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Abstract

In this thesis, we develop and numerically test new approximations to time-dependent

radiation transport with the goal of obtaining more accurate solutions than the diffusion

approximation can generate, yet requiring less computational effort than full transport.

The first method is the nascent anisotropic diffusion (AD) approximation, which we

extend to time-dependent problems in finite domains; the second is a novel anisotropic

P1-like (AP1) approximation. These methods are “anisotropic” in that, rather than operat-

ing under the assumption of linearly anisotropic radiation, they incorporate an arbitrary

amount of anisotropy via a transport-calculated diffusion coefficient. This anisotropic

diffusion tensor is the second angular moment of a simple, purely absorbing transport

problem.

In this thesis, much of the computational testing of the new methods is performed

in “flatland” geometry, a fictional two-dimensional universe that provides a realistic but

computationally inexpensive testbed. As work ancillary to anisotropic diffusion and the

numerical experiments, a complete description of flatland diffusion, including boundary

conditions, is developed. Also, implementation details for both Monte Carlo and SN

transport in flatland are provided.

The two new anisotropic methods, along with a “flux limited” modification to aniso-

tropic diffusion, are tested in a variety of problems. Some aspects of the theory, includ-

ing the newly formulated boundary conditions, are tested first with diffusive, steady-

state problems. The new methods are compared against existing ones in linear, time-

dependent radiation transport problems. Finally, the efficacy and performance of the

anisotropic methods are investigated in several thermal radiative transfer (TRT) compu-

tational experiments.

Our results demonstrate that for many multi-dimensional problems, the new aniso-

tropic methods perform much better than their conventional counterparts. In every

time-dependent test, the flux-limited anisotropic diffusion approach produced the most

accurate solutions of the new methods. Based on our numerical testing, we believe this

method to be a strong contender for accurate, inexpensive simulations of time-dependent

transport and thermal radiative transfer problems.
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Chapter 1

Introduction

Nuclear engineering consists primarily of the development of tools to harness the power

of the atomic nucleus and of high-energy radiation. This field encompasses such dis-

parate areas as plasma physics, radiation detection, nuclear reactor design, and atomic

particle transport. The last area is the study of how statistically large numbers of funda-

mental particles interact with (and are transported through) matter: it accounts for the

behavior of neutrons in a nuclear reactor, gamma rays in shielding applications, electrons

in cancer therapy, and photons in radiative transfer problems. This thesis is concerned

with a particular regime of radiative transfer known as thermal radiative transfer (TRT).

The difficulty, expense, and impracticality of performing physical experiments in

many fields has produced a tremendous drive to simulate physical experiments us-

ing powerful computers. The exponentially increasing power and decreasing cost of

transistor-based technology have led to the rise of computational methods development:

researching and implementing accurate, practical approximations to the physical equa-

tions that describe reality. Our work is in the field of computational particle transport,

and our goal is to develop a new, accurate, inexpensive approximation to the equations

of thermal radiative transfer.

A recent advance in computational methods development is the anisotropic diffusion

(AD) approximation, recently used to model steady-state neutron transport for nuclear

reactor analysis, viz. a very high temperature reactor (VHTR) mock-up [2, 3], for which

AD showed promising results. A similar tensor diffusion method was also independently

formulated for steady-state photon transport [4], but it has not been numerically tested.

Both derivations assumed an infinite medium operating at steady state. Those two

assumptions rarely hold for TRT problems, which typically change rapidly as a function

of time and necessarily operate in a finite volume. In the new work presented here,

we derive a complete theory describing the anisotropic diffusion approximation for

time-dependent transport problems in finite media. A similar derivation leads to a new

“anisotropic P1” (AP1) method.

Although we develop the theory for a general three-dimensional (3-D) space, true 3-D
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simulations are expensive because of the expansive problem phase space: the monoener-

getic time-dependent transport equations operate in three spatial coordinates (x, y, z),

two angular coordinates (µ,ω), and time t . Even two-dimensional (2-D) problems, which

model a system invariant in the z direction, operate in a five-dimensional phase space

(x, y,µ,ω, t). A “toy” geometry called flatland [5], recently used in particle transport

methods development [6, 2], reduces the phase space to (x, y,ω, t ) by constraining parti-

cles to a two-dimensional plane. Flatland retains the complexity of multi-dimensional

space while decreasing the computational burden. A notable part of this thesis is the

investigation of flatland and its application to transport methods development.

To verify the accuracy of the newly developed anisotropic approximations, it is neces-

sary to compare their performance and accuracy against that of existing, proven methods.

Therefore, we compare the AD and AP1 methods against their competitors in several

numerical experiments, most of them using flatland geometry. Due to the complexity of

the thermal radiative transfer process, we first test individual aspects of the theory. In

particular, we verify the predicted boundary conditions in several steady-state flatland

problems [7], and we test the time-dependent behavior in “linear” radiation transport

problems, which omit the nonlinear material–radiation coupling of TRT.

Finally, we apply the new anisotropic approximations to thermal radiative transfer

problems. We begin with a simple one-dimensional problem used to test various nonlin-

ear schemes [8] that demonstrates behaviors characteristic of the methods. A second TRT

test problem is a flatland simulation [9] inspired by a particular TRT experiment—the

behavior of a laser-driven shock wave in a small tube filled with xenon gas—in the Center

for Radiative Shock Hydrodynamics (CRASH) program [10]. We assess the efficacy of the

AD methods in more strongly multi-dimensional geometry: an optically thin tube with

two bends in it. To test its behavior in problems that lack thin channels, we compare other

difficult two-dimensional benchmark problems seen in the literature [11]. This range of

test problems provides a wide and fair assessment of the AD methods, demonstrating

both their limitations and their strengths.

1.1 Thermal radiative transfer

As stated earlier, thermal radiative transfer models the behavior of photons in hot ma-

terials as they move energy about the system. Radiation is the primary means of heat

transfer in many physical problems, such as stellar astrophysics and fusion experiments

[12, 13]. These systems operate at the extreme temperatures necessary to apply the TRT

model used in this thesis.
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Engineering students know from their heat transfer classes that conduction and

convection transfer energy proportionally to the material temperature T , but radiative

energy transfer via black-body emission is proportional to T 4. Thus, when T is very large,

conduction and convection can be neglected, but emission cannot. Other reasonable

assumptions reduce the phenomena of TRT to the coupling of two dependent variables:

the space- and time-dependent material temperature T , and the radiation intensity I .

The intensity I , analogous to the “angular flux” in the reactor physics world, describes

the state and distribution of photons in space x , angleΩ, and time t . (In this discussion,

we ignore the frequency-dependent nature of radiation.) The spatial and temporal

variables are self-explanatory; the angular variable essentially determines a photon’s

velocity = cΩ, using the speed of light c.1 More photons traveling in a certain direction

at a certain point in space-time give rise to a larger value in the intensity—an example

(outside of TRT) could be an “intense” flashlight being shone in one’s eyes. The time-

dependent behavior of the intensity is described by the Boltzmann transport equation

[14], sometimes referred to in the astrophysics literature as the transfer equation [13].

The transport equation will be discussed in further detail later.

The second quantity, the material temperature T (x , t ), is a measure of the amount of

energy stored in the atoms and electrons in the problem at point x at time t . When an

electron absorbs a photon, the material energy increases by exactly the amount that the

radiation intensity lost by the absorption event. When the material emits a photon via

the black body process, the lost material energy is transferred to the radiation field.

The absorption of photons by the material, the black body emission process, and

the straight-line travel of “streaming” photons constitute the thermal radiative transfer

process. The rate of absorption of photons is proportional to the opacity σ, analogous to

the neutron cross section in reactor physics. Unlike the neutron cross section, the value

of σ is a strong function of the material temperature, usually proportional to T −3, and

therefore colder regions of a given material are more opaque (optically thick).

Because of the inverse cubic proportionality of the opacity and the quartic proportion-

ality of radiative emission, most TRT problems share a qualitative behavior. The evolution

of a system through time tends to show the problem equilibrating by the progressive

deposition of energy within a few mean free paths of a hot region. In other words, a layer

of cold material will absorb a great quantity of radiation, heating up and beginning to

emit radiation into the adjacent cold material. This time-dependent evolution is often

1“Photons” as used in radiation transport actually represent statistically large numbers of particles.
Quantum uncertainty is not applicable to the particle transport with which we are concerned: we can know
both the position and velocity of a “particle” exactly.
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called a radiation shock or Marshak wave [15].

In summary, the thermal radiative transfer equations describe a physically complex

phenomenon. The transport equation alone is difficult to model, but the strong nonlin-

earity inσ and in T 4 black body emission make the TRT equations particularly formidable.

Analytically solving the TRT equations even in the simplest realistic problem is essentially

impossible, hence the need for numerical solutions. The anisotropic diffusion approxi-

mation provides a new method for numerically solving the radiation transport aspect of

the TRT equations.

1.2 Overview of TRT solution methods

The TRT equations have a large solution phase space and are strongly nonlinear; thus,

they are difficult to solve accurately and quickly. Since the first simulations of radiative

transfer at the dawn of the computer age [16, 17], numerous computational solution

methods have been formulated. The more useful of these have been reviewed extensively

in previous works [16, 17, 18, 19, 20, 21]; to give a proper context for the new AD method,

we give a brief overview of them here.

1.2.1 Monte Carlo methods

The Monte Carlo (MC) method models a random physical process by simulating the

random “history” of a statistically large number of particles [22]. Each stochastic aspect

of particle transport—birth, collision, scattering, etc.—is described by a set of probability

distribution functions. Between events, the simulated particle travels along its stored

directionΩ from its stored position x . The average behavior of large numbers of particles

(and how large is “large” depends on the complexity of the problem) gives the solution.

Each particle history can be expensive, and the accuracy of the solution is roughly in-

versely proportional to the square root of the number of simulated particles: the Monte

Carlo process gives accurate answers, but it is computationally expensive.

For linear source-driven transport, which is used e.g. in reactor analysis, the solution

methodology is largely intuitive, because each particle is completely independent from

every other. However, the nonlinear nature of the TRT equations—specifically that the

behavior of the photons influence the state of the material, which in turn influences the

behavior of other photons—makes a Monte Carlo interpretation of TRT far from clear.

The first successful Monte Carlo method for simulating radiative transfer was Fleck

and Cummings’ Implicit Monte Carlo (IMC) method [23, 21], which is still widely used
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today [24]. Through the mathematical process of linearization, it approximates the

nonlinear terms in the TRT equations with linear terms over a short period of time. The

linearization essentially models the process of absorption and black body reëmission2of

photons as isotropic “pseudo-scattering.” The resulting linear transport equation in each

time step is solved with Monte Carlo to calculate the end-of-time-step radiation intensity.

Unlike linear MC methods, IMC does not limit to the exact solution with increasing

number of particles. In addition to the statistical error incurred by the finite particle

count, the linearization of the physics requires the imposition of both a temporal and a

spatial grid, which leads to truncation errors in time and space. A further complication

arises because the space and time grids must be properly correlated: for example, a fine

spatial grid with a large time step will produce the unphysical artifact known as a violation

of the maximum principle [26]. Additionally, to limit the statistical error (which typically

shows up as random “noise” in the solution), the number of particles per space-time

region must remain roughly constant. Finally, unlike linear Monte Carlo methods, which

only need to accumulate “tallies,” IMC requires that the full state of the radiation intensity

be stored in computer memory. Therefore, generating an accurate fine-mesh solution

with IMC requires an exceedingly large amount of computer time and memory.

Other Monte Carlo methods [27, 28, 29, 30] have been developed to simulate TRT, but

they will not be discussed here.

Even though the IMC method is approximate, it is generally accepted to give accurate

answers, and is thus used as the primary benchmark tool in our numerical experiments.

1.2.2 Deterministic transport

Rather than using a “stochastic” Monte Carlo interpretation of the physical process of

radiation transport, “deterministic” transport methods approximate the partial differ-

ential equation itself. Deterministic methods make mathematical approximations to

the transport equation, replacing the continuous nature of the variables with discrete

unknowns that can be represented on a computer. The result is a large system of linear

equations that can be solved, typically in an iterative process.

The most popular deterministic method is the discrete ordinates (SN ) transport

method [31], which approximates the angular variableΩ as a quadrature set of discrete

directions. There are numerous ways to discretize the time and space variables, each of

which adds the penalty of discretization error to the solution. These discrete approxima-

tions limit the accuracy of the SN method as compared to a low-variance Monte Carlo

2For an in-depth discussion of the diæresis, refer to R. McClarren’s seminal work on the inclusion of faux
pretentious footnotes in a dissertation [25, p.18].
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solution, but the discrete ordinates method is typically less computationally expensive.

To use SN for thermal radiative transfer problems, a linearization process similar

to IMC’s is performed; it too leads to a pseudo-scattering term. For purely absorbing

steady-state problems, calculating an SN solution is relatively inexpensive. (We shall

take advantage of this property in our anisotropic diffusion approximation.) However,

because of the pseudoscattering term, SN solutions for TRT problems can converge very

slowly.

Like IMC, the SN method requires the full solution of the radiation intensity I to

be stored at the end of each time step. It is computationally intensive and requires

large amounts of storage. In fact, high-fidelity transport solutions to some realistic 3-

D problems are beyond the capability of even today’s computers. Accurate but less

computationally expensive approximations to transport are needed.

1.2.3 The diffusion approximation

If true transport methods are out of reach, it becomes necessary to make coarser approx-

imations to the transport equation. The most common course of action is to entirely

eliminate the angular variable from the transport equation, greatly reducing both the

computational difficulty and required storage.

The diffusion approximation has been a mainstay of reactor analysis and TRT alike

since the days of the Manhattan project. In systems whose intensity (or neutron flux in

the case of nuclear reactors) change very slowly as a function of space, time, and angle, it

is possible to show [32, 33] that the transport solution satisfies a relationship known as

Fick’s law. This “law” states that the flow of particles is only a function of the gradient of

their density: particles diffuse from areas of high concentration to low concentration.

Diffusion is often used far outside its theoretical range of applicability and can lead

to physically inaccurate answers. A particular artifact of the diffusion approximation is

that, in time-dependent transport, energy can move faster than the speed of light. One

effective but ad hoc means to counter this nonphysical effect is to use a “flux limiter.”

Flux-limited diffusion (FLD) can provide qualitatively accurate answers to certain TRT

problems [18], and computationally it is relatively inexpensive, so it a common means of

approximating thermal radiative transfer.
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1.3 Contribution of this work

The different approximations to TRT are represented qualitatively in Fig. 1.1. The two

predominant transport methods—IMC and SN —are accurate but slow; flux-limited

diffusion is fast but potentially inaccurate. No method yet provides a middle ground that

balances accuracy and speed.

Computational speed
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Figure 1.1: Figurative representation of existing TRT methods, showing
the trade-off between accuracy and speed.

With our development of anisotropic diffusion and its application to TRT, we hope to

provide a new solution process that is much less expensive than full-fledged transport

but more theoretically robust than standard diffusion or FLD. Such a method would fit

near the question mark in Fig. 1.1.

1.4 Synopsis

The remainder of this thesis is organized into the following chapters.

Chapter 2: Background to Thermal Radiative Transfer

The assertions about the difficulty of computational modeling of thermal radiative trans-

fer are explained by presenting the equations themselves. We give a brief overview of

existing approximations to the TRT equations and discuss how those approximations

are used in our work. Particular emphasis is given to the semi-implicit treatment, which

allows the nonlinear problem to be approximated by a system of linear equations.

7



Chapter 3: Anisotropic Diffusion

With the transport equation in hand, we derive a new approximation to radiation trans-

port, anisotropic diffusion. The derivation accounts for both time dependence and

boundary conditions. We then discuss some of the properties of the AD method and

make predictions for its range of applicability.

Chapter 4: Anisotropic P1

The derivation of the time-dependent AD equations assumed that the solution changes

slowly in time, which can be a poor approximation when applied to TRT: it can actually

lead to the nonphysical transfer of energy faster than the speed of light. This chapter

addresses that shortcoming by modifying the ansatz used in deriving the anisotropic

diffusion equations, leading to a new “anisotropic P1” method.

Chapter 5: Low-order Discretization Schemes

The leakage terms for anisotropic diffusion are more complex than standard diffusion:

rather than a scalar diffusion coefficient, AD has a diffusion tensor. This necessitates

unusual discretization schemes in all but the simplest of problems. We present new

discretization schemes for Cartesian x–y geometry that can account for the transverse

leakage induced by the anisotropic diffusion tensor.

Chapter 6: Flatland geometry

As mentioned earlier, the “flatland” geometry has recently proven to be a valuable test bed

for new transport methods because of its smaller phase space and correspondingly easier

solution. This chapter gives a thorough overview of the differences between flatland and

true 3-D geometries, with a focus on implementing flatland solvers. We also explore

diffusion in flatland, not only deriving the prior result that the diffusion coefficient is

different but also formulating correct diffusion boundary conditions. Finally, we present

the AD equations in flatland geometry.

Chapter 7: Numerical Results: Linear Test Problems

Before applying the anisotropic approximations to full nonlinear transport in multi-

dimensional geometries, it is important that we test individual components of the deriva-

tion. We detail several steady-state problems that test the discretization schemes, flatland

diffusion boundary conditions, and anisotropic diffusion boundary conditions. We also
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test some simple linear transport problems.

Chapter 8: Numerical Results: Thermal Radiative Transfer

Finally, we test the applicability of the anisotropic methods to the nonlinear TRT equa-

tions. To begin, we examine a few simple test problems in 1-D, where the anisotropic

methods merely “smear” the diffusion coefficients spatially. This provides a test bed for

determining the robustness of the nonlinear treatment. Then we move to more compli-

cated flatland problems that simulate radiation flow through an optically thin channel.

(This is the qualitative configuration of the CRASH problem.) Additionally, we apply the

AD method to some difficult 2-D problems in the literature that feature optically thick

obstacles rather than optically thin streaming channels.

Chapter 9: Conclusions

The final chapter summarizes the new theory, applications, and results developed in this

thesis. We discuss potential refinements to the new methods and other future work.
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Chapter 2

Background to Thermal Radiative
Transfer

To elucidate the derivation of the anisotropic diffusion approximation, it is necessary

to delve into the physical process of radiation transport. As discussed in the introduc-

tion, thermal radiative transfer is the physical process of energy transfer via high-energy

photons in hot materials. Because the TRT equations and approximations have been

probed and reviewed in other works [13, 12, 20, 21], our aim is a concise explanation

of the physics relevant to the anisotropic diffusion approximation and its immediate

application, rather than a thorough overview of the extensive field of radiation hydrody-

namics. We also review the derivation of competing solution methods and discuss their

advantages and shortcomings.

2.1 Nonlinear radiation transport

Thermal radiative transfer describes the motion of high-energy photons in a very hot

material, such as the interior of a star or the target of a laser fusion experiment. The

equations that model TRT are time-dependent, contain strong nonlinearities, and reside

in a large phase space. A full representation of the physics in the high-energy-density

regime often includes the consideration of moving relativistic materials, different elec-

tron and ion temperatures, photon scattering, and thermal conduction in the material

[13]. However, much work in the methods development field neglects these complex

phenomena by

• working in a fixed medium, disregarding material advection;
• assuming local thermodynamic equilibrium (LTE), which uses a single material

temperature;
• neglecting photon scattering, which tends to be small;
• neglecting thermal conduction, since energy transfer is dominated by radiation at

high temperatures;
• applying the “gray” (monoenergetic) approximation to the frequency dependence
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by integrating the full transport equation over all ν, averaging the opacities with a
suitable a priori weighting function [33].

For the purposes of discussion and the later AD derivation, we consider a general, 3-D

universe, in which the spatial coordinates x, y , and z define a spatial point

x = xi + y j + zk ,

and the angular coordinates µ and θ define an arbitrary unit vector denoting the direction

of flight:

Ω=µi +
√

1−µ2 cosθ j +
√

1−µ2 sinθk .

These angular coordinates reside in the domain −1 ≤ µ ≤ 1, 0 ≤ θ < 2π; we useΩ ∈ 4π

as a shorthand denoting the entire unit sphere. See Refs. [34, 35] for a more complete

discussion of the spatial and angular coordinate systems.

2.1.1 Equations of transfer

After the simplifications described above, the thermal radiative transfer process in the

interior of a problem (away from the initial time and from boundaries) can be described

[12] by the gray radiative transfer equation,

1

c

∂I

∂t
+Ω ···∇∇∇I +σI = σacT 4

4π
+ qr

4π
, (2.1a)

and the material energy balance equation,

cv
∂T

∂t
=σ

∫
4π

I dΩ−σacT 4 +qm . (2.1b)

The notation and omitted parameters in Eqs. (2.1) are:

I = I (x ,Ω, t ) = the angular radiation intensity,

T = T (x , t ) = the material temperature,

σ=σ(x ,T ) = the absorption opacity,

qr = qr (x , t ) = an extraneous isotropic radiation energy source,

qm = qm(x , t ) = an energy source in the material,

cv = cv (x ,T ) = the specific heat capacity of the material,

a = the radiation constant, and
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c = the speed of light.

The intensity I and the temperature T are the primary unknowns: they describe the

state of energy in the radiation and in the material. Each of the terms that depends on T

implicitly depends on the time t . The explicit dependence of cv and σ on x accounts for

different materials in different parts of the problem.

Equation (2.1a) is a transport equation for I . The first two terms describe how photons

“stream” in time and space: if the other terms were zero, Eq. (2.1a) would reduce to a wave

equation with a wave speed of c . However, because the photons move through a material,

there is a chance they will collide with its electrons, hence the collision term σI . The first

term on the right-hand side represents particles emitted via the isotropic temperature-

dependent process of black body emission. (The quantity acT 4

4π is the frequency-integrated

Planck function B(ν,T ).) The additional term qr is an extraneous isotropic radiation

source that emits with an energy density (energy per volume per time) of qr .

The material equation (2.1b) describes an energy balance in the material. The left-

hand side is the time rate of change in the material energy density. The first term on

the right-hand side exactly mirrors the collision term in the radiation equation: it is a

“gain” term corresponding to photons that collided with (were absorbed by) the material.

The second term describes the loss of energy from the material when it emits black body

radiation. The material energy source, or electron source, is sometimes used in numerical

test problems to emulate heating by a hydrodynamic shock wave [36].

The physical properties σ and cv are often approximated by simplistic models in the

methods development literature. The heat capacity cv of an ideal gas is a constant, giving

the material energy a linear proportionality to the material temperature T . A much-used

model [11, 21] of the gray opacity is σ∝ T −3. Many of our numerical test problems will

use both of these idealized representations of the physical constants.

The nonlinear coupling between Eqs. (2.1a) and (2.1b) via T 4 emission and T −3

absorption make the TRT equations extremely “stiff” as a function of time [37] and

therefore even more difficult to solve than the standard linear transport equation. In

this work, we will not attempt to provide any new solutions to treat the nonlinearities,

but we will formulate our time-dependent anisotropic diffusion approximations to be

compatible with multiple solution techniques.
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2.1.2 The radiation intensity

The state of the photons in a system is described by the radiation photon density,

N (x ,Ω,ν, t )dV dΩ= the number of photons inside the differential volume

dV about x , traveling in the directionsΩ aboutΩ,

inside the frequencies dν about ν, at time t .

However, because the photon energy hν determines the energy density of the radiation,

and because the reaction rate with the material depends on the photons’ speed c, the

radiation field is almost always written as the radiative intensity,

I (x ,Ω,ν, t ) = chνN (x ,Ω,ν, t ) .

The frequency-dependent intensity I is an energy-weighted radiation path length density,

similar to the angular flux ψ in reactor physics.1

Integrating over all energy gives the gray intensity, which we use from this point

forward:

I (x ,Ω, t ) = c
∫ ∞

0
hνN (x ,Ω,ν, t )dν .

Additionally, integrating over all angles (i.e. taking the zeroth angular moment) yields

the scalar intensity

φ(x , t ) ≡
∫

4π
I (x ,Ω, t )dΩ (2.2)

= c
∫

4π

∫ ∞

0
hνN (x ,Ω,ν, t )dνdΩ (2.3)

which is directly proportional to the radiation energy density:

1

c
φ(x , t )dV = the amount of energy in the radiation field inside the

differential volume dV about x , at time t .

For our work, it is usually more convenient to refer to φ than to the radiation energy

density (compare, for example, Ref. [38] to Ref. [39]). In fact, since our numerical model-

experiments use the scaled system of variables c = a = 1, our later results can use “scalar

intensity” and “radiation energy density” interchangeably.

1Note that ψ is not weighted by energy, because neutrons’ energy primarily determines their interaction
cross section; photons in contrast are the means of energy transfer in the regimes considered in this thesis.
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The radiation temperature, defined as

Trad =
(
φ

ac

)1/4

, (2.4)

is often used in lieu of the radiation energy density (or scalar intensity) in TRT problem

analysis, as it can be more closely compared against the material temperature T . At

thermal equilibrium (where the time rate of change, streaming, and extraneous source

terms in Eqs. (2.1) are set to zero), the frequency-dependent intensity is equal to the

Planckian function, I = B , and the radiation temperature satisfies Trad = T .

The first angular moment of the intensity also has physical significance. The radiation

flux is defined as

F (x , t ) ≡
∫

4π
ΩI (x ,Ω, t )dΩ . (2.5)

Analogous to the “neutron current” J in reactor physics, the radiation flux is the net rate

and direction of energy flowing through a point.

At any particular point in space and time, the radiation intensity I is generally a

complicated function of angle. For example, at the edge of a radiation shock wave, the

distribution is highly peaked in the directions pointed away from the hot region, because

that is the source of the photons. In parts of the problem where the system is closer to an

equilibrium state, the intensity is nearly isotropic (almost uniform in angle).

2.2 Semi-implicit linearization

The anisotropic diffusion approximation is best implemented as a deterministic method.

It is therefore necessary to discuss discretization schemes, in which the continuous

unknowns in Eqs. (2.1) are approximated with discrete unknowns. In this section, we

discuss the discretization of the time variable in the context of linearization, which

approximates the nonlinear aspects of the TRT equations to allow a linear algebraic

representation of the system of unknowns, facilitating their solution on a computer.

The common “semi-implicit” scheme uses operator splitting to decouple the radiation

and material equations inside a time step; the remaining time-dependent unknowns are

treated with the backward Euler discretization [39, 40, 41]. Like Fleck and Cummings’ IMC

method [23], this technique yields a linear transport equation with a pseudo-scattering

term. Because of the extensive use of this nonlinear treatment in our implementations

of anisotropic diffusion and the other tested methods, and because the semi-implicit

scheme for radiation transport is usually glossed over in other works, we derive it here in
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a practical level of detail. Existing derivations also omit the material source term qm .

For the semi-implicit discretization, it is convenient to write Eqs. (2.1) in a slightly

altered form:
1

c

∂I

∂t
+Ω ···∇∇∇I +σI = σcUr

4π
+ cqr

4π
, (2.6a)

and the material energy balance equation,

∂Um

∂t
=σφ−σcUr +qm . (2.6b)

Here, we have defined the material energy density, which is a function of the material’s

temperature and specific heat capacity cv :

Um(T ) =
∫ T

0
cv (T ′)dT ′ , (2.7)

and the equilibrium radiation energy density of a material, which is a scaled integral of

the Planckian emission function:

Ur (T ) ≡ aT 4 = 1

c

∫
4π

∫ ∞

0
B(ν,T )dνdΩ . (2.8)

The physical relevance of Ur is that, when the radiation field and material reach an

equilibrium, the radiation intensity becomes the Planck function I = B , and the radiation

energy density φ/c is equal to Ur . The quantity Ur is not equal to the energy stored in the

material, Um .

Note here that Eqs. (2.6) are two equations with three unknowns: I , Ur , and Um . How-

ever, Ur and Um are both properties of the material—explicit functions of the material

temperature T —so there are only two underlying unknowns: one describing the radiation

state (intensity), and the other describing the material state (temperature).

2.2.1 Linearizing the material energy equation

To proceed, we define a parameter β as a function of Eqs. (2.7) and (2.8):

β(x ,T ) ≡ ∂Ur

∂Um
= ∂Ur

∂T

/
∂Um

∂T
= 4aT 3

cv (x ,T )
. (2.9)

The chain rule allows the left hand side of Eq. (2.6b) to be expressed without approxima-

tion in terms of the equilibrium radiation energy density Ur :

∂Um

∂t
= ∂Um

∂Ur

∂Ur

∂t
= 1

β(T )

∂Ur

∂t
=σφ−σcUr +qm .
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The first approximation is to “freeze” the parameter β at the beginning-of-time-step

temperature T n :

β[x ,T (x , t )] ≈β[x ,T (x , t n)] =β(x ,T n) ≡βn(x) ,

so Eq. (2.6b) becomes for t n < t < t n+1

1

βn

∂Ur

∂t
≈σφ−σcUr . (2.10)

The process of freezing β is equivalent to approximating the material energy term using

two first-order Taylor series:

Um(t n+1) ≈Um(t n)+ (t n+1 − t n)
∂Um

∂t

∣∣∣
t n
+O((t n+1 − t n)2)

U n+1
m =U n

m +∆t
∂Um

∂Ur

∣∣∣
t n

∂Ur

∂t

∣∣∣
t n
+O(∆2

t )

U n+1
m =U n

m +∆t
1

βn

[
U n+1

r −U n
r

∆t
+O(∆t )

]
+O(∆2

t )

U n+1
m =U n

m + U n+1
r −U n

r

βn
+O(∆2

t )

U n+1
m ≈U n

m + U n+1
r −U n

r

βn
. (2.11)

Because the freezing of β approximates the rate of change in material energy, Eq. (2.10)

no longer conserves the system’s total energy. To enforce conservation of energy over a

time step, we use Eq. (2.11).

The next approximation explicitly freezes the opacity σ in Eq. (2.10):

1

βn

∂Ur

∂t
≈σnφ−σncUr +qm .

Now we average the material equation in time to express it in terms of two simple un-

knowns. Operating by 1
∆n

t

∫ t n+1

tn
(·)dt , we obtain

1

βn

U n+1
r −U n

r

∆n
t

=σn

[
1

∆n
t

∫ t n+1

tn

φdt

]
−σnc

[
1

∆n
t

∫ t n+1

tn

Ur dt

]
+ 1

4π

[
1

∆n
t

∫ t n+1

tn

qm dt

]
.

Next, we apply the implicit Euler discretization2 to Ur (x ,Ω, t) and φ(x ,Ω, t) by approx-

2Note that the IMC method only applies the implicit approximation to Ur , allowing the continuous-in-
time treatment of the intensity.
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imating their time-averaged values with their values at the end of the time step t n+1:

1

βn(x)

U n+1
r (x)−U n

r (x)

∆n
t

=σn(x)φn+1(x)− cσn(x)U n+1
r (x)+qn

m . (2.12)

(The material source qm is known, so qn
m is its pre-calculated time-averaged value.)

We solve Eq. (2.12) for U n+1
r in order to eliminate the implicit dependence of the

transport equation on the material energy equation.

U n+1
r [1+ cβn∆n

t σ
n] =βn∆n

t σ
nφn+1 +U n

r +βn∆n
t qn

m

U n+1
r = cβn∆n

t σ
n

1+ cβn∆n
t σ

n

1

c
φn+1 + 1

1+ cβn∆n
t σ

n
U n

r + cβn∆n
t σ

n

1+ cβn∆n
t σ

n

1

cσn
qn

m

U n+1
r = (

1− f n) 1

c
φn+1 + f nU n

r + (
1− f n) 1

cσn
qn

m , (2.13)

where we have defined the Fleck factor [23] as

f n = f n(x) ≡ [
1+βnc∆n

t σ
n]−1 . (2.14)

Substituting Eq. (2.13) into (2.11) and rearranging, we obtain an energy balance

equation using the linearized terms, the initial state, and the final radiation state:

U n+1
m =U n

m + f nσn∆n
t

[
φn+1 − cU n

r

]+ f n∆n
t qn

m . (2.15)

2.2.2 Linearizing the transport equation

Next, we apply the same approximations to the nonlinear radiation transport equa-

tion (2.6a). As with the material equation, the opacities are “frozen” at their beginning-of-

time-step values σn , and the equation is time-averaged:

1

c

I n+1 − I n

∆n
t

+Ω ···∇∇∇
[

1

∆n
t

∫ t n+1

tn

I dt

]
+σn

[
1

∆n
t

∫ t n+1

tn

I dt

]

= σnc

4π

[
1

∆n
t

∫ t n+1

tn

Ur dt

]
+ 1

4π

[
1

∆n
t

∫ t n+1

tn

qr dt

]
.

We again apply the implicit backward Euler approximation to the radiation and material

unknowns, I and Ur :

1

c

I n+1 − I n

∆n
t

+Ω ···∇∇∇I n+1 +σn I n+1 = σnc

4π
U n+1

r + 1

4π
qn

r .

17



(The extraneous energy source qr is known a priori, so no approximation is made if qn
r is

its time-averaged value.) Finally, we substitute U n+1
r from Eq. (2.13), which was derived

from the material equation Eq. (2.6b):

1

c

I n+1 − I n

∆n
t

+Ω···∇∇∇I n+1+σn I n+1 = σnc

4π

[(
1− f n) 1

c
φn+1 + f nU n

r + (
1− f n) 1

cσn
qn

m

]
+ 1

4π
qn

r ,

or, rearranged,

1

c

I n+1 − I n

∆n
t

+Ω ···∇∇∇I n+1 +σn I n+1

= (
1− f n)

σn 1

4π
φn+1 + 1

4π
f nσncU n

r + 1

4π

[
qn

r + (
1− f n)

qn
m

]
. (2.16)

2.2.3 Comments

If we compare Eq. (2.16) to a temporally implicit discretization of a monoenergetic linear

transport problem with isotropic scattering,

1

v

ψn+1 −ψn

∆n
t

+Ω ···∇∇∇ψn+1 +Σtψ
n+1 = 1

4π
Σs

∫
4π
ψn+1 dΩ+ 1

4π
q ,

we find equivalences between the two:

I ↔ψ = the angular flux,

σn ↔Σt = the total cross section,(
1− f n)

σn ↔Σs = the scattering cross section,

f nσncU n
r +qn

r + (
1− f n)

qn
m ↔ q = the isotropic source for time step n,

v ↔ c = the particle speed.

Even though the original radiation transport equation was purely absorbing, the lineariza-

tion scheme created a “pseudo-scattering” term that essentially emulates the absorption

and isotropic reëmission of radiation during a time step. The IMC literature often refers to

the “effective scattering opacity,” σn
es ≡

(
1− f n

)
σn . If we take the zeroth angular moment

of Eq. (2.16), then we obtain the radiation energy conservation equation over the time

step:
1

c

φn+1 −φn

∆n
t

+∇∇∇···F n+1 +σn
eaφ

n+1 =σn
eacU n

r +qn
r + (

1− f n)
qn

m , (2.17)

where σn
ea ≡ f nσn is known as the “effective absorption opacity.”
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This effective absorption term also appears in the material energy update equa-

tion (2.15):

U n+1
m =U n

m +σn
ea∆

n
t

[
φn+1 − cU n

r

]+ f n∆n
t qn

m .

The energy transferred from the radiation to the material in the SI scheme is the time-

integrated effective absorption rate.

2.2.4 Summary

The semi-implicit linearization decouples the material energy and radiation transport

equations inside a time step, yielding a linear transport equation (2.16) with pseudo-

scattering:

1

c

I n+1 − I n

∆n
t

+Ω ···∇∇∇I n+1 +σn I n+1 = (
1− f n)

σn 1

4π
φn+1 + 1

4π
f nσncU n

r + 1

4π
qn

r ,

and a material energy update equation (2.15):

U n+1
m =U n

m + f nσn∆n
t

[
φn+1 − cU n

r

]+ f n∆n
t qn

m .

For the nth time step, given the initial radiation field I n and the initial material energy

density U n
m , the solution process follows.

1. Compute the linearized values. Calculate the starting temperature T n from the
stored material energy density U n

m by inverting the integral in Eq. (2.7). Using the
temperature, calculate the frozen σn and βn in each spatial cell. Use Eq. (2.14)
to calculate f n , which in turn is used to calculate the linearized isotropic source
f nσncU n

r + qn
r and the effective scattering cross section

(
1− f n

)
σn . If using a

diffusion method to approximate the transport solution, the absorption cross
sections and diffusion coefficients must be recalculated. This is a computationally
inexpensive step.

2. Solve the linear transport problem for ψn+1 = I n+1. With the implicit discretization,
this solution uses the stored value of the radiation field at the end of the time step,
I n .

3. Update the material energy U n+1
m . Because of the linearization of β, the linearized

estimate of the new material emission term in Eq. (2.13) is not directly related to
the temperature: U n+1

r 6= a(T n+1)4. Instead, the material energy must be calculated
using Eq. (2.15).

Figure 2.1 shows how the problem physics and the linearized quantities relate. The

flow chart is useful when implementing the linearization scheme programmatically.
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Figure 2.1: Dependency graph of quantities in the semi-implicit dis-
cretization. Arrows indicate a “depends on” relationship.

2.3 Deterministic radiation transport approximations

In this section, we briefly review several existing deterministic radiation transport meth-

ods, which discretize all unknowns in the TRT equations.

The salient difference among these methods is their treatment of the angular depen-

dence of the intensity. Additionally, each method tends to have its own set of spatial

discretizations that are effective and efficient for the given angular treatment. The choice

of temporal discretization is usually independent of the method used.

Each approximation applied to the transport equation introduces an error. The

angular approximations to I introduce errors that are particularly difficult to assess.

Asymptotic analysis can be used to describe quantitative regimes of applicability of most

methods [33, 42, 43], but we will confine our discussion here to some of the qualitative

unphysical behavior introduced by the angular approximations.

Myriad spatial discretization schemes exist. Typically, a spatial discretization will

introduce a local error into the solution with some relation to the grid size. In the diffusion

(and anisotropic diffusion) methods, finite difference schemes are commonly used [44].
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Furthermore, the treatment of the time dependence of the TRT equations is a lengthy

topic [41]. As in other partial differential equations, the approximation made to the

∂I /∂t term (or to the time average of the other terms) incurs a discretization error of

O(∆t ) in the case of backward Euler. Because of the stiff nature of the TRT equations

[37], unstable explicit methods such as forward Euler are practically unusable in this

application. Furthermore, the operator split in the semi-implicit treatment produces

an O(∆t ) linearization error. Typically, then, higher-order [O(ε2)] methods require not

only complex discretization schemes but also iteration on the nonlinearities (or the

application of Jacobi-free Newton–Krylov techniques). In our work, we will use only the

simple semi-implicit linearization with the backward Euler implicit time discretization.

Thus, in our discussion of the methods in this section, we represent the transport equation

in the linearized form

1

c

I n+1 − I n

∆n
t

+Ω ···∇∇∇I n+1 +σn I n+1 = 1

4π
σn

esφ
n+1 + 1

4π
Qn . (2.18)

2.3.1 Discrete ordinates

The discrete ordinates (SN ) method enforces the transport equation (2.18) only for a

“quadrature set” of M unit directionsΩm , giving M equations

I n+1
m − I n

m

c∆n
t

+Ωm ···∇∇∇I n+1
m +σn I n+1 = 1

4π
σn

esφ
n+1 + 1

4π
Qn , (2.19)

where each angle of the discrete intensity is defined as

I (x ,Ωm , t ) = Im(x , t ) .

The equations for each ordinate are coupled at every point in space through the scalar

intensity in the scattering term:

φn+1 =
M∑

m=1
I n+1

m wm ,

where wm is the quadrature weight corresponding to the direction Ωm . The discrete

equations can also be coupled at the boundaries of a problem, e.g. via specular reflection.

To interpret Eq. (2.19) as a linear algebraic expression, we rearrange it slightly:(
Ωm ···∇∇∇+ 1

c∆n
t
+σn

)
I n+1

m = 1

c∆n
t

I n
m + 1

4π
σn

esφ
n+1 + 1

4π
Qn ,
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or, combining all M equations into abstract linear operators (similar to that given in

Ref. [45]),

Lψ= Sψ+q .

Here L is the operator representing “streaming plus collision” on the left hand side,

S represents the isotropic redistribution of photons via scattering, ψ is the vector of

unknown angular intensity at the new time step, and q is the isotropic source plus the

initial condition. At every time step, the SN equations can be solved iteratively with

Richardson iteration (or “source iteration”) [46],

ψ(k+1) = L−1(Sψ(k) +q) .

Every application of L−1 to the unknowns is known as a “transport sweep,” as it is normally

implemented not as an explicit matrix of unknowns but rather in an algorithm that sweeps

across a mesh, progressively inverting the transport equation in each cell to solve for

the exiting angular intensity. In the absence of scattering (σn
es = 0) and with specified

incident boundaries, the SN equations can be solved in only one sweep. This feature is

particularly advantageous for the anisotropic diffusion solution process.

In highly scattering systems, SN can take an arbitrarily large number of iterations to

converge using pure source iteration. Means of overcoming this—including diffusion

synthetic acceleration, multigrid treatments, and Krylov methods—exist, but these are

outside the scope of this background chapter. (Our primary use of the SN method is to

calculate anisotropic diffusion coefficients.)

The grid error incurred by the spatial discretization can lead to surprisingly inaccurate

answers for optically thick, highly scattering cells [42, 47].

2.3.2 Spherical harmonics

The spherical harmonics (PN ) method takes a very different approach to approximating

the angular dependence of the intensity. It expresses the intensity as a truncated series of

angular moments,

I (x ,Ω, t ) ≈
L∑

l=0

l∑
m=−l

Yl ,m(Ω)

[∫
4π

Y ∗
l ,m(Ω′)I (x ,Ω′, t )dΩ′

]
= 1

4π
φ(x , t )+ 3

4π
Ω ···F (x , t )+·· · ,

where Yl ,m(Ω) and Y ∗
l ,m(Ω) are the spherical harmonic functions and their complex

conjugates [48, 34].
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The full spherical harmonic equations [25] are lengthy, complicated, and largely

irrelevant to our work. However, the P1 equations, which result from taking L = 1, are

indeed relevant. The first step in their derivation is to take the zeroth and first angular

moments of Eq. (2.18). The zeroth angular moment of the linearized transport equation

is
φn+1 −φn

c∆t
+∇∇∇···F +σn

eaφ
n+1 =Qn , (2.20)

and the first moment is the vector equation

F n+1 −F n

c∆t
+∇∇∇···

∫
4π
ΩΩI n+1 dΩ+σnF n+1 = 0. (2.21)

The P1 approximation provides a closure for Eq. (2.21) by approximating the intensity

as

I n+1(x ,Ω) ≈ 1

4π
φn+1(x)+ 3

4π
Ω ···F n+1(x) . (2.22)

Thus, the second angular moment is∫
4π
ΩΩI n+1 dΩ≈ 1

4π
φn+1

∫
4π
ΩΩdΩ+0 = 1

3
Iφn+1 ,

where I is the identity matrix (the unit dyad). Equation (2.21) becomes

F n+1 −F n

c∆t
+ 1

3
∇∇∇φn+1 +σnF n+1 = 0. (2.23)

Rather than the M unknowns per spatial coordinate of the SN method, the P1 has

four (or, in 2-D space, three). It is therefore easier to solve and store in computer mem-

ory. Unfortunately, the disadvantages of P1 are pronounced. First, most obviously, the

linear-in-angle approximation is not generally valid, so the solution will usually lag in

accuracy compared to a transport method. Second, it happens that the approximation

in Eq. (2.23) yields a plane wave propagation speed of c/
p

3 rather than the physical c

[13, 49]. (When combined, Eqs. (2.20) and (2.21) yield the “telegrapher’s equation,” a

hyperbolic differential equation with wave speed c/
p

3.) Even worse, the P1 equation and

in fact the entire PN family can produce negative solutions for φn+1 in the presence of

steep gradients [19, 25, 48]. This is a significant problem in TRT applications because a

negative φ can lead to a negative material temperature and the catastrophic failure of a

simulation.

An alternative to using the linear-in-angle approximation in the closure for the second
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angular moment
∫

4πΩΩI n+1 dΩ is to define an Eddington tensor [50, 18] as

E ≡
∫

4πΩΩI n+1 dΩ∫
4π I n+1 dΩ

,

so that Eq. (2.21) becomes

F n+1 −F n

c∆t
+∇∇∇··· (Eφn+1)+σnF n+1 = 0.

Typically, E is calculated via a transport problem or some a priori estimated relationship

between φ and its gradient. The variable Eddington factor, or quasidiffusion, family of

methods can be much more accurate than the P1 equations, but the nonlinear closure for

E can lead to nonphysical shocks and numerical instabilities [18].

2.3.3 Diffusion

After the P1 approximation is applied to the first angular moment of the transport equa-

tion, Eq. (2.22), one further simplification leads to the very common diffusion approxima-

tion. The “quasi-static” [14] approximation is to discard the time derivative term in the

first angular moment, Eq. (2.21), simplifying the expression and allowing for an explicit

solution of F n+1 to yield Fick’s law:

F n+1 =− 1

3σn
∇∇∇φn+1 .

This simple expression approximates the entire angular distribution of the intensity I

using a single unknown, yielding a very small memory footprint and a typically very fast

solution.

However, Fick’s law is only a coarse approximation, and it is not necessarily accu-

rate. An asymptotic analysis [32, 33] shows that the diffusion approximation indeed is a

leading order solution of the transport equation given certain conditions—namely, that

the material properties vary slowly in space, and that the system be highly scattering.

However, for problems that have a fast time scale or contain strongly absorbing materials,

the diffusion approximation will not yield transport-quality answers.

Furthermore, the time-dependent diffusion approximation yields a parabolic equa-

tion for φ, allowing energy to be transferred faster than the speed of light. This often

severe shortcoming is addressed in a method known as flux-limited diffusion, which is

discussed next.
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2.3.4 Flux-limited diffusion

The exact radiation intensity satisfies the mathematical identity ‖F‖ ≤ φ, essentially

limiting the leakage of radiation at a point to the radiation energy at that point. The

identity can be shown using the triangle inequality:

‖F‖ =
∥∥∥∥∫

4π
ΩI dΩ

∥∥∥∥ (2.24)

≤
∫

4π
‖Ω‖|I |dΩ

≤
∫

4π
[1]I dΩ

‖F‖ ≤φ . (2.25)

Substituting Fick’s law for F gives a condition that shows when the diffusion coefficient

satisfies this limit:

∥∥−D∇∇∇φ∥∥≤φ

D ≤ φ∥∥∇∇∇φ∥∥ . (2.26)

In an optically thin region, σ ≈ 0, D → ∞, and this condition will usually be violated.

Additionally, the large radiation energy gradient at a wavefront can lead to a violation of

the limit.

A flux limiter is designed to combat these problems by enforcing Eq. (2.26) through

an ad hoc modification to the definition of D. Although certain flux limiters [51] are

based on idealized models that the radiation intensity might take in an optically thin

region, the usual approach is more straightforward. The flux-limited diffusion (FLD)

coefficient should approach the standard diffusion coefficient 1/(3σ) when the spatial

gradients are weak, but it should satisfy Eq. (2.25) when the gradients are strong. A

standard formulation [18] is

D =
[

(3σ)m +
(∥∥∇∇∇φ∥∥

φ

)m]−1/m

. (2.27)

The “sum” limiter at m = 1 due to Wilson [43] leads to inaccuracies at the diffusion limit,

but using the “square-root” limiter at m = 2 (as suggested by Larsen [18]) is accurate to
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leading order. Taking m →∞ leads to the “max” limiter,

D = max

(
3σ,

∥∥∇∇∇φ∥∥
φ

)−1

, (2.28)

which is also accurate in the diffusion limit but has discontinuous derivatives.

Typically, Eq. (2.27) is evaluated explicitly or “lagged” because of its inherent nonlin-

earity, giving the following FLD version of Fick’s law:

F n+1 ≈−
[

(3σ)m +
(∥∥∇∇∇φn

∥∥
φn

)m]−1/m

∇∇∇φn+1 .

The discretization of the normalized gradient in Eq. (2.27) is an additional considera-

tion when using FLD. The implementation used in this thesis takes a geometric average

of the normalized gradient on the face of a computational cell as suggested by [52]:

1

φ

∂φ

∂x
≈

√∣∣∣∣( 1

(φi+1 +φi )/2

φi+1 −φi

(∆x,i+1/2+∆x,i /2)

)(
1

(φi +φi−1)/2

φi −φi−1

(∆x,i /2+∆x,i−1/2)

)∣∣∣∣
× sgn(φi+1 −φi−1) ,

rather than the arithmetic average

1

φ

∂φ

∂x
≈ 1

φi

φi+1 −φi−1

(∆x,i+1/2+∆x,i +∆x,i−1/2)
.

This choice reduces the sensitivity of the flux limiter to the mesh grid size.

2.4 Summary

This chapter provides an overview of the equations underlying thermal radiative transfer,

as well as some existing techniques for solving these equations. We have discussed some

of the strengths and weaknesses of several deterministic methods that will compete with

the new anisotropic diffusion approximation method, which is discussed next.
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Chapter 3

Anisotropic Diffusion

The common radiation transport methods presented in the last chapter approximate the

angular dependence of the intensity each in a different way. The crudest of these methods,

diffusion, has only one unknown φ at each point in space and time; the more complex

such as SN have many unknowns, leading to greater accuracy but greater computer

run time and memory usage. In this chapter, we derive a new anisotropic diffusion

method which approximates the intensity in such a way as to retain an arbitrary amount

of anisotropy (like a true transport method), while solving for a single unknown (like a

diffusion method).

The previous work in anisotropic diffusion has only considered steady-state, linear

problems in an infinite medium [2, 4]. The novel work presented in this chapter provides

a theoretical basis for using AD in time-dependent, nonlinear problems, and it also

addresses boundary conditions for the AD method.

3.1 Derivation

In this section, we use an asymptotic analysis to derive the anisotropic diffusion ap-

proximation in a linear, time-dependent, finite problem. We will later demonstrate this

analysis’ applicability to nonlinear thermal radiative transfer.

The linear, time-dependent transport equation with isotropic scattering is

1

c

∂I

∂t
(x ,Ω, t )+Ω ···∇∇∇I (x ,Ω, t )+σ(x)I (x ,Ω, t )

= σs(x)

4π

∫
4π

I (x ,Ω′, t )dΩ′+ q(x , t )

4π
, x ∈V , Ω ∈ 4π, t ≥ 0. (3.1a)

The boundary condition is specified for incident directions:

I (x ,Ω, t ) = I b(x ,Ω, t ) , x ∈ ∂V , Ω ···n < 0, t > 0, (3.1b)
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and the initial condition is

I (x ,Ω,0) = I i (x ,Ω) , x ∈V , Ω ∈ 4π. (3.1c)

For consistency with the rest of this thesis, we retain the nomenclature of radiative

transfer rather than neutron transport.1

Because this transport equation is linear, we can write its solution as the linear super-

position of three distinct transport solutions:

I (x ,Ω, t ) ≡ Iv(x ,Ω, t )+ Ibl(x ,Ω, t )+ Iil(x ,Ω, t ) . (3.2)

Here, Iv is an “interior” solution, valid several mean free paths away from the exterior

problem boundary and several free times away from t = 0; Ibl is a “boundary layer” solu-

tion that decays rapidly away from the exterior boundary; and Iil is an “initial layer” that

decays rapidly away from t = 0. Figure 3.1 represents these three regimes graphically. In

the interior, spatial and temporal variations are small; in the boundary layer, spatial vari-

ations normal to the boundary are large; and in the initial layer, the temporal variations

are large.

Our goal is first to develop an approximation to Iv that satisfies the transport equation

in some asymptotic limit, and then to use the boundary and initial layer equations to

“match” the interior solution to the transport solution on the boundary and at the initial

time. This procedure follows prior work in the field, e.g. the asymptotic derivation of the

diffusion equation with transport-matched boundary conditions [53].

3.1.1 Interior solution

The transport equation for the interior accounts for the extraneous source term, but it

has no initial or boundary conditions, as it is only valid away from the boundary and

initial layer:

1

c

∂Iv

∂t
(x ,Ω, t )+Ω ···∇∇∇Iv(x ,Ω, t )+σ(x)Iv(x ,Ω, t ) = σs(x)

4π
φ(x , t )+ q(x , t )

4π
. (3.3)

Here, we have defined

φ(x , t ) ≡
∫

4π
Iv(x ,Ω, t )dΩ , (3.4)

1 To enumerate the differences: we refer to the “radiative intensity” I rather than the “angular flux” ψ,
the “scalar intensity” rather than the “scalar flux”, the “radiation flux” F rather than the “neutron current” J ,
the “opacity” σ rather than the “total cross section” Σt , and so on.
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Figure 3.1: Depiction of interior, boundary layer, and initial layer of a
transport problem.

which is the interior scalar intensity. We write Eq. (3.3) as[
1

c

∂

∂t
+Ω ···∇∇∇+σ

]
Iv = σs

4π
φ+ q

4π
.

Taking the zeroth angular moment of Eq. (3.3) gives a conservation equation in the

interior,
1

c

∂φ

∂t
(x , t )+∇∇∇···F (x , t )+σ(x)φ(x , t ) =σs(x)φ(x , t )+q(x , t ) . (3.5)

Here we have defined the interior radiation flux:

F ≡
∫

4π
ΩIv(x ,Ω, t )dΩ , (3.6)

the first angular moment of the interior solution.

AddingΩ ···∇∇∇φ to both sides of Eq. (3.5) and multiplying the resulting equation by 1
4π ,

we obtain [
1

c

∂

∂t
+Ω ···∇∇∇+σ

](
1

4π
φ

)
= σs

4π
φ+ q

4π
− 1

4π
∇∇∇···F + 1

4π
Ω ···∇∇∇φ .
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Subtracting this equation from Eq. (3.3) cancels the isotropic source and scattering term

on the right-hand side, yielding the following equation:[
1

c

∂

∂t
+Ω ···∇∇∇+σ

](
Iv − 1

4π
φ

)
= 1

4π
∇∇∇···F − 1

4π
Ω ···∇∇∇φ . (3.7)

At this point, we apply an asymptotic scaling typical of a diffusive regime. We make an

ansatz that the spatial gradient of the solution is weak, the time derivative is very small,

and the solution is mildly (but not necessarily linearly) anisotropic:

σ=O(1), I =O(1),
∫

4π
ΩI dΩ=O(ε), ∇∇∇I =O(ε),

∂I

∂t
=O(ε2) . (3.8)

These scalings are the same as in an asymptotic derivation of the standard diffusion

equation [32, 43]. With the scalings applied, Eq. (3.7) is written with the asymptotically

small terms lumped together:

[
Ω ···∇∇∇+σ+O(ε2)

](
Iv − 1

4π
φ

)
=− 1

4π
Ω ···∇∇∇φ+O(ε2) .

Neglecting the high-order O(ε2) terms, we make the first approximation yet, obtaining:

[Ω ···∇∇∇+σ]

(
Iv − 1

4π
φ

)
=− 1

4π
Ω ···∇∇∇φ . (3.9)

Formally inverting the bracketed operator on the left-hand side, we obtain an approxi-

mate expression for the intensity in the interior:

Iv = 1

4π
φ− [Ω ···∇∇∇+σ]−1

(
1

4π
Ω ···∇∇∇φ

)
. (3.10)

The inverted differential operator is an integral transport operator [35]:

[Ω ···∇∇∇+σ]−1 Q̂(x ,Ω, t ) =
∫ ∞

0
Q̂(x − sΩ,Ω, t )e−τ(x ,x−sΩ) ds . (3.11a)

Here we have used the optical distance between points x and x ′ along the direction

Ω= (x ′−x)/
∥∥x ′−x

∥∥:

τ(x , x ′) =
∫ ‖x−x ′‖

0
σ(x − sΩ)ds . (3.11b)

Thus Eq. (3.10) for the interior intensity is a function of the nonlocal, unknown scalar
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intensity:

Iv(x ,Ω, t ) = 1

4π
φ(x , t )−

∫ ∞

0

1

4π
Ω ···∇∇∇φ(x − sΩ, t )e−τ(x ,x−sΩ) ds . (3.12)

To simplify, we use the assumption from Eq. (3.8) that spatial gradients are weak to expand

φ in a Taylor series about the local point:

φ(x − sΩ, t ) =φ(x , t )− sΩ ···∇∇∇φ(x , t )+O(ε2) =φ(x , t )+O(ε) . (3.13)

Applying the truncated Taylor expansion to the gradient in Eq. (3.12), we obtain

∇∇∇φ(x − sΩ, t ) =∇∇∇φ(x , t )+O(ε2) .

Thus, Eq. (3.12) becomes

Iv(x ,Ω, t ) ≈ 1

4π
φ(x , t )−

∫ ∞

0

1

4π
Ω ···∇∇∇φ(x − sΩ, t )e−τ(x ,x−sΩ) ds

= 1

4π
φ(x , t )−

∫ ∞

0

[
1

4π
Ω ···∇∇∇φ(x , t )+O(ε2)

]
e−τ(x ,x−sΩ) ds

= 1

4π
φ(x , t )−

(∫ ∞

0

[
1

4π

]
e−τ(x ,x−sΩ) ds

)
Ω ···∇∇∇φ(x , t )

= 1

4π
φ−

[
(Ω ···∇∇∇+σ)−1 1

4π

](
Ω ···∇∇∇φ)

.

We write this equation as

Iv(x ,Ω, t ) = 1

4π
φ(x , t )− [

f (x ,Ω)
]
Ω ···∇∇∇φ(x , t ) , (3.14)

where

f (x ,Ω) = (Ω ···∇∇∇+σ)−1 1

4π

is the solution to the following differential transport equation:

Ω ···∇∇∇ f (x ,Ω)+σ(x) f (x ,Ω) = 1

4π
. (3.15)
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Taking the first angular moment of Eq. (3.14) gives the approximate radiation flux in

the interior:

F (x , t ) =
∫

4π
ΩIv(x ,Ω, t )dΩ

=−
[∫

4π
ΩΩ f (x ,Ω)dΩ

]
···∇∇∇φ(x , t )

=−D(x) ···∇∇∇φ(x , t ) . (3.16)

This resembles “Fick’s law,” but instead of a scalar diffusion coefficient, the anisotropic

diffusion method has a diffusion tensor, D, the second angular moment of f :

D(x) ≡
∫

4π
ΩΩ f (x ,Ω)dΩ . (3.17)

In a homogeneous medium, f → 1
4πσ and D → 1

3σI: this reproduces Fick’s law.

Because of the approximations made in developing Eq. (3.14),φ no longer satisfies the

exact transport solution. Instead, like Fick’s law, the first-order accurate approximation

to the radiation flux is substituted into the low-order conservation equation (3.5) to yield

an anisotropic diffusion equation that φ satisfies in the interior:

1

c

∂φ

∂t
(x , t )−∇∇∇···D(x) ···∇∇∇φ(x , t )+σa(x)φ(x , t ) = q(x , t ) . (3.18)

Here we use the absorption opacity σa =σ−σs .

The anisotropic diffusion approximation to the interior solution Iv comprises (i) the

transport equation (3.15) for f , (ii) the definition in Eq. (3.17) of the diffusion tensor

D, and (iii) the anisotropic diffusion equation (3.18). We note that the transport equa-

tion (3.15) for f is very simple—it has no scattering. Thus, it is much less costly to solve

than the original transport problem.

3.1.2 Initial layer solution

The initial layer solution accounts for the transition between the initial condition and

the interior solution, using Eq. (3.2). It is significant only near the initial time t = 0, at

which point the time derivatives are not assumed to be O(ε2) but rather O(1). The initial

layer problem is defined in the spatial interior of the problem, where spatial gradients are

O(ε), and the boundary layer solution has decayed to zero. (See Fig. 3.1 for a depiction of

the initial layer in relation to the boundary layer and interior solution.) We shall use the

diffusion scaling that the absorption is very small: σa =σ−σs =O(ε2).
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The transport problem for the initial layer complements the interior transport equa-

tion (3.3), so it has no extraneous source term:

1

c

∂Iil

∂t
(x ,Ω, t )+εΩ ···∇∇∇Iil(x ,Ω, t )+σ(x)Iil(x ,Ω, t ) = σ(x)−ε2σa(x)

4π
φil(x , t ) . (3.19a)

Here we have defined the zeroth angular moment of the initial layer solution to be

φil(x , t ) ≡
∫

4π
Iil(x ,Ω, t )dΩ .

The initial layer accounts for the original transport initial condition in Eq. (3.1c) via

the superposition equation (3.2):

Iv(x ,Ω,0)+ Iil(x ,Ω,0) = I i (x ,Ω) . (3.19b)

(The Ibl term is not present because, in the spatial interior, the boundary layer solution

has decayed away.) By construction we demand that its solution rapidly tend to zero for

increasing t :

lim
t→∞ Iil(x ,Ω, t ) = 0. (3.19c)

The technique of asymptotic matching, which has previously applied to diffusion in

Ref. [53, 54], uses this special transport problem to determine the initial value of the

approximate interior solution φ.

The asymptotic analysis begins by expanding Iil in powers of ε,

Iil(x ,Ω, t ) ∼ I (0)
il (x ,Ω, t )+εI (1)

il (x ,Ω, t )+ε2I (2)
il (x ,Ω, t )+·· · .

The zeroth moment of the initial layer solution is also written as a series expansion:

φil(x , t ) ∼φ(0)
il (x , t )+εφ(1)

il (x , t )+ε2φ(2)
il (x , t )+·· · .

The expansions are substituted into the scaled transport equation (3.19a):

1

c

∂

∂t

[
I (0)

il +εI (1)
il +ε2I (2)

il

]
+εΩ ···∇∇∇

[
I (0)

il

]
+σ(x)

[
I (0)

il +εI (1)
il +ε2I (2)

il

]
= σ(x)

4π

[
φ(0)

il +εφ(1)
il +ε2φ(2)

il

]
− ε2σa(x)

4π

[
φ(0)

il

]
+O(ε3) . (3.20)

To satisfy this equation, we equate the coefficients of each order of ε. Matching the O(1)
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terms gives the following equation:

1

c

∂I (0)
il

∂t
+σI (0)

il = σ

4π
φ(0)

il , (3.21a)

and matching the O(ε) terms gives another equation:

1

c

∂I (1)
il

∂t
+Ω ···∇∇∇I (0)

il +σI (1)
il = σ

4π
φ(1)

il . (3.21b)

We ignore terms of O(ε2) because the anisotropic diffusion approximation in the interior

is only accurate to O(ε2).

Next, we write the interior solution Iv by expanding the interior solution in powers of

ε:

φ(x , t ) ∼φ(0)(x , t )+εφ(1)(x , t )+·· · .

Replacing Ω ··· ∇∇∇ with εΩ ··· ∇∇∇, the anisotropic diffusion approximation in the interior,

Eq. (3.14), is:

Iv = 1

4π

(
φ(0) +εφ(1) +·· ·)−ε fΩ ···∇∇∇(

φ(0) +εφ(1) +·· ·)
= 1

4π
φ(0) +ε

[
1

4π
φ(1) − fΩ ···∇∇∇φ(0)

]
+O(ε2) .

Thus the initial condition for the initial layer, Eq. (3.19b), becomes

1

4π
φ(0)(0)+ε

[
1

4π
φ(1)(0)− fΩ ···∇∇∇φ(0)(0)

]
+ I (0)

il (0)+εI (1)
il (0)+O(ε2) = I i (x ,Ω) . (3.22)

Matching powers of ε, we obtain the O(1) equation:

1

4π
φ(0)(0)+ I (0)

il (0) = I i (x ,Ω) , (3.23a)

and the O(ε) equation:

1

4π
φ(1)(0)+ fΩ ···∇∇∇φ(0)(0)+ I (1)

il (0) = 0. (3.23b)

To satisfy Eq. (3.19c), each expanded term of the initial layer solution must rapidly

tend to zero. We begin with the O(1) terms in the initial layer equation, Eq. (3.21a):

1

c

∂I (0)
il

∂t
+σI (0)

il = σ

4π
φ(0)

il .
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Taking the zeroth moment of this equation, we find that the number of particles in the

leading term of the initial layer is constant:

1

c

∂φ(0)
il

∂t
= 0. (3.24)

Thus to satisfy Eq. (3.19c), φ(0)
il must be zero at the initial time:

φ(0)
il (0) = 0.

To use this fact, we take the leading order terms of the initial condition, Eq. (3.23a):

1

4π
φ(0)(0)+ I (0)

il (0) = I i (x ,Ω) ,

and integrate over all angles to obtain

φ(0)(0)+φ(0)
il (0) =φi ,

where

φi (x) =
∫

4π
I i (x ,Ω)dΩ .

Setting φ(0)
il (0) = 0, we obtain the desired relation between the leading order scalar inten-

sity in the interior and the zeroth moment of the transport initial condition:

φ(0)(x ,0) =φi (x) . (3.25)

This gives the initial condition to leading order. Because the anisotropic diffusion solution

is O(ε2)-accurate in the interior of a diffusive problem, we desire an initial condition that

has an additional order of accuracy.

The first step in solving for the O(ε2)-accurate initial condition is to exactly solve for

the O(1) component of Iil in Eq. (3.21a) for all times, using the fact that φ(0)
il = 0:

1

c

∂I (0)
il

∂t
+σI (0)

il = 0 =⇒ I (0)
il (t ) = I (0)

il (0)e−σct .

We solve for I (0)
il (0) in Eq. (3.24) to find

I (0)
il (t ) =

[
I i − φi

4π

]
e−σct .
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Now we turn to the O(ε) component of the initial layer equation:

1

c

∂I (1)
il

∂t
+Ω ···∇∇∇I (0)

il +σI (1)
il = σ

4π
φ(1)

il .

Substituting the solution I (0)
il , we obtain

1

c

∂I (1)
il

∂t
+σI (1)

il = σ

4π
φ(1)

il −Ω ···∇∇∇
[(

I i − φi

4π

)
e−σct

]
.

Integrating this equation over angle eliminates the absorption term, we obtain a simple

differential equation:

1

c

∂φ(1)
il

∂t
=−∇∇∇···

[
F i e−σct

]
,

where the initial radiation flux is

F i =
∫

4π
ΩI i (x ,Ω)dΩ .

We solve the differential equation for φ(1)
il (t ):

φ(1)
il (t ) =φ(1)

il (0)−∇∇∇···
[

F i

σ

(
1−e−σct )] .

Taking the limit as t →∞ and demanding that it satisfy Eq. (3.19c), we obtain a relation

that the first-order initial layer must satisfy:

0 =φ(1)
il (0)−∇∇∇···

[
F i

σ

]
. (3.26)

The first-order terms of the initial condition, Eq. (3.22), are:

1

4π
φ(1)(0)+ fΩ ···∇∇∇φ(0)(0)+ I (1)

il (0) = 0.

The zeroth angular moment of this equation is:

φ(1)(0)+
∫

4π
Ω f dΩ ···∇∇∇φ(0)(0)+φ(1)

il (0) = 0.

Applying the known φ(0)(0) from Eq. (3.25), and the condition on the first-order initial
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layer from Eq. (3.26), we obtain:

φ(1)(0) =−
∫

4π
Ω f dΩ ···∇∇∇φi −∇∇∇···

(
F i

σ

)
. (3.27)

Combining Eqs. (3.25) and (3.27) give the transport-matched initial condition for the

interior to first order accuracy in ε:

φ(x ,0) =φi (x)−ε
[∫

4π
Ω f dΩ ···∇∇∇φi (x)+∇∇∇···

(
F i (x)

σ(x)

)]
. (3.28)

In an infinite homogeneous medium, f is isotropic and
∫

4πΩ f dΩ = 0. The resulting

equation is the standard diffusion result [53],

φ(0) =φi −ε∇∇∇···
[

F i

σ

]
.

To summarize: the initial condition on φ that preserves the leading-order component

of the transport solution is:

φ(x ,0) =φi (x) ≡φi (x) =
∫

4π
I i (x ,Ω)dΩ .

To match the transport solution and interior solution to first order accuracy in ε, the

potentially nonconservative Eq. (3.28) should be used. However, in the rest of this work,

we shall only use the leading-order accurate equation for the following reasons:

• In the truly diffusive problems to which this initial layer analysis is applicable, f is
isotropic to leading order, so the second term of Eq. (3.28) may be discarded while
retaining O(ε2) accuracy.

• When the initial condition is isotropic, F i = 0, and the third term on the right side
of Eq. (3.28) is identically zero.

• Using the nonconservative form in a radiation transport problem may violate the
conservation of energy.

• The nonconservative O(ε)-accurate form is not commonly used in practice.

3.1.3 Boundary layer solution

Near the exterior problem boundary, away from the initial time, the transport solution

rapidly transitions to the interior solution in the boundary layer. (Figure 3.1 graphically

depicts the relationship of the boundary layer to the interior solution.) The spatial

gradient normal to the boundary is O(1), and the time derivative is O(ε2). The transport

37



equation for the boundary layer is source-free:

1

c

∂

∂t
Ibl(x ,Ω, t )+Ω ···∇∇∇Ibl(x ,Ω, t )+σ(x)Ibl(x ,Ω, t ) = σs(x)

4π

∫
4π

Ibl(x ,Ω′, t )dΩ′ . (3.29a)

This equation accounts for the transport boundary condition, Eq. (3.1b), using the super-

position relation of Eq. (3.2):

Iv(x ,Ω, t )+ Ibl(x ,Ω, t ) = I b(x ,Ω, t ) , x ∈ ∂V , Ω ···n < 0, (3.29b)

(Here we have used Iil = 0 because the initial layer solution has decayed away, as the

boundary layer is defined away from t = 0.) We demand that the boundary layer solution

rapidly tend to zero with increasing distance s from the boundary along the direction −Ω:

lim
s→∞ Ibl(x ,Ω, t ) = 0. (3.29c)

If the boundary condition I b varies slowly in space, and the radius of curvature of the

exterior is large, then it can be shown [53] that the condition that satisfies Eqs. (3.29) to

leading order is: ∫
Ω···n<0

W (|Ω ···n|)Ibl(x ,Ω, t )dΩ= 0, x ∈ ∂V , Ω ···n < 0. (3.30)

Here, W is related to Chandrasekhar’s H-function [55]:

W (µ) =
p

3

2
µH(µ) ≈µ+ 3

2µ
2 , 0 <µ≤ 1. (3.31)

The polynomial approximation is derived variationally [53] and is accurate to second

order when used inside the integral in Eq. (3.30). The Marshak boundary condition uses

W (µ) ≈ 2µ.

Multiplying Eq. (3.29b) by W (µ), integrating over incident directions on the exterior

boundary, and substituting Eq. (3.30) to demand that the boundary layer vanish in the

interior, we obtain the following relation:∫
Ω···n<0

W (|Ω ···n|)Iv(x ,Ω, t )dΩ+0 =
∫
Ω···n<0

W (|Ω ···n|)I b(x ,Ω, t )dΩ .
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Substituting the interior approximation of Eq. (3.14), we find:∫
Ω···n<0

W (|Ω ···n|)I b(x ,Ω, t )dΩ

=
∫
Ω···n<0

W (|Ω ···n|)
[

1

4π
φ(x , t )− f (x ,Ω)Ω ···∇∇∇φ(x , t )

]
dΩ

= 1

4π
φ(x , t )

∫
Ω···n<0

W (|Ω ···n|)dΩ−
[∫
Ω···n<0

W (|Ω ···n|) f (x ,Ω)ΩdΩ

]
···∇∇∇φ(x , t )

= 1

2
φ(x , t )−

[∫
Ω···n<0

W (|Ω ···n|)Ω f (x ,Ω)dΩ

]
···∇∇∇φ(x , t ) .

Multiplying by two, we arrive at the low-order boundary condition for the anisotropic

diffusion approximation:

2
∫
Ω···n<0

W (|Ω ···n|)I b(x ,Ω, t )dΩ=φ(x , t )+2

[
−

∫
Ω···n<0

W (|Ω ···n|)Ω f (x ,Ω)dΩ

]
···∇∇∇φ(x , t ) .

To make this equation clearer, we define the bracketed vector term to be

d (x) =−
∫
Ω···n<0

W (|Ω ···n|)Ω f (x ,Ω)dΩ , (3.32)

so that the boundary condition on φ becomes

2
∫
Ω···n<0

W (|Ω ···n|)I b(x ,Ω, t )dΩ=φ(x , t )+2d (x) ···∇∇∇φ(x , t ) . (3.33)

Here, d is a vector defined on the boundary, x ∈ ∂V , that is calculated from the incident

values of the purely absorbing transport solution f .

The boundary condition is at this point incomplete, because the transport solution

for f has only been defined for points away from the boundary: the prescription of f

for incident directions on the boundary is unknown. We return to the definition of φ in

Eq. (3.4) and substitute the approximated interior intensity from Eq. (3.14):

φ(x , t ) =
∫

4π

[
1

4π
φ(x , t )− f (x ,Ω)Ω ···∇∇∇φ(x , t )

]
dΩ

φ(x , t ) =φ(x , t )−
∫

4π
f (x ,Ω)ΩdΩ ···∇∇∇φ(x , t )

0 =−
[∫

4π
f (x ,Ω)ΩdΩ

]
···∇∇∇φ(x , t ) .

The above equation is not generally satisfied. It does hold true when f is an “even” function

ofΩ, e.g. in an optically thick, homogeneous material, where f is isotropic. At material

boundaries, f can be strongly anisotropic, and the above relation does not hold. By
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requiring
∫

4π Iv dΩ = φ at exterior boundaries, we obtain a relationship between the

known outgoing values of f and the unknown incoming values:

0 =
∫
Ω···n>0

Ω f (x ,Ω)dΩ+
∫
Ω···n<0

Ω f (x ,Ω)dΩ .

If the opacity varies slowly along the boundary (which is a prerequisite for the analogous

standard diffusion boundary condition), then to leading order, f is azimuthally symmetric

about the outward normal at the boundary. The above relation is then equivalent to the

following: ∫
Ω···n>0

(Ω ···n) f (x ,Ω)dΩ=
∫
Ω···n<0

|Ω ···n| f (x ,Ω)dΩ . (3.34)

Thus, the transport equation for f should have boundary conditions that enforce this

relationship. Both specularly reflecting and “white” boundary conditions satisfy Eq. (3.34).

The above condition does not define the boundary condition for f ; it is only a restriction

that preserves Eq. (3.4).

In the case when f is azimuthally symmetric about the outward normal, Eq. (3.32)

can be written:

d (x) =−
∫
Ω···n<0

W (|Ω ···n|)(−|Ω ···n|n) f (x ,Ω)dΩ ,

thereby simplifying to the following expression:

d (x) =
[∫
Ω···n<0

|Ω ···n|W (|Ω ···n|) f (x ,Ω)dΩ

]
n . (3.35)

Thus the vector quantity d lives on the boundary, points along the outward normal, and

has a positive magnitude that depends on the incident distribution of f . If f is isotropic

and equal to the infinite medium value 1/(4πσ), then ‖d‖ reduces to z0/(2σ), where z0 is

the transport-corrected extrapolation distance for diffusion, and Eq. (3.33) becomes the

transport-corrected standard diffusion boundary condition with transport extrapolation

distance.

Marshak-like boundary condition

One distribution for the incident f that satisfies Eq. (3.34) is a specularly reflecting

boundary:

f (x ,Ω) = f (x ,Ωr ) , x ∈ ∂V , Ω ···n < 0. (3.36)

Here,Ωr is the reflected angle on a boundary surface with outward normal n:

Ωr =Ω−2(Ω ···n)n . (3.37)
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The choice of a reflecting boundary has a particular advantage if we use the “Marshak”

approximation that W (µ) ≈ 2µ. Equation (3.33) becomes

2
∫
Ω···n<0

(2 |Ω ···n|)I b(Ω)dΩ=φ+2d ···∇∇∇φ ,

or:

4F− =φ+2d ···∇∇∇φ .

With the Marshak approximation to W (µ), the expression for d simplifies greatly.

Equation (3.32), becomes

d =−
∫
Ω···n<0

2 |Ω ···n|Ω f dΩ

= 2n ···
∫
Ω···n<0

ΩΩ f dΩ .

Because our chosen boundary condition of f gives f (Ω) = f (−Ω) if f is azimuthally

symmetric, the integrand is an even function ofΩ:

d = n ···
∫

4π
ΩΩ f dΩ .

The integral on the right hand side is the anisotropic diffusion tensor from Eq. (3.16):

d = n ···D .

Thus Marshak-like boundary approximation for anisotropic diffusion is:

4F−(x , t ) =φ(x , t )+2n ···D(x) ···∇∇∇φ(x , t ) . (3.38)

This is analogous to the standard diffusion Marshak boundary condition,

4F−(x , t ) =φ(x , t )+2D(x)n ···∇∇∇φ(x , t ) .

3.1.4 Summary

We have now derived a full description of the time-dependent anisotropic diffusion

equations in a finite medium.
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The anisotropic diffusion method approximates the transport equations (3.1) with a

set of low-order equations for the scalar intensity φ that use a diffusion tensor calculated

from a simple high-order transport equation.

The low order equation is the result of substituting the approximate Fick’s law, Eq. (3.16),

into the conservation equation (3.5):

1

c

∂φ

∂t
(x , t )−∇∇∇···D(x) ···∇∇∇φ(x , t )+σ(x)φ(x , t ) = q(x , t ) , x ∈V , t > 0.

From the initial layer analysis, the initial condition is to leading order:

φ(x ,0) =
∫

4π
I i (x ,Ω)dΩ , x ∈V .

The incident source boundary condition with the simpler Marshak-like approximation

from Eq. (3.38) is

4F−(x , t ) =φ(x , t )+2n ···D(x) ···∇∇∇φ(x , t ) , x ∈ ∂V , t > 0.

The anisotropic diffusion tensor is defined in Eq. (3.17),

D(x) ≡
∫

4π
ΩΩ f (x ,Ω)dΩ ,

where f is the solution of the steady-state, purely absorbing transport equation described

by Eq. (3.15):

Ω ···∇∇∇ f (x ,Ω)+σ(x) f (x ,Ω) = 1

4π
, x ∈V , Ω ∈ 4π . (3.39a)

In conjunction with the Marshak boundary condition, f should be reflecting on the

problem boundary:

f (x ,Ω) = f (x ,Ωr ) , x ∈ ∂V , Ω ···n < 0. (3.39b)

In the more general case when Eq. (3.33) is used, f only needs to satisfy the relation

given in Eq. (3.34):∫
Ω···n>0

(Ω ···n) f (x ,Ω)dΩ=
∫
Ω···n<0

|Ω ···n| f (x ,Ω)dΩ .

The corresponding (and more accurate) transport-matched low-order boundary condi-

tion from Eq. (3.33) is:

2
∫
Ω···n<0

W (|Ω ···n|)I b(x ,Ω, t )dΩ=φ(x , t )+2d (x) ···∇∇∇φ(x , t ) ,
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where d is defined in Eq. (3.32) as a function of the incident values for f , written here

under the assumption that f is rotationally invariant about the outward normal at the

boundary:

d (x) =
[∫
Ω···n<0

|Ω ···n|W (|Ω ···n|) f (x ,Ω)dΩ

]
n .

3.2 Discussion

Even without numerical results for the anisotropic diffusion equations, a number of

interesting and beneficial properties can be deduced from the low-order AD equations

and the transport equations for f .

3.2.1 Application to nonlinear radiation transport

In §3.1, the asymptotic analysis was performed only for linear time-dependent transport

equation rather than to the nonlinear system of TRT equations. (For a rigorous asymptotic

analysis of the TRT equations, see Ref. [33].) To apply our results to TRT, we appeal to two

facts.

First, the implementation of the TRT equations in this thesis uses the semi-implicit

linearization from §2.2. In that form, the TRT equations over a time step are reduced to a

linear transport equation with an isotropic scattering term. Thus the linear asymptotic

analysis presented here is applicable to that linearized radiation equation.

Second, if the standard diffusion scaling is taken, the anisotropic diffusion equations

yield the standard diffusion result to first order. To see this, we apply the scalingΩ ···∇∇∇→
εΩ ···∇∇∇ to the transport equation for f in Eq. (3.39a):

εΩ ···∇∇∇ f (x ,Ω, t )+σ(x , t ) f (x ,Ω, t ) = 1

4π
.

Here, we have assumed a time-dependent opacity; resultantly, f depends on time as a

parameter (not a variable). Solving for f as a series expansion in ε, we find:

f (x ,Ω, t ) ∼ 1

4πσ
−ε 1

σ
Ω ···∇∇∇ 1

4πσ
+O(ε2) .

Taking the second angular moment, we obtain a diffusion tensor isotropic to first order:

D(x , t ) = 1

3σ
I−0+O(ε2) .
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Substituting this into the anisotropic Fick’s law yields the standard Fick’s law:

F (x , t ) =− 1

3σ(x , t )
∇∇∇φ(x , t ) .

In other words, in the conventional diffusion limit, anisotropic diffusion limits to conven-

tional diffusion to first order.

We therefore assert that the anisotropic diffusion method will satisfy the conventional

diffusive limit of the transport equation for thermal radiative transport.

The low-order anisotropic diffusion equation for TRT is

1

c

∂φ

∂t
(x , t )−∇∇∇···D(x , t ) ···∇∇∇φ(x , t )+σ(x ,T [x , t ])φ(x , t ) =σ(x)ac[T (x , t )]4 +qr (x , t ) ,

where the anisotropic diffusion tensor depends on the temperature-dependent opacity σ

via the transport equation for f :

Ω ···∇∇∇ f (x ,Ω, t )+σ(x ,T [x , t ]) f (x ,Ω, t ) = 1

4π
.

In this transport problem for f , the time t is merely a parameter: the time dependence of

f is due entirely to the time-dependence of σ. When the semi-implicit approximation

is made that freezes σ at the beginning of the time step, there is no feedback between φ

and f during a time step.

3.2.2 Transport calculation for f

The anisotropic diffusion tensor is calculated from f , the solution to the purely absorbing

transport problem in Eqs. (3.39) with a unit isotropic source, “conservative” boundary

conditions, and the same opacities as the physical problem being simulated. This is a

steady-state transport problem, although a time-dependentσnecessitates a recalculation

of f at each time step.

In an infinite medium problem, a discrete ordinates (SN ) solution for f takes only

one transport sweep to complete, because there is no scattering source to converge.

However, for a finite problem, because the boundary conditions rely on exiting values

of f , in practice more than one source iteration (SI) will be required. The larger the

optical thickness between boundaries, the faster the convergence will be. Conversely,

if two opposing boundaries are separated by only a fraction of a mean free path (e.g. in

the case of a voided channel), an SI solution may require many iterations to converge,

especially if a very fine angular quadrature set is used (one with ordinates that are nearly
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perpendicular to the boundary). If reflecting boundaries are used in the calculation of

f , the solution of f (x ,Ω), where x is inside a voided channel and Ω is parallel to the

channel’s walls, will be nearly singular. Source iteration will require a correspondingly

large number of transport sweeps.

The convergence problem can be obviated somewhat by taking advantage of the

flexibility in Eq. (3.34), which allows for other angular shapes on the boundary. For

example, rather than using a reflecting boundary on the offending surface, the user could

select a white boundary in the transport calculation for f . The “averaging” effect of the

white boundary leads to a solution along the voided region is no longer singular, and

source iteration will converge more quickly.

For time-dependent problems in which σ remains constant from one time step to the

next, the calculation for f needs only to be run once. For nonlinear problems in which σ

is a function of time, storing f on the outer boundaries of the problem (which is already

necessary for reflecting boundary conditions) will greatly speed up the recalculation of

f . After the first time step, a good guess for f on the boundary means that only large

changes in σ near the boundary will cause source iteration to require more than one

sweep to converge.

Another desirable property of f is that, because it is a steady-state quantity, and only

its second angular moment is required, the full angle-dependent solution does not need

to be stored. The second angular moment D can merely be accumulated during the

transport sweep, as is done with steady-state SN transport. This is a distinct advantage

over traditional time-dependent transport methods, which require the memory-intensive

storage of the full solution I (x ,Ω, t ).

If the problem is homogeneous, then the interior solution for the purely absorbing

transport problem is an isotropic, constant f = 1/(4πσ). Taking the second moment of f

then yields

D = 1

4πσ

∫
4π
ΩΩdΩ= 1

3σ
I .

Substituting this into the anisotropic Fick’s law, Eq. (3.16), we reproduce the standard

Fick’s law:

F =− 1

3σ
∇∇∇φ .

Thus, for a homogeneous medium, the anisotropic diffusion method reduces to the

standard diffusion method. In a finite problem, either a specular reflecting or a white

boundary will produce an isotropic incident f = 1/(4πσ), which reproduces the standard

diffusion coefficient near the boundaries.2

2The choice of a non-isotropic incident distribution for f will introduce a boundary layer, which is
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Even in an inhomogeneous medium, if the transport equation for f is scaled as

εΩ ···∇∇∇ f (x ,Ω)+σ(x) f (x ,Ω) = 1

4π
,

then as ε→ 0,

f (x ,Ω) → 1

4πσ(x)
=⇒ D(x) → 1

3σ(x)
I ,

which is the standard diffusion coefficient. The selection ε = 1 yields the anisotropic

diffusion tensor.

3.2.3 Properties of the anisotropic diffusion tensor

The diffusion tensor is defined in Eq. (3.17) to be

D(x) ≡
∫

4π
ΩΩ f (x ,Ω)dΩ .

Equivalently, the component in row i , column j of D is

D i j =
∫

4π
ΩiΩ j f (x ,Ω)dΩ , (3.40)

where Ωi is the i th component of the angular vector Ω (e.g., i = 1 corresponds to the

polar cosine angle µ).

Fick’s law

Fick’s law for diffusion states that a gradient in φ will induce particles to flow from the

area of higher density to lower density along the gradient:

F (x , t ) =−D(x)∇∇∇φ(x , t ) .

The anisotropic diffusion tensor has a twist: a gradient in φ can induce particle flow in a

direction other than the direction of the gradient. In 2-D, the anisotropic Fick’s law has

the form

F =−D ···∇∇∇φ =⇒
[

F x

F y

]
=−

[
Dxx D y x

Dx y D y y

][
∂φ/∂x

∂φ/∂y

]
.

If we calculate the “leakage” n ···F averaged over a planar surface normal to n, standard

diffusion only depends on the gradient normal to the surface. For example, on a surface

undesirable as it does not preserve the standard diffusion solution near the problem’s external boundary.
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normal to the x axis, standard diffusion gives the leakage term

F x =−D
∂φ

∂x
.

However, anisotropic diffusion has the following leakage term:

F x =−Dxx ∂φ

∂x
−D y x ∂φ

∂y
.

We refer to the leakage normal to the face, −Dxx ∂φ
∂x , as “normal” leakage; the leakage

along the face, −D y x ∂φ
∂y , we use the term “transverse” leakage.3 In Chapter 5, we show that

the transverse leakage adds a layer of complexity to anisotropic diffusion discretization

schemes that is not present in standard diffusion discretizations.

Behavior in voids

The diffusion model for neutrons and radiative transfer is often used far outside its

realm of strict asymptotic applicability. In the case of radiation transport, a particularly

egregious failure occurs near voided regions, where the true solution has strong spatial

and temporal gradients (see §2.3.4). Standard diffusion fails in regions where σ = 0,

particularly for problems with long voided channels along which the true φ can vary

significantly. In contrast, anisotropic diffusion gracefully yields a qualitatively realistic

approximation to the behavior of particles in a void.

The standard diffusion coefficient is defined as

D(x) = 1

3σ(x)
.

As σ→ 0 locally, D →∞. An infinite diffusion coefficient in a region gives a spatially

constant φ, which is almost always an unphysical result.4

In contrast to standard diffusion, the anisotropic diffusion approximation has a non-

local dependence on σ through f (x ,Ω). Since f remains bounded, even when σ = 0

at some point, D will also remain bounded. Furthermore, the behavior of the aniso-

tropic Fick’s law in a voided region benefits from the transport-calculated information

embedded in the anisotropic diffusion tensor D that the standard diffusion’s isotropic

tensor D lacks. Because f (x ,Ω) is larger for directions Ω parallel to a voided channel

3These terms are compatible with the form of anisotropic diffusion used in geology and fluid flow.
In the field of magneto-hydrodynamics, the terms “perpendicular” and “parallel” replace “normal” and
“transverse,” respectively.

4One exception is that in a 1-D slab configuration, a voided region truly does have a constant solution.
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than perpendicular to it, the second angular moment D has a stronger action along that

direction. In other words, particles in a channel prefer to travel along a voided channel

than across it.

Linear algebraic properties

From Eq. (3.40), D is clearly symmetric: D i j = D j i . Yet D is also symmetric positive

definite (SPD): this property follows from the fact that D is the second moment of a

nonnegative density on a unit sphere, just like an Eddington tensor [51].

However, unlike the Eddington tensor used in quasidiffusion (see §2.3.2), which

approximates the radiation flux using

1

c

∂F

∂t
+∇∇∇···Eφ+σF = 0,

the diffusion tensor is outside of the gradient operator:

D ···∇∇∇φ+F = 0.

The anisotropic Fick’s law is therefore a self-adjoint equation. Consequently, many

reasonable discretizations of the anisotropic diffusion equations will be SPD as well,

allowing solution by the conjugate gradient (CG) method [56]. This is in contrast to

quasidiffusion methods, which require a more computationally expensive solver such as

GMRES [57].

Additionally, the principle eigenvector of the diffusion tensor (the direction on which

D has the greatest action) can sometimes be deduced by the physics of the problem. We

first note that D depends only on the transport solution f , and f depends only on the total

opacity σ. Therefore, if at point x the opacity σ is invariant about some unit direction n,

then the solution f will be rotationally invariant about n. As discussed in Ref. [51], the

action of D upon n must therefore be invariant under the rotational transformation, and

is therefore an eigenvector of D:

D ···n ≡
∫

4π
ΩΩ ···n f dΩ=χn .

Because the diffusion tensor is SPD, its eigenvectors are orthogonal. The implication

is that if σ in a 2-D problem varies only along the x axis, then both the x and y unit

vectors are eigenvectors of D, i.e., the diffusion tensor has only components along the

diagonal, and there is no transverse leakage on any Cartesian face in the problem. As we

will discuss in Chapter 5, it is numerically advantageous to have only normal leakage.
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To exemplify the usefulness of knowing the eigenvectors, we consider the 2-D VHTR

problem in Ref. [2], which features a total cross section that varied only in the x di-

rection. From the discussion above, we know a priori that, even though the physical

problem is two-dimensional, the diffusion tensor has principle eigenvectors oriented

along the Cartesian axes, yielding Dx y = D y x = 0 and allowing the use of a simple spatial

discretization.

Smoothness

The standard diffusion coefficient, 1/3σ, is discontinuous at material interfaces. Such

is not the case with anisotropic diffusion. Recall that f is the solution of a transport

equation with a unit source: the solution is continuous and positive. Thus the second

angular moment of f , the anisotropic diffusion tensor, is also a continuous function of

position.

The consequence of a discontinuity in the diffusion coefficient is a “kink” in the scalar

intensity—a continuous value for φ but a discontinuous first derivative. From standard

diffusion, this may be discerned from Fick’s law, which we consider in 1-D for simplicity:

F (x) =−D(x)
∂φ

∂x
(x) .

Particle conservation demands that F be continuous: a discontinuity in D must neces-

sarily be balanced by a discontinuity in ∂φ/∂x. Likewise, if D(x) is continuous, as is the

case for anisotropic diffusion, the first derivative of φ must necessarily be continuous.

The smooth transition of the anisotropic diffusion tensor D at a material discontinuity

produces a boundary layer between the materials. Standard diffusion has no boundary

layer.

The true transport solution contains both a boundary layer and a kink in the scalar

intensity. Anisotropic diffusion contains the former; standard diffusion, the latter.

The smoothness of the interior solution φ for anisotropic diffusion is compatible with

the derivation of the anisotropic diffusion approximation, the starting assumption that

the derivatives of φ are small.

A possible implication of a smooth diffusion coefficient is that a spatially coarse

approximation to D may yield nearly as accurate an answer as a fine-mesh calculation

of D. Because even the simple transport sweep used to calculate f will likely be far

more computationally expensive than a diffusion solve, this could result in a significant

speedup for AD calculations.
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3.3 Flux-limited anisotropic diffusion

Like standard diffusion, the time-dependent anisotropic diffusion equation is parabolic

[50, 18], allowing radiation energy to unphysically propagate faster than the speed of

light. This undesirable property results from the assumption that the time derivative of

the intensity varied slowly in time, 1
c
∂I
∂t =O(ε2), effectively the same quasi-static approxi-

mation as standard diffusion. To overcome this defect, we apply a flux limiter (see §2.3.4)

to the anisotropic diffusion approximation.

To recapitulate, a flux limiter enforces the following property of the true intensity:

‖F‖ ≤φ . (3.41)

This is accomplished by modifying the approximation to F , which in standard diffusion

is the standard Fick’s law that relates the radiation flux to the gradient of the intensity. In

the presence of steep gradients, the diffusion coefficient D is modified so that Eq. (3.41)

is satisfied: ∥∥−D∇∇∇φ∥∥= D
∥∥∇∇∇φ∥∥≤φ .

Like the standard diffusion Fick’s law, the new “anisotropic” Fick’s law, Eq. (3.16), can

violate Eq. (3.41): ∥∥−D ···∇∇∇φ∥∥ ?≤φ .

The left hand side can exceed the right if either D or ∇∇∇φ is “large”, which may occur in op-

tically thin regions or in a radiation shock wave. Flux-limited anisotropic diffusion (FLAD)

modifies the transport-calculated anisotropic diffusion tensor to preserve Eq. (3.41) in

the presence of large gradients.

Constructing a flux limiter for anisotropic diffusion is less straightforward than for

standard diffusion. The scalar diffusion coefficient D may simply be moved outside the

magnitude operator ‖·‖, but the anisotropic diffusion tensor D cannot be treated that way.

However, a “max” limiter for anisotropic diffusion is easily formulated. A semi-implicit

implementation of this limiter is

Dn+1/2 = Dn ×max

(
1,

∥∥∥∥Dn ··· ∇∇∇φ
n

φn

∥∥∥∥)−1

. (3.42)

Effectively, the limiter tests whether an estimate of F n+1 (using the previous time step’s

solution) exceeds the flux limit; if it does, then it uniformly scales the diffusion tensor to

satisfy the estimated limit.

Flux limiting is an admittedly ad hoc correction, but it restores a qualitative behavior
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of the true intensity when the assumptions that led to anisotropic diffusion break down.

However, because the magnitude of the anisotropic diffusion tensor is always smaller

than the corresponding standard diffusion coefficient in an optically thin region (see

§3.2.3), the flux limiting relationship of Eq. (3.41) will not be violated as often. We expect

that anisotropic diffusion flux limiter will therefore be used less often.

3.4 Summary

To derive the anisotropic diffusion method, we manipulated the transport equation in

the interior of the physical system under certain asymptotic assumptions: primarily, that

the spatial and temporal gradients of the intensity are weak. From boundary and initial

layer analyses we determined transport-matched boundary and initial conditions.

The procedure resulted in two straightforward sets of equations. The first set is

a simple transport equation for f , whose second angular moment is the anisotropic

diffusion tensor D. The second set of equations are the low-order equations for φ that

use D to approximate the flow of radiation inside a time step.

These equations limit to the standard diffusion approximation in a homogeneous

medium, but they do not make the diffusion approximation that the radiation intensity

be linear in angle. We therefore expect the AD method to yield more accurate solutions

for problems in which the intensity is a complex function of angle. Chapters 7 and 8 will

put this expectation to the test.
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Chapter 4

Anisotropic P1

The anisotropic diffusion method was derived under the assumptions that the intensity

has weak spatial gradients, mild anisotropy, and very slow time dependence. By reducing

the asymptotic smallness of the time derivative, we derive a new “anisotropic” method,

which we name anisotropic P1 (AP1). In the steady-state case, it reduces to the anisotropic

diffusion approximation; in the homogeneous-medium case, it reduces to the standard

P1 (spherical harmonic) approximation.

4.1 Derivation

We begin with the linear, time-dependent transport equation with isotropic scattering. By

omitting the complication of material–radiation coupling and nonlinearities, we derive

the AP1 equations with a straightforward linear asymptotic analysis. We then show how

the results may be applied to the thermal radiative transfer equations.

The linear transport equation, given in Chapter 3 and repeated here, comprise the

Boltzmann equation,

1

c

∂I

∂t
(x ,Ω, t )+Ω ···∇∇∇I (x ,Ω, t )+σ(x)I (x ,Ω, t )

= σs(x)

4π

∫
4π

I (x ,Ω′, t )dΩ′+ q(x , t )

4π
, x ∈V , Ω ∈ 4π, t ≥ 0; (4.1)

the boundary condition,

I (x ,Ω, t ) = I b(x ,Ω, t ) , x ∈ ∂V , Ω ···n < 0, t > 0; (4.2)

and the initial condition,

I (x ,Ω,0) = I i (x ,Ω) , x ∈V , Ω ∈ 4π. (4.3)

To perform the asymptotic analysis, we again consider the intensity as the linear
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superposition of three distinct transport solutions:

I (x ,Ω, t ) ≡ Iv(x ,Ω, t )+ Ibl(x ,Ω, t )+ Iil(x ,Ω, t ) . (4.4)

Here, Iv is an “interior” solution, Ibl is a “boundary layer” solution, and Iil is an “initial

layer” solution. For a more detailed description of these, see §3.1 and Fig. 3.1.

We shall approximate the interior solution Iv using a slightly different set of assump-

tions than were used to arrive at the anisotropic diffusion approximation. As before, the

boundary and initial layer solutions are used to match the resulting interior result to the

transport solution at the boundary and initial time.

4.1.1 Interior solution

The interior transport equation is valid several mean free paths away from the outer

boundary, and several mean free times after the initial time. It is identical to the inte-

rior equation in §3.1.1, and the first steps in developing the AP1 approximation strongly

resemble those for the AD approximation. The derivation differs because the AP1 assump-

tions do not allow the time derivative to be discarded: we instead “split” the transport

operator into a component that depends on angle and a component that depends on

time. The result is an interior approximation Iv that requires the storage of both φ and F .

The interior transport equation is

1

c

∂Iv

∂t
(x ,Ω, t )+Ω ···∇∇∇Iv(x ,Ω, t )+σ(x)Iv(x ,Ω, t ) = σs(x)

4π
φ(x , t )+ q(x , t )

4π
, (4.5)

with the interior scalar intensity defined as

φ(x) ≡
∫

4π
Iv(x ,Ω, t )dΩ . (4.6)

The zeroth angular moment of the interior transport equation is the following conser-

vation equation:

1

c

∂φ

∂t
(x , t )+∇∇∇···F (x , t )+σ(x)φ(x , t ) =σs(x)φ(x , t )+q(x , t ) , (4.7)

with the interior radiation flux defined as

F ≡
∫

4π
ΩIv(x ,Ω, t )dΩ . (4.8)

By combining Eqs. (4.5) and (4.7) (see §3.1.1), we eliminate the isotropic scattering

53



and extraneous sources on the right-hand side of the transport equation to obtain[
1

c

∂

∂t
+Ω ···∇∇∇+σ

](
Iv − 1

4π
φ

)
= 1

4π
∇∇∇···F − 1

4π
Ω ···∇∇∇φ . (4.9)

Next, we approximate Eq. (4.9) by making an asymptotic ansatz about the behavior

of I and then discarding “small” terms. Here the derivation diverges from anisotropic

diffusion: rather than assuming ∂I /∂t =O(ε2), we take the scaling ∂I /∂t =O(ε). Thus the

assumed magnitude of the intensity, its derivatives, and its anisotropy are:

σ=O(1), I =O(1),
∫

4π
ΩI dΩ=O(ε), ∇∇∇I =O(ε),

∂I

∂t
=O(ε) . (4.10)

The stronger assumed magnitude of ∂I /∂t requires that the time derivative in Eq. (4.9)

must be retained to preserving O(ε2) accuracy. (This differs from anisotropic diffusion,

in which the term was discarded.) The only asymptotically small term is ∇∇∇···F = O(ε2),

which we discard. Equation (4.9) is then[
1

c

∂

∂t
+Ω ···∇∇∇+σ

](
Iv − 1

4π
φ

)
=− 1

4π
Ω ···∇∇∇φ .

Now we decompose the “time+ leakage+collision” operator on the left-hand side

into an (x , t )-dependent operator, an (x ,Ω)-dependent operator, and an asymptotically

small remainder:

1

c

∂

∂t
+Ω ···∇∇∇+σ= (Ω ···∇∇∇+σ)

(
1

σ

1

c

∂

∂t
+1

)
−Ω ···∇∇∇ 1

σ

1

c

∂

∂t
.

Formally, the rightmost term is O(ε2): σ is O(1),Ω ···∇∇∇ is O(ε), and 1
c
∂
∂t is O(ε). Thus the

previous equation can be written with O(ε2) error as:

(Ω ···∇∇∇+σ)

(
1

σ

1

c

∂

∂t
+1

)(
Iv − 1

4π
φ

)
=− 1

4π
Ω ···∇∇∇φ .

By making the definition

Ψ(x ,Ω, t ) ≡
(

1

σ(x)

1

c

∂

∂t
+1

)(
Iv(x ,Ω, t )− 1

4π
φ(x , t )

)
, (4.11)

we obtain the following “steady-state” equation:

[Ω ···∇∇∇+σ(x)]Ψ(x ,Ω, t ) =− 1

4π
Ω ···∇∇∇φ(x , t ) . (4.12)

54



Here, time is a parameter, not a variable: if φ(x , t ) is known,Ψ(x ,Ω, t ) can be calculated

without knowledge of any prior φ orΨ.

Equation (4.12) is very similar to Eq. (3.9) of the AD derivation. As we did there, we

formally invert the streaming+collision operator on the left, interpreting the inverse as

an integral transport operator:

Ψ= [Ω ···∇∇∇+σ]−1
(
− 1

4π
Ω ···∇∇∇φ

)
=−

∫ ∞

0

(
1

4π
Ω ···∇∇∇φ(x − sΩ, t )

)
e−τ(x ,x−sΩ) ds .

Taylor-expanding the non-local φ about the local point x , and recalling the assumption

that ∇∇∇φ=O(ε), we move φ outside the operator to obtain the following:

Ψ(x ,Ω, t ) =−
[∫ ∞

0

1

4π
e−τ(x ,x−sΩ) ds

]
Ω ···∇∇∇φ(x , t )+O(ε2)

=−
[

(Ω ···∇∇∇+σ)−1 1

4π

]
Ω ···∇∇∇φ(x , t )

=−[
f (x ,Ω)

]
Ω ···∇∇∇φ(x , t ) . (4.13)

Here, f is the solution to the same purely absorbing, steady-state transport problem as in

§3.1.1:

Ω ···∇∇∇ f (x ,Ω)+σ(x) f (x ,Ω) = 1

4π
. (4.14)

We substitute the O(ε2)-accurate expression forΨ, Eq. (4.13), into Eq. (4.11):(
1

σ(x)

1

c

∂

∂t
+1

)(
Iv(x ,Ω, t )− 1

4π
φ(x , t )

)
=− f (x ,Ω)Ω ···∇∇∇φ(x , t ) . (4.15)

Taking the first angular moment of this equation eliminates φ on the left-hand side to

yield the following equation:(
1

σ(x)

1

c

∂

∂t
+1

)
F (x , t ) =−

∫
4π
Ω f (x ,Ω)ΩdΩ ···∇∇∇φ(x , t ) . (4.16)

Multiplying through by σ and rearranging, we get:

1

c

∂F

∂t
(x , t )+σ(x)D(x) ···∇∇∇φ(x , t )+σ(x)F (x , t ) = 0, (4.17)
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where we have used the definition of the anisotropic diffusion tensor from Chapter 3,

D(x) ≡
∫

4π
ΩΩ f (x ,Ω)dΩ . (4.18)

Equation (4.17) is our first attempt at an “anisotropic P1” equation. It approximates

the radiation using the scalar unknown φ and the vector unknown F in tandem with the

calculated anisotropic diffusion tensor D.

In a homogeneous medium, D limits to I/(3σ), so Eq. (4.17) becomes:

1

c

∂F

∂t
(x , t )− 1

3
∇∇∇φ(x , t )+σF (x , t ) = 0,

which is the standard P1 equation.

An important substitution

In a voided region, σ≈ 0, Eq. (4.17) has a serious deficiency. The nonlocal dependence of

f on σ (see §3.2.3) prevents D from “blowing up,” but in the AP1 equation, the local σ= 0

eliminates two of the terms. In a void, Eq. (4.17) becomes the unphysical

1

c

∂F

∂t
(x , t ) = 0.

(Preliminary numerical tests rightly demonstrated this to be a fatal shortcoming in any

problem with optically thin regions.)

To understand this behavior, we show how a similar procedure yields the standard P1

equation,
1

c

∂F

∂t
(x , t )− 1

3
∇∇∇φ(x , t )+σF = 0.

We return to Equation (4.12), just after we split the time and angle operators with an

asymptotic error of O(ε2):

Ψ(x ,Ω, t ) =− [Ω ···∇∇∇+σ(x)]−1 1

4π
Ω ···∇∇∇φ(x , t ) .

The term in brackets can be asymptotically expanded as

[εΩ ···∇∇∇+σ]−1 ∼ 1

σ

(
1−ε 1

σ
Ω ···∇∇∇+O(ε2)

)
.
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Substituting into Eq. (4.13) gives(
1

σ(x)

1

c

∂

∂t
+1

)(
Iv(x ,Ω, t )− 1

4π
φ(x , t )

)
=− 1

σ(x)

(
1− 1

σ
Ω ···∇∇∇

)
1

4π
Ω ···∇∇∇φ(x , t ) .

The first angular moment of this equation is:

1

σ

1

c

∂F

∂t
+F =−1

3

1

σ
∇∇∇φ .

Multiplying by σ gives the P1 equation:

1

c

∂F

∂t
+ 1

3

1

σ
∇∇∇φ+σF = 0.

The asymptotic expansion used in the derivation of the P1 equation used a local

approximation to σ that corresponded to the local σ in the split operator. In contrast, the

derivation of the “anisotropic” equation (4.17) uses both a local σ and a nonlocal f . To

rectify this imbalance, we wish to replace the 1/σ in Eq. (4.16) with a quantity that does

not blow up as σ→ 0 but which approaches 1/σ in the diffusive limit.

We make the following substitution, which is accurate to O(ε2) in the diffusive limit

(in which the opacity has weak spatial derivatives):

1

σ(x)
≈

∫
4π

f (x ,Ω)dΩ

=
∫

4π
(Ω ···∇∇∇+σ(x))−1 1

4π
dΩ

=
∫

4π

(
1

σ
Ω ···∇∇∇+1

)−1 1

4πσ
dΩ

∼
∫

4π

(
1− 1

σ
Ω ···∇∇∇+O(ε2)

)
1

4πσ
dΩ

∼ 1

σ
+O(ε2) .

The resulting AP1 approximation is:

1

ς(x)

∂F

∂t
(x , t )+F (x , t ) =−D(x) ···∇∇∇φ ,

where we have defined

1

ς(x)
≡

∫
4π

f (x ,Ω)dΩ∼ 1

σ(x)
+O(ε2) . (4.19)
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Now Eq. (4.17) is replaced by the new anisotropic P1equation:

1

c

∂F

∂t
(x , t )+ς(x)D(x) ···∇∇∇φ(x , t )+ς(x)F (x , t ) = 0. (4.20)

This is a closure for the unknown F in the conservation equation (4.7); Iv in the interior is

thus approximated by the unknowns φ and F using the coefficients ς and D calculated

from the purely absorbing transport equation for f .

The interior approximate intensity

We return to Eq. (4.15) and replace σ with ς as discussed in the previous section:(
1

ς(x)

1

c

∂

∂t
+1

)(
Iv(x ,Ω, t )− 1

4π
φ(x , t )

)
=− f (x ,Ω)Ω ···∇∇∇φ(x , t ) .

Formally inverting the operator on the left-hand side, we obtain an expression for the

AP1 approximation to the radiation intensity:

Iv(x ,Ω, t ) = 1

4π
φ(x , t )− f (x ,Ω)Ω ···

(
1

ς(x)

1

c

∂

∂t
+1

)−1

∇∇∇φ(x , t ) . (4.21)

This expression is unwieldy. We therefore rewrite it as a function of the known f and its

second moment D, and of the unknown φ and F that are solved using the conservation

equation (4.7) and the AP1 equation (4.20).

The first angular moment of Eq. (4.21) is a restatement of Eq. (4.20):

F (x , t ) =−D(x) ···
(

1

ς(x)

1

c

∂

∂t
+1

)−1

∇∇∇φ(x , t ) .

Left-multiplying by the matrix inverse of D, we obtain:

D−1(x) ···F (x , t ) =−
(

1

ς(x)

1

c

∂

∂t
+1

)−1

∇∇∇φ(x , t ) .

The right-hand side of this equation is present in Eq. (4.21). We substitute it for the

left-hand side to obtain the anisotropic P1 approximation to the radiation intensity:

Iv(x ,Ω, t ) = 1

4π
φ(x , t )+ f (x ,Ω)Ω ···D−1(x) ···F (x , t ) . (4.22)

Here, φ and F are the solutions of Eqs. (4.7) and Eq. (4.20).

In a steady-state problem, F =−D ···∇∇∇φ, and the above equation reduces to the aniso-
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tropic diffusion approximation to Iv.

4.1.2 Initial layer

Formally, as shown in Chapter 3, the initial layer solution matches the transport initial

condition, Eq. (4.3), to the interior approximation of the radiation intensity, which in the

case of AP1 is Eq. (4.22). From Eq. (4.4), the initial conditions of the original transport

equation, the interior approximation, and the initial layer satisfy:

I i (x ,Ω) = Iv(x ,Ω,0)+ Iil(x ,Ω,0) ,

and Iil must rapidly diminish as t →∞.

In the case of anisotropic P1, which uses two unknowns φ and F , the asymptotic

matching procedure for the initial condition is not as clear as with anisotropic diffusion,

which has the single unknown φ. (We are also not aware of any asymptotic procedure to

derive the standard P1 equations or match them to initial conditions.)

We therefore take the sensible approach of approximating Iil ≈ 0, and setting the

zeroth and first moments of the AP1 initial condition to the zeroth and first moments of

the transport initial condition:

φ(x ,0) =φi (x) , and F (x ,0) = F i (x) . (4.23)

4.1.3 Boundary layer

The boundary layer describes the transition from the transport boundary condition to

the interior solution. The boundary layer solution decays to zero rapidly in the spatial

interior, and it satisfies the superposition equation (4.4):

I b(x ,Ω, t ) = Iv(x ,Ω, t )+ Ibl(x ,Ω, t ) , x ∈ ∂V ,Ω ···n < 0.

As described in §3.1.3, the condition that causes the boundary layer solution to vanish in

the interior is ∫
Ω···n<0

W (|Ω ···n|)Ibl(x ,Ω, t )dΩ= 0, x ∈ ∂V , Ω ···n < 0. (4.24)

(The function W is related to the Chandrasekhar function, W (µ) ≈µ+ 3
2µ

2.)

Operating by
∫
Ω···n<0 W (|Ω ···n|)(·)dΩ on the superposition equation at the boundary,

and substituting the AP1 approximation in the interior from Eq. (4.22), we obtain the
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following relation:∫
Ω···n<0

W (|Ω ···n|)I b(x ,Ω, t )dΩ

=
∫
Ω···n<0

W (|Ω ···n|)
[

1

4π
φ(x , t )+ f (x ,Ω)Ω ···D−1(x) ···F (x , t )

]
dΩ

= 1

2
φ(x , t )−

[
−

∫
Ω···n<0

W (|Ω ···n|)Ω f (x ,Ω)dΩ

]
D−1(x) ···F (x , t ) .

The quantity in brackets is the same vector d as in the anisotropic diffusion approxima-

tion,

d (x) =−
∫
Ω···n<0

W (|Ω ···n|)Ω f (x ,Ω)dΩ . (4.25)

Substituting this into the previous equation and multiplying by 2, we obtain the aniso-

tropic P1 boundary condition:

2
∫
Ω···n<0

W (|Ω ···n|)I b(x ,Ω, t )dΩ=φ(x , t )−2d (x) ···D−1(x) ···F (x , t ) . (4.26)

If the problem is steady-state, F =−D ···∇∇∇φ, and the boundary condition reduces to the

anisotropic diffusion boundary condition from Chapter 3.

The boundary condition for f can, as with anisotropic diffusion, be derived by de-

manding that Eq. (4.6) hold on the boundary:

φ(x , t ) =
∫

4π
Iv(x ,Ω, t )dΩ=

∫
4π

(
1

4π
φ(x , t )+ f (x ,Ω)Ω ···D−1(x) ···F (x , t )

)
.

The result is the same as Eq. (3.34):∫
Ω···n>0

(Ω ···n) f (x ,Ω)dΩ=
∫
Ω···n<0

|Ω ···n| f (x ,Ω)dΩ , (4.27)

which can be satisfied by a white or a reflecting boundary on f .

Recall that under the assumption that f is rotationally invariant about n at the bound-

ary, and if the Marshak approximation W (µ) ≈ 2µ is used, then d = n ···D, canceling D−1

in the above expression to yield the standard Marshak boundary condition:

4F−(x , t ) =φ(x , t )−2n ···F (x , t ) ,

where F satisfies the anisotropic P1 equation (4.20) rather than Fick’s law.
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4.1.4 Summary

By making several asymptotically valid approximations and substitutions, we have de-

rived a new “anisotropic P1” approximation to time-dependent radiation transport. Like

the anisotropic diffusion approximation, it uses a simple, transport-calculated diffusion

tensor in conjunction with a low-order conservation equation. Yet, like the P1 method, the

low-order unknowns now comprise not only φ but also F , the zeroth and first moments

of the radiation field, rather than merely the zeroth.

The low-order conservation equation (4.7) is:

1

c

∂φ

∂t
(x , t )+∇∇∇···F (x , t )+σ(x)φ(x , t ) = q(x , t ) , x ∈V , t > 0.

This is coupled with Eq. (4.20), which acts as a replacement to Fick’s law by relating the

radiation flux F to the scalar intensity φ:

1

c

∂F

∂t
(x , t )+ς(x)D(x) ···∇∇∇φ(x , t )+ς(x)F (x , t ) = 0.

In this equation are embedded two moments of the simple transport solution f : the

zeroth moment from Eq. (4.19),

ς(x) =
[∫

4π
f (x ,Ω)dΩ

]−1

,

and the second moment from Eq. (4.18),

D(x) ≡
∫

4π
ΩΩ f (x ,Ω)dΩ .

The general boundary condition for the low-order equation is given in Eq. (4.26):

2
∫
Ω···n<0

W (|Ω ···n|)I b(x ,Ω, t )dΩ=φ(x , t )−2d (x) ···D−1(x) ···F (x , t ) ,

where d , from Eq. (3.32), is a particular angular moment of the transport solution f ,

evaluated at the boundary for incident angles:

d (x) =
[
−

∫
Ω···n<0

|Ω ···n|W (|Ω ···n|) f (x ,Ω)dΩ

]
n .

(This equation is written under the assumption that f is rotationally invariant about n at

the boundary.)

The transport problem for f is the same as in standard anisotropic diffusion: a steady-
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state, purely absorbing transport equation described by Eq. (4.14):

Ω ···∇∇∇ f (x ,Ω)+σ(x) f (x ,Ω) = 1

4π
, x ∈V , Ω ∈ 4π ,

with boundary conditions, usually taken to be reflecting, that satisfy Eq. (4.27):∫
Ω···n>0

(Ω ···n) f (x ,Ω)dΩ=
∫
Ω···n<0

|Ω ···n| f (x ,Ω)dΩ .

4.2 Discussion

Because the transport equation for f in anisotropic P1 is the same as in anisotropic

diffusion, the diffusion tensor D is also the same, and much of the discussion there also

applies here. The transport calculation for f has no scattering source to converge; the

anisotropic diffusion tensor D is therefore computationally inexpensive to compute. The

diffusion tensor D and the nonlocal opacity ς are both angular moments of f , so no extra

transport calculation is needed in AP1 as compared to AD.

4.2.1 Steady-state limit

Just as the P1 method limits to standard diffusion as ∂I /∂t → 0, the AP1 method limits to

the anisotropic diffusion method. We return to Eq. (4.20):

1

c

∂F

∂t
(x , t )+ς(x)D(x) ···∇∇∇φ(x , t )+ς(x)F (x , t ) = 0.

Letting 1
c
∂F
∂t → 0,

ς(x)F (x , t ) =−ς(x)D(x) ···∇∇∇φ(x , t ) .

Dividing through by ς, which is strictly positive, we obtain the anisotropic Fick’s law of

Eq. (3.16):

F (x , t ) =−D(x) ···∇∇∇φ(x , t ) .

4.2.2 Homogeneous medium limit

In a homogeneous medium, the AP1 equation (4.20) limits to the P1 equation. When

σ is constant, the purely absorbing transport problem for f has the constant solution

62



f = 1/(4πσ). The nonlocal opacity, ς from Eq. (4.19), becomes

ς=
[∫

4π
f dΩ

]−1

=
[∫

4π

1

4πσ
dΩ

]−1

=σ .

The anisotropic diffusion tensor likewise simplifies to

D =
∫

4π
ΩΩ f dΩ= 1

3σ
I .

Substituting these into the AP1 equation (4.20), we obtain

1

c

∂F

∂t
(x , t )+σ

[
1

3σ
I
]
···∇∇∇φ(x , t )+σF (x , t ) = 0,

which is the conventional P1 approximation:

1

c

∂F

∂t
(x , t )+ 1

3
∇∇∇φ+σF (x , t ) = 0.

4.2.3 Application to nonlinear radiation transport

As with the anisotropic diffusion approximation in Chapter 3, the AP1 method was derived

for a linear, time-dependent transport problem with isotropic scattering. We again argue

that it has the proper behavior in the diffusive limit of nonlinear radiation transport. We

note that the semi-implicit linearization of the TRT equations result in a linear transport

equation with isotropic scattering, the subject of the asymptotic analysis in this section.

Furthermore, in the diffusive limit, D → 1
3σ +O(ε2), and the AP1 equation reduces to the

P1 equation. From Ref. [43], the P1 approximation has the correct asymptotic behavior in

the diffusive limit; we therefore assert that the AP1 approximation does as well.

4.3 Summary

The anisotropic P1 approximation was derived using the same procedure as time-dependent

anisotropic diffusion. The assumption of a stronger time dependence of the radiative

intensity led to a larger unknown space—now the zeroth and first moments of I —and

we therefore expect this method to be more accurate than AD in problems with rapid

transient behavior.
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Chapter 5

Low-order Discretization Schemes

Tensor diffusion—the diffusion of particles through anisotropic media—has many ap-

plications outside of radiation transport, including the fields of geology, magnetohydro-

dynamics, and image reconstruction. Numerous tensor diffusion schemes have been

developed, but many of these are more general than is needed in our work. The aniso-

tropic diffusion tensor derived in Chapter 3 is relatively well behaved: it is a smooth

function in space, it tends toward isotropy in optically thick problems, it is SPD, and

it is diagonally dominant. Additionally, our test problems are executed in a structured

two-dimensional Cartesian “brick” mesh, a simple testbed environment in which all cells

are quadrilaterals, each interior cell is connected to four adjacent cells through four faces,

and each face is perpendicular to one of the coordinate system axes.

Because of these simplifying properties, we need not use the more complex dis-

cretization schemes, which have more unknowns per spatial cell and are therefore more

costly to solve. (An example is the Support Operators Method [58, 59], with roughly

three unknowns per cell.) Instead, we derive some simple, second-order, conservative

difference schemes for anisotropic diffusion. Because the boundary conditions for our

AD method are distinct from standard diffusion boundary conditions, we also present a

second-order-accurate discretization of these.

The “Anisotropic P1” scheme is entirely new, so we develop a discretization scheme for

it by making a minor modification to the traditional P1 discretization. It uses a “staggered

mesh,” in which the scalar intensity φ is cell-centered and the exiting radiation flux F ···n

is edge-centered [57].

Each discretization derived in this chapter simplifies to the standard five-point finite

difference diffusion scheme in the case of an isotropic diffusion tensor and a steady-state

problem. We admit the possibility that, because of the simplicity of these discretizations,

they were developed independently decades ago, but an extensive literature search did

not unearth any previously formulated schemes equivalent to ours.
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5.1 Introduction

Because the semi-implicit gray TRT formulation of the particle conservation equation

can be expressed as a steady-state transport equation (see §2.2), for the sake of simplicity

we will present the anisotropic diffusion discretizations without time dependence.

5.1.1 Conservation equation

The steady-state particle conservation equation is

∇∇∇···F (x)+σa(x)φ(x) =Q(x) , x ∈V . (5.1)

(In an implicitly discretized time-dependent problem, F = F (t n+1), φ=φ(t n+1), σa is the

absorption opacity plus the constant 1
c∆t

, and the source Q contains an additional φ(t n )
c∆t

.)

The first step in deriving our finite difference schemes is to assume that the unknown—

in this case, φ—is constant over a single cell, represented in Fig. 5.1. We also assume

that the effective absorption opacity σa and source Q are constant over the cell, which

in TRT problems means approximating the material temperature as constant over a cell.

Integrating Eq. (5.1) over cell i , j and applying the divergence theorem gives the following

equation:

∆x,i
(
F y

T −F y
B

)+∆y, j
(
F x

R −F x
L

)+∆x,i∆y, jσa,i , jφi , j =∆x,i∆y, j qi , j . (5.2)

The unknown face-averaged radiation flux F —also known as the leakage—and the un-

known cell-averaged scalar intensity are diagrammed in Fig. 5.2.

Figure 5.1: Diagram of cell i , j .
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Figure 5.2: Unknowns in cell i , j .

In all discretizations of the conservation equation, it is essential that F be continuous

at cell interfaces: e.g., F y
T in cell i , j must be equal to −F y

B in cell i , j +1. Otherwise, the

difference scheme is not conservative.

5.1.2 Anisotropic closure equations

The radiation flux F and scalar intensity φ are related, in the case of anisotropic diffusion,

by the anisotropic Fick’s law of Eq. (3.16):

F (x) =−D(x) ···∇∇∇φ(x) .

The anisotropic P1 approximation, given in Eq. (4.20), contains an additional term that

accounts for stronger time dependence:

1

c

∂F

∂t
(x , t )+ς(x)D(x) ···∇∇∇φ(x , t )+ς(x)F (x , t ) = 0.

We discretize this equation implicitly in time in accordance with the semi-implicit ap-

proximation. Applying the backward Euler approximation to φ and F , then solving for F ,

we obtain:

F (x) =−[1−η(x)]D(x) ···∇∇∇φ(x)+η(x)F̂ (x) , (5.3a)

where F (x) = F (x , t n+1), F̂ (x) = F (x , t n), and

η(x) ≡ 1

1+ς(x)c∆t
. (5.3b)
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Setting η = 0 reduces this equation to Eq. (5.5). (We will use this fact to simplify the

derivation of boundary conditions

Equation (5.3a) in 2-D comprises two equations in vector form:[
F x

F y

]
=−(1−η)

[
Dxx D y x

Dx y D y y

][
∂φ/∂x

∂φ/∂y

]
+η

[
F̂ x

F̂ y

]
(5.4)

=
[
−(1−η)Dxx∂φ/∂x − (1−η)D y x∂φ/∂y +ηF̂ x

−(1−η)D y y∂φ/∂y − (1−η)Dx y∂φ/∂x +ηF̂ x

]
.

The diagonal components of D contribute to “normal” leakage; and the off-diagonal

components Dx y contribute to “transverse” leakage, particle movement across the face

due to a gradient along the face. Note that since the anisotropic diffusion tensor is

symmetric, D y x = Dx y .

Setting η= 0 in Eq. (5.4) reduces the AP1 equation to the anisotropic Fick’s law:[
F x

F y

]
=−

[
Dxx D y x

Dx y D y y

][
∂φ/∂x

∂φ/∂y

]
=

[
−Dxx∂φ/∂x −D y x∂φ/∂y

−D y y∂φ/∂y −Dx y∂φ/∂x

]
. (5.5)

The finite difference schemes presented in this chapter approximate these equations

for F x and F y on cell edges. These approximations are then used to relate the cell-

centered φ from the conservation equation (5.1).

5.2 Neglecting transverse diffusion

Under a simplifying assumption about the structure of the anisotropic diffusion tensor,

very simple existing centered difference schemes can be applied to AD and AP1. The

conservative cell-centered diffusion scheme is derived in Ref. [14]; the AP1 difference

scheme is a minor extension [57].

In the structured Cartesian geometry we consider, the simplifying assumption is

to neglect the off-diagonal terms of the diffusion tensor that cause transverse leakage.

In certain simple problems, however, this is not an approximation. If the opacity is

invariant with respect to one of the Cartesian coordinate system’s axes (see §3.2.3), the

off-diagonal terms of D are identically zero. For problems in which transverse leakage is

non-negligible, the discretization scheme in this chapter must be used with caution: it is

not truly consistent with the underlying mixed-derivative partial differential equation.

Even as the grid size approaches zero, the off-diagonal diffusion components are still

neglected.
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The simple “diagonal-only” centered difference scheme is also useful as an instructive

tool, because we later develop a more complex difference scheme that uses the same

principles.

5.2.1 Anisotropic diffusion

The discretization scheme for anisotropic diffusion presented here is only a slight modifi-

cation of common cell-centered diffusion scheme: the orientation of the faces determines

which component of the anisotropic diffusion tensor is used. This centered difference

scheme was used in the earliest work on the anisotropic diffusion approximation [2].

Setting D y x = Dx y = 0 simplifies Eq. (5.5) to:[
F x

F y

]
=−

[
Dxx 0

0 D y y

][
∂φ/∂x

∂φ/∂y

]
=

[
−Dxx∂φ/∂x

−D y y∂φ/∂y

]
.

Without loss of generality, we evaluate the face-averaged flux from cell i , j through its

right face, which has an outer normal along the +x axis, nR = [1,0]:

F x
R ≡ 1

∆y, j

∫ y j+1/2

y j−1/2

F (xi+1/2, y) ···nR dy .

Substituting the anisotropic Fick’s law, we obtain

F x
R =− 1

∆y, j

∫ y j+1/2

y j−1/2

Dxx
i , j
∂φ

∂x
dy .

Now we introduce a temporary value φ∗ on the edge of the cell to approximate the partial

derivative using a second-order finite difference stencil:

F x
R ≈−Dxx

i , j

φ∗−φi , j

∆x,i /2
. (5.6)

To be conservative, this term must be equal to F x
L from the cell to the right. Evaluating

the flux across the same face in the +x direction from the perspective of cell i +1, j , and

approximating the derivative using the same edge-centered φ∗, we obtain

F x
L,i+1, j ≈−Dxx

i+1, j

φi+1, j −φ∗
∆x,i+1/2

. (5.7)
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Scaling Eqs. (5.6) and (5.7) by ∆x/(2Dxx) and adding them, we eliminate φ∗:

∆x,i /2

Dxx
i , j

F x
R + ∆x,i+1/2

Dxx
i+1, j

F x
L,i+1, j =

[−(φ∗−φi )
]+ [−(φi+1, j −φ∗)

]=−(
φi+1, j −φi , j

)
.

We enforce particle conservation by setting F x
L,i+1, j = F x

R , and we solve for F x
R . This gives

the following expression for the net leakage through the right face of cell i , j :

F x
R =−

Dxx
i+1/2, j

∆x,i+1/2

(
φi+1, j −φi , j

)
. (5.8)

Here we have defined a harmonically averaged cell-edge diffusion coefficient:

Dxx
i+1/2, j

∆x,i+1/2
≡

[
1

2

(
Dxx

i , j

∆x,i

)−1

+ 1

2

(
Dxx

i+1, j

∆x,i+1

)−1]−1

. (5.9)

This is the standard relation between neighboring cells in the cell-centered discretization

scheme [14], except that in anisotropic diffusion, leakage across the face normal to the x

axis takes the Dxx component of the diffusion tensor.

The same procedure yields similar for the three other faces of cell i , j :

F x
L =−

Dxx
i−1/2, j

∆x,i−1/2

(
φi , j −φi−1, j

)
,

F y
T =−

D y y
i , j+1/2

∆y, j+1/2

(
φi , j+1 −φi , j

)
,

F y
B =−

D y y
i , j−1/2

∆y, j−1/2

(
φi , j −φi , j−1

)
.

These terms, substituted into Eq. (5.2), relate the cell-centered values of φ in the interior

of the system:

∆x,i

(
−

D y y
i , j+1/2

∆y, j+1/2

(
φi , j+1 −φi , j

)+ D y y
i , j−1/2

∆y, j−1/2

(
φi , j −φi , j−1

))

+∆y, j

(
−

Dxx
i+1/2, j

∆x,i+1/2

(
φi+1, j −φi , j

)+ Dxx
i−1/2, j

∆x,i−1/2

(
φi , j −φi−1, j

))
+∆x,i∆y, jσa,i , jφi , j =∆x,i∆y, j qi , j . (5.10)

Rearranging shows the leakage terms to be part of a discretized Laplacian operator. In

fact, if ∆x = ∆y = h, and D(x) = DI, then Eq. (5.10) reduces to a well-known five-point
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stencil:

− D

h2

(
φi+1, j +φi , j+1 +φi−1, j +φi , j−1 −4φi , j

)+σa = q .

When a cell has one or more faces on an exterior boundary, the above relations for

n ···F are replaced by a discretized form of the boundary condition, which we shall derive

presently.

5.2.2 Anisotropic P1

The time-dependent P1 and anisotropic P1 methods have as unknowns the radiation flux

F in addition to the scalar intensity φ. Using the same finite differencing procedure as

performed above for anisotropic diffusion, we obtain a discretization for AP1 that stores

φ in cell centers and F on cell edges. In the steady-state case, the edge-centered F terms

can be eliminated algebraically, and this discretization reduces to the above anisotropic

diffusion discretization.

We evaluate the 2-D anisotropic P1 equation (5.4) on the right face of cell i , j , set

D y x = 0, and introduce the temporary edge-centered φ∗ to approximate the derivative

normal to the face:

F x
i+1/2, j =−(1−ηi , j )Dxx

i , j

φ∗−φi , j

∆x,i /2
+ηi , j F̂ x

i+1/2, j .

Evaluating the leakage on same face from cell i +1, j , we obtain:

F x
i+1/2, j =−(1−ηi+1, j )Dxx

i+1, j

φi+1, j −φ∗
∆x,i+1/2

+ηi+1, j F̂ x
i+1/2, j .

Multiplying the equations by (∆x /2)/[(1−η)Dxx ], we eliminate the temporaryφ∗ to arrive

at the following conservative equation:

[
∆x,i /2

(1−ηi , j )Dxx
i , j

+ ∆x,i+1/2

(1−ηi+1, j )Dxx
i+1, j

]
F x

i+1/2, j

=φi , j −φi+1, j +
[

ηi , j∆x,i /2

(1−ηi , j )Dxx
i , j

+ ηi+1, j∆x,i+1/2

(1−ηi+1, j )Dxx
i+1, j

]
F̂ x

i+1/2, j . (5.11a)
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For faces normal to the y axis, the corresponding equation uses the D y y component

of the diffusion tensor:[
∆y, j /2

(1−ηi , j )D y y
i , j

+ ∆y, j+1/2

(1−ηi , j+1)D y y
i , j+1

]
F y

i , j+1/2

=φi , j −φi , j+1 +
[

ηi , j∆y, j /2

(1−ηi , j )D y y
i , j

+ ηi , j+1∆y, j+1/2

(1−ηi , j+1)D y y
i , j+1

]
F̂ y

i , j+1/2 . (5.11b)

Equations (5.11) relate the flux at a face with the scalar intensity in the adjacent cells.

They provide one equation for each interior face; the conservation equation (5.2) provides

an equation for each cell; and a discretization of the anisotropic P1 boundary conditions

(described next) provides an equation for each boundary face.

5.2.3 Boundary conditions

The specified incident boundary condition for anisotropic diffusion is given in Eq. (3.33):

2
∫
Ω···n<0

W (|Ω ···n|)I b dΩ=φ+2d ···∇∇∇φ ,

where the transport-calculated boundary coefficient is given in Eq. (3.32):

d =−
∫
Ω···n<0

W (|Ω ···n|)Ω f dΩ .

The anisotropic P1 boundary condition, Eq. (4.26), is similar:

2
∫
Ω···n<0

W (|Ω ···n|)I b dΩ=φ−2d ···D−1 ···F ,

where d is the same as in anisotropic diffusion. In fact, by substituting the time-discretized

F from Eq. (5.3a), we obtain a general boundary condition that reduces to the anisotropic

diffusion boundary condition by setting η= 0:

2
∫
Ω···n<0

W (|Ω ···n|)I b dΩ=φ−2d ···D−1 ··· [−(1−η)D ···∇∇∇φ+ηF̂
]

=φ+2(1−η)d ···∇∇∇φ−2ηd ···D−1 ··· F̂ .

Looking ahead to using flatland geometry (Chapter 6) in addition to standard 2-D

geometry, we write this AD/AP1 boundary condition in a more general form:

q =φ+ r (1−η)d ···∇∇∇φ− rηd ···D−1 ··· F̂ , (5.12)
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where q , r , d , and D all depend upon the chosen geometry. The values q and r are given

in Table 5.1.

q r

1-D/2-D/3-D 2
∫
Ω···n<0 W (|Ω ···n|)I b dΩ 2

Flatland 2π
∫
Ω···n<0 V (|Ω ···n|)I b dΩ π/2

Table 5.1: Coefficients for the discretized boundary conditions. The
flatland values and the function V are discussed in Chapter 6.

At this point, Eq. (5.12) applies to arbitrary geometries, both anisotropic methods,

and problems in which Dx y 6= 0. Now we make the analysis slightly less general by

demanding that η be azimuthally symmetric about the outward normal of the boundary

face. (Equivalently, we discard the D y x = Dx y terms if the boundary face is along one of

the coordinate axes.) With this assumption, as discussed in §3.2.3, the normal vector n of

the boundary face is an eigenvector of D:

D → Dnn ,

and the boundary coefficient is pointed along the outward normal:

d → dn .

Under this assumption, Eq. (5.12) simplifies (using the fact that n is a unit vector):

q =φ+ r (1−η) [dn] ···∇∇∇φ− rη [dn] ··· [Dnn] ··· F̂ ,

q =φ+ (1−η)dr n ···∇∇∇φ− ηdr

D
F̂ . (5.13)

Here we have defined the outward component of the radiation flux at the beginning of

the time step (t n):

F̂ ≡ n ··· F̂ = n ···F (t n) .

In both the case of anisotropic diffusion and anisotropic P1, we seek the exiting radia-

tion flux on the boundary face, the dot product of the outward normal n and Eq. (5.3a):

n ···F =−[1−η]n ··· [Dnn] ···∇∇∇φ+ηn ··· F̂

F =−[1−η]Dn ···∇∇∇φ+ηF̂ , (5.14)
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where

F ≡ n ···F .

Both Eqs. (5.13) and (5.14) are evaluated at the exterior boundary face. In our dis-

cretization schemes, F is located on the boundary, butφ is stored at cell centers. To obtain

a boundary discretization accurate to O(∆2
x), we cannot approximate the cell-edge value

of φ with the cell-center value of φ. Instead, we introduce a temporary edge-centered φ∗,

approximating the directional derivative in the two equations with:

n ···∇∇∇φ(xb) ≈ φ∗−φ
∆/2

,

where φ is the cell-centered scalar intensity, and ∆ is the width of the cell along direction

normal to the boundary. Equations (5.13) and (5.14) then become:

q =φ+ (1−η)dr
φ∗−φ
∆/2

− ηdr

D
F̂ , (5.15a)

and

F =−[1−η]D
φ∗−φ
∆/2

+ηF̂ . (5.15b)

Eliminating φ∗ in Eqs. (5.15), we obtain an equation for the exiting radiation flux on the

boundary for the AP1approximation:

F =
[
∆/2

1−η +dr

]−1 [
Dφ−Dq −ηdr F̂

]+ηF̂ . (5.16)

Setting η= 0 gives the discretized anisotropic diffusion boundary condition:

F = [∆/2+dr ]−1 [
Dφ−Dq

]
. (5.17)

If the 2-D Marshak approximation is used for the geometry and coefficients, then

q = 4F−, r = 2, and d = D ; and Eq. (5.17) resultantly reduces to the discretized standard

diffusion boundary condition:

F = [∆/2+2D]−1 [
Dφ−4DF−]

.
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5.3 Quasidiffusion-like discretization

The discretization in §5.2 relies on discarding the components of the diffusion tensor that

lead to transverse leakage. If those components are non-negligible, i.e. in a problem with

opacities that vary strongly along both the x and y axes, we would like a more accurate

discretization scheme that preserves those components.

One scheme is an adaptation an existing difference method for quasidiffusion (QD)

that is attributed to Fryazinov [60], used by Aksenov and Gol’din [61], and implemented

in several contemporary theses on the topic of QD [62, 63]. The discretization scheme is

straightforward to derive and implement using the following procedure:

1. Let the unknown φ live at both the cell centers and the cell edges.1

2. Integrate F ···n over half of a cell, approximating it as a constant in that domain.
3. Use particle conservation to relate adjacent cells.

Applying this procedure to anisotropic diffusion does not yield the same result as

given in Ref. [62]. This is because, even though AD and QD both contain tensors in their

approximations to the radiation flux, the placement of the gradient operator ∇∇∇ differs.

Steady-state AD uses the approximation

F =−D ···∇∇∇φ

whereas steady-state QD uses the approximation

F =− 1

σ
∇∇∇···Eφ .

To apply the QD discretization to the anisotropic diffusion equation, we integrate the

Anisotropic Fick’s law, Eq. (5.5), over the right half of cell i , j as represented in Fig. 5.3.

Integrating the anisotropic Fick’s law, Eq. (5.5), over the right half of cell i , j , as rep-

resented in Fig. 5.3, gives an approximate expression for the flux exiting the right face

F x
R = F ···nR :∫ y j+1/2

y j−1/2

∫ xi+1/2

xi

nR ···F dx dy =
∫ y j+1/2

y j−1/2

∫ xi+1/2

xi

−nR ···D ···∇∇∇φdx dy

F x
R

∆x,i∆y, j

2
=−

[
1 0

][
Dxx

i , j D y x
i , j

Dx y
i , j D y y

i , j

]∫ y j+1/2

y j−1/2

∫ xi+1/2

xi

[
∂φ/∂x

∂φ/∂y

]
dx dy

1For an M × N Cartesian grid, this means M N cell-centered φ and 2M N + M + N edge-centered φ,
roughly treble the number of unknowns in the simple cell-centered difference scheme of §5.2.
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F x
R

∆x,i∆y, j

2
=−

[
Dxx

i , j D y x
i , j

][ (
φR −φi , j

)
∆y, j(

φT −φB
)
∆x,i /2

]

F x
R =−Dxx

i , j

φR −φi , j

∆x,i /2
−D y x

i , j

φT −φB

∆y, j
.

Performing the same procedure for the left side, we obtain

Figure 5.3: The right half of cell i , j .

∫ y j+1/2

y j−1/2

∫ xi

xi−1/2

nL ···F dx dy =
∫ y j+1/2

y j−1/2

∫ xi

xi−1/2

−nL ···D ···∇∇∇φdx dy

−F x
L

∆x,i∆y, j

2
=−

[
−1 0

][
Dxx

i , j D y x
i , j

Dx y
i , j D y y

i , j

]∫ y j+1/2

y j−1/2

∫ xi

xi−1/2

[
∂φ/∂x

∂φ/∂y

]
dx dy

F x
L

∆x,i∆y, j

2
=−

[
Dxx

i , j D y x
i , j

][ (
φi , j −φL

)
∆y, j(

φT −φB
)
∆x,i /2

]
dx dy

F x
L =−Dxx

i , j

φi , j −φL

∆x,i /2
−D y x

i , j

φT −φB

∆y, j
.

Rotating the coordinate system by swapping x ↔ y , T ↔ R, B ↔ L, and i ↔ j , we

obtain analogous equations for the top and bottom leakage terms:

F y
T =−D y y

i , j

φT −φi , j

∆y, j /2
−Dx y

i , j

φR −φL

∆x,i
,

F y
B =−D y y

i , j

φi , j −φB

∆y, j /2
−Dx y

i , j

φR −φL

∆x,i
.

At each interior face, we demand that the scalar intensity φ be continuous, i.e.,

φR,i , j =φL,i+1, j ≡φi+1/2, j .
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Substituting these definitions and the net leakage expressions into the conservation

equation (5.2), we obtain:

−∆x,i D y y
i , j

φi , j+1/2 −φi , j

∆y, j /2
−∆x,i Dx y

i , j

φi+1/2, j −φi−1/2, j

∆x,i
+∆x,i D y y

i , j

φi , j −φi , j−1/2

∆y, j /2

+∆x,i Dx y
i , j

φi+1/2, j −φi−1/2, j

∆x,i
−∆y, j Dxx

i , j

φi+1/2, j −φi , j

∆x,i /2
−∆y, j D y x

i , j

φi , j+1/2 −φi , j−1/2

∆y, j

+∆y, j Dxx
i , j

φi , j −φi−1/2, j

∆x,i /2
+∆y, j D y x

i , j

φi , j+1/2 −φi , j−1/2

∆y, j
+∆x,i∆y, jσa,i , jφi , j =∆x,i∆y, j qi , j .

The transverse leakage terms cancel, leaving a conservative relation between the cell-

centered φi , j and the surrounding edge-centered φ:

φi , j

(
4Dxx

i , j

∆y, j

∆x,i
+4D y y

i , j

∆x,i

∆y, j
+∆x,i∆y, jσa,i , j

)
−2Dxx

i , j

∆y, j

∆x,i

(
φi+1/2, j +φi−1/2, j

)−2D y y
i , j

∆x,i

∆y, j

(
φi , j+1/2 +φi , j−1/2

)
=∆x,i∆y, j qi , j . (5.18a)

To complete the equations for the QD-like discretization, we enforce continuity of the

radiation flux on interior faces. On the top face, we set F y
T,i , j = F y

B ,i , j+1 to obtain equations

for horizontal cell edges in the interior:

−D y y
i , j

φi , j+1/2 −φi , j

∆y, j /2
−Dx y

i , j

φi+1/2, j −φi−1/2, j

∆x,i

=−D y y
i , j+1

φi , j+1 −φi , j+1/2

∆y, j /2
−Dx y

i , j+1

φi+1/2, j+1 −φi−1/2, j+1

∆x,i
. (5.18b)

Setting F x
R,i , j = F x

L,i+1, j yields equations for the interior vertical edges:

−Dxx
i , j

φi+1/2, j −φi , j

∆x,i /2
−D y x

i , j

φi , j+1/2 −φi , j−1/2

∆y, j

=−Dxx
i+1, j

φi+1, j −φi , j

∆x,i /2
−D y x

i+1, j

φi+1, j+1/2 −φi+1, j−1/2

∆y, j
. (5.18c)

If Dx y = D y x = 0, the edge-centered φ can be algebraically eliminated without approx-

imation, and the QD-like method reduces to the simple cell-centered difference scheme

of §5.2.

Equations (5.18) give one relation for each cell and interior edge. The boundary

conditions for this discretization are simpler to derive than those in §5.2: because the
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edge-centered φ are actual unknowns, there is no need to solve for F and algebraically

eliminate the edge values in Eqs. (5.15). Only Eq. (5.13) by itself is necessary.

The greater number of unknowns inherent to this discretization are undesirable.

However, unlike the “diagonal-only” discretization from §5.2, it does not make any

approximations to the transverse leakage terms. We have used this Gol’din discretization

in our internal testing to verify the discretizations presented in the next section, but we

will not use it in our final numerical experiments.

5.4 Nine-point stencil

Because the QD-like method uses three times as many unknowns as the simple cell-

centered difference method given in §5.2, it is computationally more expensive to solve.

We desire a discretization scheme that incorporates transverse leakage but has only M N

unknowns on an M ×N structured Cartesian mesh. One way is to develop a stencil in

which the transverse leakage is approximated using both the adjacent cell and cells along

the diagonal, as depicted in Fig. 5.4.

We begin by evaluating the face-averaged normal component of the flux, F x
i+1/2, j ≡∫ y j+1/2

y j−1/2
F ···n dy . We approximate the derivative normal to the face by introducing an edge-

centered φ∗, using the same second-order difference as in §5.2, and demanding that

B,L,R,T R

B

T

L

(a) Transverse terms neglected

B,L,R,T B,R,T

R,T

B,RB,L,R

L,R,TL,T

B,L,T

B,L

(b) Nine-point stencil

Figure 5.4: Stencils for −∇∇∇···D∇∇∇φ. The leakage from each face B ,L,R,T
depends on the values of φ in each cell with the corresponding letter.
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F x
i+1/2, j be the same when from both cell i , j and cell i +1, j . Solving for F x

i+1/2, j gives a

more general version of Eq. (5.8):

F x
i+1/2, j ≈−

Dxx
i+1/2, j

∆x,i+1/2

[(
φi+1, j −φi , j

)+ Dx y
i , j /Dxx

i , j

2/∆x,i

∂φ

∂y

∣∣∣∣
x−

i+1/2

+
Dx y

i+1, j /Dxx
i+1, j

2/∆x,i+1

∂φ

∂y

∣∣∣∣
x+

i+1/2

]
,

(5.19)

where ∂φ/∂y |x−
i+1/2

is the transverse derivative of φ on the left side of the face, and

∂φ/∂y |x+
i+1/2

is the transverse derivative as viewed from the right side of the face. The

harmonically averaged diffusion coefficient is the same as in Eq. (5.9):

Dxx
i+1/2, j

∆x,i+1/2
≡

[
1

2

(
Dxx

i , j

∆x,i

)−1

+ 1

2

(
Dxx

i+1, j

∆x,i+1

)−1]−1

.

Figure 5.5 shows the net leakage from cell i , j through the right face, and the sur-

rounding cell-centered unknowns. Our goal is to approximate Eq. (5.19) using only these

cell-centered values, without introducing extra unknowns.

Figure 5.5: Diagram showing the radiation exiting interior cell i , j
through the right face.
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5.4.1 Stencil A

One approximation to the transverse derivative in Eq. (5.19) is the following second-order-

accurate centered difference:

∂φ

∂y

∣∣∣∣
x−

i+1/2

≈ φi , j+1 −φi , j−1

1
2∆y, j+1 +∆y, j + 1

2∆y, j−1
. (5.20a)

The transverse derivative on the right-hand side of the face is:

∂φ

∂y

∣∣∣∣
x+

i+1/2

≈ φi+1, j+1 −φi+1, j−1

1
2∆y, j+1 +∆y, j + 1

2∆y, j−1
. (5.20b)

When cell i , j is adjacent to the boundary in the transverse direction, we use a back-

ward difference stencil, given here in the case of evaluating the transverse leakage on the

right face of cell i , j when it is on the top boundary:

∂φ

∂y

∣∣∣∣
x−

i+1/2

≈ φi , j −φi , j−1

1
2∆y, j + 1

2∆y, j−1
.

Though this stencil is only first-order accurate, it avoids the severe implementation

penalty of involving the boundary conditions in the transverse direction.2 If the cells

adjacent to the boundary have no transverse leakage, this term is not used. (Indeed, the

boundary conditions derived in §5.2.3 require that assumption.)

5.4.2 Stencil B

A different approximation to the transverse derivatives in Eq. (5.19) is to formulate some

to-be-determined approximate edge centered φ:

∂φ

∂y

∣∣∣∣
x−

i+1/2

≈ φi , j+1/2 −φi , j−1/2

∆y, j
, (5.21a)

and
∂φ

∂y

∣∣∣∣
x+

i+1/2

≈ φi+1, j+1/2 −φi+1, j−1/2

∆y, j
, (5.21b)

or if the cell is not in the interior,

∂φ

∂y

∣∣∣∣
x−

i+1/2

≈ φi , j −φi , j−1/2

1
2∆y, j

. (5.21c)

2If second-order accuracy for the transverse leakage on the boundary is truly needed, an effective
alternative to direct boundary conditions might be the method of “ghost cells.”
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To derive an expression for φi+1, j+1/2 that depends only on cells local to i , j , we con-

sider the finite difference scheme of §5.2, in which we introduced a temporary cell-edge

unknown and discarded the off-diagonal terms of the diffusion tensor. In evaluating

Eq. (5.21a) for the transverse partial derivative in the y direction, let us apply the differ-

ence using conservation of energy, and discarding the transverse leakage terms of this

secondary equation.

The finite difference approximations coupling cell i , j ≡ B to cell i , j+1 ≡ T via leakage

through the top face, Fi , j+1/2 ≡ F are:

F =−DB
φ∗−φB

∆B /2
and F =−DT

φT −φ∗
∆T /2

,

where φ∗ ≡φi+1, j+1/2. Before, we sought to eliminate φ∗. Now we wish to solve for it as

an approximation to insert into Eq. (5.21a), which is then used in Eq. (5.19).

Multiplying the equation for the bottom face by∆B /DB and for the top face by∆T /DT ,

we obtain two equations:

−∆B /2

DB
F =φ∗−φB and − ∆T /2

DT
F =φT −φ∗ .

Adding them eliminates gives the standard finite-difference approximation for F , seen in

§5.2:

F =−
(
∆B /2

DB
+ ∆T /2

DT

)−1 (
φT −φB

)
,

and subtracting the second from the first gives an equation from which to solve for φ∗:

−∆B /2

DB
F + ∆T /2

DT
F = 2φ∗− (φB +φT ) .

Solving these two equations for φ∗, we obtain the following expression:

φ∗ = ∆B /DB

∆T /DT +∆B /DB
φT + ∆T /DT

∆T /DT +∆B /DB
φB . (5.22)

This equation approximates the cell-edge φ in the transverse direction as:

φi , j+1/2 ≈
D y y

i , j /∆y, j

D y y
i , j+1/∆y, j+1 +D y y

i , j /∆y, j
φi , j+1 +

D y y
i , j+1/∆y, j+1

D y y
i , j+1/∆y, j+1 +D y y

i , j /∆y, j
φi , j ,
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and

φi , j−1/2 ≈
D y y

i , j−1/∆y, j−1

D y y
i , j /∆y, j +D y y

i , j−1/∆y, j−1
φi , j +

D y y
i , j /∆y, j

D y y
i , j /∆y, j +D y y

i , j−1/∆y, j−1
φi , j−1 .

These edge values are then introduced into Eqs. (5.21) to approximate the transverse

leakage through a face normal to the x axis. In the interior, then,

∂φ

∂y

∣∣∣∣
x−

i+1/2

≈ φi , j+1/2 −φi , j−1/2

∆y, j

= 1

∆y, j

[ D y y
i , j /∆y, j

D y y
i , j+1/∆y, j+1 +D y y

i , j /∆y, j
φi , j+1 +

D y y
i , j+1/∆y, j+1

D y y
i , j+1/∆y, j+1 +D y y

i , j /∆y, j
φi , j

−
D y y

i , j−1/∆y, j−1

D y y
i , j /∆y, j +D y y

i , j−1/∆y, j−1
φi , j −

D y y
i , j /∆y, j

D y y
i , j /∆y, j +D y y

i , j−1/∆y, j−1
φi , j−1

]
.

If the anisotropic diffusion coefficients are homogeneous and the grid is uniform,

Eq. (5.22) and Eqs. (5.21) simplify to Eqs. (5.20). The nine-point stencil for −∇∇∇ ··· ∇∇∇φ
becomes:

1
2 Dx yφi−1, j+1 −D y yφi , j+1 −1

2 Dx yφi+1, j+1

−D y yφi−1, j +(
2Dxx +2D y y)

φi , j −Dxxφi+1, j

−1
2 Dx yφi−1, j−1 −D y yφi , j−1 +1

2 Dx yφi+1, j−1 .

5.5 Summary

We have derived several discretizations of the anisotropic diffusion and anisotropic P1

equations. The first simple discretization, in which transverse leakage is neglected, is

a minor modification of existing cell-centered difference schemes. The second quasi-

diffusion-like scheme is a new application of an existing methodology, but it undesirably

introduces additional unknowns. (We have used this scheme internally to compare

against other discretizations, but we will not employ it further.) The final discretization

scheme is, as far as we are aware, a novel extension of standard cell differencing. It

accounts for the “transverse leakage” introduced by the off-diagonal components of the

diffusion tensor, yet it retains the compact unknown space of simple cell-centered finite

difference methods.
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Chapter 6

Flatland geometry

“Flatland” is a fictional two-dimensional universe where particles are constrained to exist

and travel in a 2-D plane [6]. Because the flatland phase space is (x, y,ω) with one angular

variable (the azimuthal ω), rather than the standard 2-D (x, y,µ,ω) with two angular

variables (the polar cosine µ and the azimuthal ω), flatland is a computationally simpler

testing ground that retains the complexity of multidimensional geometry. For this reason,

flatland has recently been used in the development and testing of multi-D transport

methods, including the new anisotropic diffusion method [2, 64, 9, 3].

Previous work has shown that the 3-D diffusion coefficient 1
3σ differs from the flat-

land diffusion coefficient 1
2σ , but accurate boundary conditions for the flatland diffusion

equations have not been derived. An accurate diffusion boundary condition is needed

for benchmarking new transport methods, such as anisotropic diffusion, against diffu-

sion solutions. Thus, in this chapter we derive “Marshak” and “variational” boundary

conditions for the flatland diffusion equation. We also present Monte Carlo sampling

algorithms tailored to flatland geometry, as well as a description of how 2-D SN transport

can be easily adapted to flatland.

These methods are implemented in flatland primarily for the purpose of comparison

with the new anisotropic diffusion methods. We briefly derive the AD approximation in

flatland geometry for use in our benchmark problems.

6.1 Transport

To briefly illustrate the difference between flatland and 2-D geometry, we view an infinite

gap between two materials. The flatland problem and the two-dimensional cross section

are identical, shown in Fig. 6.1. However, in the 2-D case, the figure is merely a slice of a

three-dimensional problem in which the two gray rectangles and the gap are infinite in

extent (Fig. 6.2). In the flatland case, the polar angle θ is effectively fixed at θ =π/2, i.e.,

µ= cosθ = 0.
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Figure 6.1: The infinite gap as represented on paper. The gap is a distance
τ across, ω is the azimuthal angle, and s is the distance across the gap.

Figure 6.2: A 3-D view of the “2-D” infinite gap. The polar angle cosine is
µ= cosθ, and the azimuthal angle is ω.

Because the time-dependent and nonlinear terms of thermal radiative transfer are not

affected by the choice of geometry, we constrain our discussion in this section to steady-

state transport. Our application of the flatland transport equation has only isotropic

emission (and “pseudo-scattering” if the linearized transport equation is used), so we

limit our study to the case of isotropic scattering.
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To begin, we write the steady-state transport equation with isotropic scattering in a

“general geometry” form valid both for flatland and real space (1-D, 2-D, and 3-D):

Ω ···∇∇∇I (x ,Ω)+σ(x)I (x ,Ω) = c(x)σ(x)

γ0
φ(x)+ 1

γ0
q(x) , x ∈V , Ω ∈ S . (6.1a)

Here, we use the following definitions:

I (x ,Ω) = the steady-state angular intensity,

Ω= the unit direction vector,

S = the domain of the direction vector (the “unit sphere”),

γn = the nth angular moment,

c(x) = the scattering ratio, and

φ(x) = the scalar intensity, i.e. the zeroth angular moment of I .

The direction vectors Ω and domains S are presented in Table 6.1, and the moments

γ0 are evaluated in Table 6.2. The transport equation has a specified incident radiation

boundary:

I (x ,Ω) = I b(x ,Ω) x ∈ ∂V , Ω ···n < 0. (6.1b)

The “unit sphere”—the domain of the unit directionΩ—differs among the geometries.

In 3-D, the direction variable is a unit vector, ‖Ω‖ = 1, so valid angles lie on the surface

of a sphere of unit radius. In 2-D, those angles are projected onto a slice through the

sphere’s middle, so that ‖Ω‖ ≤ 1: valid angles are on a unit disc. Angles on the edge of the

disc—the unit circle—represent particles traveling along the slice, and angles inside the

unit circle are the projection of 3-D angles traveling with a non-zero polar angle cosine.

Flatland geometry allows only angles on the unit circle, ‖Ω‖ = 1.

Geometry Ω Domain S dΩ

1-D µ −1 ≤µ≤ 1 dµ
2-D

√
1−µ2 cosωi +√

1−µ2 sinω j −1 ≤µ≤ 1, 0 ≤ω< 2π dµdω
Flatland cosωi + sinω j 0 ≤ω< 2π dω

3-D µi +√
1−µ2 cosω j +√

1−µ2 sinωk −1 ≤µ≤ 1, 0 ≤ω< 2π dµdω

Table 6.1: Angular variables in the various geometries.
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Geometry γ0 ≡
∫

S dΩ γ1 ≡
∫

S |Ω ··· i |dΩ γ2 ≡
∫

S(Ω ··· i )2 dΩ

1-D 2 1 2
3

2-D 4π 2π 4π
3

Flatland 2π 4 π

3-D 4π 2π 4π
3

Table 6.2: Angular moments in each geometry.

6.1.1 Monte Carlo sampling

In numerically testing the anisotropic diffusion approximation, we use Monte Carlo meth-

ods (with a very large number of particles) to generate the reference solutions. The Monte

Carlo method approximates the transport equation by tracking the random histories of

statistically large numbers of particles as they traverse a problem. The behavior during

their lifetime depends on probability distribution functions (PDFs) that describe how

they are born, how far they travel without a collision, how they behave when they collide,

and others [46, 22].

In this section, we form and discuss the probability distributions particular to flatland

geometry. We briefly derive those PDFs, integrate them to get cumulative distribution

functions (CDFs), and use the direct inversion method to show how a uniformly sampled

pseudo-random number ξ ∈ [0,1) may be used to determine particle behavior in flatland.

Because the geometry tracking routines of steady state Monte Carlo and Fleck and Cum-

mings’ IMC are identical, the results in this section are applicable to any flatland Monte

Carlo implementation.

Isotropic volume source

A particle emitted from an isotropic internal source, whether an extraneous radiation

source or an indirect isotropic scattering event, has an equal probability of entering any

angle. In any geometry, the normalized PDF that represents this process is

f (Ω)dΩ=αdΩ , Ω ∈ S ,

where S is the angular domain of the geometry (see Table 6.1), and α is a normalization

constant. Requiring the PDF to integrate to unity over its domain gives the following

value for α in any geometry:

1 =
∫

S
f (Ω)dΩ=α

∫
S

dΩ=αγ0 =⇒ α= 1

γ0
.
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Thus, the angular distribution of an isotropic volume source is

f (Ω)dΩ= dΩ

γ0
, Ω ∈ S . (6.2)

In 2-D, using the identities from Tables 6.1 and 6.2, Eq. (6.2) evaluates to the familiar

f (µ,ω)dµdω= dµdω

4π
= dµ

2

dω

2π
, −1 ≤µ≤ 1, 0 ≤ω< 2π ,

which, integrated, yields the separable CDF

F (µ,ω) = F1(µ)F2(ω) = 1+µ
2

ω

2π
, −1 ≤µ≤ 1, 0 ≤ω< 2π .

Setting two uniformly sampled random numbers ξ1 = F1(µ) and ξ2 = F2(ω), solving for µ

and ω, and introducing them back into the 2-D representation ofΩ, we obtain the new

direction for an isotropically emitted particle in 2-D:

Ω=
√

1−µ2 cosωi +
√

1−µ2 sinω j

=
√

1− (2ξ1 −1)2 cos(2πξ2)i +
√

1− (2ξ1 −1)2 sin(2πξ2) j .

In flatland, Eq. (6.2) becomes the simpler

f (ω)dω= dω

2π
, 0 ≤ω< 2π ,

yielding the CDF

F (ω) = ω

2π
, 0 ≤ω< 2π , (6.3)

Setting ξ1 = F (ω) and solving for ω= F−1(ξ1) gives the following simple relation between

an isotropically sampled angle ω and a uniformly sampled random number ξ1:

ω= 2πξ1 .

The flatland particle’s new angle is therefore

Ω= cosωi + sinω j = cos(2πξ1)i + sin(2πξ1) j .

With only one independent variable that needs sampling, and the omission of the

transcendental operation
√

1−µ2, the computational cost of a scattering event is less in

flatland than in 2-D, leading to faster simulation times.
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Isotropic surface source

Particles emitted from an isotropic surface source have a cosine distribution [65], in

which the partial first moment in each differential angle is constant. The PDF for a

surface source is

f (Ω)dΩ=α |Ω ···n|dΩ , Ω ···n < 0,

where α is a normalization constant. We obtain α by integrating over the angular domain

and substituting the angular moments from Table 6.2:

1 =
∫
Ω···n<0

[α |Ω ···n|]dΩ

1 = α

2

∫
S
|Ω ···n|dΩ

α= 2

γ1
.

Thus, the normalized PDF for an isotropic surface source is

f (Ω)dΩ= 2

γ1
|Ω ···n|dΩ , Ω ···n < 0. (6.4)

In 3-D, choosing n = i , the isotropic surface PDF is

f (µ,ω)dµdω= 1

π
µdµdω= (2µdµ)

dω

2π
,

which gives the separable CDF

F (µ,ω) =µ2 ω

2π
.

The sampled directions are thus µ=√
ξ1 and ω= 2πξ2.

In flatland, the surface source distribution is different. Let us choose n =− j so that

emitted particles have azimuthal angles in the range ω ∈ [0,π). Applying the flatland

identities in Tables 6.1 and 6.2 to Eq. (6.4), we obtain the following surface source PDF for

flatland:

f (ω)dω= 2

4
|−sinω|dω= 1

2
sinωdω , 0 ≤ω<π .

The corresponding CDF is

F (ω) = 1

2
(1−cosω) , 0 ≤ω<π . (6.5)
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Solving for ω= F−1(ξ1) gives the sampled azimuthal angle for a surface source in flatland:

ω= cos−1(1−2ξ1) .

Finally, we insert this sampled angle into the flatland direction vector Ω and use the

identity cos2ω+ sin2ω = 1 to obviate the trigonometric functions. Thus the sampled

direction of a particle from an isotropic surface source is:

Ω= cosωi + sinω j

= cos[cos−1(1−2ξ1)]i + sin[cos−1(1−2ξ1)] j

= (1−2ξ1)i +
√

1− (1−2ξ1)2 j .

6.1.2 Discrete ordinates quadrature

A standard practice in two-dimensional discrete ordinates (SN ) solvers is to create a

quadrature set with polar angles that encompass only the top half of a unit sphere,

µ> 0, and to modify the ordinate weights so that they sum to 4π [66]. Well-constructed

quadrature sets will also correctly integrate the spherical harmonic functions [67] over

the unit sphere. The odd spherical harmonic functions will automatically integrate to

zero, and the even functions are linear combinations of the even angular moments of

Table 6.2:

γn =
M∑

m=1
|Ωm ··· i |n wm =

∫
S
|Ω ··· i |n dΩ , n even.

Most quadrature sets do not exactly integrate partial odd moments.

The most straightforward way to implement a flatland SN code with only isotropic

scattering is to use an existing 2-D SN code with a special quadrature set consisting of

ordinates that have a single polar angle µ= 0. Using a Chebyshev–Gauss quadrature of

the first kind [68] for the azimuthal angles will preserve the flatland angular moments,

γn =
M∑

m=1
sinn θm wm =

∫
2π

sinn θdθ , n even.

A quadrature set with 2M total ordinates (i.e., M per two octants, the standard nomencla-

ture for discrete ordinates quadratures) will exactly integrate the first 2M −1 polynomials

of sinθ. The procedure to calculate a Chebyshev quadrature set for the first quadrant is:

1. Solve for the roots of an M-order Chebyshev polynomial of the first kind on [−1,1].
Discard the negative roots.
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2. Take the inverse sine of the positive roots. These M/2 roots are the ordinate direc-
tions θm in the first quadrant.

3. Assign the uniform weight wm = π
M .

For ease of implementation, we normalized the quadrature weights so that they sum

to 4π instead of 2π. This allows flatland quadrature sets to be used in an existing 2-

D discrete ordinates code in which the scattering kernel expects the quadrature set

to be normalized to 4π. Table 6.3 gives several orders of the Chebyshev quadrature

set with sixteen digits of precision; a more extensive and computer-readable set of

ordinates is available online at https://github.com/sethrj/PyTRT/blob/master/

tools/python/qs/cgvalues2.json.

In order to demonstrate the effect of this weight renormalization, let us consider

the calculation of the anisotropic diffusion tensor in a homogeneous medium. The

purely absorbing flatland transport problem has the solution f (Ω) = 1
2πσ , which yields

the diffusion coefficient

D =
∫ 2π

0
ΩΩ f (Ω)dω= 1

2σ
I .

In an SN calculation implemented with modified quadrature weights, the transport

solution for each angle m will yield fm = 1
4πσ , and the quadrature integration will yield

D =
M∑

m=1
ΩmΩm fm wm = 1

2σ
I .

This implementation therefore will calculate correct low-order angular moments of the

transport solution, but the apparent value of each fm is one half the correct value. Thus,

for example, visualizing the SN solution by plotting fm as a function of ωm requires

multiplying by a factor of two.

6.1.3 Thermal radiative transfer

To describe incident boundary conditions in thermal radiative transfer problems, the

typical approach is to specify the radiation temperature [see Eq. (2.4)] on the boundary

rather than the incident radiation flux. The boundary radiation temperature is equivalent

to having an infinite homogeneous medium just outside the boundary with the black-

body scalar intensity φ = acT 4
rad. (A problem with these boundary conditions will be

at thermal equilibrium when it has (i) a homogeneous material temperature T , (ii) a

homogeneous radiation temperature Trad = T , (iii) a boundary radiation temperature

Trad = T , and (iv) no extraneous sources. The amount of energy exiting the boundary is

equal to the amount emitted into the problem by the radiation boundary.)
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M = 2, w =π
ω0 = 0.7853981633974483

M = 4, w =π/2

ω0 = 0.3926990816987241
ω1 = 1.1780972450961724

M = 8, w =π/4

ω0 = 0.1963495408493621
ω1 = 0.5890486225480862
ω2 = 0.9817477042468103
ω3 = 1.3744467859455345

M = 16, w =π/8

ω0 = 0.0981747704246810
ω1 = 0.2945243112740431
ω2 = 0.4908738521234052
ω3 = 0.6872233929727672
ω4 = 0.8835729338221293
ω5 = 1.0799224746714915
ω6 = 1.2762720155208536
ω7 = 1.4726215563702156

M = 32, w =π/16

ω0 = 0.0490873852123405
ω1 = 0.1472621556370216
ω2 = 0.2454369260617026
ω3 = 0.3436116964863836
ω4 = 0.4417864669110647
ω5 = 0.5399612373357457
ω6 = 0.6381360077604268
ω7 = 0.7363107781851078
ω8 = 0.8344855486097889
ω9 = 0.9326603190344699
ω10 = 1.0308350894591509
ω11 = 1.1290098598838318
ω12 = 1.2271846303085130
ω13 = 1.3253594007331939
ω14 = 1.4235341711578751
ω15 = 1.5217089415825562

M = 64, w =π/32

ω0 = 0.0245436926061703
ω1 = 0.0736310778185108
ω2 = 0.1227184630308513
ω3 = 0.1718058482431918
ω4 = 0.2208932334555323
ω5 = 0.2699806186678729
ω6 = 0.3190680038802134
ω7 = 0.3681553890925539
ω8 = 0.4172427743048944
ω9 = 0.4663301595172349
ω10 = 0.5154175447295755
ω11 = 0.5645049299419159
ω12 = 0.6135923151542565
ω13 = 0.6626797003665970
ω14 = 0.7117670855789375
ω15 = 0.7608544707912781
ω16 = 0.8099418560036186
ω17 = 0.8590292412159591
ω18 = 0.9081166264282996
ω19 = 0.9572040116406402
ω20 = 1.0062913968529807
ω21 = 1.0553787820653211
ω22 = 1.1044661672776617
ω23 = 1.1535535524900022
ω24 = 1.2026409377023428
ω25 = 1.2517283229146832
ω26 = 1.3008157081270237
ω27 = 1.3499030933393643
ω28 = 1.3989904785517049
ω29 = 1.4480778637640452
ω30 = 1.4971652489763858
ω31 = 1.5462526341887264

Table 6.3: Chebyshev–Gauss flatland quadrature sets. Orders 2, 4, 8, 16,
32, and 64 are given for the first quadrant. The weights in each order are
equal and sum to 4π.
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The equilibrium intensity is, using the notation of Table 6.2,

I (x ,Ω, t ) = acT 4
rad

γ0
.

The incident black-body radiation flux is then

F− =
∫
Ω···n<0

(Ω ···n)

[
acT 4

rad

γ0

]
dΩ= γ1

2

acT 4
rad

γ0
. (6.6)

In 1-D, 2-D, and 3-D, this gives the physical incident rate of energy from a black body

boundary source:

F− = 1

4
acT 4

rad . (6.7)

In flatland, Eq. (6.6) evaluates to a different incident rate:

F− = 1

π
acT 4

rad . (6.8)

6.2 Diffusion

An accurate flatland diffusion formulation is needed for benchmarking the anisotropic

diffusion approximation against diffusion solutions. In the following section we derive

“Marshak” and “variational” boundary conditions for the flatland diffusion equation. (A

summary of this original work is published in Ref. [7].)

The difference between diffusion in flatland and 2-D results from the angular mo-

ments in the two geometries, which are defined (and evaluated in Table 6.2) as:

γn ≡
∫

S
|Ω ··· i |n dΩ .

These give rise not only to a different diffusion coefficient in the interior but also different

boundary conditions.

6.2.1 Interior diffusion approximation

The diffusion approximation begins by assuming that I is linear in angle:

I (x ,Ω) ≈ f (x)+Ω ···g (x) .
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The zeroth angular moment of I determines f :

φ=
∫

S
I dΩ=

∫
S

(
f +Ω ···g

)
dΩ=

∫
S

dΩ f +0 = γ0 f ,

and the first moment of I determines g :

F =
∫

S
ΩI dΩ= f

∫
S
ΩdΩ+g ···

∫
S
ΩΩdΩ= γ2g .

This is the P1 approximation to the radiation intensity:

I (x ,Ω) ≈ 1

γ0
φ(x)+ 1

γ2
Ω ···F (x) . (6.9)

The diffusion approximation is a closure for the first angular moment of the transport

equation. Operating on Eq. (6.1a) by
∫

SΩ(·)dΩ and substituting the approximation in

Eq. (6.9) reduces the first angular moment of the transport equation to the following:

∇∇∇···
∫

S
ΩΩI dΩ+σ

∫
S
ΩI dΩ= cσ

γ0
φ

∫
S
ΩdΩ+ 1

γ0
q

∫
S
ΩdΩ

∇∇∇···
∫

S
ΩΩ

(
1

γ0
φ+ 1

γ2
Ω ···F

)
dΩ+σF = 0

1

γ0
∇∇∇···

∫
S
ΩΩdΩφ+σF = 0

γ2

γ0
∇∇∇φ+σF = 0.

Solving for F gives Fick’s law, expressed in the general form:

F (x) =−γ2

γ0

1

σ(x)
∇∇∇φ(x) ≡−D(x)∇∇∇φ(x) . (6.10)

In 2-D and 3-D, γ2/γ0 = (4π/3)/(4π) = 1/3; in flatland, γ2/γ0 =π/(2π) = 1/2. Thus, D = 1
3σ

in 2-D but D = 1
2σ in flatland.

Substituting Fick’s law into the linear-in-angle approximation, Eq. (6.9), we obtain the

diffusion approximation to the angular intensity:

I (x ,Ω) ≈ 1

γ0
φ(x)+ 1

γ2
Ω ···

[
−γ2

γ0

1

σ(x)
∇∇∇φ(x)

]
I (x ,Ω) = 1

γ0

[
φ(x)− 1

σ(x)
Ω ···∇∇∇φ(x)

]
. (6.11)
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In physical geometry this is the standard diffusion approximation

I (x ,Ω) = 1

4π

[
φ(x)− 1

σ(x)
Ω ···∇∇∇φ(x)

]
,

and in flatland, the diffusion approximation is

I (x ,Ω) = 1

2π

[
φ(x)− 1

σ(x)
Ω ···∇∇∇φ(x)

]
. (6.12)

6.2.2 Marshak boundary condition

The Marshak boundary condition [69] preserves the incident radiation flux (the partial

first moment for incoming directions) on the boundary. It is derived by substituting the

approximate diffusion intensity from Eq. (6.11) into the boundary condition, Eq. (6.1b),

multiplying by |Ω ···n|, and integrating over incident directions:∫
Ω···n<0

|Ω ···n| I b dΩ=
∫
Ω···n<0

|Ω ···n| 1

γ0

[
φ− 1

σ
Ω ···∇∇∇φ

]
dΩ

F− = 1

γ0
φ

(∫
Ω···n<0

|Ω ···n|dΩ
)
− 1

γ0

1

σ

(∫
Ω···n<0

[−Ω ···n]ΩdΩ

)
···∇∇∇φ

F− = 1

γ0
φ

(γ1

2

)
+ 1

γ0

1

σ

(
n ··· γ2

2
I
)
···∇∇∇φ

F− = γ1

2γ0
φ+ γ2

2γ0

1

σ
n ···∇∇∇φ .

This is the Marshak diffusion boundary condition:

2γ0

γ1
F− =φ+ γ2

γ1

1

σ
n ···∇∇∇φ . (6.13)

The value

γ2

γ1
=


2
3 ≈ 0.6667 in 1-D, 2-D, 3-D; and

π
4 ≈ 0.7854 in flatland,

is the Marshak extrapolation distance. The physical reason for the longer extrapolation

distance in flatland is that in 2-D, a greater fraction of particles travel at a steep angle to

the x, y-plane, yielding a steeper slope for φ on the boundary.

We can also rewrite the Marshak boundary condition in terms of the diffusion coeffi-

cient by substituting D from Eq. (6.10):

2γ0

γ1
F− =φ+ γ0

γ1
Dn ···∇∇∇φ .
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In 1-D, 2-D, and 3-D geometries, this is the standard Marshak boundary condition

4F− =φ+2Dn ···∇∇∇φ .

In flatland, it is the following:

πF− =φ+ π

2
Dn ···∇∇∇φ . (6.14)

6.2.3 Variational boundary condition

The Marshak boundary condition is heuristic: it attempts only to conserve the rate of

energy entering through the boundary. A more accurate boundary condition recognizes

that the diffusion approximation is an asymptotic limit of the transport equation and uses

an asymptotic matched boundary layer analysis to relate the transport solution on the

boundary to the diffusive solution in the interior. However, a simpler (than asymptotic)

method of deriving a more accurate (than Marshak) boundary condition is to use a

variational analysis [53]. A shorter but equivalent analysis, adapted to flatland geometry,

follows.

We consider a homogeneous, source-free (q = 0), purely scattering (c = 1) transport

problem in a semi-infinite flatland plane.1 The transport equation (6.1a) becomes

cosω
∂I

∂x
+ sinω

∂I

∂y
+σI = σ

2π

∫ 2π

0
I dω′ , −∞< x <∞, 0 ≤ y <∞, 0 ≤ω< 2π . (6.15a)

It has a uniform incident boundary condition,

I (x,0,ω) = I b(ω) , −∞< x <∞, 0 ≤ω<π . (6.15b)

Because neither the boundary condition nor σ varies in x, ∂I /∂x = 0, and Eq. (6.15a)

reduces to a one-dimensional flatland transport equation:

sinω
∂

∂y
I (y,ω)+σI (y,ω) = σ

2π

∫ 2π

0
I (y,ω′)dω′ . (6.16)

This is not the 1-D planar geometry transport equation.

1The justification for setting c = 1 and q = 0 relates to the asymptotic scaling used to derive diffusion
from the transport equation: both q and 1− c are O(ε2) quantities [53].
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We define the y components of the angular moments of I as

φm(y) =
∫ 2π

0
(Ω ··· j )m I (y,ω)dω=

∫ 2π

0
(sinω)m I (y,ω)dω . (6.17)

As y →∞, the intensity I approaches a constant ϕ/2π, which gives φ0(∞) = φ(∞) ≡ϕ.

Concordantly, φ1(∞) = 0.

Operating on the transport equation by
∫ 2π

0 (sinω)m(·)dω gives the mth angular mo-

ment in the y direction:

∂

∂y

∫ 2π

0
(sinω)m+1I dω+σ

∫ 2π

0
(sinω)m I dω= σ

2π

∫ 2π

0
I dω′

∫ 2π

0
(sinω)m dω

∂φm+1

∂y
+σφm = σ

2π
φ0

∫ 2π

0
(sinω)m dω . (6.18)

For m = 0, the conservation equation, Eq. (6.18) evaluates to

∂φ1

∂y
+σφ0 = σ

2π
φ0(2π) =⇒ ∂φ1

∂y
= 0.

Thus, the radiation flux is a constant, and because φ1(∞) = 0, that constant is zero.

Physically, φ1 = 0 means that at every point, the rate of energy being transferred away

from the boundary is balanced by energy moving toward the boundary. This logically

follows from the lack of absorption in the problem: at steady-state, the only means of

energy loss is through exiting the boundary.

Evaluating Eq. (6.18) for m = 1 and using the result that φ1 = 0, we obtain

∂φ2

∂y
+σφ1 = σ

2π
φ0(0) =⇒ ∂φ2

∂y
= 0.

Thus φ2 is also a constant. At large distances from the boundary, y →∞, the radiation

assumes an isotropic distribution, I →ϕ/2π. From these two facts we relate the second

angular moment throughout the problem to the equilibrium scalar intensity ϕ:

φ2 =
∫ 2π

0
(sinω)2 ϕ

2π
dω= 1

2
ϕ .

Since φ1 = 0, we can add αφ1 to the previous equation for any α:

αφ1 +φ2 = ϕ

2∫ 2π

0
(αsinω+ sin2ω)I (y,ω)dω= ϕ

2
.
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At the boundary y = 0, I = I b for incident angles 0 ≤ω< π. The variational analysis in

Ref. [53] reveals that certain trial functions allow an exiting angular distribution that is

isotropic to second order accuracy, so we make the “variational” approximation that

I (0,ω) = I out. The previous equation then becomes∫ π

0
(αsinω+ sin2ω)I b(ω)dω+

∫ 2π

π
(αsinω+ sin2ω)dωI out = ϕ

2
.

The value α=π/4 eliminates the integral over outgoing directions and gives the following

relation between moments of the incident angular intensity and the magnitude of the

intensity as y →∞:

ϕ= 2
∫ π

0

(π
4

sinω+ sin2ω
)

I b(ω)dω . (6.19)

We wish our boundary condition to preserve the value ofϕwhen the diffusion method

is used, so we substitute the diffusion approximation, Eq. (6.12):

ϕ= 2
∫ π

0

(π
4

sinω+ sin2ω
)

I b(ω)dω

= 2
∫ π

0

(π
4

sinω+ sin2ω
)(

1

2π
φ− 1

σ
sinω

∂φ

∂y

)
dω

= 1

2π

∫ π

0

(π
2

sinω+2sin2ω
)

dωφ− 1

2π

∫ π

0

(π
2

sin2ω+2sin3ω
)

dω
1

σ

∂φ

∂y

= 1

2π

(π
2

[2]+2
π

2

)
φ− 1

2π

(
π

2

[π
2

]
+2

[
4

3

])
1

σ

∂φ

∂y

=φ−
(
π

8
+ 4

3π

)
1

σ

∂φ

∂y
.

In this problem, the boundary surface outer normal is n =− j . Replacing sinωwith −Ω···n,

we obtain the following flatland variational boundary condition:∫
Ω···n<0

[π
2
|Ω ···n|+2(Ω ···n)2

]
I b(x ,Ω)dΩ=φ(x)−

(
π

8
+ 4

3π

)
1

σ
n ···∇∇∇φ(x) . (6.20)

Compared to the flatland Marshak boundary condition, Eq. (6.14), the variational bound-

ary condition not only yields a different extrapolation distance π
8 + 4

3π ≈ 0.8171 but also

uses a different angular moment of the incident boundary flux.
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6.2.4 Generalization

We recall from the discussion of boundary conditions in Chapter 3 that to eliminate the

boundary layer solution in the interior of a 3-D problem, the necessary condition is∫
Ω···n<0

W (|Ω ···n|)Ibl(x ,Ω)dΩ= 0, x ∈ ∂V , Ω ···n < 0, (6.21)

where W is related to Chandrasekhar’s H-function [55] and can be approximated by a

variationally-derived polynomial W2:

W (µ) =
p

3

2
µH(µ) ≈W2(µ) ≡µ+ 3

2µ
2 , 0 <µ≤ 1. (6.22)

The exact extrapolation distance is the first moment of W :

z0 =
∫ 1

0
µW (µ)dµ≈ 0.7104,

and the variational approximation gives the following extrapolation distance:

z0 ≈
∫ 1

0
µW2(µ)dµ= 17

24 ≈ 0.7083.

Similarly, the 3-D Marshak boundary condition uses

W (µ) ≈W1(µ) ≡ 2µ ,

which gives the Marshak extrapolation distance

z0 ≈
∫ 1

0
µW1(µ)dµ= 2

3 ≈ 0.6667.

In our analysis of flatland boundary conditions, we have essentially investigated

an equivalent of the W function for flatland. This new function, which we term “V ”,

preserves the interior solution in a purely scattering flatland half-space:∫
Ω···n<0

V (|Ω ···n|)I b(x ,Ω)dΩ=
∫
Ω···n<0

V (|Ω ···n|)Iapprox(x ,Ω)dΩ . (6.23)

The “true” function V might be calculable, for example, by using a singular eigenvalue

solution [70] of Eq. (6.16), but we instead used a “variational” analysis and the standard

Marshak treatment to approximate V .

We define V (µ) on the domain 0 < µ ≤ 1, where for our purposes µ = |Ω ···n|, and
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normalize the function and its approximations so that in flatland geometry:∫
Ω···n<0

V (|Ω ···n|)dΩ=
∫ π

0
V (sinω)dω= 1.

The approximations to V should also have this normalization. Analogous to the W

function, the flatland extrapolation distance is the first moment of V :

z0 =
∫
Ω···n<0

|Ω ···n|V (|Ω ···n|)dΩ=
∫ π

0
V (sinω)sinωdω .

The flatland Marshak approximation uses only the first angular moment, which, after

normalization, is:

V1(µ) ≡ 1

2
µ , 0 <µ≤ 1, (6.24)

giving the flatland Marshak extrapolation distance

z0 =
∫ π

0
V1(sinω)sinωdω= π

4
≈ 0.7854.

The variational analysis yielded the following two-term approximation to V :

V2(µ) ≡ 1

2
µ+ 1

π
µ2 , 0 <µ≤ 1. (6.25)

The resulting flatland variational extrapolation distance is:

z0 =
∫ π

0
V2(sinω)sinωdω= π

8
+ 4

3π
≈ 0.8171.

Using the variational V (µ) ≈V2(µ) with the diffusion approximation, Eq. (6.12), we

obtain Eq. (6.20). With the Marshak V (µ) ≈V1(µ), the result is the less accurate Eq. (6.14).
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6.3 Anisotropic diffusion

The anisotropic diffusion method presented in Chapter 3 needs little modification to

be formulated in the flatland geometry. The most notable change is in formulating the

low-order boundary conditions, which use the flatland function “V ” rather than the 3-D

Chandrasekhar “W .”

We begin with the time-dependent transport equation in the general-geometry form,

1

c

∂I

∂t
(x ,Ω, t )+Ω ···∇∇∇I (x ,Ω, t )+σ(x)I (x ,Ω, t )

= σs(x)

γ0

∫
S

I (x ,Ω′, t )dΩ′+ q(x , t )

γ0
, x ∈V , Ω ∈ S, t ≥ 0, (6.26a)

with specified incident boundary conditions

I (x ,Ω, t ) = I b(x ,Ω, t ) , x ∈ ∂V , Ω ···n < 0, t > 0, (6.26b)

and the initial condition

I (x ,Ω,0) = I i (x ,Ω) , x ∈V , Ω ∈ S . (6.26c)

In flatland, the unit sphere S is 0 ≤ω< 2π,Ω lives on the unit circle, and γ0 = 2π.

As before, we write the transport solution as a superposition of an interior solution

(far from initial conditions and exterior boundaries), a boundary layer solution, and an

initial layer solution.

I (x ,Ω, t ) ≡ Iv(x ,Ω, t )+ Ibl(x ,Ω, t )+ Iil(x ,Ω, t ) . (6.27)

See §3.1 for a review of the relationship between the three transport equations.

6.3.1 Interior approximation

The interior transport equation is

1

c

∂Iv

∂t
(x ,Ω, t )+Ω···∇∇∇Iv(x ,Ω, t )+σ(x)Iv(x ,Ω, t ) = σs(x)

γ0

∫
S

Iv(x ,Ω′, t )dΩ′+ q(x , t )

2π
. (6.28)

The zeroth moment,
∫

S(·)dΩ, is the conservation equation:

1

c

∂φ

∂t
(x , t )+∇∇∇···F (x , t )+σ(x)φ(x , t ) =σs(x)φ(x , t )+q(x , t ) . (6.29)
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This equation is identical to the 3-D conservation equation in Eq. (3.5) because
∫

S dΩ= γ0.

Multiplying the conservation equation by 1
γ0

and subtracting from Eq. (6.28), we

cancel the isotropic sources on the right-hand side to obtain[
1

c

∂

∂t
+Ω ···∇∇∇+σ

](
Iv − 1

γ0
φ

)
= 1

γ0
∇∇∇···F − 1

γ0
Ω ···∇∇∇φ .

As before, we take the scaling that, in the interior, the intensity has weak gradients in

space, very weak gradients in time, and only mild anisotropy:

σ=O(1), I =O(1),
∫

S
ΩI dΩ=O(ε), ∇∇∇I =O(ε),

∂I

∂t
=O(ε2) . (6.30)

With this scaling, the time derivative and ∇∇∇···F are O(ε2), and we discard them to obtain

the following asymptotically valid approximation:

[Ω ···∇∇∇+σ]

(
Iv − 1

γ0
φ

)
=− 1

γ0
Ω ···∇∇∇φ .

Formally inverting the left-hand side gives the approximate interior intensity:

Iv = 1

γ0
φ− [Ω ···∇∇∇+σ]−1

(
1

γ0
Ω ···∇∇∇φ

)
.

The inverse expression has the interpretation of an integral transport equation, given in

Eqs. (3.11). It is independent of geometry, so we expand the nonlocal φ and discard the

O(ε2) and higher terms to obtain:

Iv = 1

γ0
φ−

(
[Ω ···∇∇∇+σ]−1 1

γ0

)
Ω ···∇∇∇φ .

We define the parenthesized quantity to be f , the solution of a purely absorbing transport

equation with a unit, isotropic source:

Ω ···∇∇∇ f (x ,Ω)+σ(x) f (x ,Ω) = 1

γ0
, Ω ∈ S . (6.31)

Therefore, the anisotropic diffusion approximation in the interior is

Iv(x ,Ω, t ) = 1

γ0
φ(x , t )− f (x ,Ω)Ω ···∇∇∇φ(x , t ) . (6.32)

The first moment of Eq. (6.32) relates the radiation flux to the gradient of φ, the same
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anisotropic Fick’s law as in §3.1:

F (x , t ) =−D(x) ···∇∇∇φ(x , t ) . (6.33)

Here, D is a second-order tensor, the second moment of the transport solution f . In

flatland, it is a 2×2 matrix.

In 3-D geometry, in a homogeneous medium, f = 1/(4πσ) so D = 1/(3σ). In flatland,

f = 1/(2πσ), and its second moment is

D = 1

2πσ

∫
S
ΩΩdΩ= 1

2πσ
γ2I = 1

2σ
I .

This is the standard flatland diffusion coefficient.

6.3.2 Initial conditions

The initial conditions for flatland are the same as in 3-D. To match the interior solution to

the transport initial condition,

φ(x ,0) =
∫ 2π

0
I i (x ,Ω)dω .

6.3.3 Boundary conditions

To formulate boundary conditions for the flatland anisotropic diffusion equation, we

return to §6.2.4, where we defined a function V (µ) that preserves the interior solution in

a flatland problem when integrated over the boundary:∫
Ω···n<0

V (|Ω ···n|)I b(x ,Ω, t )dΩ=
∫
Ω···n<0

V (|Ω ···n|)Iapprox(x ,Ω, t )dΩ . (6.23)

Substituting the flatland anisotropic diffusion approximation, Eq. (6.32), and evaluat-

ing, we obtain:∫
Ω···n<0

V (|Ω ···n|)I b(x ,Ω, t )dΩ=
∫
Ω···n<0

V (|Ω ···n|)
[

1

2π
φ(x , t )− f (x ,Ω)Ω ···∇∇∇φ(x , t )

]
dΩ

= 1

2π
φ(x , t )−

∫
Ω···n<0

V (|Ω ···n|)Ω f (x ,Ω)dΩ ···∇∇∇φ(x , t ) .

Multiplying by 2π, we arrive at the flatland anisotropic diffusion boundary condition:

2π
∫
Ω···n<0

V (|Ω ···n|)I b(x ,Ω, t )dΩ=φ(x , t )+ π

2
d (x) ···∇∇∇φ(x , t ) , (6.34)
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where we have defined the flatland equivalent of Eq. (3.32), the flatland anisotropic

diffusion boundary condition, to be

d (x) =−4
∫
Ω···n<0

V (|Ω ···n|)Ω f (x ,Ω)dΩ . (6.35)

The incident boundary condition for f should preserve the identity

φ(x , t ) =
∫

S
Iv(x ,Ω, t )dΩ=φ(x , t )−

∫
S
Ω f (x ,Ω)dΩ ···∇∇∇φ(x , t ) .

Under the assumption that f is rotationally invariant about the boundary normal, the

above relationship reduces to Eq. (3.34)∫
Ω···n>0

(Ω ···n) f (x ,Ω)dΩ=
∫
Ω···n<0

|Ω ···n| f (x ,Ω)dΩ .

As discussed in §3.1.3, this is satisfied by a reflecting or white boundary condition. In

flatland, “rotational invariance” has the interpretation not of a conical surface of angles

but of two rays.

If f is isotropic, 1/(2πσ), then d simplifies:

d (x) =−4
∫
Ω···n<0

V (|Ω ···n|)Ω 1

2πσ
dΩ

= 2

πσ

(∫
Ω···n<0

V (|Ω ···n|) |Ω ···n|dΩ
)

n

= 2

πσ
(z0) ,

and Eq. (6.34) reduces to the flatland diffusion boundary condition:

2π
∫
Ω···n<0

V (|Ω ···n|)I b(x ,Ω, t )dΩ=φ(x , t )+ z0

σ
n ···∇∇∇φ(x , t ) .

Here, of course, z0 is the flatland extrapolation distance from §6.2.4, z0 ≈ 0.8171.
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The Marshak-like approximation is V1(µ) ≈µ/2. Substituting that into (6.34) gives

2π
∫
Ω···n<0

[
1

2
|Ω ···n|

]
I b(x ,Ω, t )dΩ=φ(x , t )+ π

2
d (x) ···∇∇∇φ(x , t )

F−(x , t ) =φ(x , t )+ π

2
d (x) ···∇∇∇φ(x , t ) ,

where the boundary coefficient is:

d (x) =−4
∫
Ω···n<0

[
1

2
|Ω ···n|

]
Ω f (x ,Ω)dΩ

= 2
∫
Ω···n<0

(Ω ···n)Ω f (x ,Ω)dΩ

= 2n ···
∫
Ω···n<0

ΩΩ f (x ,Ω)dΩ .

A reflecting boundary condition on f causes this integral to be an even function ofΩ:

d (x) = n ···
∫

S
ΩΩ f (x ,Ω)dΩ

= n ···D .

Thus the Marshak-like boundary condition for flatland anisotropic diffusion is:

πF−(x , t ) =φ(x , t )+ π

2
n ···D(x) ···∇∇∇φ(x , t ) . (6.36)

This is virtually identical to the standard flatland diffusion Marshak boundary, Eq. (6.14).

6.3.4 Review

Anisotropic diffusion in flatland is very similar to anisotropic diffusion in 3-D. The dif-

ference lies in the value of D, its underlying transport formulation, and the boundary

conditions.

The low-order equation results from substituting the anisotropic Fick’s law, Eq. (6.33),

into the flatland conservation equation, Eq. (6.29):

1

c

∂φ

∂t
(x , t )−∇∇∇···D(x) ···∇∇∇φ(x , t )+σ(x)φ(x , t ) =σs(x)φ(x , t )+q(x , t ) , x ∈V ,0 ≤ t <∞ .

This low-order equation is identical in form to its 3-D counterpart, but the value and

size of the anisotropic diffusion tensor D will be different. (It is a 2×2 matrix, and it

approaches 1
2σI away from material boundaries.) The initial condition for the low-order
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unknown φ is the zeroth moment of the transport initial condition:

φ(x ,0) =
∫ 2π

0
I i (x ,Ω)dω .

The Marshak boundary condition for flatland anisotropic diffusion, from Eq. (6.36), is:

πF−(x , t ) =φ(x , t )+ π

2
n ···D(x) ···∇∇∇φ(x , t ) .

The diffusion coefficient is the second angular moment of a purely absorbing flatland

transport solution f :

D(x) ≡
∫ 2π

0
ΩΩ f (x ,Ω)dω , (6.37)

where f is given in Eq. (6.31) as:

Ω ···∇∇∇ f (x ,Ω)+σ(x) f (x ,Ω) = 1

2π
, x ∈V ,0 ≤ω< 2π .

The incident boundary condition for f satisfies Eq. (3.34),∫
Ω···n>0

(Ω ···n) f (x ,Ω)dΩ=
∫
Ω···n<0

|Ω ···n| f (x ,Ω)dΩ , x ∈ ∂V .

A more accurate low-order boundary condition (compared to the Marshak boundary

condition above), given in Eq. (6.34), uses transport-calculated coefficients on the exiting

boundary of the problem:

2π
∫
Ω···n<0

V (|Ω ···n|)I b(x ,Ω, t )dΩ=φ(x , t )+ π

2
d (x) ···∇∇∇φ(x , t ) ,

where

d (x) =−4
∫
Ω···n<0

V (|Ω ···n|)Ω f (x ,Ω)dΩ , (6.35)

and V is well-approximated by the variational form derived in §6.2.3:

V (µ) ≈V2(µ) = 1

2
µ+ 1

π
µ2 , 0 <µ≤ 1.

6.4 Summary

Compared to 2-D geometry, flatland is less computationally expensive to simulate be-

cause of its reduced phase space. In Monte Carlo implementations, fewer random num-

bers are sampled per event and fewer expensive transcendental functions are evaluated.
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Additionally, the smaller phase space implies that fewer particles need be run to achieve a

statistical accuracy comparable to a 2-D problem. In the discrete ordinates method, only

one polar angle (µ= 0) is needed in flatland. The correspondingly smaller quadrature set

reduces the cost of a transport sweep and the computational memory burden.

We derived both Marshak and variational boundary conditions for flatland diffusion.

The simpler Marshak boundary uses the first moment of the incident boundary source

and gives an extrapolation distance of about 0.7854. The more accurate variational

boundary condition given in Eq. (6.20) uses a more complex angular moment and results

in an extrapolation distance of about 0.8171. The accuracy of these methods will be

compared in Chapter 7.

The formulation of the flatland anisotropic diffusion method is virtually identical to

that presented in Chapter 3. The only differences between flatland and 2-D are in the

angular variable of the transport problem and the coefficients in the boundary condition.

With the flatland versions of anisotropic diffusion and the benchmark methods in

hand, we will evaluate the performance of the AD approximations with numerical experi-

ments.
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Chapter 7

Numerical Results: Linear Test Problems

When the anisotropic diffusion equations are solved numerically, the solution is not

just a function of the physical problem: it is also affected by the choice of low-order

discretization scheme, the transport discretization used in calculating the AD coefficients,

the transport convergence criteria, and many other parameters. Because our work is the

first to use SN -generated anisotropic diffusion coefficients, we need to ensure that the

chosen parameters and discretizations give accurate answers in simple problems, before

running complex problems with time dependence and nonlinear opacities.

Furthermore, because of the novelty of the flatland geometry, which we use exten-

sively, it is also necessary to provide numerical validation for the flatland boundary

conditions derived in Chapter 6.

In this chapter, we investigate the quality of the anisotropic diffusion (AD), flux-

limited anisotropic diffusion (FLAD), and anisotropic P1 (AP1) methods by analyzing

their behavior in relatively simple steady-state and time-dependent problems. Most

of these problems emulate attributes of realistic thermal radiative transfer problems,

viz. high scattering ratios and optically thin regions surrounded by optically thick regions.

Our numerical simulations are executed with several existing methods (discussed

more thoroughly in Chapter 2), as well as the new anisotropic diffusion methods. All

are implemented in the PyTRT research code [71]. Unless otherwise noted, we use the

following solver parameters with each method.

The Monte Carlo method functions as the benchmark transport method. Our imple-

mentation uses stratified sampling of source regions, and weight windows that

attempt to keep uniform the weight of particles both emitted from sources and

transported through previous time steps. The solver runs 107 particles and uses

path length–weighted tallies.

Standard diffusion in our implementation uses a cell-centered discretization [14]. We

use “variational” [Eq. (6.20)] rather than the less accurate “Marshak” [Eq. (6.14)]
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boundary conditions. As with the following diffusion-like methods, we explicitly

construct a sparse matrix that is passed to the Trilinos library [72]. In steady-state

problems with fewer than 50,000 unknowns, we use the KLU direct solver [72];

otherwise, we use the method of conjugate gradients (CG).

Time-dependent P1 uses the standard “staggered mesh” discretization, in which the

unknowns are a cell-centered φ and a face-centered F .

Flux-limited diffusion is implemented with the “square root” limiter and discretization

scheme discussed in §2.3.4. The limiter is treated semi-implicitly; i.e., the nonlinear

flux-limited diffusion coefficient is not converged. (This is common practice.) The

unknowns and diffusion coefficients are stored as cell-centered data.

Anisotropic diffusion uses coefficients calculated with the diamond difference SN meth-

od, performing up to 100 sweep iterations.1 In flatland, we use a Chebyshev–Gauss

quadrature set (see §6.1.2) with 64 ordinates (S32). As with FLD, the opacities,

diffusion coefficients, and unknowns are cell-centered. We use the nine-point

stencil given in §5.4.1. The low-order boundary conditions [Eq. (3.33)] use the

variational extrapolation distance.

Flux-limited anisotropic diffusion is implemented with the “max” limiter described in

§3.3 using the flux limiter discretization of §2.3.4. Otherwise, it is treated identically

to the above anisotropic diffusion method.

Anisotropic P1 uses the same “staggered mesh” discretization as P1. In all other aspects,

it is identical to the other anisotropic methods.

7.1 Analysis of non-analytic AD coefficients

In prior work, the anisotropic diffusion coefficients were calculated using analytic solu-

tions of f [2]. However, in all but the simplest problems, such solutions are not available,

so here we use an SN transport solver to calculate the coefficients. Because SN is only

an approximation to the transport equation, discretization in both the spatial and angu-

lar variables will affect the calculated diffusion coefficients D, which in turn affect the

anisotropic diffusion solution φ.

1As a reminder, only one sweep is needed in the absence of boundaries because the transport problem
is purely absorbing. Opposing reflecting boundaries may require many iterations to converge, so we have
chosen a very large number of sweeps to ensure the AD coefficients are calculated accurately. A more
realistic number of sweeps would be two or three if white boundaries are used and the problem is not
minuscule in extent.
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To assess the discrepancy in the solution incurred by using discrete transport, we

compare the solutions of a simple test problem using SN -calculated coefficients and

analytically calculated coefficients. Furthermore, we compare the analytic and discrete

solutions to a Monte Carlo reference solution, to see if the discrepancy in the diffusion

coefficients affects the accuracy of the methods.

By varying the number of ordinates in the quadrature set, the spatial refinement in

the SN calculation, the SN convergence criteria, and the choice of boundary conditions

for the calculation of f (reflecting or white), we determine acceptable solver parameters

for later, more complex problems. A voided channel surrounded by a diffusive, optically

thick medium is representative of many of our later test problems.

7.1.1 Problem description

The prototypical anisotropic diffusion test problem, a flatland VHTR mock-up considered

by Larsen and Trahan [2], consists of voided vertical channels in a diffusive medium. The

diffusive region has σd = 1, the channel σc = 0.01. The scattering ratio is uniformly 0.99.

We use a small portion of this problem (Fig. 7.1), a single channel of unit width, with

diffusive regions on the left and right each with width 4. The left and lower boundaries

are reflecting, and the right and upper boundaries are vacuum. The source is a Gaussian

Vacuum

Vacuum

Re�ecting

Re
�e

ct
in
g

Figure 7.1: The single channel problem configuration. The total opacity
is plotted in black and white, and the colored region in the lower left is
the Gaussian source.
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function peaked at (0,0),

q(x, y) = 2e−2(x2+y2) .

The analytic solution of the purely absorbing transport solution for this problem is

derived in Ref. [2] and restated here:

f (x, y,ω) = 1

2πσd
+ 1

2π

(
1

σc
− 1

σd

)
× g (x −4.5,ω) , (7.1)

where g (x,ω) is given in Table 7.1.

Voided region (|x| <W ) Diffusive region (|x| >W )

0 ≤ω< π
2 1−e−σc (W +x)/cosω e−σd (x−W )/cosω× (

1−e−σc (2W )/cosω
)

π
2 <ω≤π 1−e−σc (W −x)/|cosω| 0

Table 7.1: Component g (x,ω) of the analytic solution of f in the single-
channel problem. Here, σc and σd are the total opacity in the channel
and diffusive region, respectively; and W = 0.5 is the half-width of the
channel. Because the problem is symmetric, g (x,ω) = g (x,2π−ω) for
ω<π≤ 2π.

This solution for f is based on the assumption that the channel is infinite in extent

along the y axis, and that the diffusive regions are infinitely wide. We therefore expect

reflecting boundaries on the SN transport problem for f to produce answers closer to the

analytic values. However, since the channel is not indeed infinite, reflecting boundaries

will not necessarily produce more accurate answers compared to the reference transport

solution.

Using the analytic solution for f given in Eq. (7.1), we calculate exact (to machine

precision) solutions for the anisotropic diffusion coefficient D [from Eq. (6.37)]:

D(x, y) ≡
∫ 2π

0
ΩΩ f (x, y,Ω)dω ,

as well as the boundary coefficient d [from Eq. (6.35)]:

d (x, y) =−4
∫
Ω···n<0

V (|Ω ···n|)Ω f (x, y,Ω)dΩ .

All of the diffusion solutions, even though they may use analytically-calculated coeffi-

cients, are solved using the standard five-point cell-centered diffusion scheme2 using a

uniform cell width of 0.0625.
2Because the opacity is symmetric about the x axis, Dx y = 0 throughout the problem; see §3.2.3.
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7.1.2 Solution

The solution of the problem using four different methods is plotted in Fig. 7.2. The Monte

Carlo solution is the reference solution. We have also shown the anisotropic diffusion

solutions with both analytically calculated coefficients and SN -calculated coefficients.

The latter uses reflecting boundaries on the transport calculation for f with 104 source

iterations. (Many sweeps are needed to fully converge the opposing reflecting boundaries.

Our goal is to determine the error introduced by the SN discretization itself, so we wish

to reduce the additional error incurred by an incomplete SN solution.) For comparative

purposes, we also plot the standard diffusion solution.

Before exploring the parameter space of SN solver options, we first point out some

features in the solution characteristic of anisotropic diffusion. Unlike the Monte Carlo and

diffusion solutions, which have discontinuous first derivatives at the boundary between

channel and medium, the anisotropic diffusion solution is smooth. The AD solution

is less accurate near the material boundaries, but along the centerline of the channel

(Fig. 7.3) and a few mean free paths into the medium, it matches the reference solution

very closely.
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Figure 7.2: Contour plot of φ in the steady-state single channel problem.
The dashed black line is the reference Monte Carlo solution; the dotted
red line is standard diffusion; the broken black line is anisotropic diffusion
with analytic coefficients; the solid blue line is anisotropic diffusion with
coefficients calculated with an S32 transport sweep.
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Figure 7.3: Scalar intensity along x = 5.0. The “AD” curve is the solution
using analytic diffusion coefficients; the “ADN ” curves use SN -calculated
coefficients with reflecting boundaries.

7.1.3 SN parameter convergence

Figure 7.4a plots the convergence of the solution φ against the solution with analytically-

calculated AD coefficients, for four different combinations of SN solver parameters, as a

function of the number of source iterations (transport sweeps) in the calculation of f .

Likewise, figure 7.4b plots the convergence of the SN solution with increasing number

of ordinates. The black line shows that refining the quadrature brings the solution closer

to the analytic value, but the red line demonstrates that it does not converge to the Monte

Carlo transport solution. This is expected: the anisotropic diffusion method is only

an approximation; based on assumptions about the problem’s physics, asymptotically

small terms were discarded (see §3.1.1). Yet in and around the channel region in this

problem, the discarded terms are probably not asymptotically small. The true solution is

strongly anisotropic and has strong gradients at the channel interface. The assumptions

underlying diffusion also are not strictly valid at points in this problem. However, unlike

diffusion, anisotropic diffusion yields reasonable answers in the presence of voids.

The convergence is calculated using a volume-weighted relative 2-norm:

reported difference =
[ ∑

i∈cells

(
φi

φi ,reference
−1

)2

(Vi )2

]1/2

. (7.2)

This is not the convergence of the transport solution f , which only affects φ indirectly.
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Figure 7.4: Convergence of φ as a function of SN parameters. The AD so-
lution φ with SN -calculated coefficients is compared against the solution
with analytic coefficients using a volume-weighted 2-norm, as a function
of increasing source iterations in the calculation of f . The red line in (b)
shows convergence compared to the Monte Carlo solution.

Compared to the reference solution, AD (with analytic coefficients) has a 4.5% absolute

error, and standard diffusion has a 19.8% error.

The data in Fig. 7.4a suggest that with a finite number of ordinates, which cannot

exactly approximate the angular domain, there is little added benefit to using more than

a few sweeps: the error introduced by the angular approximation exceeds that caused by

the lack of convergence. But Fig. 7.4b shows that, since the analytic AD solution differs

from the exact solution by 5%, even a coarse quadrature set can provide accuracy within

the inherent limits of the method.

This conclusion may not hold for all problems, of course, but it suggests that a modest

number of ordinates and sweeps are sufficient to yield solutions with close to the accuracy

of an analytic anisotropic diffusion solution.

7.1.4 Coarse spatial grid calculation of D

In addition to investigating the sensitivity of the AD solution to the granularity of the

angular variable in the solution of f , we test the discrepancy introduced by calculating f

on a coarser spatial grid. As discussed in §3.2.3, the transport-calculated f is a smooth
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function of space, and D likewise has no discontinuities. We have implemented the basic

multigrid operations of prolongation and restriction in the PyTRT code [71] for quantities

located at the center of cells (i.e., σ and D) and at the external problem boundary faces

(i.e., d ).

We run the transport calculation for f on a coarse grid and prolongate the diffusion

tensor D and boundary coefficient d back to the fine grid, in which φ is then solved. With

this methodology, the spatial discretization error of the diffusion solve is unaffected; the

only difference is that the diffusion coefficients are coarser functions of space. Figure 7.5

shows the resulting coarse anisotropic diffusion coefficients.

(a) Dxx (b) D y y

Figure 7.5: Calculated diffusion coefficients for different grid coarseness.
Every two units downward represents a factor of four refinement in the
number of fine cells per coarse cell.

Figure 7.6 plots the error in φ introduced by using coarse approximations to the

anisotropic diffusion coefficient. (In this problem, the grid and refinements were chosen

so that in the coarsest case, each coarse cell was composed of a single material.) The

rightmost data point in the figure has a coarse cell width of ∆x = 0.5, half the width of the

channel. In this simple problem with well-defined material boundaries, the solution is

relatively insensitive to using less spatially refined diffusion coefficients. This is perhaps

not surprising, since the standard diffusion coefficient has no spatial variation inside a

homogeneous material.

The implication of all these results is clear: high-fidelity transport calculations are

not needed in calculation of the anisotropic diffusion coefficients. Because the cost of

the transport calculation is roughly proportional to (the number of transport sweeps)×
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Figure 7.6: Error introduced by coarse spatial grids in calculating the AD
coefficients.

(the number of ordinates)× (the number of spatial cells), using only a modest number

of sweeps and a small quadrature set with a coarse-grid calculation can provide a sub-

stantial speedup when compared with a fine-grid calculation that might improve the

answer only by a tenth of a percent. Because we do not expect the anisotropic diffusion

approximation to yield exact transport solutions, and because a high-fidelity transport

calculation requires far more computational effort than a diffusion solve, the small error

incurred by using a coarse transport solution is justifiable in light of the performance

gain.

7.2 Flatland boundary conditions

The flatland boundary conditions derived in Chapter 6 must, for the sake of completeness,

be numerically verified. We compare the novel diffusion boundary conditions against a

Monte Carlo reference solution in a simple, diffusive test problem.

We consider a homogeneous flatland problem (Fig. 7.7) with a total cross sectionσ= 1

and scattering ratio c = 0.99. The spatial domain is the rectangle 0 ≤ x ≤ 2, 0 ≤ y ≤ 10, with

reflecting boundaries on the left, right, and top sides. The bottom side has a specified

unit incident radiation flux; we consider three different angular distributions given in

Table 7.2.3

3These distributions were chosen because of their prior use in a 1-D boundary matching analysis in
Ref. [73].
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10

2

Figure 7.7: Problem description for the flatland boundary test.

Distribution 1-D Flatland

Isotropic I (µ) = 1
2 I (ω) = π

2
Normal I (µ) = δ(µ−1) I (ω) = δ(ω−π/2)
Grazing I (µ) = δ(µ−0.1) I (ω) = δ(ω− sin−1 .1)

Table 7.2: Angular distributions used in boundary condition tests.

Figure 7.8, a line-out of the scalar intensity φ0 along x = 1 for the normally incident

boundary, illustrates the differences between the methods. The diffusion approxima-

tion cannot reproduce the boundary layer that the true transport solution features, but

the variational approximation to the flatland diffusion boundary condition allows the

asymptotic diffusion solution to closely match the transport solution in the interior of

the system. The Marshak boundary condition does not have this desirable property.

Figure 7.9 quantitatively compares both “variational” and “Marshak” diffusion bound-

ary conditions against the transport solution for all three incident distributions. As with

the variational boundary condition for 3-D geometry, the flatland variational boundary

condition gives an interior scalar intensity accurate to within a few percent. The Marshak

condition fails to limit to the transport solution except in the case of an isotropic bound-

ary source, in which case only the extrapolation distance differs from the variational

boundary condition.
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Figure 7.8: Scalar intensity with a normally incident boundary condition
in a homogeneous flatland problem.
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7.3 Anisotropic diffusion boundary conditions

In Chapter 3, we derived boundary conditions for the anisotropic diffusion approximation.

These boundary conditions reduce to the standard diffusion boundary condition in

a homogeneous medium, but they were derived under a different set of asymptotic

assumptions. We test the extent of their applicability using two steady-state flatland test

problems similar to the previous voided channel test problem.

7.3.1 Interior source

The first test of the anisotropic diffusion boundary conditions is a highly scattering

problem with a spatially smooth source in the interior. A vacuum boundary in the

problem serves as the primary sink for particles in the problem; we therefore expect the

global solution to be sensitive to the choice of boundary conditions.

Problem description

The test problem (Fig. 7.10) is similar to the above flatland boundary condition test

Vacuum

Re�ecting

Re
�e

ct
in
g Re�ecting

Figure 7.10: Steady-state AD boundary condition test problem. The
black region is diffusive (σ = 1, σs = 0.99), the white region is optically
thin (σ = 0.01, σs = 0.0099). The colored region in the lower-left is the
Gaussian source.
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problem. It features a diffusive medium in flatland on the domain 0 ≤ x ≤ 5 and 0 ≤ y ≤ 10,

with a channel of unit width running vertically through the middle (2.5 ≤ x ≤ 3.5). The

diffusive region has σ= 1 and σs = 0.99, and the channel has σ= 0.01 and σs = 0.0099.

The bottom, left, and right boundaries are reflecting; the top is a vacuum boundary.

The source is an isotropic Gaussian-shaped radiation source in the lower-left corner:

q(x, y) = 2e−2(x2+y2) .

The spatial mesh has the grid spacing ∆x =∆y = 0.1.

We compare a Monte Carlo solution, a diffusion solution, and three instances of

anisotropic diffusion with different choices for the boundary condition on the vacuum

boundary. Only two—the white and reflecting conditions—satisfy Eq. (3.34). The “naïve”

boundary condition sets the incident values of f to zero and uses the Marshak diffusion

boundary condition from Eq. (6.36). It serves to demonstrate the importance of using

theoretically sound boundary conditions.

Results and discussion

First, we plot f (Fig. 7.11) at the top of the problem for the three alternative boundary

conditions for the purely absorbing transport problem. (The polar plots of f are de-

scribed in Fig. 7.12.) The effect of the boundary condition on f is straightforward: a

reflecting boundary condition mirrors the angular distribution across the x axis, and

a white boundary condition yields an isotropic distribution for incident angles. The

naïve boundary condition is positive only for exiting angles. For the sake of comparison,

the diffusion approximation f (x ,Ω) = 1
2πσ(x) could be plotted as a circle. (In Fig. 7.11a,

it would be out of range of the plot.) Both the anisotropic diffusion tensor D and the

boundary coefficient d change as a result of the boundary conditions.
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Figure 7.11: Polar plots of the purely absorbing transport solution at
two points in at the end of the channel. The solution as a function of
azimuthal angle ω is plotted (a) at the center of the channel (where f is
the strongly anisotropic) and (b) further from material discontinuities
(where f tends toward isotropy).

Downward

Upward
(exiting)

(incident)

Leftward Rightward

Figure 7.12: Cartoon describing the polar plots of f . The gray bars de-
pict the location of the diffusive regions relative to the centerline of the
channel. Directions near ω=π/2 at y = 10 are exiting the problem; direc-
tions in π≤ω< 2π are incident and therefore depend on the boundary
conditions for f .
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The different diffusion and boundary coefficients naturally cause the anisotropic

diffusion solutions φ to differ. Figure 7.13 compares the three instances of anisotropic

diffusion with the Monte Carlo reference solution and the diffusion solution.
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Figure 7.13: Scalar intensity in the steady-state interior source problem.

Clearly, anisotropic diffusion is superior to conventional diffusion for this problem:

the solution differs from the reference solution by only a few percent globally. The two

choices of boundary conditions for f consistent with Eq. (3.34), reflecting and white,

produce very similar answers. In contrast, the inconsistent choice of a vacuum boundary

for f introduces a significant global error, even many mean free paths away from the

boundary.

To help understand the accuracy of anisotropic diffusion as compared to standard

diffusion, we have plotted in Fig. 7.14 the angular intensity at several points in the

problem as approximated by SN , AD, and standard diffusion. Whereas standard diffusion

approximates the radiation as linear in angle, anisotropic diffusion has much more shape,

resulting from the (generally nonlinear) anisotropy in f . As we asserted in Chapter 3, this

extra transport-derived information results in a more accurate approximation.
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Figure 7.14: Polar plots of the angular intensity in the channel. The
intensity as a function of azimuthal angle ω is shown at (a) the bottom
center, (b) the top center, and (c) the middle left edge.
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7.3.2 Boundary source

The problems with an incident particle flux on the boundary potentially have strong

gradients and anisotropy outside the applicable range of the anisotropic diffusion approx-

imation. As an alternative test of the boundary conditions, we consider three boundary

source–driven problems.

Problem description

This test problem has opacities identical to the previous problem: two diffusive regions

surround an optically thin channel. However, rather than being driven by an extraneous

source, the problem has an incident radiation flux on the bottom face. The top, left, and

right sides are reflecting. We consider the same incident angular distributions as in §7.2,

given in Table 7.2: an isotropic source, a normally-incident source, and a grazing source.

Results and Discussion

Figure 7.15 shows a line-out of the scalar intensity φ(2.5, y) along the center of the chan-

nel in the isotropic incident case. Standard diffusion fails because σ = 0.01 leads to a

large diffusion coefficient, resulting in a nearly constant solution inside the channel.

Anisotropic diffusion performs quite well, and the white boundary condition for f gives

a more accurate result than the reflecting boundary condition. (The naïve boundary

condition, as discussed in the previous test problem, is inaccurate.)

The AD approximation and its boundary conditions do have their limits. In the case

of a strongly anisotropic boundary source, the ansatz that F =O(ε) is violated in swaths

of the problem, so the solutions for the normal and grazing boundary conditions have

large errors (Fig. 7.16).

A visualization of the angular intensity for each method (replacing Monte Carlo

with an SN solution), Fig. 7.17a, helps explain the accuracy of the AD method and the

difference between the reflecting and white boundary treatments. Even though AD

cannot exactly model the peak of freely streaming photons in the channel (which the

SN angular intensity shows at ω = 3π/2), it accurately approximates the shape driven

by scattering from the diffusive region (the lobes on the left and right) in the isotropic

incident case. In the strongly anisotropic (normal incident source) case, where uncollided

particles from the boundary dominate the scattered particles, anisotropic diffusion

cannot accurately approximate the particle distribution in the channel. The linear-in-

angle diffusion approximation cannot represent any of these features.

The shape aroundω=π/2 gives insight into why the white boundary performs slightly
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better in the case of an isotropic incident boundary condition: a reflecting boundary

produces a peak in f along the channel, but a white boundary gives a more isotropic

shape near that range, better matching the incident isotropic boundary condition. This

suggests that the qualitatively best way to satisfy Eq. (3.34) may be to require the incident

distribution of f to take the shape of the true boundary condition.
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7.4 Smooth time-dependent problem

Before testing the new time-dependent anisotropic diffusion methods in nonlinear ther-

mal radiative transfer problems, we examine their behavior in a more simple situation:

linear, time-dependent problems with time-independent opacities.

In this first time-dependent problem, we expect the temporal and spatial gradients to

be moderate but significant enough to distinguish diffusion from transport.

7.4.1 Problem description

This smooth problem features a unit source in the bottom left corner of a highly scattering

medium of width 2 with σ= 1 and σs = 0.99. A voided region with width 0.5, σ= 0.01,

and σs = 0.0099 lies along the right edge of the problem. The bottom, left, and right

boundaries are reflecting; the top of the problem has a vacuum boundary. The problem’s

initial condition is uniformly zero, and the particle speed is unity (c = 1).

Because this problem is time-dependent, it is the first test of the anisotropic P1

method devised in Chapter 4. This method uses not only the anisotropic diffusion

tensors D but also a nonlocal opacity ς, as formulated in (4.20):

1

c

∂F

∂t
(x , t )+ς(x)D(x) ···∇∇∇φ(x , t )+ς(x)F (x , t ) = 0.
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Figure 7.18 overlays these transport-calculated coefficients on the problem’s physical

description.

In this figure, the anisotropic diffusion tensors are plotted as ellipses. Each ellipse’s

major axis lies along the principal eigenvector of D, and the size along that axis is pro-

portional to the corresponding eigenvalue. The minor axis is proportional to the second

eigenvalue of the tensor. If f is isotropic, D is proportional to the identity tensor, and

its two eigenvalues are equal: thus, in the interior, the anisotropic diffusion coefficients

appear as circles whose sizes are proportional to 1/σ. In the channel, where f is strongly

anisotropic, the ellipses show that the primary action of the diffusion tensor is along the

channel.

7.4.2 Results and Discussion

The large phase space of time-dependent transport forces us to carefully choose represen-

tative metrics. We use contour plots to compare select methods at select times, lineouts

to compare more methods in greater detail, and wavefront plots to visualize the detailed

time evolution of the problem.

Figure 7.18: Time-dependent smooth problem properties. The source
region is the red square in the lower-left; the grey and white area in the
bottom half shows σ, the colored region above shows ς= 1/

∫
S f dΩ, and

the ellipses are a visualization of the diffusion tensor D = ∫
SΩΩ f dΩ.
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The behavior ofφ along the center of the channel (i.e., at the right edge of the problem)

is plotted in Fig. 7.19. Anisotropic diffusion and conventional diffusion, which both

assume a quasi-static problem, are significantly less accurate and are not plotted in that

figure. Their more accurate flux-limited counterparts, FLAD and FLD, are shown instead.

None of the low-order methods exactly reproduces the transport solution. Even with

flux limiting, FLD and FLAD overestimate the rate of particles flowing into the void.

However, as the problem tends toward steady-state, the anisotropic methods become

relatively accurate. (We recall that both FLAD and AP1 limit to the AD method when the

solution varies slowly in time.)

As one diagnostic, we plot the “wavefront” positions—determined by the location

at which φ= 0.001 after applying a small amount of smoothing—for all of the methods

in Fig. 7.20. These plots again show how FLAD and AD both overestimate the scalar
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Figure 7.19: Scalar intensityφ along the centerline of the channel, y = 2.5.
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intensity at early times, and they also point to an explanation. Because the flux limiters

are not iterated upon, the solution of the first time step is the same as the standard

diffusion solution. (In Fig. 7.20b, the flux-limited and standard diffusion methods share a

starting point.) As a result, the flux-limited methods carry that artifact of non-flux-limited

particles for all later time steps. To obviate this error, shorter initial time steps (in which

the effective time absorption 1/c∆t reduces the magnitude of the precursor) could be

used. Alternatively, the nonlinear flux-limited diffusion coefficient could be converged.
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Figure 7.20: Wavefront position along the y axis.

A contour plot showing the difference between P1 and AP1 is given in Fig. 7.21. The

AP1 solution is generally more accurate than P1. As the system evolves in time, it becomes

like the steady-state channel problems analyzed earlier: diffusion (the steady-state limit

of P1) fails in these problems, so it is unsurprising that AP1 outperforms P1 at late times.
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Figure 7.21: Contour plots of the scalar intensity at four times. The black
dashed line is the Monte Carlo solution, the blue solid line is the AP1

solution, and the red dotted line is the P1 solution.
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7.5 Time-dependent blast wave

Thermal radiative transfer problems often contain strong spatial and temporal gradients.

We consider a more stressful test of the different anisotropic approximations to the

transport equation.

7.5.1 Problem description

The “blast wave” test problem (Fig. 7.22) features a localized impulse of radiation; the

magnitude of the coefficients and the initial condition is based on a recurrent test problem

in the field of thermal radiative transfer [39, 40, 8, 52]. The domain of this problem is

0 ≤ x ≤ 3 and −1.1 ≤ y ≤ 1.1. It features an optically thin channel with σ= 1 and σs = 0.99

inside −.1 ≤ y ≤ .1, with a diffusive region σ= 10 and σs = 9.99 outside it. All boundaries

are specularly reflecting.

The initial condition is a local but smooth Gaussian function:

φi (x, y) = 0.001+100e−100(x2+y2) .

We use a grid spacing of ∆x = ∆y = 0.02, and a uniform time step ∆t = 0.02. As in the

previous problem, the particle speed is c = 1.

Re�ecting

Re�ecting

Re�ecting

Re
�e

ct
in
g

Figure 7.22: Opacities and initial condition for the blast wave problem.
The colored region is the isotropic initial condition φi .
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7.5.2 Results and Discussion

The isotropic initial condition is the only source of particles in this problem. Because a

majority of them are born in the optically thin channel, those with directions close to the

+x axis will tend to stream down the channel uncollided. This is the hyperbolic behavior

of the transport equation: whenσ and sources are small, the Boltzmann equation reduces

to a wave equation. Particles that enter the medium diffuse: this is parabolic behavior.

The transport solution can be viewed as a combination of the hyperbolic and parabolic

solutions.

The final state (t = 3) of the problem is plotted in Fig. 7.23. Several features charac-

teristic of the methods are apparent. First, only the transport solution (Monte Carlo)

contains the peak of uncollided particles at x = 3. Aside from that peak, the particles

that have undergone multiple collisions, the anisotropic diffusion methods all match

reasonably well. In this particular problem, flux-limited anisotropic diffusion is the most

accurate. The P1 method fails even to produce a positive solution: this is a known limi-

tation of the method in multi-dimensional problems with strong spatial and temporal

gradients. Interestingly, the AP1 solution is markedly better. The smoothness of D and ς

as compared to 1/3σ and σ presumably obviate the strain on the wavelike behavior of

the problem.

The time-dependent behavior of the transport solution (MC) and flux-limited aniso-

tropic diffusion (FLAD) is shown in Fig. 7.24. At longer times, the FLAD solution ap-
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Figure 7.23: Scalar intensity at t = 3 in the blast wave problem.
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proaches the MC solution away from the uncollided pulse of particles.

Because the diffusion equations are inherently parabolic, they cannot capture the

behavior of the uncollided particles seen in the Monte Carlo solution. However, the

hyperbolic (diffusive) behavior is modeled more accurately with the AD methods than

with conventional diffusion methods. As we have seen in the previous test problems, the

linear-in-angle approximation of standard diffusion is wholly inadequate in the interior

of the channel, leading to an inaccurate solution.

The timings for the blast wave problem, as run on a single core of a 2.4 GHz Intel Core

2 Duo chip, are presented in Table 7.3. These give a rough idea of the relative performance

Wall time (s)

MC 790
AP1 31
FLAD 40
AD 38
P1 23
FLD 18
Diffusion 18

Table 7.3: Timing comparison for the blast wave problem.

of the standard diffusion methods, the anisotropic diffusion methods, and the transport

method. The initial calculation of the anisotropic diffusion coefficients is amortized over
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Figure 7.24: Comparison of Monte Carlo and flux-limited anisotropic
diffusion at four times in the blast wave problem.
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the subsequent time steps, so over longer times, the performance of the AD methods

asymptotically approaches the performance of the standard diffusion methods.

7.5.3 Extended problem parameter space

To quantitatively verify that the positive results in this problem are not accidental, we

parameterized the problem and extensively investigated the parameter space. Using

Latin Hypercube Sampling [74], we sampled 40 instances of the above problem with the

following parameters and corresponding distributions:

• the width of the diffusive region (uniform on [0,2]);
• the width of the channel region (uniform on [0,1]);
• the sharpness of the Gaussian (exponential with λ= 100);
• the value of σ in the diffusive region (uniform on [1,20]); and
• the value of σ in the channel region (exponential with λ= 0.1).

As a metric of error, we compared the volume-weighted 2-norm error (with the

reference solution being a Monte Carlo simulation using 106 particles) along the channel

centerline and a cross-section of the problem at x = 0.3 at the final problem time. (Other

metrics yielded similar results.)

The error distributions are plotted in Fig. 7.25. Distributions more peaked toward the
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Figure 7.25: Distributions of errors in the parameterized blast wave prob-
lem. The FLAD solutions are consistently accurate; the P1 solutions are
inaccurate with a wide range of inaccuracy.
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left of the plot are more accurate, and wider distributions indicate a method inconsistent

in its accuracy. As one might expect from the detailed discussion of one instance of the

blast wave problem, flux-limited anisotropic diffusion is the most accurate, and P1 is the

least accurate.

7.6 Conclusions

We have established and tested some approximations that undergird the rest of our results.

First, we ensured that non-analytic (discrete ordinates–calculated) AD coefficients do

not compromise the accuracy of the method. We also demonstrated that the number

of sweeps required to converge a transport-calculated f is small enough to make an AD

solution competitive.

With the linear numerical experiments in this chapter, we have verified the theory

developed in the previous chapters. The boundary conditions we proposed for aniso-

tropic diffusion in Chapter 3 yield accurate answers for our test problems in which the

radiation is not strongly anisotropic throughout the problem. The boundary conditions

for flatland diffusion were also successfully tested.

Finally, we performed the first test of time-dependent anisotropic diffusion. In a

wide variety of problems with optically thin channels, the anisotropic diffusion meth-

ods (particularly flux-limited anisotropic diffusion) outperformed their conventional

counterparts.

With these encouraging results for linear, time-dependent problems, we move to

more difficult nonlinear problems in Chapter 8.
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Chapter 8

Numerical Results: Thermal Radiative
Transfer

Thermal radiative transfer (TRT), as we discussed at length in Chapter 2, adds complexi-

ties beyond the already substantial difficulties of particle transport. The radiation source

term is coupled to a material temperature unknown, and the material’s changing tem-

perature modifies the absorption opacity. These nonlinearities require special treatment

(semi-implicit linearization, in our work), and they mean that the problem’s physical

properties are time-dependent. For the anisotropic diffusion methods, this imposes the

extra requirement that the diffusion coefficients be recalculated at every time step.

In this chapter we test a wide range of TRT problems, beginning with diffusive 1-D

problems that contain temperature-dependent opacities. In addition to testing multi-D

problems with optically thin channels, we compare the performance of the anisotropic

methods against conventional methods using standard 2-D TRT benchmark problems.

Most of the methods we compare are described at the start of Chapter 7, but the

following methods need further discussion when applied to TRT.

Monte Carlo is replaced by Implicit Monte Carlo [23]. Our implementation uses implicit

absorption, source tilting, census combing, and energy-weighted path length tallies

[24]. Each problem uses roughly 107 particles per time step.

Anisotropic methods Because the opacity is a time-dependent quantity in TRT, the

anisotropic diffusion coefficients must be recalculated at every time step. The

first time step uses up to 100 source iteration sweeps1 to calculate the coefficients,

but each time step thereafter uses only one sweep to update them. (Because the

transport problem for f is purely absorbing, one sweep is sufficient to converge

the diffusion coefficients in the interior.)

P1-like methods A known shortcoming of P1 is that, in multidimensional geometry

with steep gradients, the radiation can have a negative solution [48]. To prevent

1This is a very conservative number; as the previous chapter showed, two or three iterations are sufficient.

134



unphysical negative temperatures, we “fix” non-positive values for the radiation by

setting them to 10−16, violating conservation by adding energy to the problem.

8.1 1-D blast wave

We begin by testing a simple one-dimensional slab geometry problem on a refined spatial

and temporal grid. The anisotropic diffusion approximation is less meaningful in 1-D:

the rank-2 tensor becomes a scalar. Nevertheless, the AD coefficient is still nonlocal and

distinct from the standard diffusion coefficient.

The classic Marshak wave [15] is a feature of radiative transfer at the boundaries

between hot and cold materials. Because the cold material tends to be optically opaque,

radiation emitted from the hot material penetrates only a short distance into the cold,

rapidly heating it. As that layer of cold material heats up, it begins to emit into the

adjacent cold layer: the result is a distinct radiation shock that looks like a wave. (Because

the radiation behavior tends to be diffusive rather than streaming, this wave does not

travel at the speed of light.)

This 1-D test problem does not create a “classic” Marshak wave: rather than a constant

incident radiation boundary, it contains a large pulse of energy as an initial condition.

Yet the resulting qualitative behavior strongly resembles a Marshak wave, since the pulse

penetrates the colder material and heats it up progressively.

Higher-dimensional geometries also have Marshak wave–like behavior, so the features

observed in this one-dimensional problem serves as a useful introduction to the behavior

of the different methods tested.

8.1.1 Problem description

This “diffusive” test problem has been used to assess the performance of flux limiters and

nonlinear convergence schemes [8, 52]. It features a smooth but localized energy peak as

an initial condition in both the material and the radiation:

φ(x,0) = [acT (x,0)]4 = 0.001+100e−100x2
.

The material is uniform with a constant heat capacity cv = 1 and a temperature-dependent

opacity σ(T ) = T −3. We use a uniform spatial and temporal grid of ∆x =∆t = 0.01. The

boundaries at x = 0 and x = 3 are reflecting.

The problem uses a scaled unit system often seen in TRT methods development:

c = a = 1. The anisotropic diffusion coefficients are calculated with a Gauss–Legendre
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S16 quadrature set and the step characteristics method.

8.1.2 Results and discussion

The wavefront position (Fig. 8.1) provides an effective visualization of the problem’s

time evolution. The position is calculated at each point in time by taking the radiation

temperature, convolving it with a weighted five-point kernel to smooth out potential noise

in the solution, and using linear interpolation to find the point at which the radiation

temperature is twice the initial temperature of the problem.

We note how Fig. 8.1 shows that, during the streaming-dominated early times, both

standard diffusion and anisotropic diffusion display an unphysical wave speed. For

these methods, the slope of the wavefront position near t = 0 exceeds c = 1: energy is

transferred through the system faster than the speed of light. This shortcoming motivated

the development of both flux-limited diffusion (§2.3.4) and our flux-limited anisotropic

diffusion (§3.3). Both the standard P1 and anisotropic P1 are wave equations, but they

have the incorrect wave speed of c/
p

3.

A detailed view of the radiation and material temperatures (Fig. 8.2) at t = 3 gives

further insight into the differences between the methods. Both P1-like methods share a

characteristic, unphysical wavefront shape that results from the equations’ hyperbolic

nature. The radiation pulse at the beginning, with its steep spatial gradients, induces

a wave-like pulse of particles that travel through the problem. The AP1 approximation,

because it uses a non-local ς [see Eq. (4.20)] rather than a local σ, is smoother: the
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Figure 8.1: Wavefront position of φ in 1-D blast wave problem.
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Figure 8.2: Solution at t = 3 in the 1-D blast wave problem.

wavefront’s “hump” is not as peaked, but the larger ς slows the propagation of energy

compared to P1.

Flux-limited diffusion matches the transport solution very closely in this problem:

the gradients in the interior are small, the radiation is predominantly isotropic, and the

difficulties with streaming are overcome by the flux limiter. However, at later times, the

wavefront drops off more abruptly than the transport solution because the limiter reduces

the diffusion coefficient too far.

Flux-limited anisotropic diffusion better matches the wavefront position and shape

of the transport solution. However, near x = 0, the temperature is too high: the AD

coefficients are smaller than the diffusion coefficients because of their nonlocal nature,

so the radiation behind the wavefront tends to be less homogeneous than in the standard

FLD solution.

Overall, in this simple problem, the flux-limited methods match the transport solution

most closely. (The problem was, after all, constructed to test the relative performance of

flux-limited diffusion.) The standard diffusion and AD methods allow radiation to travel

too quickly through the problem, resulting in wavefront positions unrealistically deep

into the problem. The P1-like methods fail to match even the qualitative shape of the

solution.
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8.2 Flatland pipe

For most transport approximations, the extension from one to multiple spatial dimen-

sions is nontrivial. In the case of anisotropic diffusion, as we saw, the diffusion coefficient

becomes a diffusion tensor, necessitating new discretization schemes. At the same time,

the added complexity inherent to anisotropic diffusion gives it an advantage relative to

standard diffusion.

The practical extension of flux-limited diffusion to multi-D is straightforward, but the

theory is less sound: most flux limiters are derived under the assumption of 1-D radiation

behavior. In multiple dimensions, the anisotropic diffusion methods may become more

advantageous relative to FLD because their smaller diffusion coefficients reduce the

necessity for flux limiting.

8.2.1 Problem description

Our first multi-D test problem for thermal radiative transfer is loosely based on the

problem of interest to the Center for Radiative Shock Hydrodynamics (CRASH) program:

radiation travels down an optically thin channel with optically thick walls. We use the

same unit system as in the 1-D test problem, c = a = 1.

As represented in Fig. 8.3, this flatland problem consists of:

• a radiation source region (red) with an energy emission rate density qr = 25, a
constant opacity σ= 0.5, and a constant heat capacity cv = 0.5;

• a small channel region (white) with σ= T −3 and cv = 1.0; and
• a diffusive region (gray) with σ= 25T −3 and cv = 2.5.

The physical properties of the channel are the same as those in the 1-D test problem.

The time step is piecewise linear: it increases from ∆t = 0.002 at t = 0 to ∆t = 0.02

at t = 0.1, and stays constant thereafter. (Keeping the time step small at the beginning

is a technique used to improve the performance of the flux limiters and reduce the

linearization error during the initial strong temperature gradients.) The mesh size used is

∆x =∆y = 0.02. The initial condition is uniformly φ= T 4 = 0.001, and the problem is run

until time t = 3. The left problem boundary is reflecting, and the others are vacuum.

8.2.2 Results and discussion

The constant radiation source at the left end of the channel drives the problem. At the

beginning, the entire domain is optically thick (even the channel has the initial opacity

σ = 0.001−4/3), but it quickly heats up as it absorbs radiation from the source. As the
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Figure 8.3: Materials, geometry, and grid spacing in the flatland pipe
problem. Each “cell” shown on the grid encompasses 5×5 cells in the
actual numerical simulation. The red zone is the radiation source, the
white zone is the channel, and the gray zone is the diffusive region.

material’s temperature rises, the material becomes optically thinner: the lower heat

capacity and optical thinness of the channel cause it to become transparent more quickly

than the surrounding region. Energy flows readily from the radiation source through the

channel, and less readily from the channel into the diffusive region.

Two lineouts of the material temperatures at the final state are plotted in Fig. 8.4. The

standard diffusion approximation performs poorly: like the previous 1-D problem, it

allows energy to move too quickly. Yet, unlike in the 1-D problem, standard flux-limited

diffusion also performs poorly. As seen by comparing the centerline (Fig. 8.4a) and

orthogonal (Fig. 8.4b) views, flux-limited diffusion artificially constrains the movement of

energy into the surrounding opaque materials, preferring instead to heat the channel and

further propagate energy in that direction. This is not entirely unexpected: flux limiters

cannot approximate the full angular dependence of the intensity; they only restrict the

flow of energy based on the local spatial gradients. The gradient at the cold–hot material

interface in the diffusive material is strong, so the flow of radiation is limited.

Compared to the conventional methods, the new anisotropic methods perform quite

well. Their differing behavior can be better understood by viewing the magnitude of the

diffusion coefficients and anisotropic diffusion tensor. Figure 8.5 shows the diffusion

coefficients of FLAD, FLD, and standard diffusion at the final state. (The components

of the FLAD tensor are plotted separately.) The anisotropic diffusion tensor remains

consistently smaller than the diffusion coefficients, slowing down the radiative transfer
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Figure 8.4: Material temperature at t = 3 in the flatland pipe problem.

even compared to flux-limited diffusion. We also note that in most of the problem, the

off-diagonal component of the AD tensor Dx y is much smaller than the corresponding

Dxx and D y y components: the temperature-dependent opacity in the problem is nearly

symmetric about the line y = 1, so this is not unexpected.

The anisotropy of the problem is plotted in Fig. 8.6. This metric is defined by:

anisotropy = |λ1 −λ2|√
λ2

1 +λ2
2

, (8.1)

where λ are the eigenvalues of the diffusion tensor D. An isotropic diffusion tensor is

proportional to the identity matrix, so its eigenvalues are equal, giving an anisotropy

of zero. A tensor that only allows diffusion along one axis (i.e., λ2 = 0) would have an

anisotropy of unity. In this problem, the AD method produces strongly anisotropic

coefficients in the channel.

Because the problem is driven by a constant spatial source rather than a pulsed initial

condition, the gradients are smoother than in the 1-D Marshak wave problem, and the P1

and AP1 methods concordantly perform much better. In fact, the AP1 and FLAD methods

are qualitatively very close, as are the P1 and FLD methods.
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Figure 8.5: Diffusion coefficients at t = 3 in the flatland pipe problem.
The three components of the FLAD tensor are plotted as solid lines; the
flux-limited diffusion and standard diffusion coefficients are plotted for
comparison.

Figure 8.6: Anisotropy of the flatland pipe problem. In white regions, the
FLAD tensor is isotropic, and in red regions, it is highly anisotropic.
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Finally, a plot of the wavefront location along the channel centerline (Fig. 8.7) pro-

vides a comparison of the methods over a broader range of times. Both the diffusion and

AD methods initially push energy too quickly into the channel, but the more moderate

AD coefficients naturally limit the speed after that point. Only during the initial ∼0.5

units of time are the slopes of the FLAD- and AD-calculated wavefront positions differ-

ent, demonstrating that flux limiting is most important at the initial times and less so

thereafter.

We more quantitatively test our expectation (see §3.3) that the more moderate AD

coefficients require less flux-limiting than standard diffusion. Using this flatland pipe

problem, we compare anisotropic diffusion to standard diffusion, with a “max” limiter

modifying the coefficients of both. (The rest of our FLD problems use the “square root”

limiter.) When the magnitude of the cell-average flux ‖F‖ exceeds the cell-average φ, the

limiter not only modifies the diffusion coefficient/tensor but also increments a counter.

In Fig. 8.8, we plot the fraction of cells that required limiting in each time step as a

function of time. As a reminder, the relatively thin channel comprises 10% of the problem,

and the problem contains 10000 cells total. Both methods require the same amount of

limiting during the initial transient, but flux limiting is active in far fewer cells at later

times. Because flux limiting is an ad hoc fix-up, it is desirable for a method to use it as

little as possible. The similarity between the AD and FLAD answers at later times are in

accord with the very moderate use of flux limiting.

We note that this problem was also solved with the AD coefficients calculated on
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Figure 8.7: Wavefront position of φ in the flatland pipe problem.
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Figure 8.8: Application of flux limiters for anisotropic and standard diffu-
sion in the flatland pipe problem.

a coarse grid, as discussed in §7.1.4. Even though the wall time for the calculation

was significantly decreased, errors on the order of 10% or more were introduced in the

solution. In the steady-state calculation of AD coefficients, material boundaries are

well-defined, so a coarse grid may be easily chosen that shares those boundaries. With

nonlinear opacities, the boundary between high- and low-opacity materials changes at

every time step, preventing the naïve imposition of a coarse grid.

This test problem has demonstrated the feasibility of the anisotropic diffusion ap-

proximations to outperform conventional methods in multi-dimensional TRT problems.

The strongly anisotropic diffusion tensor approximates the flow of radiation through the

channel more accurately than the conventional isotropic diffusion coefficient.

8.3 Crooked pipe

To add additional complexity, we modified the flatland pipe problem by adding two bends

in it and adjusting the physical coefficients to more closely resemble the “crooked pipe”

problem from Ref. [75].

8.3.1 Problem description

This “crooked pipe” or “dogleg” problem (Fig. 8.9) uses flatland geometry rather than the

r -z geometry typically seen in pipe/obstacle problems. It also uses the model system
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Figure 8.9: The crooked pipe problem configuration. The streaming
region is white, and the diffusive region is gray. The arrows indicate an
isotropic incident radiation boundary. The centerlines of the three legs
are shown with a dotted line; the four fiducial points are circled.

a = c = 1 rather than physical coefficients. The problem consists of an optically thin

streaming region embedded in an optically thick diffusive region. The thin “pipe” has a

very small heat capacity and opacity: cv = 0.01 and σ= 0.25T −3. The diffusive region has

cv = 5 and σ= 200T −3. The pipe has a width of 0.2 (although, because of the reflecting

boundary at the top of the problem, it represents a channel with width 0.4 at that point);

the legs are 1.0, 0.8, and 1.0 units long.

As with the previous scaled problem, the material and radiation temperatures have

a uniform initial condition of φ = T 4 = 0.001, and a = c = 1. The problem is driven by

an isotropic boundary source on the left edge of the pipe with an incident radiation

temperature Trad = 51/4. (This gives an incident radiation flux of 5/π; see Eq. (6.8).) The

top boundary is reflecting, and all other boundaries are vacuum.

The problem runs until t = 10, with varying time steps (Fig. 8.10) that range from

∆t = 0.00125 to∆t = 0.1 to account for the stronger temporal gradients at the beginning of

the problem. (Small time steps are needed to prevent IMC, and other methods to a lesser

extent, from violating the maximum principle.2) The chosen grid width is ∆x = 0.025

for IMC and ∆x = 0.0125 for the deterministic methods. (In this problem, the spatial

discretization error for the diffusion methods was higher than the other problems we ran

because of the very optically thick region, so we refined the mesh for those methods.)

The analysis will primarily consider segments along the centerline of the legs (dashed

lines in Fig. 8.9) and certain fiducial points in the channel that are representative of the

radiation behavior over time. These points, circled in Fig. 8.9, have the following (x, y)

2See Ref. [26] for a discussion of the maximum principle.
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coordinates: (0.1,1.0), (0.9,1.0), (0.9,0.3), and (1.7,0.3).

8.3.2 Results and discussion

With the semi-implicit linearization, the problem is highly scattering and thus expen-

sive for MC solvers. In fact, our particular choice of σ∝ T −3 and cv ∝ 1 means that

the material-related component of the Fleck factor, βσ [see Eq. (2.9)], is temperature-

independent inside each material, and we can calculate a priori the effective scattering

ratio σes/σ:

effective scattering = 1− f = 1− [
1+βc∆tσ

]−1

= 1−
[

1+
(

4aT 3

cv

)
c∆t (αT −3)

]−1

= 1−
[

1+4∆t
α

cv

]−1

,

where α
cv

= 25 in the channel and α
cv

= 40 in the medium. In the final time step with

∆t = 0.1, the Fleck factor is about 0.09 in the channel and 0.06 in in the diffusive medium:

the effective scattering ratio is above 0.9 throughout the problem.

Figure 8.11 plots the radiation temperature at the final state t = 10 for the reference so-

lution (IMC), the flux-limited anisotropic solution (FLAD), and the flux-limited diffusion

solution (FLD). Clearly, the complicated features in this problem lead to very different

approximate answers, unlike the self-similar results seen in in the simple 1-D case of §8.1.
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Figure 8.11: Radiation temperature at t = 10 in the crooked pipe problem.
From top to bottom, the methods compared are IMC, FLAD, and FLD.

This problem has the same qualitative behavior as the previous flatland pipe problem:

radiation streams through the optically thin pipe, heating it and the surrounding diffusive

material. One notable difference is that the smaller heat capacity more tightly couples

the radiation and material temperatures: the incident radiation heats the material in the

channel more quickly.

The choice of a boundary source rather than an interior source further differenti-

ates the anisotropic diffusion methods from the conventional diffusion methods (see

Fig. 8.12). Because the conventional and anisotropic diffusion methods yield such dif-

ferent diffusion coefficients (Fig. 8.13), the slope of the radiation temperature at the

boundary is very different. The flatter slope of the standard diffusion methods (due to

the very large D) strongly affects the rate at which radiation penetrates the problem: even

with a flux limiter, diffusion overestimates the amount of radiation that moves through

the channel.
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Figure 8.12: Representative plots of the radiation temperature in the
crooked pipe problem.
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Figure 8.13: Diffusion coefficients at t = 10 in the crooked pipe problem.
The three components of the FLAD tensor are plotted as solid lines; the
flux-limited diffusion and standard diffusion coefficients are plotted for
comparison.
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An additional complication is the strongly multi-dimensional layout of this problem.

The true transport solution (IMC) shows highly collimated radiation streaming through

the channel, impacting the obstacle at x = 1, and heating it so that it re-emits isotropically.

The limited approximations of standard diffusion do not take this into account at all:

radiation flows isotropically through the bends with nary a care for the obstacle. Flux-

limited anisotropic diffusion captures some of the strong anisotropy of the intensity,

thereby driving energy into the obstacle and heating it up. We have plotted the flux-

limited anisotropic diffusion tensors (as well as the opacity, which determines those

coefficients) at the final state in Fig. 8.14. The smaller magnitude of the AD coefficients in

Figure 8.14: Opacity and flux-limited anisotropic diffusion tensors at
t = 10 in the crooked pipe problem. The opacity is shown (scaled log-
arithmically) in white, blue, and black, and a subset of the anisotropic
diffusion tensors are shown in red. The size of each ellipse is propor-
tional to the magnitude of the AD tensor at that point, the eccentricity is
proportional to the anisotropy, and the principal direction indicates the
strongest action of the tensor.

the channel, compared to standard diffusion and FLD, allow the surrounding diffusive

regions to absorb more energy than the conventional diffusion methods.

Yet only the transport method (IMC) is able to capture the full multi-dimensional

aspects of the solution. In Fig. 8.12b, for example, there is a sudden drop-off in the IMC

solution at y = 0.8 along the centerline of leg 2: this is at the bottom edge of the first leg,

where the relatively opaque diffusive region obstructs radiation emitted by the boundary

source. Only transport can accurately model that the primary source of particles into the

second leg is by radiative emission from the heated wall. (The channel has a very small σ,

implying that its emission term σacT 4 is also small.) Diffusion and anisotropic diffusion

only approximate this effect by allowing particles to diffuse around corners.

To better compare the time-dependent behavior of the methods, we turn to the radia-

tion temperature as a function of time at the first and second fiducial points (Fig. 8.15). As
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we have already discussed, the diffusion and AD solutions allow radiation to exceed the

speed of light in the channel. (The result is that the radiation temperature for these meth-

ods rises sooner than the other methods.) However, the rate of the temperature rise is

different between the conventional and the anisotropic methods. Diffusion, flux-limited

diffusion, and P1 all allow too much energy into the channel, heating it to an unphysically

high temperature. The anisotropic methods show a more gradual rise in the radiation,

closer to the reference solution.

In Fig. 8.16 we have overlaid the reference solution (IMC), flux-limited diffusion, and

flux-limited anisotropic diffusion at all four representative points. The leading tail in FLD

and FLAD is an artifact of the temporal discretization error. The IMC and FLAD show

good agreement at the first two points for nearly all times, but after the first bend in the

problem, the accuracy of FLAD suffers. The FLD approximation allows energy to travel

through the problem too rapidly: its calculated solution in the pipe is nearly constant by

t = 2, whereas the transport solution does not show radiation heating the final point until

t = 5.

In Table 8.1 we compare the amount of computer time taken for each of the problems.

The one transport sweep per time step needed to calculate D accounts for about half of

the run time for the anisotropic methods, but the total wall time for each AD method is

approximately equal to that of the conventional diffusion methods. Our explanation is
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Figure 8.15: Fiducial points at the end of the first (a) and second (b) legs.
These plots show the time-dependent behavior of all the methods tested.
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from 0.16 to 1.6.

Wall time (s)

IMC 54300
AP1 94
FLAD 48
AD 44
P1 73
FLD 43
Diffusion 44

Table 8.1: Timing comparison for the crooked pipe problem.

that the magnitude of the diffusion coefficients affects the conditioning of the diffusion

matrix, which in turn affects the convergence rate of the iterative matrix solvers. The

anisotropic diffusion coefficients are a factor of ten smaller than those of flux-limited

diffusion (see Fig. 8.13). By explicitly saving the sparse diffusion matrices to files and

importing them into MATLAB, we determined that the approximate 1-norm condition

numbers for the FLD and FLAD matrices (at the final state t = 10) are 1.6×104 and 1.2×103,

respectively. The CG solver converges more quickly for better-conditioned matrices [56],

so the low-order AD solution is faster than the FLD solution. The additional expense of

the calculation of the anisotropic diffusion coefficients by chance brings the wall time of

the AD methods to parity with the conventional diffusion methods. (We suspect that a
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well-chosen preconditioner for each method will equalize the computational effort spent

in the diffusion solve, so the AD methods will require slightly more time overall.)

In this test problem, the anisotropic diffusion methods consistently produce more

accurate solutions than the standard diffusion methods without an increase in computing

time. The flux limiter (FLAD) further improves the result by reducing the speed of the

initial radiation wave. As seen in the previous flatland pipe problem, the AP1 approxi-

mation yields solutions similar to those of FLAD. None of the approximate methods can

exactly reproduce the transport solution, but by all metrics the new anisotropic diffusion

methods approximate the transport solution much better than conventional diffusion

methods.

8.4 2-D “easy” obstacle problem

One might argue that the previous flatland problems are particularly suited to the aniso-

tropic approximations because of the clear-cut “voided channel” configuration. How

then do the methods perform on problems without simple, optically thin channels in a

thicker medium? To answer this question, we have tested the methods against existing

multi-D test problems in the literature.

8.4.1 Problem description

The “easy” obstacle problem (Fig. 8.17), described in Ref. [11] (and also used in Ref. [76]),

Re�ecting

Re�ecting

VacuumSo
ur
ce

Figure 8.17: Problem layout for the “easy” obstacle problem. The gray
blocks are 50% more opaque than the white region at the same tempera-
ture.
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is a simple radiation transport designed to have relatively weak gradients and constant

dynamic timescales.

The problem contains two square obstacles that impede a front of radiation emitted

by a boundary source. It is a two-dimensional problem on the domain 0 ≤ x ≤ 2, 0 ≤ y ≤ 1

with ∆x =∆y = 1/32. The problem has a uniform heat capacity cv = 1, and the opacity is

σ= T −3 everywhere except inside two obstacles, where σ= 1.5T −3. These obstacles are

squares of width 5/8, with lower-left corners at (3/16,3/16) and (19/16,3/16). It uses the

model unit system c = a = 1.

The top and bottom boundaries are reflecting; the left of the problem has an incident

black body radiation source with Trad = 51/4, and the right side of the problem has a

vacuum boundary. (The black body boundary condition has an incident radiation flux of

5/4; see Eq. (6.7).) The initial condition is φ= T 4 = 0.001.

In Ref. [11], the problem halts at t = 3; for the sake of completeness we compare the

convergence of the solutions until t = 8 in Fig. 8.20. We use a uniform time step ∆t = 0.01.

The original problem also contains a material energy conduction term3 which we omit.

We use a “level-symmetric” Chebyshev–Legendre S16 quadrature set for calculating

the AD coefficients. (This quadrature set uses a Gauss–Legendre quadrature to obtain

polar angles, and Chebyshev–Gauss quadratures for the azimuthal directions, with fewer

azimuthal ordinates with increasing polar level.)

8.4.2 Results and discussion

This problem is a slight variation on a one-dimensional Marshak wave problem. The pres-

ence of the moderately optically thick obstacles introduces some mild non-uniformity

into the solution along the y axis.

Qualitatively, flux-limited diffusion and flux-limited anisotropic diffusion perform

equally well (Fig. 8.18). Whereas FLD contains spatial gradients that are slightly too steep,

FLAD is unnaturally smooth due to its smoother anisotropic diffusion coefficients.

A more detailed comparison of the methods at the intermediate time t = 3 (Fig. 8.19)

shows that the IMC reference solution agrees with the conventional FLD more closely

inside the obstacle, but FLAD gives a better result in the channel.

3To incorporate conduction in the material, a diffusion term −∇∇∇Dm∇∇∇T must be added to Eq. (2.1b).
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Figure 8.18: Contour plot of the solution at t = 3 and t = 6 in the easy
obstacle problem. The black dashed line is the IMC solution, the blue
solid line is the FLAD solution, and the red dotted line is the FLD solution.
Contours are at 0.25,0.5, . . . ,1.25.
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Figure 8.19: Solution along the centerline at t = 3 in the easy obstacle
problem.
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To provide a quantitative comparison of the methods, we have compared the differ-

ence in the temperature (volume-weighted relative 2-norm) between each method and

the reference solution as a function of time (Fig. 8.20). This metric,

reported difference =
[ ∑

i∈cells

(
Ti

Ti ,reference
−1

)2

(Vi )2

]1/2

,

is similar to Eq. (7.2) used in the previous chapter.

0.001

0.01

0.1

0 1 2 3 4 5 6 7 8

R
el

at
iv

e
‖·

‖ 2
d

if
fe

re
n

ce

t

AD
FLAD

AP1
D

FLD
P1

Figure 8.20: Relative difference of the material temperature in the easy
obstacle problem, compared against IMC.

From the plotted relative differences, it appears that the most accurate method overall

is flux-limited anisotropic diffusion. Diffusion is the least accurate, and the AP1 and P1

methods perform similarly.

In this problem, our new anisotropic methods do not notably outperform the con-

ventional diffusion-based methods, just as it was not advantageous in the earlier 1-D

numerical test. Anisotropic diffusion can be an improvement over standard diffusion in

some but not all problems.

8.5 2-D “hard” obstacle problem

A second problem from Ref. [11] has steeper spatial gradients and large voided regions:

it should therefore lie outside the comfort zone of both conventional and anisotropic

diffusion methods.
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8.5.1 Problem description

The “hard” obstacle problem has the 2-D domain 0 ≤ x, y ≤ 1 and uses a cell width

∆x =∆y = 1/64. The heat capacity is uniform, cv = 1, and the opacity is σ= T −3 outside

of two square obstacles, which have σ= 10T −3. The square obstacles, each of which has

a width of 1/4, are stationed with lower-left corners at (3/16,9/16) and (9/16,3/16). As

with the previous problem, we omit material conduction.

Re
�e

ct
in
g Re�ecting

Re�ecting

Re�ecting

Figure 8.21: Problem layout for the “hard” obstacle problem. The gray
blocks are ten times as opaque than the white region at the same temper-
ature.

All energy in the problem comes from the Gaussian initial condition peaked near

x = y = 0:

φ(x, y,0) = [acT (x, y,0)]4 = 0.001+100e−100(x2+y2) .

In the model’s unit system, a = c = 1.

The problem is run until t = 3. The time step increases linearly from ∆t = 0.0001 at

t = 0 to ∆t = 0.01 at t = 1 and is constant thereafter. To calculate the anisotropic diffusion

coefficients, we use the same Chebyshev–Legendre level symmetric quadrature set as in

the “easy” obstacle problem.

8.5.2 Results and discussion

The large optically thick region and the sharp discontinuity in temperature at the ob-

stacles pose a challenge to all of the approximate methods. As we saw in the linear test

problem of §7.5, only a transport method is able to accurately capture the hyperbolic

behavior of the transport equation. In Fig. 8.22 we have plotted the radiation field at a
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time in the problem where the transport effects are particularly visible. The optically

thick obstacles have impeded the flow of radiation, heating up slowly at their exterior,

re-radiating from their outer boundary into the medium, but preventing radiation from

passing through. The radiation streams through the gap in the middle, at first almost as a

mono-directional beam. As it heats up the upper right section of the problem, isotropic

black-body emission warms the reverse sides of the blocks.

The diffusion methods cannot reproduce the hyperbolic behavior of radiation stream-

ing through a void. In the conventional diffusion methods, radiation diffuses isotropically

through the problem: it flows unnaturally around the obstacles. In Fig. 8.22, this is seen in

the FLD solution (lower left): the more homogeneous radiation field has fully surrounded

the obstacle.

Fig. 8.23 gives a more detailed look at the final state. With the exception of P1, the

approximate methods qualitatively capture the behavior of the radiation and material

temperatures along the diagonal of the problem. The initial gradient proved too strong for

P1, which showed unphysical wavelike behavior throughout the problem. The smoother

coefficients in the AP1 equation moderate the wavelike behavior, allowing it to represent

Figure 8.22: Pseudocolor plots of the radiation temperature at t = 2.5.
The methods compared are: IMC (upper left), FLAD (upper right), FLD
(lower left), AP1 (lower right). The temperature scale is linear and ranges
from 0.18 (white) to 1 (black).
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Figure 8.23: Solution along the diagonal at t = 3 in the hard obstacle
problem.

the behavior of the radiation more accurately.

Because the primary symmetry in this problem is along the diagonal (as opposed

to the x or y axis), the Dx y component of the diffusion coefficients are larger than in

any of the other problems we tested. The discretizations we use (from Chapter 5) are

not designed for strong off-diagonal anisotropy, so the negative result for anisotropic

diffusion in this problem is somewhat clouded.

This problem demonstrates again that anisotropic diffusion is not a “silver bullet.” It

cannot model the hyperbolic behavior of the transport equation, but at the same time it

performs no less poorly than conventional flux-limited diffusion.

8.6 Conclusions

The wide variety of problems we chose to test in this section give a full picture of the

behavior of the anisotropic diffusion methods in TRT problems. Although the new

approximations do not perform much better than conventional diffusion approximations

in 1-D geometry or problems with large voids, FLAD and AP1 provide qualitatively good

answers for problems where radiation travels through small voided regions.

In small regions of optically thin materials, the AD method calculates strongly aniso-

tropic coefficients in those regions, providing better answers than conventional diffusion.
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Using a flux limiter with the AD approximation (FLAD) fixes the unphysical violation of

the speed of light seen in early time steps.

We conclude that in many realistic, multi-dimension problems of interest, flux-limited

anisotropic diffusion is a more accurate solution method than conventional flux-limited

diffusion. The small amount of computational effort needed to calculate the AD coeffi-

cients is repaid by superior results.
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Chapter 9

Conclusions

In this thesis, we have developed and numerically tested three anisotropic diffusion

approximations to time-dependent radiation transport and nonlinear radiative transfer.

Ancillary to the numerical testing, we investigated flatland geometry and new discretiza-

tion schemes suitable for the anisotropic diffusion methods. We conclude by reviewing

the new developments and results, then discussing future refinements and improvements

to the methods.

9.1 Anisotropic diffusion

The anisotropic diffusion (AD) approximation, initially formulated in prior work, has

been extended to finite and time-dependent problems (Chapter 3). Using an asymp-

totic derivation that appeals to the physical scaling of the problem, we obtained a new,

arbitrarily anisotropic (as opposed to linearly anisotropic in the case of standard diffu-

sion) approximation to the angular intensity. Boundary and initial layer analyses gave

transport-matched boundary and initial conditions for the new method.

We then discussed properties of the new AD approximation solely on the basis of the

underlying equations. We postulated that the method should be only slightly more ex-

pensive than diffusion: in an infinite-medium problem with time-independent opacities,

only one transport sweep is needed to calculate the anisotropic diffusion coefficients

for all time steps. (In finite medium problems, an additional few sweeps may be needed

to converge the opposing reflecting/white boundary conditions.) Furthermore, unlike

time-dependent transport methods, the time-dependent AD methods do not require

the storage of the full angle-dependent intensity. Anisotropic diffusion is faster and less

memory-intensive than transport methods.

One complication present in the anisotropic diffusion methods is that, in most prob-

lems, the diffusion tensor has nonzero off-diagonal terms. These terms cause a gradient

in one direction to induce particle flow in a perpendicular direction. To account for this
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“transverse” leakage, we generalized an existing cell-centered difference scheme (Chap-

ter 5). It reduces to a conventional 5-point finite difference method when the diffusion

tensors are isotropic, and it does not increase the number of unknowns compared to

cell-centered finite difference diffusion. With the penalty of a slightly less sparse matrix

structure, these new difference schemes account for the transverse leakage in anisotropic

diffusion.

Our numerical results (Chapter 7) began by testing the fidelity of SN -calculated AD

coefficients. We obtained accurate answers with a coarse quadrature set (16 ordinates

per quadrant), few transport sweeps (about two), and a coarse grid (so long as material

boundaries were preserved).

Comparing plots of the intensity as a function of angle, we confirmed the hypoth-

esis that the arbitrary anisotropy inherent to the AD approximation allows it to better

represent the shape of the true intensity. We found the linear-in-angle representation

of conventional diffusion to be inadequate in problems with strong anisotropy in the

solution.

We also tested the newly derived boundary conditions. In most cases, they accurately

preserved the transport solution away from the boundaries, even in the presence of voids.

The exceptions that performed poorly were in cases of strongly anisotropic specified

boundaries incident on a void. (Because the AD boundary conditions reduce to the diffu-

sion boundary conditions in a homogeneous medium, these same boundary conditions

perform well in problems without voids.)

In time-dependent problems, the anisotropic diffusion approximation produced

more accurate answers than standard diffusion, but in voids, it allowed energy to travel

too quickly. The same behavior was seen in thermal radiative transfer problems but

was less pronounced: even the streaming areas are relatively opaque at their initial cold

temperatures.

The anisotropic diffusion method shows great promise in steady-state problems. Yet

because the anisotropic diffusion equations are parabolic, they have the shortcoming that

in time-dependent problems, radiation may travel faster than c, the speed of light. We

addressed this issue by proposing a modification to the AD approximation (flux limiting)

and by developing a second “anisotropic” approximation (anisotropic P1).
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9.2 Flux-limited anisotropic diffusion

Adding a flux limiter to the anisotropic diffusion approximation (§3.3) artificially reduced

the diffusion tensor’s magnitude in the presence of strong gradients, inhibiting the spread

of energy at a wavefront to restore the qualitative feature of transport that transfer is

limited to the speed of light. Flux-limited anisotropic diffusion (FLAD) yields results

similar to AD in problems with weak time derivatives and large opacities, but our results

show that it improves the accuracy of the solution during the initial transients of a

Marshak wave. Testing showed the “max” limiter with AD is used less frequently than

with standard diffusion: as expected, the ad hoc fix-up is less necessary for the anisotropic

diffusion approximation.

We found that FLAD produced very accurate solutions in a wide variety of problems

with voided channel-like regions. The anisotropic diffusion approximation, when mod-

ified by the flux limiter, was especially efficacious in pipe-like problems with strong

multi-dimensional behavior, which conventional flux-limited diffusion could not approx-

imate well.

9.3 Anisotropic P1

In the derivation of the anisotropic diffusion approximation, we assumed a very slowly

changing solution. Revisiting that assumption and allowing a stronger O(ε) time deriva-

tive, we derived a set of P1-like equations that contained the anisotropic diffusion tensor

D (Chapter 4).

These equations had a shortcoming which was corrected by the ad hoc replacement

of the opacity σ with a nonlocal ς that could be calculated in the same transport sweep

as D. The resulting Anisotropic P1 (AP1) approximation behaves well in voids, reduces to

the AD approximation at steady state, and becomes the standard P1 approximation in

a homogeneous medium. Using a boundary layer analysis, we also obtained boundary

conditions for this new method.

The low-order unknowns for AP1 comprise both φ and F , compared to just φ needed

with the AD method. As a result, a different spatial discretization is also needed. We

formulated a staggered-mesh scheme for AP1 based on an extant P1 discretization.

We found that AP1-calculated solutions behaved like standard P1 in some problems

(with large voided regions) and like anisotropic diffusion in others (with smaller voided

regions). In the case of large voids, AP1 showed less unphysically oscillatory behavior

than P1.

In none of our test problems was AP1 superior to FLAD, despite that the equations
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of AP1 are more complex than those of FLAD. (They are not self-adjoint, and they have

a larger unknown space and therefore require more computer memory.) We therefore

cannot recommend the new anisotropic P1 approximation over flux-limited anisotropic

diffusion.

9.4 Flatland geometry

Many of our test problems used the “flatland” geometry (Chapter 6), which has a smaller

angular phase space than 2-D geometry and qualitatively simulates channels more

realistically. (In 2-D geometry, what appears as a channel is a slice through two infinite

walls.) Flatland geometry is not as straightforward as it seemed at first glance, however.

The diffusion coefficients, Marshak boundary conditions, transport-matched boundary

conditions, and black-body radiation boundary conditions all are different from their

standard 2-D formulations.

In addition to prescribing sampling routines for flatland Monte Carlo calculations and

presenting SN quadrature sets that preserve the flatland angular moments (the equivalent

of spherical harmonic functions), we more thoroughly investigated the diffusion approxi-

mation in flatland. We derived flatland Marshak boundary conditions and variational

boundary conditions for diffusion, and generalized them so that they could apply to AD

and AP1 as well. We verified these boundary conditions numerically in Chapter 7.

9.5 Future work

The anisotropic diffusion approximations are still in their infancy. Their accuracy may be

improved in a number of ways, which we here discuss.

9.5.1 Improved discontinuity treatment

In the derivation of the anisotropic diffusion method, we discarded terms of O(ε2) using

a particular asymptotic scaling. Retaining more terms—making fewer approximations—

should result in a more accurate approximation to the radiative intensity.

By keeping the 1
4π∇∇∇···F term in Eq. (3.7), we can derive at a new approximation that

takes the place of Fick’s law:

F =−D ···∇∇∇φ+E (∇∇∇···F ) ,

where

E =
∫

4π
Ω f dΩ .
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Away from material discontinuities, E is exponentially small; but near a discontinuity,

E is non-negligible. This additional advection term may improve the accuracy of the

anisotropic diffusion approximation in an asymptotic order-of-accuracy sense, and it

will reintroduce a qualitative property that our anisotropic diffusion approximation lacks:

a “kink” in the solution φ. (Because E is discontinuous at a material boundary, it will

induce a discontinuity in ∇∇∇φ.) This new method will then have at a material interface

both a boundary layer (which transport and AD have but standard diffusion does not)

and a discontinuous first derivative (which transport and standard diffusion have but AD

does not).

The difficulty with this extra term is that advection-diffusion equations require trou-

blesome discretization schemes. Also, advection-diffusion is not self-adjoint, so the fast

and simple conjugate gradient (CG) method could no longer be used to solve the resulting

matrix: more costly methods (such as GMRES) would be required.

9.5.2 Alternative flux limiters

In §3.3, we proposed a flux-limited modification to anisotropic diffusion theory. For

ease of understanding and implementation, we chose a “max” limiter that multiplies the

tensor by a scalar that preserves the physical property F ≤φ. However, other flux limiting

methods—some of which may be more well behaved numerically—are possible. These

flux limiters would be more complicated than the standard scalar diffusion coefficients:

the extra degrees of freedom in being anisotropic tensors rather than isotropic scalars

would allow more options in formulating the tensor. They may also be more computa-

tionally expensive. For a “square root”-type limiter, as an example, a “matrix square root”

would have to be calculated in each cell at each time step.

9.5.3 Multigroup

Flux-limited diffusion is often used with multiple energy groups (frequency groups) to

improve the simulation’s fidelity. Because of the strong variation of opacity with frequency,

parts of the problem that are optically thick in one group may be optically thin in another.

The AD approximation will likely provide a better treatment of the thin groups than

standard FLD. However, a disadvantage of multigroup solutions is that each group will

require its own transport-calculated D. This might be too costly a requirement for it to

remain competitive against IMC and other transport methods.
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9.5.4 Three-dimensional problems

Time-dependent anisotropic diffusion has been formulated for general 3-D geometry

(see Chapter 3), but it has not been implemented or tested in 3-D. The major differences

between our work and 3-D are that the diffusion tensor is a 3×3 matrix, the diffusion

matrix is more complex, and the cost of the transport sweep increases.

9.5.5 Discretization schemes

The cell-centered discretization schemes of Chapter 5 are only a first attempt at develop-

ing an accurate, cheap discretization for anisotropic diffusion. The Support Operators

Method [58, 59], even though it uses more unknowns than cell-centered diffusion, may

compensate for this added expense by being more accurate. Finite element methods

might also be applied effectively to the anisotropic diffusion methods. Because the cell-

centered scheme we derived is only applicable to “brick” geometry (regular Cartesian

mesh), other discretization schemes will undoubtedly be needed (and equally undoubt-

edly already exist in other fields) for more complex geometries.

9.5.6 Preconditioners

As with standard diffusion methods, the performance of the anisotropic diffusion method

could be improved by using Krylov solvers with well-chosen preconditioners. Multigrid

preconditioning has already been applied to nonlinear diffusion [77, 11]; the extension to

anisotropic diffusion should be straightforward.

9.6 Final remarks

The anisotropic diffusion methods that we derived and tested incorporate an arbitrary

amount of anisotropy into their approximation of the angular intensity, producing results

superior to diffusion in a number of problems. Of these new methods, flux-limited

anisotropic diffusion is the most accurate. Even though the calculation of the anisotropic

diffusion tensor requires the moderate cost of a transport sweep, the FLAD solution

in many problems is commensurately more accurate compared to conventional FLD.

Our goal of developing a newer method more accurate than FLD yet less expensive

than transport has been attained. Based on our numerical testing, we believe FLAD

to be a strong contender for accurate, inexpensive multi-dimensional simulations for

time-dependent transport and thermal radiative transfer.
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