 
 At present, there are few methods for analyzing sulfopeptides with mass 

spectrometry and far fewer employing enrichment prior to MS detection.  As discussed 

previously in Sections 1.2.4 and 1.2.7, the labile sulfonate group is readily lost during 

vibrational activation but can be differentiated from isobaric phosphorylation due to the 

characteristic loss of 80 Da from sulfopeptides (compared to the loss of 98 Da for 

phosphoric acid loss from phosphopeptides during CAD).  This neutral loss-based 

approach is acceptable for cases in which there is sufficient sulfopeptide signal 

abundance to conduct CAD for structural characterization.  However, sulfopeptides 

measured in biological systems may exist naturally at very low abundance,78 potentially 

leading to limited or no MS detection.  For this reason, recent efforts have been focused 
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on enriching peptide sulfonic acids226 and sulfopeptides191, 227 prior to MS detection.  

Chang, et al. oxidized cysteine thiols to form sulfonic acids, which can be enriched using 

an ionic affinity capture approach.226  This method employs poly-arginine coated 

nanodiamonds to bind sulfonic acid moieties at a concentration as low as 0.02%.  Though 

this method boasts excellent enrichment selectivity, the protocol requires preparation as 

well as functionalization of a highly specialized surface followed by a labor-intensive 

enrichment procedure.  Furthermore, the authors refer to sulfonic acids interchangeably 

as sulfopeptides, which is an inaccurate assessment.  Sulfonic acids do not contain a 

sulfur-oxygen bond as the point of attachment to the peptide as do sulfonates; thus, these 

groups can be clearly differentiated by structure.  Furthermore, the localization and 

function of these groups also differ greatly.  Sulfonic acids exist as oxidative PTMs that 

can modulate catalysis and metal binding inside cells.228  On the other hand, sulfonation 

of peptides occurs as one of the last PTMs conferred to mostly secreted peptides involved 

in protein-protein interactions in the extracellular matrix.1, 7  It is possible that the 

structural and functional differences of these particular groups may cause different metal-

ion binding modes. 

 To date, there is only one published procedure for the enrichment of sulfopeptides: 

Amano, et al. suggested that sulfopeptides can be enriched prior to MS detection by using 

ion-selective enrichment in the presence of a complex protein digest.227  Specifically, the 

column-based anion exchanger diethylaminoethyl dextran (DEAE-D) binds sulfonates on 

peptides at slightly basic pH, and the sulfopeptides are eluted with a stepwise increase in 

sodium chloride.227  Despite demonstrating sulfopeptide enrichment, this protocol 
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requires 1.5–3 M sodium chloride that must be eliminated prior to MS detection, 

precluding online MS analysis and potentially leading to losses due to sample handling.  

 For the reasons highlighted above, we believe that titanium dioxide enrichment, 

which requires neither complex sample preparation nor cleanup prior to MS detection, 

offers a simple alternative to the aforementioned previously published methods. 

1.5 Improving Fragmentation Efficiency in EDD 

One troublesome disadvantage that exists for negative ion mode CAD, NETD and 

EDD is the loss of CO2 as a major fragmentation event from acidic peptides.164, 168, 170, 180-

181  One possibility would be to introduce a permanent negative charge in place of the 

negatively charged carboxylate.  In designing such a synthesis, one must consider two 

main requirements:  the added moiety should contain a functional group that will react 

with carboxylates with high selectivity and efficiency as well as a different functional 

group that will provide a stable negative charge in mildly basic conditions and will not be 

subject to neutral loss during electronic activation.  First, let us consider reactions to cap 

carboxylic acids. Methyl esterification adds a methyl group to carboxylic acids using 

methanolic hydrochloric acid124 or trimethylsilyldiazomethane (a safer alternative to 

diazomethane)229 under ambient conditions.  Next, let us consider the stable negative 

charge.  Phosphates and sulfonates as well as some alcohols, phenols and sulfides can 

provide a negative charge at basic pH values from 8–11.  However, it is possible that 

primary sulfides (R-SH) could form disulfide linkages, sequestering their negative charge 

at basic pH.  Phosphates and sulfonates may pose a problem due to a lack of reliable 

stability in EDD and NETD as discussed above.  Phenols from tyrosine as well as 

alcohols from threonine and serine can be deprotonated at pH 9.6–10 and approximately 
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pH 13, respectively.230  Combining these ideas into a single reactant species such as 4-

aminonaphthalene sulfonic acid (ANSA) or taurine seemed to be a logical progression 

based on previously published reports of successful peptide labeling with these 

reagents.231-232  Both of these reports cite an improvement in fragmentation efficiency 

with fragmentation initiated away from the charge in CAD.  However, neither of these 

articles highlights the utility of this approach for reducing neutral loss of CO2 following 

electronic activation and fragmentation.  

Another possible route for reducing neutral loss of CO2 in EDD and NETD would 

be to cap the carboxylic acids as in the previous idea but not provide another source of 

negative charge.  In order to obtain a multiply negatively charged ion after removing a 

source of negative charge, a proton must be removed from the peptide backbone.  Though 

it seems unlikely, this simple, yet elegant, approach has already been eluded to by Budnik, 

et al. and references therein.170  These authors state in this article that EDD is a radical-

driven fragmentation process that leads to backbone fragmentation if the radical site is 

located on the backbone.  Radical sites in EDD are generated from electron detachment at 

a site of relatively low electron affinity as discussed earlier.  Carboxylic acids, which are 

thought to be one of the most acidic groups located on peptides, are likely sites for 

electron detachment due to their low electron affinity as well as the exothermic energy 

release from losing CO2.
170  By protecting the carboxylic acids with stable alkyl groups, 

neither deprotonation nor electron detachment with radical formation can occur at the 

carboxylic acids.  One potential problem with this approach could be decreased 

ionization efficiency of the peptide of interest, which could be remedied by increasing the 

accumulation time of the low-abundance ion of interest or deprotonation of a peptide 
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backbone proton to increase the charge state.  This latter option, most likely to occur 

from an amide, would require a fairly strong base.  However, bases with pKa values of 

greater than water (~16) would deprotonate water in the spray solvent instead of 

removing a proton from the peptide backbone.  Therefore, hydroxide is the strongest base 

available if traditional aqueous-organic mixtures are used for the spray solvent.  

McLuckey, et al. have developed a method for manipulating charge state distributions in 

negative ion mode MS by introducing a strong base into the drying gas flow during the 

desolvation stage of ESI.233  This potentially useful trick may provide an additional 

means for deprotonation of backbone protons.  

Yet another possibility for blocking the carboxylic acids to prevent neutral loss in 

EDD is to alter the charge carrier.  Several recent reports evaluate the use of alkaline 

earth and divalent transition metal ions as charge carriers in ECD.196, 234-237  The unique 

fragmentation behavior of various divalent metal-peptide adducts may lead to a “tunable” 

system for obtaining complementary fragmentation of these peptides.236  While there 

have been considerable advancements with cation adduction, there have been far fewer 

studies involving anion adduction. Liu and Cole have recently reported that matching the 

gas-phase basicity (GPB) of the carboxylate with that of the adduct anion helps promote 

adduction in negative ion mode ESI-MS.238  Their proposed mechanism for anion 

interaction involves a halide anion such as chloride adducting to a neutral carboxylic acid, 

thereby increasing the charge state of the precursor in negative ion mode MS.  The 

authors do not attempt ion-electron reactions to elucidate the gas-phase structure of anion 

adducted peptides, allowing for further exploration in this area. 
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1.6 Dissertation Overview 

Following the introduction to this thesis, we examine first the enrichment of 

sulfonated peptides using titanium dioxide (TiO2) microtips.  Optimization of binding and 

elution pH as well as optimization of minimum binding amount for the most efficient 

sulfopeptide enrichment is discussed in Chapter 2.  We next look at how to directly 

characterize the post-translational modification site(s) on sulfonated peptides using 

vibrational, ion-electron, and ion-ion activation methods in negative ion mode (Chapter 

3).  Representative spectra from each fragmentation method at multiple charge states for 

various peptides as well as trends in fragmentation behavior are discussed.  Finally, we 

examine how the fragmentation behavior of acidic peptides can be influenced by the 

addition of a chemical modifier either providing a fixed negative charge or no charge at 

all (Chapter 4).  We have evaluated the potential of each synthetic approach for 

decreasing neutral loss of CO2 during EDD and whether we can improve the quality and 

amount of fragmentation information garnered from fragmentation of these acidic 

peptides.  We have also employed anion adduction of chloride and bromide to several 

peptides in order to alter the charge carrier and perhaps EDD fragmentation behavior of 

these peptides.  Chapters 2 and 3 are written in manuscript format for journal submission 

while Chapter 4 is a free standing chapter and will be prepared for publication at a later 

date. 
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CHAPTER II 
 

TITANIUM DIOXIDE ENRICHMENT  
OF SULFOPEPTIDES 

 

2.1 Introduction 

 Protein O-sulfonation is a widespread post-translational modification (PTM) of 

tyrosine in vertebrates and invertebrates.1  However, sulfonation (often incorrectly 

referred to as sulfation2-3) is less common than the isobaric phosphorylation in current 

literature.  A PubMed literature search retrieves nearly 850 journal articles associated 

with sulfation (plus ~180 journal articles associated with sulfonation) published within 

the past five years compared with over 10,000 journal articles associated with 

phosphorylation published within the past two years.  Possible reasons for the lack of 

recent literature covering sulfonation analysis may relate to a lack of understanding of the 

biological roles of sulfonated species3  as well as a lack of appropriate analysis methods. 

Ivy, et al. reported in 1928 that the presence of a “secretin” they subsequently 

named cholecystokinin (CCK) stimulates contraction of the gall bladder in cats and 

dogs.4  Nearly fifty years later, sulfonated CCK (CCKS) was reported to exhibit 

neurological function in the mammalian brain.5  Subsequent discoveries of other 

sulfopeptides have since confirmed hormonal activity in several organisms.6-8  In a more 
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recent report, this sulfonated peptide, which has been shown to also drastically affect 

mammalian satiation,9 was quantified in hamster plasma.10-11  Other reported biological 

functions of sulfonated peptides and proteins include protein-protein signaling12 and 

neuroendocrine function.13  They also play a critical role in the binding and metabolism 

of the glycoprotein thyroglobulin by thyroid cells.14 

Proteins and peptides destined for sulfonation are post-translationally modified in 

the trans-Golgi network15 via highly-specific tyrosylprotein sulfotransferases3, 16  then 

secreted for extracellular biological activity.  Thus, sulfonation is thought to be limited to 

secretory and membrane proteins and peptides commonly located outside the cell at very 

low concentrations, making isolation a difficult task.  Furthermore, the acid and heat 

lability of the sulfonate group17-18 limit the number of feasible analysis and isolation 

methods.  

The use of mass spectrometry (MS) in high-throughput analyses of biologically-

derived samples has escalated in the past two decades following the initial 

implementation of electrospray ionization for sample introduction to mass spectrometry 

in the early 1990s.19  The most commonly utilized biomolecular MS ionization 

approaches are positive-ion mode matrix-assisted laser desorption/ionization (+MALDI) 

and electrospray ionization mass spectrometry (+ESI-MS).  Nemeth-Cawley, et al. have 

reported that commonly used electrospray conditions for +ESI-MS promote in-source 

fragmentation of labile sulfonates,18  possibly precluding detection of intact sulfopeptides.  

Further, Wolfender, et al. stated that +MALDI-MS is unlikely to reveal the presence of 

sulfotyrosine.20  An alternative approach is to analyze sulfopeptides in negative ion mode, 

in which  tyrosine O-sulfonate groups are more stable, presumably due to the absence of 
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a mobile proton.21  Negative ion mode analysis may be particularly favorable for 

sulfopeptides because several amino acid residues surrounding the sulfonated tyrosine 

residue are commonly acidic.22-25  

One challenge in MS analysis of phosphorylated and sulfonated proteins and 

peptides is to obtain mass resolution between these isobaric PTMs (Δm = 9 mDa).26  

Many commonly used MS instruments [e.g., triple quadrupole (QQQ), quadrupole time-

of-flight (Q-TOF), quadrupole ion trap (QIT)] cannot provide the required mass 

resolution to distinguish sulfonation and phosphorylation, thus leaving room for 

misidentifications.  In fact, Gharib, et al. recently reported that artificially sulfonated 

peptides could be routinely misidentified as phosphorylated peptides in low-resolution 

ESI-MS following protein extraction from silver-stained polyacrylamide gels.27  High-

resolution instruments such as Fourier transform ion cyclotron resonance (FT-ICR) mass 

spectrometers can offer a mass resolution of 400,000 and can thus get around this 

problem.26  

There are currently very few isolation methods for sulfonated proteins and 

peptides.28-29  Amano, et al. have employed ion-exchange chromatography for 

sulfopeptide enrichment28  while, more recently, Chang, et al. have employed ionic 

affinity capture with poly-arginine coated nanodiamonds for the enrichment of cysteine 

sulfonic acids.29  Although these methods offer advantages, they also suffer from inherent 

drawbacks.  The first salt-based method requires sample cleanup prior to detection by 

mass spectrometry, which can result in sample loss.  The second method is quite complex 

and requires synthesis of the binding materials.  While these methods expand our toolbox 
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for sulfonate analysis, there is room for improvement in the enrichment and detection of 

sulfonated proteins and peptides. 

Recent reports have shown that metal oxides may act as Lewis acids to interact 

with phosphorylated peptides.30-33  This interaction can be manipulated through pH 

modification of the binding (low pH) and elution (high pH) conditions.31, 34  Reports 

published by McQuillan and co-workers in the late 1990s to early 2000s illustrate the 

capabilities of metal oxides to interact with poly-oxyanions, such as phosphorylated 

groups34 and carboxylic acid groups35-36 but contained no data regarding the possible 

interaction of sulfonate moieties with metal oxides.  During the same time, others showed 

that the chemically similar sulfate group (in its non-substituted free form) can interact 

with a variety of metal-oxide surfaces, including goethite,37 hematite,38-40 alumina,41 as 

well as titanium dioxide.42  Here, we present a TiO2-based enrichment method that is 

similar to our previously published method for phosphopeptide enrichment31 but is fully 

optimized for sulfopeptide enrichment. 

  

2.2 Materials and methods 

2.2.1 Sample Preparation 

Bovine serum albumin and equine apomyoglobin (BSA and ApoMb; Sigma, St. 

Louis, MO) were each prepared in 25 mM ammonium bicarbonate, pH 8.0 (Fisher 

Scientific, Fair Lawn, NJ).  Proteins were reduced with 10 mM dithiothreitol (Sigma) for 

1 h at 37 oC then alkylated with 2.5 mM iodoacetamide (Sigma) in the dark at room 

temperature for 1 h.  Following reduction and alkylation (for BSA only), proteins were 
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digested with trypsin at a 1:100 enzyme/protein ratio at 37 oC for 18 h.  The digestion 

was stopped with 2 µL of 50% formic acid (Acros Organics, Fair Lawn, NJ) and stored at 

-80 oC until further use. 

2.2.2 Enrichment Procedure 

The enrichment protocol used here was modified from a previously published 

protocol for phosphopeptide enrichment.31  Titanium dioxide microtips (50 μg) were 

purchased or provided as a gift from Glygen (Columbia, MD).  The enrichment samples 

consisted of one or more sulfopeptides [sulfonated cholecystokinin fragment 26-33 

(CCKS, DyMGWMDF-NH2; Advanced ChemTech, Louisville, KY), sulfonated hirudin 

fragment 55-65 (HIR, DFEEIPEEyLQ; Advanced ChemTech) and sulfonated caerulein 

(CRL, pEQDyTGWMDF-NH2; Bachem, Torrance, CA)] mixed with either an ApoMb or 

a BSA tryptic digest at various molar ratios.  For the proof of concept and enrichment 

optimization experiments (Figures 1 and 2, respectively), either an ApoMb or BSA digest 

was mixed with CCKS at a molar ratio of 1:1.  Following optimization, all sulfopeptides 

were introduced at molar ratios of protein digest to sulfopeptide ranging from 1:1 to 8:1. 

To bind sulfopeptides, 10 µL of 3.3% v/v formic acid at pH 2.0-3.5 mixed with the dried 

sample of interest was aspirated and dispensed 20 times followed by two 10 µL washes 

with HPLC-grade water (Fisher) using 10 aspirate-dispense cycles to remove any non-

specifically interacting species.  In the final step, 10 µL of 0.25% v/v ammonium 

hydroxide (Sigma) at pH 10.0 was aspirated and dispensed 10 times to elute the 

sulfopeptides.  After enrichment, peptide solutions were neutralized then dried in a 

vacuum concentrator (Eppendorf, Hamberg, Germany).  Samples were reconstituted for 

ESI-FT-ICR MS analysis in either positive-ion mode (1:1 H2O:ACN, 0.1% FA) or 
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negative-ion mode (1:2:1 ACN:H2O:IPA, 0.25% v/v piperidine or 1:1 H2O:IPA, 1% v/v 

TEA).  

2.2.3 Mass Spectrometry 

Mass measurements were performed on a 7-T hybrid quadrupole (Q)-FT-ICR 

mass spectrometer (Apex-Q, Bruker Daltonics, Billerica, MA) equipped with an Apollo 

II electrospray ionization source.  The ESI flow rate was set at 70 μL/h and N2 nebulizing 

gas was operated at 2.0 bar.  Ions were accumulated in the first hexapole for 0.05 s then 

transferred through the quadrupole in broadband (rf-only) mode to the second hexapole, 

where ions were accumulated for 0.5-1 s.  Ions were then transferred through the high-

voltage ion optics and dynamically trapped in the ICR cell.  The accumulation process 

was looped three times prior to excitation and detection as an image current in the ICR 

cell.  Frequencies corresponding to m/z 200 to 2000 were displayed using the Bruker 

XMASS software (v. 7.0.6) with 256k data points summed over 10-16 scans.   

2.2.4 Data Analysis 

Open-source MIDAS software (v. 3.21)43 was used for fast Fourier transformation 

and peak picking.  Calculated m/z ratios for proteins and peptides were acquired from 

MS Product in Protein Prospector (http://prospector.ucsf.edu/prospector/mshome.htm) 

and the PeptideMass tool in Expasy (http://www.expasy.ch/tools/peptide-mass.html).  

Internal calibration was performed using a two-term frequency-to-mass calibration44 in 

Microsoft Excel.  These calculated values were compiled into an in-house generated 

macro and searched against experimental m/z ratios for peak identification and accurate 

mass matching.  Peaks of less than or equal to 15 ppm error and greater than 2% relative 

abundance were accepted for percent relative abundance calculations.  Peak abundances 



 74

were normalized to charge by summing all peaks associated with a particular protein or 

sulfopeptide of a particular charge state then dividing by that charge state.  The percent 

relative abundance of the summed peaks associated with a protein or a sulfopeptide was 

calculated by dividing the normalized abundance of the summed peaks by the total 

normalized abundance for all identified peaks in the spectrum.  Calculated error for 

repeat control and enrichment data sets was less than 10% in all cases. 

2.3 Results 

2.3.1 Proof-of-Concept Experiment:  Positive-Ion Mode Analysis of Titanium 

Dioxide-Enriched Sulfopeptides 

Titanium dioxide enrichment protocols have been used extensively by our group 

and others for the enrichment of phosphopeptides.30-33, 45  The proposed mechanism 

behind phosphopeptide interaction with titanium dioxide and other metal oxide materials 

suggests that these materials should also interact with other poly-oxyanion species.46  

Thus, we evaluated our phosphopeptide enrichment protocol for enrichment of sulfonated 

peptides from digestion mixtures.   
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Figure 2.1a – d.    Positive-ion mode ESI-MS spectra of an ApoMb (1a, 1b) or BSA (1c, 
1d) protein digest mixed with sulfonated cholecystokinin fragment 26-33 (CCKS) at a 1:1 
molar ratio before (a, c) and after (b, d) titanium dioxide (TiO2) enrichment.  ApoMb and 
BSA peaks are labeled with asterisks (*) and trypsin autolysis peaks with a dagger (†) 
while CCK/S peaks are labeled in red with a diamond (◊). 

 
As shown in Figure 2.1a, a mixture of an ApoMb digest and CCKS at an 

equimolar ratio in positive ion mode ESI produces signal corresponding mostly to 

ApoMb peptides.  Prior to enrichment, 26±3% of the total identifiable ion signal belongs 

to cholecystokinin, either in its desulfonated or sulfonated form (CCK/S).  After TiO2 

enrichment (Figure 2.1b), the most abundant peaks are protonated or salt-adducted CCK 

following loss of the labile sulfonate group during in-source fragmentation, which has 

been observed and documented in the literature.18  The total relative abundance of CCK/S 

improves to 94±2% for an approximate 3.5-fold increase in sulfopeptide signal following 

enrichment.  Additionally, there is only one remaining ApoMb peak, corresponding to the 

doubly protonated peptide VEADIAGHGQEVLIR, present after TiO2 enrichment.  This 
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particular peptide is highly acidic with four carboxylic acid moieties.  It has been 

previously shown that peptides with multiple carboxylic acids can also remain in 

phosphopeptide enrichment by titanium and zirconium dioxide.31  The observed high 

selectivity against non-sulfonated peptide ions suggests that TiO2 enrichment can be 

optimized as a highly selective method for the enrichment of sulfopeptides. 

When altering the sample matrix, enrichment still occurred to a high degree.  In 

Figure 2.1c, a single CCK/S peak representing 2±1% of the total relative identifiable ion 

abundance is barely noticeable in a complex spectrum containing over 30 BSA peptide 

peaks.  Following TiO2 enrichment (Figure 2.1d), CCK/S peaks dominate the spectrum 

and represent 74±2% of the total relative abundance with few BSA peaks observed.  At 

an equimolar ratio to a protein tryptic digest, CCKS could be enriched ~4–25-fold from a 

mixture containing an ApoMb or a BSA digest, respectively.  Additionally, in the non-

enriched spectra (Figures 2.1a, 2.1c), there are considerably more relatively abundant 

peaks (> 15%) that could not be identified in comparison to the enriched spectra that have 

no unidentifiable peaks at the same relative abundance. 

2.3.2 Optimization of loading amount and binding conditions for 50 μg titanium 

dioxide microtips 

For titanium dioxide enrichment to work properly, there is a minimum loading 

amount for the particular size of microtip used (here 50 μg) as well as optimum pH 

values for both binding and elution of sulfopeptides.  As previously reported,31 the 

minimum loading amount for the most efficient phosphopeptide enrichment was 50–100 

pmol, though as low as 25 pmol of material could be enriched with 50 μg TiO2 or ZrO2 

microtips.  In Figure 2.2a–d, the enrichment efficiency for different loading amounts of a 
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CCKS:ApoMb mixture from 50 to 300 pmol was examined.  Table 2.1 highlights the 

percent relative abundance of ApoMb and CCK/S calculated for spectra in Figure 2.2.  

The highest percentage of relative sulfopeptide abundance after enrichment resulted from 

loading 200 pmol each of CCKS and ApoMb peptides onto the 50 μg microtips.  

 

Figure 2.2a – d.    Positive-ion mode ESI-MS spectra of an ApoMb digest mixed with 
CCKS at a 1:1 molar ratio and TiO2-enriched at 50pmol (a), 100pmol (b), 200pmol (c), 
and 300pmol (d) of each protein digest/sulfonated peptide mixture loaded onto the TiO2 
tips.  ApoMb peaks are labeled with asterisks (*) and trypsin autolysis peaks with a 
dagger (†) while CCK/S peaks are labeled in red with a diamond (◊). 

 

50 pmol 100 pmol 200 pmol 300 pmol

CCK/S 37% 74% 88% 69%
 

Table 2.1.  Calculated percent relative abundance for equimolar ratios of CCKS and 
ApoMb following TiO2 enrichment at a binding pH of 2.5 and an elution pH of 10.0.  The 
estimated error for these measurements is 2%. 
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It is important to note that, in each spectrum, the relative abundance of ApoMb 

and unknown peaks is much higher for amounts that are below 200 pmol.  It is possible 

that this lower selectivity is due to non-selective binding by carboxylate groups.  Larsen 

et al. have proposed bridging and chelating bidentate binding modes for phosphate and 

carboxylate species, respectively, with the TiO2 surface present in microcolumns from 

GL Sciences.32  These authors cite reports from McQuillan, et al. who used TiO2 sol-gel 

films exhibiting a structure that is “predominantly amorphous with a small anatase 

content.”34  The latter report suggests that carbonate and phosphate bind to the same 

surface sites.  Our observed selectivity of sulfopeptide binding to the TiO2 surface 

suggests either that sulfonate groups bind more strongly than carboxylates to the same 

sites, or that sulfonate and carboxylate exhibit different binding modes, similar to 

phosphate/carboxylate.  In either case, having or exceeding a minimum binding amount 

for sulfonate enrichment is crucial to maintaining highly selective binding.  Li, et al. have 

suggested that determining an optimal ratio of TiO2 enrichment material to 

phosphorylated peptides is critical for improving enrichment selectivity.47 

Alternatively, it is possible to reduce the amount of titanium dioxide present in the 

microtips or reduce the number of carboxylic acids in the enrichment mixture.  First, 

reducing the physical amount of TiO2 in the microtips provides a smaller surface area of 

interaction, thus requiring less minimum starting material.  We attempted enrichment of 

varying amounts from 1–50 pmol sulfopeptide at 1:1–1:10 ratio of sulfopeptide to BSA 

digest with smaller microtips containing ~25 μg titanium dioxide material, but poor 

reproducibility and limited enrichment selectivity hampered progress (data not shown).  

Perhaps a superior method for miniaturization of the microtips would be to pursue an 
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online LC-based enrichment approach to provide both enhanced sensitivity and 

selectivity while also potentially reducing losses from sample handling.48-50  Secondly, 

reducing the number of carboxylic acids present may prevent non-specific interactions.  

Methyl esterification of carboxylic acids, in combination with pH gradient elution, has 

been reported to improve phosphopeptide binding to titanium dioxide particles.45  These 

authors report using methanolic HCl for methyl esterification; however, there are a 

number of ways to esterify carboxylic acids but several of these methods require the use 

of acid (or produce it as a reaction by-product).  This method works for phosphopeptides 

because they tolerate acid well; however, sulfopeptides are acid labile and produce a 

range of sulfonated and desulfonated products following methyl esterification (data not 

shown).  Furthermore, this particular procedure does not yield complete esterification on 

all sites, leading to a mixture of reaction products which can complicate mass spectral 

interpretation.51  One synthetic approach that does not require the use or formation of 

acid instead employs trimethylsilyldiazomethane in anhydrous THF, benzene, toluene 

and methanol.52-53  This approach was attempted but not pursued here due to generated 

sample complexity; however, this approach appears to be the most viable alternative to 

acid-producing methyl esterification procedures.  

Another possible way to improve selectivity would be to manipulate the binding 

sites.  These proposed binding sites include bridging bidentate and chelating bidentate 

sites on the titanium dioxide surface.32  A few ways to manipulate these sites would be to 

alter the number of each type of binding site or block the chelating binding site that 

interacts with carboxylic acids36 with a substituted aromatic carboxylic acid such as 2,5-

dihydroxybenzoic acid (DHB).32  However, first, it would be difficult to manipulate the 
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number of a certain type of binding site, considering that such manipulation requires prior 

knowledge of the surface heterogeneity.  Furthermore, the crystalline composition of 

titanium dioxide, which may contain various combinations of amorphous, anatase, and 

rutile structures, found in commercial products is proprietary information.  It is important 

to know the surface chemistry of the binding material for the following reasons:  1)  TiO2 

anatase and rutile hydroxyl groups have very different surface pKa values (0.5-2.0 vs. 6.5, 

respectively) and, thus, different binding capabilities,54-55  2)  the number of different 

surface coordination sites that influence the binding capability likely depend upon the 

titanium dioxide preparation method,56-57 and  3)  the presence of metal ions and other 

contaminant species can affect the Lewis acid properties of the Ti4+ center.58  Secondly, 

although the use of substituted carboxylic acids was shown to dramatically improve the 

selectivity of titanium dioxide for binding phosphopeptides,32-33 these authors report that 

DHB can cause contamination of the electrospray ionization source, thus rendering this 

procedure less ideal for direct infusion ESI but great for more salt-tolerant MS analyses 

such as MALDI-MS.  If sample throughput is not an issue, LC purification prior to ESI-

MS analysis should be conducted to eliminate excess DHB.  We applied DHB to our 

samples prior to enrichment but this strategy suffered from ion suppression and source 

contamination (data not shown) and this procedure was therefore not further pursued.  

Selectivity of sulfopeptide enrichment also depends upon the binding pH value.  

In our previously published phosphopeptide enrichment method, the ideal binding pH 

values were found to be pH 2–3.31  Because sulfotyrosine has a slightly lower pKa value 

than phosphotyrosine,59-61 it is expected that the optimal binding pH would be lower for 

sulfopeptide binding.  For optimal elution, the pH value must be high enough to disrupt 
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the interactions of sulfonate poly-oxyanions with the TiO2 surface due to sulfonate 

neutralization and/or change of the TiO2 surface to a Lewis base.  This ideal pH value 

was determined to be pH 10.8–11.5 for phosphopeptide elution.31  

 

Figure 2.3a – d.    Positive-ion mode ESI-MS spectra of an ApoMb digest mixed with 
CCKS at a 1:1 molar ratio and TiO2-enriched using binding pH 2.0 (a), 2.5 (b), 3.0 (c), 
3.5 (d) and eluting pH 10.0.  ApoMb peaks are labeled with asterisks (*) and trypsin 
autolysis peaks with a dagger (†) while CCK/S peaks are labeled in red with a diamond 
(◊). 

 
pH 2.0/10.0 pH 2.5/10.0 pH 3.0/10.0 pH 3.5/10.0

CCK/S 94±2% 89±2% 80±8% 72±2%
 

Table 2.2.  Calculated percent relative abundance with error for an equimolar ratio of 
CCKS and ApoMb (200 pmol each) following TiO2 enrichment at binding pH 2.0 and 
elution pH 10.0. 

 
 
Figure 2.3a–d and Table 2.2 illustrate the effect of increasing the binding pH from 

pH 2.0 to 3.5 (a–d, respectively) while the elution pH was held constant at pH 10.0.  If 

the binding pH is much lower than pH 2.0, there is a risk of eliminating the sulfonate 
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ester via acid hydrolysis.17  As the binding pH increases, we observed that non-selective 

binding of ApoMb peptides also increased, which likely causes suppression of the CCK/S 

signal.  We believe that increasing the pH facilitates more carboxylate binding because 

the binding pH is approaching the average pKa of protein carboxylates.  It was 

determined that pH values of 2.0 and 10.0 were ideal for binding and elution, respectively, 

of sulfopeptides.  These values support our initial hypothesis that a lower binding pH is 

more suitable for selective sulfopeptide enrichment compared to phosphopeptide 

enrichment. 

2.3.3 Negative-Ion Mode Analysis of Titanium Dioxide-Enriched Sulfopeptides 

It has been suggested that, for many sulfopeptides, several acidic amino acid 

residues are required near the potential sulfonation site to facilitate this post-translational 

modification, as discussed in detail elsewhere.22-24  As a result, sulfopeptides should 

ionize much better in negative-ion mode than in positive-ion mode MS.  Consequently, 

for negative-ion mode analysis, it was possible to lower the initial amounts of 

sulfopeptides prior to TiO2 enrichment in comparison to similar samples analyzed in 

positive-ion mode (Figures 2.1a, 2.1c).   
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Figure 2.4a-b.    Negative-ion mode ESI-MS spectra before (a) and after (b) TiO2 
enrichment of a BSA digest mixed with three sulfopeptides CCKS, CRL, and HIR at a 
molar ratio of 8:4:4:1, respectively.  BSA peaks are labeled with asterisks (*) and trypsin 
autolysis peaks with a dagger (†) while sulfopeptide peaks are labeled in red with a 
diamond (◊). 

 

Figure 2.4a–b shows the negative-ion mode ESI-MS spectra of a BSA digest 

mixed with the sulfopeptides CCKS, CRL, and HIR at a molar ratio of 8:4:4:1 before (a) 

and after (b) TiO2 enrichment.  Similar to the positive ion mode data (Figures 2.1-2.3), 

we consider the combination of sulfonated and desulfonated sulfopeptide peaks to 

represent the overall sulfonated signal.  In negative-ion mode ESI-MS, we observe a 

much larger fraction of sulfonate-retaining peaks compared to desulfonated peaks.  The 

performed enrichment improved the overall relative abundance of sulfonated peaks from 
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8% to 56% following negative ion ESI-MS.  Although there is a 7-fold improvement in 

overall sulfopeptide signal, there are quite a few abundant BSA peaks as well as a trypsin 

autolysis peak accounting for much of the identifiable signal in the enriched spectrum.  It 

is important to note that nearly all of the BSA peaks that appear in the enriched spectrum 

correspond to peptides with three or more acidic groups, including the C-termini of each 

peptide ion (e.g., [DAFLGSFLYEYSR – H]-, [DLGEEHFK – H]-, [TVMENFVAFVDK 

– H]-).  It is possible that peptides with multiple acidic residues are more likely to interact 

via their carboxylic acid moieties if there are available interaction sites.  However, it is 

unlikely that the primary interacting species for all peptides would be the carboxylate 

group because there is noticeable improvement in the enrichment of three different 

sulfopeptides in the presence of a complex protein digest with a very low rate of co-

purification of non-sulfopeptides. 

2.3.4 Differentiation of Phosphopeptides and Sulfopeptides after Titanium Dioxide 

Enrichment 

In a more complex biological mixture, both phosphopeptides and sulfopeptides 

may exist at relatively low intra- and extracellular concentrations, respectively.  

Differentiation of these isobaric PTMs is essential to unraveling the biological 

significance of individual modifications on proteins and peptides.  It is widely accepted 

that the structural and biological functionalities of phosphopeptides indeed change from a 

normal physiological state to a malignant cancerous state, and such changes may occur 

for sulfopeptides as well.62-63  In order to differentiate these PTMs by mass, a high-

resolution, high mass-accuracy instrument such as an Orbitrap™ or an FT-ICR mass 

spectrometer is needed.  Because such high-end instruments are not always available, 
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other methods can be used to differentiate sulfopeptides from phosphopeptides.  Alkaline 

phosphatase can be used to cleave phosphate moieties64 before enrichment if no 

information from phosphorylated species is desired.  However, if both phosphorylated 

and sulfonated peptides are desired, they can be enriched together and subsequently 

differentiated based on the high tendency of sulfopeptides to lose 80 Da (SO3) via in-

source fragmentation during +ESI-MS.  Unfortunately, these two species cannot be 

optimally enriched simultaneously due to the differences in binding and elution pH.  It 

may also be possible to use ion pairing experiments to effectively differentiate these 

isobaric species.65 

2.4 Conclusion 

Here we present a selective method for the enrichment of sulfopeptides using 

titanium dioxide microtips.  Percent relative abundance of sulfopeptide signal was 

improved by ~4-25-fold in positive-ion mode analyses when using different sulfopeptides 

and tryptic peptides to form a mixture.  In negative-ion mode, sulfopeptides were 

enriched up to 7-fold with some retention of acidic matrix peptides.  It is important to 

note that the effectiveness of this protocol depends upon determining and maintaining the 

optimal binding and elution pH values as well as the minimum required amount of 

starting material to load onto the microtips.  Some co-purification of non-sulfonated 

species may be caused by interactions of peptide carboxylate groups if there are several 

acidic residues within a particular peptide.  Our current protocol is a simple, stand-alone 

technique for enriching sulfopeptides from mixtures. 
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CHAPTER III 
 

CHARACTERIZATION OF O-SULFOPEPTIDES  
BY NEGATIVE ION MODE TANDEM MASS 

SPECTROMETRY: SUPERIOR PERFORMANCE OF 
NEGATIVE-ION ELECTRON CAPTURE DISSOCIATION 

 

3.1 Introduction 

 Acidic post-translational modifications (PTMs) such as phosphorylation and 

sulfonation on proteins and peptides are important for many biological processes, 

including signal processing1 and protein-protein interactions,2 respectively, as well as 

growth regulation in cancer for both PTMs.3-6  Localization of these acidic PTMs is 

critically important for determining their biological function but is challenging with 

direct gas-phase activation in positive ion mode tandem mass spectrometry (MS/MS).  

Positive-ion mode collision-activated dissociation (CAD), which is the most commonly 

used MS/MS activation technique, cleaves the weakest bonds, which correspond to the 

labile acidic PTMs, preventing their direct localization.7-9  PTM identification can also be 

challenging for sulfonation (SO3) and phosphorylation (HPO3) as they both result in a 

neutral loss of 80 Da (∆m = 9 mDa).10  Furthermore, recent work suggests that the 

locations of phosphate groups can scramble during the CAD activation process if neutral 

phosphate loss and/or rearrangement events produce abundant product ion species.11-13  
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To circumvent the loss of structural information regarding O-sulfonated sites, Yu, et al.14 

have shown that selective and stoichiometric acetylation of non-sulfonated tyrosines in 

sulfopeptides followed by positive-ion mode CAD MS/MS allows site determination of 

tyrosine sulfonation.  Because the sulfonate groups are lost during collisional activation, 

in contrast to the stable acetyl groups, detected free tyrosines are assumed to have been 

sulfonated.  Similar to the aforementioned method, most efforts to improve the analysis 

of sulfonate occurrence in peptides by positive ion CAD MS/MS are focused on its 

neutral loss, as opposed to its direct identification.9, 15-17  

Ion-electron18-22 and ion-ion23-24 activation reactions have been employed for 

direct acidic PTM localization in positive ion mode MS/MS analysis.  While sulfonate 

retention is generally not observed for protonated sulfopeptides in positive-ion mode 

electron-capture dissociation (ECD) or electron transfer dissociation (ETD), metal-ion 

adduction was shown to successfully retain the sulfonate groups and thus allow 

unambiguous localization of sulfotyrosine residues with both these techniques. 24-25  The 

caveats to incorporating metal-ion adduction for enhanced sulfosite localization include 

possible ion suppression and distribution of ion signal amongst multiple ionic forms and 

charge states.  Sulfonate retention in ECD22 and ETD26 of protonated sulfopeptides have 

been noted, however, in both those cases arginine-containing peptides were studied (one 

and three arginines, respectively22, 26) representing special cases with sequestered protons.  

Another drawback of ECD/ETD is that both techniques require multiply positively 

charged ions, which can be challenging to generate for naturally acidic sulfopeptides.27-29  

Sulfonate retention is also observed during metastable atom-activated dissociation (MAD) 

of singly-protonated peptide ions,30 providing excellent sequence coverage from a, b, c, w, 
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x, y, and z-ions with many sulfonate-retaining fragments for sulfonated cholecystokinin 

and leucine-enkephalin.  However, uninformative neutral loss of H2O, CO2, and SO3 are 

often the most abundant fragmentation events. 

Due to their inherent acidic nature, peptides containing phosphate and sulfonate 

groups show improved ionization in negative-ion mode,31-32 suggesting that negative ion 

mode analysis would be more favorable.  Negative-ion mode CAD of phospho- and 

sulfopeptides produces similar neutral PTM losses as in positive-ion mode.8, 32-33  

Furthermore, negative-ion mode peptide CAD typically produces more complex MS/MS 

spectra arising from multiple fragmentation events as well as side chain losses in 

comparison to positive-ion mode CAD.34-35  Budnik, et al.36 have shown that electron 

detachment dissociation (EDD) of the sulfopeptide caerulein produced even- and odd-

electron a, c, and z ions with significant neutral loss but with 100% sequence coverage as 

well as localization of the sulfonate group in a Fourier-transform ion cyclotron resonance 

(FT ICR) instrument while Kjeldsen, et al.37 reported that sulfonate and phosphate 

localization are also possible with EDD in a quadrupole ion trap (QIT).  These authors 

also report that EDD efficiency is rather low—on the order of 2-15% in a QIT and 5-20% 

in FT ICR-MS.  In negative-ion mode MAD, extensive series of product ions with 

sulfonate retention and some neutral loss were observed.30  The reported MAD 

experiments utilized peptide concentrations of 20–40 µM, which may preclude analysis 

of low-abundance, biologically-derived peptides.  Furthermore, there is currently no 

commercial instrument available to conduct MAD.  Atmospheric pressure thermal 

dissociation (APTD)38 may offer another alternative approach to sulfonate site 

determination.  APTD of sulfopeptide anions produced some c- and y-ions but mostly 
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resulted in SO3 neutral loss as well as neutral fragments that require an additional step of 

reionization.  Only a single, sulfonate-containing ion was observed after APTD and no 

sulfonate-containing ions were detected following reionization. 

Negative electron transfer dissociation (NETD) enables multiply-charged anionic 

species to transfer an electron to an acceptor reagent, leading to activation and 

fragmentation resulting in EDD-like product ions with and without retention of phosphate 

groups.39  This technique, however, tends to exhibit extensive neutral losses including 

some phosphoric acid losses that could possibly be reduced with careful choice of the 

radical cation reagent.40  NETD has been used to successfully fragment sulfonated 

glycosaminoglycans;41 however, NETD has not previously been employed for 

sulfopeptide MS/MS characterization.  Negative-ion mode ECD (niECD) involves 

electron capture by gaseous peptide zwitterions with an overall negative charge, leading 

to activation and ECD-like fragmentation with complete retention of phosphate and 

sulfonate groups.42  NETD and niECD look promising for advancing phosphopeptide, 

sulfopeptide, and other acidic biomolecule fragmentation.  In this work, we have 

expanded niECD to additional sulfopeptides and compared its performance to negative-

ion mode CAD, EDD, and NETD with the goal to determine the superior method for 

sulfopeptide MS/MS characterization. 

3.2 Materials and methods 

3.2.1 Peptide Standards 

Sulfonated cholecystokinin fragment 26-33 (DyMGWMDF-NH2, CCKS; 

Advanced ChemTech, Louisville, KY), hirudin fragment 54-65 (DFEEIPEEyLQ, HIR; 
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Advanced ChemTech), Leu-enkephalin (yGGFL, Leu-Enk; Protea Biosciences, 

Morgantown, WV), sulfonated human gastrin-17 II (pEGPWLEEEEEAyGWMDF-NH2, 

GST; Sigma, St. Louis, MO), caerulein (pEQDyTGWMDF-NH2, CRL; Bachem, 

Torrance, CA) and cionin (NyyGWMDF-NH2, CN; Bachem), where lower case ‘y’ in all 

peptides corresponds to a sulfo-tyrosine residue, were used without further purification.  

HPLC-grade isopropanol (IPA) was purchased from Fisher (Fair Lawn, NJ), LC/MS-

grade water was purchased from J.T. Baker (Phillipsburg, NJ), ES tuning mix was 

purchased from Agilent (Santa Clara, CA) and triethylamine (TEA) was purchased from 

Sigma. 

3.2.2 Mass Spectrometry 

Sulfopeptides were directly infused via an electrospray ionization (ESI) source 

(Apollo II, Bruker Daltonics, Billerica, MA) at 0.5–5 μM concentration in 1:1 IPA:H2O, 

1% TEA.  All negative ion mode CAD, EDD, and niECD experiments were performed 

on a 7T quadrupole (Q)-FT ICR-MS instrument equipped with a hollow dispenser 

cathode to generate electrons (Apex-Q, Bruker Daltonics).  NETD experiments were 

performed on a more recent 7T Q-FT ICR-MS instrument equipped with an Apollo II ESI 

source as well as a chemical ionization source with a fluoranthene reagent (SolariX, 

Bruker Daltonics). 

The ESI flow rate was set at 70 μL/h, and N2 nebulizing gas was operated at 2.0 

bar.  Ions were accumulated in the first hexapole for 0.05 s then selectively filtered by the 

quadrupole according to m/z.  Mass-selected ions were transferred to the second hexapole, 

where ions were accumulated for 0.5-1 s, varied per peptide ion to obtain optimum signal 
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abundance (~1-5 x 107 in arbitrary units) for MS/MS.  Ions travelling through the high-

voltage ion optics were dynamically trapped in the ICR cell.  The cell accumulation 

process was looped three times prior to MS/MS, excitation and detection as an image 

current in the ICR cell.  Time-domain data were Fourier transformed, and the resulting 

frequencies corresponding to m/z 200 to 2000 were displayed using Bruker XMASS 

software (v. 7.0.6) with 256k data points summed over 32 scans with the exception of 

hirudin, which was summed over 64 scans.  Open-source MIDAS software (v. 3.21)43 

was used for data analysis. External calibration was performed using a two-term 

frequency-to-mass calibration44 in Microsoft Excel.  Calculated m/z ratios for peptides 

and their product ions were obtained from MS Product in Protein Prospector 

(http://prospector.ucsf.edu/prospector/mshome.htm) and the PeptideMass tool in Expasy 

(http://www.expasy.ch/tools/peptide-mass.html).  These calculated values were compiled 

into a home-built macro and searched against experimental m/z ratios for peak 

identification and accurate mass matching.  Mass assignments of less than or equal to 15 

ppm error are reported here. 

  

3.2.3 CAD, EDD and niECD Experiments 

For all CAD experiments, the DC offset on the second hexapole was used as a 

collision voltage and was modified from 10-30 V to yield maximum product ion 

abundance for each sulfopeptide.  The maximum laboratory frame of reference energy for 

all CAD experiments is well below that of high-energy CAD (~1 keV).45  For all EDD 

experiments, multiply-charged anionic sulfopeptides were irradiated with ~18-20 eV 

electrons for up to 3 s while the lens electrode was held 0.2-1 V higher than the cathode 
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bias voltage.  The lens voltage regulates the number of electrons passing through the ICR 

cell.46  For all niECD experiments, singly and/or doubly-charged anionic sulfopeptides 

were irradiated with 4.5–6 eV electrons for up to 5 s while the lens electrode was held 

0.5-1.5 V lower than the cathode bias voltage to produce the maximum abundance 

charge-increased radical anion.  The electron energy and irradiation time in both EDD 

and niECD were varied as per peptide and charge state to yield maximum product ion 

abundance. 

 
3.2.4 NETD Experiments 

The ESI flow rate was set to 100–120 μL/h, and the nebulizer gas was operated at 

1.3 L/min.  Ions were accumulated in the first octopole for 20 ms then mass-selectively 

filtered as per peptide mass and charge state by the quadrupole.  Mass-selected ions were 

transferred to the hexapole collision cell and accumulated for 2-5 s.  Prior to side-kick 

trapping of product ions in the ICR cell (-7 V side-kick voltage with 2 V side-kick offset), 

analyte ions and radical cationic fluoranthene reagent (m/z 202) were accumulated in the 

collision cell.  Both analyte and fluoranthene reagent accumulation times were varied per 

peptide ion and charge state to obtain the highest signal abundance prior to NETD 

(~1x108 in arbitrary units, which is comparable to 1x107 signal abundance on the Apex-Q 

instrument).  Following electron-transfer events in the collision cell, product ions were 

transferred to the ICR cell via a transfer hexapole, excited, and detected as an image 

current.  Time-domain data were Fourier transformed, and the resulting frequencies 

corresponding to m/z 200 to 3000 were displayed using the Bruker SolariXcontrol 

software (v. 1.5) with 512k data points summed over 32 scans.  External calibration was 
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performed daily on the SolariX with ES tuning mix and this calibration was applied to 

each data acquisition event.  DataAnalysis software (v. 4.0) was used for peak picking.  

Calculated m/z ratios for peptides and their product ions were acquired and searched 

against experimental m/z ratios with an error tolerance of 15 ppm similar to the Apex-Q 

data.   

3.2.5 Fragmentation Efficiency Calculations 

Fragmentation efficiencies for ion-ion and ion-electron reactions were calculated 

by taking a ratio of the summed charge-normalized product ion signal to the summed 

charge-normalized product ion signal, charge-increased/reduced signal, and structurally 

non-informative neutral loss signal from the precursor ion according to previous 

literature.47  CAD fragmentation efficiencies were not calculated because precursor ion 

signal in CAD can be depleted very easily, leading to nearly 100% fragmentation 

efficiency.  Instead, percent sequence coverage, percent sulfonate retention as well as the 

percent of known vs. unknown peaks in the product ion spectra were calculated.  Error 

calculations were carried out for representative data from each fragmentation technique 

and applied to the rest of the data from that particular technique.  For CAD, EDD, and 

NETD, three independent fragmentations of doubly-deprotonated hirudin were averaged 

and standard deviations were calculated.  For niECD, three independent datasets from 

fragmentation of singly-deprotonated hirudin were used for averaging and error 

calculations.  
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3.3 Results 

3.3.1 Negative-Ion CAD of Sulfopeptides 

In CAD, ions collide with neutral gas molecules, creating an activated energetic 

ion, which then dissipates excess energy through unimolecular dissociation, e.g., at 

peptide backbone amide bonds to produce b and y′ ions.7  In negative ion mode CAD, it 

is also common to observe a, c, x- and z-ions48 as well as neutral losses of H2O, SO3, 

HPO3, H3PO4, and amino acid side chains.34, 49-50 

Figures 3.1a-c show CAD of singly-, doubly- and triply-deprotonated hirudin, 

respectively.*  In all three spectra, neutral loss of H2O, NH3, and SO3 are the major 

fragmentation pathways followed by backbone fragmentation to yield mostly y′ ions, 

which contain the acidic C-terminus.  This neutral loss tendency during vibrational 

activation has been reported elsewhere for non-sulfonated hirudin.48  Previous work has 

also shown that backbone bond cleavages in negative-ion CAD are preferred at or near 

the site of charge.34, 48, 51  Thus, we expected that the observed y′ ions should be most 

prominent N or C-terminal to acidic amino acid residues (D/E) or to the sulfotyrosine.  

With respect to the hirudin sequence, negative-ion CAD cleavages near D/E are more 

prominent than other backbone bond cleavages as shown in Figures 3.1a–c.  Because 

there are seven likely sites for deprotonation (one aspartic acid, four glutamic acids, 

sulfotyrosine, and the C-terminus) within the hirudin sequence, there should be a 

distribution of species with different charge locations at all charge states studied, leading 

                                                 
* Because the exact site(s) of deprotonation for all peptides analyzed are not known, we have assigned the first site of 
deprotonation to the sulfonate group due to its lower pKa value while subsequent deprotonation sites are believed to be 
carboxylic acids.  It is highly possible that there are a range of possible conformers with different charge-carrying sites, 
especially at higher charge states.  The specific site(s) of deprotonation were not explored in this work. 
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to a diverse set of product ions.  However, at the lower charge states, the sulfonate group 

must compete for deprotonation with several carboxylic acids.  If the sulfotyrosine 

residue is protonated, proton-initiated sulfonate cleavage52 may be a dominant 

fragmentation pathway, which may result in a lower occurrence of backbone cleavage at 

lower charge states.  Indeed, Zaia and Costello53 have demonstrated the following 

correlation between sulfonate retention on glycosaminoglycan backbone fragments and 

precursor ion charge state:  at higher charge states, there is a higher probability of 

deprotonation at the sulfonate groups, thus, yielding charge-localized fragmentation 

without loss of the sulfonate groups.  Additionally, more highly charged precursor ions 

produce stress on the glycosidic sugar backbone.   
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Figure 3.1a – c.  Negative ion mode CAD of singly- (a), doubly- (b) and triply-
deprotonated (c) sulfonated hirudin fragment 55-65. Sulfonate loss (#), water loss (◊), 
and electronic noise (*) are indicated on the spectra. 
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Figure 3.2a–b.  Negative ion mode CAD of singly- (a) and doubly-deprotonated (b) 
sulfonated caerulein. Sulfonate loss is indicated by # while electronic noise is indicated 
by *. 
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Figure 3.3.  Negative ion mode CAD of doubly-deprotonated sulfonated human gastrin II. 
Sulfonate loss and water loss are indicated by # and ◊, respectively, while electronic 
noise is indicated by *. 
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Figure 3.4a – b.  Negative ion mode CAD of singly- (a) and doubly-deprotonated (b) 
sulfonated cholecystokinin (CCKS). Sulfonate loss and water loss are indicated by # and 
◊, respectively, while electronic noise is indicated by *. 
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Figure 3.5.  Negative ion mode CAD of singly-deprotonated sulfonated leucine-
enkephalin. Sulfonate loss is indicated by # while electronic noise is indicated by *. 

 
 
For hirudin, CAD in the 3- charge state produced higher sulfonate retention 

compared to the lower charge states.  Figures 3.2-3.5 show negative ion mode CAD of 

caerulein (CRL), gastrin II (GST), cholecystokinin (CCKS), and leucine enkephalin 

(Leu-Enk), respectively.  A side-by-side comparison of CAD of singly- and doubly-
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deprotonated CRL (Figure 3.2) shows that backbone fragmentation as well as sulfonate 

retention is favored at the higher charge state.  In fact, CAD of singly-deprotonated CRL 

produced dominant SO3 loss and some combined (SO3 + H2O) loss from the precursor 

ion while CAD of doubly-deprotonated CRL produced ~4x lower abundance of SO3 loss 

from the precursor ion and five backbone product ions (whereas no backbone fragments 

were observed in CAD of the 1- precursor ion).  Also, CAD of gastrin II in the 3- and 4- 

charge states exhibited increased sulfonate retention compared with CAD of the doubly-

deprotonated precursor ion (Figure 3.3 and Table 3.1).  Thus, higher charge states may 

play a critical role in unambiguous identification and localization of acidic post-

translational modifications when using vibrational activation techniques such as CAD.  

CAD of singly- and doubly-deprotonated CCKS (Figure 3.4) produced only 2-3 

backbone fragments each originating from either the C- or N-terminus, but no sulfonate 

localization was possible.  Similar low degree of structural information was also obtained 

for CAD of singly-deprotonated Leu-Enk (Figure 3.5), which produced a single b4 ion 

overshadowed by dominant SO3 loss from the precursor ion. 

 
3.3.2 EDD of Sulfopeptides 

 
In EDD multiply-deprotonated peptides are irradiated with high-energy electrons  

(> 10 eV) to detach an electron, leaving a charge-reduced radical anion which typically 

fragments at Cα–C backbone bonds to produce a● and x ions with retention of acidic 

PTMs.36-37  However, neutral losses of H2O, CO2, NH3, and some amino acid side chains 

are frequently observed as major fragmentation pathways.36  
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Figure 3.6a – c.  EDD of doubly- (a), triply- (b) and quadruply-deprotonated (c) 
sulfonated hirudin. Sulfonate loss is indicated by # and water loss is indicated by ◊. 

 

EDD of doubly-, triply-, and quadruply-deprotonated hirudin (Figures 3.6a-c; 

respectively) produced up to eight x ions with sulfonate retention improving as a function 
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of charge state, as well as up to five a• ions compared to eight b/y-ions observed in CAD.  

For the lower charge states, the extent of this complementary information is reduced by 

significant neutral losses of CO2 and H2O.  Despite abundant loss of H2CO and 

CH3CHCO2H in EDD of the 4- charge state, extensive structural information was 

realized.  The number of sulfonate-containing product ions from EDD of the 4- precursor 

ion far exceeded that seen in the 2- and 3- charge state (20 cleavages compared to 7-9 

cleavages, respectively. 
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Figure 3.7a–c.  EDD of doubly-deprotonated CRL (a), CCKS (b), and GST (c). 
Sulfonate loss and water loss are indicated by # and ◊, respectively, while electronic 
noise is indicated by *. 

 

EDD of doubly-deprotonated precursor ions differs widely as per sulfopeptide. 

EDD of CRL (Figure 3.7a) produced six sulfonate-retaining backbone product ions and 

suffered little neutral loss from the charge-reduced precursor ion species.  In comparison 

to CAD of this doubly-deprotonated ion (Figure 3.2b), there was only slightly improved 

sequence coverage (56% for EDD vs. 44% for CAD) with similar sulfonate retention; 

however, EDD was able to localize the sulfonate group via the complementary product 

ions c4
′- and x8

′-.  Unlike EDD of CRL, EDD of doubly-deprotonated CCKS (Figure 3.7b) 

produced mainly neutral loss peaks from both the doubly-deprotonated precursor ion and 

the charge-reduced radical species with only two sulfonate-retaining product ions (c6
′-, y7

′-) 

observed.  In EDD of doubly-deprotonated gastrin II (Figure 3.7c), electron detachment 

and CO2 loss were the only observable events.  It is possible that a compact tertiary 

structure prevents the latter peptide from successfully dissociating in lower charge states.  

Though EDD of higher charge state peptides was not extensively evaluated here, reports 

from Taucher, et. al54 and Yang, et. al55 for nucleic acids suggest that EDD of higher 

charge states leads to improved fragmentation efficiency and sequence coverage.  It is 

also interesting to note that the vast majority of the observed product ions in EDD of the 

aforementioned sulfopeptides correspond to cleavages adjacent to acidic residues, either 

sulfotyrosine or acidic amino acids (D/E), as previously reported in the literature.37 

 
3.3.3 NETD of Sulfopeptides 
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In NETD, multiply-deprotonated anionic precursor ions transfer an electron to an 

acceptor reagent, resulting in ion activation and further EDD-like fragmentation. For 

doubly- (Figure 3.8a) and triply-deprotonated hirudin (data not shown), NETD appears to 

be more effective for fragmenting the lower charge state, possibly due to poor isolation of  
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Figure 3.8a-b.  NETD of doubly-deprotonated sulfonated hirudin (a) and caerulein (b). 
Sulfonate loss is indicated by #. 
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Figure 3.9a–c.  NETD of doubly- (a), triply- (b) and quadruply-deprotonated (c) 
sulfonated human gastrin II. No sulfonate loss was observed in any of these three spectra. 
Water loss is indicated by ◊. 
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Figure 3.10.  NETD of doubly-deprotonated sulfonated cholecystokinin (CCKS). 
Sulfonate loss is indicated by #. 
 

the triply-deprotonated precursor ion.  An extensive series of sulfonate-retaining x ions is 

observed for the 2- precursor, despite the presence of highly-abundant neutral loss peaks 

from the precursor ion.  Oxygen adduct(s) to the charge-reduced precursor ion were 

observed for this sulfopeptide and other investigated sulfonated ions as has been reported 

recently in ETD.56-57  NETD of other doubly-charged precursors did not produce similar 

analytically useful fragmentation behavior.  In fact, NETD of caerulein (Figure 3.8b), 

gastrin II (Figure 3.9a–c), and cholecystokinin (Figure 3.10) produced very few or no 

fragments other than neutral loss peaks.  Upon fragmentation of higher charge states (in 

cases for which sufficient precursor ion signal abundance was achievable, e.g. gastrin II 

(Figure 3.9c)), there was only three backbone fragmentation events.  The observed peaks 

correspond to single- or double-residue loss from the N- and/or C-terminus.  This lack of 

fragmentation in the center of gastrin II suggests that, despite having multiple charges, 
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intramolecular coulombic repulsion may not be sufficient for this ion to overcome 

secondary structural constraints.  Several previous reports have shown that thermal 

activation of the precursor ions prior to ion-electron58 or ion-ion activation59,60-62 or 

thermal activation of the charge-reduced species after ion activation63 may significantly 

improve fragmentation efficiency.  For sulfopeptides, however, vibrational activation is 

challenging due to the extreme gas-phase lability of the sulfonate group.  

 
3.3.4 niECD of Sulfopeptides 

 
In niECD, singly- and/or multiply-deprotonated precursor ions are irradiated with 

relatively low-energy (4.5-6 eV) electrons, allowing for electron capture to occur.  The 

charge-increased species that are produced upon electron capture dissociates to generate 

c′ and z• product ions, some of which contain higher charge than the original precursor 

ion.  This type of fragmentation is beneficial for several reasons: 1) because signal is 

proportional to charge in ICR instrumentation, achieving higher charge states from low-

charge-state precursors improves ion signal; and 2) improved fragmentation efficiency is 

often observed when dissociating higher charge states due to an increased likelihood of 

having one or more charges on each of the fragments produced from a single backbone 

fragmentation event.  We have proposed that a gaseous zwitterion may be necessary for 

electron capture to occur by a negative ion,42 i.e., precursor ions would need two 

deprotonation sites and an additional proton for an overall singly-deprotonated state or 

three deprotonation sites and an additional proton for an overall doubly-deprotonated 

state.  Sequence analysis of many known sulfopeptides suggests that < 3 acidic amino 

acid residues (excluding an often observed D/E flanking the sulfotyrosine residue) as well 
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as one basic amino acid residue are frequently observed within the + 5-residue window 

from the site of tyrosine sulfonation although this trend has not been universally 

verified.27, 29, 64-65  Furthermore, Bundgaard, et al. have proposed that the presence of a 

basic residue two positions away to the N-terminal side of the potential tyrosine 

sulfonation site enhances the degree of sulfonation.66  Thus, an overall negative 

zwitterion appears quite favorable for sulfopeptides in general. 
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Figure 3.11a–d.  niECD of singly-deprotonated sulfonated hirudin (a), doubly-
deprotonated sulfonated gastrin II (b), singly-deprotonated sulfonated human caerulein (c) 
and singly-deprotonated sulfonated cionin (d). Sulfonate loss observed in (d) is indicated 
by #. Electronic noise is indicated by *. 
 

Figure 3.11a–d shows niECD of four different sulfopeptides, all of which were 

analyzed above with the previously discussed techniques with the exception of cionin.  In 
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each spectrum there are several abundant c′ and/or z• ions which were not observed in 

negative-ion CAD, EDD nor NETD, demonstrating the complementarity of niECD to the 

methods discussed above.  It is important to note that neutral loss of H2O is not observed 

in niECD while loss of CO2 and NH3 are minor fragmentation events.  Furthermore, there 

is nearly complete sulfonate retention in niECD, which was also observed for NETD but 

not for negative-ion CAD nor EDD.  The only instance of sulfonate loss was observed in 

niECD of singly-deprotonated cionin (Figure 3.11d).  We believe that sulfonate loss is 

more likely for this precursor ion because cionin contains two side-by-side sulfonate 

residues, of which it may be unlikely to deprotonate both residues.  Leaving one of the 

sulfonate residues protonated may result in proton-driven loss of SO3
52 as discussed 

above.  

 
3.3.5 Comparison of the Sulfopeptide Fragmentation Efficiencies for Anion 

MS/MS Techniques 

 
Table 3.1 summarizes the calculated averages and standard deviations for 

fragmentation efficiency (in percent) in EDD, NETD, and niECD as well as the percent 

sequence coverage and percent of known vs. unknown peaks in each spectrum for all 

techniques.  It is important to note that fragmentation efficiency was not calculated for 

CAD because vibrational activation can be easily tuned to give nearly perfect 

fragmentation efficiency.  In CAD, sulfonate retention is either poor or non-existent for 

all singly-deprotonated ions analyzed here but increases as a function of charge state.  In 

EDD and NETD, fragmentation efficiency suffers due to the high amount of neutral loss 

compared to backbone product ion abundance.  However, these techniques yield nearly 



 113

complete sulfonate retention with a few exceptions (cionin 2- and hirudin 3- in EDD, see 

Table 3.1).  In niECD, all calculated values for fragmentation efficiency, sequence 

coverage, sulfonate retention, and the relative amount of known peaks in the spectra were 

greater than 80% with the exception of two precursor ions (cionin 1- and hirudin 1-).  For 

example, CAD of singly-deprotonated caerulein and cionin exhibit poor or non-existent  

 

Peptide, z

Fragmentation Method*

CAD (+/‐ error) EDD (+/‐ error) NETD (+/‐ error) niECD (+/‐ error)

Gastrin, 2‐

3‐

4‐

‐‐, 44, 11, 98

‐‐, 50, 85, 96

‐‐, 13, 100, 100

0, 0, 100, 77

1, 6, 90, 77

11, 44, 98, 90

0, 0, 100, 100

1, 6, 100, 88

8, 18, 100, 95

81, 88, 100, 89

N/A

N/A

Hirudin, 1‐

2‐

3‐

‐‐, 70, 4, 100

‐‐, 67(21), 75(6), 99(1)

‐‐, 70, 75, 80

N/A

29(5), 80(17), 86(1), 87(5)

58, 50, 56, 61

N/A

22(2), 57(15), 89(0.2), 83(4)

9, 20, 99, 70

49(7), 80(14), 100(0), 91(5)

N/A

N/A 

Caerulein, 1‐

2‐

‐‐, 0, 0, 97

‐‐, 44, 95, 97

N/A

25, 44, 97, 85 

N/A

1, 22, 94, 87

91, 100, 100, 85

N/A

Cholecystokinin, 1‐

2‐

‐‐, 43, 11, 99

‐‐, 29, 98, 90 

N/A

21, 29, 98, 99

N/A

2, 14, 96, 97

90, 86, 100, 89

N/A

Cionin, 1‐

2‐

‐‐, 0, 0, 100

‐‐, 29, 0, 93

N/A

3, 14, 38, 79

N/A

‐‐

33, 57, 64, 84

N/A

*All values are given as percentages and are listed in this order:  percent fragmentation efficiency, percent sequence 
coverage, percent sulfonate retention, and percent of identifiable peaks in each spectrum. 
 

Table 3.1.  Calculated fragmentation efficiencies of EDD, NETD, and niECD as well as 
percent sequence coverage, sulfonate retention and percent of known vs. unknown 
product ion signal in spectra for all four techniques. 
 

percent sequence coverage and sulfonate retention.  niECD of these same precursor ions 

shows a dramatic improvement in these numbers despite a lower percentage of 

identifiable peaks in the spectra.  Furthermore, CAD, EDD, and NETD of doubly-

deprotonated gastrin II either have moderate sequence coverage with poor sulfonate 

retention (for CAD) or have no backbone cleavages yet complete sulfonate retention (for 

EDD and NETD).  However, niECD of this precursor ion exhibits high percent 

fragmentation efficiency, sequence coverage, and sulfonate retention.  Clearly, niECD 
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produces the highest overall performance for sulfonate retention at low charge states and 

provides both a high level of fragmentation efficiency and sequence coverage relative to 

the other techniques for all charge states analyzed. 

3.4 Conclusion 

In this work, a variety of negative ion mode MS/MS activation techniques have been 

evaluated for the fragmentation of sulfopeptides.  While the majority of positive ion 

mode fragmentation techniques lead to facile SO3 loss, all negative ion mode techniques 

evaluated here exhibit some degree of sulfonate retention, allowing for direct localization 

of this acidic PTM in many cases.  In general, negative ion mode CAD, EDD, NETD, 

and niECD of sulfopeptides examined here are favorable because sulfopeptides are 

naturally acidic and thus providing several potential sites for deprotonation.  CAD 

provides limited sulfonate retention for singly-deprotonated ions; however, sulfonate 

retention improves as a function of increasing charge state.  EDD of doubly-deprotonated 

precursor ions shows improved sulfonate retention compared to negative-ion CAD, but 

EDD backbone fragmentation efficiency suffers greatly from neutral loss.  Complete 

sulfonate retention is observed in NETD, but neutral loss is also a major fragmentation 

pathway, potentially precluding peptide sequence characterization.  By contrast, with the 

exception of hirudin, niECD provides complete sulfonate retention and extensive 

sequence coverage with less than 5% structurally-noninformative neutral loss. 
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CHAPTER IV 

IMPROVING BACKBONE FRAGMENTATION 
EFFICIENCY IN ELECTRON DETACHMENT 
DISSOCIATION OF ACIDIC PEPTIDE IONS 

 

4.1 Introduction 

 Electron detachment dissociation (EDD) was first realized for polypeptides by 

Zubarev and colleagues in 2001 as an alternative electron-based fragmentation technique 

to positive ion mode electron capture dissociation (ECD) for analysis of acidic analytes in 

negative ion mode.1  Briefly, multiply charged anions are irradiated on the millisecond to 

second time scale with high-energy electrons in excess of 10 eV to allow detachment of 

an electron from the multiply deprotonated analyte.  The excess energy likely also causes 

electronic excitation and leads to subsequent radical-driven fragmentation of the ion.  

Zubarev originally described EDD as “intramolecular ECD” because the initially 

proposed mechanism suggested that electron capture occurs following electron 

detachment.2  In this mechanism, the positively-charged radical “hole” resulting from 

electron detachment combines with an intramolecular electron.1  The recombination 

energy from this exothermic process is ~5 eV,3 making electronic excitation of the ion 

possible (where the minimum energy for this process is ~ 5–7 eV4).  The initial EDD 

publication1 reported several types of product ions (a•, c, c•, z•) with most favorable 
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cleavage at N-Cα bonds but later work involving EDD in a quadrupole ion trap revised 

the product ion preference to place a• and x-ion formation as the most favorable, followed 

by other product ions.  Radical a• ions and even-electron x ions are formed more readily 

than radical x• ions and even-electron a ions due to an energy barrier of 74.2 kJ/mol,5 

where 100 kJ/mol~1 eV.  (Please refer to Introduction, Figure 1.9 for the EDD 

mechanism.) 

Håkansson, Amster, Zubarev and others have reported EDD characterization of 

acidic analytes such as oligonucleotides,6-7 sulfonated oligosaccharides,8-9 sulfopeptides,1 

and phosphopeptides.5, 10  Despite the formation of structurally informative a•/x ions from 

acidic peptides as well as glycosidic and cross-ring fragments from acidic sugars, EDD 

also results in water loss from charge-reduced sugars and extensive neutral loss of carbon 

dioxide from aspartic and glutamic acid side chains as well as peptide C-termini, which 

may preclude formation of structurally informative product ions.  This “Achilles’ heel” is 

believed to be a dominant characteristic of EDD due to the fact that deprotonation of a 

peptide, for instance, occurs favorably at a carboxylic acid (pKa
R-COOH < 4.5) while 

electron detachment occurs at a site of relatively low electron affinity1 (EAR-COO
-~3.4-3.6 

eV for acetate11 and benzoate12).  It is also possible to deprotonate and subsequently 

detach an electron from a backbone peptide amide;5 however, this site is less acidic than 

carboxylic acids.  Thus, because fragmentation commonly occurs near the site of electron 

detachment,5, 13 it follows that carbon dioxide loss in EDD is energetically favorable 

compared to fragmentation of the peptide backbone.  We hypothesize that chemical 

derivatization of carboxylic acids or use of alternative anion charge carriers may lead to 

reduction and/or elimination of CO2 loss in peptide EDD and, consequently, improved 
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peptide backbone fragmentation efficiency and subsequent structural characterization of 

acidic peptides that typically fragment poorly in EDD (due to extensive CO2 loss).     

The nature of the charge carrier has been shown to play a key role in ECD 

fragmentation behavior.  Zubarev and coworkers compared ECD of doubly-protonated 

and zinc-adducted angiotensin II dications and found that c/z-ion formation decreased 

upon metal adduction.14  Williams and coworkers further investigated the effect of metal 

adduction on ECD behavior, reporting that electron capture at alkali metal adducts 

neutralized the cation, resulting in metalated c/z-ions.15  Liu and Håkansson16 examined 

ECD of a divalent metal-adducted peptide and found that relative abundances of c/z 

product ions changed significantly depending on the metal type and that c/z-ion formation 

was shut down for soft metals such as nickel and cobalt.  The same authors reported in a 

separate study that sulfonation can be preserved by adducting divalent metal cations to 

tyrosine-O-sulfopeptides.17  Chamot-Rooke and coworkers have reported that ECD of O-

glycosylated and O-phosphorylated peptides derivatized at the N-terminus with a fixed 

charge phosphonium group exhibited drastically improved sequence coverage and PTM 

site localization compared to the same but underivatized peptides.18  Recently, Chan and 

coworkers showed that ECD of Mn2+ and Zn2+-adducted peptides produced metalated and 

non-metalated c/z-ions, ECD of Fe2+, Co2+, and Ni2+-adducted peptides produced 

metalated a/y-ions, and ECD of Cu2+-adducted peptides produced a/x-ions.19  The unique 

fragmentation behavior of various divalent metal adducts may lead to a “tunable” system 

for obtaining complementary fragmentation.20  These authors have also utilized alkaline 

earth metals to evaluate the change in ECD behavior of synthetic peptides, observing a 

series of c and/or z-ions containing the adducted metal ion.20  Ab initio calculations of 
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Mg2+-adducted N-methyl Gly-Gly as a model system suggested that Mg2+, when 

coordinated to carbonyl oxygens, enhances the acidity of the amide proton by pulling 

electron density toward the carbonyl oxygen, which has also been reported elsewhere.21-22  

This enhanced acidity promotes a relatively low energy hydrogen atom transfer from the 

amide to the N-terminus (ΔHrxn = +5 kJ/mol, Etransition = +15 kJ/mol).20  In this case, 

charge separation is more easily facilitated than that observed for protonated model 

systems, leading to a zwitterion in the presence of a highly basic site.  Zwitterionic 

structures may promote different fragmentation behavior, possibly due to the presence of 

more precursor ion conformers, leading to a wider variety of neutralization events at the 

mobile proton or other protonated sites upon electron capture.19  Other work has shown 

that the specific gas-phase structure(s) are critical to ECD fragmentation behavior.23-24  

Contrary to metal adduction to peptides, anion adduction to proteins and peptides 

has recently been performed in both positive-25-26 and negative-ion mode electrospray 

ionization mass spectrometry (ESI-MS).27  Specifically, in negative-ion mode, Liu and 

Cole report that matching the gas-phase basicity of adduct anions to carboxylates can 

increase the charge state up to 3- for chloride-adducted fibrinopeptide B and ACTH 22-

39.27  The specific points of interaction for anion adduction were proposed as either 

hydrogens of carboxylic acids or protonated amino/imino groups.  The carboxylic acid 

sites are favored due to closer matching of the adduct-carboxylic acid gas-phase basicities 

which can stabilize the interaction.  These authors also reported that the propensity of 

adduct loss with or without the hydrogen in ESI-MS depends upon the relative gas-phase 

basicities of the adduction site and the adduct anion.  Specifically, an anion of lower gas-
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phase basicity adducted to a site of higher gas-phase basicity will most likely depart with 

the hydrogen atom, leaving the deprotonated carboxylate.   

In addition to ESI-MS analysis of anion-adducted peptides, EDD of chloride-

adducted oligosaccharides has been reported.28  These authors found that EDD of 

chloride-adducted oligosaccharides provided complementary structural information 

including more cross-ring and glycosidic cleavages compared to EDD of deprotonated 

precursor ions.  Furthermore, some chloride-adducted product ions were observed in 

EDD of singly chloride-adducted, singly-deprotonated maltoheptose but not in EDD of 

the branched sugar DSLNT. 

Here, we examine the EDD behavior of non-acidic peptides (i.e., peptides lacking 

carboxylic acids).  Further, for acidic peptides, we employ carboxylic acid derivatization 

with 4-aminonaphthalene sulfonic acid (ANSA)29 and anion adduction to seek a solution 

for reducing carbon dioxide loss in EDD.  Finally, N-terminal acetylation was explored 

as a means to alter peptide gas-phase structure and thus possibly the EDD fragmentation 

behavior.  

4.2 Materials and methods 

4.2.1 Peptide Standards 

Neuromedin B (GNLWATGHFM-NH2; Sigma, St. Louis, MO), neuromedin C 

(GNHWAVGHLM-NH2; Sigma), disulfide-bonded vasopressin (CYFQNCPRG-NH2; 

Sigma), desulfonated caerulein (pEQDYTGWMDF-NH2; Bachem, Torrance, CA), 

angiotensin I (DRVYIHPFHL; Sigma), sulfonated and desulfonated cholecystokinin 

fragment 26-33 (DyMGWMDF-NH2, CCKS and CCK, respectively; Advanced 
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ChemTech, Louisville, KY), neurokinin B (DMHDFFVGLM-NH2, Sigma), [Gly-OH]-

leutinizing hormone releasing hormone (pEHWSYGLRPG, LHRH; Sigma), [Met-OH]-

substance P (RPKPQQFFGLM; Sigma), bradykinin fragment 2-9 (PPGFSPFR; Sigma), 

sulfonated hirudin fragment 54-65 (DFEEIPEEyLQ; Advanced ChemTech) and 

sulfonated cionin (NyyGWMDF-NH2; Bachem) were used without further purification 

unless otherwise noted.  LC/MS-grade water and methanol were purchased from J.T. 

Baker (Phillipsburg, NJ), ES tuning mix was purchased from Agilent (Santa Clara, CA), 

and triethyl amine, dithiothreitol, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), 

ANSA, glacial acetic acid, pyridine and hydrochloric acid were purchased from Sigma.  

4.2.2 Preparation of Non-Acidic Peptides 

Neuromedin B and C were diluted to a concentration of 2 µM in 50:50 

MeOH:H2O with 1% TEA prior to MS analysis in negative ion mode.  Vasopressin was 

reduced with 10 mM dithiothreitol (DTT) in 50:50 methanol:water (MeOH:H2O) for 1 hr 

at 55 oC.  No cleanup was carried out prior to analysis in order to prevent conversion 

back to the disulfide-bonded form.  

4.2.3 Preparation of ANSA-Derivatized Desulfonated Caerulein 

Derivatization of carboxylic acids with ANSA was carried out based on a 

previously published protocol from Lindh, et al.29  Briefly, 100 nmol of CRL-SO3 was 

dried in a vacuum centrifuge and reconstituted in 50 µL of coupling buffer (8% pyridine 

in ~1% HCl, pH 5.0), 50 µL 1M EDC and 400 µL 250 mM ANSA.  The reaction 

proceeded for 2 hr at 25 oC and was stopped with 50 µL glacial acetic acid.  The 

derivatized peptide was purified by liquid chromatography separation on an Agilent 

Zorbax C8 column (4.6 x 150 mm) at 1 mL/min flow rate with a linear gradient of 2-
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100% acetonitrile in 0.1% formic acid over 20 min and monitored at 214 nm.  Sample 

fractions (1.5 mL) were dried in a vacuum centrifuge then reconstituted in 50:50 

MeOH:H2O with 1% TEA prior to negative ion mode MS analysis. 

4.2.4 Preparation of Anion-Adducted Acidic Peptides 

LHRH, Met-OH substance P and angiotensin I were mixed with either ammonium 

bromide or ammonium chloride at a 64:3.2 µM ratio based on a previously published 

protocol.27 

4.2.5 Mass Spectrometry 

 All samples were directly infused in negative ion mode in 50:50 MeOH:H2O 

without TEA using an ESI source (Apollo II, Bruker Daltonics, Billerica, MA) unless 

otherwise noted.  All experiments were performed on a 7T Q-FT ICR-MS instrument 

equipped with a hollow cathode dispenser to generate electrons (solariX-Q, Bruker 

Daltonics).  The ESI flow rate was set to 70 or 140 µL/hr for anion adduction 

experiments and the nebulizing gas was flowing at 1.3 L/min.  The voltage applied to the 

capillary, the end plate offset and the first skimmer were carefully optimized for each 

analyte to prevent loss of the adduct.  Ions were accumulated in the first hexapole for 10 

ms then mass-selectively filtered as per peptide and charge state by the quadrupole.  

Mass-selected ions were transferred to the second hexapole and accumulated for 0.3 - 

27.5 s.  Ions were dynamically trapped in the ICR cell then irradiated for 1–2.5 s with 

18.5-20.5 eV electrons generated from a hollow dispenser cathode with a + 0.2-1 V bias 

voltage held on the lens electrode with respect to the cathode bias voltage.  Resulting 

product ions were detected as an image current following resonant excitation.  Time-

domain data were Fourier transformed, and the resulting frequencies corresponding to 
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m/z 300 to 2500 were displayed using the Bruker solariXcontrol software (v. 1.5) with 

512k data points summed over 32 scans.  

4.2.6 Data Analysis 

External calibration was performed daily on the solariX using ES tuning mix and 

this calibration was applied to each data acquisition event.  DataAnalysis software (v. 4.0) 

was used for peak picking.  Calculated m/z ratios for peptides and their product ions were 

obtained from MS Product in Protein Prospector 

(http://prospector.ucsf.edu/prospector/mshome.htm) and the PeptideMass tool in Expasy 

(http://www.expasy.ch/tools/peptide-mass.html).  These calculated values were compiled 

into an in-house built macro and searched against experimental m/z ratios for peak 

identification and accurate mass matching.  Mass assignments with an error tolerance ≤15 

ppm are reported here. 

4.3 Results 

4.3.1 EDD of Non-Acidic Peptides 

 Figure 4.1 shows EDD spectra of the doubly-deprotonated peptides neuromedin B, 

neuromedin C, and reduced vasopressin (a–c, respectively) all of which do not contain 

any carboxylic acids.  EDD of neuromedin B and C resulted in extensive fragmentation, 

exhibiting a, b, c and x, y, z-ions with little neutral loss.  C-terminal x and z• ions 

dominate the spectra with fewer N-terminal ions, corresponding to 89% sequence 

coverage for both neuromedin peptides.  The only bond that was not cleaved in both 

cases was the histidine-leucine bond.  Several z• - 2H and z• - H ions were observed in 

both neuromedin B and C EDD spectra.  Such ions have been previously reported for 
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ECD30 but not EDD.  Our group has also reported EDD fragments with the same charge 

state as the precursor ion, which is observed here for two z-ions.  We also observed 

neutral loss of a leucine side chain (CH(CH3)2, 43.0548), which has been reported in 

ECD,31 from the doubly-deprotonated precursor ions as well as the charge-reduced 

species for neuromedin B only. 
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Figure 4.1 a–c. EDD spectra of doubly deprotonated neuromedin B (a), neuromedin C 
(b) and DTT-reduced vasopressin (c).  Electronic noise is indicated by * and the 3rd 
harmonic is indicated by ν3. 
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Figure 4.2.  Summary of EDD product ions observed from doubly-deprotonated 
neuromedin B (top), neuromedin C (middle), and reduced vasopressin (bottom).  N-
terminal ions consist of a/b/c-ions, and C-terminal ions consist of x/y/z-ions with 
horizontal lines indicating the presence of each ion.   
 

EDD of DTT-reduced vasopressin (Figure 4.1c) did not produce as extensive 

fragmentation as the neuromedin peptides; however, backbone fragmentation was 

realized.  In a previous report of unreduced vasopressin,32 mostly fragmentation of the 

disulfide bond was observed.  It is likely that, for the unreduced species, electron 

detachment occurs from the disulfide bond32 (IER-SS-R ~ 8.46 – 9.133), potentially 

precluding backbone fragmentation.  In the spectrum above, the expected charge-reduced 

peak is not observed but neutral loss peaks originating from the oxidized precursor ion 

species are seen.  Neutral loss of 34 and 68 Da could correspond to loss of SH2 and H2S-

SH2, respectively; however, other low abundance neutral losses could not be identified.  

Overall, the aforementioned non-acidic peptides fragmented extensively along the 

backbone; however, most peptides do contain carboxylic acids that may hamper 

structural characterization with EDD. 
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4.3.2 EDD of ANSA-Derivatized Desulfonated Caerulein 

 Several peptides, including caerulein and its desulfonated form as well as hirudin 

and cholecystokinin with and without sulfonate, were ANSA-derivatized, but only 

derivatized desulfonated caerulein was detected in subsequent MS analyses following LC 

purification.  Desulfonated caerulein contains two acidic sites corresponding to two 

aspartic acid residues because the C-terminus is amidated.  Figure 4.3 a–c compares EDD 

of non-derivatized (a), singly-derivatized (b) and doubly-derivatized (c) desulfonated 

caerulein.  EDD of non-derivatized non-sulfonated caerulein produces a• and x as well as 

c-ions with significant CO2 loss accounting for 67% of the total product ion signal.  EDD 

of singly-derivatized caerulein results in much less CO2 loss (45% of the total product ion 

signal) but also much less backbone fragmentation.  When both the carboxylic acids were 

blocked with ANSA, CO2 loss was completely eliminated but very few product ions were 

observed.  It is also important to note that sulfonate loss (from the ANSA group) in the 
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Figure 4.3 a–c.  EDD spectra of non-derivatized (a), singly-derivatized (b) and doubly-
derivatized (c) desulfonated caerulein.  Sulfonate loss (from ANSA) is indicated by #. 
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doubly-derivatized peptide appears to have replaced carboxylate loss.  It is possible that 

the most energetically-favorable fragmentation is CO2 loss followed by SO3 loss prior to 

Cα-C backbone fragmentation.  Based on the observed abundant SO3 neutral loss, lack of 

reproducible products, and poor synthetic yield, the ANSA derivatization strategy was 

not further pursued. 
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Figure 4.4.  Summary of EDD product ions observed from non-derivatized (top), singly-
derivatized (middle) and doubly-derivatized (bottom) desulfonated caerulein.  Blue lines 
indicate ions observed without ANSA while red lines indicate ions that contain ANSA. 
 
 
4.3.3 EDD of acetylated peptides 

 Acetylation may alter the gas-phase structure of peptide ions.  Specifically, N-

acetylation may change hydrogen bonding/salt bridge formation in gaseous peptide ions 

and thus alter EDD fragmentation behavior.  Figures 4.5, 4.7, 4.9 and 4.11 a–b compare 

EDD of the non-acetylated (a) and acetylated (b) forms of desulfonated cholecystokinin, 

sulfonated cholecystokinin, angiotensin I and neurokinin B, respectively, while Figures 

4.6, 4.8, 4.10 and 4.12 summarize the EDD product ions observed for each peptide.  In 

Figure 4.5, a similar amount of CO2 neutral loss is seen for the non-acetylated and 

acetylated species; however, significantly more unique neutral loss events are observed 
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following EDD of acetylated CCK.    As for the other neutral losses, it may be possible 

that these are due to a different gas-phase structure, such as disruption of salt bridge 

interactions. 
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Figure 4.5 a–b.  EDD spectra of non-acetylated (a) and acetylated (b) desulfonated 
cholecystokinin.34  Electronic noise is indicated by * and the 3rd harmonic is indicated by 
ν3. 
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Figure 4.6.  Summary of EDD product ions observed from non-acetylated (top) and 
acetylated (bottom) desulfonated cholecystokinin.  Blue lines indicate ions observed 
without acetylation while red lines indicate ions that contain the acetylated N-terminus. 
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Figure 4.7 a–b.  EDD spectra of non-acetylated (a) and acetylated (b) sulfonated 
cholecystokinin with sulfonate loss indicated by # and the 3rd harmonic indicated by ν3. 
 

 Comparison of EDD of non-acetylated (a) and acetylated (b) sulfonated 

cholecystokinin (CCKS), shown in Figure 4.7 a–b and Figure 4.8, suggests that neutral 
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loss is increased following acetylation, similar to the results for CCK.  In the CCKS 
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Figure 4.8.  Summary of EDD product ions observed from non-acetylated (top) and 
acetylated (bottom) sulfonated cholecystokinin.  Blue lines indicate ions observed 
without acetylation.  No observed ions contained the acetylated N-terminus. 
 

spectra, we also observed sodium (Na+) and potassium (K+) adduct peaks, which are 

common in mass spectrometry due to sample or solution impurity as well as ESI source 

contamination.  For this particular peptide, the acetyl group was not retained on any 

product ion.  The reason behind this behavior is currently unclear but may be due to 

radical-driven acetyl loss, which has been seen in ECD of acetylated glycans.35 

Figure 4.9 a–b show EDD spectra of non-acetylated (a) and acetylated (b) 

angiotensin I.  Clearly, EDD of angiotensin I produces more backbone fragmentation 

events than those observed from CCK or CCKS.  Fragmentation efficiency is roughly the 

same for non-acetylated and acetylated angiotensin; however, we observed an acetylation 

of either the histidine or possibly arginine side chain.  We conclude that either of these 

residues is indeed the site of acetylation due to the presence of an x-ion which contains 

the acetyl group (Figure 4.9a).  Both side chains are quite basic and have been acetylated 

in previous work in our group using identical acetylation protocols (Ning Wang, 

unpublished result).  
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 Figure 4.9 a–b.  EDD spectra of non-acetylated (a) and acetylated (b) angiotensin 
I with electronic noise indicated by * and the 3rd harmonic indicated by ν3. 
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Figure 4.10.  Summary of EDD product ions observed from non-acetylated (top) and 
acetylated (bottom) angiotensin I.  Blue lines indicate ions observed without acetylation 
while red lines indicate ions observed with acetylation.  The site of acetylation was not 
determined definitively and was indicated by “+ Acetyl.” 

 

Figure 4.11 a–b shows EDD spectra of non-acetylated (a) and acetylated (b) 

neurokinin B.  Similar to unmodified angiotensin, non-acetylated neurokinin B exhibits 

rich fragmentation with both abundant N- and C-terminal product ions.  EDD of 

acetylated neurokinin B illustrates two important findings:  1)  All N-terminal product 

ions contain the acetylated N-terminal residue, which was not observed with all other 

peptides examined here; and 2)  C-terminal product ions are significantly reduced after 

acetylation.  One possible explanation for this observation is that acetylation is somehow 

influencing the site of deprotonation and subsequently the site of electron detachment and 

preferred fragmentation.  Two viable sites for deprotonation for this petpide include the 

side chain of each aspartic acid residue.  Because this peptide is C-terminally amidated, 

the most acidic sites will be the carboxylic acids followed by backbone amide nitrogens.  

Due to the extensive backbone fragmentation, deprotonation and subsequent electron 

detachment from a backbone amide nitrogen appears to occur. 
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Figure 4.11 a–b.  EDD spectra of non-acetylated (a) and acetylated (b) neurokinin B 
with electronic noise indicated by * and the 3rd harmonic indicated by ν3. 
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Figure 4.12.  Summary of EDD product ions observed from non-acetylated (top) and 
acetylated (bottom) neurokinin B.  Blue lines indicate ions observed without acetylation 
while red lines indicate ions observed with acetylation. 

4.3.4 EDD of Anion-Adducted Peptides 

 Anion adduction was performed with ammonium salts of both chloride and 

bromide.  It has been suggested previously that matching the gas-phase basicity of a 

proton-containing site with an anion for adduction leads to the formation of a stable gas-

phase adduct.*27  The proposed interaction mechanism is shown in Figure 4.13.  Liu and 

Cole argue that protonated amine groups (GPBR-NH2 = 860-910 kJ/mol for primary 

through tertiary alkyl amines36) are less likely to be involved in anion adduction 

compared to neutral carboxylic acids (GPBR-COO
- = 1418.5+9.6 – 1428.7+8.4 kJ/mol, 

where R = straight-chain hydrocarbon) due to a mismatch in the GPB of the protonated 

amine and the anion adduction species.  For instance, if a base (A-) is adducted to a 

protonated amine (NH2
…H+…A-) rather than to a carboxylic acid (COO-…H+…A-), it is 

                                                 
* This notation seems counterintuitive to the mirrored acidity-basicity model of acids and their conjugate bases. It is 
important to note that the authors explain that the matching GPBs are that of the anion adduct and the deprotonated 
conjugate base of the carboxylic acid where adduction occurs. 
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more likely to lose HA from the protonated amine because the resulting neutral amine 

group has a much lower GPB than the deprotonated carboxylate and, thus, it requires less 

  
NH2 – Peptide – COO– • • • • H+ • • • • A-

 

Figure 4.13.  Proposed gas-phase interaction mechanism of an anion (A-) with a 
carboxylic acid.  Adapted from Liu and Cole.27 
 

energy to remove the proton plus adducted base complex (HA) from a protonated amine. 

Specifically, chloride and bromide were chosen because their gas phase basicities 

(GPBs, 1373.6 + 8.4 kJ/mol and 1331.4 + 4.6 kJ/mol, respectively) closely match that of 

a proton-bearing carboxylic acid and these anions are therefore able to form highly stable 

complexes with carboxylic acids in the gas phase.  Liu and Cole have shown that anions 

of medium-to-high GPB such as chloride and bromide can form more highly-charged 

adducts (z = -2 – -3) than anions of lower GPB based on experimental evidence collected 

for nine different anions with GPBs ranging from 1265 – 1530 kJ/mol.27  These authors 

report that chloride, with the higher GPB of the two halides, has a more favorable 

interaction with slightly less acidic carboxylic acid sites, which should have a higher 

GPB than a deprotonated carboxylate since GPB mirrors gas-phase acidity. Matching 

GPBs allows the anion to form a stable adduct and additionally facilitates retention of the 

adducted anion following collisional activation.  These authors also found that HSO4
- of 

lower GPB than Br- and Cl- was more prone to depart from a carboxylic acid adduction 

site than the higher GPB anions. 

 Figure 4.14 a–c compares the EDD spectra of doubly-deprotonated (a) leutinizing 

hormone releasing hormone (LHRH) to the singly deprotonated, single chloride-adducted 
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precursor ion ([M + Cl- – H]2-) and the doubly bromide-adducted precursor ion ([M + 

2Br-]2-) in (b) and (c), respectively, while Figure 4.15 summarizes the EDD product ions 

observed for these peptides. 
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Figure 4.14 a–c.  EDD spectra of doubly-deprotonated (a), singly-deprotonated and 
singly chloride-adducted (b), and doubly bromide-adducted LHRH. Electronic noise is 
indicated by * while the 3rd harmonic is indicated by ν3.
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Figure 4.15.  Summary of EDD product ions observed from doubly-deprotonated (top), 
singly-deprotonated and singly chloride-adducted (middle), and doubly bromide-
adducted LHRH.  Blue lines indicate ions observed without an anion adduct.  No product 
ions were observed with chloride or bromide adducts. 
 
 
 It is interesting to note that fragmentation of doubly-deprotonated and doubly 

bromide-adducted LHRH provided nearly identical structural information.  However, 

EDD of chloride-adducted LHRH produced additional unique z-ions and resulted in 

significantly improved sequence coverage (89%) compared to the other LHRH 

fragmentation spectra (56% and 44% for doubly-deprotonated LHRH and doubly 

bromide-adducted LHRH, respectively).  Unfortunately, there are no product ions that 

contain the adducted anions; therefore, we cannot unambiguously identify the site(s) of 

anion adduction.  We expect that the most likely site of chloride and bromide anion 

adduction is the C-terminal carboxylic acid.  Our results support this idea for chloride 

adduction due to the decrease in CO2 neutral loss following EDD but not for bromide 

adduction.  Carbon dioxide loss from the charge-reduced precursor ion relative to the 

charge-reduced species is 13% for doubly-deprotonated LHRH while this ratio is 8% for 
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singly-deprotonated, singly chloride-adducted LHRH, and 17% for doubly bromide-

adducted LHRH.  As discussed above, we did not observe any product ions containing 

the anion adduct.  Because chloride has a higher GPB, it is possible that only chloride is 

lost during electronic activation and leaves behind a carboxylic acid that cannot easily 

dissociate by CO2 loss.  On the other hand, bromide with a lower GPB is more likely to 

depart as HBr, leaving behind a peptide carboxylate that has a very small activation 

barrier to overcome in order to lose CO2.  

In Figures 4.16 a–c and 4.17, it is seen that Met-OH substance P behaves 

similarly in EDD compared to leutinizing hormone releasing hormone.  Enhanced 

sequence coverage, supported by additional C-terminal product ions, was observed for 

chloride- but not bromide-adducted substance P.  Even though the total number of 

fragmentation events for non-adducted and chloride-adducted substance P is the same, we 

observe more unique sequence information following EDD of the chloride-adducted 

precursor, suggesting that chloride adduction may promote different fragmentation 

pathways.   
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Figure 4.16 a–c.  EDD spectra of doubly-deprotonated (a), singly-deprotonated and 
singly chloride-adducted (b), and doubly bromide-adducted Met-OH substance P. 
Electronic noise is indicated by * while the 3rd harmonic is indicated by ν3. 
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Figure 4.17.  Summary of EDD product ions observed from doubly-deprotonated (top), 
singly-deprotonated and singly chloride-adducted (middle), and doubly bromide-
adducted Met-OH substance P.  Blue lines indicate ions observed without an anion 
adduct. 
 

 An interesting finding is the presence of several xn
-• radical ions in EDD of 

doubly-deprotonated substance P.  As discussed above, radical x-ions are usually not 

observed in favor of even-electron x-ions due to an energy barrier of ~74.2 kJ/mol. 

However, it appears that chloride and bromide adduction may significantly hinder these 

fragmentation pathways as evidenced most notably from the disappearance of x7
-• in both 

anion-adducted EDD spectra.  It is possible that a nearby adducted anion influences the 

local electronic environment near the proline-glutamine bond, thus precluding 

fragmentation at this site. 

 Carbon dioxide loss from the charge-reduced precursor ion relative to the charge-

reduced species is considerably higher for substance P compared to CO2 loss in EDD of 

leutinizing hormone (76% for doubly-deprotonated SubP, 69% for singly-deprotonated, 
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singly chloride-adducted SubP, and 22% for doubly bromide-adducted SubP).  Bromide 

adduction resulted in the least CO2 neutral loss; however, this reduction should be 

cautiously ascertained due to the reduced overall fragmentation efficiency observed in 

this spectrum.  Despite a large ratio of CO2 loss relative to the charge-reduced species for 

chloride adducted ions, the most dominant product ion corresponds to loss of H+Cl- from 

the charge-reduced ion.  This loss suggests that the GPB of the chloride anion and the 

proton-containing interaction site were not ideally matched and resulted in an unstable 

complex. 

 Perhaps the most intriguing results are the EDD fragmentation spectra of doubly-

deprotonated (a), singly-deprotonated, singly chloride-adducted (b), and doubly bromide-

adducted (c) angiotensin I shown in Figure 4.18 a–c.  EDD of doubly-deprotonated 

angiotensin I resulted in significant CO2 neutral loss with few product ions observed, 

corresponding to 44% sequence coverage.  Interestingly, despite the abundant neutral 

losses observed in EDD of singly-deprotonated, singly chloride-adducted angiotensin 

(Figure 4.18 b), a rich series of ions resulting from backbone fragmentation produces 

100% sequence coverage for this peptide.  Though several m/z values matched that of 

chloride-adducted product ions within 15 ppm error, we could not confidently assign 

these due to the absence of the chloride isotopic signature.  EDD of doubly bromide-

adducted angiotensin I produced similar poor sequence coverage (33%) as compared to 

the doubly-deprotonated precursor ion, and there is abundant neutral loss from the 

charge-reduced species.  However, in this particular case, the expected charge-reduced 

ion [M + 2Br-]-• is not observed while the charge-reduced ions corresponding to one and 

two HBr neutral losses are the most dominant product ions in the spectrum.  As suggested 
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previously, it is possible that the GPB of the bromide anion and the two interaction sites 

were not ideally matched, causing facile loss of HBr from both interaction sites.  Because 

bromide has a lower GPB than chloride,27 it may be more likely to observe hydrogen 

bromide loss concurrently as opposed to loss of the bromide anion only.  Surprisingly, we 

would have expected to see much more abundant CO2 loss following the loss of HBr, 

which leaves a labile carboxylate if the interaction site was the C-terminus or the side  
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Figure 4.18 a–c.  EDD spectra of doubly-deprotonated (a), singly-deprotonated and 
singly chloride-adducted (b), and doubly bromide-adducted (c) angiotensin I.  The inset 
in (c) shows the isotopic distribution for the [x9 + 2Br-]2- ion.  Electronic noise is 
indicated by * while the 3rd harmonic is indicated by ν3.   
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Figure 4.19.  Summary of EDD product ions observed from doubly-deprotonated (top), 
singly-deprotonated and singly chloride-adducted (middle), and doubly bromide-
adducted (bottom) angiotensin I.  Blue lines indicate ions observed without an anion 
adduct, and red lines indicate ions observed with chloride or bromide adduction. 
 

chain of the aspartic acid residue.  Because there are very few product ions observed in 

this spectrum, it is likely that much of the excess energy following electron detachment 

was funneled into neutral loss events.  It is interesting to note that, while we see the same 

trends for sequence coverage (improved coverage for chloride-adducted species but 

reduced coverage for bromide-adducted species) and types of ions observed (more C-

terminal than N-terminal ions), we observe a doubly bromide-adducted product ion 

following EDD of angiotensin I (see inset of Figure 4.18c).  Despite the low signal-to-

noise, we can assign this adduct ion based on accurate mass as well as the characteristic 

isotopic distribution pattern expected for bromide attachment.  Because the identified x9 

ion contains both bromides but only one carboxylic acid, we must consider adduct 
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interactions at sites other than the carboxylic acids previously hypothesized by Liu and 

Cole.27  Instead of the N-terminal carboxylic acid from the aspartic acid side chain, the 

anion may interact with a lower GPB site, perhaps the protonated side chain of a basic 

residue such as arginine.  Although we did not calculate the likelihood of this interaction, 

we can speculate that the surrounding residues, which include one basic arginine residue, 

two basic histidine residues, and a turn-inducing proline residue, may affect not only the 

tertiary gas-phase structure but also the apparent GPB due to inductive effects.27 

 There could be a number of explanations for how the EDD sequence coverage 

improved dramatically with anion adduction.  First, there was a slight reduction in overall 

CO2 loss in EDD of chloride-adducted angiotensin I compared to the EDD spectrum of 

the doubly-deprotonated species.  Less CO2 loss may allow other fragmentation pathways 

to be realized, resulting in the extensive fragmentation observed.  Alternatively, chloride 

adduction could have altered the gas-phase tertiary structure of the peptide, allowing the 

peptide to fragment more extensively.  Regardless of the reason behind these results, we 

can clearly see that EDD fragmentation was enhanced in several cases by adding halides 

to the electrospray solvent prior to MS analysis. 

 
4.4 Conclusion 

 We have presented evidence for the improvement of EDD-generated primary 

structural information upon direct and indirect chemical modification of carboxylic acids, 

which commonly result in facile CO2 loss in EDD.  EDD of non-acidic peptides showed 

that sequence coverage improves markedly when CO2 loss is eliminated.  We attempted 

to expand this idea by chemically modifying carboxylic acids with ANSA, only to find 
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that the number of fragmentation events decreased substantially and neutral loss of the 

ANSA sulfonate group was observed in place of CO2 neutral loss.  Acetylation of free 

amines may alter gas-phase peptide ion structures, leading to altered EDD fragmentation 

behavior.  Our results show that, in some cases, acetylation alters typical fragmentation 

pathways, as evidenced by the reduced number of C-terminal product ions observed for 

acetylated neurokinin B.  Lastly, adduction of bromide to various peptides resulted in 

decreased fragmentation efficiency while adduction of chloride provided improved 

fragmentation efficiency and sequence coverage.  Interestingly, a single fragment was 

observed with bromide adduction to angiotensin I.  Although we cannot conclude 

definitively the changes that occur to the gas-phase structure upon anion adduction, we 

have shown with multiple peptides that additional backbone fragmentation, and thus 

sequence information, can be garnered from this approach.  

Future directions involve expansion of this study to examine a wider variety of 

analytes, such as more highly acidic peptides with acidic post-translational modifications, 

e.g., phosphorylation and sulfonation as well as basic peptides that are difficult to 

multiply charge in negative ion mode MS.   
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

5.1 Conclusions 

In this dissertation, we have presented a metal-oxide based strategy for 

enrichment of sulfopeptides from digestion mixtures, a combination of different 

vibrational and electronic activation methods for the unambiguous site determination of 

O-tyrosine sulfonates in acidic peptides, and a variety of approaches for improving 

electron detachment dissociation of acidic peptides.  

Metal oxides such as titanium and zirconium dioxide have been used in previous 

work in our laboratory to enrich acidic phosphopeptides.1-2  Experimental work from 

Dobson and McQuillan3-4 showed that acidic analytes, specifically poly-oxyanions can 

interact with the surface of metal oxides.  This interaction depends highly upon the 

method of metal oxide preparation as well as the pH of the oxyanion interaction.  We 

have shown that careful control of the binding and elution pH maintains a high selectivity 

of sulfonate interaction compared to competing interaction from carboxylic acids.  

Specifically, the binding pH must be held close to the pKa of sulfonates (pKa
R-OSO

3
H ~ 2) 

and lower than the pKa value of carboxylic acids (pKa
R-COOH ~ 4-5) while the elution pH 

should be held high enough to replace sulfonates with hydroxyls at the metal oxide 

surface, affecting a transition from Lewis acidity to basicity.  Also, we found that there is 
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a minimum binding amount for a given surface area of titanium dioxide.  A minimum of 

200 pmol was determined to be the ideal loading amount for the 50 μg titanium dioxide-

coated micropipette tips that we used for this work.  

Due to inductive effects throughout the peptide, it is possible to observe a lower 

pKa than the one stated above for carboxylic acids, leading to non-selective interactions.  

We have attempted to address this problem by acetylation and methylation of carboxylic 

acids contained in the sulfopeptide:digestion mixtures prior to metal-oxide enrichment; 

however, stoichiometric conversion of carboxylic acids was not realized (data not 

presented) perhaps due to the number of carboxylic acids present in a protein digest.  

Furthermore, if all carboxylic acids are blocked by acetyl or methyl groups, the ionization 

efficiency will decrease substantially, leading to less MS signal in negative ion mode.  

To circumvent this problem of reduced synthetic yield, liquid chromatographic 

(LC) separation of the peptide mixture into fractions could reduce the number of peptides 

per fraction to be acetylated or methylated prior to titanium-dioxide enrichment.  Ideally, 

however, the entire enrichment protocol from start to finish would be best realized if it 

was performed with minimal sample handling and chemical derivatization in order to 

create a high-throughput method for analysis of biological samples.  This idea requires a 

combination of reversed-phase and titanium-dioxide based chromatographic separations 

prior to detection by mass spectrometry.  An analytical platform of multi-dimensional LC 

separations using a combination of reversed-phase and titanium-dioxide chromatographic 

columns for enrichment of phosphopeptides combined with mass spectrometry detection 

has, in fact, been reported in recent literature.5-6  Because sulfopeptides are particularly 

labile in positive ion mode MS, online LC-MS analysis must be performed in solvents 
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that can facilitate negative ion mode MS detection.  Optimization of the enrichment 

conditions as well as LC separation and MS analysis conditions must also be considered.   

Another future direction would be to perform on- or off-line metal oxide 

sulfopeptide enrichment from biological samples which could contain as little as 

picomole to femtomole amounts of sulfonated peptides.  To the best of our knowledge, 

there are few accounts of quantification of endogenous sulfopeptides.7-9  All three of 

these accounts measure the plasma concentration of cholecystokinin.  It has been 

suggested by several authors that cholecystokinin and gastrin II play critical roles in cell 

proliferation in various cancers.10-12  These ideas have been published from 1994 to most 

recently in 2011, yet there is no known concerted effort in regards to attacking this 

problem.  Tyrosine-O-sulfonation has also been found in human and mouse retina,13 but 

its absence can negatively affect morphogenesis and synaptic function in the mouse 

retina.14  These authors suggest that tyrosine-O-sulfonation may have broader 

implications in neuronal development.  To date, there are no known efforts to examine 

early neuronal development by use of differentiated neuronal stems cells (Dr. Wieland 

Huttner, personal communication).  Fortunately for us at the University of Michigan, we 

have several excellent stem cell and embryonic stem cell researchers.  Specifically, Dr. 

O’Shea from the Cell and Developmental Biology Department works with embryonic 

stem cells before and after their initial stages of differentiation into neuronal stem cells.  

Prior collaborative work with Dr. O’Shea (via Dr. David Lubman) has allowed me to 

examine the proteomic profile of embryonic stem cells and differentiated neuronal stem 

cells.  However, at the time, we were investigating the occurrence of phosphorylation and 
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Figure 5.1.  Proposed online nano-LC-MS/MS approach for high-throughput analysis of 
sulfopeptides.  GI is the abbreviation for gastrointestinal while ES cells is the 
abbreviation for embryonic stem cells. 
 

were not aware of the potential for sulfopeptide identification.  We propose that 

differentiated neural and/or gastrointestinal cells may secrete sulfopeptides, which could 

be obtained from either a membrane prep or directly from the extracellular matrix.  The 

offline TiO2 enrichment could be converted to an online approach as mentioned above by 

conducting pH gradient separations on a microcapillary fused-silica column packed with 

a very small amount (< 50μg) of TiO2 particles.  The LC fraction corresponding to the pH 

of elution for sulfopeptides (pH ~10) could be selectively collected following either two 

stages of reversed-phase LC as shown in Figure 5.1 (where after the first separation, 

unwanted fractions can be diverted to waste) or by anion exchange chromatography 
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followed by reversed-phase LC separation.  This multidimensional separation approach 

could then be coupled to tandem mass spectrometry techniques such as negative ion 

electron capture dissociation for primary structural characterization.  Pairing the analysis 

of early-stage neuronally-differentiated stem cells with the online LC-MS/MS platform 

for enrichment of sulfopeptides would be the ultimate vision of this research effort.   

In addition to improving enrichment, we have shown that the site of O-tyrosine 

sulfonation can be determined using vibrational and electronic activation methods.  

Furthermore, nearly full sequence coverage can be achieved by either a single method or 

by a combination of complementary methods.  We have shown that for achieving high 

levels of both sequence coverage and sulfonate retention in CAD, a high charge state up 

to 4- may be required.  However, this approach is not a guaranteed protocol for all 

peptides as we saw when comparing hirudin and gastrin II CAD in the 4- charge state.  

Furthermore, smaller peptides such as leucine-enkephalin cannot be observed as 

quadruply-deprotonated species in ESI-MS.  In EDD, we observed similar trends:  higher 

charge states facilitate improved overall fragmentation with more sulfonate retention and 

less neutral loss.  For peptides that were not observed at a signal abundance great enough 

for EDD in charge states greater than 2- (caerulein, cionin, cholecystokinin), we observed 

poor fragmentation efficiency.  In NETD of gastrin II, fragmentation improved upon 

increasing charge state from 2- to 4-; however, only C- and N-terminal flanking residues 

were fragmented from the ends of the peptide, yielding no information regarding the 

sulfonate site and the internal peptide sequence.  This lack of backbone fragmentation 

may be due to secondary structural constraints, precluding efficient dissociation of the 

peptide fragments.  Vibrational activation prior to NETD could facilitate unfolding of the 
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gaseous peptide; however, we believe that the sulfonate residue would be cleaved in such 

a process.  NETD of hirudin in the 2- charge state yielded five x-ions, representing the 

core of the peptide backbone combined with one complementary a-ion to provide 

sulfonate localization.  On the other hand, NETD of caerulein and cholecystokinin in the 

2- charge state yielded very little structural information through backbone cleavage but 

completely retained the sulfonate residue.  In contrast to higher charge states yielding 

improved backbone fragmentation, niECD of singly- and doubly-deprotonated precursor 

ions provided extensive backbone cleavage and complete sulfonate retention (with the 

exception of cionin, 1-).  Because electrons are captured by negatively-charged precursor 

ions, the resulting charge-increased species can yield product ions of higher charge state 

than the precursor ion, leading to improved ICR detection and a wider pool of possible 

product ions.  The observed c′ and z• ions are highly complementary to product ions 

observed in the aforementioned techniques, indicating that niECD provides a unique 

method to the electronic activation “toolbox” for analyzing acidic precursor ions.  

 There is still much to be investigated in regard to sulfopeptide characterization 

with vibrational and electronic activation methods.  In this thesis, only six sulfopeptides 

were examined.  A wider variety of tyrosine-O-sulfopeptides, as well as serine- and 

threonine-sulfonated peptides,15 with different structural motifs could also be analyzed in 

the future.  Initially, peptide concentrations were kept relatively low (0.5-5 μM) to ensure 

proper spray without significant ion suppression.  In the future, precursor ions which 

were difficult to isolate such as triply-deprotonated hirudin should be analyzed at slightly 

higher concentrations in order to further investigate fragmentation behavior at higher 

charge states, especially in CAD, EDD, and NETD.  To investigate the fragmentation 
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behavior as a function of charge state for the aforementioned techniques, an analysis of 

the parent ion signal abundance versus the lab frame of reference energy for each 

technique should be conducted.  For example, we anticipate that the CAD breakdown 

curves as a function of charge state would show that higher charge states require much 

less CAD energy to fragment compared to lower charge states.  Additionally, vibrational 

activation prior to NETD or EDD of highly-charged precursors such as gastrin II and 

hirudin can be investigated to prove or disprove our belief that sulfonate loss would occur 

following vibrational activation.  It is possible that the gas-phase structure could provide 

intermolecular stabilization of the sulfonate residue and yield additional backbone 

cleavages not observed without prior vibrational activation.  Lastly, the gas-phase 

structure of sulfopeptide ions as a function of charge state should be investigated using 

ion mobility mass spectrometry (IMS).  We believe that structural analysis of precursor 

ions will change drastically as a function of how many negative charges are located on 

the peptide ion.  Specifically, we anticipate that a relatively elongated structure would 

arise from a higher charge-state peptide as opposed to a more compact structure that 

would arise from a lower charge-state peptide.  As discussed in Chapter 3, sulfonated 

human gastrin II as a 4- ion did not exhibit many fragmentation events, resulting in low 

sequence coverage in CAD and NETD.  Structural analysis using IMS could provide 

insight for explaining why this higher charge-state peptide did not produce sufficient 

fragmentation events as predicted by the charge-state dependence for CAD and NETD 

fragmentation.  

 As the work with sulfopeptide characterization progressed, we noticed that EDD 

and NETD were subject to abundant neutral loss of CO2, which could preclude backbone 
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fragmentation if energy is lost through exothermic release of CO2.  Because CO2 is 

structurally inherent to acidic peptides which contain carboxylic acids, we needed to 

develop methods to block the facile loss of CO2 while enabling deprotonation to occur at 

other acidic sites.  Initially, we investigated EDD of non-acidic peptides to see if other 

neutral losses could potentially preclude efficient backbone fragmentation. We found that 

neutral loss of water did not prevent extensive fragmentation as we observed a, b, c, x, y, 

and z-ions from EDD of neuromedin B and C.  EDD of disulfide bond-reduced 

vasopressin exhibited abundant neutral loss of SH2; however, there were more backbone 

fragmentation events observed than in previously published work for EDD of similar 

single disulfide-bonded peptides.16  Chemical derivatization was performed of peptide 

carboxylic acids with 4-aminonaphthalene sulfonic acid (ANSA), which contains an 

amine to facilitate condensation between the carboxylic acid and the amine as well as a 

sulfonic acid (R-SO3
-) to replace the negative charge lost by the carboxylate following 

derivatization.  The addition of one and two ANSA groups to desulfonated caerulein 

(which contains two carboxylic acids) did significantly reduce and eliminate CO2 loss for 

the first and second ANSA additions, respectively; however, backbone cleavages were 

also reduced.  Acetylation blocks free amines, resulting in different gas-phase structures 

that produced a, b, c, x, y, and z-ions.  Fragmentation efficiency was improved for all 

precursors analyzed (with the exception of neurokinin B), but CO2 neutral loss was not 

reduced.  Anion adduction of chloride or bromide to acidic peptides appears to be the 

most promising for reducing CO2 loss while maintaining backbone fragmentation 

compared to the aforementioned methods.  In most cases, EDD of singly-deprotonated, 

singly chloride-adducted precursor ions resulted in improved sequence coverage but with 
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no chloride-adducted product ions observed.  On the other hand, EDD of doubly 

bromide-adducted precursor ions did not improve fragmentation efficiency and also lead 

to more CO2 neutral loss than EDD of the chloride-adducted species with the exception 

of chloride-adducted angiotensin I.  Surprisingly, this particular precursor ion exhibited 

abundant CO2 loss yet provided more extensive fragmentation than EDD of both the non-

adducted and the bromide-adducted precursor ions. 

 Along these same lines, other anions such as nitrate (NO3
-), dihydrogen phosphate 

(H2PO4
-), and fluoride (F-) should be evaluated as potential candidates for anion 

adduction.  The gas-phase basicities (GPBs) of these anions are 1330, 1350, 1530 kJ/mol, 

respectively, which are near the suggested value for a carboxylic acid (1430 kJ/mol).17  

As we have shown, the anion with the closest match to the GPB of the carboxylic acid to 

which the anion will presumably bind produces the best fragmentation results for a given 

peptide.  With this in mind, we believe that dihydrogen phosphate or fluoride would 

provide the best GPB match to carboxylic acids; however, it is possible that fluoride is 

not a reasonable candidate due to its weak acid character as well as its tendency to be 

highly solvated in the liquid phase.  

An additional avenue for preventing CO2 loss would be to synthetically modify 

the carboxylic acid residues with O-allyl or O-benzyl groups.  This permanent 

modification would force deprotonation at a backbone amide or other acidic site on the 

peptide, rendering CO2 loss improbable and perhaps enhancing backbone fragmentation, 

assuming that deprotonation occurs on the peptide backbone.  We have been pursuing 

this idea recently with limited success in the first round of analysis, but we anticipate that 

this project can be finished at a later date. 
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