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ABSTRACT 

 

 

This research investigates an approach to finding the optimal geometry of convective 

cooling system structures for the enhancement of cooling performance. To predict the 

cooling effect of convective heat transfer, flow analysis is performed by solving the 

Brinkman-penalized Navier-Stokes equation, and the temperature profile is obtained from 

the homogenized thermal-transport equation. For accurate and cost-effective analysis, 

stabilized finite element methods (FEM) and the adjoint sensitivity method for the 

multiphysics system are implemented. Several stabilization methods with different 

definitions of their stabilization tensors and the Newton-Raphson iteration method are 

introduced to solve the governing equations.  

This study investigates numerical instabilities, such as velocity and pressure 

oscillation at the fluid-solid interfaces, which result from the fact that the non body-

conforming mesh for the topology optimization method fails to capture the sharp change 

in velocity gradient with a high Reynolds number flow. These oscillations are not 

problematic at the system analysis level, but prevent the design from converging to an 

optimized shape at the design optimization level, creating element-scale cavities near the 

solid boundaries.  Several stabilization methods are examined for their ability to alleviate 



 

xiv 

 

the instabilities. The Galerkin/least-square method produces less oscillation in most cases 

but it is insufficient in resolving the convergence issue. The density and sensitivity filters 

do not effectively suppress the cavities at the design optimization level, while a move-

limit scheme easily prevents this instability without significant increase in computational 

cost. 

The topology optimization method is applied to the convective cooling system design, 

by using the same configuration that was successfully used in designing the Navier-

Stokes flow system. The main design purpose is to design a flow channel to maximize 

cooling efficiency. A numerical issue concerning the behavior of the Brinkman 

penalization is presented with example designs. The optimizer frequently ignores the 

Brinkman penalization and creates infeasible designs. To resolve this issue, a multi-

objective function that also minimizes pressure drop is suggested. As design examples, 

2D and 3D cooling channels are designed by the multi-objective function, and the effect 

of Reynolds and Prandtl number change is discussed.  
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CHAPTER 1 

1. INTRODUCTION 

 

 

 

1.1. Motivation and goal 

Design of an improved cooing system has become a more critical task for developing 

new products. In the automotive industry, next-generation engines, motors, generators 

and converters are designed more compactly for reducing mass, minimizing required 

space, reducing frictional loss and increasing fuel efficiency. Electric circuits also 

become denser and faster and multiprocessor computer system chips are clustered in 

closer proximity. This compactness makes power density of equipment higher and causes 

thermal load to constantly increase. As a consequence, the ability to efficiently remove 

heat from an increasingly restricted space is currently a very critical issue. The need to 

develop optimization methodologies in order to design efficient cooling systems is 

drawing the attention of a large number of industrial and university researchers. 

Sizing, shape and topology optimization methods have great potential to advance 

cooling structure design. The rapid growth of computational power and CAE software 

makes it possible to model complex geometries and accurately take into account physical 
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processes and material behavior with reasonable computational efforts. Still, the 

developing procedure of cooling structure depends on the traditional trial-and-error 

method, which is very time consuming and requires enormous experimental data. 

Moreover, the trial and error method may become problematic because the outcome 

depends mainly on the expertise of the designer, and there is no guarantee of design 

improvement during the design process. Hence, there is a need to develop automated and 

computerized design optimization approaches, such as sizing, shape and topology 

optimization, which automatically determine a design change and furthermore guarantee 

the improvement of the structure design. These automated optimization processes speed 

up the design process and reduce development cost. 

In this work, design optimization of convective cooling systems is carried out using 

the topology optimization approach. Of the automated optimization methods, topology 

optimization was most recently introduced by Bensøe and Kikuchi [1], and it has been 

successfully applied to structural design optimization problems. The main advantages of 

topology optimization are first, that it allows change of the structural topology during the 

optimization process and, second, that the final design barely depends on the initial 

design. Since the structural topology determines the configuration of cooling channels, 

the choice of appropriate structural topology is usually the most decisive factor 

influencing the efficiency of a new design. However, by using the size and shape 

optimization methods, it is challenging to change the roughly guessed structural topology 

in the conceptual stage of the optimization process. Therefore, the topology optimization 

method is a very valuable tool, particularly in the beginning stages, in that it can optimize 

the structural topology. 
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This new optimization approach has been applied to various physics problems such as 

electromagnetics, heat conduction, and fluidics. Yet, the topology optimization approach 

for heat convection problems is still in the initial stage, and has not been well established. 

Previous topology optimization problems for heat transfer problems focused mainly on 

heat conduction, although the heat convection coefficient ‘h’ is sometimes applied. In this 

study, fluid analysis is also carried out for topology optimization to produce better 

optimization results focusing on the behavior of coolant flow. For this purpose, this study 

first extends the study of topology optimization in two steps. First, it applies the topology 

optimization method of linear Stokes flow systems for designing nonlinear Navier-Stokes 

flow systems. Then, it combines the results with previous topology optimization studies 

of heat transfer problems. 

Since topology optimization generally requires high computational cost, it is essential 

to establish a cost-effective procedure for system analysis and design optimization. This 

study presents the adjoint sensitivity method for nonlinear, weakly-coupled multiphysics 

systems and introduces stabilized finite element methods to reduce the computational 

cost without serious loss of accuracy. The stabilization method is also essential to 

simulate convective-dominant problems such as high Reynolds flow problems. Finally, 

this dissertation discusses numerical issues that arise when the previous topology 

optimization approach is applied to nonlinear and multiphysics systems. 

In the introduction, the literature on cooling system design is summarized. In addition, 

the literature on the topology optimization and stabilized finite element methods are 

described. Then, the outline of this dissertation is presented. 
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1.2. Cooling system design optimization 

Cooling system design is an important element in many industrial applications, such 

as cooling flows in combustion engines, electric motors and battery packs. In automotive 

industries, battery thermal management is critical in achieving performance and in 

extending the life of batteries in electric and hybrid vehicles under real driving conditions 

[2]. Many studies have sought to develop accurate finite element models to predict the 

temperature distribution in battery cells and to improve thermal performance [3-4]. In any 

engine part, the cooling system must remove enough heat to allow proper engine function 

and evenly distribute the heat, primarily throughout the water jacket. Improper design of 

the cooling flow path can result in significant overheating of engine parts, which limits 

performance and durability, and causes structural damage. On the other hand, an 

optimized engine cooling system leads to improved durability and lower fuel 

consumption [5]. For this reason, optimization methodologies for better engine coolant 

flow [6-7] and engine gasket hole designs [5, 8-9] have been developed.  

Also, the growth in power electronics technologies has produced smaller devices with 

increased levels of current and voltage. As the power density of these devices becomes 

greater, thermal loss is increased, which leads to an increase in component failure and a 

decrease in reliability. Therefore, designers attempt to improve thermal management 

through innovation of cooling system design. First, thermal analysis was performed, 

providing guidelines for designing cooling channels and heat sinks for motors and 

converters [10-11]. Khorunzhii et al. [12] investigated the micro cooling design of a pin-

fin heat converter for a power semiconductor. 
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Then, the above-mentioned optimization processes are all performed by manually and 

intuitively modifying design parameters. However, this process does not guarantee design 

improvement during the design process. To achieve design automation, many algorithms 

for numerical optimization technologies have been proposed such as size optimization, 

parametric shape optimization, shape optimization and topology optimization. The main 

advantage of these methods is that a design change will be determined automatically and 

the improvement of the structure is mathematically guaranteed. 

For example, size optimization processes were used for pin-fin heat sink designs [13-

15] to determine the best uniform fin heights, non-uniform fin heights and non-uniform 

fin gaps respectively. Figure 1.2.1 shows the optimized results of heat sink design using 

size optimization. Also, a parametric shape optimization technique was used to design a 

better cooling system. Lee et al. [16] selected geometric parameters to define overall 

design structure such as channel width, length, height, pin pitch and angles (see Figure 

1.2.2) and found the best values for these parameters. Similarly, this technique is used in 

designing heat sink shape [17-19] and dimple shape in the cooling channel for laminar 

flow and turbulent flow, in [20-21] respectively. Also, Kuhl et al. presented optimization 

processes for designing cooling channels in the combustion chamber of a rocket engine 

[22].  
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Figure 1.2.1. Schematic diagram of different heights design results for pin-fin heat sink 

[14] 

 

  

Figure 1.2.2. Schematic diagram of design variables in parametric shape optimization [16]  
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While parametric shape optimization uses geometric parameters, shape optimization 

uses geometrical information of boundary mesh. To optimize structure, shape 

optimization searches for the best location of boundary by shape variations of the mesh 

morphing. Balagangadhar et al. [23] shows the sensitivity calculation for thermal fluid 

shape optimization. Two dimensional oval tubes in the heat exchangers are optimized for 

maximizing heat transfer [24-25] and three dimensional corrugated wall cooling channel 

[26]. Airfoil-type heat exchangers are designed [27-28] as shown in Figure 1.2.3.  

Recently, Non-Uniform, Rational, B-spline (NURB) is widely used for shape 

optimization which enables easy control of boundary geometry. NURB is used to design 

heat sink [29-30] and internally finned cooling pipe [31-33]. 

 

 

Figure 1.2.3. Shape deformation by shape optimization process (left: initial, right: 

deformed) [34] 

 

However, size and shape optimization have a limitation when they handle complicated 

geometry and topology such as engine cooling jacket. For example, shape and location of 

holes sometimes play a vital role in cooling system as shown in engine gasket design [5-

9]. It is impractical to use size and shape optimization for designing new holes by 
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changing structural topology. For this reason, topology optimization has a significant 

potential and can play a vital role. 

 

1.3. Topology optimization of thermal-fluid cooling system 

The goal of topology optimization is to determine the optimal distribution of materials 

for minimizing design objectives. The material phases are indicated by 0-1 local design 

variables, for example φ=1 indicates a solid phase and φ=0 indicates a void phase. By 

optimizing the variables, the structural topology (i.e., the structural connectivity of inside 

holes) evolves. Since topology optimization was initiated by Bensøe and Kikuchi [1], it 

has been successfully adopted to the structural optimization of solid mechanics problems, 

such as minimum compliance designs, compliant mechanism designs and microstructures 

(see [35] and references therein for the application of the topology optimization 

technique). Since the numerical instabilities are revealed within the design framework of 

topology optimization, many studies have been conducted to explain and suppress 

instabilities such as checkerboard patterns, mesh dependency and local minima [36-38].  

Along with the successful introduction of the topology optimization method to solid 

mechanics problems, topology optimization problems for fluid systems were initiated by 

the work of Borrvall and Petersson [39]. They added the Darcy friction force term -αu, 

which is the multiplication of the Darcy friction coefficient and velocity [40], to the 

original fluid equation such as Stokes equation. Then, they represent the structural 

topology by the distribution of two-phase material having different material properties: 

solids (αs ≈ ∞) and fluids (αf = 0), where α is the Darcy friction coefficient. Since the 
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Darcy friction coefficient has infinite value in the solid region, the velocity in the solid 

region converges to zero, satisfying no-slip boundary conditions. On the other hand, the 

added Darcy friction term becomes zero in the fluid region Ωf, and the original fluid 

equation is recovered. It should be noted that this analysis method is a fictitious domain 

approach with Brinkman penalization based on porous media theory, and the 

mathematical justification is achieved in [41-44]. To combine this analysis approach with 

the conventional topology optimization technique, the Darcy friction coefficient (the 

Brinkman penalization parameter) α is interpolated as a function of local design variables 

φ. With this interpolation, φ=0 indicates a fluid region (i.e., α(0)=0) and φ=1 indicates a 

solid region (i.e., α(1) ≈ ∞) so that the design problem become a typical 0-1 topology 

optimization problem.  

Following this idea, numerous studies have been performed. Wiker et al. added 

effective viscosity variation as an additional property control of two-phase material [45-

46]. Gersborg-Hansen et al. suggested a topology optimization method for Navier-Stokes 

flow [47], which is similar to the Borrvall and Petersson’s work [39]. Various example 

problems followed such as Stokes flow [48], microfluidics [49-50], 3D Stokes flow [51], 

mixing [52-53], reactor design [54] and fluid-structure interaction problem [55]. In 

addition, Pingen et al. presented topology optimization for nano-fluid problem by using 

Lattice Boltzmann equation [56-57] and Duan et al. demonstrated topology optimization 

for Stokes’ flow and Navier-Stokes’ flow via variational level set method [58-60]. In 

industrial applications, Daimler-Chrysler and Volkswagen engineers demonstrated the 

possibility of topology optimization for air channel flow design [61-62].  
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Besides the successful utilization of topology optimization for fluid systems, heat 

transfer problems have also been an issue of great concern as applications of the topology 

optimization method. Topology optimization is first applied to pure heat conduction 

problems [63-67]. In addition to heat conduction, heat convection physics is also taken 

into consideration by employing convection the coefficient ‘h’ in [68-72].  In 

conventional topology optimization methods, it is not easy to clearly define boundary 

locations in the middle of the process, since they are blurry and constantly changing. 

Therefore, previous research assumed that the heat convection coefficient was constant 

without considering fluid motion, which varies significantly according to the geometry. 

Subsequently, these approaches may be infeasible for designing cooling channels that 

prevent re-circulation areas and hot spots. 

To overcome this issue, Iga et al. [73] recently applied the design-dependent topology 

optimization method developed by Chen and Kikuchi [74]. They approximated design 

dependent heat convection coefficient by using the flow simulation of a simplified 

periodic fin model. Yet, the possibility of practical implementation of their assumption is 

an open question. Therefore, this study performs flow motion analysis without using such 

simplified model so as to figure out accurate heat transfer condition at the fluid-solid 

interfaces. Successful integration of CFD analysis into the topology optimization method 

of heat transfer problems might be a good solution, which has significant potential for the 

future design of complex cooling system.  
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1.4. Stabilized finite element method 

Stabilized finite element methods are now commonly used in finite element 

computation of flow problems due to the computational difficulties and shortcomings of 

the Galerkin finite element method (GFEM) [75-76]. The main issue for the standard 

GFEM is the occurrence of velocity wiggles in flow problems. This numerical instability 

is a node-to-node oscillation, producing a large velocity gradient caused by the inability 

of GFEM to capture the steep gradient. It results in an imbalance between the convective 

and diffusive terms in the equation. Stabilized finite element methods bring numerical 

stability to flow problems with high Reynolds numbers and coarse meshes, without 

introducing excessive numerical dissipation. They also bring numerical stability to 

incompressible flow computation when using equal-order interpolation functions for 

velocity and pressure, which significantly reduce the computational cost. 

Some of the earliest stabilized formulations are the streamline-upwind/Petrov–

Galerkin (SUPG) formulation [77-78] and the pressure-stabilizing/Petrov–Galerkin 

(PSPG) formulation [79-80]. The SUPG method addresses the wiggle problem by 

introducing the concept of adding diffusion along the streamlines. The PSPG method 

allows us to use equal-order interpolation functions for velocity and pressure, without 

considering the LBB stability condition. Another method for enhancing the stability of 

the GFEM for incompressible flow is the Galerkin/Least-squares (GLS) approach, which 

involves the addition of various least-squares terms to the original Galerkin variational 

statement. Development and popularization of the GLS methods for flow problems [79, 

81-84] follows as a generalization of SUPG and PSPG methods. The underlying 
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philosophy of the SUPG and GLS methods is to strengthen the classical variational 

formulations so that the discrete approximations, which would otherwise be unstable, 

become stable and convergent.  

The sub-grid scale (SGS) stabilization method originated from the concept of 

representing multiscale phenomenon, which delivers similar results to the SUPG and 

GLS techniques unless the reaction term is dominant. Also, the variational multiscale 

method (VMS) was introduced by Hughes [85], providing the necessary mathematical 

framework for the SGS models. In this method, the different stabilization techniques 

come together as special cases of the underlying sub-grid scale concept. It should be 

noted that some of the stabilized methods discussed above were somewhat ad hoc in 

nature [75-76]. However, the introduction and development of the VMS method has 

remedied much of the confusion regarding stabilized procedures and provided much 

needed explanation and consistency in implementation. Masud and co-workers developed 

VMS formulations for the Darcy-Stokes flow equations [86-87], the advection–diffusion 

equation [88], the convection-diffusion-reaction equations [89] and the incompressible 

Navier–Stokes equations [90].  

In these stabilization methods, an embedded stabilization tensor most commonly 

known as τ plays an important role. The definitions of the stabilization tensors have been 

extensively studied and developed for the SUPG, PSPG and GLS stabilization methods 

[77, 84, 91-96] as well as for the SGS stabilization method [97-98]. The stabilization 

tensors are expressed in terms of the ratios of the norms of the matrices or vectors, taking 

into account local length scales, the advection field and the element Reynolds number. 
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1.5. Outline of dissertation 

The remainder of this dissertation is organized as follows: 

Chapter 2 presents an analysis method for topology optimization of thermal-fluid 

systems. Numerical issues in system analysis are described. Chapter 3 presents the 

topology optimization of Navier-Stokes flow systems and investigated numerical 

instabilities of the topology optimization of these nonlinear systems. Chapter 4 presents 

the topology optimization of thermal-fluid systems. After numerical issues concerning 

these multiphysics problems are investigated, 2D and 3D convective cooling systems are 

designed. Chapter 5 concludes the dissertation with remarks and future works. 

Appendices include the detailed derivations of the multi-scale stabilization tensors. 
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CHAPTER 2 

2. THERMAL-FLUID ANALYSIS FOR TOPOLOGY OPTIMIZATION 

 

 

 

2.1. Introduction 

This chapter presents an analysis method for topology optimization of thermal-fluid 

systems. A fictitious domain approach [42-44, 99], with immersed boundaries and 

Brinkman penalization, which is based on the porous fluid theory, has been mainly used 

for the topology optimization of linear Stokes flow systems [45-46, 51, 100-102]. This 

study extends the analysis approach to topology optimization of nonlinear Navier-Stokes 

flow systems and further multiphysics thermal-fluid systems.  

To establish a stable and cost-effective method, various stabilized finite element 

methods, such as SUPG, PSPG, GLS, SGS and VMS, are tested and compared with 

different stabilization tensors. The obtained solutions of the Brinkman-Penalized Navier-

Stokes equation, which is based on the fictitious domain approach [42-44, 99], are 

confirmed whether or not the no-slip boundary condition at the immersed solid 

boundaries and the zero-velocity condition in the solid regions are satisfied. Numerical 
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issues concerning the value of the Brinkman penalization parameter are studied, and 

numerical instability at the immersed boundaries is investigated. 

The outline of Chapter 2 is as follows: Section 2.2 introduces a system analysis 

method for thermal-fluid systems; Brinkman-penalized Navier-Stokes equation and 

homogenized thermal transport equation are explained. Section 2.3 presents different 

stabilized finite element methods and stabilization tensors. Section 2.4 explains in detail 

how to implement the Newton-Raphson methods. Section 2.5 discusses numerical issues 

arise from the solutions of Brinkman-penalized Navier-Stokes equation. Section 2.6 

summaries this section. 

 

2.2. Governing equations for topology optimization 

During the topology optimization process for convective cooling systems, design 

domains consists of fluid, solid and porous regions, as shown in Figure 2.2.1. To simulate 

fluid flows around porous and solid obstacles having complex geometries, various 

immersed boundary methods can be used. The main advantage of using immersed 

boundary methods is efficient implementation of fixed non-body conformal Cartesian 

grids for representing complex stationary or moving solid boundaries. The shapes of solid 

structures are continuously changed during the topology optimization process. Therefore, 

it is more efficient to use the same fixed Cartesian grid than body-conformal grids that 

usually needs to be re-generated at each optimization step. 
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Figure 2.2.1. Fluid-solid system in topology optimization for fluid systems 

 

 

 

Figure 2.2.2. Representation of the solid region as a porous medium [42] 
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2.2.1. Brinkman-penalized Navier-Stokes equation 

Among immersed boundary methods, the Brinkman penalization method [42-44, 99], 

which is proposed for solving incompressible viscous flow by penalizing the momentum 

equation, is widely used for the topology optimization of Stokes flow systems. The main 

idea of this method is to model solid obstacles as porous media with porosity near unity, 

but permeability approaching zero as shown in Figure 2.2.2. 

A steady-state incompressible fluid is governed by the Navier-Stokes equation with 

the Boussinesq approximation as:  

 

 2

f f p    v v v = f   (2.2.1) 

 0v = . (2.2.2) 

 

Here, ρf is fluid density, μf fluid dynamic viscosity, v fluid velocity, p pressure and f is 

body force. I assume incompressible flow, and gravitational acceleration and buoyancy 

force are not taken into consideration from a practical standpoint.  

Then, the effect of the no-slip boundary condition is implemented by adding the 

Brinkman penalization term αv, which is physically interpreted as the Darcy-friction 

force, to the Navier-Stokes equation as 

 

 2

f f p      v v v v = f  (2.2.3) 
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where α is the Brinkman penalization parameter which varies spatially in the design 

domains, as shown in the following Table 2.2.1, so as to distinguish the physics between 

free-fluid and solid regions.  

 

Table 2.2.1 The value of the Brinkman penalization parameter 

 Fluid region Solid region 

Brinkman penalization 

parameter 
α = αf ≈ 0 α = αs ≈ ∞ 

 

 

In the fluid region, the Brinkman penalization term αv tends toward zero and is 

negligible compared to the other terms of the equation (2.2.3). Consequently, the classical 

Navier-Stokes equation (2.2.1) is recovered. However, in the solid region, the Brinkman 

penalization term has sufficiently large value, which causes the velocity to tend toward 

zero. Thus, the convection term becomes negligible, and the classical Brinkman equation 

(2.2.4) is solved. 

 

 2

f s p    v v = f . (2.2.4) 

 

Finally, if αs is sufficiently large and there is no body force f inside the solid region, all 

terms except the Brinkman penalization term are numerically ignored and the equation 

(2.2.4) becomes as 
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 0s v = , (2.2.5) 

 

which forces the velocity to converge to zero. 

Since the velocity converges to zero in the solid region, the no-slip boundary condition 

at the solid surface is automatically satisfied, and there is no need to explicitly specify the 

fluid-solid interface condition. Likewise, the fluid velocity inside solid structures 

converges to zero, thus physically correct flow motions near solid obstacles are obtained. 

Mathematical justification of this method, based on the L
2
-penalized equation, is derived 

in [43-44].  

I set the value of αf to zero without any numerical difficulties, but the value of penalty 

parameter αs should be carefully assigned. The error estimate of the velocity field in the 

H
1
-norm over the whole domain is the order of  1/4

f s  O , whereas the L
2
-norm of 

the velocity error inside the solid body is  3/4

s
O . In theory, the higher αs is set, the 

smaller the mathematical error is. However, in practice, using too large αs decreases both 

the convergence speed and accuracy of Newton-Raphson iteration method when solving 

the nonlinear equation. Thus, the value of penalty parameter αs should be carefully pre-

assigned to reduce both theoretical errors and numerical errors, which will be presented 

in section 2.5.1. 

 

2.2.2. Homogenized thermal transport equation 

The traditional thermal transport equation is expressed as  
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   0f pC T k T    v . (2.2.6) 

 

where T is temperature, Cp constant-pressure specific heat and k is thermal conductivity. 

The viscous dissipation term is ignored compared to other terms from a practical 

standpoint [103-105]. In this work, the thermal conductivity varies in the two different 

regions as shown in Table 2.2.2.  

 

Table 2.2.2 The value of the thermal conductivity 

 Fluid region Solid region 

Thermal conductivity k = kf k = ks 

 

 

In the solid region, the fluid velocity v becomes zero due to the Brinkman 

penalization, so that the thermal transport equation (2.2.6) becomes a pure conduction 

equation without the leftmost convective term as  

 

   0sk T   . (2.2.7) 

 

In the fluid region, the energy equation (2.2.6) maintains the original form with the 

thermal conductivity of fluid as 

 

   0f p fC T k T    v  (2.2.8) 
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These governing equations, for fluid physics (2.2.3) and heat transfer physics (2.2.6), 

are weakly coupled only through fluid velocity because all material properties are 

assumed to be independent from temperature and buoyancy force is ignored from a 

practical standpoint. Therefore, the momentum equation (2.2.3) and the incompressibility 

constraint (2.2.2) can first be solved together without considering temperature profile. 

Then the temperature profile is obtained by solving the energy equation (2.2.6). This two-

step analysis strategy after decoupling temperature significantly decreases computational 

cost. 

 

2.2.3. Slightly compressible fluid condition 

Instead of the incompressible constraint (2.2.2), Anton Evgrafov suggested solving a 

slightly compressible fluid model so as to deal with impenetrable inner walls that may 

appear in the flow domain and to obtain a closed design-to-flow mapping [106]. This 

slightly compressible condition is implemented with a penalization in the continuity 

equation as 

 

 
1

p


 v = . (2.2.9) 

  

where λ is a penalty parameter, which ensures the continuity equation when it has a 

sufficiently large value. In theory, this is a mathematically good approach. However, in 
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practice, there exist numerical difficulties in applying this slightly compressible condition 

for the topology optimization of Navier-Stokes flow systems.  

First of all, too large of a value for λ decreases the effect of the Brinkman penalization 

inside solid regions preventing the velocity inside solid regions from converging to zero, 

whereas too small of a value for λ produces an inaccurate solution in the fluid analysis. 

By implementing the equation (2.2.9), the momentum equation including the Brinkman 

penalization term will become as 

 

    f f         v v ε v v v = f  (2.2.10) 

  

where    
T

 ε v = v + v . Since this momentum equation has two penalization terms 

   v  and S v inside the solid region, the two values of λ and αs should be 

carefully selected in order to make both penalizations function properly. For example, if 

the two values are very similar to each other, the momentum equation in the solid region 

will become as 

 

   0S    v v = . (2.2.11) 

 

This equation does not guarantee the zero velocity condition in the solid region. To 

satisfy both the slightly compressible and zero-velocity conditions, the value of αs should 

be significantly larger than the value of λ to achieve both penalizations because the 

Brinkman penalization (v = 0) automatically satisfies the incompressible constraint. 
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Computational experience indicates that, although these values are dependent on 

problems, the value of αs should be greater than 10
6
×λ in some Navier-Stokes flow 

problems. Then, according to [75, 107-108], values of λ between 10
7
 and 10

9
 are 

adequate in most practical situations with double precision 64-bit words, which means αs 

should be greater than 10
13

. This too large value is hardly appropriate. It impairs both the 

convergence speed and accuracy of the Newton-Raphson iteration.  

Instead of solving equation (2.2.10), another modified penalty formulation can be 

obtained by applying the assumption of a slightly compressible barotropic fluid. The 

modified penalty formulation is expressed as an iterative algorithm as follows:  

 

 
1

11 1

n

T nn
 





    
    

     

A Q Fu

Q I pp
. (2.2.12) 

 

Here, Au is the summation of viscous, convective and Brinkman penalization terms, F 

the body force, and Qp and Q
T
u are the pressure gradient and divergence of the velocity 

field, respectively. Then, the second set of equations takes the form  

 

 
1 1n n T n  p p Q u . (2.2.13) 

 

This modified formulation is equivalent to the introduction of a false transient in the 

steady-state calculation. Furthermore, it allows to use smaller penalty parameters, while 

satisfying the incompressibility constraint practically to the round-off error limit [107]. 

Therefore, using this modified penalty formulation with small λ might resolve the 
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numerical issues concerning too large of a value for αs. However, this research focus on a 

nonlinear system, so adding this iterative algorithm to the Newton-Raphson iteration will 

significantly increase the computational cost. In conclusion, more studies are needed to 

properly applying both the slightly compressible condition and the Brinkman penalization 

to highly nonlinear Navier-Stokes flow analyses, and this research therefore limits itself 

to incompressible fluids.  

 

2.3. Stabilized finite element method 

Stabilized finite element methods are used to solve the weakly coupled governing 

equations (2.2.3) and (2.2.6). Stabilized finite element methods are now commonly used 

in finite element analysis of flow-concerned problems. They bring numerical stability to 

high Reynolds number flow problems without creating excessive numerical dissipation. 

They also bring numerical stability to incompressible flow computations when using 

equal-order interpolation functions for velocity and pressure [75-76, 80, 109]. The equal-

order linear interpolation significantly reduces computational cost, thus it is very practical 

for the topology optimization that generally requires high computational power. 

Moreover, the equal-order linear interpolation leads to the convenient implementation of 

the analysis, and accordingly makes it simple to derive the design sensitivity. 

The nonlinear Brinkman-penalized Navier-Stokes equation and the homogenized 

thermal transport equation can be assumed as a convection-diffusion-reaction equation 

with or without a zero reaction term. Therefore, we can define the two governing 

equations as 
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  L   f . (2.3.1) 

 

where f is the body source vector, ϕ system response and L is a differential operator of 

the convection-diffusion-reaction (CDR) equation such as 

 

   2L k s       v . (2.3.2) 

 

where v is the advection velocity, k the diffusivity and s is the reaction coefficient. The 

reaction coefficient s for the thermal transport equation is zero. Then, the advective 

operator and the adjoint operator can be expressed as 

 

  advL   v  (2.3.3) 

   2L k s         v . (2.3.4) 

 

Consider the analysis space divided by N number of elements over the domain Ω. 

Then, the discrete solution of equation (2.3.1) can be obtained by solving the stabilized 

weak form for finite element analysis, which can be stated as: Find P , such that for all 

wV , 

 

 , , , , , ,
N

w w k w s Lw L w f w t    
    

       v  (2.3.5) 
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where  , d
 

      is the inner product in L
2
, w an weighting function, L  a 

stabilization operator applied to the variation in the stabilization term, Ω the spatial 

analysis domain, ГN the Neumann boundaries of the domain   and   is the sum of 

element interiors, i.e., 
1

N e

i
   . V and P are the standard variational functional 

spaces. For the detailed procedure, the reader is referred to [89].  

 

2.3.1. Different stabilized finite element methods 

The stabilized finite element methods can be categorized as the streamline-upwind 

Petrov-Galerkin (SUPG), the pressure-stabilizing Petrov-Galerkin (PSPG) the 

Galerkin/least-squares (GLS), the sub-grid scale (SGS) and the variational multi-scale 

(VMS) stabilization method by the choice of stabilization operator L  as shown in Table 

2.3.1.  

 

Table 2.3.1 Stabilization operators 

Stabilization method SUPG+PSPG GLS SGS, VMS 

Stabilization 

operator 

L  

  1
fadvL q w   L w

 
 L w

 

1
f

q  v w  2k s   v w w w  2k s   v w w w  

 

 

Applying the described stabilization methods to the governing equation (2.2.3), the 

three types of the stabilized weak forms can be derived as follows: 
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SUPG+PSPG:  
 

 

, , ,
, ,

, ,
N

f f

f U U

p

q q

  





 

 

       
 

  
     

 

w v v v w v w
w f w t

v v w τ R
 

  (2.3.6) 

GLS:              
 

 

, , ,
, ,

, ,
N

f f

f f U U

p

q q

  

  



 

 

        
 

  
       

 

w v v v w v w
w f w t

v v w w w τ R
 

  (2.3.7) 

SGS, VMS:   
 

 

, , ,
, ,

, ,
N

f f

f f U U

p

q q

  

  



 

 

        
 

  
       

 

w v v v w v w
w f w t

v v w w w τ R
 

  (2.3.8) 

 

where w is the variation vector for velocity, q the variation for pressure, and τU the 

stabilization tensor. RU is the residual of the momentum equation, given by 

 

 2

U f f p        R v v v v f . (2.3.9) 

 

For high Reynolds number flow, the least-square on incompressibility constraint (LSIC) 

stabilization scheme can additionally applied by adding the following equation (2.3.10) to 

the weak-form equations (2.3.6) ~(2.3.8). 

 

 , 0LSIC  w τ v  (2.3.10) 

 

where τLSIC is a LSIC stabilization tensor. 
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Likewise, by applying the stabilization methods to the thermal transport equation 

(2.2.6), the stabilized weak form becomes as follows: 

 

SUPG:        , , , ,
N

f p f p T Tw C T w k T C T w 
  

      v v τ R t  

  (2.3.11)
 

GLS:           , , , ,
N

f p f p T Tw C T w k T C T k T w 
  

        v v τ R t  

  (2.3.12) 

SGS, VMS: , , , ,
N

f p f p T Tw C T w k T C T k T w 
  

        v v τ R t  

  (2.3.13) 

 

where w is the variation for temperature, and τT is the stabilization tensor RT is the 

residual of the energy equation, given by 

 

  T f pC T k T   R v . (2.3.14)  

 

2.3.2. Stabilization tensors 

Each stabilization method has a stabilization tensor, such as τU, τLSIC and τT. Several 

schemes to determine the stabilization tensors are tested. For SUPG, PSPG and GLS 

stabilization methods, the stabilization tensors as suggested in [93, 95-96] are used as 

shown in Table 2.3.2. Here, I is an identity matrix, h the length of the finite element and 

Na is the shape function associated with node number a. For SGS and LSIC stabilization 

methods, the schemes shown in Table 2.3.3 and Table 2.3.4 are used to calculate their 

stabilization tensor, respectively. 
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Table 2.3.2 Stabilization tensors for SUPG, PSPG and GLS stabilization method 

 
Stabilization tensor (SUPG/PSPG/GLS) 

Shakib et al. [95] 

      
   
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 
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 

v
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Tezduyar el al. [93] 
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

  

 
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Tezduyar [96] 
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Table 2.3.3 Stabilization tensors for SGS stabilization method 
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Table 2.3.4 Stabilization tensors for LSIC stabilization method 

 
Stabilization tensor 

Tezduyar el al. [93] 
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Finally, the stabilization tensor in the VMS stabilization method is obtained from the 

same strategy shown in [85, 87-88, 90, 111] by using bubble functions as  

 

  
1

2 1 2 1

1 2

2 1 2 1

e f e

U e

f e f e

b b d b b d
b b d

b b d b b d

 

 



    
  
        
 

 


 

I v I
τ

I
. (2.3.15) 

 

Where b1 is the standard second order bubble function and b2 is arbitrary asymmetric 

bubble function. See appendix A. 
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2.4. Newton-Raphson method 

This section shows in detail how to solve the Brinkman-penalized Navier-Stokes 

equation (2.2.3) using the Newton-Raphson method. This fluid equation is a steady-state 

nonlinear equation and may be expressed in the residual form as 

 

   ,U U R τ u u 0 . (2.3.16) 

 

where 
UR  is the residual or momentum equation including the stabilization terms 

,Lw L 


, and u is the system response including velocity vector v and pressure p. 

Equation (2.3.16) is solved iteratively by the Newton-Raphson iteration method. If the 

current iterate u
I
 is not a solution, i.e. if   I I,U U R τ u u 0 , then the next iterate u

I+1
 is 

computed by equating the first-order Taylor series expansion of 
UR  about u

I
 to zero, i.e. 
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 (2.3.17) 

 

where 
UD DR u  is the tangent operator and δu is the incremental response which is 

determined from the following equation 

 

   I I,U
U U

D

D
  

R
u R τ u u

u
. (2.3.18) 
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Upon evaluation of the incremental response δu, the next iterate u
I+1

 is updated form the 

sum 

 

 
I 1 I   u u u . (2.3.19) 

 

The process of evaluating the residual 
UR  and updating the response u continues until the 

solution converges. 

 

2.4.1. Reynolds-ramping initial guess for Newton-Raphson method 

Selecting appropriate initial value u
0
 is very critical for using Newton-Raphson 

iterative method because this method may fail to converge if the initial value is too far 

from the true solution. Particularly, the solvability is very sensitive to the initial value 

when the governing equation is highly nonlinear. During the topology optimization 

progress, the complex structures make the Brinkman-penalized Navier-Stokes equation 

significantly nonlinear even if the Reynolds number is not high. Therefore, we need a 

very robust scheme to set up proper initial values to obtain the true solution without 

failure. In fluid dynamics problems, the nonlinear terms are approximately proportional 

to the Reynolds number; therefore, one can select appropriate initial value by iteratively 

solving less nonlinear problem as shown in Figure 2.4.1. 
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Figure 2.4.1. Flow chart of the Reynolds-ramping initial guess 
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1) Start fluid analysis for a low Reynolds number with arbitrary initial values 

2) Get a converged solution for the Reynolds number.  

3) If the solution does not converge, try to solve a lower Reynolds number flow. 

4) If the solution converges, use that solution as the initial values for a bigger 

    Reynolds number flow   

Repeat 2), 3) and 4) until the full Reynolds number is reached. 

 

2.4.2. Stabilization tensor update scheme 

Two options can be considered regarding the update of the stabilization tensors during 

the Newton-Raphson iteration. First, the values of the stabilization tensors are not fixed 

and their variations are taken into account in calculating the Jacobian matrix in each 

Newton-Raphson iteration. With this scheme, the implicit derivative DτU/Du must be 

calculated as shown in equation (2.3.20). 

 

 
Iat =

U U U U

U

D D

D D

  
   

   u u

R R τ R

u τ u u
 (2.3.20) 

 

This process is referred to as “simultaneous update scheme”. Second, the value of the 

stabilization tensor is fixed based on the previous Newton-Raphson iteration result u
I 

without taking its variation into account when calculating the Jacobian matrix. Then, the 

Jacobian matrix is determined as: 
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Iat =

U UD

D

 
  

  u u

R R

u u
. (2.3.21) 

 

This is referred to as “iteration-lagging update scheme”.  

Of the two update schemes, the former simultaneous update scheme is strongly 

recommended for the topology optimization. Analytically calculating the variation of the 

stabilization tensor is complex and requires more computational cost in each Newton-

Raphson iteration. However, the Jacobian matrix UD

D

R

u
 becomes more accurate with the 

term U U

U

D

D






R τ

τ u
and, as a result, the first scheme requires fewer Newton-Raphson 

iterations than the second scheme.  

To verify the analysis method described in this chapter, an example problem P2 is 

examined. As shown in Figure 2.4.2 and Table 2.4.1, immersed boundaries and a solid 

region are implemented instead of the no-slip boundary condition. The Reynolds number 

is 1000 and αs is set to 10
8
. (Darcy number in the solid region is 10

-8
.) The Reynolds-

ramping initial guess scheme is used to properly set the initial guess and get the true 

solution. Flow analyses for ReL=10, 100, 400 and 700 flows sequentially precede before 

the flow analysis at ReL=1000. Figure 2.4.3 shows the convergence history during the 

last three analyses for ReL=400, 700 and 1000 flow. There is no noticeable difference 

during the analyses for ReL=1 and 100 flow. In this case, the simultaneous update 

scheme is 28% faster than the iteration-lagging update scheme.  
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                        [P1]                                                                         [P2] 

Figure 2.4.2. 2D lid-driven cavity problems [P1] with no-slip boundary                         

[P2] with solid region and immersed boundary 

 

Table 2.4.1 [P2] Analysis setup  

Reynolds number ReL=400, 1000 

Domain size L×L = 1×1 (1.5×1.25) 

Mesh 48×40 

Shape function (v, p) Q4Q4  

Stabilization method SUPG+PSPG, GLS, SGS 

Brinkman penalization αs=10
4
~10

16
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Figure 2.4.3. [P2] Convergence history according to different stabilizing tensor update 

schemes: simultaneous and iteration-lagging update schemes  

 

Besides using the simultaneous update scheme is much more important in performing 

sensitivity analysis for the topology optimization. During the topology optimization, the 

physical properties in the stabilization tensor, such as ρf, μf and α, are assumed to be 

control parameters. Particularly, the Brinkman-penalization parameter α is a primary 

control parameter with significantly large values in the solid regions. Therefore, 

assuming constant stabilization tensors in each Newton-Raphson iteration without 

considering UD

D

τ
degrades the accuracy of the sensitivity analysis. 

Whereas the simultaneous update scheme is viable in the SUPG, PSPG, GLS and SGS 

methods, it is difficult to apply for the VMS stabilization method in which its 

stabilization tensor is determined from the inverse of a matrix consisting of physical 
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properties and system response as shown in equation (2.3.15). Thus it is inefficient to 

calculate the derivatives of the stabilization tensor with respect to system response or 

physical properties, DτU/Du or DτU/Dα respectively.  

Furthermore, I discovered no significant advantage of using the VMS stabilization 

method with its complicated stabilization tensor calculation compared to using the SGS 

method with a relatively simple stabilization tensor. Consequently, I mainly tested the 

SUPG, PSPG, GLS and SGS stabilization methods for the topology optimization problem. 

Still there may, however, be a room for improvement in the VMS stabilization method 

based on the proper selection of the asymmetric bubble function b2 in equation (2.3.15). 

Further rigorous study is needed to implement the VMS stabilization method. 

 

2.5. Numerical issues 

This section presents a guideline to pre-assign the Brinkman penalization parameter αs, 

and discusses numerical instability at the free-fluid and solid interfaces. The pre-assigned 

value of αs influences the accuracy of system analysis and further the design sensitivity 

calculation. The local instability does not degrade the overall solution in system analysis, 

but I mention here because the instability becomes problematic later in the sensitivity 

analysis at the design optimization level.  

2.5.1. Lower limit of the Brinkman penalization parameter  

To obtain accurate solution at the system analysis level is a primary issue because the 

accuracy of the design sensitivity mainly depends on the accuracy of the system analysis. 
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When solving the Brinkman-penalized Navier-Stokes equation, the error estimate of the 

velocity field in the H
1
-norm over the whole domain is the order of  1/4

f s  O , while 

the L
2
-norm of the velocity inside the solid body is  3/4

s
O  as proved in [43-44]. In 

theory, the higher αs is set, the smaller the mathematical error is. In practice, too large of a 

value for αs however makes the contribution from the convection and diffusion terms 

negligibly small compared to the Brinkman penalization term. This would destroy the 

conditioning of the Jacobian matrix. Furthermore, too large of a value for αs would cause 

inaccurate sensitivity analysis because it would worsen the condition of the multiplication, 

T

U U





  
 
  

R R

u
, Therefore, the value of αs must be assigned within a proper range. 

Several Brinkman penalization parameters, from 10
4
 to 10

16
, are tested for the 2D lid-

driven cavity problem that includes a solid region as shown in Figure 2.4.2. Q4Q4 

element with square mesh is used. The mesh size for problem P1 and P2 is 32×32 and 

48×40, respectively to have the same element length scale. The Reynolds number is 400. 

Figure 2.5.1 shows different horizontal velocity results depending on the value of αs. 

When αs is greater than 10
6
 (the Darcy number in the solid region is 10

-6
), the solutions 

are well converged to the original solution calculated with no-slip boundary conditions.  
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                                    (a)                                                                      (b) 

Figure 2.5.1. [P2] Horizontal velocity at section A-A′ according to αs (ReL=400, 

SUPG+PSPG) (a) global velocity (b) local view at fluid-solid interface  

 

 

Figure 2.5.2. [P2] Convergence histories according to αs (ReL=400, SUPG+PSPG)   
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In the same manner, 2D backward-facing step flow analysis is performed first with no-

slip boundary conditions and second with immersed boundary conditions and solid region. 

αs is set to from 10
2
 to 10

18
. Analysis domain and boundary conditions are described in 

Figure 2.5.3 and Table 2.5.1. Q4Q4 element with 300×40 or 600×80 square mesh is used 

for problems P4 and a equivalent-size mesh is used for problem P3. The Reynolds 

number ReH is set to 100. To verify the analysis method, COMSOL 3.5a is used to solve 

problem P3 while the solution of P4 is obtained by using my own codes; Figure 2.5.4 and 

Figure 2.5.5 show the two results. Again, when αs is greater than 10
6
, the solutions of P4 

are well converged to the solution of P3 (with no-slip boundary condition).  

Figure 2.5.1 and Figure 2.5.6 present that the zero-velocity condition inside the solid 

structure and no-slip boundary condition at the immersed boundary (fluid-solid interface) 

are reasonable realized as the value of the Brinkman penalization parameter increases. 

The convergence of Newton-Raphson iteration is slightly better when a smaller value of 

the Brinkman penalization parameter as shown in Figure 2.5.2 and Figure 2.5.7, yet 

overall they show good convergence histories.  In conclusion, several tests in other 

configurations show αs=10
6
 (the Darcy number in the solid region is 10

-6
) is the proper 

lower limit for reasonable use of the Brinkman-penalization method.  
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[P3] 

 

[P4] 

Figure 2.5.3. 2D backward-facing step flow [P3] with no-slip boundary conditions        

[P4] with solid solid structure and immersed boundaries 

 

Table 2.5.1 [P4] Analysis setup 

Reynolds number ReH=100 

Domain size 30×2 (L×H=3×1) 

Mesh 300×40, 600×80 

Shape function (v, p) Q4Q4  

Stabilization method SUPG+PSPG, GLS, SGS 

Brinkman penalization αs=10
4
~10

18
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Figure 2.5.4. [P4] Horizontal velocity results of P3 and P4 (αs=10
6
) 

 

 

                                       (a)                                                                     (b) 

Figure 2.5.5. [P4] Horizontal velocity at (a) x=2.5, (b) x=4.5 with various αs           

(ReL=100, SUPG+PSPG)  
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                                       (a)                                                                     (b) 

Figure 2.5.6. [P4] Horizontal velocity oscillation various αs (ReL=100, SUPG+PSPG)     

(a) global velocity (b) local view at fluid-solid interface 

 

 

Figure 2.5.7. [P4] Convergence history according to different Brinkman penalization 

parameters  
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2.5.2. Numerical issues at fluid-solid interfaces (immersed boundaries) 

Although the overall velocity profiles are consistent with the solutions obtained by 

using the traditional no-slip boundary conditions, there sometimes exist disturbances, 

such as oscillation and over-diffusion, at the immersed boundary. For example, if the 

velocity profile shown in Figure 2.5.6(a) is examined again after magnifying it near the 

immersed boundaries (solid-fluid interfaces), element-scale oscillations of velocity or 

pressure are observed, as shown in Figure 2.5.6(b). Figure 2.5.8 describes another 

example problem which shows the velocity oscillation at the immersed boundaries. A 

solid obstacle lies in the middle of the analysis domain, and uniform flow motion is 

applied to inlet and free-stream boundary conditions. The velocity solution obtained by 

using the Brinkman penalization method is presented in Figure 2.5.9. Consistent with the 

previous result of P2 and P4, the velocity profile shows good convergence when αs is 

greater than 10
6
, but the velocity oscillation at the fluid-solid interface is again discovered. 
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(a) 

 

Reynolds number ReL=100 

Domain size 3×1 

Mesh 300×100, 600×200 

Shape function (v, p) Q4Q4  

Stabilization method SUPG+PSPG, GLS, SGS 

Brinkman penalization αs=10
4
~10

16
 

(b) 

Figure 2.5.8. [P5] 2D flow problem around oval obstacle (a) design domain and bcs       

(b) analysis setup 
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                                       (a)                                                                    (b) 

Figure 2.5.9. [P5] Horizontal velocity results (section A-A′) accoring to the value of 

Brinkman penalization parameter (a) global velcoity (b) local velocity view 

 

 

                                    (a)                                                                      (b) 

Figure 2.5.10. [P5] Horizontal velocity results (section A-A′) accoring to different mesh 

sizes (a) global velcoity (b) local velocity view  
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In porous flow analysis, velocity oscillation at the interface between porous and solid 

regions is a well-known numerical phenomenon [112]. This is because the Darcy model 

inherits a conflict among the shear stress condition, mass flow rates and velocity 

continuity condition at the interface. Thus, the oscillation due to the Darcy model is not a 

mesh refinement problem. However, the oscillations in this study, which occur at the 

immersed boundary location, are a mesh refinement problem, although the Brinkman-

penalized Navier-Stokes equation is derived based on similar porous flow physics. First, 

the velocity gradient changes too sharply at the immersed boundaries for the SUPG 

stabilization methods to correctly capture the velocity profile. Second, meshes used 

during topology optimization process are generally non body-conforming, as shown in 

Figure 2.5.8(a); therefore there are singular corner points that cause a pressure oscillation. 

Figure 2.5.10 shows that the amount of oscillation is reduced with mesh refinement. 

Although a denser mesh at the fluid-solid interfaces can prevent or soothe the 

oscillation, it is almost impossible to apply a dense mesh for the topology optimization 

problem. During the topology optimization process, the shape of the solid structure 

constantly changes and accordingly, the location of the interfaces moves at each design 

step. We therefore must remesh at each design step to apply a sufficiently dense mesh at 

the local area, which negates all the advantages of using the fictitious domain approach 

and significantly increases the computational cost.  

This study also examines the possibility of reducing the oscillation by applying 

different stabilization methods, such as the SUPG+PSPG, GLS and SGS stabilization 

methods. The analysis results obtained using different stabilization methods are presented 

from Figure 2.5.11 to Figure 2.5.16. At the global scale, the results do not differ 
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significantly from those obtained using the SUPG+PSPG, GLS and SGS stabilization 

methods. However, the magnified local velocity view at the solid-fluid interfaces reveals 

differences between the three solutions.  

The GLS stabilization method generally results in the smaller oscillation than the 

SUPG+PSPG stabilization method, regardless of the value of the Brinkman penalization 

parameter α. This result seems to be contrary to the theory because the GLS stabilization 

magnifies the oscillation produced by the SUPG method when the 1D convection-

diffusion-reaction (CDR) example is solved [75]. This is probably because there are two 

main differences between the CDR example and these problems P2, P4 and P5. First, the 

high reaction is not constantly positive in the direction of flow stream. Second, not only 

the high reaction term but also corner singularities result in the oscillation. The SGS 

stabilization method produces slightly over-diffused solutions preventing oscillated 

solutions in case P2. However, this cannot be generalized since, in other cases, the SGS 

produces more severe oscillations than the SUPG+PSPG stabilization method. For 

example, the velocity profile obtained by using the SGS stabilization method shows the 

worst oscillation at the immersed boundaries in cases P4 and P5.  

The difference in solutions obtained by different stabilization tensors is not significant 

although the Newton-Raphson convergence ratios are slightly inconsistent. Also, the 

effect of the LSIC stabilization method is negligible because the Reynolds number tested 

is not sufficiently high. Also, it should be mentioned that the magnitude of oscillation 

depends on the value of the Brinkman penalization parameter. As αs increases, the 

obtained solutions first show over-diffusion, then large oscillation and finally small 

oscillation.  
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                                      (a)                                                                     (b) 

Figure 2.5.11. [P2] Horizontal velocity at section A-A′ with αs=10
4
, ReL=400 using 

different stabilization methods (a) global velocity (b) local view  

 

 

                                      (a)                                                                     (b) 

Figure 2.5.12. [P2] Horizontal velocity at section A-A′ with αs=10
5
, ReL=400 using 

different stabilization methods (a) global velocity (b) local view   
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                                      (a)                                                                     (b) 

Figure 2.5.13. [P2] Horizontal velocity at section A-A′ with αs=10
6
, ReL=400 using 

different stabilization methods (a) global velocity (b) local view  

 

 

                                      (a)                                                                     (b) 

Figure 2.5.14. [P2] Horizontal velocity at section A-A′ with αs=10
10

, ReL=400 using 

different stabilization methods (a) global velocity (b) local view   
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                                       (a)                                                                     (b) 

Figure 2.5.15. [P4] Horizontal velocity oscillation according to stabilization methods (a) 

global velocity (b) local velocity view at fluid-solid interface 

 

 

                                       (a)                                                                     (b) 

Figure 2.5.16. [P5] Horizontal velocity results (section A-A′) accoring to different 

stabilization methods (a) global velcoity (b) local velocity view  
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Various analyses with different configurations indicate that the GLS stabilization 

method generally produces the best solution with the weakest oscillation. More 

mathematically rigorous study of how each stabilization method effects on the oscillation 

phenomenon is needed.  Also, too small of a value for the Brinkman penalization 

parameter not only prevents a converged solution, but also increases the magnitude of 

oscillation. Mathematical verification of the relations is left for further research. 

Finally, it should be noted that this local instability might later spoil the optimization 

solution. This instability does not degrade the overall solution at the level of system 

analysis. Brinkman penalization is mathematically justified from the viewpoint of system 

analysis [43-44]. The relation between the local oscillation and other numerical 

instabilities observed during the optimization process will be discussed in detail in 

section 3.3.3. 

 

2.6. Summary 

In this chapter, I revisited a fictitious design approach to analyze the physics in fluid 

and solid regions together with one equation by explaining the concept of the Brinkman-

penalized Navier-Stokes equation and the homogenized thermal transport equation. 

SUPG, PSPG, GLS, VMS and LSIC stabilization methods and various schemes to 

calculate their stabilization tensors were briefly introduced and tested. The Newton-

Raphson method for solving the nonlinear equation was described in detail. Reynolds-

Ramping initial guess strategy and a simultaneous stabilization tensor update scheme 
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were presented, which are essential in obtaining robust and fast solutions for highly 

nonlinear topology optimization problems. 

With example problems, a guideline to set a proper lower bound of the Brinkman 

penalization parameter was presented. When the Brinkman penalization parameter is 

greater than 10
6
 (Da=10

-6
), the zero-velocity condition in the solid regions and the no-slip 

boundary condition at solid boundaries are generally satisfied. Velocity and pressure 

oscillations at the fluid-solid interfaces were presented and investigated.  

 These numerical instabilities are a mesh-refinement problem unlike the oscillation 

occurring in porous flow analysis. This oscillation becomes stronger as the Reynolds 

number increases and a coarser mesh is used. Also, the magnitude of oscillation depends 

on the value of the Brinkman penalization parameter increases. As αs increases, the 

obtained solutions show over-diffusion, large oscillation and small oscillation, 

sequentially. 

Although the solutions obtained from different stabilization methods are overall very 

similar to each other, discrepancies are found near fluid-solid interfaces. The 

SUPG+PSPG and GLS stabilization methods produce the velocity and pressure 

oscillation, while the SGS stabilization method produces the strongest oscillation or an 

over-diffused solution. No notable difference is found due to the change of a stabilization 

tensor. 
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CHAPTER 3 

3. TOPOLOGY OPTIMIZATION OF NAVIER-STOKES FLOW PROBLEMS 

 

 

 

3.1. Introduction 

 This chapter investigates the topology optimization method of Navier-Stokes flow 

systems, extending previous studies concerning Stokes flow systems [45-46, 51, 100-

102]. Topology optimization method involves a great number of discrete design variables; 

therefore a very efficient algorithm should be implemented to solve topology 

optimization problems. In order to use gradient-based optimization methods which are 

typically efficient in problems with many design variables, the discrete design variables 

are relaxed by using continuous interpolation functions [1, 113]. Then the derivatives of 

an objective function with respect to the design variables are calculated. The adjoint 

sensitivity method for a steady state nonlinear system [114] is applied to calculate the 

derivatives. 

Numerical issues, such as element-scale cavities and boundary oscillation 

phenomenon, which deteriorate the convergence property, are presented and investigated. 

These numerical issues have not appeared or been discussed in previous topology 
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optimization studies of Stokes flow systems or low-Reynolds number flow systems [45-

46, 51, 100-102]. Filtering methods [115-117], different stabilized finite element methods 

and a move-limit scheme are suggested and examined to overcome the numerical issues. 

Unlike the well-known checkerboard pattern in topology optimization [1, 113], filtering 

methods such as the density filter and the sensitivity filter do not completely suppress the 

cavities and boundary oscillations. Instead, these numerical instabilities are successfully 

circumvented with the easy implementation of a move-limit scheme. Finally, 2D and 3D 

design problems are presented and physically interpreted. The objective function is the 

minimization of kinetic energy dissipation or drag minimization.  

The outline of Chapter 3 is as follows. Section 3.2 presents the sensitivity analysis 

with RAMP interpolation function and the adjoint sensitivity method. Section 3.3 

investigates numerical instabilities and suggests how to resolve them. After presenting 

several 2D and 3D design problems in section 3.4, summaries and observations are given 

in section 3.5. 

 

3.2. Sensitivities analysis for nonlinear problems 

Topology optimization determines optimized distribution of two-phase material, such 

as solid and void (free-fluid), in a design domain. The material phase is determined by 

local material properties, which are controlled by a local design variable φ(r) which is 

zero in free-fluid regions and unity in the solid regions. For example, if a local design 

variable is unity (φ=1), the local element or the local point r is in the solid region Ωs 

having solid material properties. On the contrary, if a local design variable is zero (φ=0), 
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it is in the void or free-fluid region with void or fluid material properties. During the 

topology optimization process, the value of the local design variables (0 or 1) is set to 

satisfy given objectives and the structural topology evolves during the topology 

optimization process. 

The topology optimization is fundamentally a 0-1 discrete optimization problem. 

There are many efficient algorithms to solve discrete optimization methods; however a 

gradient-based optimization method is generally preferred for topology optimization 

since the topology optimization method involves a great number of design variables. This 

section describes how to calculate the design sensibility in an efficient way by using 

relaxation scheme and adjoint sensitivity method.  

 

3.2.1. Relaxation of variables for topology optimization 

To efficiently obtain the design sensitivity, the most commonly used approach in 

topology optimization problems is to replace the discrete variables with continuous 

variables and then introduce some form of penalty that steers the solution to discrete 

values. RAMP (Rational Approximation of Material Properties) method is one of the 

interpolation methods, which has been mainly studied in the topology optimization of 

fluid mechanics problems. Following the pioneering work [39], this study also uses the 

RAMP  interpolation method to interpolate the Brinkman penalization parameter α(φ) as 

 

   min α
s s f

min α

11
( )

1 1

q

q


    

 

    
     

    
 (3.1.1) 
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Here, φ(r)=0 or φmin corresponds to αf=0 and φ(r)=1 corresponds to αs≈∞ at the location r. 

Then, the Brinkman-penalization term s v  is applied

 

in the solid regions (φ=1) to 

enforce the zero velocity condition inside solid structures and the no-slip boundary 

conditions at solid boundaries. Meanwhile, the original Navier-Stokes equation is solved 

in the free-fluid regions (φ=0). The parameter qα is a penalty parameter that is used to 

control the level of intermediates region during the optimization process [39]. The above 

formula (3.1.1) is commonly used in the literature [46, 50, 118-120]. The relations 

between the design variable and the physics in the free-fluid and solid regions becomes as 

shown in Table 3.2.1. 

 

Table 3.2.1 Design variables and physical properties 

 Fluid region Solid region 

Design variable φ(r) = 0, φmin φ(r) = 1 

Brinkman penalization 

parameter 
α(φ) = αf  = 0 α(φ) = αs ≈ ∞ 

Momentum equation 
2

f f p    v v v = f  
2

f p    



v v = f

v 0  

 

 

It is noted that the effective viscosity was sometimes applied instead of dynamic 

viscosity and implemented as an additional design property [46, 118] with RAMP 

interpolation or linear interpolation schemes given by 
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   min

s s f

min

11
( )

1 1
eff

q

q






    

 

   
          

 (3.1.2) 

  
   

   
f min s

min

1

1
eff

    
 

  

  


  
. (3.1.3) 

 

However, this study only uses the Brinkman-penalization parameter as a design property 

because no significant advantage to using the additional design property is shown in my 

experience. Furthermore, one more control variable qμ in equation (3.1.2) should be 

selected rather heuristically, which makes the optimization problem more complicated. 

 

3.2.2. Adjoint sensitivities for steady-state nonlinear systems 

The process of evaluating the residual 
UR  and updating the response u continues until 

the solution converges. In a sensitivity analysis, the residual 
UR  and the system response 

u are expressed as functions of the design variables vector φ as 

 

   ,U R u φ φ 0 . (3.1.4) 

 

In an optimization problem, the objective function has to be minimized subject to 

certain design constraints. These objective functions and constraints can be represented 

by the general response function F as  
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     ,F Gφ u φ φ  (3.1.5) 

 

Notice that the dependence of the response function F on the design vector φ is rewritten 

using the function G so as to isolate its implicit dependence on φ through u(φ) from the 

explicit dependence on φ. 

Gradient-based optimization schemes require the derivatives of the response functions 

with respect to the design variable, which can be computed from (3.1.5) as 

 

 
i i i

DF G D G

D D  

 
  
 

u

u
. (3.1.6) 

 

In the above equation, the derivatives ∂G/∂u and ∂G/∂φi are explicit quantities, whereas 

the derivative Du/Dφi is an implicit quantity because the system response is implicitly 

defined through equation (3.1.4). 

In the direct differentiation approach, the implicit derivative Du/Dφi is evaluated and 

then the sensitivities are obtained from equation (3.1.6). This is accomplished by 

differentiating equation (3.1.4) with respect to the individual design parameters φi, which, 

after some rearranging, yields 

 

 
U U

i i

D

D 

 
 

 

R Ru

u
. (3.1.7) 

 

The above equation forms a pseudo-problem for the evaluation of the response 

sensitivity Du/Dφi resulting from the pseudo-load 
U iD D R , Note here that the 
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operator in the pseudo-problem is identical to the tangent operator in the Newton-

Raphson analysis of the primal problem (2.3.18). In a finite element analysis, this 

reappearance of the tangent operator allows the decomposed tangent stiffness matrix 

resulting from the iterative solution of u to be used to solve equation (3.1.7) efficiently 

for the implicit response sensitivity Du/Dφi. Hence, the evaluation of the derivative 

Du/Dφi requires only the formation of the pseudo-load vector 
U i R .  

Adjoint sensitivities are obtained via the Lagrange multiplier method, where the 

implicit response sensitivity Du/Dφi is eliminated from equation (3.1.6). Equations 

(3.1.4) and (3.1.5) are combined to define the augmented functional 

 

          ˆ , ,U UF G  φ u φ φ λ φ R u φ φ  (3.1.8) 

 

where λU(φ) is the Lagrange multiplier and u is a solution to equation(3.1.9). Note here 

that F̂ F since 
U R 0  from equation (3.1.4). Differentiation of the above with respect 

to the individual design parameters φi yields 

 

 
ˆ

U U U
U

i i i i i i

DDF G D G D

D D D D     

   
        
    

λ R Ru u
R λ

u u
 (3.1.10) 

 

Here, I note again that ˆ
i iDF D DF D  since again 

U R 0 .  

To isolate the implicit response sensitivities, I separate equation (3.1.10) into two 

terms  
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ˆ ˆˆ

E I

i i i

DF DFDF

D D D  
   (3.1.11) 

 

where ˆ
E iDF D  and ˆ

I iDF D  are the explicit and implicit terms, respectively, defined 

as 

 

 
ˆ

UE
U

i i i

DF G

D  


  
 

R
λ  (3.1.12) 

 
ˆ

T

UI
U

i i

DF D G

D D 

  
     
    

Ru
λ

u u
 (3.1.13) 

 

The implicit part ˆ
I iDF D  is eliminated from the sensitivity expression by defining 

the Lagrange multiplier λU, so that equation (3.1.13) equals zero. Once this λU is 

determined, the unknown derivative Du/Dφi is eliminated from the sensitivity expression 

and the sensitivities are evaluated from the remaining explicit quantity (i.e. 

equation(3.1.12)). Annihilation of the implicit term in equation (3.1.13) yields the 

following adjoint problem for the adjoint response Lagrange multiplier λU. 

 

 

T

U
U

G  
 

  

R
λ

u u
 (3.1.14) 

 

where ∂G/∂u is deemed the adjoint load. Once the adjoint response λU is evaluated, the 

sensitivity expression reduces to 
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ˆ

U
U

i i i

DF G

D  


  
 

R
λ . (3.1.15) 

 

Here, I note that the operator that appears in the adjoint problem is the transpose of the 

Newton-Raphson tangent operator used to obtain δu.  

The adjoint method requires the solution of one adjoint problem for each response 

function F, whereby the sensitivity is computed from equation (3.1.15). Therefore, it is 

very efficient when the number of response functions is small compared with the number 

of design parameters. If this ratio is reversed, the direct differentiation is generally 

preferred [114]. 

 

3.3. Numerical issues 

This section presents a topology optimization example problem of Navier-Stokes flow 

systems and discusses numerical instabilities in the optimization process which are not 

presented in previous studies of topology optimization for Stokes flow systems [45-46, 

51, 100-102]. To clarify the cause of these instabilities, adjoint sensitivities are first 

compared to finite difference sensitivities, and then the effect of numerical issues in the 

system analysis, which is discussed in section 2.5.2, is confirmed. To circumvent these 

numerical instabilities, filtering methods, such as the density filter and the sensitivity 

filter [35, 115-117], are evaluated and a move-limit approach is suggested. 
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3.3.1. Design examples 

As an example problem, the minimization of kinetic energy dissipation is solved for a 

Navier-Stokes flow system with a volume constraint; these objective and constraint have 

been examined in previous topology optimization studies of Stokes flow system [50, 118-

119]. The design domain and boundary conditions are shown in Figure 3.3.1. The inlet 

fluid velocity U is determined by pre-assigned Reynolds numbers ReH. Then, this 

optimization problem can be stated as 

 

          Minimize       1

1
, ,

2
fF       v v v v  (3.2.1) 

 

          Subject to  2

f f p       v v v v = f  (3.2.2) 

 min 0d V


   (3.2.3) 

 min 1    (3.2.4) 

 

where F is the objective function and Vmin is the minimum amount of solid volume in the 

design domain. Several values of αs are tested from 10
4
 to 10

16
, and the value of φmin is 

set to 0. The volume constraint is set at 10% solid volume in the design domain as 

 

 min 0.1 1V d


   . (3.2.5) 
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(a) 

Reynolds number ReH = 0.001, 10, 100, 1000 

Domain size L×H = 1.5×1 

Mesh 240×160, 480×320 

Shape function (v, p, T) Q4Q4  

Stabilization method GLS 

Brinkman penalization αs = 10
4
-10

16 
 

 

(b) 

Optimizer SLP, MMA 

Shape function ( φ ) Q4, U1 

Interpolation function RAMP 

Filtering method density filter, sensitivity filter  
 

 (c) 

Figure 3.3.1 [P6] 2D design example (a) design domain and boundary conditions            

(b) analysis setup (c) optimization setup 
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The optimization problem is solved by using the MMA and SLP algorithm. For the 

design sensitivity, the adjoint sensitivity method is used and verified with finite 

difference sensitivity. Figure 3.3.2 shows the sensitivity analysis result at the initial 

design condition, φ = 0.1. The two sensitivity analysis results are well matched with each 

other. 

 

    
(a) 

 
(b) 

Figure 3.3.2 [P6] Design sensitivity result: (a) finite difference sensitivity                        

(b) adjoint sensitivity 
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3.3.2. Creeping flow, ReH=0.001 

At first, to verify topology optimization method, the design result for creeping flow is 

first solved and compared to the analytical solution calculated by Pironneau [121] and 

previous topology optimization results obtained by Borrvall and Petersson [5]. The 

Reynolds number is set to 0.001 to simulate creeping flow. αs and φmin are set to 10
8
 and 

zero, respectively. Figure 3.3.3 shows the optimization steps. According to Pironneau’s 

analytical solution [121], the wedge of angle should be 90
o
 to minimize drag in the 

creeping flow. The shape of obstacle body obtained satisfies the analytical solution as 

shown in Figure 3.3.4, and also corresponds to the previous topology optimization result 

of a Stokes flow system [5]. In addition, Figure 3.3.5 and Figure 3.3.6 show that the 

objective and the design converge well to the optimized design. The functions C and S 

given by equation (3.2.6) and (3.2.7) show the 0-1 convergence and the convergence of 

design shape respectively.  

 

    min max

N

i i

i

C N        (3.2.6) 

 
1

N
I I

i i

i

S N    (3.2.7) 

 

Here, N is total number of the design variables. 
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(a) (c) 

  

(b) (d) 

 

Figure 3.3.3 [P6] Design process, ReH=0.001 (a) initial design (b) 5
st
 step (c) 10

th
 step   

(d) 50
th

 step  

 

 

 

Figure 3.3.4 [P6] Optimization result, ReH=0.001 

 



 

69 

 

 

Figure 3.3.5 [P6] Convergence history, ReH=0.001 

 

 

Figure 3.3.6 [P6] Design convergence history, ReH=0.001 
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3.3.3. Fluctuation at the boundaries 

Now the same optimization problem shown in section 3.3.1 is tested with a higher 

Reynolds number. ReH is set to 100 with the same volume constraint 0.1. αs and φmin are 

again set to 10
6
 and zero, respectively. Either MMA or SLP algorithm is used as an 

optimizer. Figure 3.3.7 shows the design history. At the initial stage, the design 

converges very well as shown in Figure 3.3.7(a)-(d) before solid elements and void (free-

fluid) elements are first adjacent. From this point, the design starts fluctuating at the 

solid-fluid interfaces and generates element-scale cavities as shown in Figure 3.3.7(e)-(h). 

As a result, the design no longer converges as shown in Figure 3.3.8 and Figure 3.3.9. It 

is noted that this numerical instability typically occurs when a large penalization term is 

used or when a high Reynolds number flow is solved.  
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(a) (e) 

 

          

(b) (f) 

 

       

(c) (g) 

 

      

(d) (h) 

Figure 3.3.7 [P6] Design process, ReH=100 (a) initial design (b) 1
st
 step (c) 10

th
 step (d) 

18
th

 step (e) 19
th

 step (f) 20
th

 step (g) 25
th

 step (h) 30
th

 step 
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Figure 3.3.8 [P6] Convergence histories, ReH=100 

 

 

Figure 3.3.9 [P6] Design convergence history, ReH=100 
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Generally speaking, there are three possible problems that cause this numerical issue 

preventing design convergence: (1) errors in the sensitivity analysis, (2) errors in the 

optimizer and (3) errors in the system analysis. To clarify the reason for these boundary 

oscillations and cavities, the adjoint sensitivity values at the optimization step when 

design oscillation arises, and where cavities first appear, are first compared with the finite 

difference sensitivity values in order to verify the adjoint sensitivity calculation. Figure 

3.3.10 shows that the two sensitivity results correspond to each other, which 

demonstrates that there is no error in the sensitivity analysis. 

 

(a) 

 

(b) 

 

Figure 3.3.10 [P6] Design sensitivity results at 18
th

 step, ReH=100 (a) adjoint sensitivity 

(b) finite difference sensitivity 
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Second, the correlation between the sensitivity result and the next design at the local 

area is investigated. Many negative sensitivity peaks shown in Figure 3.3.11, (blue dots 

in the 18
th

 sensitivity graph), make the optimizer to decrease solid density at those points; 

therefore, the problematic element-scale cavities of the next 19
th

 design are generated at 

the same points. This means that the design result corresponds with the sensitivity result 

and consequently, the SLP works properly. 

 

 

(a)                                              (b)                                               (c) 

Figure 3.3.11 [P6] Local sensitivity result and design history, ReH=100 (a) 18
th

 design   

(b) 18
th

 sensitivity (c) 19
th

 design  

 

Finally the system analysis results are inspected once again. In section 2.5, oscillations 

in the numerical solution are observed near solid-fluid interfaces (immersed boundaries). 

Likewise, huge oscillations of velocity and pressure are found in the 18
th

 analysis result, 

as shown in Figure 3.3.12. The oscillations arise mainly at corner points of pure-solid 
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regions (φ=1) because the finite element solution hardly capture the sharp gradient 

changes. As a result, huge back pressure and following forward pressure are produced 

throughout the element-scale areas. These back pressures increase the value of the 

objective function; therefore, the sensitivity results have negative values in order to 

remove the obstructing elements and consequently, to eliminate the back pressure. Figure 

3.3.13 clearly shows the sensitivity oscillations. 

 

 

                   (a)                                           (b)                                          (c) 

Figure 3.3.12 [P6] Local design and pressure oscillations, ReH=100 (a) 18
th

 design        

(b) pressure oscillation at section A-A′ (c) back pressure gradients at section B-B′ 
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                                (a)                                    (b)                                     (c) 

Figure 3.3.13 Sensitivity oscillations at (a) section A-A′ (b) section B-B′                         

(c) section C-C′ 

 

In conclusion, these numerical difficulties encountered during the topology 

optimization of Navier-Stokes flow systems are inherited from the numerical instabilities 

of the Brinkman penalization method. Although the instabilities are not problematic in 

the system analysis itself, they are amplified through the optimization process and 
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become a critical issue. As discussed in 2.5.2, these oscillations are not successfully 

suppressed at the level of system analysis – for example, by a change of stabilization 

method or mesh refinement. Therefore, different approaches are needed at the level of 

design optimization. 

 

3.3.4. Filtering method approach 

As a first approach, the effect of filtering methods, such as the density filter and the 

sensitivity filter, are tested to evaluate the possibility of suppressing this element-scale 

oscillation. These filtering methods, based on filtering techniques from image processing, 

were suggested by Sigmund to prevent the creation of element-scale checkerboards in 

numerical solutions to topology optimization problems [35]. Although these filtering 

methods are based on heuristics, their implementation, in many cases, effectively 

prevents checkerboard patterns and enables mesh-independent design. Furthermore, these 

filtering schemes are very easy to implement and they require no extra constraints in the 

optimization problem. 

In the density filtering method, the element or node densities are modified by the 

following equation 

 

 

 
1

( ) ( )

1
( )

0 otherwise

filter

filter

K K d
K

if d
dK

 


   


 

 



r r r r

r
r

r

 (3.2.8) 
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where e is the modified density and eN is the set of neighboring density variables. As the 

density filter smoothes the density distribution, the density convergence is poor when 

coarse mesh is adapted. Therefore, reasonably fine mesh should be selected. In addition 

to the convergence problem, it should be mentioned that the material volume is not 

preserved after the filtering operation unless the periodic boundary condition is used.  

In the sensitivity filtering method, the design sensitivities are modified by the 

following equation 

 

 

*

1

1

1

dist( , )

N

i iN
ik i

k i

i

i filter

F F
H

H

H d k i


 

 



 


 

 


  (3.2.9) 

 

As stated in [122], this heuristic modification of the design sensitivity may be questioned 

due to the fact that the filtered sensitivities differ from the original design sensitivity of 

the objective function. Despite this argument, the sensitivity filtering method has 

succeeded in many applications. As suggested in [122], e  in the denominator should be 

larger than a small value of ε (e.g., 10
-3

). Otherwise, the sensitivity filtering method (e.g., 

ε=10
-6

) will create large sensitivity at the low density region. 

Figure 3.3.14 and Figure 3.3.15 show design histories when these filtering schemes 

are implemented to the topology optimization of the Navier-Stokes flow system. The 

density filter eliminates one-element cavities inside solid structures by smoothing the 
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values of sharp 0-1 interfaces and, as the result, the element-scale oscillations are 

suppressed as expected. However, this method does not completely resolve the overall 

convergence issue because larger-scale oscillations, although they are blurry, still occur 

during the optimization process disturbing convergence, as shown in Figure 3.3.14. 

Sensitivity filter does not prevent the element-scale oscillation; rather it aggravates the 

convergence problems, as shown in Figure 3.3.15.  Figure 3.3.16 and Figure 3.3.17 show 

the design results are not converged.  

Despite their successful performance in preventing the checkerboard issue, these 

filtering methods are not successful in preventing the boundary oscillation. This is mainly 

because there are two significant differences between the typical checkerboard patterns 

and the boundary oscillations. First, in the checkerboard patterns, the locations of void 

and solid elements do not move at the final stage of convergence whereas the locations of 

void elements (cavities in the solid structures) constantly move at each design step. 

Second, due to the large value of the penalization parameter, the gradient of sensitivity 

oscillation is generally much larger than the sensitivity gradients in checkerboard patterns. 

Therefore, it is more difficult to smooth out sensitivity peaks by using the same 

sensitivity filter method. In conclusion, the filtering methods are inappropriate to prevent 

this numerical issue although they assure mesh-independent design solutions. 
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(a) (c) 

  

(b) (d) 

Figure 3.3.14 Design history with the densitivy filter (a) 20
th

 step (b) 43
rd

 step                 

(c) 44
th

 step  (d) 45
th

 step 

 

 
 

(a) (c) 

 
 

(b) (d) 

Figure 3.3.15 Design history with the sensitivity filter (a) 19
th

 step (b) 20
th

 step               

(c) 21
st
 step (d) 22

nd
 step 
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(a) 

 

 
(b) 

Figure 3.3.16 [P6] Design convergence histories with filters, ReH=100 (a) the density 

filter, (b) the sensitivity filter 
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Figure 3.3.17 Objective convergence histories according to filtering schemes 

 

3.3.5. Move-limit approach 

My second approach to solve the numerical issues is to test the effect of move-limit on 

the boundary oscillations. Based on the fact that the void cavities near the solid-fluid 

interfaces are constantly appearing and disappearing at different locations, I set a 

maximum move-limit to the design variables to prevent such sudden changes. For the 

SLP optimizer, this move-limit is easily implemented with basic constraints. For the 

MMA optimizer, the move-limit can be implemented by a filter given by equation (3.2.10) 
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 

 

1

min

1 1

1

max , if

min , 1 if

otherwise

i i i

i i i i

i

c c

c c

   

   





 



   


   



 (3.2.10) 

 

Figure 3.3.18 and Figure 3.3.19 show the design history without or with the move-

limit constraint, respectively. A 5% move-limit is applied in the previous problem. The 

element-scale void-holes and resulting boundary oscillation is successfully suppressed 

with the move-limit and consequently, the design converges well although the objective 

does not change much, as shown in Figure 3.3.20 and Figure 3.3.21. Also, it should be 

mentioned that this move-limit scheme does not significantly decelerate the speed of the 

entire topology optimization of Navier-Stokes flow systems despite the need for more 

design steps. When solving the nonlinear Navier-Stokes equation for the J+1
th

 design, the 

analysis result for the previous J
th

 design is generally used for the values of the initial 

guess. The more the two J
th

 and J+1
th

 designs resemble each other, the easier it is to find a 

new solution. As a smaller move-limit is applied, the J
th

 design and J+1
th

 design become 

more similar, and the number of required inner loop iterations for solving the nonlinear 

equation is reduced. Thus, although more outer loop design steps are needed, the fewer 

inner loop iterations needed for solving the nonlinear problem compensates for the time 

loss associated with the greater number of outer loop design step.  
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(a) (b) 

  

(c) (d) 

Figure 3.3.18 [P6] Design  history without move-limit, ReH=100  (a) initial design         

(b) 1
st
 step (c) 2

nd
 step (d) 149

th
 step 

 

 
 

(a) (c) 

     

(b) (d) 

Figure 3.3.19 [P6] Design  history with 5% move-limit, ReH=100  (a) initial design       

(b) 1
st
 step (c) 2

nd
 step (d) 31

st
 step 
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Figure 3.3.20 [P6] Objective convergence histories according to move-limit, ReH=100 

 

 

Figure 3.3.21 [P6] Design convergence history with 5% move limit, ReH=100  
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3.4. Design of Navier-Stokes flow systems 

This section presents the topology optimization of Navier-Stokes flow systems. The 

objective function is the minimization of kinetic energy dissipation or drag force both 

with the volume constraint. 5% move limit is applied to prevent the boundary oscillations 

and consequent convergence issues. The density filter is also applied to obtain mesh-

independent design solutions. Then, the effect of the Reynolds number change is 

discussed with the design results. The no-slip boundary condition at solid boundaries and 

the zero-velocity condition in solid structures are verified from the design results. 

 

3.4.1. Minimization of kinetic energy dissipation 

For the first design objective, the minimization of kinetic energy dissipation is solved 

for 2D and 3D Navier-Stokes flow systems with the volume constraint. The formal 

topology optimization problems can be given by  

 

          Minimize       1

1
, ,

2
fF       v v v v  (3.3.1) 

          Subject to  2

f f p       v v v v = f  (3.3.2) 

 min 0d V


   (3.3.3) 

 min 1    (3.3.4) 

 

where F is the objective function. 
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(a) 

Reynolds number ReH = 0.001, 10, 100, 1000 

Domain size L×H = 1.5×1 

Mesh 240×160 480×320 

Shape function (v, p, T) Q4Q4  

Stabilization method GLS, SUPG+PSPG, SGS 

Brinkman penalization αs = 10
6
 

(b) 

Optimizer SLP, MMA 

Shape function ( φ ) Q4, U1 

Interpolation function RAMP 

Filtering method density filter, sensitivity filter  

Additional constraint move limit 5% 

(c) 

Figure 3.4.1 [P7] 2D design example (a) design domain and boundary conditions            

(b) analysis setup (c) optimization setup 
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(a) 

      

(b) 

 

(c) 

 
 

Figure 3.4.2 [P7] Design results minimizing kinetic energy dissipation with GLS 

stabilization method a) ReH=10 b) ReH=100 c) ReH=1000 
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(a) 

       

(b) 

      

(c) 

 

 

Figure 3.4.3 [P7] Design results minimizing kinetic energy dissipation at ReH=1000 with 

a) GLS stabilization method b) SUPG+PSPG stabilization method c) SGS stabilization 

method 
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Figure 3.4.1 shows a design domain and boundary conditions for a 2D Navier-Stokes 

flow system. To approximate the free-stream boundary condition with a higher Reynolds 

number flow along the right-side outflow boundary, a larger design domain is used than 

the one used for the creeping flow system in section 3.3. In the analysis, Q4Q4 elements 

with 240×160 square mesh are used; αs is set to 10
6
. In the optimization, the volume 

constraint Vmin is set at 10% solid volume in the design domain; the value of φmin is set to 

0 and the SLP algorithm is used as an optimizer.  

This optimization problem is solved with various flows of different Reynolds numbers. 

When the Reynolds number is small, as shown in Figure 3.4.2(a), the design solution is 

almost identical to the design solution of the creeping flow as shown in Figure 3.3.18(b). 

On the other hand, the optimized obstacle shape becomes thinner as the ReH increases, as 

shown in Figure 3.4.2(b), (c). With a faster flow stream, the flow resistance from a blunt 

obstacle body is more dominant than the flow resistance caused by skin friction; therefore, 

the obstacle body becomes thinner and more stream-lined to minimize total flow 

resistance and consequently, to minimize kinetic energy dissipation. In conclusion, these 

design results, shown in Figure 3.4.2, follow the general principle of fluid dynamics. 

There exists no significant difference when different stabilization methods are used as 

shown in Figure 3.4.3. The no-slip condition along the solid boundary and the zero-

velocity condition inside the solid structure are satisfied, as shown in the velocity field 

graph Figure 3.4.4. 
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 (a) 

 

                                        (b)                                                           (c) 

Figure 3.4.4 [P7] Design result and velotiy profiles at ReH=1000 (a) design result          

(b) global velocity at section A-A' (c) local velocity view  
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Finally, a 3D flow channel is designed following Aage’s study [51]. The design 

domain and boundary conditions are shown in Figure 3.4.5. The Reynolds number is 100. 

In the analysis, H8H8 elements with 40×40×40 cubic mesh are used with the GLS 

stabilization method. In the optimization, the volume constraint Vmin is set at 50% solid 

volume in the design domain. Figure 3.4.6 shows that the topology optimization method 

creates a clear flow path inside the design domain, connecting one inlet with two outlets. 

Figure 3.4.7 presents the objective and constraint converges very well. 
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(a) 

Reynolds number ReL=100 

Domain size 1×1×1 

Mesh 40×40×40 

Shape function (v, p) H8H8  

Stabilization method SUPG+PSPG 

Brinkman penalization αs=10
6
 

(b) 

Optimizer MMA 

Shape function ( φ ) U1 

Interpolation function RAMP 

Filtering method Sensitivity filter 

Additional constraint 5% move limit 

(c) 

Figure 3.4.5 [P8] 3D design example (a) design domain and boundary conditions            

(b) analysis setup (c) optimization setup 
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                               (a)                                                                          (b) 

Figure 3.4.6 [P8] Optimization results: (a) design result, (b) stream line graph 

 

 

Figure 3.4.7 [P8] Convergence histories 
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3.5. Summary 

In this chapter, the topology optimization of Navier-Stokes flow systems was 

formulated. Relaxation schemes of discrete physical parameters such as the Brinkman 

penalization parameter and the effective viscosity were revisited, and the adjoint 

sensitivity method for a steady-state nonlinear system was described in detail. After 

verifying the adjoint sensitivity method by comparing it with the finite difference 

sensitivity, this topology optimization method was verified by comparing the results with 

the previous topology optimization solutions of Stokes flow systems and the Pironneau’s 

analytical solution [121]. 

I found numerical instabilities, such as element-scale cavities and boundary 

oscillations, which prevent the design from converging. These numerical instabilities do 

not result from an error in the sensitivity calculation or optimizer algorithms. Rather, they 

are caused by the numerical instabilities at the system analysis level, which are discussed 

in Section 2.5.2. Since the velocity and pressure oscillation becomes stronger as the 

Reynolds number increases, these numerical instabilities at the optimization level become 

more problematic with high Reynolds number flows.  

Unlike the checkerboard problems of topology optimization, these numerical 

instabilities, developed from element-scale cavities, are not successfully suppressed by 

filtering schemes such as the density and sensitivity filter. This is mainly because the 

locations of the cavities are not fixed through the design steps. The most effective and 

easiest approach to prevent the instabilities is to apply a move limit. This constraint 
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successfully prevents the element-scale cavities and consequently suppresses boundary 

oscillations without a significant increase in computational cost. 

Finally, 2D and 3D flow channels were designed. The objective function was to 

minimize kinetic power dissipation. The design solutions minimize skin friction with a 

low Reynolds number flow while they minimize pressure drag, creating a thin 

streamlined shape with a high Reynolds number flow. 
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CHAPTER 4 

4. TOPOLOGY OPTIMIZATION OF CONVECTIVE COOLING SYSTEMS 

 

 

 

4.1. Introduction 

 In accordance with the success of the topology optimization for Navier-Stokes flow 

systems (chapter 3), the topology optimization method is also applied to convective heat 

transfer problems in this chapter. For this multiphysics optimization, I analyze not only 

heat transfers, but also flow motion without using the approximated side convection 

coefficient ‘h.’ Therefore, this study extends previous topology optimization studies 

considered single physics pure heat conduction problems [63-67] or quasi-multiphysics 

heat transfer problems that use the side convection coefficient [68-70].  

As explained in section 3.2, the discrete design variables are relaxed with continuous 

interpolation functions, and then the adjoint sensitivities [114] are calculated. There are 

two main differences between single physics fluid problems and these multiphysics 

problems. First, an additional physical property is introduced to distinguish heat transfer 

physics in free-fluid regions from those in solid regions. Second, the calculation of the 

adjoint sensitivity for nonlinear multiphysics systems is much more complicated [114]. 
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After presenting the procedure for calculating design sensitivity, additional numerical 

instabilities, such as blocking wall designs resulting from unsuccessful Brinkman 

penalization, are discovered and investigated. Several strategies are suggested for 

preventing the blocking wall designs. Then, to validate the possibilities of the topology 

optimization method in convective-cooling device designs, 2D and 3D design problems 

with different Reynolds numbers and Prandtl numbers are presented and physically 

interpreted. 

The outline of this chapter is as follows. Section 4.2 presents the topology 

optimization problems in convective heat transfer. Section 4.3 discusses numerical issues 

and possible remedies. 2D and 3D design problems are presenting in section 4.4. Section 

4.5 summarizes this chapter. 

 

4.2. Sensitivity analysis for multiphysics problems  

As indicated in section 3.2, the discrete design variables should be relaxed with 

continuous interpolation functions, and the adjoint sensitivities should be calculated to 

efficiently solve topology optimization problems. This section presents interpolation 

functions used to relax the discrete design variables and explains how to calculate the 

adjoint sensitivities for steady-state nonlinear multiphysics systems.  
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4.2.1. Relaxation of variables for topology optimization 

In the topology optimization of Navier-Stokes flow systems discussed in chapter 3, the 

Brinkman-penalization parameter α was controlled by design variables to distinguish the 

flow motion inside solid structures from those in free-fluid regions. In the same manner, 

additional material properties are needed to characterize the heat transfer physics inside 

solid structures or in free-fluid regions. Since this study conducts a full flow motion 

analysis, the control of heat conduction properties k is sufficient to distinguish the two 

different heat transfer physics as discussed in section 2.2.2.  

The thermal conductivity k can be interpolated by using the RAMP interpolation 

function as  

 

   min
s s f

min

11
( )

1 1

k

k

q
k k k k

q




 

    
     

    
. (4.2.1) 

 

Here, φ(r) = 0 or φmin corresponds to kf , the thermal conductivity of fluid, whereas φ(r) = 

1 corresponds to ks, the thermal conductivity of solid material, at the location r. Also a 

linear interpolation scheme (4.2.2) can be used following Li’s work [123]. 

 

  
   

   
f min s

min

1

1

k k
k

  


  

  


  
 (4.2.2) 

 

This linear interpolation for k introduces no penalty that steers the solution to discrete 

values. Yet, the 0-1 convergence of this interpolation is not notably inferior compared 
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with that of RAMP interpolation probably because the RAMP interpolation for α already 

has sufficient penalty effect. The relations between the design variable and the physics in 

the free-fluid and solid regions becomes as shown in Table 4.2.1.  

 

Table 4.2.1 Design variables and physical properties 

 Fluid region Solid region 

Design variable φ(r) = 0, φmin φ(r) = 1 

Brinkman penalization 

parameter 
α = αf ≈ 0 α = αs ≈ ∞ 

Heat conduction 

coefficient 
k(φ) = kf k(φ) = ks 

Momentum equation 
2

f f p    v v v = f  
2

f p    



v v = f

v 0  

Energy equation   0f p fC T k T    v
 

  0sk T  
 

 

 

Also, it should be noted that the RAMP interpolation scheme requires one more 

heuristic control parameter qk, which makes it more difficult to control the already 

complicated multiphysics optimization problem. Therefore, to simplify the optimization 

problems, this study uses the same value for the control parameters qα and qk when 

RAMP interpolation scheme is used to interpolate both the Brinkman penalization 

parameter and the thermal conductivity. 
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4.2.2. Sensitivity analysis for multiphysics problems 

Weakly coupled thermal-fluid equations (2.2.1) and (2.2.6) can be expressed in 

residual form as 

 

   ,U R u φ φ 0  (4.2.3) 

     , , ,T R T u φ u φ φ 0 . (4.2.4) 

 

Here, 
UR  and 

TR is the residual form of the Brinkman-penalized Navier-Stokes equation 

and homogenized heat transfer equation, respectively; both residual forms include the 

stabilization terms. u is the fluid system response including velocity v and pressure p 

while T is the heat transfer system response, temperature. Also cost functions and 

constraints can be represented by the general response function F as  

 

       , , ,F Gφ T u φ u φ φ . (4.2.5) 

 

Similarly to section 3.2.2, the dependence of the cost function F on the design vector φ 

has been rewritten using the function G so as to isolate its implicit dependence on φ 

through u(φ) and T(u, φ) from the explicit dependence on φ. Then the derivatives of the 

response function with respect to the design variable becomes 

 

 
i i i i

DF G D G D G

D D D   

  
    
  

T u

T u
 (4.2.6) 
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The derivative DT/Dφi is an implicit quantity because the system response is implicitly 

defined through equation (4.2.4). 

 

 T T T

i i i

D D

D D  

  
  

  

R R RT u

T u
. (4.2.7) 

 

Then, by employing equation (3.1.7),  DT/Dφi can be obtained as 

 

 

1

U UT T T

i i i

D

D  



    
  

     

R RR R RT

T u u
. (4.2.8) 

 

The direct differentiation sensitivities is calculated by 

 

 

1

1 11

T T

i i i

U U UT T

i

DF G G

D

G G

  





 

   
   
    

          
         

             

R R

T T

R R RR R

T T u u u u

.

 (4.2.9) 

 

However, topology optimization problems generally have much more design variables φi 

than response functions G, thus, this direct differentiation method is less efficient than the 

adjoint sensitivity method as discussed in section 3.2.2. 

To obtain adjoint sensitivity, an augmented functional is first defined as the 

combination of equation (4.2.3), (4.2.4) and (4.2.5), given by 
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           

      

ˆ , , , ,

, , ,

U U

T T

F G  

 

φ T u φ u φ φ λ φ R u φ φ

λ φ R T u φ u φ φ
. (4.2.10) 

 

Here, λU(φ) and λT(φ) are the Lagrange multipliers. Note that F̂ F since 
UR  and 

TR  are 

zero vectors. Differentiation of the above with respect to the individual design parameters 

φi yields 

 

 

ˆ
U U

U

i i i i i i

T T T
T

i i i

DF G G D G D D

D D D D

D D

D D

     

  

    
        
     

   
    

   

R Ru T u
λ

u T u

R R Ru T
λ

u T
.

 (4.2.11) 

 

To isolate the implicit response sensitivities, I separate equation (4.2.11) into three 

terms 

 

 1 2

ˆ ˆˆˆ
I IE

i i i i

DF DFDFDF

D D D D   
    (4.2.12) 

 

where ˆ
E iDF D is a explicit term and  

1

ˆ
I iDF D  and 

2

ˆ
I iDF D  are implicit terms, 

respectively, defined as 

 

 
ˆ

T TUE T
U T

i i i i

DF G

D   

 
    
  

R R
λ λ  (4.2.13) 
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 1

ˆ T T

I U T
U T

i i

DF D G

D D 

     
       
      

R Ru
λ λ

u u u
 (4.2.14) 

 2

ˆ T

I T
T

i i

DF D G

D D 

  
     
    

RT
λ

T T
 (4.2.15) 

 

The implicit parts are eliminated from the sensitivity expression by defining the 

Lagrange multipliers λU and λT so that equation (4.2.14) and equation (4.2.15) equal zero 

as following  
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Then, sensitivity expression reduces to the explicit terms of sensitivities as 
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This adjoint sensitivities equation is basically the same as the direct differentiation 

sensitivities equation (4.2.9). However, the number of response functional is generally 

much small compared with the number of design parameters in topology optimization 

problems. Therefore, it is more efficient to use the adjoint sensitivities than to use the 

direct differentiation sensitivities [114]. 
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4.3. Numerical issues  

This section presents a topology optimization example problem of thermal-fluid 

systems and discusses numerical difficulties in the optimization process. Despite the 

successful implementation of the topology optimization of Navier-Stokes flow systems, 

the Brinkman-penalization does not work properly during the topology optimization of 

multiphysics thermal-fluid systems, creating physically unacceptable design solutions. 

This section discusses the reason for the numerical difficulties with numerical examples 

and suggests possible solutions to circumvent the issues. 

 

4.3.1. Unsuccessful Brinkman penalization and blocking wall designs 

To clarify the numerical issue, this section considers an optimization problem of a 2D 

cooling channel depicted in Figure 4.3.1. The design goal is set to minimize mean 

temperature in the design domain. Parabolic flow profile with maximum flow velocity 

Umax and uniform temperature T0 are given at the inlet boundary Γin. Zero pressure is 

assumed at the outlet boundary Γout, without loss of generality. A uniform heat influx ‘h’ 

is applied at the heating boundary Γq. At the remaining wall boundary Γwall, no-slip 

adiabatic boundary conditions are assumed. The material properties of antifreeze (50%) 

and aluminum are used for the fluid material and the solid structure respectively. The 

Reynolds number is first set to 10 and increased for later design, and the Prandtl number 

of the fluid is 7.2. 
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(a) 

Material Aluminum, Antifreeze (50%) 

Reynolds number ReH = 10, 100, 1000 

Prandtl number Pr = 7.2 

Domain size L×H = 3 × 1 

Mesh 180×60, 360×120 

Shape function (v, p, T) Q4Q4-Q4  

Stabilization method GLS 

Brinkman penalization αs = 10
6
 

(b) 

Optimizer SLP, MMA 

Shape function ( φ ) Q4, U1 

Interpolation function RAMP 

Filtering method density filter  

Additional constraint move limit 5% 

(c) 

Figure 4.3.1. [P9] 2D cooling channel design (a) design domain and boundary conditions 

(b) analysis setup (c) optimization setup 
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The objective function and constraint function on the integral form are then defined 

respectively as 

 

          Minimize  
  0

2
1

T T d
F

d


 



 







 (4.3.1) 

 

          Subject to  2

f f p       v v v v = f  (4.3.2) 

              0f pC T k T    v  (4.3.3) 

 
*d V


   (4.3.4) 

 0 1   (4.3.5) 

 

The solid volume fraction V* is set to 0.2. The design variables are initially set to the 

same value as the solid volume fraction V*.  

Figure 4.3.2 shows the design result in case of Reh=10 and Reh=100, respectively. 

With this design, the structure blocks flow path, and therefore no fluid can run through 

the design domain in the real situation. However, this design results conflicts with the 

continuity equation and the given boundary condition, and therefore the coolant 

penetrates through the solid structures as shown in the streamline graph in Figure 4.3.2(c) 

and Figure 4.3.2(e). Since the continuity equation and boundary conditions overrode 

Brinkman penalization, the velocity was not penalized during FEM analysis and huge 

computational error was observed. For example, when ReH = 100, the final objective 

value Fo is only 13.3 according to the optimization result. However, if I cancel out the 

impossible flow motion and consequent convective heat transfer inside the solid structure, 
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the correct mean temperature in the system becomes over 154. Figure 4.3.3 illustrates the 

different temperature results. Since the Brinkman penalization did not enforce the zero 

fluid velocity condition inside the solid structure, creating solid-penetrating coolant flow, 

the temperature result, as shown Figure 4.3.3(d), becomes much better than the physically 

correct temperature profile shown in Figure 4.3.3(c).  
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(a) 

    

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 4.3.2. [P9] Design result of 2D cooling channel problems (a) design domain        

(b) cooling channel design, ReH=10 (c) streamline graph, ReH=10                                  

(d) cooling channel design, ReH=100 (e) streamline graph, ReH=100  
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(a) 

    

(b) 

Design result 

 

(c) 

Correct temperature 

   

(d) 

Calculated temperature with false-flow 

   

 

Figure 4.3.3. [P9] Design and temperature results of 2D cooling channel problems at 

Reh=100 (a) design domain (b) design result (c) correct temperature profile                   

(d) calculated temperature profile with solid-penetrating flow motion 
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Figure 4.3.4 and Figure 4.3.5 clearly illustrate the reason that the optimizer creates 

physically incorrect design solutions, like Figure 4.3.3(b) and (d). Both cases satisfy the 

design constraint, but the second design is unable to satisfy given boundary conditions in 

reality. Therefore, the zero fluid velocity condition cannot be satisfied with the Brinkman 

penalization scheme, creating only mathematically possible false-flow. As a result, the 

mathematically calculated temperature from the second case becomes much better not 

only than the physically correct temperature, but also than the temperature of the first 

design. Moreover, both conductive heat transfer and convective heat transfer occur in the 

blocking solid structure, improving the cooling effect. The optimizer tries to block the 

coolant flow and to create false-flow because the cooling effect from convective heat 

transfer is then added. This situation occurs frequently because optimizers, from my 

experience, try to take advantage of discrepancies in modeling. 
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(a) 

                                 Design example 1 

        

(b) 

                       Temperature profile T=30.9  
 

        

Figure 4.3.4. [P9] Case 1: design and temperature results (a) design (b) temperature  

 

(a) 

                                  Design example 2 

        

(b) 

                  Correct temperature profile T=2339 
 

   

(c) 

        Calculated temperature with false-flow T=3.7 
 

   

Figure 4.3.5. [P9] Case 2: design and temperature results (a) design (b) correct 

temperature (c) calculated temperature profile with solid-penetrating flow motion 
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4.3.2. Providing flow path 

The first insight into resolving this numerical error was to increase the value of αs, the 

Brinkman penalization parameter of the solid region, because a sufficiently large 

parameter usually enforces the Brinkman penalization and consequent zero velocity 

condition in the solid region. However the numerical error still occurred although the 

penalization parameter was increased from 1000 to 10
9
. Moreover, when the value of αs 

is too large, it degrades the condition number of the matrices and thus the accuracy of the 

performance and sensitivity analyses lessens. 

The second insight is to provide a flow path inside the analysis domain. If there is a 

possible flow path from inlets to outlets, the flow motion obtained through the finite 

element method does not penetrate the solid region where the Brinkman penalization       

-αs u is applied to minimize the weighted residual. Figure 4.3.6 presents (a) a modified 

design domain having fixed flow path and new design results and streamline graphs with 

(b) ReH=10 and (c) ReH=100. Therefore, a provision of a flow path provided can prevent 

the blocking wall design and solid-penetrating flow motions. 

However, it should be noted that the flow path inside the design domain should be 

carefully selected because an arbitrarily selected flow path will make it difficult to obtain 

an optimal design solution; heuristic approaches to obtaining an optimized design might 

be needed. On the other hand, if there is a pre-fixed bypass flow line outside the design 

domain as shown in Figure 4.3.7, an optimal design solution can be obtained analytically 
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by including the bypass line. Yet the additional analysis for a bypass flow motion 

requires more computation cost during system analysis. 

 

 (a) 

 

    
 

(b) 

   Design result ReH=10 

 

(c) 

   Design result ReH=100 

   

Figure 4.3.6. [P10] Modified design domain of P9 and the design result                           

(a) modified design domain (b) design result and streamline graph at ReH=10                 

(c) design result and streamline graph at ReH=100 
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Figure 4.3.7. [P11] Modified analysis domain of P9 with bypass line 

 

4.3.3. Multi-objective design 

As for the third insight, rather than increasing the penalization parameter, I recognize 

that the false-flow motion in the solid structure causes a very high pressure drop, as 

shown in Figure 4.3.8. Therefore, controlling pressure drop by constricting or minimizing 

it would likely circumvent this numerical issue. To control pressure drop together with 

temperature minimization, I solve a multi-objective problem by selecting minimization of 

mean temperature and kinetic energy dissipation in the design domain. The minimization 

of kinetic energy dissipation is a well-known objective function, frequently used in the 

previous research [39, 48-51]. It results in minimization of pressure drop in the system 

[39] and is also easier to be implemented than limiting pressure drop itself. Then, the new 

objective function is as follows: 
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c1 and c2 are scaling coefficients can be determined by adaptive weighting strategies 

described in [124]. In these examples, ci is determined as 

 

 

1

i
i

F
c





φ

. (4.3.7) 

 

 

Figure 4.3.8. [P9] Design result and pressure profile of the 2D cooling channel problem  

 

The design result and temperature profile with this multi-objective is shown in Figure 

4.3.9(a) and (b) when ReH=100. A flow path has now been created near the outlet in 

order to minimize kinetic energy dissipation. Pressure drop is much smaller than the 

previous case, as shown in Figure 4.3.10. It is noted that the pressure drop results are 

slightly increases as the optimization progresses. This is the result that the optimizer 

changes intermediate porous region into solid or fluid region.  
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(a) 

                           Multi-objective design result 

              

(b) 

                          Temperature profile T=13.73 

              

 

Figure 4.3.9. [P9] Design result of 2D cooling channel problems with new multi-

objective function, Reh=100 (a) design result (b) temperature profile 

 

 

Figure 4.3.10. [P9] Pressure drop results according to the objective function  
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The temperature profile of the new design is slightly worse than the previous design 

result. However, if I compare it with the correct temperature result without false-flow 

motion, the temperature profile of the new design is much better. Note that Figure 4.3.9(a) 

shows two recirculation zones in the middle which should be avoided from a practical 

standpoint. These recirculation zones occurred due to the volume constraint. If I increase 

the solid volume in the design domain, the design results first fill out the recirculation 

zone allowing the flow path to remain. It should be mentioned that this multi-objective 

strategy should only be used for convection-dominated cases. For conduction-dominated 

cases, their design results always try to create unnecessary flow paths, which lead to a 

less effective cooling system structure. 

 

4.4. Design of thermal-fluid cooling system 

 This section presents topology optimization problems of convective cooling systems. 

The design goal is to minimize mean temperature in the design domain but, to prevent the 

blocking wall design and solid-penetrating flow motion, multi-objective function 

described in equation (4.3.6) is used. 5% move limit is applied to prevent the boundary 

oscillations and consequent convergence issues. The density filter is also applied to 

obtain mesh-independent design solution. Then, the effects of the Reynolds number and 

Prandtl number change are discussed with design results.  
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4.4.1. 2D cooling channel designs 

I designed 2D cooling channel previously depicted in Figure 4.3.1 by using the multi-

objective function, equation (4.3.6). The material properties of antifreeze and air, whose 

Pr is 7.2 and 0.72 respectively, are used for the coolant with fixed inlet Reynolds 

numbers from 10 to 1000. The material properties of aluminum are used for the solid 

material. The solid volume fraction V* is set to 0.6 for all cases to observe the effect of 

different Reh and Pr numbers. The design variables are initially set to the same value as 

the solid volume fraction, V*. The mesh size is 360×120 and the degree of freedom is 

approximately 1.75×10
5
 in the fluid analysis. The number of design variables is 4.32×10

4
.  

When antifreeze (Pr=7.2) is used, it leads to the three different optimization results, 

depending on the Reynolds number (Reh=10, 100, 1000) as presented in Figure 4.4.1. At 

low speed flow, the solid region is attached to the two heating areas in the middle of the 

top and bottom. However, as the Reynolds number is increased, the solid region is 

detached from the heating areas and coolant flow directly impinges on the heat source. 

With slower flow, the heat conduction effect becomes greater than the heat convection 

effect, and therefore it is better to have solid structures functioning as cooling fins to 

maximize the cooling effect by heat conduction. On the contrary, at higher Reynolds flow, 

the cooling effect by heat convection becomes dominant and thus direct cooling is 

preferable to attaching cooling fins to the heating area. 

Figure 4.4.2 shows the optimization results when air is used for the coolant (Pr=0.72). 

The cases of Reh=10, 100 and 1000 are tested in the same manner. Unlike the antifreeze 

cases, the optimization results show similar structures in that aluminum is attached to 
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heating areas. Since the Prandtl number of air is much lower than antifreeze, the heat 

conduction effect is greater than the heat convection in all three cases. Topological 

changes are expected when the inlet fluid speed is increased, but I leave the analysis in 

the turbulent flow range for the future research. Although the Péclet numbers of the 

design shown in Figure 4.4.1(b) and Figure 4.4.2 (c) are the same as 72, the two design 

results are inconsistent with each other. Also the Péclet numbers in Figure 4.4.1(c) and 

Figure 4.4.2(d) are the same as 720, the design results are inconsistent with each other. 

Therefore overall design results should not be generalized by setting the same Péclet 

number. 
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(a) 

    

(b) 

 

  ReH=10 Pr=7.2 

 

(c) 

   ReH=100 Pr=7.2 

   

(d) 

  ReH=1000 Pr=7.2 

   
 

Figure 4.4.1.  [P9] 2D design result with antifreeze (50%) flow (a) design domain (b) 

ReH=10, Pr=7.2 (c) ReH=100, Pr=7.2 (d) ReH=1000, Pr=7.2 
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 (a) 

    

(b) 

 

  ReH=10 Pr=0.72

 

(c) 

 

   ReH=100 Pr=0.72 
 

   

(d) 

  ReH=1000 Pr=0.72 
 

   

 

Figure 4.4.2. [P9] 2D design result with air flow (a) design domain (b) ReH=10, Pr=0.72 

(c) ReH=100, Pr=0.72 (d) ReH=1000, Pr=0.72 
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4.4.2. 3D cooing channel designs 

3D design optimization results are presented for the cooling system design as depicted 

in Figure 4.4.3. The initial condition, boundary condition and material properties are 

similar to those for the 2D cooling channel design, but the Prandtl number is set to 6.67. 

The mesh size is 120×40×40, and the degree of freedom in the fluid analysis is 

approximately 8.14×10
5
.  

The same multi-objective function is used as shown in section 4.3.3, and the solid 

volume constraint is set to 0.91. This optimization problem is stated as: 

 

          Minimize       
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          Subject to  2

f f p       v v v v = f  (4.4.2) 

               0f pC T k T    v  (4.4.3) 

 
* 0.91d V


    (4.4.4) 

 0 1   (4.4.5) 

 

The number of design variables is 1.92×10
5
. The design variables are initially set to the 

same value as the solid volume fraction V*.  
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(a) 

Material aluminum, antifreeze (50%) 

Reynolds, Prandtl number ReH=10, 100, 400 1000 / Pr=6.67 

Domain and mesh size L×H = 3×1, (120×40×40) 

Shape function (v, p, T) H8H8-H8  

Stabilization method GLS 

Brinkman penalization αs = 10
6
 

 (b) 

Optimizer SLP 

Shape function ( φ ) U1 

Interpolation function RAMP 

Filtering method density filter  

Additional constraint 5% move limit  

(c) 

 

Figure 4.4.3. [P12] 3D cooling channel design (a) design domain and boundary 

conditions (b) analysis setup (c) optimization setup 
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Figure 4.4.4 and Figure 4.4.5 show the optimization results depending on the inlet 

Reynolds numbers. Overall, the optimization results show a similar trend to the 2D 

cooling system design results. For low Reh flow, the multi-objective optimization result 

is almost identical to the result when only the minimization of the kinetic energy 

dissipation is used for the objective function. In this case, the heat convection effect is not 

dominant and, as a result, the effect of flow motion change is limited. For higher speed 

flow, to maximize the convective cooling effect, the flow channel directly impinges on 

the heating areas. 

It is noted that the design results and non-dimensionalized temperature profiles show 

no difference depending on the change of heat influx value ‘q’ for the following reasons. 

First material properties are assumed as constant irrelevant to temperature change. 

Second the governing equation is not fully coupled with each other; the change of heat 

influx and following temperature change don’t influence fluid velocity and, as a result, 

the heat transfer equation is linear to heat influx with the same heat convection. 
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(a) 

 
 

 

(b) 

 
ReH=10 

 

 

(c) 

 
ReH=100 

 

Figure 4.4.4. [P12] 2D design result with air flow (a) design domain (b) ReH=10, 

Pr=0.72 (c)  ReH=100, Pr=0.72  (d)  ReH=1000, Pr=0.72 
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(a) 

 
 

 

(d) 

 
ReH=400 

 

 

(e) 

 
ReH=1000 

 

Figure 4.4.5. [P12] 2D design result with air flow (a) design domain (b) ReH=10, 

Pr=0.72 (c)  ReH=100, Pr=0.72  (d)  ReH=1000, Pr=0.72 
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4.5. Summary 

In this chapter, the topology optimization method of convective cooling systems was 

presented. The main design purpose was to design a flow channel to minimize 

temperature. After relaxation schemes of the thermal conductivity were revisited, the 

adjoint sensitivity method for weakly coupled multiphysics systems was formulated, 

extending the adjoint sensitivity formulation for steady-state nonlinear systems.  

The Brinkman penalization, which is successfully applied to the topology optimization 

of single physics Navier-Stokes flow systems as shown in chapter 3, fails to enforce the 

zero-velocity condition inside solid structures and the no-slip boundary condition at solid 

surfaces. This happens when the design results block all possible coolant flow paths. 

Such designs conflict with the principle of mass conservation and given boundary 

conditions. As a result, the mass conservation law and given boundary conditions 

override the Brinkman penalization, creating solid-penetrating false flow. Since the 

mathematically calculated cooling effect with the false flow is usually superior, 

optimizers prefer to design the blocking walls ignoring the Brinkman penalization. 

If a fixed flow path from inlets to outlets is given, there is no possible conflict between 

the design and the physical laws. Thus, the topology optimization method produces 

physically correct design results. Therefore, providing a fixed-flow path inside or outside 

of the design domains resolves this numerical issue. However, the flow path inside the 

design domain is heuristically given, and the flow path outside the design domain 

increases computational cost.  
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Mathematically, the false flow generates a high pressure drop when it penetrates solid 

structures. Therefore, a multi-objective function to minimize both the pressure drop and 

temperature was implemented to circumvent the numerical issue and successfully 

produces physically acceptable optimization results. Implementing the multi-objective 

function enabled the solution of example problems of 2D and 3D convective cooling 

systems, and the effect of Reynolds number and Prandtl number changes were explored.  
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CHAPTER 5 

5. CONCLUSION 

 

 

 

5.1. Concluding remarks  

This dissertation investigates the topology optimization of convective cooling systems, 

extending previous topology optimization research of Stokes flow systems and heat 

conduction systems. The flow analysis results are used to solve the thermal transport 

equation without using the heat convection coefficient. For accurate and cost-effective 

analysis, the stabilized finite element methods and the adjoint sensitivity for weakly 

coupled multiphysics systems are implemented. Numerical instabilities are presented and 

discussed at the system analysis and design optimization levels. 2D and 3D flow channels 

are designed as design examples to minimize the kinetic energy dissipation or to 

minimize the temperature in the system. 

 

Thermal-fluid analysis for topology optimization 

This study introduces a fictitious domain approach, which uses an immersed 

boundaries concept, Brinkman penalization and the homogenized property of thermal 
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conductivity. By implementing this analysis method, this study extends the region 

topology optimization from linear Stokes flow and heat conduction systems to convective 

cooling systems that are nonlinear coupled multiphysics systems. A guideline for setting 

a proper lower bound of the Brinkman penalization parameter is presented. When the 

Brinkman penalization parameter is greater than 10
6
 (Da=10

-6
), the zero-velocity 

condition in solid regions and the no-slip boundary condition at solid boundaries are 

satisfied. To establish a stable and cost-effective method, various stabilized finite element 

methods are examined, and the Newton-Raphson method is used with a simultaneous 

stabilization tensor update scheme and Reynolds-Ramping initial guess strategy. 

Numerical issues such as velocity and pressure oscillations are presented.  

These numerical instabilities occur because the velocity gradient changes too sharply 

at the fluid-solid interfaces for the stabilized finite element solution to correctly capture 

the velocity profile. The oscillation becomes severe when the Reynolds number increases. 

Although mesh refinement can smooth this oscillation, it is not viable because it increases 

the computation cost of the topology optimization. The GLS stabilization method 

produces the weakest oscillation, but the difference in solutions produced by different 

stabilization tensors is not significant. 

 

Topology optimization of Navier-Stokes flow systems 

The topology optimization of Navier-Stokes flow systems is investigated, extending 

previous topology optimization researches of Stokes flow systems to nonlinear Navier-

Stokes flow system. The adjoint sensitivity method is implemented, and relaxation 

schemes used in previous topology optimization of Stokes flow systems are revised. 
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Element-scale cavities and consequent boundary oscillation phenomenon, which prevent 

design convergence, are presented and investigated. These numerical instabilities result 

from the numerical issues in the system analysis such as pressure oscillation at the 

immersed boundaries. A move-limit successfully suppresses the numerical instabilities 

while the density filter, the sensitivity filter and higher interpolation functions for design 

variables are not effective. Using this approach, I present 2D and 3D design problems and 

interpret the physics in the design solutions. The objective function is the minimization of 

kinetic energy dissipation or drag minimization. The design solutions minimize skin 

friction with a low Reynolds number while minimizing pressure drag, creating a thin 

streamlined shape with a high Reynolds number. 

 

Topology optimization of convective cooling systems 

The topology optimization of convective cooling systems is investigated, extending 

and combining previous topology optimization research of Navier-Stokes flow systems 

and heat conduction systems. The main design purpose is to design a flow channel to 

maximize cooling efficiency. The adjoint sensitivity method is formulated for nonlinear 

multiphysics problems, and relaxation schemes used in previous topology optimization 

are revised. The optimizer frequently tries to produce physically impossible design results 

that have a conflict between the Brinkman penalization from the mass conservation law 

and given boundary conditions. This is because the mathematically calculated cooling 

effect is superior given this conflict. However, in reality, no coolant flow can run through 

the system designed, so the temperature is very high. This numerical issue can be 

circumvented by providing a fixed-flow path or by solving a multi-objective function that 
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minimizes both temperature and pressure drop. Finally, by implementing the multi-

objective function, example problems of 2D and 3D convective cooling systems are 

solved and the effect of Reynolds number and Prandtl number changes are discussed. 

 

5.2. Future works 

Following are some of the interesting directions to which this research can be 

extended. 

 

Implementing fully coupled physical properties 

This dissertation reviewed the thermal-fluid analysis method, which includes the 

Brinkman-penalized Navier-Stokes equation (2.2.3) and the homogenized thermal 

transport equation (2.2.6). In the momentum equation, the material properties relating to 

temperature are assumed as constants, so as to decouple temperature and enable cost 

effective analysis. However, the material properties, such as fluid density and viscosity 

should be assumed as functions of temperature instead of constants in order to obtain 

accurate solutions when the temperature varies significantly. In such cases, the velocity, 

pressure and temperature profiles should be calculated simultaneously, while this study 

solves the momentum equation and the energy equation sequentially. An analysis of the 

differences between the optimum shapes obtained under different conditions of the 

physical properties would be a valuable contribution.  
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Topology optimization to minimize the thermal stress 

The main goal of this study is to applying the topology optimization in designing 

convective cooling systems, and I designed several cooling channels minimizing the 

mean temperature in the systems. Yet, in some applications, thermal stress is a more 

critical factor than the mean temperature. For example, non-uniform temperature 

distribution in an engine head induces thermo mechanical stresses in the structure and 

may cause cracks, as shown in Figure 5.2.1. The increased risk of fatigue-failure 

connected to the higher thermal loads requires a careful optimization of the coolant 

gallery design [8]. Therefore, designing the optimal structure maximizing the stiffness or 

minimizing the compliance of structure would be a valuable contribution. The proposed 

methodology is to decouple structural and thermal-fluid analysis.  First, the thermal-fluid 

analysis is performed in order to evaluate the temperature distribution within the system. 

Then, the structural analysis is carried out with the temperature result. Ignoring the fluid-

structure interaction might represent a good trade-off between accuracy and 

computational cost. 

 

 

Figure 5.2.1. Crack growth in the engine head [8] 
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Adding the effect of the viscous dissipation 

From practical standpoint, the present work neglects the effect of the viscous 

dissipation term on heat transfer. Although this computational model is expected to be 

reasonably accurate for most applications, this viscous dissipation term can be important 

when the viscosity and velocity gradients are high. Furthermore, the multi-objective 

function (4.4.1), used to resolve the blocking wall design, includes the kinetic dissipation 

terms. Therefore, an investigation of the alterations induced by viscous dissipation in the 

optimum channel shape would enhance our understanding. 
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APPENDIX A 

A.VARIATIONAL MULTISCALE STABILIZATION METHOD FOR THE 

BRINKMAN-PENALIZED NAVIER-STOEKS EQUATION 

 

 

A.1. Multiscale decomposition 

The weak formulation of the Brinkman penalized Navier-Stokes equation is given by 

 

 , , ,2 , , ,
N

f f div p  
    
       w v w v v w v w w f w t  (A.1.1) 

 , 0q div

v  (A.1.2) 

 

where  , d
 

      is the inner product in L
2
, w an weighting function. We consider 

the bounded domain Ω discretized into n non-overlapping region Ω
e
 (element domains) 

with boundaries Г
e
. Decompose the velocity field into coarse scales (resolvable scales) 

and fine scales (sub-grid scales) as 

 

 

   

   
coarse fine

coarse fine

0  on e

 

 

   

w w x w x

v v x v x

w v

 (A.1.3) 
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We now substitute the trial solutions v and the weighting functions w in the standard 

variational form as 

 

     

     

, ,
, ,

, 2 , N

f

f div p

 



 

 



            
     

          

w w v v w w v v v v
w w f w w t

w w v v v v
 

  (A.1.4) 

  , 0q div


 v v  (A.1.5) 

 

By employing the linearity of the weighting function, the Brinkman penalized Navier-

Stokes equation can be divided into coarse and fine-scale parts as  

 

coarse: 
   

 

, ,
, ,

, 2 , N

c

f

f div p

 



 

 



      
  

      

w v v w v v v
w f w t

w v v w
 (A.1.6) 

  , 0q div


 v v  (A.1.7) 

 

fine: 
   

 

, ,
,

, 2 ,

c

f

f div p

 



 





        
 

        

w v v w v v v
w f

w v v w
 (A.1.8) 

 

Here, v
c
 is the last solution from the Newton-Raphson iteration. 

 

 

A.2. Solution of the fine-scale problem 
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Rearrange fine-scale equation as 

 

 

, , , 2

, , , , , 2

c

f f

c

f fp
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  
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  , 2 ,c

f fp   


        w f v v v v w r  (A.2.1) 

 

where 2c

f fp         r f v v v v . Assume the fine scale v′ and w′ are 

represented via bubble functions as 
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e

e

e

i i

e

i i

b

b




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v β

w γ
 (A.2.2) 

 

Then, the equation becomes: 
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I v I
γ β γ r
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 (A.2.3) 

 

Because β is arbitrary, we have 

 

 
1β K R  (A.2.4) 

 

Here, 
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 (A.2.5) 

 2e

e eb d


 R r  (A.2.6) 

 

We now reconstruct the fine-scale filed over the element domain as 

 

 
1

1 1

e eb b   v β K R  (A.2.7) 

 

A.3. Solution of the coarse-scale problem with incompressible constraint 

The coarse-scale problem (A.1.5) can be written as 

 

 , , 0q div q
 

  v v
. (A.3.1) 

 

Substitute v′ from (A.2.7) to get 

 

 
1

1, , 0eq div q b 

 
  v K R . (A.3.2) 

 

Consider the second term on the left-hand side of (A.3.2) 
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
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Here, 
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Consequently, the coarse-scale equation (A.3.1) becomes 

 

  , , 2 ,c

f fq div q p q  
 
         v τ v v v v f τf

. (A.3.5) 

 

Now, extract the fine-scale velocity field from coarse-scale equation (A.1.6) as 
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  (A.3.6) 

 

Applying integration by pars as 
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Then the equation becomes 
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Substitute v’ 
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The weak form of the momentum equation finally becomes  
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 (A.3.11) 

 

Here, the stabilization tensor is given by (A.3.4). 
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