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Chapter 1

Introduction 

1.1 Specific aims and significance of this work 

Tuberculosis (TB) granulomas are organized collections of immune cells composed of 

macrophages, lymphocytes and other cells that form in the lung in response to 

Mycobacterium tuberculosis (Mtb) infection. A granuloma, the pathologic hallmark of 

TB, serves to focus the host immune response, contain infection and pathology, and 

provide a niche for the bacillus to persist within the host. If granulomas are capable of 

inhibiting or killing most of the Mtb present, humans develop a clinically latent infection. 

However, if granulomas are impaired in function, infection progresses, granulomas 

enlarge and bacteria seed new granulomas; this results in progressive pathology and 

disease, i.e. active tuberculosis. In clinical latency, immunologic perturbation at the level 

of the granuloma can result in reactivation of infection. In humans, there are a variety of 

granuloma types, even within the lungs of a single host. 

 Multiple immune factors, including various cells (macrophages, T cells, B cells, 

neutrophils) and molecules (cytokines, chemokines, effector molecules) control host 

responses to Mtb infection, including the formation of granulomas. The roles and 

interactions of these factors within a granuloma are complex and challenging to address 

by experimental methods alone. One such factor, tumor necrosis factor-α (TNF), is a 

protein produced primarily by activated monocytes and macrophages. TNF regulates 

inflammatory immune responses via activating multiple signaling pathways such as the 
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NF-κB signaling pathway and the apoptotic pathway. A major challenge in studying the 

role of TNF in immunity to Mtb is that direct measurement of TNF levels and TNF 

activities within a granuloma is very difficult. Computational approaches, however, can 

be used to dissect the temporal and spatial aspects of granuloma formation and function. 

The overall goal of this research is to use a systems biology approach that integrates 

experimental and computational work to address critical questions necessary to 

understanding TNF-regulated granuloma formation and function during Mtb infection. 

Such understanding is essential to development of strategies for prevention and treatment. 

In particular, this work elucidates mechanisms at multiple biological scales (molecular, 

cellular and tissue) that control TNF availability and TNF activities within a granuloma 

in order to understand how a granuloma forms in response to Mtb infection and maintains 

its structural integrity during the latent infection as well as how treatment with anti-TNF 

therapies results in TB reactivation. This work is divided into three aims: 

Aim 1. Identification of key processes that control TNF availability in a TB 

granuloma: Availability of TNF within a TB granuloma has been proposed to have a key 

role in the protective immunity to Mtb [1], although measuring the true TNF production 

and consumption within a granuloma is not yet feasible. Further, it is not clear what 

factors regulate TNF availability in a granuloma. To address these questions, we 

calculated the TNF concentration in a granuloma using a differential equation model that 

considers a simple representation of the spatial structure of a granuloma at steady state 

and includes TNF/TNF receptor (TNFR) binding and trafficking processes (i.e. synthesis, 

internalization, recycling, and degradation of ligands and receptors)[2]. We measured 

critical model parameters (identified by sensitivity analysis) using a simple experimental 
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system for granuloma formation in mice. We induced granuloma formation in mice by 

injecting Sepharose beads covalently coupled to mycobacterial antigen [3,4]. Model 

analysis by using the experimental data suggested that there is a TNF concentration 

gradient in granulomas. The development and detailed analyses of the mathematical 

model and the experimental granuloma model are described in Chapter 2. 

Aim 2. Multi-scale computational modeling of TNF-regulated granuloma 

formation in the lung: Identification of a TNF concentration gradient in TB granulomas 

(as described in Aim 1) leads us to new unanswered questions that are critical to 

understanding the role of TNF in immunity to Mtb: What factors control such a gradient 

during a long-term immune response to Mtb infection? How does this gradient regulate 

TNF-associated processes and ultimately translate to the outcome of infection? What is 

the impact of dynamics of TNF-associated molecular scale processes on the long-term 

immune response to Mtb? Finally, are there TNF-level processes that, if targeted, could 

present new strategies for disease control and therapy? These questions invoke multiple 

biological scales (in length and time) that are currently difficult to address 

experimentally. To address these questions, we developed multi-scale computational 

models that describe the immune response to Mtb in the lung over three biological length 

scales: molecular (via deterministic ODEs), cellular and tissue (via stochastic agent-based 

modeling) [5]. Using these models, we predicted the impact of TNFR dynamics and 

TNF-induced NF-κB signaling dynamics on the outcome of infection at the level of a 

granuloma. The development and detailed analyses of these models that combine 

deterministic and stochastic sub-models are described in Chapters 3, 4 and 5. Combining 

deterministic and stochastic modeling can also be helpful in studying the role of receptor 
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organization on the cell membrane in determining the outcomes of receptor signaling [6] 

as described in Chapter 7.     

Aim 3. Identification of mechanisms by which TNF-neutralizing drugs induce 

TB reactivation: Increased rates of TB reactivation have been reported in humans 

suffering from inflammatory disorders such as rheumatoid arthritis (RA) and psoriasis 

and treated with TNF-neutralizing drugs.  Higher rates are observed with anti-TNF 

antibody-type drugs (e.g. infliximab) as compared with the TNF receptor fusion protein-

type drug (etanercept). Mechanisms driving differential reactivation rates and differences 

in drug action are not known. We used the multi-scale computational model of granuloma 

formation [5] (described in Aim 2) to investigate these mechanisms, as this model 

provides detailed information regarding the spatial and temporal dynamics of TNF during 

development of a granuloma in lung tissue. We incorporated TNF-neutralizing drugs and 

their relevant pharmacokinetic (PK) and pharmacodynamic (PD) properties into the 

model and identified functional and biochemical characteristics underlying the higher 

likelihood of TB reactivation that occurs for some TNF-neutralizing drugs. The findings 

of Aim 3 (Chapter 6) can be used to guide future development of safer anti-TNF drugs 

for inflammatory disease treatment. 

 

1.2 Experimental background 

1.2.1 Tuberculosis and granuloma formation 

Tuberculosis (TB), a disease caused by the intracellular pathogen Mycobacterium 

tuberculosis (Mtb), is responsible for 2-3 million deaths per year. In the presence of an 

effective immune response, only 5-10% of infected people develop clinical signs of 
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active TB (known as primary TB). However, immunological testing provides evidence of 

a state of latent infection, with no clinical symptoms, in one third of the world population 

[7]. Latent TB represents a steady state in which the host controls the infection but is 

unable to clear it, allowing bacteria to survive at relatively constant, but low levels [8]. 

Latent infection may reactivate to active disease (reactivation TB) with an average 10% 

per lifetime frequency, as a result of, for example, age, impaired immunity (as in the case 

of HIV co-infection), malnutrition, or anti-inflammatory drug administration that 

interferes with host immunity [9-11]. 

Mtb is inhaled as droplets from the atmosphere, taken up by phagocytic cells such 

as alveolar macrophages and dendritic cells and transported across the alveolar 

epithelium into the lung. Although many bacilli may be destroyed by alveolar 

macrophages, a fraction of bacilli may survive and begin to replicate in macrophages, 

initiating an inflammatory response that involves recruitment of additional macrophages 

and other immune cells to site of infection (Fig. 1.1). Dendritic cells that engulf bacteria 

migrate to the local lymph nodes and bronchus-associated lymphoid tissue, where they 

present the processed antigens to T cells [12]. In the lymph node, the T cell response 

takes at least 2 weeks to be primed [13-15]. Priming is defined as the stimulation of naïve 

T cells as a result of presentation of antigens by antigen-presenting cells (e.g. dendritic 

cells).  Primed T cells then migrate to the lung and are recruited to site of infection under 

the influence of chemokines released by infected macrophages and dendritic cells 

[16,17]. T cells in the lung then contribute to killing of infected macrophages (by 

cytotoxic T cells) or to activating macrophages to efficiently kill extracellular and 

intracellular bacteria.  
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Fig. 1.1 A schematic overview of the immune response initiated as a result of Mtb infection. See 
text for detailed description of immunological processes involved in immune response to Mtb. 
 

A key outcome of Mtb infection that arises as a result of the immune response 

within the host is the formation of aggregates of immune cells and bacteria called 

granulomas in the lungs. The granuloma is known as the pathological hallmark of TB. 

Granulomas initially form as a result of macrophage responses, including recruitment of 

macrophages to site of infection, bacteria uptake by macrophages and dispersion of 

bacteria in tissue due to death of infected macrophages [18]. This stage of infection is 

generally accompanied by bacterial expansion until the T cell response is initiated. The 

initiation of the antigen-specific T cell response and recruitment of CD4+ effector T cells 

(pro-inflammatory T cells, or Tγ cells) and CD8+ effector T cells (cytotoxic T cell, or Tc 

cells) to site of infection then may halt bacteria growth, leading to control of infection in 
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granulomas [19,20]. TB granulomas, especially in humans as well as guinea pig and non-

human primate models, form as organized spherical structures composed of a core of 

bacteria, macrophages and dendritic cells surrounded by a ring of lymphocytes, including 

T cells and B cells [21-27]. The classic caseous granuloma observed in humans and 

monkeys may also include an area of dead tissue (grossly resembling cheese). 

Granulomas act to immunologically restrain and physically contain Mtb infection. Latent 

and active TB in humans comprise a heterogeneous mixture of granulomas (for review, 

see [28]) that provide a range of physiological microenvironments associated with 

bacterial replication, persistence and killing (Fig. 1.2). Understanding and dissecting 

mechanisms, both host and bacterial, that occur during granuloma formation and function 

and within the different types of granulomas will lead to a better understanding of TB. 

This in turn will direct development of new therapeutic and preventive strategies to treat 

this complex disease [29,30]. 

 

1.2.2 Key cellular and molecular players in a granuloma 

Advances made during the past decade revealed an extensive complexity and a wide 

range of immune components involved in the immune response to Mtb. These 

components include various immune cells (e.g. CD4+ and CD8+ T cells), chemokines 

(e.g. CCL2, CCL5, CXCL9 and CXCL10), and cytokines (e.g. IFN-γ, TNF and IL-10) 

that play key roles in control of granuloma formation and function during the immune 

response to Mtb (reviewed in [11,16,21,31-33]). The precise roles and functions of these 

cells and molecules are still being defined.  
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Fig. 1.2 Microscopic histopathology images of different types of tuberculosis 
granulomas from lungs of monkeys infected with Mtb. (A) A caseous 
granuloma consisting of a central area of caseum surrounded by a mantle of 
epithelioid macrophages and peripherally located cuff of lymphocytes from a 
monkey with active disease, 5x H&E. (B) A well-circumscribed non-
necrotizing (solid cellular) granuloma consisting of a core of epithelioid 
macrophages and peripheral lymphocytes from a monkey with active disease 
5X H&E. Granuloma images are taken from [34]. 
 

Various experimental models and clinical observations established the important 

role of CD4+ and CD8+ T cells in defense against TB, although the mechanisms by 

which these cells provide protection are not completely understood. CD4+ T cells 

recognize foreign peptides in the context of the major histocompatibility complex (MHC) 

class II membrane molecules presented by dendritic cells and macrophages. The primary 

effector function of CD4+ T cells is believed to be production of IFN-γ that contributes to 

activation of macrophages and elimination of bacteria [35,36]. Besides producing IFN-γ 

and possibly other cytokines, these cells may contribute to controlling Mtb infection in 

other ways such as induction of apoptosis in infected macrophages [11,37,38]. CD8+ T 

cells have also been found to be associated with the granulomatous response. This subset 

of T cells recognizes foreign antigens degraded within the cytoplasm of dendritic cells or 

macrophages and presented on the cell membrane in the context of MHC class I antigens. 

CD8+ T cells can produce cytokines and act as cytotoxic cells. CD8+ T cells take 

advantage of an antimicrobial pathway mediated by perforin and granulysin that 
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contributes to lysis of infected macrophages and killing of intracellular bacteria [39]. 

Current knowledge of the relevance of the perforin/granulysin pathway in vivo is limited, 

as mice apparently do not have a gene or homolog for granulysin. The role of B cells in 

TB remain controversial, with some studies supporting that these cells are important 

contributors to protection [40]. The pro-inflammatory cytokine TNF is produced by a 

variety of immune cells, especially infected and activated macrophages and pro-

inflammatory T cells, and functions as a critical component of the immune response to 

Mtb [41,42].  

 

1.2.3 TNF biology and its role in the immune response to Mtb 

TNF is expressed as a 26 kDa membrane-bound precursor protein (membrane-bound 

TNF or mTNF) which can be cleaved by proteolytic activity of a metalloproteinase TNF-

α converting enzyme (TACE) and released as a 17 kDa subunit (soluble TNF or sTNF) to 

extracellular spaces [43,44]. Both sTNF and mTNF are trimeric in their mature bioactive 

form [45]. The wide range of TNF activities is explained by the presence of two types of 

TNF receptors on cell membranes: TNF receptor type 1 (TNFR1; also referred to as p55 

or CD120a) and TNF receptor type 2 (TNFR2; also called p75 or CD120b) [46]. TNFR1 

is constitutively expressed on almost all nucleated cell types, whereas TNFR2 is typically 

expressed on immune cells [47]. While mTNF activates both TNF receptors, sTNF has 

been shown to predominantly stimulate TNFR1 and has limited signaling capacities on 

TNFR2. This difference has been attributed to the difference in the stability (half-life) of 

the ligand/receptor complexes [48-51].  
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The binding of TNF to TNFR1 induces a number of intracellular events that 

ultimately result in activation of the two major transcription factors, NF-κB and c-Jun 

that are responsible for the inducible expression of genes important for a wide range of 

cellular activities, including immune and inflammatory responses [52]. Stimulation of 

TNFR1 can also lead to activation of the caspase-mediated apoptotic pathway, in 

particular when NF-κB pathway is compromised [47,53]. The binding of TNF to TNFR2 

can also activate the NF-κB signaling pathway. However, TNFR2 lacks the ability to 

directly activate the apoptotic pathway [54].  

TNF has been identified as one of the important mediators of protective immunity 

to intracellular pathogens including mycobacteria. The protective role of TNF has been 

mostly attributed to the soluble form (sTNF) and its interaction with TNFR1. However, 

mice expressing a non-cleavable mTNF mutant have been shown to be able to efficiently 

induce a cell-mediated immune response with development of granulomas in response to 

Mycobacterium bovis BCG, while all TNF-deficient mice have succumbed to infection. 

The protective effect of mTNF has been shown to be mediated through TNFR2 signaling 

[55].  On the other hand, although these mice have been reported to show higher survival 

and enhanced resistance than TNF-deficient mice to Mtb, they have ultimately died from 

infection [55,56]. Another study on the role of TNF in the immunologic maintenance of 

Mtb infection within pulmonary granulomas in mice has indicated that mTNF on cells 

from the lungs of infected mice are transient and quickly cleaved by TACE [57]. This 

finding highlights the role of sTNF in the immune response against Mtb. 

TNF functions as part of the immune response to Mtb infection via several 

mechanisms. TNF (in conjunction with the cytokine IFN-γ) induces macrophage 
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activation to kill bacteria [58-60], enhances immune cell recruitment to site of infection 

[61], and augments chemokine expression by macrophages through activation of the NF-

κB signaling pathway [62]. TNF can also mediate cell death via inducing the caspase-

mediated apoptotic pathway [63,64]. Experimental data identifying the roles of TNF in 

immunity to Mtb include: TNF knockout/neutralization experiments in mice and 

monkeys [1,41,65,66], and TNF receptor 1 (TNFR1) knockout experiments in mice [41]. 

The use of TNF inhibitors as treatment for inflammatory diseases in humans has also 

confirmed that TNF is a major player in the protective immune response against TB [67]. 

The incidence of active TB is increased in patients with rheumatoid arthritis (RA) and 

psoriasis receiving treatment with TNF inhibitors [67-70]. These observations support a 

central role for TNF in maintaining immunity to Mtb. However, TNF has numerous 

functions in the human immune response and sorting out which are the relevant 

mechanisms is difficult in vivo.  

 

1.2.4 Experimental models of tuberculosis granulomas 

Experimental animal models of TB are central to our understanding of TB, including the 

pathogenesis, pathology, and immunology of this disease. A chief advantage of animal 

models is the ability to obtain samples from the site of disease, i.e. the lung and thoracic 

lymph nodes, including granulomas. This is extremely challenging in human studies, and 

a good animal model that is similar to humans can provide an opportunity to assess 

immunological events involved within the Mtb infection [9]. There are various well-

characterized animal models that are susceptible to infection with Mtb and thus can be 

used for TB research (reviewed in [71]). These models can be selected depending on the 



 12 

type of research questions being addressed, cost, and availability of reagents and 

Biosafety Level 3 (BSL3) facilities.  

The most commonly used animal model is the mouse. An advantage for using this 

animal model in TB research is that a great variety of reagents especially genetically 

modified animals (lacking different molecules, cytokines, or cell types) are available. 

Pathology in mice includes many elements of human disease such as the cytokine and 

chemokine pattern associated with the granulomatous response, and the presence of 

epithelioid cells, and multinucleate giant cells. However, there are obvious differences in 

the immunopathology of the disease after low-dose aerosol administration with Mtb 

compared with human disease [27]. Unlike human granulomas, murine granulomas lack 

calcification, cavitation and caseous necrosis. T cells acquire a peripheral distribution in 

human granulomas. In mice, however, incoming T cells and B cells drive well into the 

center of lesions, where they aggregate in large numbers. Further, unlike in humans 

where latent infection is observed in the majority of cases, there is no true latent infection 

in mice. Mice become chronically and progressively infected with Mtb, and every 

infected mouse eventually succumbs to the disease. Thus, studying mouse granulomas as 

a model for human granulomas can be problematic, since many of the features and 

microenvironments of human granulomas are absent in mice. These differences may 

impact on the ability of immune cells to interact and may provide different environmental 

cues to the bacillus.  

In addition to the mouse model infected with mycobacterium, the use of in vivo 

mouse models using non-replicating agents  [3,33,72] provide unique insight into 

processes involved in granuloma formation and function. For example, mycobacterial 
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antigen-coated beads are used to induce pulmonary granulomas with cytokine and 

cellular patterns that closely match those in an active mycobacterial infection 

[3,4,33,73,74]. Although this model does not include live mycobacteria (which definitely 

can affect the immune response), it is able to provide many of the features of an Mtb lung 

granulomatous response that can be investigated only over a two-week period without 

requiring BSL3 facilities.  

Guinea pigs have long been recognized as animal models that are highly 

susceptible to Mtb infection with a shorter time course of infection and a higher speed of 

granuloma development compared with the standard laboratory mouse models [27]. 

Thus, they have been used extensively in TB research, especially for vaccine studies 

[75,76]. The granulomas in guinea pigs include inflammation similar to mice, but also 

more structured caseous and mineralized granulomas. Lymphocytes in the guinea pig 

granulomas occupy a more peripheral position, maybe because of the presence of the 

central caseation. Although there are several elegant studies on the pathologic features of 

guinea pig granulomas [77-79], the available reagents for immunologic analyses such as 

cytokine measurement and immunohistochemistry, as well as reagents for in vivo 

manipulation of the host are limited.  

Rabbits are also used in TB research [80-83]. For most studies in rabbits, M. bovis 

is used. Rabbits are extremely susceptible to M. bovis and the pathology in these animals 

is remarkably similar to that in human TB lungs. Despite their susceptibility to M. bovis, 

however, rabbits are relatively resistant to many laboratory strains of Mtb. Granulomas 

with similar organization to human granulomas, with caseous necrosis and cavity 
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formation are observed in these animals. However, the lack of immune reagents limits 

this model, as does the size and containment needs of rabbits.  

Another useful model for TB that has been developed over the past 15 years is 

zebrafish. This model has many attractive features [84]. For example, zebrafish embryos 

are optically transparent. This allows for a variety of unique experimental approaches to 

study TB pathogenesis, including vital microscopy. Zebrafish develop TB-like disease 

when infected with M. marinum, the closest genetic relative of Mtb. Although, there are 

differences that may contribute to difficulty in translating the findings to human TB, there 

are similarities between zebrafish granulomas and human granulomas. Infection of adult 

zebrafish produces caseous granulomas that are primarily composed of macrophages 

[18]. The ability to manipulate the fish genetically and to examine the contributions of 

genes in high-throughput, forward genetic screens has provided valuable insights into the 

host-pathogen interaction of mycobacterial infections. Further, zebrafish can be infected 

and monitored during early development when adaptive immunity has not yet developed. 

This allows us to study the role of innate and adaptive immunity to infection separately.  

Non-human primates (NHPs) were used years ago for the study of TB, for both 

vaccine and drug testing [85]. However, the expense and difficulty in maintaining 

animals in BSL3 facilities lead to the demise of monkeys as a model for studying TB. In 

recent years, however, there has been a resurgence of interest in using these animals for 

TB research, as new data revealed substantial similarities among outcomes of Mtb 

infection in humans and monkeys [34]. Low dose infection of cynomolgus macaques 

with Mtb results in the full spectrum of human infection outcomes, from latent to active 

TB [34,86]. The granulomas can be solid, necrotic, caseous, or cavitory, even within the 
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same monkey. Furthermore, reactivation of latent Mtb infection in monkeys has been 

demonstrated after TNF neutralization [1], CD4+ T cell depletion and Simian 

immunodeficiency virus (SIV) co-infection (as a model of TB and AIDS) [87,88]. There 

are several attractive features of the macaque as a model of TB. First, this is the only 

animal model of latent TB. The full spectrum of human pathology is also observed in the 

macaque, with all varieties of granulomas observed, in both lungs and lymph nodes, and 

cavity formation [28,34]. Second, the reagents for immunologic and pathologic analysis 

are readily available and in many cases cross-reactive human reagents can be used. These 

features make macaque an important and useful model for studying human TB. However, 

there are several limitations to this model system. The primary limitations are the expense 

of buying and maintaining monkeys, the difficulties in housing monkeys in BSL3 

facilities, the limitations on obtaining monkeys, and the necessarily small sample sizes. 

Further, there is extensive genetic variability among monkeys, requiring larger cohorts of 

animals to obtain statistically significant results.  

 

1.3 Computational background 

1.3.1 Computational models of tuberculosis granulomas 

Experimental models of TB have been and will continue to be successful and necessary 

tools to exploring infection with Mtb. However, despite decades of research on TB, our 

understanding of the factors that lead to active, latent, and reactivation TB remain very 

much incomplete. For example, it is not clear which collection of immune factors is 

responsible for determining whether an individual develops active or latent TB. One 

difficulty is that studies in animal models (and also humans) are often focused on only 
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one or two factors at a time. Although single-component studies (e.g. single-gene 

knockout models) in animals are necessary, it can be difficult to integrate these studies in 

the context of a very complex immune response such as TB. In particular, the complexity 

of granulomas and the immune interactions contributing to granuloma formation and 

function can be difficult to assess by using only experimental methods. Indeed, 

integration of data from experimental studies of isolated components is necessary to gain 

insight into the interplay of various components of the immune response during 

granuloma formation. Systems biology is an approach whereby such data can be 

integrated [89]. A critical step toward this goal is to create mathematical and 

computational models that reflect human biology, providing an opportunity to perform 

experiments that are not feasible in vitro or in vivo.   

Mathematical and computational modeling provides a unique approach to 

studying the behavior of complex biological systems. These methods can be used to 

better explore hypothesized mechanisms, generate and test new hypotheses, run virtual 

(in silico) experiments, interpret data, motivate particular experiments, and suggest new 

drug targets. A series of mathematical and computational models have been developed to 

investigate the host response to Mtb infection [2,5,90-101]. In particular, model-based 

analysis of the formation and function of a TB granuloma contributes to understanding 

the mechanisms that control the immune response to Mtb [90-93,95,101]. These models 

complement experimental approaches and can be used to address questions in TB that are 

difficult or currently impossible to approach experimentally. The high cost and time 

investment needed to fully explore many interacting immune factors and various 

outcomes involved within the Mtb-host interactions in an experimental setting are factors 
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that should promote the use of computational models. Building computational models can 

also allow us to integrate data derived from experiments on different tissues, different 

biological scales (e.g. molecular or cellular) and different time scales into a 

comprehensive picture of the immune response to Mtb.  

Differential equation (DE)-based models typically describe a deterministic 

relationship among several continuously varying quantities (e.g., numbers of cells, 

concentrations of molecules, etc.) and their rates of change in space and/or time. DE-

based models have been developed for studying temporal dynamics of cytokines and 

effector cells during the immune response to Mtb [96,97,102,103]. These models are 

based on known interactions of immune cells in the lung during Mtb infection. 

Experimental data are used to estimate parameter values. When data are not available, 

uncertainty and sensitivity analyses are used to define parameter spaces. Uncertainty 

analysis is performed to investigate the uncertainty in the model output that results from 

uncertainty in input parameter values. Sensitivity analysis is then used to quantify how 

input uncertainty (e.g., biological variability coupled to unknown ranges of variation for 

model parameters) affects model outcomes and to identify critical model parameters. 

Once validated against experimental data, the models are used to make novel predictions 

about dynamics, progression of infection and potential therapies. Examples of 

contributions these models have made to our understanding of TB include identifying the 

critical impact of delays in either dendritic cell migration to the draining lymph node or T 

cell trafficking to the site of infection on the outcome of infection [102], and identifying 

the key role of cytokine IL-10 in balancing macrophage phenotypes in the lung and 

lymph nodes [103]. DE models can also be used to examine spatial aspects of the 
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immune response, including analysis of the process of granuloma formation and cytokine 

availability in a granuloma [2,95]. 

In contrast to DE-based models, agent-based models (ABMs, also known as 

individual based models) are rule-based models that capture a variety of stochastic and 

discrete events occurring in the immune system [104-108]. An ABM has the following 

components: agents (e.g. immune cells, bacteria), the environment where agents reside 

(e.g. a two-dimensional grid representing a section of lung tissue), the rules that govern 

the dynamics of agents, including movements, actions and interactions between agents as 

well as between agents and environment, and time-scales on which the rules are 

executed. In an ABM, the local, possibly stochastic interactions occurring at the level of 

agents lead to global, system-wide dynamics and emergent spatial and temporal patterns. 

Hence, ABMs are particularly useful for studying complex systems such as TB 

granulomas in which cell heterogeneity and spatial interactions are important.  

First- and second-generation ABMs have been developed to describe the immune 

response to Mtb and to identify mechanisms that control granuloma formation and 

function [90,91]. Next-generation granuloma ABMs have been developed in response to 

new biological data that indicated the importance of including additional cell types (e.g. 

effector CD8+ T cells and regulatory T cells), cytokines (e.g. TNF, IL-10), and 

chemokines (e.g. CCL2, CCL5 and CXCL9) [5,90,101]. These models are the first to 

track the dynamics of formation and maintenance of a granuloma in space and time, 

simultaneously providing critical details regarding cellular interactions and molecular 

concentrations. There are no experimental methods to obtain these detailed, continuous 

data in primates. 
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As a complex process, granuloma models include parameters describing a large 

number of biological events. Hence, it is critical to understand the role that each of these 

parameters plays in determining how a granuloma functions. A number of useful and 

powerful tools have been developed to analyze these complex model systems. One 

approach is to perform virtual deletion and depletion experiments that mimic 

experimental gene knockout or molecule depletion studies [90]. Loss of activity is 

achieved by setting relevant parameters (e.g. probabilities or rate constants) to zero or 

raising relevant thresholds to an unattainable level. Virtual deletion refers to the loss of 

activity from the beginning of simulation and virtual depletion refers to the loss of 

activity after establishment of a granuloma. A second approach is to use uncertainty and 

sensitivity analysis techniques that have been adapted for use in agent-based models 

[109].  

 

1.3.2 Uncertainty and sensitivity analysis 

When computational models include parameters describing a large number of known 

biological processes, it is critical to understand the role that each of these parameters 

plays in determining output. Sensitivity analysis is a technique to identify critical 

parameters of a model and quantify how input uncertainty impacts model outputs. Latin 

hypercube sampling (LHS) is an algorithm that allows multiple parameters to be varied 

and sampled simultaneously in a computationally efficient manner [110]. It has been 

shown to be more than one order of magnitude more efficient than random sampling 

methods [111-113]. Briefly, each input parameter is assigned a range. Each parameter's 

value range is divided into N equal probable segments according to a specified 
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probability distribution function (e.g. uniform distribution) for that parameter. A random 

value is then chosen from each segment, so that each parameter becomes a vector of N 

values. The N values of the parameter vectors are then randomly paired to generate an N 

by X input matrix, where X is the number of parameters to be varied. The model 

simulations are run using each of the N parameter sets, generating a vector of N solutions 

(model outputs). Then, we can use statistical techniques to identify parameters that are 

most important in determining model outputs. For example, correlation coefficients can 

be calculated to identify parameters whose variation is strongly correlated with variations 

in an output of interest. For nonlinear monotonic systems, partial rank correlation 

coefficient (PRCC) is an appropriate choice [111]. PRCC values vary between -1 (perfect 

negative correlation) and +1 (perfect positive correlation) and can be differentiated based 

on p-values derived from Student’s t test. The choice of the number of simulations is 

determined by the desired significance level for the PRCC [110]. LHS sensitivity analysis 

with PRCC calculation has been particularly adapted for application to ABMs such as the 

granuloma model [114]. 
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Chapter 2

Identification of key processes that control tumor necrosis factor 
availability in a tuberculosis granuloma 

2.1 Introduction 

Tuberculosis (TB) is caused by a highly successful bacterium, Mycobacterium 

tuberculosis (Mtb), and is responsible for three million deaths per year [1]. 5-10% of 

infected people fail to control the infection and progress to primary TB disease [2]. A 

state of latent infection with no clinical symptoms is achieved in most people and may 

be maintained for the lifetime of the host. However, latent infection can be reactivated 

years later leading to active tuberculosis. The risk of reactivation is increased in latently 

infected persons who are elderly, immunocompromised (e.g. due to HIV co-infection), 

malnourished or taking specific drugs [3,4]. A key outcome of Mtb infection that arises 

as a result of the immune response within the host is the formation of aggregates of 

immune cells and bacteria called granulomas in the lungs. TB granulomas, especially in 

humans as well as guinea pig and non-human primate models, form as organized 

spherical structures composed of a core of bacteria, macrophages and dendritic cells 

(DCs) surrounded by a ring of lymphocytes, including T cells and B cells [2,5-10]. In an 

infected host with latent infection, the micro-environment created within a granuloma 

provides appropriate conditions for containment of bacteria [11,12]. 

Tumor necrosis factor-α (TNF) is a well-studied inflammatory cytokine that is 

produced by immune cells, especially activated macrophages and monocytes. TNF is 
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expressed as a 26 kDa membrane-bound precursor protein (membrane-bound TNF; 

mTNF) that can be cleaved by proteolytic activity of a metalloproteinase TNF-α 

converting enzyme (TACE) and released as a 17 kDa subunit (soluble TNF; sTNF) into 

extracellular spaces [13,14]. Both sTNF and mTNF are trimeric in their mature bioactive 

form [15] and function by binding to one of the two types of TNF receptors on cells: 

TNF receptor type 1 (TNFR1; also referred to as p55 or CD120a) and TNF receptor type 

2 (TNFR2; also called p75 or CD120b) [16]. Although the two receptors are co-

expressed on the surface of most cell types, TNFR1 has been identified as the primary 

signaling receptor through which most of the inflammatory responses attributed to TNF 

occur [17]. TNF affects the immune response to Mtb through several mechanisms, 

including induction of macrophage activation [18], apoptosis [19,20], and chemokine 

expression [21]. Further, numerous reports have begun to reveal the role of TNF in 

granuloma formation as well as in maintenance of granulomas in latent TB [11,18,22-

24]. There are conflicting data, however, regarding the role of TNF in granulomas and 

Mtb infection and this has arisen because of cross-species comparisons. In humans, anti-

inflammatory TNF-neutralizing drugs such as infliximab and etanercept are associated 

with an increased risk of latent TB reactivation, although the level of susceptibility 

depends on the drug [25,26]. Granuloma formation in mice that lack TNF or TNFR1 has 

been reported to be aberrant or delayed [18]. Neutralization of TNF in mice with chronic 

infection leads to disorganization of granulomas, increase in bacterial load and 

subsequent death [23]. However, TNF neutralization in monkeys results in both 

exacerbation of primary disease and reactivation of latent infection without affecting the 

granuloma architecture seen in primary and latent TB [27]. Overall, it is clear that TNF 
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plays an important role in TB infection dynamics. Further, TNF availability, i.e. the 

amount of TNF available to cells in the granuloma, has been reported to be crucial in 

control of TB infection [28,29], but there are still open questions regarding the 

mechanisms controlling TNF availability and the influence of TNF availability on 

granuloma function.  

To elucidate the mechanisms by which availability of TNF in a granuloma is 

controlled, we focus on TNF interactions with immune cells that comprise a granuloma. 

We are interested particularly in TNF receptor dynamics. Receptor/ligand interactions at 

the cell membrane are responsible for initiating intracellular signaling pathways and 

ultimately the cell response to the external stimulus. However, trafficking events 

(defined here to include synthesis, internalization, recycling and degradation of ligands 

and receptors) have been demonstrated to take place under normal physiological 

conditions and can influence the availability of ligand, the number of ligand-bound 

receptors and thus receptor-mediated cell responses [30,31]. TNF/TNFR trafficking 

processes have been studied in a variety of human and mouse cell lines [32-36]. For 

example, a whole-cell kinetic analysis of TNF/TNFR system with fitting to experimental 

data on human lung adenocarcinoma A549 cells has shown that the simplest model that 

reasonably explains the behavior of this system includes receptor synthesis and turn-

over, TNF/TNFR association and dissociation as well as TNF/TNFR complex 

internalization, degradation and recycling of free receptors to the cell membrane [36].  

The influence of the dynamics of TNF/TNFR trafficking processes on the 

availability of TNF in a TB granuloma has never been studied. Thus, we develop a 

reaction/diffusion-based partial differential equation (PDE) model that describes a TB 
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granuloma as a continuous collection of immune cells forming concentric layers and 

includes TNF/TNFR binding and trafficking processes. Our multi-scale model is 

focused on TNF/TNFR-level reactions and interactions, while using a coarse-grain 

description of the cellular-level details representing a snapshot in time of a granuloma 

comprised of a static number of immune cells. To analyze the model, we use estimations 

for TNF/TNFR-associated parameter values from literature and then employ an artificial 

experimental mouse model of TB granuloma (Fig. 2.1) to quantitatively measure critical 

model parameters identified by sensitivity analysis. The artificial model of granuloma 

formation is induced in mice following injection of Sepharose beads covalently coupled 

to Mycobacterium purified protein derivative (PPD) antigen. This model is an 

appropriate choice for our study as it provides cytokine and cellular patterns that closely 

match those in an active mycobacterial infection [37-41]. Thus our mathematical model 

also accounts for a bead at the center of the granuloma (Fig. 2.1). We use our model to 

answer the following questions: What are the most important processes that control TNF 

availability in a granuloma? Are there likely to be gradients of TNF within a TB 

granuloma? How does the specific organization of immune cells in the granuloma, i.e. a 

core of macrophages and DCs surrounded by a mantle of lymphocytes, influence the 

fraction of TNF-bound receptors and thus TNF signaling for each cell type? And 

ultimately, how might the neutralization power of TNF-neutralizing drugs in a TB 

granuloma be affected by their TNF binding properties? 
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Fig. 2.1 PPD antigen-bead pulmonary granuloma model. (A) Schematic representation (rbead: radius 
of bead, rg: radius of granuloma) and (B) histological appearance of an artificial pulmonary 
granuloma induced in mouse 4 days after injection of PPD-coated beads [37,38,41] (H&E staining; 
magnification: ×800). 
 

2.2 Methods 

2.2.1 TNF/TNFR kinetics at the single-cell level 

The binding interactions and reactions controlling TNF/TNFR dynamics at the single-

cell level regardless of the cell type are illustrated in Fig. 2.2A. TNF is first synthesized 

by TNF-producing cells as a membrane-bound precursor form (mTNF) that can then be 

processed and released as a soluble form (sTNF) into extracellular spaces. This 

processing occurs via a cell-associated metalloproteinase called TACE [13,14]. Two 

types of TNF receptors (TNFR1 and TNFR2) are synthesized and expressed on the cell 

surface as free receptors. Soluble TNF (sTNF) reversibly binds to TNFRs on the cell 

membrane or degrades [16,42,43]. sTNF-bound cell surface TNFR1 internalizes and 

sTNF-bound cell surface TNFR2 may undergo internalization or shedding into 

extracellular spaces [44]. Internalized receptors may degrade or recycle to the cell 

membrane where they can re-bind to sTNF [36]. Ligand-free TNFRs also turn over 

(internalize) [34,36]. Intact sTNF may dissociate from the shed sTNF/TNFR2 complex 

in the extracellular space [45]. We modeled these molecular processes based on mass 
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action kinetics as shown in Table 2.1; definitions and values of the rate constants are 

given in Table 2.2. 

 

 
Fig. 2.2 Schematic representation of the granuloma model. (A) Binding interactions and reactions 
controlling TNF/TNFR dynamics at the single-cell level, including synthesis of TNFR1, TNFR2 and 
mTNF, sTNF release to the extracellular space under the effect of TACE activity, reversible binding 
of sTNF to TNFR1 and TNFR2, sTNF degradation, internalization of free and sTNF-bound TNFR1 
and TNFR2, degradation of internalized TNFR1 and TNFR2, recycling of internalized TNFR1 and 
TNFR2, shedding of sTNF-bound TNFR2 and release of sTNF from the shed sTNF/TNFR2 
complex. (B) TNF neutralization-associated reactions, including reversible binding of drug to mTNF 
and sTNF, release of drug-bound TNF from the membrane to the extracellular space and drug 
degradation. (C) Two-compartment model of granuloma that includes a bead of radius rbead 
surrounded by the inner compartment populated by macrophages and DCs and the outer 
compartment composed of lymphocytes. Numbers in (A) and (B) represent model reactions as listed 
in Table 2.1. 
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Table 2.1 Definition of reaction species, model reactions and their rates (vi). 
Reaction species 

mTNF Membrane-bound TNF sTNF/TNFR1i 
Internalized sTNF/TNFR1 
complex 

sTNF Extracellular soluble TNF sTNF/TNFR2i 
Internalized sTNF/TNFR2 
complex 

TNFR1 Cell surface TNF receptor 1 sTNF/TNFR2shed Shed sTNF/TNFR2 complex 
TNFR2 Cell surface TNF receptor 2 Drug TNF-neutralizing drug 

sTNF/TNFR1 sTNF/TNFR1 complex on the membrane mTNF/Drug mTNF/Drug complex on the 
membrane 

sTNF/TNFR2 sTNF/TNFR2 complex on the membrane sTNF/Drug Extracellular sTNF/Drug 
complex 

Base model reactions 

1 
mTNF synthesis 

€ 

v1 = ksynth  10 TNFR2 synthesis 

€ 

v10 =Vr2  

2 mTNF → sTNF 

€ 

v2 = kTACE[mTNF] 
11 TNFR1 → TNFR1i 

€ 

v11 = kt1[TNFR1] 

3 
sTNF + TNFR1 ↔ sTNF/TNFR1 

€ 

v3 = kon1[sTNF][TNFR1]− koff1[sTNF /TNFR1] 12 TNFR2 → TNFR2i 

€ 

v12 = kt 2[TNFR2]  

4 
sTNF + TNFR2 ↔ sTNF/TNFR2 

€ 

v4 = kon2[sTNF][TNFR2]− koff 2[sTNF /TNFR2] 
13 

sTNF/TNFR1i → degradation 

€ 

v13 = kdeg1[sTNF /TNFR1i] 

5 
sTNF → degradation 

€ 

v5 = kdeg[sTNF] 
14 

sTNF/TNFR2i → degradation 

€ 

v14 = kdeg2[sTNF /TNFR2i] 

6 sTNF/TNFR1 → sTNF/TNFR1i 

€ 

v6 = kint1[sTNF /TNFR1]  
15 sTNF/TNFR1i → TNFR1 

€ 

v15 = krec1[sTNF /TNFR1i] 

7 sTNF/TNFR2 → sTNF/TNFR2i 

€ 

v7 = kint 2[sTNF /TNFR2] 
16 sTNF/TNFR2i → TNFR2 

€ 

v16 = krec2[sTNF /TNFR2i] 

8 sTNF/TNFR2 → sTNF/TNFR2shed 

€ 

v8 = kshed [sTNF /TNFR2]  
17 

sTNF/TNFR2shed → sTNF + TNFR2shed 

€ 

v17 = koff 2[sTNF /TNFR2shed ] 

9 TNFR1 synthesis 

€ 

v9 =Vr1  
  

TNF neutralization reactions 

18* 
mTNF + Drug ↔ mTNF/Drug 

€ 

v18 = kon _TNF /Drug[mTNF][Drug]− koff _TNF /Drug[mTNF /Drug] 21 
Drug → degradation 

][deg_21 Drugkv Drug=  

19 mTNF/Drug → sTNF/Drug 

€ 

v19 = kTACE[mTNF /Drug] 
22 

sTNF/Drug → Drug (sTNF 
degradation) 

€ 

v22 = kdeg[sTNF /Drug] 

20* 
sTNF + Drug ↔ sTNF/Drug 

€ 

v20 = kon _TNF /Drug[sTNF][Drug]− koff _TNF /Drug[sTNF /Drug] 23 
sTNF/Drug → degradation 

]/[deg_23 DrugsTNFkv Drug=  
* Sequential binding of drug to sTNF and mTNF for drugs with TNF binding ratio of greater than 1:1 was modeled 
similarly. 
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Table 2.2 Model parameters, definitions and values estimated from literature. 
Parameter Parameter description Value* Reference 

ksynth_in (#/cell.s) Average rate of mTNF synthesis in the 
inner compartment 10-2-1 See text 

ksynth_out (#/cell.s) Average rate of mTNF synthesis in the 
outer compartment 0-10-1 See text 

R1_out (#/cell) TNFR1 density in the outer compartment 500-5000 [33,46,47] 
R1_in (#/cell) TNFR1 density in the inner compartment 500-5000 [33,46,47] 
R2_out (#/cell) TNFR2 density in the outer compartment 500-5000 [33,46,47] 
R2_in (#/cell) TNFR2 density in the inner compartment 500-5000 [33,46,47] 

f Fraction of granuloma in the outer 
compartment 0.4-0.7 [7,41] 

D1 (cm2/s) † Diffusion coefficient of sTNF 10-8-10-7 (5.2×10-8) [48,49] 

D2 (cm2/s) † Diffusion coefficient of shed 
TNF/TNFR2 complex 10-8-10-7 (3.2×10-8) [48,49] 

φ ‡ Volume fraction of the extracellular 
space per granuloma volume 0.2-0.3 (0.2) [50,51] 

dG (#/mm2) Density of granulomas in the lung tissue 
cross section 0.5-30 (1) [52,53] 

ρ (cell/l) Mean cell number density in the tissue 6×1012 [41] 
rg (µm) Granuloma radius 100 [41] 
rm (µm) § Half mean distance between granulomas 1000×(πdG)-0.5  
rbead (µm) Bead radius 40  
rcore (µm) Radius of the inner compartment [rg

3-f(rg
3-rbead

3)]1/3  
Nav (mol-1) Avogadro’s number 6.02×1023  

kTACE (s-1) Rate constant for TNF release by TACE 
activity 10-4-10-3 (4.4×10-4) [14,54,55] 

kdeg (s-1) sTNF degradation rate constant 4.58×10-4 [56] 

Kd1 (M) Equilibrium dissociation constant of 
sTNF/TNFR1 10-12-10-10 (1.9×10-11) [33,42] 

Kd2 (M) Equilibrium dissociation constant of 
sTNF/TNFR2 10-10-10-9 (4.2×10-10) [33,42,57] 

kon1 (M-1s-1) sTNF/TNFR1 association rate constant 107-108 (2.8×107) [42] 
kon2 (M-1s-1) sTNF/TNFR2 association rate constant 107-108 (3.5×107) [42] 
koff1 (s-1) sTNF/TNFR1 dissociation rate constant kon1×Kd1  
koff2 (s-1) sTNF/TNFR2 dissociation rate constant kon2×Kd2  
kint1 (s-1) TNFR1 internalization rate constant 5×10-4-1.5×10-3 (7.7×10-4) [42,44] 
kint2 (s-1) TNFR2 internalization rate constant 3.9×10-4-5×10-4 (4.6×10-4) [57] 
kshed (s-1) TNFR2 shedding rate constant 3.9×10-4-1.5×10-3 (5×10-4) [44,54] 
krec1 (s-1) TNFR1 recycling rate constant 8.8×10-5-5.5×10-4 (1.8×10-5) [34,36] 
krec2 (s-1) TNFR2 recycling rate constant 8.8×10-5-5.5×10-4 (1.8×10-5) [34,36] 
kt1 (s-1) TNFR1 turn-over rate constant 3×10-4-5×10-4 (3.8×10-4) [34,36] 
kt2 (s-1) TNFR2 turn-over rate constant 3×10-4-5×10-4 (3.8×10-4) [34,36] 
kdeg1 (s-1) TNFR1 degradation rate constant 10-5-10-4 (5×10-5) [32-34,36] 
kdeg2 (s-1) TNFR2 degradation rate constant 10-5-10-4 (5×10-5) [32-34,36] 

Vr1_in (#/cell.s)  Cell surface TNFR1 synthesis rate 
constant in the inner compartment 

kt1×R1_in  

Vr1_out (#/cell.s)  Cell surface TNFR1 synthesis rate 
constant in the outer compartment 

kt1×R1_out  

Vr2_in (#/cell.s)  Cell surface TNFR2 synthesis rate 
constant in the inner compartment 

kt2×R2_in  

Vr2_out (#/cell.s)  Cell surface TNFR2 synthesis rate 
constant in the outer compartment 

kt2×R2_out  
* The 25 parameters used for sensitivity analysis are indicated by their ranges of values. Values in parentheses are 
used to generate other model results. 
† Diffusion coefficients of the soluble species in granuloma were estimated in line with estimates for diffusible factors 
of similar molecular weight in tumors [48,49].  
‡ Consistent with extracellular volume fraction estimated for multi –cellular tumor spheroids [50,51]. 
§ Half mean distance between granulomas were calculated from the granuloma density assessed for 2D sections of the 
lung tissue [52,53] and assumed to be consistent in 3D. 
 



  38 

2.2.2 TNF neutralization kinetics 

Several TNF-neutralizing drugs have been developed and they work to interfere with 

TNF activity and thus are used to control inflammation in human diseases such as 

rheumatoid arthritis and Crohn’s disease. These drugs are composed of either 

monoclonal antibodies (e.g. infliximab) or receptor fusion molecules (e.g. etanercept) 

that specifically bind TNF, acting as a competitive inhibitor for TNF binding to cell 

surface TNFRs and eventually neutralizing its functions [58,59].  

To study the effect of TNF-neutralizing drugs of various properties on 

TNF/TNFR dynamics, we modeled a hypothetical drug as an agent that binds to sTNF 

or both sTNF and mTNF molecules and also inhibits sTNF binding to both TNFRs. We 

captured TNF neutralization-associated reactions (schematically shown in Fig. 2.2B) in 

our model, including reversible binding of drug to mTNF and sTNF [59,60], release of 

drug-bound mTNF into extracellular spaces due to TACE activity, and drug or 

TNF/drug complex degradation [61] based on mass action kinetics as shown in Table 

2.1. Definitions and values of drug-specific parameters are given in Table 2.3. 
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Table 2.3 TNF neutralization-associated parameters, definitions, and values. 

Parameter Parameter description Value Reference 
Ddrug (cm2/s) * Diffusion coefficient of drug 2.3×10-8 [48,49] 
kc (cm/s) † Drug permeability in granuloma 9×10-7 [62] 

C0 (M) ‡ Average drug concentration in the lung 
tissue 

1×10-7 [63,64] 

kon_TNF/Drug (M-1s-1) TNF/drug association rate constant 104-106 [60,65,66] 
koff_TNF/Drug (s-1) TNF/drug dissociation rate constant 10-5-10-3 [60,65,66] 
kdeg_Drug (s-1) Drug degradation rate constant 1×10-6 [59] 

* Diffusion coefficient of the drug in granuloma was estimated in line with estimates for diffusible factors of 
similar molecular weight in tumors [48,49].  
† Drug permeability in granuloma was estimated based on permeability of bifunctional antibodies in tumors 
[62]. 
‡ Drug concentration in the lung was estimated based on approximate blood concentration of TNF-
neutralizing drugs. For most antibodies, tissue/blood concentration ratios are in the range of 0.1-0.5 [64]. 
 
 

2.2.3 Two-compartment model of granuloma 

To study the influence of TNF/TNFR dynamics on the availability of TNF within the 

multi-cellular structure of the granuloma, TNF/TNFR-associated molecular processes 

described at the single-cell level were incorporated into a coarse-grain multi-cellular 

model of a TB granuloma. The model represents a snapshot in time of a granuloma and 

is composed of an organized collection of a static number of immune cells surrounding a 

PPD-coated bead. Within this collection, TNF is produced by TNF-producing immune 

cells, diffuses in extracellular spaces and interacts with TNFR-expressing cells. We 

modeled the granuloma as a spherical continuum consisting of two cellular 

compartments. The inner compartment includes evenly distributed macrophages and 

DCs that form the core of the granuloma, and the outer compartment or mantle is 

comprised of evenly distributed T cells and B cells (Fig. 2.2C). This is consistent with 

the structure observed for classical TB granulomas that are comprised of aggregates of 

macrophages and DCs with a characteristic cuff of lymphocytes, including T cells and B 

cells on the periphery [2,6]. Discrete cells are not explicitly considered in this model; 

each cell-associated species (e.g. cell surface TNF receptor, internalized TNF-bound 
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receptor, etc) is treated as a spatially immobile agent whose concentration in space is 

expressed by a continuous variable, whereas unbound extracellular sTNF and shed 

receptors are free to diffuse. Thus, the model includes reaction-diffusion equations for 

extracellular sTNF and shed receptor concentrations, and basic reaction equations for 

other species as listed in Table 2.4. Definitions and values of model parameters are 

given in Table 2.2.  

 

Table 2.4 Model equations. TNF neutralization reactions are 
distinguished from other reactions by bold font.  

€ 

∂[mTNF]
∂t

= v1 − v2 − v18        

€ 

∂[sTNF]
∂t

=
D1
r2

∂
∂r
(r2 ∂[sTNF]

∂r
) + ( ρ

φNav

)(v2 − v3 − v4 ) − v5 + v17 − v20  

€ 

∂[TNFR1]
∂t

= v9 − v3 − v11 + v15    

€ 

∂[TNFR2]
∂t

= v10 − v4 − v12 + v16             

€ 

∂[sTNF /TNFR1]
∂t

= v3 − v6    

€ 

∂[sTNF /TNFR2]
∂t

= v4 − v7 − v8                

€ 

∂[sTNF /TNFR1i]
∂t

= v6 − v13 − v15  

€ 

∂[sTNF /TNFR2i]
∂t

= v7 − v14 − v16        

€ 

∂[sTNF /TNFR2shed ]
∂t

=
D2

r2
∂
∂r
(r2 ∂[sTNF /TNFR2shed ]

∂r
) + ( ρ

φNav

)v8 − v17  

€ 

∂[Drug]
∂t

=
Ddrug
r 2

∂
∂r
(r 2 ∂[Drug]

∂r
) − ( ρ

φNav
)v18 − v20 − v21 + v22  

€ 

∂[mTNF/Drug]
∂t

= v18 − v19  

€ 

∂[sTNF/Drug]
∂t

=
Ddrug
r 2

∂
∂r
(r 2 ∂[sTNF/Drug]

∂r
) + ( ρ

φNav
)v19 + v20 − v23 − v22  

 
 
 

To maintain the consistency of the mathematical model with the experimental 

mouse bead model of granuloma that we study, the granuloma is comprised of a bead of 

radius rbead surrounded by cellular layers of the inner and outer compartments with radii 

of rcore and rg, respectively (Fig. 2.2C). We assumed no flux of sTNF at r = rbead and at r 
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= rm, a distance equal to half the mean distance between granulomas, due to symmetry 

with tissue surrounding adjacent granulomas. Initial conditions for TNFRs are specified 

as: 

€ 

[TNFR1] (r,  0) =
  R1_ in :    rbead < r ≤ rcore   
R1_ out :      rcore < r ≤ rg

      (2.1) 

€ 

[TNFR2] (r,  0) =
  R2 _ in :    rbead < r ≤ rcore   
R2 _ out :      rcore < r ≤ rg

      (2.2) 

where R1_in, R1_out, R2_in and R2_out are the average TNFR1 and TNFR2 densities on the 

membrane of cells in the inner and outer compartments. These parameters were set equal 

to the steady state concentrations of cell surface TNFRs in each compartment in the 

absence of TNF and are controlled by the rates of receptor synthesis and turnover of free 

receptors as indicated in Table 2.2. Similarly, we assumed the steady state concentration 

of mTNF (found from Equation 2.3) in each compartment as the initial value of mTNF 

for that compartment (Equation 2.4). 

€ 

d[mTNF]
dt sready -state| = ksynth − kTACE[mTNF]steady−state = 0     (2.3) 

€ 

[mTNF] (r,  0) = [mTNF]steady−state =
  ksynth _ in

kTACE
:    rbead < r ≤ rcore   

ksynth _ out
kTACE

:      rcore < r ≤ rg
  (2.4) 

Initial concentrations of other species were set to zero, as cell-associated mTNF is the 

initial source of the whole TNF in the granuloma.  

The PDE model was solved numerically using COMSOL Multiphysics 3.4 

(COMSOL AB, Stockholm, Sweden) with MATLAB 7.5 (The MathWorks, Natick, 

MA). Simulations were run until a steady state was reached (approximately 12 hours of 

real time). Because TNF-associated molecular level processes studied here occur 
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significantly faster than cellular level events that may change the structure of a 

granuloma (e.g. cell recruitment, migration and death), we assumed that the structure of 

granuloma is not changed during the 12-hour time course of simulations.  

 

2.2.4 Distinct cell types and cellular organization in the granuloma model  

To study the influence that specific cellular organizations may have on the availability 

of TNF within a TB granuloma, we explicitly incorporated major granuloma-comprising 

cell types (determined from experiments performed herein), including macrophages, 

DCs, T cells and B cells into our mathematical model of a granuloma. We defined a 

metric, separation index (s), to present the level of separation between different cell 

types in a granuloma, defined as: 

          (2.5) 

where lo, lg are the lymphocyte (T cells and B cells) fractions in the outer compartment 

and in the whole granuloma, respectively. Thus a separation index of 0 is equivalent to a 

totally mixed cellular organization, whereas a separation index of 1 represents a separate 

cellular organization approximately as observed in human and non-human primate 

models of TB in which DCs and macrophages reside in the inner compartment (core) 

and lymphocytes compose the outer compartment (mantle). A schematic representation 

of the effect of changing s on cellular organization of the bead granuloma is shown in 

Appendix A (Fig. A.1). Some model parameters were also defined or modified based on 

consideration of the cellular organization in the model as shown in Appendix A (Table 

A.1). For example, using the mean cell volume in each compartment, cell number 
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densities in the inner and outer compartments (ρin and ρout) are computed and replace 

general cell density ρ in diffusion equations of Table 2.4.  

We assumed that some TNF/TNFR kinetic parameters, including the rate 

constants for TNF release by TACE activity, TNF/TNFR association and dissociation as 

well as TNFR internalization, shedding, degradation and recycling have the same values 

for different cell types. This assumption is based on consistency of experimental data on 

measurement or estimation of values of these parameters for a variety of cell types 

including various cell lines expressing TNF and/or TNF receptors with one another as 

well as other data on similar mammalian cell surface receptors [14,30,32-

34,36,42,44,54,55,57,67]. However, the rate of synthesis of TNF and TNFRs depends on 

the cell type (see Results). Thus, when different cell types are considered, average rates 

of mTNF synthesis in granuloma compartments can be computed as follows: 

€ 

ksynth _ in = (1− s)( fBkB + fCD4kCD4 + fCD8kCD8) +
[1− lg (1− s)]( fMackMac + fmDCkmDC + f pDCkpDC )

1− lg
  (2.6)

  

€ 

ksynth _ out =
[lg (1− s) + s]( fBkB + fCD4kCD4 + fCD8kCD8)

lg
+ (1− s)( fMackMac + fmDCkmDC + f pDCkpDC )(2.7) 

where definitions of parameters are given in Appendix A (Table A.1). Similarly, average 

values of TNFR1 and TNFR2 densities in each compartment can be computed. 

 

2.2.5 Model outputs 

The protective role of TNF in immunity to Mtb infection has been shown to depend 

primarily on the soluble form (sTNF) and its interactions with TNFR1 [18,68], 

suggesting that the spatial profile of sTNF concentration and the fraction of sTNF-bound 
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cell surface TNFR1 are model outputs of interest. Therefore, we introduce four steady-

state spatially averaged metrics to characterize our simulation results for availability of 

TNF in a granuloma. These metrics were used to perform sensitivity analysis and 

include: sTNF-bound fraction of cell surface TNFR1 in the whole granuloma (output 1), 

granuloma core (inner compartment; output 2) and mantle (outer compartment; output 3) 

as well as free sTNF concentration in the whole granuloma (output 4). 

 

2.2.6 Sensitivity analysis 

To identify parameters that significantly influence the outcomes of the two-compartment 

model of a granuloma, we used Latin hypercube sampling (LHS) [69-73] to sample 

values of 25 parameters from the ranges (with uniform distributions) listed in Table 2.2. 

Ranges of TNF/TNFR affinity and kinetic parameter values were obtained from a 

variety of literature data from different cell lines. However, no experimental values are 

available for several other parameters, including the rate of mTNF synthesis and TNFR 

densities as well as cell fractions and densities in a granuloma. Thus, relevant ranges of 

values of these parameters, though not derived from TB granulomas, were used for 

sensitivity analysis. For example, reported rates of TNF synthesis by activated cultured 

immune cells [28,38], receptor densities on human monocytes and lymphocytes 

[33,46,47], and immune cell fractions in the lungs of Mtb infected or mycobacterial 

antigen activated mice [7,41] were used. 

To reduce the number of parameters in LHS simulations, we replaced distinct 

cell type fractions with a general parameter f defined as the fraction of granuloma in the 

outer compartment. The parameter f directly determines the thickness of the inner and 
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outer compartments as indicated in Appendix A (Fig. A.1). The rate of mTNF synthesis 

and density of TNF receptors were sampled independently as average values of these 

parameters in each compartment (ksynth_in, ksynth_out, R1_in, R1_out, R2_in, R2_out). Thus, these 

parameters together with f determine the overall rate of TNF and TNFR expression in 

the granuloma. Note that the separation index (s) defined above is not used in the 

absence of distinct cell types (i.e. for the sensitivity analysis described here). 

Simulations sampled each parameter 1000 times, producing 1000 solutions to the model 

equations. To determine the correlation between parameter values and each of the model 

outputs, partial rank correlation coefficient (PRCC) values were calculated [69,70,74]. 

PRCC values vary between -1 (perfect negative correlation) and 1 (perfect positive 

correlation) and can be differentiated based on p-values derived from Student’s t test. 

The choice of number of simulations (N) is determined by the desired significance level 

for the PRCC [69,75] and here N = 1000 implies that PRCC values above +0.09 or 

below -0.09 are significantly different from zero (p < 0.001). Model parameters then 

were categorized for their significance in affecting the model outputs based on their 

PRCC values. 

 

2.2.7 Simulation of TNF neutralization in granuloma 

To study the effect of TNF-neutralizing drugs of various properties on TNF availability 

in a granuloma, the model was run in the absence of drug until a steady state was 

reached and then the drug was added. We modeled the drug source as a concentration C0 

in the surrounding tissue with a flux into a granuloma that is dependent on drug 

permeability kc and the drug gradient at granuloma radius r = rg:  
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€ 

Ddrug
∂[Drug]
∂r r= rg

= kc (C0 − [Drug]r= rg )      (2.8) 

C0 was considered constant within the time course of simulation that is significantly 

shorter than the decay time reported for TNF-neutralizing drugs [59,63]. Equations 

describing drug/TNF interactions and reactions are listed in Table 2.4. Drug-associated 

model parameters are listed in Table 2.3. To compare the influence of drugs with 

different properties (parameters) on availability of TNF in a granuloma, TNF 

neutralization efficiency, E, was defined as a function of the ratio of the spatially 

averaged steady-state concentration of sTNF before drug addition to the spatially 

averaged concentration of sTNF when drug exerts its steady state maximum effect, i.e. 

approximately 6 hours after drug addition. 

€ 

E =1−
[sTNF] t= 6 hoursrbead

rg∫ (4πr2)dr

[sTNF] t= 0rbead

rg∫ (4πr2)dr
       (2.9) 

where t = 0 stands for the steady state condition at which drug was added. 

 

2.2.8 Mouse model of TB granuloma 

We use an artificial mouse model of TB granuloma that has been demonstrated to 

provide a well-circumscribed lung granuloma typified by a type 1 cytokine phenotype 

characterized in TB [38]. Briefly, granulomas were induced in pre-sensitized CBA/J 

mice lungs following i.v. injection of 6000 Sepharose 4B beads (in 0.5 ml of PBS) 

covalently coupled to Mycobacterium purified protein derivative (PPD) as previously 

described [38,40,41,76]. After 2 days, PPD-coated beads are surrounded by immune 

cells including macrophages, DCs, T cells and B cells. PPD-bead granulomas achieve 

their maximal size on day 4 and gradually diminish thereafter [38]. To measure 



  47 

parameters of interest in PPD bead granulomas, groups of mice were sacrificed at 2 and 

4 days after bead injection. Intact granulomas were isolated following homogenization 

of lungs in cold RPMI-1640 medium (BioWhittaker) in a Waring blender with a narrow-

bottom stainless steel cup. Granuloma cells were obtained following a 30-minute 

treatment of isolated granulomas in a solution of RPMI supplemented with 10% fetal 

calf serum (FCS), 1 mg/ml collagenase A (Roche) and 30 µg/ml bovine pancreatic 

DNase I (Sigma) at 37oC and used for further experiments. 

 

2.2.9 Cellular composition of PPD bead granulomas 

To identify the cellular composition of PPD bead granulomas, we used multi-color flow 

cytometry with fluorescing antibodies specific for immune cell markers, including 

macrophages, DCs, T cells and B cells. Other immune cells such as neutrophils and 

eosinophils were not quantified as they have been shown to constitute only a tiny 

fraction of PPD bead granulomas [41]. The following antibodies/conjugates were used 

for staining of the cells: anti-CD11b-APC (BD Pharmingen), anti-CD11c-FITC (BD 

Pharmingen), anti-F4/80-APC-Cy7 (eBioscience), anti-B220-PerCP-Cy5.5 (BioLegend), 

anti-CD4-PE-Cy7 (BD Pharmingen) and anti-CD8a-Biotin (BD Pharmingen)/ 

Streptavidin-Pacific Orange (Invitrogen). Dead cells were identified and excluded from 

analysis by staining with the Live/Dead Fixable Violet Dead Cell Stain Kit (Invitrogen). 

2×105 events were counted using a BD-LSRII system flow cytometer (BD Biosciences). 

F4/80+ CD11b+ macrophage, B220+ CD11c+ lymphoid dendritic cell (pDC), CD11b+ 

CD11c+ myeloid dendritic cell (mDC), B220+ B cell, CD4+ T cell and CD8+ T cell 

populations were gated following compensation for fluorochrome spectral overlaps. Cell 
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fractions in granulomas were identified following analysis by FlowJo software (Treestar, 

Ashland, OR). 

 

2.2.10 TNF receptor quantification 

To quantify the number of TNFR1 and TNFR2 molecules on the membrane of each cell 

type, we used quantitative flow cytometry with Phycoerythrin (PE)-conjugated anti-

TNFR1 or -TNFR2 antibodies (BioLegend), together with staining of cell-specific 

markers as described above. Thus, cell suspensions at a concentration of 1×106 cells per 

volume of 200 µl were stained with saturating concentrations of antibodies that were 

identified to be 2 mg/l for anti-TNFR1 and 1 mg/l for anti-TNFR2 antibodies. We 

generated a calibration plot from the fluorescence intensity measurements on Quanti-

BRITE PE-conjugated standard micro-beads (BD Biosciences). This plot was used (after 

compensation for fluorochrome spectral overlaps) to quantify TNFR1 and TNFR2 

densities on the membrane of granuloma macrophages, mDCs, pDCs, B cells, CD4 and 

CD8 T cells based on the PE mean fluorescence intensities. 

 

2.2.11 Quantification of the rate of TNF synthesis  

Because TNF is initially synthesized as a membrane-bound molecule (mTNF), we can 

also use quantitative flow cytometry to quantify the rate of TNF synthesis by 

granuloma-comprising cells, including macrophages, DCs, B cells and T cells. Live 

granuloma cells were first isolated (from the lungs of a group of 10 mice) by using a 

Dead Cell Removal Kit (Miltenyi Biotec) and incubated at 37oC in a 5% CO2 humidified 

environment for 4-5 hours. TNF-α proteinase inhibitor-1 (TAPI-1; Calbiochem) at a 
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concentration of 100 µM was added to inhibit TNF release from cell membranes 

[54,77]. PE-conjugated anti-TNF antibody (BioLegend) was then used to stain 1×106 

cells at a sequence of time-points within a 3 hour period of TACE inhibition at 37oC. 

The rate of mTNF synthesis for distinct TNF-producing cell types was derived 

by nonlinear regression of the experimental data to an equation of the form y = aebt + c 

as the general form of Equation 2.10 (which is derived from Equation 2.3) using 

MATLAB. Parameters a, b, c then were used to calculate k’TACE and ksynth.  

     (2.10) 

where [mTNF]0 is the steady-state initial number of mTNF on the cell membrane and 

k’TACE is the TNF release rate constant in the presence of TAPI-1 (k’TACE ≤ kTACE). 

Knowing ksynth and the steady-state initial number of mTNF [mTNF]0, the value of kTACE 

can be calculated from: 

€ 

[mTNF]0 =
ksynth
kTACE

         (2.11) 

 

2.3 Results 

2.3.1 TNF availability within a granuloma 

To understand the extent to which granuloma properties (e.g. cellular composition, 

TNFR expression and the rate constant for receptor internalization) impact the 

availability of TNF, simulations were run for different values of model parameters 

within ranges given in Table 2.2. Although TNF exists in different forms in the 

granuloma, the amount of TNF associated with TNF receptors, and in particular TNFR1, 

has been identified as a primary factor that determines the outcomes of TNF signaling in 
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the granuloma [18,78]. Thus, we present steady state model predictions for spatial 

profile of the fraction of sTNF-bound TNFR1 in a granuloma using several different 

sample sets of values for model parameters within ranges specified in Table 2.2 (Fig. 

2.3). Simulation results for the spatial profiles of other forms of TNF in the model 

(soluble and cell-associated sTNF-bound TNFR2 and internalized sTNF-bound TNFRs) 

are presented in Appendix A. Our modeling results demonstrate that TNF availability in 

granuloma compartments is dramatically influenced by the values of model parameters, 

including rate constants for TNF/TNFR trafficking events, TNFR densities and the rate 

of TNF synthesis in granuloma compartments. However, modeling results here are 

limited in their applicability due to parameter uncertainty, especially uncertainty in the 

level of TNF and TNFR expression by distinct granuloma-comprising cells. Therefore, 

we next turn to the identification of critical model parameters that influence the outcome 

of the model, TNF availability and binding to TNFRs in the granuloma. 
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Fig. 2.3 Simulation results for the steady-state profile 
of sTNF-bound fraction of cell surface TNFR1 in a 
granuloma using seven different sample sets of 
parameter values within ranges specified in Table 
2.2. Arrow indicates radius of the bead (rbead). 
Parameter values for the particular curves shown are 
listed in Appendix A (Table A.2). 

 

2.3.2 Sensitivity analysis: identifying critical model parameters that influence TNF 

availability 

To identify parameters that significantly influence the availability of TNF within a 

granuloma, sensitivity of the outputs of the model describing TNF trafficking in a 

granuloma to changes of input parameters was explored. Table 2.5 indicates significant 

PRCC values for model parameters and outputs. For example, the average sTNF-bound 

fraction of cell surface TNFR1 in the whole granuloma (output 1) was shown to be 

significantly influenced by a variety of parameters, including the average rate of mTNF 

synthesis in the inner and outer compartments (ksynth_in and ksynth_out), the average TNFR1 

density in the inner and outer compartments (R1_in, R1_out), the outer compartment 

fraction of granuloma (f) as well as both TNF receptor affinities for sTNF (Kd1 and Kd2) 

and the rate constant for TNF-induced internalization of TNFR1 (kint1). Indeed, using 
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different values of these particular parameters as inputs leads to outputs similar to those 

shown in Fig. 2.3 (data not shown). Thus, experimentally determined values of these 

parameters are required for generation of useful model predictions. 

 

Table 2.5 Significant PRCC values for model parameters and four spatially averaged steady-state 
outputs: (1) sTNF-bound fraction of cell surface TNFR1 in the whole granuloma, (2) sTNF-bound 
fraction of cell surface TNFR1 in the inner compartment, (3) sTNF-bound fraction of cell surface 
TNFR1 in the outer compartment, (4) sTNF concentration in the whole granuloma. Non-significant 
PRCC values are not indicated. 

Parameter Parameter description 
Output 

(1) 
Output 

(2) 
Output 

(3) 
Output 

(4) 

ksynth_in Average rate of mTNF synthesis in the inner 
compartment 0.93** 0.93** 0.71** 0.88** 

ksynth_out 
Average rate of mTNF synthesis in the outer 

compartment 0.31**  0.82** 0.29** 

R1_out TNFR1 density in the outer compartment -0.76**  -0.85** -0.29** 
R1_in TNFR1 density in the inner compartment -0.62** -0.86** -0.54** -0.76** 
R2_out TNFR2 density in the outer compartment   -0.17**  
R2_in TNFR2 density in the inner compartment -0.09* -0.15** 0.25**  
f Fraction of granuloma in the outer compartment -0.49**  -0.32** -0.36** 
D1 Diffusion coefficient of sTNF   0.19**  

D2 
Diffusion coefficient of shed TNF/TNFR2 

complex   0.08*  

φ  Volume fraction of the extracellular space per 
granuloma volume      

dG Density of granulomas in the lung tissue     
kTACE Rate constant for TNF release by TACE activity     

Kd1 
Equilibrium dissociation constant of 

sTNF/TNFR1 -0.12** -0.18** 0.16** 0.72** 

Kd2 
Equilibrium dissociation constant of 

sTNF/TNFR2 0.14** 0.18**  0.09* 

kon1 sTNF/TNFR1 association rate constant    -0.47** 
kon2 sTNF/TNFR2 association rate constant     
kint1 TNFR1 internalization rate constant -0.76** -0.72** -0.75** -0.42** 
kint2 TNFR2 internalization rate constant     
kshed TNFR2 shedding rate constant     
krec1 TNFR1 recycling rate constant    -0.09* 
krec2 TNFR2 recycling rate constant    0.09* 
kt1 TNFR1 turn-over rate constant     
kt2 TNFR2 turn-over rate constant     
kdeg1 TNFR1 degradation rate constant     
kdeg2 TNFR2 degradation rate constant     

* 0.001 < p-value < 0.05 
** p-value < 0.001 
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Parameters that positively correlate with the sTNF-bound fraction of cell surface 

TNFR1 in the whole granuloma (output 1 in Table 2.5) include the rate of mTNF 

synthesis in both compartments and the equilibrium dissociation constant of TNFR2 

(Kd2) as a competitor of TNFR1 for binding to sTNF. Conversely, TNFR1 

internalization rate constant kint1, TNFR1 density in both compartments, equilibrium 

dissociation constant of TNFR1 (Kd1), and the outer compartment fraction of granuloma 

f negatively correlate with this same output. Although greater affinity of TNFR1 for 

sTNF enhances the level of sTNF binding to TNFR1 in the core of granuloma (output 2) 

as the major TNF-producing compartment, it reduces the access of TNFR1 on the 

membrane of cells in the outer compartment to diffusing sTNF (output 3). Thus, 

increasing the effective diffusion coefficient of sTNF in the granuloma increases the 

sTNF-bound fraction of receptors in the outer compartment. Diffusion of shed sTNF-

bound TNFR2 complex from the inner compartment to the outer compartment of 

granuloma can also explain the positive correlation of TNFR2 density in the core with 

the sTNF-bound fraction of TNFR1 in the outer compartment (output 3), while it is 

negatively correlated with the same response in the inner compartment (output 2) due to 

competition between receptors for binding to sTNF. Significant correlations of model 

parameters with the level of free sTNF concentration in the granuloma (output 4) are 

qualitatively similar to their correlations with output 1, except for Kd1 and sTNF/TNFR1 

association rate constant kon1 that are, respectively, positively and negatively correlated 

with output 4. 

Applicability of the model will require that we have accurate values of the 

significant parameters found via sensitivity analysis or else we will have to consider the 
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wide range of possibilities hinted at in Fig. 2.3. There are two different classes of these 

significant parameters. One class includes parameters associated with TNF/TNFR 

interactions and intracellular trafficking. The parameters of this class have been 

theoretically estimated or experimentally measured in multiple cell lines expressing TNF 

receptors. These studies show that the time scales and thus the rates of significant 

TNF/TNFR-associated processes identified above are consistent over different cell lines. 

For example, the obtained TNF/TNFR association and dissociation rate constants for 

TNFR1 and TNFR2 on a variety of cell lines, including U937, HeLa, and KYM-1 cells 

were found to be similar and consistent with the data on mouse embryonic fibroblasts 

[42,67]. Further, internalization of the sTNF/TNFR1 complex has been shown to occur 

with a half-time of 10-20 minutes which gives an average value of 7.7×10-4 s-1 for the 

TNFR1 internalization rate constant [42,44]. The values of these parameters are given in 

Table 2.2 (in parentheses). The second class of significant parameters are the ones for 

which no experimental values are available and include cellular fractions, the rate of 

mTNF synthesis and TNFR densities on immune cells in a TB granuloma. Thus, we 

measure the values of these parameters in an experimental model of TB granuloma. 

 

2.3.3 Cellular composition of PPD bead granulomas 

We used an artificial model of TB granuloma developed in mice following injection of 

PPD-coated beads to measure model parameters of interest. To identify the cellular 

composition of PPD bead granulomas, multi-color flow cytometry with fluorescing 

antibodies for specific immune cell surface markers was used as described in Methods. 

Fig. 2.4 indicates experimental data on fractions of the major granuloma-comprising 
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immune cells, including DCs, macrophages, T cells and B cells, that compose 

approximately 80% of the total cell population of day 2 and day 4 granulomas. 

Macrophages and B cells were observed to be the largest cell populations in isolated 

granulomas. A small but statistically significant increase (p < 0.001) in the percentage of 

both CD4 and CD8 T cells which represent the adaptive immune response was observed 

in day 4 granulomas compared with day 2 granulomas. On the other hand, macrophages 

and DCs were shown to form a slightly smaller portion of day 4 granuloma cell 

population. The percentage of B cells in granulomas did not significantly change from 

day 2 to day 4. Cellular composition of the granuloma and the increase in the level of T 

cell recruitment with time are qualitatively consistent with the experimental data on the 

infiltration of immune cells into the lungs of mice infected with Mtb as well as data on 

granulomas induced in lungs of Mtb-infected monkeys, although T cell recruitment 

occurs in a shorter time scale for PPD bead granulomas [7,9]. 
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Fig. 2.4 Cellular fractions in PPD bead granulomas at 2 and 4 days of granuloma 
formation in thirty CBA/J mice quantified by multi-color flow cytometry. 
Results are expressed as the percentage of each cell type in the total population 
of granuloma cells. Error bars represent standard deviation from the mean.  

 

2.3.4 Quantification of TNFR densities  

The average numbers of TNFR1 and TNFR2 molecules on the membrane of day 2 and 

day 4 granuloma-comprising immune cells were quantified by flow cytometry using 

standard PE-conjugated beads as described in Methods. DCs, macrophages and B cells 

were found to be the major TNFR-expressing cells in granulomas with average TNFR1 

density of the order of 103 molecules per cell and a lower level of expression for TNFR2 

(Table 2.6). Further, except for lymphoid DCs and B cells that show a significant 

decrease with time, the level of TNFR expression was similar for day 2 and day 4 

granuloma cells.  
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Table 2.6 Average numbers of TNF receptors per cell quantified by multi-color flow cytometry for 
different types of granuloma-comprising immune cells isolated from 15 mice. 

Cell type Number of receptors at day 2 Number of receptors at day 4 
 TNFR1 TNFR2 TNFR1 TNFR2 
Lymphoid dendritic cells 4600 ± 1100 1900 ± 600 1700 ± 500 1700 ± 1100 
Myeloid dendritic cells 1500 ± 400 500 ± 200 1700 ± 400 700 ± 300 
Macrophage 1000 ± 300 400 ± 200* 1000 ± 300 500 ± 200 
B cells 1100 ± 600 900 ± 200 500 ± 200 200 ± 100* 
CD4 T cells 300 ± 100* 400 ± 100* 200 ± 100* 200 ± 100* 
CD8 T cells 300 ± 100* 200 ± 100* 100 ± 100* 200 ± 100* 

* PE fluorescence intensity was smaller than the fluorescence intensity of the QuantiBRITE standard beads with 
the smallest number of conjugated PE molecules.  

 

2.3.5 Quantification of the rate of mTNF synthesis 

Using TAPI-1 as a TACE inhibitor to suppress the release of TNF from the membrane 

of TNF-expressing cells over a 3 hour time course, the rates of mTNF synthesis ksynth by 

different types of immune cells in granulomas isolated at 2 and 4 days were measured by 

flow cytometry as described in Methods. TAPI-1 was shown to partially suppress the 

TACE-mediated release of TNF from the cell membrane, so that the rate constant for 

TNF release after addition of TAPI-1 k’TACE was not zero. Thus, the rate of mTNF 

synthesis by each cell type was quantified by fitting experimental data to Equation 2.10 

as described in Methods and shown in Fig. 2.5. The results of the fit for ksynth, kTACE and 

k’TACE from three experiments are averaged and reported in Table 2.7.  Interestingly, 

PPD-bead granuloma T cells and B cells did not express quantifiable amounts of mTNF, 

although proinflammatory T cells have been reported to produce TNF in Mtb-infected 

mice [79]. To our knowledge, this is the first experimental quantification of the rate of 

TNF synthesis by granuloma-comprising immune cells.  
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Table 2.7 Average rate of mTNF synthesis and average rate constant for TNF release quantified by 
multi-color flow cytometry for different types of TNF-expressing immune cells (isolated from 10 
mice) isolated from day 2 and 4 granulomas. 

Cell type ksynth (#/cell.sec)  
day 2 

ksynth (#/cell.sec)  
day 4 kTACE (s-1)* k’TACE (s-1)* 

Lymphoid dendritic 
cells 1.01 ± 0.74 0.81 ± 0.35 (4.23 ± 1.23) × 10-4 (3.27 ± 0.87) × 10-4 

Myeloid dendritic cells 0.26 ± 0.21 0.21 ± 0.05 (4.49 ± 1.86) × 10-4 (3.09 ± 1.45) × 10-4 
Macrophage 0.17 ± 0.09 0.15 ± 0.03 (4.55 ± 1.36) × 10-4 (3.18 ± 1.16) × 10-4 

* Values of kTACE and k’TACE were averaged over all data on day 2 and day 4 granuloma cells.  

 

 
Fig. 2.5 Quantification of the rate of mTNF synthesis by each cell type. 
Experimental data on the number of mTNF molecules on the surface of each cell 
type after addition of TAPI-1 were  fitted to Equation 2.10 to estimate ksynth for 
that cell type. Displayed data represent TNF synthesis by day 4 granuloma cells 
for three hours in the presence of TAPI-1. Error bars indicate standard 
deviations. Values of R2 for curve fitting for mDCs, macrophages and pDCs are 
0.97, 0.99 and 0.98, respectively. 

 

 



  59 

2.3.6 TNF/TNFR binding and trafficking dynamics and cellular organization 

control TNF availability within a granuloma 

In general, the differences between experimental data on day 2 and 4 granulomas, 

although significant, are fairly small. Thus, using our data on cellular composition, cell-

specific rates of mTNF synthesis and TNFR densities from day 4 PPD-bead granulomas 

as well as literature data on TNF/TNFR kinetic parameter estimates as inputs to our 

model, we studied mechanisms that control steady state TNF availability within a TB 

granuloma. Here we illustrate the role of two important factors, (i) molecular level 

processes governing TNF/TNFR interactions and intracellular dynamics and (ii) cellular 

organization within the granuloma, in regulating TNF availability within a granuloma.  

To study the influence of TNF-associated molecular level processes on the 

availability of TNF, and thus TNF signaling within a TB granuloma, the distribution of 

sTNF in a granuloma was calculated by comparing modeling results in the presence of 

TNF intracellular trafficking with results of the model in the absence of TNF/TNFR 

internalization and shedding or TNF binding to TNF receptors. Fig. 2.6A compares the 

spatial distributions of free sTNF at steady state for each case. TNF/TNFR reactions and 

interactions significantly affect the available amount of sTNF in a granuloma. 

Reversible binding of sTNF to cell surface receptors can reduce the amount of available 

extracellular sTNF in the granuloma by approximately two-fold. However, other 

molecular processes including the intracellular trafficking of TNF lead to a dramatic 

decrease of up to two orders of magnitude in the extracellular concentration of sTNF 

compared with the case in which TNF is produced and diffuses in a granuloma without 

binding to cell surface receptors. This result is consistent with experimental data on the 



  60 

role of TNFRs in modulating the biologic activity of TNF where a reduction of more 

than one order of magnitude in serum TNF levels of LPS-challenged control mice 

compared with TNFR-deficient mice has been observed [17].  

 

 
Fig. 2.6 Granuloma model predictions: for (A) the effects of receptor binding, intracellular 
trafficking of TNF and cellular organization within granuloma (represented by separation) on the 
steady state spatial distribution of free sTNF in a granuloma, and (B) the effect of separation 
between different cell types in a granuloma on the spatial concentration of sTNF-bound cell surface 
TNFR1. Parameter values for the rate of mTNF synthesis (and similarly for TNFR densities) in 
each compartment were computed via Equations 2.6 and 2.7, using experimental data for day 4 
granulomas presented in Fig. 2.4 and Tables 2.6 and 2.7. Other parameter values are as listed in 
Table 2.2. The qualitative aspects of these plots are similar for day 2 granulomas. 

 

Numerous studies have shown that TB granulomas, especially in humans as well 

as guinea pig and non-human primate models [9,10], form as organized structures 

composed of a core of macrophages and DCs surrounded by a ring of lymphocytes. 

However, the effect of such a specific cellular organization on trafficking and 

availability of cytokines, in particular TNF, in the granuloma microenvironment has not 

been studied. To demonstrate the effect of spatial organization of immune cells on TNF 

availability in a granuloma, we performed simulations for varying levels of separation 

index (s) between populations of macrophages/DCs and lymphocytes within the 

granuloma (see Methods for more information). Our modeling results show that in the 
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presence of TNF/TNFR binding and intracellular trafficking, the organization of cells 

within a granuloma significantly influences the availability of TNF. As such, greater 

levels of separation between macrophages/DCs and lymphocytes (separation index close 

to or at 1) result in steeper gradients of TNF concentration in the granuloma (Fig. 2.6A). 

When the granuloma is organized in this way, the granuloma core (which is completely 

or almost completely composed of macrophages and DCs) is exposed to a higher 

concentration of TNF, while the mantle (which is composed of lymphocytes) is exposed 

to a lower concentration of TNF in comparison with the case of a zero separation index 

(reflecting a well-mixed cellular organization). A similar effect is observed for the 

number of sTNF-bound cell surface TNFR1 that controls the type and level of TNF-

induced cell response in the granuloma (Fig. 2.6B). For sufficiently large separation 

indices, a greater fraction of TNFR1 molecules on the membrane of macrophages and 

DCs in the granuloma core bind to sTNF in comparison with lymphocytes in the outer 

compartment. These results demonstrate that molecular level processes, including TNF 

intracellular trafficking and TNF receptor recycling, together with how immune cells 

(with different levels of TNF and TNF receptor expression) are organized within the 

granuloma control the amount of available TNF for each cell type and thus cell-specific 

TNF signaling.  

 

2.3.7 Effect of TNF-neutralizing drugs on availability of TNF within a granuloma 

In order to study the effects of TNF-neutralizing drugs with various properties on the 

availability of TNF in a granuloma, we model a hypothetical TNF-neutralizing drug as 

an agent that diffuses from surrounding tissue into the granuloma, binds to TNF 
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molecules and inhibits sTNF from binding to TNF receptors. We investigated how the 

efficiency of TNF neutralization (defined by Equation 2.9) by anti-TNF drugs is 

influenced by drug properties, including drug/TNF association and dissociation kinetics, 

drug ability to bind to mTNF, and drug/TNF binding stoichiometry. Three classes of 

hypothetical drugs with defined properties were modeled loosely based on properties of 

human TNF-neutralizing drugs (e.g. infliximab and etanercept) and their efficiencies of 

TNF neutralization were compared. Since the general behavior of all classes of drugs 

was shown to be independent of cellular organization in the granuloma (data not shown), 

model results for a separation index of one are discussed below. 

 

Class 1: drug binding to only sTNF at a binding ratio of 1:1 

We first consider a drug that binds to sTNF with a binding ratio of 1:1, inhibiting it from 

binding to both TNFR1 and TNFR2. The effects of varying association and dissociation 

rate constants (kon_sTNF/drug and koff_sTNF/drug) for sTNF and drug are shown in Fig. 2.7A. 

Model results show that depending on sTNF/drug association and dissociation rate 

constants, 0% - 50% of total available sTNF in a granuloma can be neutralized. As 

expected, drugs with greater affinities for sTNF more efficiently neutralize TNF in the 

granuloma. Interestingly, increasing kon_sTNF/drug without changing drug affinity leads to 

an increase in the drug neutralization efficiency (Fig. 2.7D, Class 1). This is because 

drugs compete with cell surface TNFRs for binding to sTNF and thus a drug with a 

greater kon_sTNF/drug can neutralize larger amounts of sTNF. 
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Fig. 2.7 Model predictions for the effect of TNF-neutralizing drugs with various properties on the 
availability of TNF within a granuloma. (A) Class 1: the drug can only bind to sTNF with a binding 
ratio of 1:1. (B) Class 2: the drug can bind to both mTNF and sTNF with a binding ratio of 1:1. The 
star shows the location of a drug with TNF binding kinetics similar to etanercept. (C) Class 3: the 
drug can bind to both mTNF and sTNF with a binding ratio of 3:1. The star shows the location of a 
drug with TNF binding kinetics similar to infliximab. (D) Model predictions for the effect of 
TNF/drug association rate constant on neutralization efficiency of drugs of different classes but 
identical affinities (Kd_Drug = koff_TNF/Drug /kon_TNF/Drug = 10-9 M). Model parameter values are the same 
as Fig. 2.6. TNF neutralization-associated parameter values are as listed in Table 2.3. 

 

Class 2: drug binding to both sTNF and mTNF at a binding ratio of 1:1 

We next consider a drug that binds to both sTNF and mTNF with a binding ratio of 1:1. 

We assumed identical association and dissociation rate constants for drug binding to 

mTNF and sTNF. TACE activity was considered independent of whether mTNF is 

bound to drug or not. Model results show that at all values of TNF/drug association and 
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dissociation rate constants, a drug with the ability to bind to both sTNF and mTNF is 

more efficient in neutralizing TNF in a granuloma compared with a drug that can only 

bind to sTNF (compare Fig. 2.7A and 2.7B). In other words, our model results 

demonstrate that even if sTNF is considered as the primary form of TNF that controls 

TNF-mediated signaling in granuloma cells, binding to mTNF is an important 

determinant of TNF neutralization power of the drug. This can be explained by rapid 

binding of diffusing drug molecules to mTNF in the absence of competition effects of 

cell surface TNFRs. However, similar to the case of Class 1 drug tested, TNF 

neutralization most efficiently occurs for a drug with the highest affinity for TNF. 

Interestingly, among drugs with a constant affinity of Kd = 10-9 M there is an 

optimum in neutralization efficiency that occurs for a drug with approximate values of 

kon_TNF/drug = 5.6×104 M-1s-1 and koff_TNF/drug = 5.6×10-5 s-1 (Fig. 2.7D, Class 2). To explain 

this result, we need to note that an mTNF/drug complex can be released into 

extracellular spaces due to TACE activity and then acts as a source for sTNF in the 

granuloma. When TNF/drug association is sufficiently rapid, drug binding to mTNF 

occurs before mTNF can be released into extracellular spaces. Thus, a significant 

proportion of sTNF in the granuloma is produced only after dissociation of sTNF from 

mTNF/drug complexes that are released from the cell membrane. In other words, the 

drug exerts a delay in the release of available sTNF from the cell membrane. Under 

these conditions, increasing TNF/drug dissociation rate constant increases the amount of 

sTNF dissociated from extracellular TNF/drug complexes and reduces the efficiency of 

TNF neutralization. This can explain why a drug of Class 2 type with intermediate 

values of TNF association and dissociation rate constants can more efficiently neutralize 



  65 

TNF compared with drugs of the same Class with the same affinity for TNF but higher 

values of these rate constants.  

 

Class 3: drug binding to both sTNF and mTNF at a binding ratio of 3:1 

Finally, we considered a drug that binds to both trimeric sTNF and mTNF molecules 

that possess three binding sites for the drug. An sTNF molecule with either one, two or 

three drug molecules bound is neutralized and not able to bind TNFR1 or TNFR2. This 

assumption helps us compare modeling results for TNF neutralization by different 

classes of drugs. Further, this assumption is consistent with experimental data indicating 

that only trimeric TNF is biologically active and that both monomeric TNF and 

artificially prepared dimeric TNF do not efficiently trigger TNF signaling in cells 

[80,81]. We investigated the effect of multiple binding sites for drug binding to TNF and 

formation of larger drug/TNF complexes on the efficiency of TNF neutralization in a 

granuloma. Model results show that at large values of TNF/drug association rate 

constant, a higher binding ratio (i.e. 3:1) increases the efficiency of TNF neutralization 

in comparison to a drug of Class 2 type with a binding ratio of 1:1 (compare Fig. 2.7B 

and 2.7C). However, binding stoichiometry does not significantly influence the level of 

TNF neutralization at low values of TNF/drug association rate constant, where TNFRs 

dominate the drug in competition for binding to sTNF (Fig. 2.7C). An optimum in 

neutralization efficiency amongst Class 3 drugs of the same affinity Kd = 10-9 occurs in 

the same range of TNF/drug association and dissociation rate constants as observed for 

Class 2 (Fig. 2.7D). 
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2.4 Discussion 

We have developed a two-compartment mathematical model that captures the structural 

features of a TB granuloma based on an experimental mouse PPD bead model and also 

includes molecular processes that govern the intracellular and extracellular trafficking of 

TNF. The model includes fine grain details at the level of TNF receptor dynamics, while 

using a coarse grain description for cellular level details representing a snapshot in time 

of a granuloma comprised of a static number of immune cells. This is based on a 

significant difference between the time-scale of TNF/TNFR associated molecular 

processes studied here and cellular level events that may change the structure of a 

granuloma (e.g. cell recruitment, migration and death).  

The detailed consideration of synthesis, diffusion, receptor binding and 

intracellular trafficking of TNF within the heterogeneous three-dimensional structure of 

a granuloma distinguishes our model from a previous study by Marino et al on the role 

of TNF in host defense against TB [28]. The model developed by Marino et al describes 

the temporal dynamics of the immune response to Mtb infection in active and latent 

phases within a time course of 500 days by inclusion of TNF immunological functions 

on macrophages and T cells. However, we focus in this study on a snapshot in time of a 

granuloma to study the steady state spatial distribution of available TNF. We used 

results of our model sensitivity analysis as a novel tool to lead experiments to measure 

critical model parameters in artificial granulomas induced in the lungs of mice following 

injection of mycobacterial PPD-coated beads. Finally, whereas TNF neutralization has 

been simulated by Marino et al via removing fractions of available sTNF and/or mTNF, 

we studied the effects of TNF-neutralizing drugs by incorporation of their mTNF and/or 
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sTNF binding kinetics and stoichiometry. 

Model analysis helped us characterize two mechanisms for controlling the 

availability of TNF within a granuloma. These mechanisms include intracellular 

trafficking of TNF via internalization of recyclable TNFRs, and specific cellular 

organization within the granuloma, i.e. the level of separation between different classes 

of cells. Further, we demonstrated that for the resulting effect of cellular organization on 

spatial distribution of available TNF in the granuloma to be significant, intracellular 

trafficking of TNF is essential (Fig. 2.6A). Hence, the spatial heterogeneity in the level 

of TNF and TNFR expression, and thus the amount of TNF internalization that occurs as 

a result of specific organization of different cell types in the granuloma controls the 

spatial distribution of the available amount of TNF for signaling for each specific cell 

type.  

For sufficiently large values of the separation index in the granuloma, the model 

predicts significantly greater levels of sTNF binding to TNFR1 on the membrane of 

macrophages/DCs in the core compared with lymphocytes in the mantle (Fig. 2.6B), 

which might be important for spatially coordinating the TNF-induced immunological 

functions for cells in a granuloma. Rangamani and Sirovich have recently shown via 

mathematical modeling that the induction of the two major TNF-induced signaling 

pathways, the caspase-mediated apoptotic pathway and the NF-κB-mediated survival 

pathway, are primarily controlled at the level of TNF/TNFR1 interactions [82]. As such, 

very low initial concentrations of TNF (i.e. less than 10-11 M) that can activate only a 

limited number of cell surface TNFR1 molecules are not capable of inducing apoptosis 

in the cells [67]. However, efficient NF-κB activation has been reported at TNF 
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concentrations as low as 10-13 M based on both modeling [83] and experimental analysis 

of TNF signaling in HL60 cells and 3T3 mouse embryonic fibroblasts [56,84]. Further, 

TNF/TNFR2 interactions have been shown to enhance TNFR1-dependent activation of 

caspase-mediated apoptotic pathway [85,86]. These suggest a differential induction of 

apoptotic and survival signaling pathways between the granuloma core that is comprised 

of macrophages/DCs and the surrounding ring of lymphocytes.  

The hypothesis of differential induction of TNF-mediated signaling pathways for 

classical granulomas such as ones observed particularly in human, nonhuman primate 

and guinea pig models of TB [9,10] has immunological implications. Whereas TNF-

induced apoptosis of granuloma core macrophages that contain pathogenic mycobacteria 

is required for antigen cross-presentation and subsequent T cell priming and helps 

eliminate the pathogen [87,88], lymphocyte (especially CD4 and CD8 T cell) death by 

TNF-induced apoptosis has been reported as one of the important components of an 

ineffective immune response against mycobacterial infections [89,90]. However, the 

TNF-induced survival signaling pathway is required for retaining T cells at the 

developing granuloma site where they produce IFN-γ, activating macrophages in 

synergy with TNF to kill intracellular infections [91]. Thus, our novel hypothesis is that 

a separate cellular organization in the granuloma may favor an efficient immune 

response via spatially coordinating the TNF-induced immunological functions in the 

granuloma (Fig. 2.8). Consistent with our hypothesis, very few apoptotic lymphocytes in 

classical TB granulomas induced in the guinea pig have been detected and most 

apoptotic cells have been seen close to the core of granulomas [92]. Further, because 

cellular organization undergoes dynamic changes with granuloma development and at 



  69 

different stages of immune response (innate versus adaptive) to TB infection, it can be a 

factor controlling the diverse activities of TNF according to the stage of infection in the 

lung tissue. 

 

 
Fig. 2.8 Spatial coordination of the TNF-induced immunological functions in a 
classical granuloma composed of a core of macrophages and DCs surrounded by a 
ring of lymphocytes. Great availability of TNF in the core of granuloma (together 
with TNF-induced TNFR2 activation) can turn on the TNFR1-dependent caspase-
mediated apoptotic pathway that favors antigen cross-presentation as well as 
elimination of the pathogen inside the granuloma. Low level of TNF availability in 
the mantle of granuloma is sufficient to turn on the NF-κB signaling which favors 
cell survival and expression of pro-inflammatory genes but not the apoptotic 
pathway. 

 

Finally, we used the model to predict and analyze the effects of TNF-neutralizing 

drugs with different properties on the availability of TNF within a developed granuloma. 

Average serum concentration of two murine analogs of human TNF blockers, infliximab 

and etanercept, after a single dose of drug, has been reported to be on the order of 10-7-

10-6 M [63]. Using this reported concentration to estimate the tissue level concentration 
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of these drugs (Table 2.3), we demonstrated that the efficiency of TNF neutralization 

within the granuloma not only depends on the affinity of the drug for TNF, but also on 

the ability of the drug to bind to mTNF versus sTNF, the rate constants for drug/TNF 

association and dissociation reactions as well as the drug/TNF binding stoichiometry 

(Fig. 2.7).  

We can use these modeling results to generate a hypothesis regarding 

experimentally observed differences in the neutralizing power of the two major human 

TNF blockers, infliximab and etanercept, based on their TNF binding specificities. 

Infliximab is a chimeric monoclonal TNF antibody that binds potently to both sTNF and 

mTNF. Up to three infliximab molecules can bind to one trimeric TNF molecule. 

Etanercept is a TNF receptor p75-IgG fusion protein that can also bind to both trimeric 

sTNF and mTNF, however, with a binding molar ratio of 1:1 and has greater TNF 

association and dissociation rate constants in comparison with infliximab [60,65,66]. 

Hence, based on the classification of TNF-neutralizing drugs we presented in this paper, 

infliximab and etanercept can be considered as drugs of Class 3 and Class 2 types, 

respectively. Given the TNF binding stoichiometries and reported TNF 

association/dissociation rate constants for infliximab and etanercept (infliximab: 

kon_TNF/drug = 5.7 ×104 M-1s-1, koff_TNF/drug = 1.1×10-4 s-1 and etanercept: kon_TNF/drug = 2.6 

×105 M-1s-1, koff_TNF/drug = 1.3×10-3 s-1) [65], our granuloma model predicts TNF 

neutralization efficiencies of 0.90 and 0.39 for drugs with identical TNF binding 

properties to infliximab and etanercept, respectively; these efficiencies are marked with 

stars on Fig. 2.7B, C. This is consistent with the reported higher TNF neutralization 

power of the TNF antibody (analog of infliximab) in comparison with the TNF receptor 
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fusion molecule (analog of etenercept) in chronically Mtb-infected mice [93]. Although 

decreased penetration of the receptor fusion molecule into the lungs compared with 

antibody has been hypothesized to be a reason for the higher TNF neutralization power 

of antibody [93], we did not observe a significant change in the neutralization efficiency 

of simulated drug analogs by changing drug permeability in the granuloma (kc) by up to 

two order of magnitude (data not shown). Thus, the difference in binding properties of 

infliximab and etanercept must be considered when explaining the higher rate of TB 

reactivation induced from infliximab treatments in comparison with etanercept, although 

we anticipate that differential functional properties such as induction of apoptosis in 

TNF-producing cells by infliximab but not etanercept further influence the outcome of 

anti-TNF treatments [58,94].  

Although we have focused this study primarily on molecular and cellular scale 

processes within a snapshot of time in a granuloma, it will be necessary to consider 

multiple time and length scales (including dynamics in the lymphatic system) to further 

examine the role of TNF and anti-TNF therapies in the process of granuloma 

development and maintenance [95]. This is the focus of our studies as described in 

Chapters 3-5. 
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Chapter 3

Multi-scale computational modeling reveals a critical role for TNF 
receptor 1 dynamics in tuberculosis granuloma formation 

3.1 Introduction 

Tuberculosis (TB), a disease caused by the intracellular pathogen Mycobacterium 

tuberculosis (Mtb), is responsible for 2-3 million deaths per year. In the presence of an 

effective immune response, only 5-10% of infected people develop clinical signs of 

active TB (known as primary TB). However, immunological testing provides evidence of 

a state of latent infection, with no clinical symptoms, in one third of the world population 

[1]. Latent TB represents a state of equilibrium in which the host controls the infection 

but is unable to clear it, allowing bacteria to survive at relatively constant but low levels 

[2]. Latent infection may reactivate to active disease (reactivation TB) with an average 

10% per lifetime frequency, as a result of, for example, age, impaired immunity (as in the 

case of HIV co-infection), malnutrition, or anti-inflammatory drug administration that 

interferes with host immunity [3].  

The key pathological feature of TB that arises as a result of the immune response 

is the formation of aggregates of bacteria and immune cells within the lung called 

granulomas. TB granulomas, especially in humans, form as organized spherical structures 

composed of bacteria, a macrophage-rich core including resting, infected and activated 

macrophages, and a surrounding mantle of lymphocytes. Granulomas act to 

immunologically restrain and physically contain Mtb infection [4-10]. Latent and active 
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TB in humans comprise a heterogeneous mixture of granulomas in both lung and lymph 

nodes that provide a range of physiological microenvironments associated with bacterial 

replication, persistence and killing. Characterization of different types of granulomas will 

provide a framework for understanding the immunobiology of TB that can lead to the 

development of new strategies for control and therapy [11,12]. 

In addition to cellular components, studies in animal models and humans have 

identified a variety of cytokines involved in granuloma formation and function, including 

tumor necrosis factor-α (TNF) and interferon-γ (IFN-γ) (reviewed in [13]). These 

molecules are secreted from cellular sources (macrophages and T cells) as a result of Mtb 

infection, interact with receptors on target cells, trigger intracellular signaling pathways, 

and induce cell responses that ultimately contribute to formation of granulomas and 

immunologic control of Mtb infection [13-15]. One can hypothesize that molecular scale 

processes that lie between the availability of particular extracellular cytokines and the 

final cytokine-mediated response may influence the outcome of Mtb infection. 

Receptor/ligand binding and trafficking (defined here to include synthesis, 

internalization, recycling and degradation of the ligand and receptors) are a group of 

molecular scale processes that take place under physiological conditions and are believed 

to play a major role in receptor-mediated cell responses [16]. However, the significance 

of trafficking processes in controlling the effect of cytokines on the host immune 

response (TB immune response in particular) has never been studied. Hence, a multi-

scale approach that considers events at the molecular, cellular and tissue scales is 

required for comprehensive analysis of the role of cytokines in the complex immune 

response to Mtb.  
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Our study is focused on TNF interactions with immune cells that form a 

granuloma. The pleiotropic cytokine TNF is produced by a variety of immune cells, 

especially infected and activated macrophages and pro-inflammatory T cells [17,18], and 

functions as part of the immune response to Mtb infection via several mechanisms. TNF 

(in conjunction with the cytokine IFN-γ) induces macrophage activation [19-21], 

enhances immune cell recruitment to the site of infection [22], and augments chemokine 

expression by macrophages through activation of the NF-κB signaling pathway [23]. 

TNF can also mediate cell death via inducing the caspase-mediated apoptotic pathway 

[24,25]. Data identifying the roles of TNF include: TNF knockout/neutralization 

experiments in mice and monkeys [17,26-28], TNF receptor 1 (TNFR1) knockout 

experiments in mice [17], and mathematical modeling studies [29,30]. Despite this wealth 

of information on the critical role of TNF in immunity to Mtb, many fundamental 

questions remain unanswered regarding the mechanisms that regulate TNF activity at 

different biological scales. For example, it is not known how the dynamics of molecular 

events such as TNF/TNFR binding and trafficking influence a granuloma’s ability to 

control Mtb infection. We have recently suggested via mathematical modeling that 

organization of immune cells as well as the processes of TNF/TNFR binding and 

trafficking control steady state TNF availability within an existing granuloma. This 

results from a TNF concentration gradient that is created with the highest concentration at 

the core of granuloma (see Chapter 2 and [31]). However, important unanswered 

questions remain: What factors control such a gradient during a long-term immune 

response to Mtb infection that includes formation and maintenance of granulomas? How 

does this gradient regulate TNF-associated processes and ultimately translate to the 
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outcome of Mtb infection? Is there an inter-play between TNF availability and bacterial 

load in a granuloma? Are there TNF-level processes that, if targeted, could present new 

strategies for disease therapy? 

These questions invoke multiple biological scales (in length and time) are 

currently difficult to address experimentally. Hence, a systems biology approach that 

incorporates computational modeling to generate and test hypotheses, run virtual 

experiments, and make experimentally testable predictions is uniquely suited to address 

these questions. We develop a multi-scale computational model that describes the 

immune response to Mtb in the lung over three biological length scales: molecular, 

cellular and tissue. We use the model to track formation and maintenance of a granuloma 

in space and time. The model captures the dynamics of TNF/TNFR interactions that 

occur on the second to minute time scales within the long-term immune response to Mtb 

infection, a complex process that lasts for months to years. We identify TNF-associated 

processes that influence infection outcome at the granuloma scale as well as predicting 

cellular scale processes that influence TNF availability. Finally, we identify processes 

that regulate TNF concentration and cellular behaviors and thus influence the outcome of 

infection within a granuloma. 

 

3.2 Methods 

3.2.1 An overview of the multi-scale granuloma model 

To build a multi-scale model necessary to address the questions herein regarding TNF-

regulated immune responses to Mtb infection in the lung, we need to first have working 

models at both the cellular/tissue scale and the molecular/single-cell scale. We briefly 
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describe these models below and then describe our approach for linking them. Cellular 

and tissue scale dynamics are captured via a set of well-described interactions between 

immune cells and Mtb at the site of infection using stochastic simulations in the form of 

an agent-based model (ABM). Single-cell molecular scale processes that control 

TNF/TNFR binding and trafficking for each individual cell are captured by a set of 

nonlinear ordinary differential equations (ODEs). Fig. 3.1 indicates how these models 

exist separately and how they are linked into a single multi-scale granuloma model. The 

linkage is achieved via TNF-induced cell responses (i.e. apoptosis and NF-κB activation) 

that are modeled as Poisson processes with rate parameters computed as functions of 

molecular concentrations from the ODE model. Further details of the rules, equations and 

parameters of the multi-scale model are described below and in Appendix B. 
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Fig. 3.1 Schematic representation of the multi-scale model of the immune response to Mtb infection 
in the lung. (A) An overview of selected cell-level ABM rules based on known immunological 
activities and interactions. (B) Schematic representation of binding interactions and reactions 
controlling TNF/TNFR dynamics at the single-cell level with numbers that represent model processes 
as listed in Appendix B (Table B.3). 
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3.2.2 Cellular/tissue scale model 

The two-dimensional (2-D) ABM used in this study is an updated version of our previous 

model that captures cellular scale interactions leading to a tissue-level readout, namely 

granuloma formation in response to Mtb infection in primates [30]. Because multi-scale 

analysis of the long-term immune response to Mtb is the aim of this study, an extensive 

sensitivity analysis is required. Therefore, choosing a 2-D model that can be used to run a 

large number of simulations in a reasonable timeframe is key for our study. A 

comparison with a simple three-dimensional version has shown that our 2-D model can 

capture important dynamics of Mtb infection [32]. Fig. 3.1A depicts a schematic 

overview of selected immunological interactions tracked at the cellular scale. A full 

description of all ABM rules that reflect known biological activities is provided in 

Supporting Text and significant updates to the original model are highlighted. Briefly, 

rule events include: chemotactic movement and recruitment of immune cells to site of 

infection, intracellular and extracellular growth of Mtb, phagocytosis of bacteria by 

macrophages, cell death and apoptosis, macrophage/T-cell interactions such as cytolytic 

functions of cytotoxic T cells (Tc) and IFN-γ based activation of macrophages by pro-

inflammatory T cells (Tγ), down-regulation of immune cells by regulatory T cells (Treg), 

secretion of chemokines, and caseation.  

One important simplification in our model is the choice to include only cell types 

with well-characterized roles in Mtb granulomas (macrophages, Tc, Tγ and Treg cells). 

Cell types that may have important roles but are not sufficiently characterized at this 

point to include in mechanistic ways in the model include neutrophils (with protective 

roles in early infection that may be immunomodulatory in nature [33-35]), multi-nucleate 
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giant cells (may modulate chemokine production [36,37]), dendritic cells (for optimal 

antigenic stimulation of T cells [38,39]), and foamy cells (possible nutrient source for 

bacteria [40,41]). Future work can easily incorporate them into the model when more 

mechanistic data become available. 

 

3.2.3 Molecular/single-cell scale TNF/TNFR model   

The kinetic processes of TNF/TNFR binding and trafficking (synthesis, internalization, 

recycling and degradation of ligand and receptors) occurring in individual cells within a 

granuloma can be described by ODEs (see Chapter 2 and [31]). As schematically shown 

in Fig. 3.1B, TNF is first synthesized by TNF-producing cells, including infected 

macrophages, chronically infected macrophages, NF-κB-activated resting macrophages, 

activated macrophages and T cells as a membrane-bound precursor form (mTNF) that 

can then be processed and released as a soluble form (sTNF) into extracellular spaces. 

Two types of TNF receptors (TNFR1 and TNFR2) are synthesized and expressed on the 

cell membrane. The equations describing TNF/TNFR processes for an individual cell are 

detailed in Appendix B (Tables B.3, B.4). 

 

3.2.4 Linking the individual models via sTNF-induced cell responses 

Activation of the two major TNF-induced signaling pathways, the caspase-mediated 

apoptotic pathway and the NF-κB pathway, are both controlled at the level of 

sTNF/TNFR1 interactions and thus serve as the link between the molecular/single-cell 

scale TNF/TNFR kinetic model and the cellular/tissue scale model. The NF-κB signaling 

pathway is initiated by sTNF-bound cell surface TNFR1 and apoptosis depends on the 
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internalized sTNF/TNFR1 complexes [42-44]. As reported in the literature, NF-κB 

activation of macrophages is a necessary but not sufficient factor in successful immune 

response to mycobacterial infection. Its role includes induction of a variety of 

inflammatory-related genes such as TNF and chemokines as well as controlling 

phagolysosome fusion-mediated killing of mycobacteria by activated macrophages 

[20,45]. TNF-induced apoptosis of macrophages kills intracellular bacteria and is 

associated with a better outcome of infection [3]. In addition to sTNF, mTNF has also 

been shown to contribute in part to control of Mtb infection in mice [46-48]. However, 

experimental data regarding molecular and cellular-level details of mTNF-mediated 

signaling and reverse signaling in Mtb immune responses are limited. Thus, at this time 

we only consider sTNF/TNFR1-mediated signaling in our model. 

A recent study has shown that TNF-induced NF-κB activation is a process with a 

discrete nature at the single-cell level, with fewer cells responding at lower doses [49]. 

Accordingly, we describe TNF-induced NF-κB activation for each individual 

macrophage as a Poisson process with a probability determined within each time-step 

(Δt), based on a Poisson rate parameter that is a function of the NF-κB activation rate 

constant (kNF-κB), the concentration of cell surface sTNF/TNFR1 complexes 

[sTNF/TNFR1], and the concentration threshold for cell surface sTNF/TNFR1 (τNF-κB): 

€ 

PNF−κB =
   0                                          ; [sTNF /TNFR1] < τNF−κB     

1− e−kNF −κB ([sTNF /TNFR1]−τNF −κB )Δt  ; [sTNF /TNFR1] ≥ τNF−κB

 
 
 

  (3.1) 

Similarly, we model TNF-induced apoptosis for each individual cell (macrophage and T 

cell) by: 

€ 

Papopt =
   0                                        ; [sTNF /TNFR1i] < τ apopt     

1− e−kapopt ([sTNF /TNFR1i ]−τ apopt )Δt  ; [sTNF /TNFR1i] ≥ τ apopt

 
 
 

   (3.2) 
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We use a Poisson process with a probability computed as a function of the 

apoptosis rate constant (kapopt), the concentration of internalized sTNF/TNFR1 complexes 

[sTNF/TNFR1i], and the concentration threshold for internalized sTNF/TNFR1 (τapopt). 

Scale-linking parameters, or simply linking parameters, i.e. TNF-response parameters 

(defined here to include parameters introduced in Equations 3.1 and 3.2), are listed in 

Appendix B (Table B.5).  

To analyze how TNF affects infected versus resting macrophages in a granuloma, 

we define infected:resting cell ratios, Rapoptosis and RNF-κB, as follows. Rapoptosis is defined 

as the ratio of the number of infected macrophages that undergo TNF-mediated apoptosis 

to the number of resting macrophages that undergo TNF-mediated apoptosis during a 

200-day period post-infection. RNF-κB is similarly defined as the number of infected 

macrophages that undergo TNF-mediated NF-κB activation to the number of resting 

macrophages that undergo TNF-mediated NF-κB activation during a 200-day period 

post-infection. 

 

3.2.5 Parameter estimation and control experiments 

We estimate ABM parameter values from literature data as described in detail by Ray et 

al [30]. When data are not available, we use uncertainty analysis to explore the entire 

parameter space of possible model outcomes as described in [50]. Cell-specific TNFR 

densities and rate constants for TNF/TNFR processes are estimated based on 

experimental data from our group [31], as described in Chapter 2, and other groups as 

indicated in Appendix B (B.2). Values of parameters used to describe TNF-induced cell 

responses, including NF-κB activation and apoptosis (i.e. linking parameters) are 
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estimated via uncertainty analysis by varying parameter values in ranges that are 

qualitatively consistent with experimental and modeling data on time-scales and 

thresholds for TNF-induced cell responses [49,51,52].  

Using the above methods, we specify a baseline set of parameter values that 

robustly leads to control of infection in granulomas with organized structures as reported 

for humans and non-human primates (see Appendix B, Tables B.1, B.2 and B.5). We then 

explore parameter changes that shift infection outcome to clearance or uncontrolled 

growth of Mtb. To further test the ability of the model to predict different infection 

outcomes under pathological conditions compatible with both experimental and previous 

modeling data on granuloma formation, we simulate gene knockouts of previously 

identified essential components of the Mtb immune response (e.g. TNF, IFN-γ and T cell 

knockouts). To do this, we set relevant probabilities or rate constants to zero from the 

beginning of simulations.  

 

3.2.6 Sensitivity analysis 

When computational models include parameters describing a large number of known 

biological processes, it is critical to understand the role that each of these parameters 

plays in determining output. Sensitivity analysis is a technique to identify critical 

parameters of a model and quantify how input uncertainty impacts model outputs. Latin 

hypercube sampling (LHS) is an algorithm that allows multiple parameters to be varied 

and sampled simultaneously in a computationally efficient manner [53]. We use LHS 

sensitivity analysis as described for application to ABMs [50] to analyze the impact of 

TNF/TNFR trafficking and TNF response (linking) parameter values as well as TNF-
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independent and cellular scale parameter values, as listed in Appendix B (Tables B.1, B.2 

and B.5), on model outputs. For clarity, these outputs are grouped, as TNF function-

related outputs (total number of TNF-induced events, including NF-κB activation and 

apoptosis in different types of cells), cellular-level outputs (total bacteria, macrophage 

and T cell numbers), tissue-level outputs (granuloma size and caseation area) and average 

tissue concentrations of TNF and chemokines. The correlation of model outputs with 

each parameter is quantified via calculation of a partial rank correlation coefficient 

(PRCC). PRCC values vary between -1 (perfect negative correlation) and +1 (perfect 

positive correlation) and can be differentiated based on p-values derived from Student’s t 

test. LHS simulations sampled each parameter 250 times. Each sampled parameter set 

was run 4 times and averages of the outputs were used to calculate PRCC values. The 

choice of the number of simulations is determined by the desired significance level for 

the PRCC [50,53]. Here, 250 runs imply that PRCC values above +0.24 or below -0.24 

are significantly different from zero (p < 0.001). To study how processes at different 

scales interact with each other, we analyze the effect of parameters associated with each 

scale on the outputs of the same scale (intra-scale sensitivity analysis) as well as on the 

outputs of the other scale (inter-scale sensitivity analysis).  

 

3.2.7 Computer simulations and visualization 

The model was implemented in C++. We use Qt, a C++ framework for developing cross-

platform applications with a graphical user interface (GUI), to visualize and track 

different aspects of the granuloma, including the structure and molecular concentration 
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gradients, as it forms and is maintained. Simulations can be run with or without graphical 

visualization. Simulations were run on Linux and Mac operating systems.  

 

3.3 Results 

3.3.1 Prediction of different infection outcomes at the granuloma level 

We first tested whether our multi-scale computational model could capture key features 

of granuloma formation and maintenance. Using a combination of parameter estimation 

and uncertainty analysis as described in Methods, we identified a set of baseline values 

for model parameters, including cellular/tissue scale parameters (see Appendix B, Table 

B.1), molecular/single-cell scale TNF/TNFR parameters (see Appendix B, Table B.2) and 

parameters that link the two scales in the model (see Appendix B, Table B.5). This set of 

parameter values leads to containment:  control of Mtb infection within a well-

circumscribed granuloma containing stable bacterial levels (<103 total bacteria) at 200 

days post-infection (Fig. 3.2A, B, Movie 1 at 

http://malthus.micro.med.umich.edu/lab/movies/Multiscale/GranSim/). This recapitulates 

a state that has been described as an equilibrium between the host and Mtb at the level of 

single granuloma and is referred to as a solid granuloma with caseous center (Mtb 

containment) [3,54]. As observed in Movie 1, simulated granulomas form as organized 

immune structures predominantly composed of uninfected macrophages surrounding a 

core of bacteria and infected and activated macrophages with T cells localized at the 

periphery [4-10]. As reported for most animal models of TB, bacterial growth increases 

logarithmically until reaching a plateau coincident with T cell response initiation [55]. 
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Fig. 3.2 Simulation results for the Mtb dynamics and granuloma structures at 200 days post-infection 
under different pathological conditions. (A) Changes of total number of Mtb (intracellular and 
extracellular bacteria, i.e. Bint + Bext) with time for simulation of containment baseline, a scenario of 
Mtb clearance, a TNF (or TNFR1) knockout scenario and a IFN-γ  knockout scenario. Granuloma 
snapshots for: (B) a scenario of containment, (C) clearance of Mtb infection in less than five weeks as 
a result of an efficient immune response, (D) a TNF (or TNFR1) knockout scenario, and (E) an IFN-γ  
knockout scenario.  Cell types and status are shown by different color squares, as indicated in the 
upper right corner of the figure (Mr: resting macrophage, Mi: infected macrophage, Mci: chronically 
infected macrophage, Ma: activated macrophage, Be: extracellular bacteria, Tγ: pro-inflammatory 
IFN-γ  producing T cell, Tc: cytotoxic T cell, Treg: regulatory T cell). Caseation and vascular sources 
are also indicated. 
 

 As observed in non-human primate models as well as in humans, several types of 

granuloma are observed in Mtb infection [56]. Our multi-scale model is also able to 

recapitulate different granuloma types with different abilities to control infection as we 

vary specific parameters identified as important via sensitivity analysis from their 
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baseline values (see Appendix B, Tables B.1, B.2 and B.5). Cellular scale processes 

identified to significantly control bacterial numbers, caseation and granuloma size at 200 

days post-infection are bacterial growth, Tγ-induced STAT-1 activation of macrophages 

and T cell movement and recruitment (Tγ cells in particular). These results are 

highlighted in Table 3.1 and are consistent with available experimental data reviewed in 

[3,57,58] and our previous modeling studies [30,59]. Greater intracellular Mtb growth 

rates, in agreement with published data [60], lead to higher bacterial loads and larger 

granulomas with larger caseation areas. STAT-1 activation of macrophages by IFN-γ 

producing Tγ cells is required for activation of macrophages and killing of intracellular 

and extracellular Mtb. Recruitment of IFN-γ producing pro-inflammatory T cells (Tγ 

cells) to site of infection is a critical component of immunity to Mtb as a smaller 

TNF/chemokine concentration threshold for Tγ recruitment leads to more efficient 

responses. Further, the ability of T cells to migrate through a dense uninfected 

macrophage network surrounding bacteria and infected macrophages at the core of a 

granuloma helps determine the efficiency of the T cell-mediated immune response to 

Mtb. 
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Table 3.1 Model parameters significantly correlated with outputs of interest, bacterial numbers, 
granuloma size, caseation area and TNF concentration at day 200 post-infection. Detailed 
sensitivity analysis results are presented in Appendix B (Tables B.6, B.7).  
Selected model outputs Important TNF-independent and 

cellular scale parameters *† 
Important TNF/TNFR-associated 
molecular and linking parameters *‡ 

αBi (++) ksynthMac (--) 
PSTAT1 (--) δTNF (++) 
TmoveM (--) Kd1 (+) 
Trecr (--) kint1 (+) 
τrecTgam (++) TNFR1mac (-) 
Dchem (--) kNFκB (--) 

Total number of bacteria 

δchem (++) τNFκB (++) 
αBi (++) ksynthMac (--) 
PSTAT1 (-) δTNF (++) 
Mrecr (++) Kd1 (++) 
TmoveM (--) kint1 (+) 
Trecr (--) TNFR1mac (--) 
Papop/Fas (-) kNFκB (--) 

Granuloma size 

τrecTgam (++) τNFκB (++) 
αBi (++) ksynthMac (--) 
PSTAT1 (-) δTNF (++) 
Mrecr (++) Kd1 (++) 
TmoveM (--) kint1 (+) 
Trecr (--) krec1 (++) 
τrecTgam (++) TNFR1mac (--) 
δchem (++) kapop (-) 
τchem (+) kNFκB (--) 

Caseation 

 τNFκB (++) 
αBi (++) ksynthMac (--) 
PSTAT1 (-) Kd1 (+) 
TmoveM (--) TNFR1mac (-) 
Trecr (--) kNFκB (--) 
τrecTgam (++) τNFκB (+) 
δchem (++)  

Average tissue concentration 
of sTNF  

τchem (+)  
* Only parameters with significant PRCC values are indicated. Significant positive and negative correlations are shown 
using + and - as follows: -/+: 0.001 < p-value < 0.01, --/++: p-value < 0.001. 
† TNF-independent and cellular scale parameter descriptions are as follows: αBi intracellular Mtb growth rate, PSTAT1 
probability of STAT-1 activation in Mr or Mi, TmoveM probability of T cell moving to a macrophage-containing location, 
Trecr probability of T cell recruitment, Mrecr probability of Mr recruitment, τrecTgam TNF/chemokine concentration 
threshold for Tγ recruitment, Papop/Fas probability of Fas/FasL apoptosis by Tγ, Dchem diffusion coefficient of 
chemokines, δchem chemokine degradation rate constant. τchem minimum chemokine concentration detection threshold. 
‡ TNF/TNFR associated parameter descriptions are as follows: ksynthMac mTNF synthesis rate for macrophages, δTNF 
sTNF degradation rate constant, Kd1 equilibrium dissociation constant of sTNF/TNFR1, kint1 TNFR1 internalization rate 
constant, krec1 TNFR1 recycling rate constant, TNFR1mac TNFR1 density on the surface of macrophages, kapop rate 
constant for TNF-induced apoptosis in all cell types, kNFκB rate constant for TNF-induced NF-κB activation in 
macrophages, τNFκB cell surface sTNF/TNFR1 threshold for TNF-induced NF-κB activation. 
 

 

In addition to containment, we can reproduce other possible outcomes of Mtb 

infection, including clearance and uncontrolled growth of bacteria, by manipulating 

values of important model parameters. For example, an increase in the ability of T cells 
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to penetrate into the site of infection at the core of granuloma by increasing the value of 

model parameter Tmove, the probability of a T cell moving onto a macrophage-containing 

micro-compartment, significantly increases the efficiency of the T cell-mediated response 

and thus favors Mtb clearance (Fig. 3.2A, C, Movie 2 at 

http://malthus.micro.med.umich.edu/lab/movies/Multiscale/GranSim/). On the other 

hand, simulations of gene knockouts of essential components of the Mtb immune 

response such as TNF or TNFR1 knockouts (ksynthMac = ksynthTcell = 0 or TNFR1mac = 

TNFR1Tcell = 0) and IFN-γ knockout (PSTAT1 = 0) lead to uncontrolled growth of Mtb. This 

is consistent with a variety of data on the crucial role of these cytokines in immunity to 

Mtb [3,13,61]. In this case, granulomas that form are greater in size, irregular in structure 

and include very high numbers of extracellular Mtb, large numbers of infected 

macrophages and wide-spread caseation (dead tissue caused by multiple deaths of 

macrophages in tissue usually within the core of the granuloma) (Fig. 3.2A, D, E, Movies 

3, 4 at http://malthus.micro.med.umich.edu/lab/movies/Multiscale/GranSim/). Overall, 

our multi-scale model that includes molecular (TNF-associated), cellular, and tissue scale 

events predicts dynamics of Mtb infection for different infection scenarios, including 

containment, clearance and uncontrolled growth of bacteria as well as a variety of 

structural and functional outcomes that are expected to occur under different pathological 

conditions. Our results for these conditions are in agreement with our previous study 

using a model without molecular (TNF-associated) events [30] and a variety of 

experimental data. We now turn our analysis to the important role that TNF plays, and 

the factors that affect the ability of TNF to play that role, during the immune response to 

Mtb.  
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3.3.2 Cellular scale processes control TNF concentration by affecting bacterial load 

We know from experimental studies that artificial manipulation of TNF concentration via 

anti-TNF treatments negatively affects infection outcome in mice, humans and non-

human primates [26,27,62,63]. Are there physiological processes within the granuloma 

that also affect TNF concentration, and does alteration of those processes similarly affect 

infection outcome? To answer this question, we used sensitivity analysis to identify 

critical TNF-independent and cellular scale parameters that influence TNF concentration. 

Interestingly, processes highlighted in the previous section to be important determinants 

of bacterial numbers, caseation and granuloma size also significantly impact TNF 

concentration and thus the number of TNF-induced NF-κB activation and apoptosis 

events (see Table 3.1 and Appendix B (Table B.6)). This is because TNF production 

within the granuloma strongly depends on the level of infection. For example, reducing 

the probability of T cell recruitment (Trecr) decreases the level of T cell-mediated 

macrophage activation, a process that is necessary for limiting Mtb growth in infected 

macrophages. Therefore, intracellular Mtb can grow, disperse in the tissue after bursting 

of chronically infected macrophages, and infect more resting macrophages. This 

ultimately increases the number of extracellular Mtb as well as numbers of infected 

macrophages that act as further TNF sources in the tissue. TNF also enhances activation 

and recruitment of immune cells, leading to larger granulomas. This is in agreement with 

data from animal models that show increased bacterial numbers result in increased 

inflammation and more immune cell recruitment [64].   
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3.3.3 TNF/TNFR molecular processes control TNF actions and thus ability of a 

granuloma to control infection 

The analysis above indicates that physiological processes that affect bacterial load 

indirectly affect TNF concentration. Are there other processes that more directly act on 

TNF, and would manipulation of those processes alter infection outcome? To answer this 

question, we performed sensitivity analysis to identify TNF/TNFR-associated molecular 

scale and linking parameters that influence model outcomes. Both signaling and 

trafficking processes are identified to significantly influence granuloma function, as 

indicated in Table 3.1 and Appendix B (Table B.7).  TNF-induced NF-κB activation of 

resting and infected macrophages strongly correlates with bacterial numbers. Increasing 

the rate constant for TNF-induced NF-κB activation or reducing its cell surface 

sTNF/TNFR1 concentration threshold leads to faster macrophage NF-κB activation 

responses by smaller concentrations of available sTNF. Thus, these parameters can 

significantly influence the outcome of infection. This is consistent with the published 

data on the role of NF-κB activation of macrophages in killing mycobacteria [20]. 

 Receptor and ligand trafficking processes that strongly influence infection 

outcome are: mTNF synthesis by infected and activated macrophages, sTNF degradation, 

TNFR1 affinity for sTNF, TNFR1 density on the membrane of macrophages, and sTNF-

induced internalization of TNFR1 (Tables 3.1, Appendix B (Table B.7)). The rate of 

mTNF synthesis by infected and activated macrophages positively correlates with two 

key TNF functions (NF-κB activation and apoptosis) and negatively correlates with 

bacterial load, numbers of infected and chronically infected macrophages as well as 

granuloma and caseation size. This is consistent with human and animal model data and 
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our previous studies on the crucial role of TNF in controlling Mtb infection 

[26,29,30,62,65]. Similarly, the rate of sTNF degradation negatively influences TNF 

activities and thus positively correlates with bacterial numbers within a granuloma. 

TNFR1 density on macrophage membranes has a negative impact on bacterial numbers. 

This is consistent with experimental data on the importance of TNFR1 in controlling Mtb 

infection [17]. A greater TNFR1 affinity for binding to sTNF (smaller Kd1) also enhances 

the level of TNF-induced NF-κB activation and apoptosis and reduces total bacterial 

numbers. Internalization of TNFR1 occurs as a result of sTNF binding to TNFR1 on cell 

membranes and is not only required for TNF-induced apoptosis [42-44], but also reduces 

sTNF in a granuloma [31]. Thus TNFR1 internalization enhances apoptosis in TNF-

secreting infected macrophages but reduces levels of NF-κB activation in non-TNF-

secreting resting macrophages by limiting TNF concentrations near these cells (see 

Appendix B (Table B.7)). Overall, our sensitivity analysis predicts that sTNF-induced 

TNFR1 internalization increases bacterial levels within a granuloma. We focus our next 

analysis on potential effects of manipulation in TNFR1 internalization. 

 

3.3.4 TNF/TNFR trafficking dynamics balance inflammation and bacterial killing 

The effect of changing the rate constant for TNFR1 internalization on sTNF 

concentration, recruitment of immune cells, macrophage activation and apoptosis is 

shown in Fig. 3.3. As described above, sTNF-induced TNFR1 internalization, the key 

process in TNF/TNFR trafficking, has a significant impact on responses at molecular, 

cellular and tissue scales. The value of the rate constant for TNFR1 internalization (kint1) 

controls sTNF concentration dynamics during the immune response to Mtb (Fig. 3.3A). 
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The physiological rate of TNFR1 internalization (half-time of ~15 min [66,67], kint1 = 

7.7×10-4 s-1) leads to much less extracellular sTNF in the tissue compared with the 

scenario in which sTNF/TNFR1 complex on the cell membrane is not at all (kint1 = 0) or 

is very slowly internalized (half-time of ~115 min, kint1 = 1.0×10-4 s-1) (Fig. 3.3B). 

Although TNF is required for control of Mtb infection and the protective granulomatous 

response, high concentrations of TNF may lead to excessive inflammation and cause 

immunopathology [61,68]. Therefore, we predict that TNF/TNFR trafficking plays an 

important role in preventing excessive inflammation. Indeed, the rate of sTNF-induced 

internalization of TNFR1 controls the concentration of available TNF in tissue and 

regulates cell infiltration by affecting the extent and dynamics of TNF-dependent 

recruitment and activation of immune cells as well as mediating TNF-induced apoptosis 

(Fig. 3.3C-F). Thus, a hyper-inflammatory state may occur in the absence of a 

sufficiently rapid sTNF-induced TNFR1 internalization, leading to early and extensive 

recruitment of macrophages and T cells as well as uncontrolled activation of a large 

fraction of macrophages that are unable to efficiently undergo apoptosis. Interestingly, 

increasing TNFR1 internalization rate constant to kint1 = 1.5×10-3 s-1 (corresponding to a 

half-time of ~7.7 min) does not have a large effect on either sTNF concentration or 

immune cell population dynamics but does significantly enhance the number of apoptotic 

macrophages. However, further analysis reveals that other model outputs may be 

significantly affected by increasing TNFR1 internalization rate constant.  
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Fig. 3.3 TNFR1 internalization dynamics control sTNF concentration as well as macrophage and T 
cell recruitment and behavior. Simulation results show: (A) sTNF concentration dynamics, (B) 
maximum simulated sTNF concentration as a function of TNFR1 internalization rate constant (kint1), 
(C) macrophage recruitment dynamics, (D) maximum fraction of macrophages that become 
activated following Mtb infection , (E) T cell recruitment dynamics, (F) TNF-induced macrophage 
apoptosis within a 200 day period after Mtb infection (No internalization: kint1 = 0, very slow 
internalization: kint1 = 1.0×10-4 s-1, slow internalization: kint1 = 5.0×10-4 s-1, moderate internalization: 
kint1 = 7.7×10-4 s-1, and rapid internalization: kint1 = 1.5×10-3 s-1). 
 

In addition to an impact on inflammation, TNF/TNFR trafficking dynamics are 

capable of exerting a dramatic effect on the bacterial outcome of Mtb infection in a 

granuloma (Fig. 3.4). Zero to slow rates of sTNF-induced TNFR1 internalization (half-
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time of ≥23 min, kint1 ≤ 5.0×10-4 s-1) favor clearance of bacteria; a moderate 

(physiological) rate (half-time of ~15 min, kint1 = 7.7×10-4 s-1) leads to containment of 

bacteria, and a rapid rate of TNFR1 internalization (half-time of ~7.7 min. kint1 = 1.5×10-3 

s-1) results in uncontrolled growth of Mtb within the 200-day period of infection (Fig. 3.4, 

Movies 5-8 at http://malthus.micro.med.umich.edu/lab/movies/Multiscale/GranSim/). 

However, zero or very slow rates of TNFR1 internalization (e.g. half-time of ~115 min, 

kint1 = 1.0×10-4 s-1) result in clearance of infection at the expense of extensive 

inflammation. Thus, our model suggests that there may exist an optimum rate of sTNF-

induced TNFR1 internalization that balances the impacts that TNF has on control of Mtb 

infection and inflammation in tissue. We now investigate mechanisms underlying this 

balance.  
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Fig. 3.4 TNFR1 internalization dynamics control bacterial load during Mtb infection. Simulation 
results show: (A) Mtb dynamics within a 200 day period after Mtb infection, (B) granuloma 
outcomes and bacterial load 200 days post-infection, (C) granuloma snapshot at the time of Mtb 
clearance (day 45) in the absence of TNFR1 internalization (kint1 = 0), (D)-(E) granuloma snapshots 
200 days after Mtb infection for moderate (kint1 = 7.7×10-4 s-1) and rapid (kint1 = 1.5×10-3 s-1) rates of 
TNFR1 internalization. The colors representing cells of different type and status in granuloma 
snapshots are the same as shown in Fig. 3.2. 
 

 

3.3.5 Do high rates of TNFR1 internalization and slow rates of TNF synthesis have 

the same effects? 

In the previous section, we showed that the rate of sTNF-induced TNFR1 internalization 

significantly affects the immune response to Mtb; a small value of TNFR1 internalization 

rate constant favors Mtb clearance, while increasing the rate of TNFR1 internalization 

leads to uncontrolled growth of Mtb. One might argue that such an effect is simply 

attributable to the role of TNFR1 internalization in reducing sTNF concentration in the 

granuloma, and that therefore an increase or a decrease in the rate of TNF synthesis may 
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compensate for the effects of increasing or decreasing the rate of TNFR1 internalization. 

To test this hypothesis, we compare the effects of manipulating rates of TNFR1 

internalization and mTNF synthesis by macrophages on model outputs (such as bacterial 

numbers and inflammation). As indicated in Fig. 3.5A, a zero rate of TNFR1 

internalization and a high rate of TNF synthesis both result in Mtb clearance. However, 

high rates of TNF synthesis, in contrast to very slow or zero rates of TNFR1 

internalization, do not lead to dramatic increases in sTNF concentration and macrophage 

activation (Fig. 3.5B, C). This is because impairing TNFR1 internalization has a negative 

effect on rates of TNF-induced apoptosis (Fig. 3.5D), a process that has been suggested 

to be important for controlling the level of inflammation [30]. However, high rates of 

TNF synthesis favor apoptosis of macrophages and thus do not lead to extensive 

inflammation. 
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Fig. 3.5 Manipulations in the rate constants for TNFR1 internalization (kint1) and mTNF synthesis 
(ksynthMac) lead to different effects on model outputs. Simulation results show the effect of 
manipulations in kint1 and ksynthMac on (A) bacterial levels 200 days after Mtb infection, (B) maximum 
sTNF concentration, (C) maximum fraction of macrophages that become activated following Mtb 
infection and (D) TNF-induced macrophage apoptosis within a 200-day period after Mtb infection 
(No internalization: kint1 = 0, rapid TNF synthesis : ksynthMac = 1 #/cell.s, rapid internalization: kint1 = 
1.5×10-3 s-1, slow TNF synthesis: ksynthMac = 0.1 #/cell.s). 
 

On the other hand, a rapid rate of TNFR1 internalization and a small rate of TNF 

synthesis both result in uncontrolled growth of Mtb, although to different extents (Fig. 

3.5A). This difference can be explained by high levels of TNF-induced apoptosis in 

macrophages (and thus infected macrophages) for high values of TNFR1 internalization 

rate constant, whereas a small rate of TNF synthesis leads to lower levels of apoptosis 
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(Fig. 3.5D). Apoptosis of infected macrophages can help with reducing intracellular 

bacterial burden [25]. Thus, our results suggest that the impact of TNF/TNFR trafficking 

on Mtb infection is more complex than simply changing the TNF concentration in the 

granuloma.   

 

3.3.6 TNFR1 internalization controls the spatial range of TNF action within a 

granuloma 

As demonstrated above, sTNF-induced TNFR1 internalization controls both Mtb 

infection and inflammation in tissue. How does this process play such a key role? Here, 

we explore the possibility that the spatial range of TNF action underlies the important 

effects of the rate of TNFR1 internalization on granuloma function. By spatial range of 

TNF action, we mean the area surrounding the center of granuloma, as indicated in Fig. 

3.6A, within which macrophages become activated or undergo apoptosis via autocrine or 

paracrine stimulation pathways [19,25,69]. As infected macrophages are located in the 

core of granuloma surrounded by resting macrophages, the spatial range of TNF action is 

correlated with the infection status of macrophages affected by TNF. Thus, motivated by 

our sensitivity analysis (Appendix B (Table B.7)), we explore here the possibility that 

TNF/TNFR trafficking leads to differential effects on TNF-mediated responses in cells of 

different infection status. We analyzed the infection status of macrophages affected by 

TNF-induced events (either NF-κB activation or apoptosis) following Mtb infection by 

computing infected:resting cell ratios, RNF-κB and Rapoptosis, as defined in Methods (Fig. 

3.6B). These ratios compare TNF effects on infected macrophages versus resting 

macrophages during the Mtb immune response. Our model predicts a very significant 
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effect of TNFR1 internalization on both Rapoptosis and RNF-κB (Fig. 3.6B). At very slow 

rates of sTNF-induced TNFR1 internalization (half-time of ~115 min, kint1 = 1.0×10-4 s-1) 

resting macrophages are the main cells affected by both TNF-mediated apoptosis and NF-

κB signaling pathways (Rapoptosis and RNF-κB << 1). However, with a dramatic increase in 

the rate of TNFR1 internalization (to a half-time of ~7.7 min, kint1 = 1.5×10-3 s-1), infected 

macrophages become the main responders to TNF-induced activities (Rapoptosis and RNF-κB 

>> 1). Fig. 3.6C-F display how granulomas are affected by the rate at which 

sTNF/TNFR1 complexes become internalized; these snapshots are taken early after T cell 

recruitment to the site of infection. While a significant fraction of resting macrophages 

surrounding the infected core of granuloma become activated as a result of slow rates of 

TNFR1 internalization (i.e. there is a greater spatial range of TNF action, as seen in Fig. 

3.6C), only a small number of infected macrophages in the core may become activated 

with a rapid rate of TNFR1 internalization (Fig. 3.6F). Thus, we suggest that the spatial 

range of TNF action within a granuloma is an important factor that controls the effect of 

TNFR1 internalization on the bacterial outcome of Mtb infection as well as the level of 

inflammation in the tissue. 
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Fig. 3.6 TNFR1 internalization dynamics control the spatial range of TNF action within a granuloma. 
(A) Schematic definition of spatial range of TNF action in a granuloma, (B) The effect of kint1 on 
Rapoptosis and RNF-κB, the ratios of total number of TNF-induced (apoptotic and NF-κB activated) 
infected macrophages to the number of TNF-resting resting macrophages within a 200 day period 
after Mtb infection, (C)-(F) Granuloma snapshots early after recruitment of T cells for very slow, 
slow, medium and rapid rates of sTNF-induced TNFR1 internalization. Simulated granuloma 
snapshots are shown at 5 weeks after Mtb infection, right before clearance of bacteria in (C) and at 8 
weeks after Mtb infection in (D-F). The colors representing cells of different type and status in 
granuloma snapshots are the same as shown in Fig. 3.2. 
 

 

3.3.7 A robust metric for assessing TNF impact on granuloma function 

In the previous section, we demonstrated that the impact of the rate of TNFR1 

internalization on bacterial levels in a granuloma is significantly correlated with infection 

status of macrophages that undergo TNF-mediated apoptosis or NF-κB activation 

(Rapoptosis and RNF-κB). Here, we explore the possibility that such a correlation between 

TNF activities and infection outcome also exists for other processes. We analyzed the 

effect of varying values of important TNF-associated molecular scale and linking 

parameters on Rapoptosis and RNF-κB during a 200-day period post-infection. A significant 

correlation was observed between bacterial levels and infected:resting cell ratios, Rapoptosis 
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and RNF-κB. As indicated in Fig. 3.7, an increase of one order of magnitude in cell surface 

sTNF/TNFR1 concentration threshold for NF-κB activation and TNF degradation rate 

constant, or a decrease of one order of magnitude in NF-κB activation rate constant and 

the rate of mTNF synthesis by macrophages around baseline parameter values led to 

significant increases in both Rapoptosis and RNF-κB as well as bacterial levels. Outcomes of 

uncontrolled growth of Mtb generally occur at Rapoptosis and RNF-κB values of 1-10 or 

greater, while the chance of achieving clearance is greater for smaller values of these 

ratios. However, as indicated in Fig. 3.7E, when macrophage TNFR1 density is varied, 

the correlation between these ratios and bacterial levels (in clearance and containment 

cases in particular) does not appear very significant. This is probably because TNFR1 

density has contradictory effects on TNF functions; although greater TNFR1 densities 

lead to more sensitive responses to smaller TNF concentrations, at the same time such 

larger densities enhance TNF uptake by macrophages limiting TNF availability in a 

granuloma. Overall, we suggest that infected:resting cell ratios we introduced here to 

compare TNF effects on infected versus resting macrophages, Rapoptosis and RNF-κB, 

translate the effects of a variety of TNF-associated processes to granuloma outcomes.   
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Fig. 3.7 The impact of TNF/TNFR-associated processes on granuloma outcome is correlated with 
infection status of macrophages that undergo TNF-mediated apoptosis or NF-κB activation. 
Simulation results show the effect of: (A) cell surface sTNF/TNFR1 concentration threshold for NF-
κB activation (τNF-κB), (B) sTNF degradation rate constant (δTNF), (C) NF-κB activation rate constant 
(kNF-κB), (D) rate of mTNF synthesis by macrophages (ksynthMac), and (E) macrophage TNFR1 density 
(TNFR1mac) on infected:resting cell ratios Rapoptosis and RNF-κB within a 200-day period after Mtb 
infection. Also indicated is granuloma outcome (clearance, containment, or uncontrolled growth of 
Mtb). 
 

 

 



  111 

3.4 Discussion 

TNF was long suggested, based on experimental data from mice, to be essential for 

formation of granulomas in response to Mtb [17,26,70]. However, recent TNFR1 

knockout and TNF neutralization experiments in zebrafish and non-human primate 

models have shown that TNF, although not required for the formation of a granuloma, is 

important to restrict mycobacterial growth in a granuloma [27,71]. This suggests that 

TNF activities within a granuloma determine our ability to control Mtb infection. The 

important questions are, then, how TNF activities influence granuloma function, and 

what mechanisms control TNF activities in a granuloma during a long-term immune 

response to Mtb? To answer these questions, we need information about the spatial and 

temporal dynamics of TNF concentration during granuloma development in vivo. These 

experiments are not at present feasible, and thus, theses questions have remained 

unanswered. In this study, we use computational modeling/systems biology to address 

these questions. Our novel hypothesis is that events at different biological scales 

(molecular, cellular and tissue scales) may influence TNF activities in a granuloma, 

ultimately determining a granuloma’s ability to control infection and inflammation. To 

address this hypothesis, our model was developed to link the dynamics of molecular scale 

TNF/TNFR interactions that occur on the second to minute time scales to cellular/tissue 

scale events that control the long-term immune response to Mtb. One of our interesting 

findings is that both TNF-independent cellular/tissue scale events (e.g. T cell recruitment 

or chemotactic movement of immune cells) and TNF-associated molecular scale 

processes (e.g. mTNF synthesis or TNFR1 internalization) influence TNF availability and 

activity in the granuloma, but in different ways. TNF-independent cellular scale 
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processes influence bacterial numbers and that controls TNF availability. However, TNF-

associated molecular scale processes directly affect TNF availability and activities that 

control both the level of inflammation and bacterial numbers. Thus, there is an inter-play 

between TNF availability and bacterial population at the site of infection that is 

controlled by the combined effects of molecular and cellular scale processes. An 

equilibrium state in this inter-play leads to control of infection within a granuloma. 

Our model reveals, for the first time, the importance of TNF-associated molecular 

processes (TNFR1 internalization in particular) in immunity to Mtb. We found that 

TNFR1 internalization regulates a balance between paracrine and autocrine TNF-induced 

responses, including NF-κB activation and apoptosis, in resting versus infected 

macrophages. Because resting macrophages do not express TNF, they become activated 

by TNF-producing cells only in a paracrine manner. However, infected macrophages 

express and release TNF to the extracellular space. Hence, they can become activated 

under the effect of TNF via both autocrine and paracrine pathways. Our results show that 

TNFR1 internalization favors activation of infected macrophages in an autocrine manner 

by restricting the diffusion of TNF from TNF-producing cells. TNF-induced activation of 

resting macrophages in addition to infected macrophages is necessary for controlling Mtb 

infection. Uncontrolled activation of resting macrophages, on the other hand, may result 

in excessive inflammation. Thus, a balance between the autocrine and paracrine TNF-

induced responses is required for an efficient granuloma response to Mtb and an optimum 

rate of TNFR1 internalization can provide this balance. This finding can be considered in 

future studies examining approaches to control and therapy of TB or inhibition of TB 
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reactivation as several ways have already been proposed to influence the rate of TNFR1 

internalization in vitro [42,72,73].  

Another novel hypothesis from this study is that the efficacy of TNF in 

controlling Mtb infection is strongly affected by whether or not macrophages induced by 

TNF-mediated signaling pathways (NF-κB activation and apoptosis) are infected. 

Bacterial numbers are positively correlated with the ratio of infected macrophages to 

(uninfected) resting macrophages that become activated by TNF. Thus, we suggest that 

this ratio is a critical factor that controls the outcome of Mtb infection at the granuloma 

level. This might be of particular interest in the case of TB reactivation as a result of 

using TNF-neutralizing drugs (e.g. for treatment of inflammatory diseases such as 

rheumatoid arthritis and Crohn’s disease). As drug penetrates into a granuloma, resting 

macrophages, compared with infected macrophages in the granuloma core, are exposed 

to smaller concentrations of TNF and are affected by higher concentrations of the drug. 

This can potentially impair TNF function, leading to TB reactivation. 

Finally, our findings may predict new therapies for control of TB as they suggest 

novel host targets (e.g. TNFR1 internalization and NF-κB activation) that play key roles 

in control of Mtb immune response. Further modeling studies including molecular detail 

of additional processes, such as those involving other cytokines (e.g. IL-10, IL-6 and IL-

12) and chemokines, and using a similar approach to that identified here may also 

identify other important targets for therapy. Our multi-scale computational model also 

provides a platform at the level of single granuloma to identify and compare therapeutic 

strategies as well as to investigate mechanisms by which TNF-neutralizing drugs (used to 
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treat inflammatory diseases)  (see Chapter 5) or other drugs that diffuse in TB lesions 

may interfere with immune response to Mtb and reactivate TB. 
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Chapter 4

The dynamics of TNF-mediated NF-κB signaling control tuberculosis 
granuloma formation and function 

4.1 Introduction 

Tuberculosis (TB) is a deadly infectious disease in humans caused by the intracellular 

pathogen Mycobacterium tuberculosis (Mtb). While TB is a global health problem with 2 

billion people infected, most are in a latent state, controlling infection [1]. Various 

immune factors, including immune cells, cytokines and chemokines are known to play 

key roles in developing protective immune responses against Mtb (reviewed in [2]). 

Tumor necrosis factor-α (TNF) is an important cytokine for preventing progression of 

initial infection or reactivation of latent infection in several animal models, including 

non-human primates [3-8]. The use of TNF inhibitors as treatment for inflammatory 

diseases in humans has also confirmed that TNF is a major player in the protective 

immune response against Mtb [9-13]. However, TNF has numerous functions in the 

human immune response and sorting out which are the relevant mechanisms is difficult in 

vivo. TNF mediates cell death via inducing the caspase-mediated apoptotic pathway 

[14,15]. TNF activates the NF-κB signaling pathway in immune cells. When NF-κB is 

activated, inflammatory genes are induced that ultimately lead to activation of 

macrophages to efficiently kill bacteria [16-19], induction of macrophages to express 

TNF and chemokines [20], and inhibition of apoptosis [21,22]. 
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 The transcription factor NF-κB is a central inflammatory mediator that is essential 

for the induction of a variety of inflammatory genes in response to various pathogens and 

inflammatory cytokines, particularly TNF. In resting cells, NF-κB is bound to IκB 

proteins that hold it latent in cytoplasm. Cellular stimulation with TNF, for example, 

occurs when TNF binds and activates cell surface TNF receptor type 1 (TNFR1). This 

results in activation of IκB kinase (IKK) and IKK-mediated phosphorylation of IκB 

proteins that ultimately leads to ubiquitination and proteasome-mediated degradation of 

IκB. Free NF-κB then accumulates in the nucleus and mediates the transcription of target 

genes [23,24]. These genes include extracellular signaling molecules such as TNF and 

chemokines, intracellular proteins such as macrophage-activating molecules (referred to 

here as ACT) and inhibitor of apoptosis proteins (IAPs), as well as negative regulators of 

NF-κB such as IκBα and A20 [17,25,26]. The inhibitory impact of A20 on NF-κB results 

from its roles in attenuating TNFR1 activity and inhibiting IKK activation [27]. The 

regulation of NF-κB via multiple critical intracellular feedback mechanisms is important 

for the control of inflammation and immune activation [28-31]. Further, the structural 

characteristics of the inflammatory genes induced by NF-κB, particularly stability of their 

corresponding mRNA transcripts, control the dynamics of NF-κB mediated responses in 

cells [32]. However, the significance of these intracellular molecular mechanisms 

controlling the dynamics of TNF-induced NF-κB signaling in regulating the long-term 

immune response to Mtb infection is poorly characterized. 

The key pathological feature of TB that arises as a result of the immune response 

is the formation of granulomas, aggregates of bacteria and immune cells within the lung. 

TB granulomas are varied in type based on their composition and function, but are 
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generally composed primarily of macrophages and lymphocytes, organized into a 

spherical structure (for review, see [33,34]). The classic caseous granuloma consists of a 

centrally necrotic area surrounded by infected, activated and resting macrophages, which 

are in turn surrounded by a smaller cuff of lymphocytes (T and B cells) [35-41]. A TB 

granuloma serves to focus the host immune response, contain infection and pathology, 

and provide a niche for Mtb to persist within the host. Thus, one can hypothesize that 

factors such as NF-κB that are critical to immunity against Mtb have significant effects 

on formation and function of different types of granulomas in the host [42,43]. These 

effects, however, have remained unknown. For example, it is unclear how the dynamics 

of NF-κB mediated responses (i.e. expression of chemokines, TNF and IAPs, and 

activation of macrophages) affect formation and function of a granuloma. A critical 

requirement for such studies is the integration of biological information across multiple 

biological scales (molecular, cellular, tissue and organ) [44]. 

We recently suggested via multi-scale computational modeling that TNF receptor 

(TNFR) dynamics, in particular the process of TNFR1 internalization, as well as the 

organization of immune cells within a granuloma critically control the TNF concentration 

gradients, bacterial load within a granuloma, and levels of inflammation in lung tissue 

[45,46] (see Chapters 2 and 3). Further, we identified, at the granuloma level, a synergy 

between TNF activities that contributes to control of infection [47]. TNF-mediated 

macrophage activation was shown to be a key mechanism for restricting bacterial growth 

and TNF-dependent apoptosis was indicated to be required for reducing inflammation in 

tissue. These studies have significantly improved our understanding of the role of TNF in 

TB granuloma formation and function. However, in order to use these data to improve 
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immunity to Mtb, we need to dissect further the molecular mechanisms that control these 

TNF activities within a granuloma. Understanding these mechanisms will lead us to 

approaches allowing us to manipulate TNF activities within a granuloma in favor of the 

host.  

In this study, we modify our current multi-scale computational model to include 

molecular scale interactions and reactions involved within the TNF-induced NF-κB 

signaling pathway for each individual cell. Hence, the next-generation model links tissue 

scale outcome of granuloma formation to molecular scale processes that control 

dynamics of NF-κB signaling and thus the dynamics of the NF-κB mediated cell 

responses. We assess the sensitivity of the model identifying NF-κB-associated processes 

that influence infection outcome and inflammation at the granuloma scale. We show that 

dynamics of TNF-induced NF-κB signaling critically control bacterial load and 

inflammation levels in tissue. Further, activation of resting macrophages, in addition to 

infected macrophages, is required for a protective immune response, but must be 

optimally regulated by the immune system to prevent excessive inflammation. We also 

predict the impact of the dynamics (the extent and the timing) of various NF-κB mediated 

responses (i.e. expression of chemokines, TNF, IAPs, and activation of macrophages) on 

both formation and function of a granuloma. Finally, we ask the question whether 

manipulating the NF-κB signaling pathway can improve the outcome of a granuloma that 

is initially unable to control infection. Our analysis highlights the importance of NF-κB 

mediated response dynamics controlled by stability of their corresponding mRNAs as a 

target for infection control. These results can aid in the development of 

immunotherapeutic approaches to battle TB.   
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4.2 Methods 

4.2.1 Multi-scale granuloma model 

To address questions regarding TNF-regulated host immune responses to Mtb infection 

in the lung and the impact of NF-κB signaling dynamics on these responses, we 

developed a multi-scale computational model (Fig. 4.1) that describes processes over 

three biological length scales: tissue, cellular and molecular. Cellular and tissue scale 

dynamics are captured via probabilistic rules for interactions between immune cells and 

Mtb using a stochastic two-dimensional agent-based model (ABM). Single-cell level 

molecular scale processes include TNF/TNFR binding and trafficking events (defined 

here to include synthesis, internalization, recycling and degradation of ligand and 

receptors) as well as intracellular NF-κB signaling pathway interactions and reactions 

that are captured by nonlinear ordinary differential equations (ODEs). We briefly 

describe these models below and then describe our approach for linking them. 
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Fig. 4.1 Multi-scale computational model of granuloma formation in response to Mtb infection in the 
lung. (A) An overview of selected cell-level ABM rules based on known immunological activities and 
interactions (Mi: infected macrophage, Mci: chronically infected macrophage, Tγ: pro-inflammatory 
IFN-γ  producing T cell, Tc: cytotoxic T cell, Treg: regulatory T cell). For a full description of all AMB 
rules, see Chapter 3 and [45]. (B) An overview of TNF/TNFR binding and trafficking interactions 
and reactions and the NF-κB signal transduction cascade at the level of individual cell. (C) Detailed 
description of the regulation of the TNF-induced NF-κB signaling pathway and NF-κB mediated 
responses for an individual macrophage. 
 

The current ABM follows our previous models that capture cellular scale 

interactions leading to a tissue-level readout, namely granuloma formation in response to 

Mtb infection in primates [45,47,48]. The ABM has the following components: agents 

(immune cells, bacteria, chemokines and cytokines), the environment where agents reside 

(a two-dimensional grid representing a section of lung tissue), the probabilistic rules that 

govern the dynamics of agents, including movements, actions and interactions among 

agents and between agents and environment, and time-scales on which the rules are 

executed. Briefly, events described by probabilistic rules include: chemotactic movement 

and recruitment of immune cells from vascular sources to site of infection, intracellular 

and extracellular growth of Mtb, phagocytosis of bacteria by macrophages, cell death and 
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apoptosis, macrophage/T-cell interactions such as cytolytic functions of cytotoxic T cells 

(Tc) and IFN-γ-mediated activation of macrophages by pro-inflammatory T cells (Tγ), 

down-regulation of immune cells by regulatory T cells (Treg), diffusion of chemokines 

and soluble TNF (sTNF), and caseation (Fig. 4.1A). A detailed description of the ABM 

structure and rules are presented in Chapter 3 and [45]. ABM parameters that reflect 

known biological activities are provided in Appendix C (Table C.1). We modified the 

most recent and complete version of the ABM [45] to facilitate its linking to an NF-κB 

signaling dynamics model. Major modifications in ABM rules are: NF-κB mediated 

macrophage activation, NF-κB mediated chemokine and TNF expression, and NF-κB-

mediated inhibition of apoptosis. All of these activities are now controlled as part of the 

NF-κB signaling dynamics model. 

The ODE model describing kinetic processes of TNF/TNFR binding and 

trafficking occurring in individual cells follows our previous models described in 

Chapters 2 and 3 [45,46] (Fig. 4.1B and Appendix C (Tables C.2, C.3)). We modified the 

reactions associated with TNF expression in this model to capture the linkage between 

this process and the NF-κB signaling pathway (see Appendix C (Table C.6)).  

In order to capture the molecular mechanisms that control TNF-mediated 

responses at the single cell level, we first need to have a model describing intracellular 

NF-κB signaling pathway activation that follows TNFR activation due to TNF binding. 

Then, NF-κB activation must be linked to each of the NF-κB-mediated cell responses 

that include macrophage activation and expression of chemokines, TNF and inhibitor of 

apoptosis proteins. The single-cell level intracellular NF-κB signaling pathway 

interactions and reactions are captured by using the deterministic approximation of the 
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two-compartment NF-κB dynamics model presented by Tay et al [49]. This model 

combines the two-feedback NF-κB-IκBα-A20 regulatory module with the signal 

transduction cascade transmitting the signal from sTNF-bound TNFR1 receptors. TNFR1 

activation results in an oscillatory NF-κB response that controls the dynamics of gene 

expression [50]. The model includes noise due to different levels of TNFRs and total NF-

κB molecules across the cell population. This noise results from random assignment of 

initial values for TNFR densities and total NF-κB molecules to each single cell as 

described in [49].  

In this study, we link the molecular scale NF-κB dynamics model described 

above to four major NF-κB-mediated cell responses in macrophages (Fig. 4.1C). These 

responses are: TNF expression, chemokine expression, macrophage activation, and 

inhibition of apoptosis. To do this, we incorporate NF-κB-mediated expression of genes 

corresponding to TNF, chemokines, a generic inhibitor of apoptosis protein (IAP), and a 

generic macrophage-activating molecule (ACT), translation of their mRNA transcripts, 

and secretion of translated TNF and chemokines into the single-cell level NF-κB 

dynamics model. The generic IAP represents a family of proteins that serve as inhibitors 

of apoptosis (e.g. cellular inhibitors of apoptosis, c-IAPs) via binding and inhibiting 

caspase activities [51]. The generic ACT represents various molecules (e.g. membrane 

trafficking molecules or lysosomal enzyme) that are induced by NF-κB and are required 

for activation of a macrophage to efficiently kill bacteria [17]. The reactions, parameters, 

and equations describing intracellular NF-κB signaling pathway processes and NF-κB-

mediated responses for an individual cell are listed in Appendix C (Tables C.4, C.5, C.6). 
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4.2.2 Linking the single-cell molecular scale NF-κB signaling dynamics to the 

TNF/TNFR kinetic model and the cellular/tissue scale model 

The activation of TNF-induced NF-κB signaling pathway requires sTNF binding to cell 

surface TNFR1. It is this process that links the TNF/TNFR kinetic model to the 

intracellular NF-κB signaling dynamics model. The activation of the NF-κB signaling 

pathway initiates four major cellular responses:  induction of chemokine expression, TNF 

expression, macrophage activation (to efficiently kill bacteria), and inhibition of 

apoptosis. These responses serve as the link between the single-cell molecular scale NF-

κB signaling dynamics model and the cellular/tissue scale model (Fig. 4.1). Secretion of 

chemokines and TNF by macrophages into extracellular spaces follows NF-κB-mediated 

expression of their genes and translation of their mRNA transcripts as described in the 

NF-κB signaling equations (see Appendix C (Tables C.4, C.6)). Recent studies on NF-κB 

activation and apoptosis have shown that these are processes with discrete nature at the 

single-cell level, with more cells responding to higher doses of stimuli and longer periods 

of stimulation [49,52]. Accordingly, we describe NF-κB-mediated activation of a 

macrophage as a Poisson process with a probability determined within each time-step 

(Δt), based on a Poisson rate parameter that is a function of the macrophage activation 

rate constant (kACT), intracellular concentration of ACT protein [ACT], and the ACT 

concentration threshold for macrophage activation (τACT): 

€ 

Pactivation =
   0                             ; [ACT] < τACT     

1− e−kACT ([ACT ]−τ ACT )Δt  ; [ACT] ≥ τACT

 
 
 

     (4.1) 

Similarly, we model TNF-induced apoptosis for each individual cell by: 

€ 

Papoptosis =
   0                                        ; [sTNF /TNFR1i] < τ apopt     

1− e−kapopt ([sTNF /TNFR1i ]−τ apopt )Δt  ; [sTNF /TNFR1i] ≥ τ apopt

 
 
 

   (4.2) 
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We use a Poisson process with a probability computed as a function of the apoptosis rate 

constant (kapopt), the concentration of internalized sTNF/TNFR1 complexes 

[sTNF/TNFR1i], and the concentration threshold for internalized sTNF/TNFR1 (τapopt). 

The inhibitory impact of the NF-κB activation on macrophage apoptosis is captured by: 

€ 

kapopt =
kIAP

kIAP + [IAP]
kapopt
0          (4.3) 

The magnitude of kapopt is a function of the intracellular concentration of IAP [IAP], the 

apoptosis inhibition coefficient (kIAP), and the intrinsic TNF-induced apoptosis rate 

constant (

€ 

kapopt
0 ). Parameters introduced in Equations 4.1-3 are listed in Appendix C 

(Table C.5). 

 

4.2.3 Computer simulations and model outputs  

The multi-scale computational model is used to simulate the immune response to Mtb 

and granuloma formation in the lung for 200 days post-infection. Simulations are 

initiated following placement of one infected macrophage with one intracellular 

bacterium at the center of a grid representing a section of lung tissue (see Chapter 3 and 

[45] for details). Cell-cell interactions governed by ABM rules are updated within every 

ABM time-step (Δt = 10 min). Molecular scale processes, including TNF/TNFR 

dynamics and NF-κB signaling dynamics at the single-cell level, are updated within 

shorter time-steps (dt = 0.5 s).  

We use several model outputs to track formation and function of a granuloma 

during the immune response to Mtb. Granuloma size and total number of macrophages 

and T cells in tissue are used as readouts to track granuloma formation. We also track 

total number of bacteria and total number of activated macrophages as readouts for 
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quantifying granuloma function. These outputs represent the ability of a granuloma to 

control infection and inflammation, respectively. Other outputs of interest include 

chemokine and TNF concentrations in tissue, and caseation area. 

We previously showed that the efficacy of TNF in controlling Mtb infection is 

strongly affected by whether or not macrophages stimulated by TNF are infected [45]. To 

analyze how NF-κB signaling affects infected versus uninfected (resting) macrophages in 

a granuloma, we define infected/resting cell ratios, Rapoptosis and Ractivation, as follows. 

Rapoptosis is defined as the ratio of the number of infected macrophages that undergo TNF-

mediated apoptosis to the number of resting macrophages that undergo TNF-mediated 

apoptosis during a 200-day period post-infection. Ractivation is similarly defined as the 

number of infected macrophages that become activated (to efficiently kill bacteria) to the 

number of resting macrophages that become activated during a 200-day period post-

infection. 

 

4.2.4 Parameter estimation  

We estimate ABM parameter values from literature data or by using uncertainty analysis 

as described in detail in [45,47,53]. Cell-specific TNFR densities and rate constants for 

TNF/TNFR processes are estimated based on experimental data from our group [46], as 

described in Chapter 2, and other groups as indicated in Appendix C (Table C.3). 

Intracellular NF-κB signaling parameters are as in Tay et al [49] (Appendix C (Table 

C.5)). Values of parameters used to describe TNF-induced apoptosis and NF-κB-

mediated cell responses, including induction of expression of chemokines and TNF, 

macrophage activation and inhibition of apoptosis, are estimated via uncertainty analysis. 
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This is done by varying parameter values in ranges that are consistent with experimental 

and modeling data on time-scales of events associated with these responses 

[32,49,52,54,55]. We specify a baseline set of parameter values (containment baseline 

values as listed in Appendix C (Tables C.1, C.3 and C.5)) that robustly leads to control of 

infection in granulomas with organized structures as reported for humans and non-human 

primates.  

 

4.2.5 Control experiments and model validation (virtual deletion and depletion 

studies) 

Immunity to Mtb in humans and animal studies has been attributed to activities of a 

variety of factors, including specific immune cells (e.g. macrophages and T cells), 

cytokines (e.g. TNF and IFN-γ), chemokines (e.g. CCL2, CCL5, CXCL9/10/11), immune 

receptors (e.g. TNFR1), and signaling pathways (e.g. NF-κB). Our new multi-scale 

computational model (resulting from the incorporation of the single cell-level NF-κB 

signaling dynamics, as indicated in Fig. 4.1, into our previous generation model (Chapter 

3) [45]) must retain its ability to reproduce experimental findings regarding the 

importance of these factors in control of infection. Hence, we first test whether our model 

is able to: (i) capture key features of granuloma formation and maintenance, and (ii) 

recapitulate different granuloma types as observed in humans and nonhuman primate 

models in response to Mtb infection [34,56]. To this aim, we take advantage of a number 

of useful and powerful tools to identify parameter changes that determine the infection 

outcome at the granuloma level. One approach is to perform virtual deletion and 

depletion experiments that mimic experimental gene knockout or molecule depletion 
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studies. Loss of activity is achieved by setting relevant parameters (e.g. probabilities or 

rate constants) to zero or raising relevant thresholds to an unattainable level. Virtual 

deletion refers to the loss of activity from the beginning of simulation  (such as a gene 

knockout) and virtual depletion refers to the loss of activity after establishment of a 

granuloma. Specifically, we simulate gene knockouts of previously identified essential 

components of the Mtb immune response (e.g. TNF, TNFR1, IFN-γ and T cell 

knockouts). These simulation studies are used for testing the ability of the model to 

predict different infection outcomes under pathological conditions compatible with both 

experimental and previous modeling data on granuloma formation. 

 

4.2.6 Infection outcomes at the granuloma level: containment, clearance, 

uncontrolled growth of bacteria, and uncontrolled inflammation  

Our model is able to recapitulate different types of granuloma with different abilities to 

control infection and inflammation (Fig. 4.2). Using a baseline set of values for model 

parameters (Appendix C (Tables C.1, C.3, C.5), our model captures a state of equilibrium 

between the host and Mtb termed bacterial containment (Fig. 4.2A). This state represents 

control of infection for more than 200 days within a well-circumscribed granuloma 

containing stable bacteria numbers (<103 total bacteria). Simulated containment 

granulomas closely represent experimentally characterized solid granulomas [35-41] that  

are predominantly composed of uninfected macrophages surrounding a core of bacteria 

and infected and activated macrophages with T cells localized at the periphery. Varying 

values of important model parameters lead to other possibilities, including clearance of 

bacteria, uncontrolled growth of bacteria, or excessive inflammation.  
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Fig. 4.2 Examples of control experiments on the multi-scale computational model of granuloma 
formation in response to Mtb infection. (A)-(C) Granuloma snapshots for a scenario of containment 
(200 days post-infection), a TNFR1 knockout (TNFR1mac = TNFR1Tcell = 0) scenario resulting in 
uncontrolled growth of bacteria 200 days post-infection, and a scenario of blocking TNFR1 
internalization (kint1 = 0) resulting in excessive inflammation 5 weeks post-infection, respectively. All 
other model parameter values used for these experiments are listed in Appendix C (Tables C.1, C.3 
and C.5). Cell types and status are shown by different color squares, as indicated in the lower right 
corner of the figure (Mr: resting macrophage, Mi: infected macrophage, Mci: chronically infected 
macrophage, Ma: activated macrophage, Be: extracellular bacteria, Tγ: pro-inflammatory IFN-γ  
producing T cell, Tc: cytotoxic T cell, Treg: regulatory T cell). Caseation and vascular sources are also 
indicated. 
 

Simulations of TNF or TNFR1 knockout (Fig. 4.2B), IFN-γ gene knockout, and 

deletion of T cells (data not shown), in agreement with experimental data and our 

previous modeling studies [2,45,47,48,57,58], lead to uncontrolled growth of Mtb and 

formation of granulomas with irregular structures that include very high numbers of 

extracellular bacteria, large numbers of infected macrophages and widespread caseation. 

In contrast, inhibition of TNFR1 internalization, a process critical to control of TNF 

concentration and apoptosis [45,46], leads to excessive inflammation by which we mean 

recruitment of a large number of immune cells in tissue, uncontrolled activation of 

macrophages and very high concentrations of TNF (Fig. 4.2C). 

 

4.2.7 Sensitivity analysis 

A second approach to identify important processes that determine infection outcome is to 

use sensitivity analysis [53]. We use sensitivity analysis to analyze the impact of 
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parameters describing events at different scales (molecular, cellular or tissue scales) on 

model outputs describing granuloma outcomes. Latin hypercube sampling (LHS) is an 

algorithm that allows multiple parameters to be varied and sampled simultaneously in a 

computationally efficient manner [59]. We use LHS sensitivity analysis as adapted for 

use in ABMs [60] to analyze the impact of NF-κB signaling-associated parameter values 

on model outputs. These outputs are, for example, bacteria numbers, macrophage and T 

cell numbers, chemokine and TNF concentrations in tissue, granuloma size and caseation 

area. The correlation of model outputs with each parameter is quantified via calculation 

of a partial rank correlation coefficient (PRCC). PRCC values vary between -1 (perfect 

negative correlation) and +1 (perfect positive correlation) and can be differentiated based 

on p-values derived from Student’s t test. Here, we performed 700-sample LHS 

simulations for each parameter. Each sampled parameter set was run 4 times (to account 

for stochasticity) and averages of the outputs were used to calculate PRCC values. The 

choice of the number of simulations is determined by the desired significance level for 

the PRCC [59,60]. Here, 700 runs imply that PRCC values above +0.13 or below -0.13 

are significantly different from zero (p < 0.001).  

 

4.2.8 Programming and visualization 

The model was implemented in C++. We use Qt, a C++ framework that runs our 

simulations on multiple platforms (Linux, Windows and Mac OS) with a graphical user 

interface (GUI). Through the GUI, one can visualize and track different aspects of the 

granuloma, including the structure and molecular concentration gradients, as the 

granuloma forms and is maintained. Simulations can be run with or without graphical 
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visualization. For more detailed description of the Qt framework applications in studying 

granuloma characteristics, see [61].  

 

4.3 Results 

4.3.1 Contribution of NF-κB signaling factors to control of TNF concentration, TNF 

activities and granuloma outcomes 

We know from both experimental data and predictions from our previous modeling 

studies that TNF availability and activities (i.e. macrophage activation, induction of TNF 

and chemokine expression, regulation of immune cell recruitment and induction of 

apoptosis) within a granuloma are essential to control of infection [4,5,10,12,13,45,47]. 

The NF-κB signaling pathway activated as a result of TNF binding to TNFR1 on the 

membrane of immune cells is critical for regulation of these activities [25]. What are the 

NF-κB signaling-associated biochemical factors and intracellular processes that control 

TNF concentration and activities within a granuloma? We use the new model to predict 

the role of biochemical factors and interactions associated with the NF-κB signaling 

pathway that have not been experimentally characterized, or are difficult to characterize 

by current experimental methods.  

 We analyze the impact of TNF-mediated NF-κB signaling-associated parameters 

in six groups as defined in Appendix C (Table C.5): (1) concentration of intracellular 

signaling molecules (NF-κB, IκBα kinase (IKK), and IKK kinase (IKKK)), (2) processes 

associated with activation of the signal transduction cascade, (3) A20 and IκBα 

synthesis, (4) IκBα interactions, (5) NF-κB and IκBα transport between cytoplasm and 

nucleus, and (6) NF-κB-mediated cell responses (TNF and chemokine expression, 
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macrophage activation, inhibition of apoptosis). Notably, parameters identified to have 

strong correlations with bacterial levels within a granuloma, i.e. granuloma function, 

belong to groups 1-3 and group 6 (see Table 4.1 and Appendix C (Tables C.7, C.8)). 

Processes within groups 4 and 5, although essential for NF-κB activation, have a less 

significant impact on model outputs when they are varied within a similar range as other 

parameters. Within group 1, increasing the average number of NF-κB molecules per 

macrophage significantly enhances macrophage activation and thus reduces bacterial 

numbers within a granuloma. This is consistent with the published data on the role of NF-

κB in activating macrophages to kill mycobacteria [17]. Similarly, IKKK activation 

(from group 2), a key process in NF-κB signaling cascade that occurs following TNF 

binding to TNFR1, strongly and negatively correlates with bacterial load. Among group 3 

parameters, the rate of NF-κB binding at A20 and IκBα gene promoters as well as the 

rates of A20 and IκBα mRNA synthesis and translation positively correlate with bacterial 

levels. In contrast, increasing A20 and IκBα mRNA and protein degradation rates 

impairs granuloma’s ability to control infection. These results highlight the important role 

that the NF-κB-IκBα-A20 feedback regulatory module plays in the regulation of the NF-

κB-mediated cell responses [28], and thus in the regulation of granuloma function.  
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Table 4.1 NF-κB-associated model parameters significantly correlated with outputs of interest, i.e. 
bacterial numbers, granuloma size, caseation area and TNF concentration at day 200 post-infection. 
Detailed sensitivity analysis results are presented in Appendix C (Tables C.7, C.8).  

Selected Model Outputs 
NF-κB-
associated 
parameter * 

Parameter description † 
(parameter group number ‡) 

Total 
number of 
bacteria 

Granuloma 
size Caseation 

Average tissue 
concentration of 
sTNF 

NF-κBtot 
Average number of NF-κB 
molecules per cell (1) 

−−  −  

ka IKKK activation rate (2) −−    
ki IKKK inactivation rate (2) +    

q1 
Rate of NF-κB binding at A20 
and IκBα gene promoters (3) 

+    

c1 
Inducible A20 and IκBα 
mRNA synthesis rate (3) 

++  +  

c3 
A20 and IκBα mRNA 
degradation rate (3) 

−−    

c4 
A20 and IκBα translation rate 
(3) 

++   −− 

c5 A20 degradation rate (3) −−   ++ 

c1r 

Rate of NF-κB induced 
mRNA synthesis for 
chemokines, TNF, ACT and 
IAP (6) 

−− −− −− ++ 

c3rchem Chemokine mRNA 
degradation rate (6)  −− ++  

c4chem Chemokine translation rate (6)   −−  
e3chem Chemokine secretion rate (6)  ++ −  

c3rTNF TNF mRNA degradation rate 
(6) 

++ ++ ++  

c4TNF TNF translation rate (6) −− −− −− ++ 

c5TNF Intracellular TNF degradation 
rate (6) 

++ ++ ++  

e3TNF TNF secretion rate (6) −− −− −− ++ 
c4ACT ACT translation rate (6) −−    
c5ACT ACT degradation rate (6) ++    

τACT ACT concentration threshold 
for macrophage activation (6) 

++    

c5IAP IAP degradation rate (6)  −− −− − 
* Only parameters with significant PRCC values are indicated. Significant positive and negative correlations are shown 
using + and - as follows: -/+: 0.001 < p-value < 0.01, --/++: p-value < 0.001. 
† IKKK: IKK kinase, IKK: IκBα kinase, ACT: generic macrophage-activating molecule, IAP: inhibitor of apoptosis 
‡ NF-κB signaling-associated parameters are categorized in six groups as defined in Appendix C (Table C.5): (1) 
concentration of intracellular signaling molecules (NF-κB, IκBα kinase (IKK), and IKK kinase (IKKK)), (2) processes 
associated with activation of the signal transduction cascade, (3) A20 and IκBα synthesis, (4) IκBα interactions, (5) 
NF-κB and IκBα transport between cytoplasm and nucleus, and (6) NF-κB-mediated cell responses. 
 
 

Finally, group 6 comprises important parameters with strong effects on most 

model outcomes. Parameters that control either TNF expression or macrophage activation 

significantly influence granuloma function and thus bacterial load within a granuloma. In 
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contrast, parameters that only affect chemokine expression or apoptosis control 

granuloma size (formation) without exerting strong effects on bacterial load. This is 

consistent with our previous studies indicating that TNF-induced macrophage activation 

is a key mechanism for controlling bacterial growth [47]. The rate of NF-κB-dependent 

mRNA synthesis for chemokines, TNF, the generic macrophage-activating molecule 

(ACT), and the inhibitor of apoptosis (IAP) is an important parameter. It strongly and 

positively correlates with all TNF-induced cellular responses in tissue (i.e. apoptosis, 

TNF and chemokine expression, and macrophage activation) and negatively correlates 

with bacterial load, caseation and granuloma size. The stability of TNF mRNA, as well as 

TNF translation, degradation and secretion significantly control granuloma outcomes. 

Increasing the rates of degradation of TNF mRNA and intracellular TNF or reducing the 

rates of TNF translation and secretion enhance bacterial numbers, caseation and 

granuloma size. In addition, the ACT translation rate (negatively), and the ACT 

degradation rate as well as the ACT concentration threshold for macrophage activation 

(positively) correlate with bacterial load within a granuloma. Increasing the chemokine 

secretion rate or reducing the chemokine mRNA degradation rate elevates chemokine 

concentration in tissue, enhancing immune cell recruitment and granuloma growth. 

Overall, each of the above parameters identified as critical for formation and function of 

a granuloma represents a potential target for therapeutic modulation. Hence, we focus our 

next analysis on the potential effects of manipulation in each of these parameters. 
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4.3.2 Optimal regulation of the NF-κB signaling dynamics for control of infection 

without inducing excessive inflammation  

The analysis above highlights various NF-κB signaling pathway-associated biochemical 

factors and intracellular interactions that show significant impacts on infection outcomes 

at all scales (molecular, cellular and tissue). How do these responses influence granuloma 

formation? Do manipulation of these mechanisms alter infection outcome at the 

granuloma level? The effects of manipulation of four important NF-κB-associated factors 

as identified by the sensitivity analysis on granuloma formation, total numbers of 

bacteria, sTNF concentration, and macrophage activation after Mtb infection are shown 

in Fig. 4.3. These factors are: (i) average number of NF-κB molecules per cell, NF-κBtot, 

(ii) IKKK inactivation rate constant, ki, (iii) A20 and IκBα mRNA degradation rate 

constant, c3, and (iv) TNF mRNA degradation rate constant, c3rTNF. 
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Fig. 4.3 NF-κB signaling dynamics control bacterial growth and inflammation level in tissue. (A) 
Granuloma snapshots for slow (ki = 3.2×10-3 s-1), moderate (ki = 10-2 s-1), and rapid (ki = 3.2×10-2 s-1) 
rates of IKKK inactivation. Slow rates of IKKK inactivation lead to uncontrolled macrophage 
activation and excessive inflammation. A moderate value of ki results in control of infection in a 
stable granuloma containing small numbers of bacteria. Rapid rates of IKKK inactivation lead to 
large numbers of bacteria and infected macrophages as well as widespread caseation. The colors 
representing cells of different type and status in granuloma snapshots are the same as those shown 
and defined in Fig. 4.2. (B)-(D) Simulation results showing the effects of four important parameters, 
as identified by sensitivity analysis, controlling NF-κB signaling dynamics on granuloma outcomes 
(total number of bacteria, tissue concentration of TNF, and macrophage activation). The parameters 
are: the average number of NF-κB molecules per cell (NF-κBtot), IKKK inactivation rate (ki), A20 
and IκBα  mRNA degradation rate (c3), and TNF mRNA degradation rate (c3rTNF). In each 
simulation, only one of these parameters is varied. Moderate (baseline) values of these parameters 
lead to clearance or control of infection in stable granulomas with very low bacterial numbers, low 
levels of TNF and low levels of macrophage activation. Perturbing the NF-κB signaling dynamics by 
varying values of these parameters impair the balance toward either uncontrolled growth of bacteria 
or excessive inflammation (high TNF concentrations and high levels of macrophage activation) in 
tissue. The baseline value of each parameter is as reported in Appendix C (Table C.5) and is as 
follows: NF-κBtot = 105, ki = 10-2 s-1, c3 = 7.5×10-4 s-1, c3rTNF = 3.8×10-4 s-1. The difference between the 
low value and high value presented in the figure is one order of magnitude. 
 

The values of these parameters significantly determine the ability of a granuloma 

to control bacterial load. Small numbers of NF-κB molecules per cell, slow rates of A20 

and IκBα mRNA degradation, rapid rates of IKKK inactivation, and rapid rates of TNF 

mRNA degradation all lead to uncontrolled growth of bacteria within a 200-day period 
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post-infection. These effects result from reduced rates of TNF-induced activation of 

macrophages, diminishing their ability to kill bacteria. Changing values of all of these 

parameters to moderate levels leads to containment of bacteria within a stable granuloma. 

Further increasing the values of parameters NF-κBtot and c3, or further reducing the 

values of parameters c3rTNF and ki from their containment-level values all reduce bacterial 

numbers and increase the chance of infection clearance. However, these clearance 

outcomes are generally accompanied by uncontrolled rates of macrophage activation and 

cell infiltration as well as very high concentrations of TNF in tissue that are markers of 

excessive inflammation and immunopathology. Overall, as depicted in Fig. 4.3B-D, 

moderate (containment baseline) values of NF-κBtot, ki, c3 and c3rTNF (that can be found in 

Appendix C (Table C.5)) lead to control of infection in stable granulomas with very low 

bacteria numbers (and sometimes clearance), low levels of TNF and low levels of 

macrophage activation. Perturbing the NF-κB signaling dynamics by varying values of 

these parameters (i.e. rates these processes occur) impairs the balance toward either 

uncontrolled growth of bacteria or excessive inflammation in tissue. Hence, our model 

predicts that the optimal regulation of the TNF-mediated NF-κB signaling pathway is 

essential to controlling infection and inflammation in tissue. The balance between the 

NF-κB-mediated bacterial killing activities and the NF-κB-mediated inflammation results 

in an equilibrium state, i.e. containment of bacteria within a stable granuloma with 

minimal inflammation.  
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4.3.3 How do NF-κB signaling dynamics balance inflammation and bacterial 

killing? 

As demonstrated above, several NF-κB-associated intracellular processes (summarized in 

Table 4.1 and Fig. 4.3) are identified to control granuloma function. How do these 

processes affect the balance of inflammation and bacterial killing activities within a 

granuloma? We previously showed that the impact of TNF on granuloma outcomes is 

strongly affected by whether or not macrophages stimulated by TNF are infected [45]. 

This motivates us to test whether there is a correlation between the effect of NF-κB 

signaling dynamics on granuloma function (as described in Fig. 4.3) and the infection 

status of macrophages stimulated by TNF during the immune response. Thus, we analyze 

the infection status of macrophages that become activated or undergo apoptosis after Mtb 

infection by computing infected/resting cell ratios, Ractivation and Rapoptosis, as defined in 

Methods. Our model predicts a very significant effect of important NF-κB-associated 

parameters on both Ractivation and Rapoptosis (Fig. 4.4). At small numbers of NF-κB 

molecules per cell, slow rates of A20 and IκBα mRNA degradation, rapid rates of IKKK 

inactivation, and rapid rates of TNF mRNA degradation, infected macrophages are the 

main cells that become activated or undergo apoptosis as a result of TNF activities 

(Ractivation and Rapoptosis >> 1). However, with one order of magnitude increase in each of 

these parameters, resting macrophages become the main responders to TNF signaling 

(Ractivation and Rapoptosis << 1). Comparing these results with results from the previous 

section (Fig. 4.3), we observe a significant correlation between infected/resting cell 

ratios, Ractivation and Rapoptosis, and granuloma outcomes, bacterial load and inflammation. 

At large values of Ractivation and Rapoptosis (values of 1-10 or greater), outcomes are 
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uncontrolled growth of Mtb.  Small values of these ratios (smaller than ~0.1) correlate 

with excessive inflammation in tissue. These results suggest that a balance between the 

number of resting macrophages and infected macrophages responding to TNF signaling 

is required for control of infection and inflammation within a stable granuloma, and that 

such a balance is critically regulated by NF-κB signaling dynamics.  

 

 
Fig. 4.4 The impact of important processes associated with the NF-κB signaling dynamics on 
granuloma outcomes is correlated with status of macrophages that undergo apoptosis or become 
activated by TNF. Simulation results show the effect of (A) the average number of NF-κB molecules 
per cell, NF-κBtot, (B) IKKK inactivation rate, ki, (C) A20 and IκBα  mRNA degradation rate, c3, and 
(D) TNF mRNA degradation rate, c3rTNF on infected/resting cell ratios Rapoptosis and Ractivation within a 
200 day period after Mtb infection. 
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4.3.4 The stability of mRNA transcripts controls bacterial load, inflammation and 

granuloma size by affecting the dynamics of NF-κB mediated responses 

A key point of incorporating NF-κB signaling dynamics into our granuloma model is the 

ability to study the impact of the dynamics of NF-κB-mediated responses (i.e. 

macrophage activation, expression of chemokines, TNF, and inhibitors of apoptosis) on 

granuloma outcomes. These responses follow NF-κB oscillations [50]. The dynamics of 

these responses depend, to a large extent, on the stability of their corresponding mRNA 

transcripts [32]. Thus, we analyzed the effect of varying the stability of mRNA 

transcripts corresponding to macrophage activation (ACT), and expression of chemokines 

(CHEM), TNF, and inhibitors of apoptosis (IAP) on granuloma outcomes, bacterial load 

and inflammation level (represented by the activated fraction of macrophages). Varying 

the stability (half-life; t1/2) of mRNA transcripts significantly influences the dynamics of 

the NF-κB-mediated responses (e.g. chemokine secretion) in an individual cell (Fig. 

4.5A). Granuloma simulations show that the stability of mRNA transcripts for NF-κB-

mediated responses, particularly ACT, TNF and CHEM, significantly control bacteria 

numbers and inflammation level in tissue (Fig. 4.5B, C).  The impact of the IAP mRNA 

stability on these model outcomes is less significant.  
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Fig. 4.5 The stability of mRNA 
transcripts controls bacterial load and 
inflammation by affecting the dynamics 
of NF-κB mediated responses. (A) The 
effect of the stability (half-life) of 
chemokine mRNA transcripts 
(t1/2(CHEM)) on the dynamics of 
chemokine secretion by an individual 
cell. Simulated results are produced 
using the single-cell level NF-κB 
signaling dynamics model for 
continuous stimulation of a cell by 1 
ng/ml TNF, with parameters and 
equations as described in Appendix C 
(Tables C.3, C.5 and C.6). A similar 
pattern of response can be observed 
when the effects of mRNA stability on 
the dynamics of other NF-κB-mediated 
responses (i.e. expression of ACT, IAP 
and TNF) are studied (data not shown). 
(B, C) Simulation results for the effect 
of the stability of mRNA transcripts 
corresponding to major NF-κB-
mediated responses, including 
macrophage activation (t1/2(ACT)), TNF 
expression (t1/2(TNF)), chemokine 
expression (t1/2(CHEM)) and inhibitor 
of apoptosis protein expression 
(t1/2(IAP)), on bacteria numbers (B) and 
on the activated fraction of 
macrophages (C) 200 days post-
infection. Small squares represent 
different values of t1/2(CHEM) 
vertically and different values of 
t1/2(TNF) horizontally. Large boxes 
represent different values of t1/2(ACT) 
vertically and different values of 
t1/2(IAP) horizontally. Four values of 
mRNA half-life were tested in 
simulations: 12 min, 30 min, 1 hr and 3 
hr. Simulation results were averaged 
over 10 repetitions. 

 

 

Our analysis shows that there are combinations of TNF, ACT, CHEM and IAP 

mRNA transcript half-lives that lead to distinct model outcomes such as control of 

infection within stable granulomas, clearance, uncontrolled growth of bacteria, or 
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excessive inflammation (see Fig. 4.2). For example, a containment outcome (as 

highlighted by green stars in Fig. 4.5B, C) may result from the following parameter 

combination: mRNA transcript half-life of 30 min for TNF, mRNA transcript half-life of 

1 hr for ACT, mRNA transcript half-life of 1 hr for CHEM, and mRNA transcript half-

life of 30 min for IAP. Increasing mRNA transcript stabilities for TNF and ACT from 

these values increases the chance of extensive inflammation in tissue, whereas reducing 

their values significantly enhance bacterial load. Increasing mRNA transcript stabilities 

for CHEM from the suggested value also slightly enhances bacterial load as well as 

granuloma size (data not shown). Further, our results suggest that there are combinations 

of mRNA stabilities for TNF-mediated responses that lead to clearance of Mtb without 

inducing excessive inflammation (see red stars in Fig. 4.5B, C as an example). This set of 

mRNA stability values significantly enhances the ability of granuloma to kill bacteria 

while limiting inflammation by controlling macrophage activation and apoptosis. Overall, 

these results suggest that the differential dynamics of NF-κB-mediated responses 

resulting from differential stabilities of their corresponding mRNA transcripts are 

essential to regulate granuloma’s ability to control infection and inflammation. 

 

4.3.5 The timing of NF-κB-induced macrophage activation is critical to controlling 

excessive inflammation 

In the previous section, we showed that stability of mRNA transcripts associated with  

NF-κB-mediated inflammatory molecules significantly affects the immune response to 

Mtb. The stability of mRNA controls both the extent and the timing of NF-κB-mediated 

responses in individual cells [49]. However, it is not clear whether it is mostly the extent 
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of response, the timing of response, or both that influence granuloma outcomes. In other 

words, how important is the speed of responses of each individual macrophage to TNF 

signals in determining the overall function of a granuloma? To address this question, we 

analyzed the effect on granuloma outcomes of varying the stability of ACT, CHEM, TNF 

and IAP mRNA transcripts while maintaining the average extent of these responses at 

their containment baseline levels (determined in the previous section). To maintain the 

average extent of each response as its corresponding mRNA stability is varied, we 

simultaneously vary another parameter associated with a process downstream of mRNA 

translation. Parameters varied to adjust the extent of the four NF-κB mediated responses 

are: TNF secretion rate (e3TNF), chemokine secretion rate (e3chem), ACT concentration 

threshold for macrophage activation (τACT), macrophage activation rate constant (kACT), 

and apoptosis inhibition constant (kIAP). For example, we increase the chemokine mRNA 

half-life (t1/2(CHEM)) and decrease the chemokine secretion rate (e3chem) simultaneously 

to achieve the same average number of chemokine molecules secreted in tissue by an 

individual macrophage (Fig. 4.6A).  
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Fig. 4.6 The timing of NF-κB-induced 
macrophage activation is critical to 
control of inflammation. (A) Varying 
the chemokine mRNA half-life 
(t1/2(CHEM): 12 min, 1 hr, and 3 hr, 
respectively) and the chemokine 
secretion rate (e3chem: 7.65×10-5 s-1, 
1.39×10-5 s-1, 4.52×10-6 s-1, respectively) 
by an individual macrophage 
simultaneously leads to secretion of the 
same average number of chemokine 
molecules, but with distinct temporal 
patterns of chemokine secretion. 
Simulated results are produced using 
the single-cell level NF-κB signaling 
dynamics model for continuous 
stimulation of a cell by 1 ng/ml TNF, 
with parameters and equations as 
described in Appendix C (Tables C.3, 
C.5 and C.6). A similar pattern of 
response can be observed when the 
effects of mRNA stability on the timing 
of other NF-κB-mediated responses (i.e. 
expression of ACT, IAP and TNF) are 
studied (data not shown). (B, C) 
Simulation results for the effect of the 
timing of NF-κB-mediated responses, 
including macrophage activation 
(regulated by t1/2(ACT)), TNF 
expression (regulated by t1/2(TNF)), 
chemokine expression (regulated by 
t1/2(CHEM)) and inhibitor of apoptosis 
protein expression (regulated by 
t1/2(IAP)), on bacteria numbers (B) and 
on the activated fraction of 
macrophages (C) at 200 days post-
infection. Small squares represent 
different values of t1/2(CHEM) 
vertically and different values of 
t1/2(TNF) horizontally. Large boxes 
represent different values of t1/2(ACT) 
vertically and different values of 
t1/2(IAP) horizontally. Four values of 
mRNA half-life were tested in 
simulations: 12 min, 30 min, 1 hr and 
3hr. Simulation results were averaged 
over 10 repetitions. 

 

Analysis of granuloma simulations indicates that among the four major NF-κB-

mediated responses studied here (TNF, CHEM, ACT and IAP), only the timing of ACT 
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response, i.e. macrophage activation, is critical to control of inflammation in tissue as 

well as bacterial load within a granuloma (Fig. 4.6B, C). Early NF-κB-mediated 

activation of macrophages that occurs because of highly unstable ACT mRNA transcripts 

lead to uncontrolled activation of macrophages and excessive inflammation in tissue. 

This suggests that both extent and timing of NF-κB-mediated macrophage activation are 

critical to control of the immune response to Mtb.  

 

4.3.6 Can manipulating TNF-mediated NF-κB signaling dynamics improve 

granuloma function? 

Earlier in this study, we showed that optimal regulation of NF-κB signaling dynamics is 

critical to control of infection within a granuloma and control of inflammation in lung 

tissue. As such, impairing NF-κB activation leads to uncontrolled growth of bacteria that 

is in agreement with NF-κB knockout experimental studies [62]. The repression of NF-

κB signaling in infected macrophages is also a mechanism that pathogenic mycobacteria 

use to enhance their survival and growth [17]. An important question is then: Can we 

manipulate TNF-mediated NF-κB signaling in a granuloma that is unable to control 

infection in order to improve its ability to kill bacteria? To test this hypothesis, we first 

simulate formation of a granuloma that is unable to control bacterial growth due to 

impaired NF-κB signaling (e.g. at high rates of IKKK inactivation, ki) for 100 days. 

Then, we change one or more of the NF-κB-associated parameters to restore NF-κB 

activities within the granuloma and resume simulation for another 100 days. These 

simulations somehow represent treatment of an active TB granuloma with drugs targeting 

NF-κB-associated processes. 
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 Our analysis, as depicted in Fig. 4.7, indicates that restoring normal NF-κB 

activities by decreasing ki to its moderate values (Treatment I) enhances the ability of a 

granuloma to control bacteria. However, average bacteria levels for a 200-day granuloma 

after changing ki are generally higher than bacteria levels resulting from simulating a 

containment scenario. A further decrease in the value of ki (Treatment II) is more 

successful in killing bacteria. However, it leads to uncontrolled activation of 

macrophages and excessive inflammation in tissue. This suggests that targeting the 

process of IKKK inactivation alone is not sufficient for infection control at the granuloma 

scale. In another set of simulations (Treatment III), decreasing ki to moderate values, 

together with manipulating stability of mRNA transcripts associated with NF-κB-

mediated responses (based on results from Fig. 4.5) leads to better outcomes. Increasing 

the half-life of TNF mRNA transcripts to 3 hr, reducing the half-life of ACT mRNA 

transcripts to 30 min, and setting the IAP mRNA transcripts to 1 hr change the granuloma 

outcome with inducing efficient killing of bacteria within the granuloma without 

inducing excessive inflammation. Increasing TNF mRNA stability enhances the overall 

role of this pro-inflammatory cytokine in control of infection, while reducing ACT 

mRNA stability and setting IAP mRNA stability to 1 hr significantly contribute to 

limiting inflammation in tissue. Overall, this suggests that manipulating the dynamics of 

the NF-κB-mediated responses, particularly macrophage activation, TNF and IAP 

expression, can improve the function of a TB granuloma. 
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Fig. 4.7 Manipulation of TNF-mediated NF-κB signaling for improving granuloma function. 
Comparison of the dynamics of (A) bacteria growth, (B) activated fraction of macrophages, and (C) 
granuloma snapshots among three different treatment methods for enhancing NF-κB activities. In all 
treatments, we first simulate formation of a granuloma that is unable to control bacteria growth due 
to impaired NF-κB signaling at high rates of IKKK inactivation (ki = 3.16×10-2 s-1) for 100 days (All 
other parameter values are as listed in Appendix C (Tables C.1, C.3 and C.5)). Then, we change one 
or more of the NF-κB-associated parameters to restore NF-κB activities within the granuloma and 
resume simulation for another 100 days. Parameter changes in each treatment are as follows: 
Treatment I: ki = 1×10-2 s-1, Treatment II: ki = 3.16×10-3 s-1, Treatment III: ki = 1×10-2 s-1, t1/2(TNF) = 
3 hr, t1/2(ACT) = 30 min, t1/2(TNF) = 1 hr. Simulation results were averaged over 10 repetitions. The 
colors representing cells of different type and status in granuloma snapshots are the same as those 
shown and defined in Fig. 4.2. 
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4.4 Discussion 

TNF affects the immune response to Mtb through several mechanisms, including 

induction of macrophage activation, induction of chemokine and cytokine expression, 

and apoptosis. Overall, these activities have made TNF a key factor for restricting 

bacterial growth in a granuloma [5,8]. This is confirmed by studies in humans, in which 

TNF neutralization leads to reactivation of latent TB due to a failure of the granuloma to 

control bacterial replication [63]. Importantly, these activities are regulated in part by the 

NF-κB signaling pathway. Hence, the TNF-induced NF-κB signaling pathway is central 

to the Mtb immune response, and one can hypothesize that regulation of intracellular NF-

κB signaling dynamics is key to controlling Mtb infection. The important questions then, 

are how the molecular single-cell scale processes of the NF-κB signaling pathway 

influence the dynamics (i.e. the extent and the timing) of TNF activities within a 

granuloma, and how the dynamics of these activities control formation and function of a 

granuloma during the long-term immune response to Mtb? The experiments required to 

answer these questions are at present very difficult, as they invoke multiple biological 

scales in length and time. Thus, we suggest using a multi-scale systems biology approach. 

Our computational model links the dynamics of molecular scale TNF/TNFR interactions 

and the NF-κB signal transduction events that occur on second to minute time scales to 

cellular/tissue scale events that control the long-term immune response to Mtb. This 

approach can address critical questions necessary to understanding granulomas and 

contribute to the development and testing of strategies for prevention and treatment. 

  Immune responses induced by Mtb infection are myriad and complex, and it 

remains incompletely understood which responses are required for protection and which 
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contribute to pathology [57,64]. Indeed, there is significant overlap among protective and 

pathological responses. An important example, as dissected in this study, is TNF-induced 

NF-κB activation. Our model shows that NF-κB-mediated responses are critical for 

restricting bacterial growth in a granuloma. The model also shows that optimal regulation 

of NF-κB signaling dynamics is necessary for preventing pathological inflammation in 

tissue. In other words, the optimal outcome, particularly at the level of the granuloma, is 

achieved as a result of a balance between the NF-κB-mediated bacterial killing activities 

and the NF-κB-mediated inflammation. Such a balance is controlled by a combination of 

molecular scale biochemical processes identified in detail in this study such as IKKK 

activity, A20 and IκBα interactions, and stability of mRNA transcripts associated with 

NF-κB-mediated responses, particularly macrophage activation and TNF expression. 

Further, we find that these processes critically regulate whether resting macrophages or 

infected macrophages are the major targets for TNF signaling within a granuloma. 

Outcomes of uncontrolled growth of Mtb occur unless sufficient numbers of resting 

macrophages relative to infected macrophages become activated by TNF. On the other 

hand, excessive activation of resting macrophages leads to uncontrolled inflammation. 

These findings highlight the potential importance of NF-κB-associated processes as 

targets in future studies on TB examining approaches to control infection and pathology. 

 Another interesting finding from our study is that the stability of mRNA 

transcripts corresponding to NF-κB-mediated responses, particularly macrophage 

activation and expression of TNF and chemokines, significantly controls bacterial load in 

a granuloma, inflammation level in tissue, and granuloma size. This is due to the impact 

of mRNA stability on the kinetics of these responses [32]. We find that both the extent 
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and the timing of NF-κB-mediated macrophage activation are critical to control of the 

immune response to Mtb. However, the significance of the stability of TNF and 

chemokine mRNA transcripts is mostly due its effect on the extent of these responses. 

This is the first study, to our knowledge, that reveals the importance of the dynamics of 

various NF-κB-mediated responses on immunity to Mtb. Further, we show that 

manipulating the dynamics of these responses in a granuloma that is unable to control 

infection due to, for example, pathogen-induced inhibition of NF-κB activation can 

significantly improve granuloma function. 

 Finally, our approach is an initial step toward understanding the molecular targets 

at the level of intracellular signaling pathways for control of the tissue-scale outcomes of 

the immune response to Mtb, particularly granuloma formation. We anticipate that other 

factors, including crosstalk between signaling mediated by the Mtb bacteria and other 

cytokines through various types of receptors and different signaling pathways [65] in 

various types of cells, or the noise resulting from discrete regulation of TNFR activity 

and transcription regulation [66] will further influence these outcomes. Importantly, our 

multi-scale computational model provides a valuable platform for future studies using a 

systems approach to examine the impact of the dynamics of highly networked cellular 

signaling systems on tissue scale responses. Such studies may lead to novel therapeutic 

strategies that minimize non-specific or off-target side effects.  
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Chapter 5

A multi-scale model with tunable resolution 

5.1 Background 

In previous chapters, we described a multi-scale modeling approach to understanding 

granuloma formation and function in lung during Mtb infection. We included molecular, 

cellular, and tissue scales, and temporal scales of minutes to years in the model. Our 

multi-scale approach allows us to integrate data from different types of experiments (e.g. 

immunohistochemistry, flow cytometry, and gene knockout studies) at various spatial and 

temporal scales. We incorporated information flow in both “bottom-up” (molecular 

events affecting cellular and tissue responses) and “top-down” (cellular and tissue scale 

events affecting molecular processes) directions to make predictions about how outcomes 

at one biological scale are affected by mechanisms occurring at another scale. This 

approach may help us in many ways to identify the mechanisms involved in Mtb-host 

dynamics. For example, the model in which TNF-TNF receptor interactions are presented 

[1], as described in Chapter 3, can help determine the role of these interactions in control 

of infection within a granuloma, or can identify potential immunological targets for 

immunotherapy. 

An important question that arises is: How much detail does the model need to be 

sufficiently accurate in addressing our immunology questions, while remaining 

computationally feasible and tractable? Note that adding information from multiple 

biological scales and particularly different temporal scales significantly increases the 
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complexity of analysis and reduces the speed of computation. For example, the multi-

scale model, including TNF/TNFR interactions, as described in Chapter 3, can simulate a 

200-day granuloma using a 2.53 GHz CPU in 40 minutes. However, addition of the 

intracellular NF-κB signaling mechanisms to the model, as described in Chapter 4, 

increases the simulation time to 8 hours. Thus, it is important to use the model with an 

appropriate level of complexity to address questions of interest in a timely manner.   

Our solution is to develop models that have tunable resolution, by which we mean 

the ability to fine-grain and coarse-grain model components at will [2]. Tunable 

resolution is an important tool that helps us find reasonable answers to our questions not 

only in science, but also in daily life, as quickly as possible. A general application of 

tunable resolution in daily life is, for example, using maps with different scales and 

details for different purposes. A city map that shows all street names and directions is 

useful when driving in town. However, such a map cannot provide useful information 

when we are interested in finding the distance between two cities located in two states far 

apart from each other. Similarly, computational models with tunable resolution can be 

used to address different types of questions from multiple biological scales in a 

computationally efficient manner. Tunable resolution can improve debugging, increase 

computational speed, and assist in analysis. For example, to answer questions about how 

the kinetics of binding of a particular cytokine (e.g. TNF) to its receptors on the cell 

membrane affects granuloma formation, our model needs to explicitly include molecular 

processes describing cytokine-receptor interactions. However, if we are interested in 

identifying the role of a different cytokine, or simulating a TNF knockout scenario, the 

model does not need extensive detail in TNF/TNF receptor interactions.  
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Tunable resolution can be achieved by replacing a sub-model consisting of 

several biologically-based equations (e.g. TNF/TNFR dynamics equations) or rules with 

a more phenomenological expression (e.g. a parameter, a function, or a simplified version 

of the sub-model approximating its overall effect on other sub-models). An example of 

implementing tunable resolution is the reduction of differential equation models, for 

example, by eliminating processes that are very fast (using pseudo steady-state 

approximation) or very slow (assuming constant) compared with the characteristic time-

scale of interest. Some theoretical methods have been used to reduce these types of 

models (e.g. [3,4]). However, there is no standard method yet available for implementing 

tunable resolution, particularly when dealing with multiple linked models of different 

types (e.g. ODEs and ABMs).  

We describe below the methods that we use to achieve tunable resolution for a 

multi-scale model that aims to capture the role of TNF in determining the outcomes of a 

granuloma forming in response to Mtb infection. We begin with a version of the 

granuloma model (with intermediate resolution) that includes an ABM describing 

cellular/tissue scale dynamics of the immune response to Mtb and ODEs describing 

molecular single-cell scale TNF/TNFR interactions. Then, we show how this model can 

be coarse-grained to a lower-resolution version that can be applied when the details of 

TNF/TNFR binding and interactions are not desired. We also demonstrate how the model 

can be fine-grained to a higher-resolution version that, in addition to TNF/TNFR 

interaction dynamics, includes details of the intracellular mechanisms that transmit the 

signal from TNF-bound TNFRs to the nucleus, where NF-κB activates expression of 

various genes corresponding to TNF-mediated responses. Fig. 5.1 displays an overview 
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of these resolutions and examples of questions that each resolution is appropriate to 

address. We also discuss the methods based on uncertainty and sensitivity analysis that 

are used to estimate parameter values and to assure that mutual parts of different 

resolutions of the model are compatible.  

 

5.2 Tunable resolution for TNF/TNFR interactions 

Our multi-scale model of the formation and functioning of a granuloma with TNF/TNFR 

dynamics (intermediate resolution) includes an ABM that captures cellular/tissue scale 

dynamics of the immune response to Mtb and nine ODEs that describe molecular single-

cell scale TNF/TNFR binding and trafficking processes  (defined here to include 

synthesis, internalization, recycling, and degradation of ligand and receptors [1]) 

(Chapter 3; Fig 5.1B). These processes significantly affect TNF concentration within a 

granuloma [1,5]. The ODEs describing these processes and thirty parameters associated 

with them are presented in Chapter 3 and are solved for each single cell (macrophage or 

T cell) on the grid, together with TNF diffusion and degradation equations within each 

time-step (dt = 6 s). These processes add a significant level of complexity to the model 

that ultimately increases the time required for running extensive simulations. However, 

we may desire to have a coarse-grain model that represents the overall effect of 

TNF/TNFR interactions on TNF concentration in tissue for cases in which every detail of 

TNF/TNFR binding and interactions are not of interest (Fig. 5.1A). In this section we 

describe our approach to capture the overall effect of single-cell scale TNF/TNFR 

interactions on TNF concentration within a granuloma without explicitly including all 

TNF/TNFR trafficking processes in the model. 
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Fig. 5.1 An overview of the low-resolution, the intermediate-
resolution (TNFR dynamics), and the high-resolution (NF-κB 
signaling dynamics) versions of the model, and examples of 
questions that each resolution is appropriate to address. 

 

To do this, we only consider sTNF release (without consideration of mTNF 

synthesis) and apparent consumption of extracellular TNF (without explicit consideration 

of TNFR-associated processes such as reversible binding, internalization, degradation 

and recycling). Hence, all nine ODEs described above are replaced with the following 

equation that is solved for any micro-compartment containing a macrophage or a T cell 

on the grid, 

€ 

d[sTNF]
dt

= ksynth
' − ( [sTNF]

[sTNF]+ Kd1

)kconsumption       (5.1) 
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This equation describes the change of soluble TNF concentration [sTNF] within a micro-

compartment containing an immune cell (macrophage or T cell), where k’synth is the rate 

of sTNF secretion by the immune cell (#/cell.s), kconsumption is the apparent rate constant 

for sTNF consumption (#/cell.s), and Kd1 is TNFR1 affinity for sTNF (#/micro-

compartment). Because apparent consumption of sTNF by immune cells is actually 

attributed to sTNF binding to TNFRs on the cell membrane, Equation 5.1 contains a 

factor 

€ 

[sTNF]
[sTNF]+ Kd1

 that represents the sTNF-bound fraction of TNFRs on the membrane 

of immune cells (using a pseudo steady-state approximation (give ref to a textbook?)). 

This factor imposes a maximum on the rate of consumption of sTNF by an immune cell. 

The value of kconsumption is estimated via uncertainty analysis. However, knowing the rate 

constant for TNFR internalization and average numbers of cell surface TNFRs 

internalizing sTNF from the intermediate-resolution version of the model (Fig. 5.1B), it is 

possible to estimate a suitable range of values for this parameter on the order of 

€ 

kint1[TNFR1], where [TNFR1] is TNFR1 density on the cell membrane (#/cell), and kint1 is 

the TNFR1 internalization rate constant (s-1). TNF diffusion and first-order degradation in 

the extracellular space are captured as in the original model (Fig 5.1B). 

 Comparison of the low-resolution model (that includes apparent consumption of 

TNF without explicit consideration of TNFR-associated processes; Fig. 5.1A) just 

described with a previous published model [6] that does not consider TNF consumption 

by immune cells at all shows that including this TNF consumption in the model is critical 

to achieving stable granulomas that are able to contain bacteria at low levels for a long 

period of time. Without cell-dependent consumption of TNF, TNF levels in tissue 

increase rapidly, leading to high levels of macrophage activation. This is because TNF 
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consumption by immune cells significantly contributes to localization of TNF at the core 

of granuloma where bacteria and infected macrophages are present. This effect is indeed 

similar to the effect of TNFR internalization on controlling the spatial range of TNF 

action within a granuloma (see Chapter 3 and [1] for details). Removal of immune cell-

mediated sTNF consumption has an impact similar to removal of TNFR internalization 

on granuloma outcomes:  it increases the chance of excessive inflammation in tissue.  

 In addition to controlling the available amount of TNF within a granuloma, 

TNF/TNFR interactions play an important role in determining TNF-mediated cellular 

responses. Activation of the two major TNF-induced signaling pathways, the caspase-

mediated apoptotic pathway and the NF-κB pathway, in the model with intermediate 

resolution (Fig. 5.1B) is described at the level of sTNF/TNFR1 interactions [1]. Briefly, 

TNF-induced NF-κB activation for each individual macrophage is described as a Poisson 

process with a probability determined within each ABM time-step (Δt = 10 min), based 

on a Poisson rate parameter that is a function of the NF-κB activation rate constant (kNF-

κB), the concentration of cell surface sTNF/TNFR1 complexes [sTNF/TNFR1], and the 

concentration threshold for cell surface sTNF/TNFR1 (τNF-κB): 

€ 

PNF−κB =
   0                                          ; [sTNF /TNFR1] < τNF−κB     

1− e−kNF −κB ([sTNF /TNFR1]−τNF −κB )Δt  ; [sTNF /TNFR1] ≥ τNF−κB

 
 
 

  (3.1) 

An NF-κB-activated macrophage then secretes chemokines and TNF, and can become 

activated (after interaction with IFN-γ producing pro-inflammatory T cells) to efficiently 

kill bacteria. Similarly, we model TNF-induced apoptosis for each individual cell 

(macrophage and T cell) by: 

€ 

Papopt =
   0                                        ; [sTNF /TNFR1i] < τ apopt     

1− e−kapopt ([sTNF /TNFR1i ]−τ apopt )Δt  ; [sTNF /TNFR1i] ≥ τ apopt

 
 
 

   (3.2) 
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We use a Poisson process with a probability computed as a function of the apoptosis rate 

constant (kapopt), the concentration of internalized sTNF/TNFR1 complexes 

[sTNF/TNFR1i], and the concentration threshold for internalized sTNF/TNFR1 (τapopt). 

When the model is coarse-grained to a lower resolution (Fig. 5.1A) in which 

TNF/TNFR interactions are not explicitly involved, it is critical to capture TNF-mediated 

cell responses (i.e. NF-κB activation and apoptosis) as functions of the amount of TNF 

available to immune cells. Thus, Equations 3.1, 3.2 that describe probabilities of TNF-

induced NF-κB activation and apoptosis events as functions of the number of TNF-bound 

receptors are replaced with the following equations that only use available extracellular 

sTNF concentrations for probability computations.   

€ 

PNF−κB =

   0                                          ; [sTNF]
[sTNF] + Kd1

< τ 'NF−κB     

1− e
−k'NF −κB ( [sTNF ]

[sTNF ]+Kd1
−τ 'NF −κB )Δt

 ; [sTNF]
[sTNF] + Kd1

≥ τ 'NF−κB

 

 
  

 
 
   (5.2) 

€ 

Papopt =

   0                                        ; [sTNF]
[sTNF] + Kd1

< τ 'apopt     

1− e
−k'apopt ( [sTNF ]

[sTNF ]+Kd1
−τ 'apopt )Δt

 ; [sTNF]
[sTNF] + Kd1

≥ τ 'apopt

 

 
  

 
 
 

   (5.3) 

where k’NF-κB, k’apopt, τ’NF-κB and τ’apopt are modified rate constants and thresholds for 

TNF-induced NF-κB activation and apoptosis and their values are estimated via 

uncertainty analysis. Because TNF-induced responses (NF-κB activation and apoptosis) 

in immune cells actually result from sTNF binding to TNFRs on the cell membrane, TNF 

concentration thresholds (τ’NF-κB and τ’apopt) in Equations 5.2, 5.3 are defined based on 

€ 

[sTNF]
[sTNF]+ Kd1

 that represents the sTNF-bound fraction of TNFRs on the membrane of 

immune cells (again using a pseudo steady-state approximation). Using a probabilistic 



 169 

cell response with a probability computed as a function of TNF concentration, instead of 

a constant probability at all times, and also using the factor 

€ 

[sTNF]
[sTNF]+ Kd1

 (that represents 

sTNF-bound fraction of TNFRs on the cell membrane), instead of TNF concentration, as 

a base for determining the threshold for TNF-induced responses, are two major 

modifications that we implemented in the low-resolution model as compared with the 

previous generation model described in [6].       

 

5.3 Tunable resolution for TNF-induced NF-κB activation 

In Chapter 4, we described a higher-resolution model (Fig. 5.1C) that includes 

intracellular molecular mechanisms controlling TNF-induced NF-κB activation in a 

macrophage. Fine-graining of the model is implemented by replacing the discrete 

probabilistic NF-κB activation event described by Equation 3.1 by a set of nonlinear 

ODEs that determine NF-κB activities following TNF binding to cell surface TNFRs. 

NF-κB activities then dictate expression of genes associated with NF-κB mediated cell 

responses such as macrophage activation, apoptosis inhibition and chemokine and TNF 

expression via additional ODEs. Secretion of chemokines and TNF remains continuously 

regulated by ODEs, whereas macrophage activation is described as a Poisson process 

with a probability determined within each time-step (Δt), based on a Poisson rate 

parameter that is a function of the macrophage activation rate constant (kACT), 

intracellular concentration of a generic macrophage-activating protein [ACT], and the 

ACT concentration threshold for macrophage activation (τACT): 

€ 

Pactivation =
   0                             ; [ACT] < τACT     

1− e−kACT ([ACT ]−τ ACT )Δt  ; [ACT] ≥ τACT

 
 
 

     (4.1) 
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TNF-induced apoptosis for the high-resolution model is also described as a Poisson 

process similar to Equation 3.2. The inhibitory impact of the NF-κB activation on 

macrophage apoptosis is captured by: 

€ 

kapopt =
kIAP

kIAP + [IAP]
kapopt
0          (4.3) 

The magnitude of kapopt is a function of the intracellular concentration of a generic 

inhibitor of apoptosis [IAP], the apoptosis inhibition coefficient (kIAP), and the intrinsic 

TNF-induced apoptosis rate constant (

€ 

kapopt
0 ).  

 A comparison between the process of TNF-induced NF-κB activation in the 

intermediate resolution model and that in the higher resolution model indicates that fine-

graining the model has two major effects on how TNF signaling is implemented. First, 

the fine-grained version of the model (Fig. 5.1C), unlike the one with the intermediate 

resolution (Fig. 5.1B), is able to capture the dynamics of TNF-induced responses, for 

example, oscillatory expression of chemokines. Further, fine-graining of the model has 

made different NF-κB mediated responses (TNF and chemokine expression, inhibition of 

apoptosis and macrophage activation) uncoupled. Thus, these processes are regulated by 

separate mechanisms (transcription and translation of distinct genes and mRNA 

transcripts).  

 

5.4 Computer programming and algorithm 

The tunable resolution multi-scale granuloma model was implemented in a single C++ 

program that uses Qt for running simulations with a graphical user interface (GUI) on 

multiple platforms (Linux, Windows and Mac OS). In the beginning of simulations, the 
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resolution of interest (low, intermediate, or high) is determined by the user. The model 

will then use essential adjustments to its rules as described above and shown in Fig. 5.2 

depending on the selected resolution.  
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Fig. 5.2 An overview of the algorithm used in simulations of the tunable resolution 
multi-scale granuloma model. Rules and parameters for mutual ABM processes 
(e.g. cell movements and recruitments, and Mtb growth) are the same between 
different resolutions of the model. 
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5.5 Uncertainty and sensitivity analysis for estimating parameters and validating 

When we coarse-grain or fine-grain a model component (e.g. TNF activity), parameters 

that do not belong to that component (e.g. diffusivity of chemokines in tissue) and their 

values will be shared between the two resolutions of the model. However, model 

parameters corresponding to the coarse-grained or fine-grained component become 

affected. In the case of coarse-graining, for example, a set of parameters that represent a 

group of mechanistic processes are usually replaced by a new and smaller group of 

parameters that somehow approximate the overall effect of those processes in the model 

in a simpler form. For example, we may assume that TNF/TNFR trafficking processes 

occurring at the surface and inside a cell control TNF concentration in extracellular 

spaces. Thus, for coarse-graining, we may consider the cell as a source for production 

and consumption of TNF (that can be represented by new parameters k’synth and kconsumption 

as shown in Equation 5.1) instead of capturing all TNF/TNFR interactions (i.e. synthesis, 

binding, internalization, recycling, degradation, etc). The question is then: How can we 

estimate values of the new parameters, TNF production rate (k’synth) and the apparent 

TNF consumption rate constant (kconsumption) for a cell in our coarse-grain model? Our 

solution is to use uncertainty analysis to estimate the values of these coarse-grained 

parameters from ranges of parameter values such that they reproduce specific outcomes 

that can be used to calibrate the model. One important outcome used for calibration is 

containment: control of bacteria within a well-circumscribed granuloma containing stable 

and low bacterial levels (e.g. <103 total bacteria). We perform uncertainty analysis on the 

new coarse-grained parameters to identify values of these parameters that lead to 

containment outcomes. Note that uncertainty analysis on TNF-independent ABM 
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parameters (i.e. shared parameters between the two resolutions) was used before (as 

described in Chapter 3) to identify a containment baseline set of values for these 

parameters. Thus, we assume here that those parameter values are still appropriate to 

achieve containment. We perform uncertainty analysis by varying values of only the new 

parameters generated after coarse-graining, while maintaining values of TNF-

independent parameters constant at their previously identified containment baseline level. 

Using this approach, we assure that by coarse-graining of TNF/TNFR interactions in the 

model we have not influenced functioning of TNF-independent processes. 

 In addition to estimating values of new parameters by uncertainty analysis, 

sensitivity analysis on shared parameters (e.g. chemokine secretion rate, chemokine 

degradation constant and TNF degradation constant in tissue) between the coarse-grain 

and fine-grain models can be performed. Comparing results of sensitivity analysis on 

these parameters indicates whether they have the same influence on model results at 

different levels of resolution, and thus can be used as a method for further validating the 

approach of coarse-graining. For example, sensitivity analysis results for the effects of 

TNF-independent and TNF/TNFR-associated parameters on the outputs of the high-

resolution model (that includes NF-κB signaling dynamics) are shown in Table 5.1. We 

compare these results with results of sensitivity analysis on the intermediate-resolution 

model (Table 3.1). Although correlation of some parameters (e.g. TNF diffusivity) with 

model outputs is affected by model resolution, the overall effects of most of the important 

shared parameters on model outputs are similar between the two resolutions. In addition 

to sensitivity analysis, experimental data is also an important source for validation of the 

models at different resolutions. 
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Table 5.1. Model parameters significantly correlated with outputs of interest, bacterial numbers, 
granuloma size, caseation area and TNF concentration at day 200 post-infection when simulations 
are run at high resolution (with NF-κB signaling dynamics).  

Selected model outputs Important TNF-independent and 
cellular scale parameters *† 

Important TNF/TNFR-associated 
molecular and linking parameters *‡ 

αBi (+) DTNF (+++) 
TmoveM (--) δTNF (+++) 
τrecTgam (+++) Kd1 (+++) 
δchem (+) kint1 (+++) 
 TNFR1mac (---) 
 kon1 (---) 

Total number of bacteria 

 τapop (++) 
αBi (+) DTNF (+) 
Mrecr (+) kon1 (-) 
TmoveM (---)  
PkillMac (-)  

Granuloma size 

τrecTgam (+++)  
αBi (+++) ksynthMac (--) 
Mrecr (+) δTNF (+++) 
TmoveM (--) Kd1 (+++) 
τrecTgam (++) kint1 (+++) 
 TNFR1mac (---) 
 kapop (+++) 
 DTNF (+++) 

Caseation 

 kon1 (---) 
αBi (+) δTNF (+++) 
TmoveM (---) Kd1 (+++) 
τrecTgam (+++) TNFR1mac (---) 
PkillMac (-) DTNF (+++) 

Average tissue concentration 
of sTNF  

 kon1 (---) 
* Only parameters with significant PRCC values are indicated. Significant positive and negative correlations are shown 
using + and - as follows: -/+: 0.001 < p-value < 0.01, --/++: p-value < 0.001. 
† TNF-independent and cellular scale parameter descriptions are as follows: αBi intracellular Mtb growth rate, TmoveM 
probability of T cell moving to a macrophage-containing location, PkillMac probability of cytotoxic killing of an infected 
macrophage, Mrecr probability of Mr recruitment, τrecTgam TNF/chemokine concentration threshold for Tγ recruitment, 
δchem chemokine degradation rate constant. 
‡ TNF/TNFR associated parameter descriptions are as follows: DTNF TNF TNF diffusivity in tissue, δTNF sTNF 
degradation rate constant, Kd1 equilibrium dissociation constant of sTNF/TNFR1, kon1 sTNF/TNFR1 binding rate 
constant, kint1 TNFR1 internalization rate constant, TNFR1mac TNFR1 density on the surface of macrophages, kapop rate 
constant for TNF-induced apoptosis in all cell types, τapop internalized sTNF/TNFR1 threshold for TNF-induced 
apoptosis. 
 

5.6 Summary: general principles for coarse- or fine-graining the multi-scale model 

As described earlier, the multi-scale granuloma model is composed of two major sub-

models: (i) a stochastic agent-based model (ABM) that captures cellular and tissue scale 

dynamics via probabilistic rules for interactions between immune cells and Mtb that are 

implemented in a discrete manner within each ABM time-step, and (ii) an ordinary 

differential equation (ODE) model that describes single-cell level molecular scale 



 176 

processes that, depending on the resolution of the model, includes synthesis and apparent 

consumption of TNF (low resolution), TNF/TNFR binding and trafficking dynamics 

(intermediate resolution), and intracellular NF-κB signaling dynamics (high resolution). 

These two sub-models are linked via TNF-induced cell responses: TNF-induced NF-κB-

mediated macrophage activation, apoptosis inhibition, TNF and chemokine expression as 

well as TNF-induced apoptosis. We described earlier our approaches for tuning model 

resolution with respect to: (i) TNF/TNFR interactions, and (ii) NF-κB activation 

processes. We now review those approaches from a more general viewpoint that can be 

applied to other multi-scale models as well. 

Our approach for coarse-graining or fine-graining of immunological processes 

within the multi-scale model depends on the sub-model to which those processes belong. 

We first begin with processes that are considered to be part of the ABM sub-model. 

Generally, the stochastic ABM is composed of cellular and tissue-scale rule events that 

are controlled by specific probabilities and thresholds. However, these events, in reality, 

are controlled by specific molecular mechanisms. For example, TNF-induced NF-κB 

activation is a process that occurs in the presence of sufficient amounts of TNF that 

stimulates activation of the NF-κB pathway in a macrophage, leading to various NF-κB 

mediated cell responses. Thus, it can be described, in a coarse-grain manner, as an ABM 

rule event with a discrete probability function (e.g. Equations 3.1, 5.2) that determines, in 

an ON/OFF manner, whether or not a macrophage is NF-κB-activated (and thus able to 

secrete chemokines and TNF, or to become activated). However, this process in reality is 

more complex, and involves molecular scale events such as TNF binding to cell surface 

TNFRs, activation of a cascade of kinases, and finally translocation of NF-κB into 
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nucleus, leading to expression of various inflammatory genes (see Chapter 4 for details). 

In order to fine-grain the model with respect to NF-κB activation, we need to include 

these molecular processes into the model. Including these processes requires addition of 

several NF-κB-associated molecular components (e.g. intracellular kinases, IκBα 

molecules, nuclear and cytoplasmic NF-κB, mRNAs, etc) to the model. These molecular 

components exist in relatively large numbers within each cell. This allows us to capture 

intracellular processes controlling NF-κB activation as continuous ODEs that describe 

the dynamics of concentration of each of these molecular components. Thus, a critical 

step in fine-graining the model with respect to NF-κB activation is transformation of the 

discrete probability function (Equation 3.1, 5.2) determining whether or not a 

macrophage is NF-κB-activated into a continuous set of ODEs that capture the dynamics 

of nuclear NF-κB concentration. In other words, the process of NF-κB activation, after 

fine-graining, becomes a part of the deterministic ODE model, as it does not contain 

stochastic and discrete components anymore. The dynamics of nuclear NF-κB 

concentration are then translated to TNF and chemokine expression as well as 

macrophage activation. This fine-graining approach can be applied to other components 

of the ABM as well. For example, pro-inflammatory T cell (Tγ)-mediated activation of a 

macrophage is controlled by a probability that is calculated as a function of the number of 

pro-inflammatory T cells surrounding the macrophage (see Chapter 3 for details). 

However, this process, in reality, is more complex and involves molecular scale events 

such as the expression of IFN-γ by Tγ cells, diffusion of IFN-γ in extracellular spaces, 

binding of IFN-γ to IFN-γ receptors on the surface of macrophage, and finally STAT-1 

activation in the macrophage. One approach to fine-grain the model with respect to these 
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processes is to transform the discrete probability function determining whether or not a 

macrophage is activated by surrounding Tγ cells in an ON/OFF manner into a continuous 

set of ODEs that captures the dynamics of molecular-scale events lying between IFN-γ 

expression by Tγ cells and STAT-1 activation of a macrophage.  

In addition to the above method, coarse-graining and fine-graining of processes 

can be performed within a single sub-model. For example, TNF/TNFR interactions are 

controlled by molecular processes that belong to the deterministic ODE sub-model. 

Coarse-graining of the model in this case, can be simply achieved by lumping several 

continuous processes (i.e. TNF and TNFR synthesis, binding and trafficking processes) 

into two simple, still continuous, processes (i.e. TNF synthesis and apparent 

consumption) that approximate the overall effect of TNF/TNFR interactions on TNF 

availability in extracellular spaces. In general, coarse-graining of a group of biological 

processes modeled as continuous equations can be performed by lumping or grouping of 

these processes into a smaller number of simpler equations representing the overall 

impact of the original processes. This can be done, for example, by using a pseudo-steady 

state approximation based on separation of time-scales of the model events. 
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Chapter 6

Differential risk of tuberculosis reactivation among anti-TNF therapies 
is due to drug binding kinetics and permeability 

6.1 Introduction 

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB) in humans. 

While TB is a global health problem with 2 billion people infected, most are in a latent 

state, controlling infection. The incidence of active TB is increased in patients with 

inflammatory conditions such as rheumatoid arthritis (RA) and psoriasis receiving 

treatment with tumor necrosis factor-α (TNF) inhibitors [1,2]. Mice, monkeys and 

zebrafish also exhibit impaired immunity during Mtb infection in the absence of TNF [3-

5]. These observations support a central role for TNF in maintaining immunity to Mtb. 

However, these findings also represent a major challenge to anti-TNF therapy use for 

inflammatory diseases.  

The key pathological feature that forms during the immune response to Mtb is a 

spherical collection of immune cells and bacteria termed a granuloma [6]; the collection 

of granulomas successfully limiting bacteria growth define a latent state of infection in 

the host. TNF plays an important role in regulating granuloma function, defined here as 

the ability of a granuloma to restrict bacterial growth [4,5,7-10]. TNF, a pleiotropic 

cytokine produced by infected and activated macrophages and pro-inflammatory T cells 

[3,11], has been shown to enhance macrophage activation [12], chemokine production by 

macrophages [13], and recruitment of immune cells during Mtb infection [14]. TNF can 
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also mediate cell death via inducing the caspase-mediated apoptotic pathway [15]. 

Neutralization of TNF can lead to uncontrolled growth of bacteria and reactivation of 

latent TB [4].  

Excellent therapies that are currently licensed as TNF inhibitors are of two types: 

anti-TNF monoclonal antibodies (including infliximab, adalimumab and certolizumab) or 

soluble TNF receptor fusion proteins (etanercept) [16]. These drugs have been reported to 

be equally and highly effective in treatment of some (but not all) inflammatory diseases 

such as RA and psoriatic arthritis [17,18]. However, recent studies have shown the risk of 

TB reactivation posed by antibody-type drugs to be several-fold greater than for soluble 

TNF receptor-type drugs [19-21]. Several hypotheses based on differences in drug 

properties (reviewed in [16,22-26]) have been advanced to explain the observed 

differential risk of TB reactivation among anti-TNF therapies. However, no mechanisms 

have been definitively identified. For our study, we categorize these drug properties into 

four groups: (i) TNF binding properties (including affinity, binding/unbinding kinetics, 

stoichiometry, and ability to bind membrane-bound TNF (mTNF)), (ii) permeability 

(from blood vessels into lung tissue and penetration into the granuloma), (iii) apoptotic 

and cytolytic activity and (iv) pharmacokinetic (PK) characteristics. 

Information on these four drug properties is available for clinically used TNF 

inhibitors [12,16,27]. TNF binding kinetics for etanercept, infliximab and adalimumab 

have been measured [28,29], and each binds both mTNF and soluble TNF (sTNF). Up to 

three molecules of antibody-type drugs can bind each TNF molecule, but etanercept 

binds TNF with a binding ratio of 1:1 [30]. TNF binding properties can influence TNF 

concentration in granulomatous tissue and affect immunity to Mtb [26,31]. A recent study 
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has provided evidence of decreased permeability of soluble TNF receptors in mouse 

granulomas compared with anti-TNF antibody [25]. Infliximab and adalimumab, but not 

etanercept and certolizumab, induce apoptosis in TNF-expressing cells [27,32-34]. This 

might be related to the ability of infliximab and adalimumab, and the inability of 

etanercept and certolizumab to cross-link mTNF [27]. Finally, PK data, including blood 

concentration-time profiles, are available for etanercept, infliximab and adalimumab as 

administered in RA and psoriasis patients [35]. It is not clear how these four drug 

properties, alone or in combination, contribute to observed differences in reactivation of 

TB induced by anti-TNF treatments and laboratory experiments needed to explore this in 

vivo are currently not feasible. 

We recently used a systems biology approach to track formation and maintenance 

of a TB granuloma in lung tissue in space and time [7,8,36] (see Chapters 3 and 4). Our 

multi-scale computational model (described in Chapter 3) captures the dynamics of 

TNF/TNF receptor (TNFR) interactions that occur on second to minute time scales within 

the long-term cellular immune response to Mtb [8]. This model also provides detailed 

information regarding the spatial and temporal dynamics of TNF during development of a 

granuloma in lung tissue. Such information is essential to allow investigation of 

mechanisms by which TNF inhibitors interfere with granuloma function and thus 

immunity to Mtb. For the work herein, we incorporate TNF-neutralizing drugs and their 

relevant properties into the model described in Chapter 3 and indicated in Fig. 6.1, to 

predict those mechanisms. We identify functional and biochemical characteristics 

underlying the higher likelihood of TB reactivation that occurs for some TNF-
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neutralizing drugs. We also determine immune factors that are central to infection control 

in a granuloma in the presence of TNF-neutralizing drugs. 

 

 
Fig. 6.1 Multi-scale model of the immune response to Mtb infection in the lung and TNF 
neutralization. Details are presented in Methods and Appendix D. (A) Selected cell-level ABM rules 
based on known immunological activities and interactions (Mi: infected macrophage, Mci: chronically 
infected macrophage, Ma: activated macrophage, Tγ: pro-inflammatory IFN-γ  producing T cell, Tc: 
cytotoxic T cell, Treg: regulatory T cell). (B) Binding interactions and reactions controlling 
TNF/TNFR dynamics at the single-cell level. (C) Drug transport from a vascular source to the grid. 
Vascular permeability coefficient (kc) determines the level of drug penetration from blood into lung 
tissue (relationship between Cp and Csource) as described in Appendix D. (D) Addition of TNF 
neutralizing drugs with either constant or varying blood concentrations (Cp), 100 days after Mtb 
infection. (E) Hypothetical classes of TNF inhibitors defined in this study based on TNF binding 
characteristics: Class 1 binds sTNF, but not mTNF, at a binding ratio of 1:1; Class 2 binds both 
sTNF and mTNF at a binding ratio of 1:1; Class 3 binds both sTNF and mTNF at a TNF/drug 
binding ratio of 1:3. Numbers represent reactions as listed in Appendix D (Table D.2). (F) The effect 
of drug-induced cell death in TNF-expressing cells. 
 

6.2 Methods 

6.2.1 Multi-scale granuloma model 

We recently developed a multi-scale granuloma model that incorporates both 

cellular/tissue scale events (e.g. immune cell recruitment, movement and interactions) 

leading to granuloma formation and TNF/TNFR-associated molecular scale interactions 

that control TNF-mediated cell responses (e.g. apoptosis and NF-κB activation) [8] (see 



 184 

Chapter 3). In this model, cellular and tissue scale dynamics are captured via a set of 

well-described interactions between immune cells and Mtb at the site of infection using 

stochastic simulations in the form of a two-dimensional (2-D) agent-based model (ABM) 

(Fig. 6.1A). Single-cell molecular scale processes that control TNF/TNFR binding and 

trafficking for each individual cell, as shown in Fig. 6.1B, are captured by a set of 

nonlinear ordinary differential equations (ODEs). The two scales are linked via TNF-

induced cell responses (i.e. apoptosis and NF-κB activation) and are modeled as Poisson 

processes with rate parameters computed as functions of molecular concentrations from 

the ODE model. In addition to sTNF, mTNF has also been shown to contribute in part to 

control of Mtb infection in mice [37,38]. However, experimental data regarding 

molecular and cellular-level details of mTNF-mediated signaling and reverse signaling in 

Mtb immune responses (particularly in humans and non-human primates) are limited. 

Thus, at this time we only consider sTNF/TNFR-mediated signaling in the model. Details 

on rules, equations and parameters of the model are previously described [8] (see Chapter 

3). Our baseline set of parameter values leads to stable control of infection (containment) 

in a granuloma (e.g. Fig. 6.3B). 

 

6.2.2 Incorporation of TNF-neutralizing drugs (binding properties, permeability, 

apoptotic and cytolytic activity, and PK characteristics) 

Using our model (described in Chapter 3) as a framework, we now study the impact that 

TNF-neutralizing drugs have on the immune response to Mtb. We incorporate drug by 

simulating its transport from vascular sources to the grid representing lung parenchyma 

as well as diffusion among micro-compartments (Fig. 6.1C, see details in Appendix D). 
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We assume drug concentrations in blood (Cp) are constant or vary with time based on 

available pharmacokinetic (PK) data on clinically used TNF inhibitors [35,39] (Fig. 6.1D, 

see details in Appendix D). 

Once TNF inhibitors penetrate from blood into lung tissue, they bind TNF and 

thereby block TNF-mediated signaling in a granuloma. To analyze the effects of TNF-

neutralizing drugs with various TNF binding properties, we define three hypothetical 

classes of TNF inhibitors (Fig. 6.1E). These classes are defined based on TNF binding 

characteristics reported for human TNF-neutralizing drugs and differ in their ability to 

bind mTNF and binding stoichiometry. A Class 1 TNF inhibitor is defined to bind sTNF, 

but not mTNF, at a binding ratio of 1:1; a Class 2 TNF inhibitor binds both sTNF and 

mTNF at a binding ratio of 1:1; and a Class 3 TNF inhibitor binds both sTNF and mTNF 

at a TNF/drug binding ratio of 1:3. The possibility of the higher binding ratio for a Class 

3 TNF inhibitor results from the fact that both sTNF and mTNF are trimeric in their 

mature bioactive form. A Class 3 TNF inhibitor may have more than one binding site for 

TNF allowing formation of larger drug/TNF complexes. For simplicity, we do not model 

the formation of larger complexes. An sTNF molecule with either one, two or three drug 

molecules bound is neutralized and not able to bind TNFR1 or TNFR2. This assumption 

is consistent with experimental data indicating that only trimeric TNF is biologically 

active and that both monomeric TNF and artificially prepared dimeric TNF do not 

efficiently trigger signaling in cells [40,41].  

Some TNF inhibitors are reported to induce apoptosis or complement-dependent 

cytotoxicity (CDC) in TNF-expressing cells. This results from drug binding to and cross-

linking mTNF [42]. Based on descriptions presented for three classes of TNF inhibitors, 
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only a Class 3 TNF inhibitor has the potential to cross-link mTNF and mediate cell death. 

We describe drug-induced cell death for each individual TNF-expressing cell (including 

infected and activated macrophages and T cells) as a Poisson process as described in 

Appendix D. Drug-induced death events, apoptosis and CDC, occur with equal chances. 

The difference between the consequences of apoptosis and CDC is only significant if the 

target cell is an infected or a chronically infected macrophage. Cell lysis as a result of 

CDC leads to the release of intracellular bacteria to the environment similarly to death 

due to age or bursting of a chronically infected macrophage as described in [8]. However, 

drug-induced apoptosis, similarly to TNF- and Fas ligand-induced apoptosis, kills a 

fraction of intracellular bacteria [15,43,44] (Fig. 6.1F). Mtb may also cause caspase-

independent cell death in infected macrophages or initiate bystander macrophage 

apoptosis in a TNF-independent manner [45,46]; it is not known how TNF inhibitors 

might affect these types of cell death and thus these events are not included in the current 

model. 

To capture TB reactivation at the granuloma level, we first simulate the model in 

the absence of TNF inhibitors by using a baseline set of parameter values that leads to 

stable control of infection (containment) in a granuloma as previously described [8]. 

After 100 days, at which time a well-circumscribed granuloma with stable bacterial levels 

(<103 total bacteria) forms, the granuloma is exposed to a TNF-neutralizing drug. Further 

details of the modeling methods, parameter estimation, sensitivity analysis and computer 

visualization are presented in Appendix D. TNF neutralization reactions and parameters 

are presented in Appendix D (Tables D.1, D.2). Movies 1-7 can be found at 

http://malthus.micro.med.umich.edu/lab/movies/Multiscale/AntiTNFDrugs/. 
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6.3 Results 

6.3.1 TNF binding properties, particularly binding to mTNF, are central to the 

neutralizing power of a drug 

In all of our studies, unless otherwise noted, we use bacterial levels within the granuloma 

as a readout for quantifying granuloma function. We first compare the impact on bacterial 

levels for three classes of TNF inhibitors we define based on TNF binding properties, 

including stoichiometry and ability to bind mTNF versus sTNF (see Fig. 6.1E). Our 

results indicate that binding to mTNF, in addition to sTNF, is critical to impairing 

granuloma function. This follows from a comparison of simulations showing total 

numbers of bacteria in a granuloma for Class 1 drugs that only bind sTNF (Fig. 6.2A) 

with drugs of Class 2 and 3 that are able to bind both sTNF and mTNF (Fig. 6.2B, C). 

The cell membrane provides a scaffold on which TNF at high concentrations is available 

for neutralization before it is released as a result of TNF-α converting enzyme (TACE) 

activity and diluted in extracellular spaces. Thus, binding to mTNF enhances the TNF-

neutralizing power of drugs. 
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Fig. 6.2 Effect of TNF/drug binding characteristics on bacterial levels within a granuloma 100 days 
after anti-TNF treatment. (A)-(C) Effect of variations of TNF/drug binding (kon_TNF/Drug) and 
unbinding rate constants (koff_TNF/Drug) on bacterial levels in a granuloma after treatment with TNF 
inhibitors of Class 1, 2 and 3, respectively. The black, red and green stars locate TNF inhibitors with 
TNF binding kinetics similar to etanercept, infliximab and adalimumab, respectively. (D), (E) Effect 
of variation of TNF/drug binding rate constant (kon_TNF/Drug) on bacterial levels in a granuloma at 
large and small unbinding rate constants (large: koff_TNF/Drug = 2×10-3 s-1, small: koff_TNF/Drug = 6.3×10-5 
s-1), respectively. (F) Effect of variation of TNF/drug binding rate constant (kon_TNF/Drug) on bacterial 
levels in a granuloma at a constant drug affinity for TNF (Kd_Drug = koff_TNF/Drug / kon_TNF/Drug = 2×10-9 
M). Simulations are run with drug blood concentrations of Cp = 1.25×10-8 M and vascular 
permeability coefficient of kc = 1.1×10-7 cm/s representing an approximately 50% drug permeability 
in tissue. 
 

We also test the impact of affinity and TNF binding kinetics on granuloma 

function. For Class 1 and 2 drugs, increasing affinity for TNF (by increasing TNF/drug 

binding rate constant (kon_TNF/Drug) at a constant TNF/drug unbinding rate constant 

(koff_TNF/Drug)) leads to more efficient neutralization of TNF and higher bacterial levels in a 

granuloma (Fig. 6.2D, E). However, behavior of a Class 3 drug is more complex. As 

detailed in Methods, an sTNF molecule with one, two or three drug molecules bound is 

considered neutralized and unable to trigger TNF-mediated cell responses. Increasing 

binding rate constants for large values of unbinding rate constant enhances the 

neutralizing power of a Class 3 drug as compared with a Class 2 drug (Fig. 6.2D). 
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However, at very high affinities (large values of binding rate constant and small values of 

unbinding rate constant), particularly if drug concentration in tissue is not sufficiently 

high, multivalent binding of a Class 3 drug to TNF can limit drug availability for binding 

to free (unbound) TNF (similar to other physical situations involving multivalent binding 

[47]). This can reduce the neutralizing power of a Class 3 drug as compared with a Class 

2 drug of the same affinity (Fig. 6.2E).  

Furthermore, at a constant, moderate affinity for TNF (Kd_Drug = 2×10-9 M), drugs 

with greater binding rate constants can more efficiently neutralize TNF, resulting in 

higher bacterial levels (Fig. 6.2F). This is because drugs compete with cell surface 

TNFRs for binding to sTNF and thus a drug with a greater binding rate constant can 

neutralize larger amounts of sTNF. Larger values of binding rate constant for Class 2 and 

3 drugs also favor mTNF neutralization before it is released as sTNF and diluted in 

extracellular spaces.  

Considering only differences in TNF binding properties, and assuming similar 

constant blood concentrations and vascular permeability coefficients, we can predict 

bacterial levels in granulomas treated individually with etanercept (Class 2), infliximab 

(Class 3) or adalimumab (Class 3) (see stars in Fig. 6.2B, C). Higher bacterial levels are 

predicted to occur for treatments with infliximab and particularly adalimumab in 

comparison with etanercept, suggesting that the TNF binding properties of these drugs 

contribute to the observed clinical differences in TB reactivation rates.  

 

6.3.2 Differences in both blood drug concentrations and permeabilities into lung 

tissue can explain differential rates of TB reactivation  
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We next assess the role of blood drug concentrations and drug permeability into lung 

tissue in determining bacterial levels in a granuloma. For blood drug concentrations, we 

use drug-specific data on the average blood concentrations of etanercept, infliximab and 

adalimumab that correspond to drug doses administered in RA patients [35] (see 

Appendix D (Table D.1)). At all values of vascular permeability coefficient kc within the 

range of 10-9-10-6 cm/s, both infliximab and adalimumab treatments lead to statistically 

significantly higher bacterial levels compared with etanercept (Fig. 6.3A). This is 

consistent with data indicating a higher risk of TB reactivation from antibody-type drugs 

as compared with the TNF receptor fusion protein [20,21]. 
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Fig. 6.3 Comparison of effects of etanercept, infliximab and adalimumab on bacterial numbers and 
granuloma snapshots at different blood concentrations and vascular permeability coefficients (kc). 
(A) Effect of permeability coefficient variations on bacterial numbers within a granuloma for 
infliximab, etanercept, and adalimumab. Results are shown for drug-specific blood concentrations, 
corresponding to doses administered in RA patients (see Appendix D (Table D.1)). Vascular 
permeability coefficients of 10-9-10-6 cm/s correspond to approximately 1%-90% drug permeability 
levels from blood into tissue. (B) Granuloma snapshot for a scenario of containment in the absence of 
TNF inhibitor. (C), (D) Granuloma snapshots 200 days post-infection for 100 day etanercept 
treatment for kc = 1.1×10-8 cm/s and kc = 1.1×10-7 cm/s, respectively. (E), (F) Granuloma snapshots 
200 days post-infection for 100 day infliximab treatment for kc = 1.1×10-8 cm/s and kc = 1.1×10-7 cm/s, 
respectively. Cell types and status are shown by different color squares, as indicated in the bottom 
left corner of the figure (Mr: resting macrophage, Mi: infected macrophage, Mci: chronically infected 
macrophage, Ma: activated macrophage, Be: extracellular bacteria, Tγ: pro-inflammatory IFN-γ  
producing T cell, Tc: cytotoxic T cell, Treg: regulatory T cell). Caseation and vascular sources are also 
indicated. 
 

 

Tissue/blood concentration ratios for most antibodies are reported to be in the 

range of 0.1-0.5 [48], corresponding to vascular permeability coefficients of 

approximately 10-8-10-7 cm/s. Our simulations predict that this range for vascular 

permeability is sufficient for infliximab (and also adalimumab), but not for etanercept, to 

exert their maximal effect on TNF neutralization in lung at reported blood concentrations 

of these drugs (Fig. 6.3A-F and Movies 1-5). For example, at small permeability 

coefficients (kc = 1.1×10-8 cm/s) that lead to only 10% permeability of etanercept into 
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tissue, the amount of available TNF in a granuloma is still sufficient to maintain bacterial 

levels within the range observed in the absence of drug (Fig. 6.3A, C). However, this 

same level of drug permeability can result in approximately five to nine-fold increase in 

bacterial levels in the case of infliximab and adalimumab (Fig. 6.3A, E). This prediction 

supports data suggesting that different permeabilities of TNF inhibitors into lung tissue 

and TB lesions contribute to differential effects on exacerbation or reactivation of TB 

[25,26]. 

 

6.3.3 Infliximab-induced apoptosis and cytolysis are not key factors for impairing 

granuloma function 

Antibody-type drugs such as adalimumab and infliximab can cross-link mTNF, leading to 

cell death via apoptosis or complement-dependent cytolysis (CDC) [27,32]. We test the 

impact of drug-induced cell death on immunity to Mtb by comparing simulation results 

for infliximab with and without its ability to induce apoptosis and CDC (Fig. 6.4). Fig. 

6.4A shows that the ability of infliximab to induce cell death does not have a strong 

effect on controlling bacterial levels in a granuloma. Over a wide range of values 

governing induction of apoptosis or CDC (i.e. τdeath_Drug, threshold for induction of 

apoptosis or CDC) and at both low and high drug permeabilities, bacterial numbers 

remain similar to those when drug is present but its apoptotic and cytolytic capabilities 

are removed. To clarify the mechanism behind this finding, we identify immune cell 

types and states that are influenced by drug-induced mTNF-mediated cell death.  
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Fig. 6.4 Effect of infliximab-induced cell death as a result of binding to mTNF on a granuloma at 100 
days after anti-TNF treatment. (A) Bacterial levels within a granuloma controlling infection in the 
absence of infliximab and in the presence of infliximab with low and high vascular permeabilities 
(low: kc = 1.1×10-8 cm/s, high: kc = 1.1×10-7 cm/s) with or without apoptotic and cytolytic activities 
and at different concentration thresholds for drug-induced cell death (τdeath-Drug). (B)-(D) Levels of 
TNF and drug-induced cell death for T cells, activated macrophages (Ma) and infected and 
chronically infected macrophages (Mi and Mci), respectively. Cell death numbers does not include 
death events induced by factors other than TNF and drug. Infliximab’s ability to induce apoptosis 
and cytolysis significantly contributes, at low and high drug permeabilities, to death of T cells, and 
only at high permeabilities to death of activated and infected macrophages. At low drug 
permeabilities, there is no statistically significant difference between activated and infected 
macrophage death with or without apoptotic and cytolytic activities of the drug. 
 

 

Most T cell death is due to infliximab, and in particular the apoptotic and 

cytolytic activity of the drug, than to TNF (Fig. 6.4B).  However, infliximab’s ability to 

induce apoptosis and cytolysis contributes only slightly, at high permeabilities, to death 

of activated macrophages (Fig. 6.4C). Activated macrophage and T cell loss have 

negative effects on granuloma function, as they contribute to bacteria killing. However, 

we also see a statistically significant increase (at high drug permeabilities) in infected and 

chronically infected macrophage death (Fig. 6.4D) when the drug is given cytolytic and 
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apoptotic ability. When infected and chronically infected macrophages are killed, a 

fraction of intracellular Mtb may also be killed, a positive effect on granuloma function 

that compensates for a loss of T cells and activated macrophages. Thus, our predictions 

do not support hypotheses that assign a key role to apoptotic and cytolytic activities of 

antibody-type TNF-neutralizing drugs in determining their ability to reactivate TB, 

although we do confirm a significant reduction in T cell levels as a result of anti-TNF 

antibody (e.g. infliximab) treatments reported in literature [32,49]. This finding does not 

dismiss the importance of T cells as key immune cells in immunity to Mtb. However, it 

suggests that a TNF inhibitor that has TNF binding properties and the same blood 

concentration as infliximab can impair granuloma function independent of its apoptotic 

and cytolytic activities. 

 

6.3.4 Pharmacokinetic fluctuations in blood concentration of infliximab do not 

significantly alter granuloma function  

Using our model, we can assess the impact of PK fluctuations in blood concentrations of 

drugs. We follow the PK model for RA patients presented by St Clair et al [39] as the 

blood concentration-time profile for infliximab following intravenous administration (see 

Appendix D for details on drug transport from blood into tissue). As shown in Figures 

6.5A and 6.5B, fluctuations of approximately two orders of magnitude in blood 

concentrations of infliximab result in significant fluctuations in the average drug 

concentration in a granuloma. As expected, smaller vascular permeabilities lead to 

smaller concentrations of infliximab in lung tissue as well as smaller peak-trough ratios 

of infliximab concentration in a granuloma. At low permeabilities, fluctuations in the 



 195 

blood concentration of infliximab can lead to fluctuations in the number of bacteria in a 

granuloma (Fig. 6.5C). At high permeabilities, the concentration of infliximab in a 

granuloma is above a threshold that leads to uncontrolled growth of Mtb and thus 

fluctuations in blood concentration have no significant effect on bacterial levels (Movies 

6, 7). In addition to blood concentration fluctuations, we also analyze the influence of 

infliximab half-life in granulomatous tissue on granuloma outcomes. Our analysis shows 

comparable bacterial numbers among simulations using different values of tissue half-life 

of the drug within the range of 4-12 days (Fig. 6.5D). Overall, our model suggests that 

PK fluctuations in blood concentration and half-life of infliximab in granulomatous tissue 

are not major factors in TB reactivation, as the effect of infliximab on granuloma 

function may persist at a longer time-scale, enhancing bacterial replication. This finding 

highlights the importance of biological half-life of infliximab, rather than serum half-life, 

in driving TB reactivation. 
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Fig. 6.5 Effect of pharmacokinetic (PK) fluctuations in the blood concentration of infliximab and 
variation of tissue half-life of infliximab on free drug concentration and bacterial levels within a 
granuloma. (A) The mono-exponential PK model with a first order elimination for blood 
concentration of infliximab in RA patients at a 3 mg/kg dose level as presented by [39], compared 
with an estimated steady state concentration. (B) Dynamics of the average free infliximab 
concentration within a granuloma following anti-TNF treatment for different values of permeability 
coefficient (small kc = 1.1×10-8 cm/s, large kc = 1.1×10-7 cm/s). (C) Dynamics of bacteria numbers 
within a granuloma following anti-TNF treatment. (D) Bacterial levels within a granuloma in the 
absence of infliximab (containment baseline) and in the presence of infliximab at low and high 
vascular permeabilities (small kc = 1.1×10-8 cm/s, large kc = 1.1×10-7 cm/s) and different tissue half-
lives (half-life of 4 days: kdeg_Drug = 2×10-6 s-1, half-life of 8 days: kdeg_Drug = 1×10-6 s-1, half-life of 12 
days: kdeg_Drug = 5.35×10-5 s-1) 300 days post-infection. Anti-TNF treatments are initiated at day 100 
post-infection. 
 

6.3.5 Immune factors that affect granuloma function in the presence of TNF 

inhibitors 

We perform sensitivity analysis on our model to identify host and bacterial factors that 

most influence different granuloma functional outcomes, including bacterial levels, 

amount of caseation, granuloma size, and TNF concentrations in tissue in the presence of 

two TNF inhibitors, infliximab and etanercept (Fig. 6.6). Of the cellular/tissue scale 

processes we explored (see previous work in Chapter 3 and [8]), mechanisms that most 
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influence granuloma outcomes for both drugs are: chemokine degradation, a chemokine 

concentration threshold for recruitment of IFN-γ producing T cells, T cells’ ability to 

migrate through a dense macrophage network surrounding bacteria and infected 

macrophages at the core of a granuloma, and the intracellular growth rate of bacteria (see 

Fig. 6.6 and Appendix D (Tables D.3, D.4) for correlation coefficients and p-values) . 

However, our analysis predicts that TNF-associated parameters (operating at the 

molecular scale) that significantly influence granuloma outcomes differ between the 

drugs. For example, apoptosis and macrophage TACE activity are important mechanisms 

operating during infliximab treatment. This follows from the impact that these processes 

have on infliximab-induced apoptosis of infected macrophages, a process that can aid 

bacterial killing. TNF-induced NF-κB activation is an important determinant of 

granuloma function during etanercept treatment in which TNF concentration in a 

granuloma, in contrast to infliximab treatment, is still high enough to activate 

macrophages.  
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Fig. 6.6 Sensitivity analysis results for the effect of cellular/tissue scale and TNF-associated molecular 
scale parameters on model outcomes in the presence of TNF-neutralizing drugs: etanercept and 
infliximab. Important cellular/tissue scale parameters are identified to be: chemokine degradation 
rate constant δ chem, probability of T cell moving onto a macrophage-containing location TmoveM, 
TNF/chemokine concentration threshold for Tγ recruitment τ recTgam, probability of T cell recruitment 
Trecr, and intracellular Mtb growth rate αBi. Important TNF-associated parameters include: sTNF 
degradation rate constant δTNF, mTNF synthesis rate for macrophages ksynthMac, mTNF synthesis rate 
for T cells ksynthTcell, TACE activity rate constant for macrophages kTACEMac, equilibrium dissociation 
constant of sTNF/TNFR1 Kd1, apoptosis rate constant kapop, rate constant for TNF-induced NF-κB 
activation in macrophages kNFκB, and cell surface sTNF/TNFR1 threshold for TNF-induced NF-κB 
activation τNFκB. +/- signs show positive/negative correlations. Color intensities show the significance 
of correlations based on p-values. Significant correlation coefficient values are shown in Appendix D 
(Tables D.3, D.4). White squares show non-significant correlations. 
 

6.4 Discussion 

A major complication of anti-TNF immunotherapy is an increased risk of granulomatous 

disease, particularly the reactivation of latent TB. The risk of TB reactivation in patients 

receiving monoclonal antibodies (e.g. infliximab and adalimumab) is higher compared to 

soluble TNF receptor fusion protein (etanercept) [19]. Several hypotheses based on 

structural and functional differences among TNF inhibitors (reviewed in [16,22-26]) have 

been suggested to explain this observation. There are conflicting data, however, regarding 

the significance of drug characteristics in determining risk of TB reactivation. For 



 199 

example, it has been suggested that high peak blood levels of infliximab might account 

for its increased risk of infection compared with etanercept [16,35]. However, 

adalimumab treatment with peak blood levels comparable to etanercept also leads to an 

increased risk of TB [35]. Further, the differential ability to induce CDC in key immune 

cells (e.g. T cells) as a result of drug binding to mTNF has been suggested to explain 

differential risks of TB reactivation by infliximab and etanercept [49]. Certolizumab, 

which has only one TNF-binding region and no Fc region, similar to etanercept, is unable 

to cross-link mTNF and does not activate complement, yet significantly increases the risk 

of TB [19]. The experiments required to fully evaluate these various hypotheses, i.e. a 

comprehensive experimental analysis of the effect of each of these drug characteristics, 

alone and in combination, on the immune response to Mtb, are at present very difficult. 

Indeed, some of the controversy about reactivation mechanisms may stem from different 

animal systems within which these data were generated. To begin to address these 

challenges, we use a systems biology approach. Our computational model links dynamics 

of molecular scale drug/TNF/TNFR interactions that occur on second to minute time 

scales to cellular/tissue scale events that control the long-term immune response to Mtb at 

the level of a granuloma. Computational models can be used together with experiments as 

tools to unravel important mechanisms underlying drug-induced TB reactivation at the 

granuloma scale. 

We find that the ability of a drug to bind mTNF is a main factor impairing the 

ability of the granuloma to control bacteria load. Drug binding to mTNF has already been 

suggested to be important for inducing TB reactivation. However, this suggestion has 

been motivated by a hypothesis that drug binding to mTNF induces cytotoxicity in key 
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immune cells (e.g. T cells), impairing immunity to Mtb [49]. Although our model 

confirms the importance of T cells as key immune cells in immunity to Mtb [7,8,36], it 

predicts that a drug capable of binding to mTNF, even if unable to induce cell death, is 

generally much more able to induce reactivation of TB compared with a drug that only 

binds sTNF. This finding may have implications for development of drugs that block 

sTNF for therapy of inflammatory diseases. Further, the ability of a TNF inhibitor to 

induce TB reactivation not only depends on the affinity of a drug for TNF, but also on the 

TNF/drug binding kinetics.  

We used published data on TNF binding properties for three commonly used TNF 

inhibitors to predict their impact on granuloma function. Our findings suggest that 

TNF/drug binding kinetics are sufficient to explain why adalimumab is more potent than 

etanercept in TB reactivation. Regarding TNF binding/unbinding kinetics, infliximab 

leads to slightly higher bacterial numbers than etanercept. This suggests that factors in 

addition to TNF/drug binding kinetics must account for the significant increase in risk of 

TB induced by infliximab. Our simulations, consistent with some experimental data [25], 

suggest that blood concentrations and vascular permeabilities of infliximab and 

etanercept are those critical factors. Our work does not support hypotheses that consider 

apoptotic and cytolytic activities or large fluctuations in blood concentration of 

infliximab as the most important factors in driving TB reactivation by this drug.  

These findings might be tested using non-human primate models of TB; non-

human primates show immune responses more similar to humans than mouse models 

[4,50]. Design of novel agents that neutralize sTNF but have no effect on mTNF may 

reveal the importance of mTNF binding in determining drugs’ abilities to induce TB 
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reactivation. Further, if anti-TNF antibodies are engineered in order to modulate their 

TNF binding kinetics and apoptotic activities, we should be able to verify our model 

predictions about the relative importance of these factors in determining the outcome of 

infection. To test the importance of pharmacokinetic fluctuations, TNF neutralization 

experiments could be performed under different dosing regimens that lead to the same 

average blood concentrations and outcomes then can be compared. 

Finally, our approach enables us to determine both TNF-independent 

cellular/tissue scale events and TNF-associated molecular scale processes that 

significantly influence granuloma function during treatment with anti-TNF drugs. These 

processes can be studied as potential targets for therapy and control of TB reactivation 

induced by anti-TNF treatments. Our key findings also suggest characteristics of suitable 

anti-TNF drugs for treatment of inflammatory diseases. Further, our multi-scale 

computational model can be used as a template for studying the effects of other 

immunomodulatory drugs, as it enables us to combine PK analysis with drug/target 

interactions at the molecular scale that manifest as cellular/tissue scale responses.   
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Chapter 7

Lipid raft-mediated regulation of G-protein coupled receptor signaling 
by ligands which influence receptor dimerization: A computational 

study 

7.1 Introduction 

G-protein coupled receptors (GPCRs) play an important role in signal transduction and 

are encoded by more than 1000 genes in the human genome [1]. It is estimated that more 

than 50% of pharmaceuticals target GPCRs, leading to initiation or blockage of a 

signaling cascade that results in a cell response [2]. When stimulated by their specific 

ligands, GPCRs activate heterotrimeric G-proteins on the cell membrane, inducing GDP-

GTP exchange and formation of the GTP-bound Gα-subunit and release of the Gβγ-

dimer. These G-protein subunits then activate specific secondary effectors, leading to 

distinct biological functions. The ligand-bound GPCR can be desensitized by a 

mechanism which involves receptor phosphorylation by G-protein receptor kinase (GRK) 

and internalization of the receptor followed by either recycling or degradation [3]. Much 

research is underway to determine the mechanisms by which GPCR signaling is 

regulated. Here we focus on understanding factors that influence GPCR organization on 

the cell membrane and how such organization can influence GPCR signaling. 

Two mechanisms that affect receptor organization on the cell membrane have 

been proposed.  First, many GPCRs have been shown to form homo- and/or hetero-

dimers/oligomers on the cell membrane [1, 4], although the role of such dimer/oligomer 
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formation in GPCR signaling is unclear [5-9].  Using a computational model, we recently 

demonstrated that reversible dimerization of receptors under the diffusion-limited 

conditions typical of membrane-localized reactions can influence receptor organization 

[10]. Depending on the values of the dimerization and monomerization rate constants, 

receptors can be organized in different ways on the two-dimensional surface of the cell. 

The monomer regime is observed when the rate of receptor monomerization is much 

greater than the dimerization rate. In the dimer regime, the rate of dimerization is much 

greater than the monomerization rate. However, when both receptor dimerization and 

monomerization are fast, “partner switching”, i.e. alternating of bonds between 

neighboring receptors, occurs quickly, leading to the formation of oligomer-like clusters 

of receptors on the cell membrane (oligomer regime) (Appendix E (Fig. E.1)). Some 

GPCRs undergo ligand-induced dimerization, while ligand stimulation has either no 

effect or decreases the level of dimerization in others [4, 11]. Therefore, dimerization-

mediated organization of receptors can be affected differently by ligand stimulation.  

As a second mechanism of receptor organization, many GPCRs become localized 

in membrane microdomains, including lipid rafts and caveolae. Lipid rafts are regions of 

elevated cholesterol and glycosphingolipid content, greater order, and less fluidity within 

cell membrane [12]. Caveolae are lipid rafts with flask-shaped structures and are 

distinguished from flat-shaped lipid rafts by the presence of the cholesterol-binding 

protein caveolin [12]. It has been reported that membrane proteins with at least one 

transmembrane domain or with a hydrophobic modification are enriched in lipid rafts 

[13]. Lipid raft-associated proteins diffuse more slowly inside lipid rafts than in non-raft 

regions, probably due to the tight packing of lipids which leads to a higher local viscous 
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drag on raft proteins [14]. In the simplest model proposed for the role of lipid rafts in 

GPCR signaling, lipid rafts are viewed as signaling platforms that facilitate interaction of 

different molecules involved in a specific signaling pathway with a higher density [15]. 

Compartmentalization of signaling molecules may lead to an increase in activation 

because of an increased collision frequency between the species [16]. This model may 

also enhance the specificity of signaling (i.e. reduce crosstalk) when localization of 

receptors is restricted to a particular class of rafts or when some receptor species are 

excluded from domains containing other receptor species, although the data on this point 

are not conclusive [17].  

Although dimerization and lipid raft-localization have individually been identified 

as mechanisms that influence GPCR organization on the cell membrane, some reports 

have also indicated that localization of membrane proteins in lipid rafts can be affected 

by their dimerization [18, 19]. This suggests that these two mechanisms of receptor 

localization must be considered together to understand GPCR localization on the cell 

surface. We developed a computational model describing GPCR organization on the cell 

membrane and G-protein activation by ligand-bound receptors. We use our model to 

answer the following questions: Is GPCR localization in microdomains influenced by 

dimerization? Why do some GPCRs move into lipid rafts following ligand binding [20-

22] while others move out of lipid rafts [23, 24] or are not affected [23]? How does 

GPCR localization in microdomains affect signaling? Why does lipid raft disruption 

amplify G-protein signaling in some cells but attenuate it in others [24, 25]? Our results 

suggest that lipid rafts and GPCR dimerization together provide a mechanism by which 

the cell can regulate G-protein signaling. 
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7.2 Methods 

To describe GPCR organization on the cell membrane due to dimerization and lipid raft 

partitioning and the effect of that organization on GPCR signaling, two separate models 

were used (Fig. 7.1). First, a kinetic Monte Carlo (MC) model was developed to 

determine the effect of a ligand-induced change in the dimerization status of receptors on 

localization within low-diffusivity microdomains (lipid rafts) on the cell surface and to 

estimate the time-scale and level of receptor clustering and declustering. An MC 

framework allows examination of the roles of stochastic effects and partner switching in 

receptor organization and quantification of non-homogeneous receptor distributions in 

membrane microdomains. Second, an ordinary differential equation (ODE) model based 

on the collision coupling model [26, 27] was developed for studying the effect of receptor 

localization within lipid rafts on downstream signaling events. Linking this simple model 

to the MC model allows us to study and analyze G-protein activation while incorporating 

the effects of receptor organization; continuing to use the MC method for the activation 

part of the problem adds substantial computational time and complicates the sensitivity 

analysis without significant benefit. MC and ODE models and their inputs and outputs 

are linked as depicted in Fig. 7.1. 
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Fig. 7.1 Schematic showing the relationship between the Monte Carlo (MC) model of receptor 
dimerization and localization and the ordinary differential equation (ODE) model of G-protein 
signaling. Input parameters are shown by arrows pointing toward the models. Model outputs are 
shown by arrows pointing away from the models.   
 

7.2.1 Monte Carlo model for receptor dimerization and localization 

A two-dimensional lattice was used to represent the cell membrane and cell surface 

molecules. Simulations were run on a 700 by 700 triangular lattice with periodic 

boundary conditions and a lattice spacing of 0.5 nm. To simulate lipid rafts, we assigned 

low diffusivity regions with uniform distribution and defined surface area (2-30% of the 

cell membrane) as raft regions on the lattice. The diameter of simulated lipid rafts was 

varied from 20-50 nm in different simulations. The range of parameters for raft coverage 

and diameter is consistent with a variety of experimental data [13, 14, 28-31]. 

The lattice contained receptor molecules simulated as hexagons with a diameter 

of 5 nm, the approximate diameter of a single GPCR (Fig. 7.2A). Receptor movement 

and dimerization was simulated using the algorithm presented by Woolf and Linderman 

[10]. Briefly, receptors were chosen at random to dimerize with a neighbor, dissociate 

from a dimerized pair, or diffuse in the plane of the membrane. If the chosen action was a 
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dimerization event, the receptor was first tested to be a monomer. Then, a random 

neighboring receptor within the “interaction radius” of 5 lattice spacings (2.5 nm) was 

chosen as a binding partner. If the binding partner was also a monomer, dimerization was 

allowed with probability Pdimer. If the chosen action was a monomerization event and the 

receptor was part of a dimer, then monomerization was allowed with probability Pmono. 

The probabilities of these reactions are derived from the intrinsic reaction rate constants 

(kdimer, kmono). For a diffusion event, receptors moved a single lattice space in a random 

direction with a probability calculated from the translational diffusion coefficient, D, of 

the protein on the cell membrane. As a result of these diffusion rules, individual receptors 

move with approximately the same diffusion coefficient regardless of their dimerization 

state, which is consistent with theoretical findings that show the diffusion is only a weak 

function of particle radius [32].  
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Fig. 7.2 Schematic representation of the structure of the model: (A) the Monte Carlo model of 
receptor dimerization and localization and a section of the lattice simulating the cell membrane, and 
(B) the ODE model of G-protein coupled receptor signaling. Black hexagons and gray squares in (A) 
represent receptors and lipid rafts, respectively. One lattice spacing here is equivalent to 10 real 
simulation lattice spacings. The ODE model shown in (B) includes ligand binding, ligand-induced 
lipid raft partitioning of receptors, G-protein activation by receptor-ligand complex, receptor 
phosphorylation by GPCR kinase, and receptor internalization. Numbers represent model reactions 
as listed in Table 7.2. Clustering equilibrium constant Kclus is determined by MC simulations and 
characterizes receptor enrichment in lipid rafts. 

 

In order to study the effect of ligand binding, simulations were run to equilibrium 

for unligated receptors with specified probabilities of dimerization and monomerization. 

Ligand at a particular concentration was then added. Receptor/ligand association and 

dissociation reaction probabilities were calculated based on ligand concentration, 



  213 

receptor/ligand association and dissociation rate constants [33]. Ligand-bound receptors 

were assumed to participate in dimerization and monomerization reactions with different 

probabilities from unligated receptors. A more detailed description of the MC simulation 

procedure is presented in Appendix E. 

To express the level of receptor localization in lipid rafts, we defined the 

“enrichment ratio” as the ratio of the equilibrated number of receptors in lipid rafts over 

the number of receptors in lipid rafts when receptors are randomly distributed on the cell 

surface. The enrichment ratio was measured in 1000 simulation runs for each set of 

parameters and averaged.  

Parameter values used in the simulations are listed in Table 7.1. The intrinsic rate 

constant for receptor dimerization, kdimer, describes binding that occurs after diffusion has 

brought two receptors close together. In previous work, we estimated the value of kdimer to 

be on the order of 105 s-1 by using the GPCR rotational diffusion coefficient of 2.7×105 s-

1 [32]; a similar value of 104 s-1 has been used for dimerization of the epidermal growth 

factor receptor [34, 35]. Although our MC simulations account for diffusion explicitly by 

allowing receptors to move among lattice sites, one can also estimate a rate constant k+ 

for the transport (via diffusion) of one receptor to another (from k+ = 2πD/ln(b/s) where 

D is the translational diffusion coefficient of receptors in the cell membrane, b is one-half 

the mean distance between receptors, and s is the encounter radius between two 

monomeric receptors [26]) of 103-105 s-1. k+ is thus likely less than or of the same order 

as kdimer, suggesting a diffusion-limited or partially diffusion-controlled reaction in the 

membrane [26] for which MC simulations are well-suited. Values for the intrinsic 

monomerization rate constant (kmono) similar to kdimer are used, consistent with other work 
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[34]. Diffusivity (D) was assumed to be in the range of 10-10-10-9 cm2/s for non-raft 

regions and 10-12-10-11 cm2/s for low-diffusivity raft regions on the cell surface. These 

values are consistent with the lower and upper limits of cell membrane diffusivity for 

membrane receptors [26, 36, 37]. The simulation time step was chosen such that the 

probability of the most likely event was ~20%. Simulations were run with 100-1000 

particles corresponding to a surface coverage of 1.8-18%. This range of receptor density 

is consistent with the density of GPCRs that form homo- and hetero-dimers on the 

membrane of different cell lines used in G-protein signaling experiments [38]. 
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Table 7.1 Model parameter values 
MC model 

Parameter Definition Value Reference 
kdimer (s-1) * Receptor dimerization rate constant 103-107 [10, 34] 
kmono (s-1) Receptor monomerization rate constant 103-107 [10, 34] 
kf (M-1s-1) Ligand/receptor association rate constant 108  [26, 52] 
kr (s-1) Ligand/receptor dissociation rate constant 1  [52] 
Draft (cm2/s) Membrane diffusivity in the raft region 10-12-10-11 [14, 26, 36, 37] 
Dnon-raft (cm2/s) Membrane diffusivity in the non-raft region 10-10-10-9 [14, 26, 36, 37] 
R (%) Lipid raft coverage 2-30 [13, 14, 28, 30, 31] 
d (nm) Lipid raft diameter 20-50 [13, 14, 28, 30, 31] 

 
ODE model 

Parameter Definition Value † Reference 
kf (M-1s-1) Ligand/receptor association rate constant 107-108 (108) [26, 52] 
kr (s-1) Ligand/receptor dissociation rate constant 0.1-1 (1) [52] 
kf’ (M-1s-1) Ligand/phosphorylated receptor association rate 

constant 
106-109 (108) [52] 

kr’ (s-1) Ligand/phosphorylated receptor dissociation rate 
constant 

0.001-0.005 (0.002)  [52] 

kon (M-1s-1) Receptor/kinase association rate constant 109-1011 (1011) [52] 
koff (s-1) Receptor/kinase dissociation rate constant 10-100 (25) [52] 
kint (s-1) Receptor internalization rate constant 10-4-10-1 (10-2) [52, 74] 
krec (M-1s-1) G-protein recombination rate constant 6×109-6×1011 

(1.6×1010)  
[52] 

khyd (s-1) GTP hydrolysis rate constant 0.02-30  [70, 75-77] 
Rtot (#/cell)  Total number of cell surface receptors 5×104-5×105 (2.5×105) [52] 
Gtot (#/cell) Total number of G-proteins 104-105 (7.5×104) [52] 
[L]/Kd  Scaled ligand concentration 0.1-10  
RKtot (M) Total concentration of GPCR kinase 1.5×10-9-3×10-9 (3×10-

9) 
[52] 

r Relative G-protein density 0.02-0.8  
Dnon-raft (cm2/s) Membrane diffusivity in the non-raft region 10-10-10-9 (10-10)  
kc, kc’ (M-1s-1) G-protein activation rate constant Computed from 

Equation (1) 
 

Kclus Clustering equilibrium constant Found from MC 
simulation  

 

kp, kp’ (M-1s-1) Receptor phosphorylation rate constant Computed similarly to 
kc and kc’ 

 

Dnon-raft/Draft Ratio of non-raft diffusivity to lipid raft 
diffusivity 

10  

* kdimer is an intrinsic rate constant, meaning that it describes the rate at which binding takes place after diffusion has 
brought the proteins within reaction range. 
† Ranges of parameters shown for the first 15 parameters (all independent) are used for sensitivity analysis. Values in 
parentheses are used to generate model results shown in Fig. 7.6-8. 

 

7.2.2 ODE Model for GPCR signaling 

Our model for GPCR signaling incorporates ligand binding, lipid raft partitioning of 

receptors due to ligand binding (i.e. the enrichment ratio as determined by the MC 

model), G-protein activation by receptor-ligand complexes (both within and outside of 

lipid rafts), receptor phosphorylation by GPCR kinase, and receptor internalization as 
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shown in Fig. 7.2B. G-proteins were assumed to be highly enriched in membrane 

microdomains (lipid rafts and caveolae) and did not translocate into/out of them during 

the time course of simulation. This assumption is based on a variety of experiments 

showing (more than 10-fold) enrichment of G-proteins in membrane microdomains and 

preferential interaction of G-proteins with microdomain-specific proteins such as 

caveolin [13, 39-44]. Phosphorylated receptors were considered to be desensitized. The 

reactions and equations to describe the ODE model are listed in Table 7.2. Definitions 

and values of parameters are given in Table 7.1. The ligand concentration, [L], was 

assumed to remain constant (no depletion). Equations were solved numerically using 

MATLAB 7.5 (The MathWorks, Natick, MA).  
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Table 7.2 Description of the reaction species, reactions and equations of the ODE model  
Reaction species 
L Ligand Gclus Trimeric G-protein in the raft region 
R G-protein coupled receptor (βγ)clus βγ-subunit of G-protein in the raft region 
LR Ligand/receptor complex RK GPCR kinase 
LRscat Ligand/receptor complex in the non-raft region LR-P Phosphorylated ligand-bound receptor 
LRclus Ligand/receptor complex in the raft region R-P Phosphorylated receptor 
Gscat Trimeric G-protein in the non-raft region LRi Internalized ligand-bound receptor 
α-GTP GTP-bound (active) α-subunit of G-protein α-GDP GDP-bound α-subunit of G-protein 
(βγ)scat βγ-subunit of G-protein in the non-raft region   
 
ODE model reactions and flux expressions 

1 
L + R ↔ LR 

 7 [LRscat]: Gscat → α-GTP + βγscat 
 

2 
βγscat + RK ↔ βγ-RKscat 

 8 [LRclus]: Gclus → α-GTP + βγclus 
 

3 
βγclus + RK ↔ βγ-RKclus 

 9 
α-GTP → α-GDP 

 

4 
[βγ-RKscat]: LRscat → LR-Pscat 

 10 α-GDP + βγscat → Gscat 
 

5 
[βγ-RKclus]: LRclus → LR-Pclus 

 11 α-GDP + βγclus → Gclus 
 

6 
L + R-P ↔ LR-P 

 12 LR-P → LRi 
 

 
ODE model equations 

       
                                 

                               

                   
 

            

         
             

          
           

                                                                                                                       
 

 

 

G-protein activation and receptor phosphorylation were assumed to be diffusion-

limited reactions in the membrane [45]. The rate constants for diffusion-limited activation 

of G-protein by receptor/ligand complex were estimated separately for the non-raft and 

raft regions using [26]: 

,      where       (7.1) 
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where D is the diffusion coefficient, b is half of the mean separation distance between 

reactants, s is the encounter radius, A is the surface area of the raft or non-raft region, and 

[G(t)] is the time-dependent inactive G-protein concentration ([Gclus(t)] in the raft and 

[Gscat(t)] in the non-raft region as defined in Table 7.2). This estimation is based on the 

assumption that reactants are well-mixed on the surface of the raft or non-raft regions, 

while they have different concentrations in each region. If the reactants are locally 

enriched or depleted in one area, the well-mixed assumption may not be realistic and can 

be more accurately determined by MC simulations [16, 46]. However, these estimations 

are similar for the situations described here. The rate constant for receptor 

phosphorylation was similarly estimated for the raft and non-raft regions. We assumed 

the total surface area of a cell and the encounter radius, s, to be 1000 µm2 and 10 nm 

respectively. The surface area of the raft and non-raft regions was determined from the 

raft diameter and the total raft coverage. 

The distribution of G-proteins may influence the way in which lipid rafts 

contribute to GPCR signaling. In order to express the pattern of G-protein distribution on 

the cell membrane (which is not varied over the time course of one simulation), relative 

G-protein density (r) was defined as the ratio of number of (active and inactive) G-

proteins in lipid rafts over the total number of G-proteins in the membrane (Gclus|t = 0 = r × 

Gtot and Gscat|t = 0 = (1-r) × Gtot). Thus, r determines the available amount of G-protein for 

signaling in the raft and non-raft regions. Further, to understand how receptor localization 

within lipid rafts influences G-protein signaling, the maximum level of G-protein 

activation was measured as the response in different simulations. This level was used to 

produce dose-response curves. We defined the “amplification ratio” as the ratio of the 
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maximum level of G-protein activation in the presence of lipid rafts to that in the absence 

of lipid rafts. Amplification ratio values of more than one show that the presence of lipid 

rafts leads to signal amplification. Amplification ratio values of less than one show that 

G-protein signal is attenuated by lipid rafts. 

 

7.2.3 Sensitivity Analysis 

Parameter sensitivity of the MC model output (enrichment ratio) was explored by 

changing input parameters within the ranges specified in Table 7.1. To identify 

parameters that significantly influence the outcome of lipid raft-mediated G-protein 

signaling (signal amplification or attenuation, as calculated by the ODE model), we used 

Latin hypercube sampling (LHS) [47] to sample values of 15 parameters from the ranges 

listed in Table 7.1. A logarithmic distribution was used for ligand concentration and 

uniform distributions were used for other parameters. Simulations sampled each 

parameter 1000 times, producing 1000 solutions to the model equations. To determine the 

correlation between parameter values and the model outcome, amplification ratio, partial 

rank correlation coefficient (PRCC) values were calculated. PRCC values vary between -

1 (perfect negative correlation) and 1 (perfect positive correlation) and can be 

differentiated based on p-values derived from Student’s t test. Fisher’s z test was 

performed to assess if two PRCC values are significantly different from each other [48]. 
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7.3 Results and Discussion 

7.3.1 Receptor localization within lipid rafts can be controlled by dimerization 

To understand whether localization of membrane receptors into low-diffusivity 

microdomains (lipid rafts) on the cell surface is influenced by receptor dimerization, MC 

simulations were run for different values of the rate constants for receptor dimerization 

and monomerization, assuming diffusion of particles is reduced in specified regions (lipid 

rafts) on the lattice. When simulations were run with a small value of the ratio kdimer/kmono, 

the monomer regime was observed, driving the equilibrium toward translocation of 

receptors into lipid rafts (Fig. 7.3A). This is consistent with a recent model describing 

motion of monomeric particles on a cell membrane including low-diffusivity lipid rafts 

[49, 50]. When the ratio kdimer/kmono was large, the dimer regime was observed, and 

receptors still translocated into lipid rafts (Fig. 7.3B). Particles (either dimeric or 

monomeric receptors) in the dimer or monomer regimes move almost independently on 

the surface. Existence of low-diffusivity regions on such a surface can limit particle 

movements, leading to crowding of receptors in these regions. 
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Fig. 7.3 Model-generated organization (snapshots) of receptors diffusing on a cell membrane with 
low-diffusivity microdomains (lipid rafts): (A) monomer regime (kmono = 106 s-1, kdimer = 103 s-1), (B) 
dimer regime (kmono = 103 s-1, kdimer = 106 s-1), and (C) oligomer regime (kmono = 106 s-1, kdimer = 106 s-1). 
Lipid raft regions are shown as nine small squares. Monomers and dimers are shown with blue and 
brown dots respectively. (D) The predicted enrichment ratio varies with kmono and kdimer. Diffusion 
coefficients in lipid raft and non-raft regions for A-D were set to 10-12 and 10-10 cm2/s respectively. 
Simulation results with other values of diffusivity are shown in Fig. E.3 in Appendix E. Simulations 
were run to equilibrium with receptor density of 18%. In this set of simulations, rafts make up 20% 
of the simulated membrane and the raft diameter is 50 nm. 
 

Between the two extremes (very large and very small values of the ratio 

kdimer/kmono), receptors on the cell surface are ordered in oligomer-like structures via the 

partner switching mechanism (recall Fig. E.1 in Appendix E). Interestingly, the 

equilibrium lipid raft concentration of receptors in the oligomer regime is lower than in 

the monomer and dimer regimes (Fig. 7.3C). In the oligomer regime, movements of 

particles can be affected by interactions which are due to the fast dimerization and 

monomerization reactions. This leads to the formation of oligomer-like structures of 

receptors which can move together. To test this, an average interaction time was defined 



  222 

as the time two randomly selected interacting particles (either dimer or monomer) spent 

at a distance of not longer than the previously defined interaction radius from each other, 

normalized to the time that all particles move on average one lattice spacing. The average 

interaction time was measured for different regimes in different simulations, and for the 

oligomer regime was shown to be up to 4 times greater than the monomer or dimer 

regimes, depending on diffusion conditions, receptor concentration and the rates of 

receptor dimerization and monomerization (Appendix E (Fig. E.2)). This suggests that 

receptors in a cluster in the oligomer regime move together on the cell surface. Larger 

clusters are formed in more diffusion-limited conditions [10]. When the cell surface is 

composed of two distinct regions, one with lower diffusivity (raft region) and one with 

higher diffusivity (non-raft region), small receptor clusters formed in the high-diffusivity 

region may enter the low-diffusivity region. Similarly, larger receptor clusters formed in 

the low-diffusivity region may enter the high-diffusivity region. At equilibrium, this leads 

to a lower receptor concentration in the low-diffusivity region (Figure 7.3C). Thus 

dimerization status influences the localization of GPCRs in lipid rafts. 

 

7.3.2 Enrichment of receptors in lipid rafts depends on receptor dimerization 

kinetics and membrane diffusivity 

Receptor enrichment in lipid rafts (as defined in Methods) was chosen as a simple metric 

to study the combined effects of low-diffusivity lipid rafts and receptor dimerization on 

organization of receptors on the cell membrane. Fig. 7.3D shows the simulation results 

for variation of the enrichment ratio with dimerization and monomerization rate constants 

given different values of diffusivity in lipid rafts and non-raft regions of the cell 
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membrane. The minimum enrichment ratio is observed when dimerization and 

monomerization rates are both large compared to the rate of diffusion and have the 

similar order of magnitudes (oligomer regime, Fig 7.3C). However, when kdimer >> kmono 

(dimer regime, Fig. 7.3B) or kdimer << kmono (monomer regime, Fig. 7.3A), receptors 

instead tend to translocate into lipid rafts. Significantly, we predict that the enrichment 

ratio is a ligand-dependent parameter based on experimental data showing that 

dimerization status of many GPCRs can be altered by the presence or absence of ligands 

[4, 11].  

Diffusivity of receptors in the raft and non-raft regions also influences the 

organization of receptors. Comparison of Fig. 7.3D with Fig. E.3 in Appendix E shows 

that as the difference between diffusivities of lipid rafts and non-raft regions is increased, 

the difference between the maximum and minimum values of enrichment ratio increases. 

Furthermore, lower values of diffusivity for raft and non-raft regions favor the raft-

leaving of receptors with lower values of dimerization and monomerization rate 

constants. For example, using a value of 10-10 cm2/s for Dnon-raft is sufficient for observing 

receptor partitioning phenomena in the oligomer regime with an order of magnitude 

smaller values of kdimer and kmono (< 104 s-1) compared with the case of Dnon-raft = 10-9 

cm2/s (compare Fig. 7.3D with Fig. E.3 in Appendix E). Thus partitioning of GPCRs into 

lipid rafts depends on both dimerization and diffusion rates.  
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7.3.3 Enrichment of receptors in lipid rafts depends weakly on raft diameter, 

modestly on total raft area and strongly on the number of receptors 

Cell-specific parameters such as raft diameter, raft area, and receptor number may also 

influence receptor organization. We next examined the effect of the size of a single raft 

and total lipid raft area on the membrane organization of receptors. Fig. 7.4 indicates 

simulation results for the range of dimerization-mediated enrichment of receptors in lipid 

rafts for two distinct numbers of receptors on the cell membrane. Enrichment of receptors 

in lipid rafts depends weakly on raft diameter. However, total raft area significantly 

influences the range of dimerization-mediated receptor enrichment in lipid rafts. Fig. 7.4 

shows that increasing the area of cell membrane covered by lipid rafts limits the range of 

variation of enrichment ratio with dimerization and monomerization rate constants. 

Dependency of receptor enrichment on lipid raft characteristics has a clear biological 

relevance. Partitioning of receptors with small non-caveolae rafts with a small cell 

surface coverage and their localization with larger caveolae that occupy 4-35% of the cell 

membrane area are expected to have different consequences [51]. 
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Fig. 7.4 Predicted variation in the enrichment ratio with kmono and kdimer as a function of the total area 
(as a percentage of the cell membrane area) and diameter of lipid rafts. Results are shown for 
receptor densities of (A) 18% and (B) 1.8% of the cell surface area. For each pair of raft diameter 
and raft coverage, kmono and kdimer are varied from 104 to 107 s-1 so as to include monomer, dimer and 
oligomer regimes. Diffusion coefficients in lipid raft and non-raft regions are 10-11 cm2/s and 10-10 
cm2/s respectively.  
 

Decreasing the total number of receptors on the cell membrane leads to a higher 

enrichment ratio in low-diffusivity raft regions (Fig. 7.4). With fewer receptors, 

interactions between particles are reduced, leading to the behavior seen for independent 

particles, i.e. translocation into low diffusivity regions. Thus cell-specific parameters (raft 

diameter and number, receptor number, diffusivities) as well as ligand-dependent 

parameters (ability of GPCR to dimerize when bound, or not, by ligand) control GPCR 

organization or partitioning into lipid raft regions.    

 

7.3.4 Ligand-induced dimerization-mediated partitioning of receptors with lipid 

rafts is rapid  

Dimerization-mediated partitioning of GPCRs into lipid rafts will only be relevant to 

determining G-protein activation if it occurs quickly. The simulations presented thus far 

have examined only steady state behavior. To determine how rapidly the effect of ligand-

induced changes in dimerization kinetics can result in receptor re-organization on the 
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membrane, MC simulations were run for different concentrations of ligand, 

receptor/ligand binding kinetics, and dimerization kinetics. Simulation results indicated 

that ligand-induced receptor re-organization is rapid compared with ligand binding. One 

scenario is shown in Fig. 7.5; here rate constants were set such that ligand binding 

reduced the rate of receptor dimerization and led to an increase in the number of 

receptors (due to a shift from the oligomer regime to the monomer regime) in lipid rafts. 

For the simulation shown, lipid raft partitioning of receptors due to ligand binding is 

rapid, occurring approximately 0.1 s following ligand binding. Thus receptor re-

organization occurs quickly enough to be relevant to signaling.   

 
Fig. 7.5 Rapid ligand-induced localization of receptors within lipid rafts due to a ligand-induced 
change in dimerization kinetics of receptors. Simulation was initiated with randomly distributed 
receptors on the membrane. Receptors were allowed to equilibrate between monomer and dimer 
states in the absence of ligand with kmono = 106 s-1 and kdimer = 106 s-1. Ligand with concentration [L] = 
Kd = kr/kf was then added and simulations continued until a steady state was reached; kf = 108 M-1s-1 
and kr = 1 s-1. Ligand-bound receptors were assumed to have the same monomerization rate constant 
as the unligated state but kdimer was decreased to 104 s-1. Simulations were run on a membrane 
including lipid rafts with total area of 10% and diameter of 20 nm. Diffusion coefficients in lipid raft 
and non-raft regions were 10-11 cm2/s and 10-10 cm2/s respectively. 
 

Because receptor re-organization is rapid compared with ligand binding, in later 

modeling (below) we simply assume that receptor enrichment in lipid rafts following 

ligand binding can be predicted from the MC model based on the equilibrated 
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concentration of receptors in the raft region. The alternative approach of fitting the MC 

simulation results to receptor clustering and declustering reactions and using the 

estimated rate constants for receptor clustering and declustering in the ODE model gave 

nearly identical results (data not shown). 

 

7.3.5 G-protein signaling may be amplified or attenuated by lipid rafts 

In order to study the effect lipid rafts have on G-protein signaling, predicted values for 

receptor enrichment in lipid rafts (determined in the MC model) were used in an ODE 

model for G-protein signaling (Fig. 7.1, 7.2). Sensitivity analysis (see Methods) was used 

to identify parameters that quantitatively and qualitatively affect the level of G-protein 

signaling resulting from GPCR binding. 

Two regimes of signaling behavior were identified in the model. In the first 

regime, lipid rafts enhance G-protein signaling. The G-protein activation as a function of 

time for a specific value of receptor enrichment (enrichment ratio = 4.5) and several 

different values of the G-protein density in lipid rafts that are 35 nm in diameter and 

cover 2% of the plasma membrane is shown in Fig. 7.6A. The time course and the level 

of predicted response are qualitatively consistent with a variety of G-protein signaling 

experimental and modeling data such as [52, 53], suggesting that our model captures the 

essential features of GPCR signaling. When receptors are clustered into these relatively 

small and sparsely distributed lipid rafts following ligand stimulation, increasing the 

relative density r of G-protein in lipid rafts leads to an increase in the maximum level of 

response. The highest value of relative G-protein density shown (r = 0.8) is consistent 

with experimental data on G-protein enrichment in lipid rafts [13]. Note that the diffusion 
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of GPCRs was assumed to be slower in lipid rafts compared to the non-raft region. This 

has a negative effect on the rate of diffusion-limited G-protein activation by activated 

ligand-bound receptors in lipid rafts. However, high levels of G-protein enrichment and 

receptor localization in lipid rafts provide a high density of reactants which can result in 

signal amplification compared with G-protein signaling without lipid rafts.  

 
Fig. 7.6 Simulation results for G-protein activation as a function of time at (A) 2% and (B) 30% raft 
coverage for changing values of r, the relative G-protein density in lipid rafts, (C) Simulation results 
for maximal G-protein activity as a function of scaled ligand concentration for different values of raft 
coverage. Lines marked “no lipid raft” show the predicted level of G-protein activation in the 
absence of lipid rafts assuming random distribution of G-proteins on the cell membrane. Although 
G-protein signaling is attenuated at 30% raft coverage, the rate of termination of the response is 
smaller compared with no lipid raft condition. This occurs due to reduced rate of (Gβγ-dependent) 
diffusion-limited phosphorylation (and thus desensitization) of receptors. Magnitudes of the 
commonly measured pharmacological parameters maximal effect, Emax, and half maximal effective 
concentration, EC50, are marked in (C). Parameter values are as listed in Table 7.1 with khyd = 10 s-1 
and [L] = Kd in (A) and (B).  

 

In the second regime, lipid rafts attenuate G-protein signaling. This occurs at 

larger values of lipid raft coverage (Fig. 7.6B). Scatter plots for the effect of G-protein 

enrichment in lipid rafts (relative G-protein density) on the model outcome, signal 

amplification ratio, at three levels of lipid raft coverage are indicated in Appendix E (Fig. 

E.4). These plots (and also Fig. 7.6A, B) show that the amplification ratio significantly 

depends on lipid raft coverage. As described earlier, the diameter of a single raft and total 

lipid raft coverage can significantly affect dimerization-mediated localization of receptors 

in lipid rafts. Further, lipid raft coverage influences lipid raft-mediated G-protein 



  229 

signaling by controlling the density of membrane signaling molecules in the raft region. 

As such, signal attenuation (amplification ratio < 1) is the general consequence of the 

presence of lipid rafts at higher levels of coverage (10 or 30%), where the negative effect 

of low diffusivity in lipid raft dominates G-protein signaling. However, 2% lipid raft 

coverage provides a sufficient level of receptor and G-protein enrichment in lipid rafts to 

amplify G-protein signaling (amplification ratio > 1). In addition, G-protein enrichment 

in lipid rafts is positively correlated with amplification ratio and this correlation is 

significantly stronger for 2% lipid raft coverage than 10 or 30% coverage (via Fisher’s z 

test).  

Experimental studies on the role of lipid rafts in GPCR signal transduction are 

done indirectly by examining the effect of disruption of lipid rafts by cholesterol 

depletion using agents such as methyl-β-cyclodextrin on GPCR signaling. Cholesterol 

depletion generally impairs G-protein mediated signaling, indicating that the presence of 

lipid rafts enhances G-protein signaling [22, 54, 55]. This effect can be explained by the 

first regime of signaling behavior in our model. However, in some systems disruption of 

lipid rafts has a positive effect on GPCR signaling, indicating that G-protein signaling 

may also be diminished by lipid rafts as explained by the second regime [24, 25, 56, 57]. 

The effect of lipid raft disruption experiments on the G-protein response can be tracked 

by comparing the dose-response curves displayed in Fig. 7.6C (and also curves in Fig. 

7.6A, B) in the case of no lipid rafts with those in the presence of lipid rafts.  

Although the general effect of lipid raft disruption on G-protein signaling (change 

in the level of response) has been assessed via the experiments referenced above, the 

significance of different physical processes represented in our model in lipid raft-



  230 

mediated G-protein signaling has not been studied. There are other parameters (besides 

raft coverage) that also affect amplification ratio. Table 7.3 indicates the rank order of 

PRCC values for model parameters at three levels of lipid raft coverage. Amplification 

ratio was shown to be influenced by a variety of cell-specific parameters that most 

importantly include G-protein enrichment in lipid rafts (relative G-protein density, r), 

GTP hydrolysis rate constant (khyd), diffusivity (Dnon-raft), total number of cell surface 

receptors (Rtot) and G-proteins (Gtot), as well as ligand concentration (L). Although the 

parameters that were highly correlated did not differ much between 10% and 30% lipid 

raft coverage, a significantly distinct pattern of correlation was observed for 2% lipid raft 

coverage. Ligand concentration, total number of cell surface receptors and diffusivity in 

non-raft region are parameters that negatively correlate with amplification ratio in G-

protein signaling at 2% lipid raft coverage but positively correlate with amplification 

ratio at higher levels of lipid raft coverage. On the other hand, decreasing the GTP 

hydrolysis rate constant (khyd) reduces amplification ratio when lipid rafts cover 2% of the 

cell membrane but increases amplification ratio when lipid rafts cover 10 or 30% of the 

cell membrane. Indeed, the four parameters mentioned above all act to strengthen the 

effect of the presence of lipid rafts on G-protein signaling, so that greater khyd, for 

example, induces greater amplification when lipid rafts lead to signal amplification (2% 

lipid raft coverage), but intensifies signal attenuation when lipid rafts attenuate G-protein 

signaling (10 or 30% lipid raft coverage).  
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Table 7.3 Parameters significantly correlated with amplification ratio 
2% lipid raft coverage 10% lipid raft coverage 30% lipid raft coverage 

r  0.89 khyd -0.65 khyd -0.76 
Gtot  0.59 Dnon-raft  0.63 Dnon-raft  0.75 
[L] -0.20 r  0.48 r  0.63 
khyd  0.20 Rtot  0.46 Rtot  0.63 
kon  0.20 Gtot  0.40 [L]  0.48 
Rtot -0.19 [L]  0.37 kr -0.34 
krec -0.16 kon  0.29 Gtot  0.31 

Dnon-raft -0.12 koff -0.22 kon  0.19 
  kr -0.17   
  krec -0.12   

PRCC values of model parameters are listed in rank order of correlation. Parameters with significant PRCC values (p 
< 0.001) are listed. 
 

The correlation of GTP hydrolysis rate constant khyd with amplification ratio 

suggests a role for RGS proteins in lipid raft-mediated G-protein signaling. RGS proteins 

enhance GTP hydrolysis, thus reducing the concentration of activated G-protein. 

However, such enhancement exerts differential effects in the raft and non-raft regions of 

the membrane. Greater enrichment of reactants in lipid rafts at 2% coverage leads to 

more rapid re-activation of G-protein following GTP hydrolysis compared with that in 

the non-raft region or when reactants are randomly distributed on the membrane due to 

lipid raft disruption. In other words, receptor and G-protein enrichment in lipid rafts but 

not in the non-raft region compensates for G-protein deactivation by RGS, leading to a 

larger signal amplification ratio overall. However, at 10 or 30% lipid raft coverage, re-

activation of G-proteins in the raft region following GTP hydrolysis is not sufficiently 

rapid (and is even slower than the non-raft region) to compensate for G-protein 

deactivation in the presence of RGS. This explains the negative correlation of khyd with 

amplification ratio at 10 and 30% lipid raft coverage (see Table 7.3).  
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7.3.6 Dimerization can act as a tool for regulating GPCR signaling 

Taken together, the results presented above demonstrate that dimerization may act to 

enrich or deplete the number of GPCRs in lipid rafts, and that lipid rafts may serve to 

either amplify or attenuate G-protein signaling. The effect of ligand-induced receptor 

dimerization on G-protein signaling is summarized in Fig. 7.7, which includes results 

from both the MC and the ODE model. The maximum level of G-protein activation (as 

described by the amplification ratio) depends on receptor enrichment in lipid rafts 

(enrichment ratio) and receptor enrichment itself can be regulated by ligand-dependent 

receptor dimerization kinetics. The greatest receptor enrichment in lipid rafts is observed 

in the monomer regime (when kdimer << kmono). Increasing the dimerization rate constant 

without changing the monomerization rate constant results in a shift from the monomer 

regime to the oligomer regime. This moves receptors out of lipid rafts, leading to a lower 

level of response. However, a further increase in the dimerization rate constant to values 

larger than the monomerization rate constant (kdimer >> kmono) shifts receptors to the dimer 

regime, leading to a greater enrichment in lipid rafts and thus a higher level of response. 

This pattern is qualitatively similar for G-protein enriched lipid raft-mediated signaling at 

small and large lipid raft coverage (data not shown). These results indicate that receptor 

clustering could be used as a tool for regulating GPCR signaling, particularly in the 

context of G-protein distribution which can also be regulated, for example via priming 

[58]. 
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Fig. 7.7 Regulation of the G-protein response by dimerization-mediated enrichment of receptors in 
lipid rafts. Combination of the results of the Monte Carlo and the ordinary differential equation 
models are indicated for the effect of ligand-induced receptor dimerization on lipid raft-mediated G-
protein signaling at 2% raft coverage. Monomerization rate constant was maintained constant (kmono 
= 6.7×105 s-1). Results are shown for ligand concentration: [L] = 0.1Kd, khyd  = 30 s-1. Membrane 
diffusivities in the raft and non-raft regions are the same as Fig. 7.6A. Other parameter values are as 
listed in Table 7.1. The qualitative aspects of this plot are similar for large values of lipid raft 
coverage, except that the amplification ratio values are less than one.  

 

7.3.7 Modeling results are consistent with unexplained experimental data on 

receptor distribution and lipid raft-mediated GPCR signaling 

We now compare our modeling results with experimental data, beginning first with the 

predictions of the MC model. As summarized most clearly in Fig. 7.7, in different GPCR 

systems ligand-induced receptor dimerization can exert opposite effects on the level of 

receptor enrichment in lipid rafts, depending in large part on the regime (monomer, 

oligomer and dimer) of unligated receptors. Our finding that a ligand-induced change in 

dimerization kinetics can cause translocation of receptors into or out of lipid rafts is 

consistent with unexplained experimental data on GPCRs. For example, δ-opioid 

receptors have been shown to exist as dimers on the membrane of CHO cells [59], and a 

majority (approximately 70%) of the receptors on CHO cell membranes are located in 
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lipid rafts [24]. This is consistent with our model results showing that receptors in the 

dimer regime translocate into lipid rafts. Further, the level of dimerization is agonist-

dependent; increasing concentrations of etorphine reduce the level of receptor 

dimerization [59]. Etorphine treatment has been shown to move more than 20% of raft-

associated receptors out of lipid rafts [24], consistent with our modeling results for 

shifting from the dimer regime to the oligomer regime. In contrast to etorphine, naloxone, 

an inverse agonist for δ-opioid receptors, does not affect receptor dimerization [59] and 

thus our model does not indicate any significant changes in distribution of receptors 

relative to lipid rafts, consistent with experimental observations [24, 59].  

As a second example, although ligand binding has been found to induce 

dimerization of both β2-adrenergic receptors on Sf9 cells and bradykinin B2 receptors on 

PC-12 cells [60, 61], it has distinct effects on receptor localization with lipid rafts. While 

ligand binding causes translocation of the β2-adrenergic receptors out of lipid rafts, it 

leads to bradykinin B2 receptor clustering in lipid rafts [12]. Our modeling indicates that 

unligated β2-adrenergic receptors on Sf9 cells are in the monomer regime, while 

unligated bradykinin B2 receptors on PC-12 cells are in the oligomer regime. In these 

examples, then, our (MC) model offers explanations for apparently contradictory data on 

receptor localization from several GPCR systems. 

Next, we address the ability of our combined (MC + ODE) model to explain 

signaling data. Both signal amplification and attenuation have been reported as the effect 

of lipid rafts on different GPCR signaling systems. This is consistent with our combined 

(MC + ODE) model results for the influence of lipid raft coverage on the level of G-

protein response (Appendix E (Fig. E.4)). For example, disruption of cell membrane lipid 
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rafts attenuates the δ-opioid receptor-mediated signaling in brain neuronal cells, while 

enhances it in non-neuronal CHO cells [25]. Neurons in the brain have been 

demonstrated to be devoid of caveolae, but CHO cell line is a caveolae-rich cell line [24, 

25, 62]. Non-caveolae rafts with their small size and cell surface coverage amplify G-

protein signaling in neuronal cells, while caveolae with their relatively larger size and 

membrane coverage may attenuate it in CHO cells.  

Recently, a FRET microscopy technique was used to reveal that functional 

neurokinin 1 receptors expressed in HEK293 cells are monomeric, concentrate in 

microdomains representing only 0.8-2.5% of the total cell surface area and do not 

dimerize upon agonist binding [30]. These observations are consistent with results of our 

MC model showing receptors in the monomer regime reside in lipid rafts. Moreover, our 

modeling indicates that receptor localization within G-protein enriched lipid rafts with 

small coverage (~2%) leads to signal amplification, consistent with experimental data on 

neurokinin 1 receptor signaling in HEK293 cells [63].  

Maximal effect (Emax) and half maximal effective concentration (EC50) are 

commonly measured to compare the signaling efficacies of different ligands as well as 

potency of the ligands under different conditions. We calculated and compared Emax and 

EC50 for our model in the presence and absence of lipid rafts (Fig. 7.6C).  Both maximal 

effect and ligand potency increase (over the case of no lipid rafts) when lipid rafts at 2% 

coverage amplify the G-protein response. On the other hand, when lipid rafts at 30% 

coverage are compared to the case of no lipid rafts, although maximal effect decreases, 

EC50 is not significantly affected. In agreement with Fig. 7.6C, disruption of lipid rafts 

(via cholesterol depletion) in systems with small (e.g. 2%) raft coverage has been 
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observed to be accompanied by a decrease in both maximal effect (Emax) and potency of 

the agonist [24, 63]. Further, cholesterol depletion has been shown to increase the 

maximal effect without significantly changing ligand potency when lipid raft disruption 

increases the level of G-protein response that occurs (based on our model) at a high (e.g. 

30%) raft coverage [24, 57, 64].  

 

7.3.8 Modeling results can be tested via particular experimental protocols on GPCR 

signaling systems 

Further experiments are required to rigorously test our model. Bioluminescence 

resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) 

techniques have been used to provide quantitative information on either dimerization 

status or lateral distribution of receptors (e.g. lipid raft partitioning) in living cells or lipid 

vesicles [30, 65-67], but the correlation between the two has not yet been studied. Similar 

experiments that simultaneously examine both dimerization status and receptor 

distribution following dimerization-inducing/inhibiting treatments (e.g. ligand addition) 

in multiple GPCR systems are needed and could be compared with results of the MC 

model (Fig. 7.3 and 7.7). 

In addition, our sensitivity analysis findings (Table 7.3) can be used to describe a 

paradigm to design experiments for testing our G-protein signaling model. The amount of 

lipid raft coverage, total number of cell surface receptors, GTP hydrolysis rate constant 

and ligand concentration were shown to affect the amplification ratio. Simulation results 

for a few experimental protocols based on these findings are described in Fig. 7.8. As 

noted earlier, distinct results are expected for experiments on membranes with small and 
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great lipid raft coverage. For example, when lipid rafts amplify G-protein signaling (i.e. 

lipid rafts cover ~2% of the cell membrane), increasing khyd (via RGS overexpression) 

and decreasing Rtot (via receptor blockage) intensify signal amplification, while 

decreasing khyd (via RGS inhibition) and increasing Rtot (via receptor overexpression) are 

expected to decrease the amplification ratio. On the other hand, when the presence of 

lipid rafts leads to signal attenuation (i.e. lipid rafts cover 10-30% of the cell membrane), 

opposite effects are expected for similar variations in khyd and Rtot. As a result, both RGS 

inhibition and receptor overexpression are expected to neutralize the effect of lipid rafts 

on the level of response and thus diminish the influence of lipid raft disruption on G-

protein signaling.  
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Fig. 7.8: Simulation results for proposed experimental protocols for (A) amplification of G-protein 
signaling in the presence of lipid rafts with 2% coverage, and (B) attenuation of G-protein signaling 
in the presence of lipid rafts with 30% coverage. Baseline experiments are performed using khyd = 10 
s-1, Rtot = 50,000 #/cell and [L] = 0.1Kd. The effects of a change in a single parameter are shown by 
experiments I-III (experiment I: khyd = 1 s-1, experiment II: Rtot = 250,000 #/cell and experiment III: 
[L] = Kd). The effect of a simultaneous change in all three parameters is shown by experiment IV (khyd 
= 1 s-1, Rtot = 250,000 #/cell and [L] = Kd). The greatest enrichment ratio for ligand-bound receptors 
predicted by MC model was used in each simulation. Other parameter values are as listed in Table 
7.1. 
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7.4 Conclusions 

We developed a kinetic model that quantitatively describes the effects of receptor 

dimerization and low diffusivity regions (lipid rafts) on GPCR organization and 

signaling. Although no direct experimental evidence yet exists for specific testing of 

results, our modeling demonstrates how ligands with particular dimerization-inducing or 

inhibiting characteristics may alter GPCR organization on the cell surface and in turn 

affect the level of G-protein activation. Depending on the unligated and ligated receptor 

dimerization and monomerization rate constants, ligand binding may quickly move 

receptors into or out of lipid rafts. Such re-organization of receptors may then enhance or 

diminish the GPCR-mediated response. Receptor phosphorylation can also be affected by 

the organization of GPCRs on the membrane as well (see Appendix E (Fig. E.5)). Thus 

receptor dimerization and lipid rafts may work together to provide a flexible platform for 

controlling both the extent and dynamics of GPCR signaling. A potentially powerful 

option for drug design for GPCR-associated diseases would be to tailor ligands to control 

receptor dimerization on the cell membrane in order to regulate G-protein signaling. 

Our theoretical framework must be further validated in the context of 

experimental studies such as described in the text and Fig. 7.8. However, our model 

already allows us to understand and connect individual observations in the literature on 

the role of receptor dimerization and lipid rafts in G-protein signaling. For example, we 

can provide explanations for experimental observations, including how various ligands 

differently re-organize δ-opioid receptors on the cell membrane [24], how dimerization-

inducing ligands have distinct effects on localization of β2-adrenergic receptors and 
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bradykinin B2 receptors relative to lipid rafts [12], and how lipid raft disruption amplifies 

G-protein signaling in a cell type but attenuates it in another type [24, 25]. 

Finally, we anticipate that other factors, including receptor hetero-dimerization, 

preferential interactions of GPCRs with particular membrane lipids, lipid raft dynamics 

and actin cytoskeleton re-arrangements, receptor cross-talk and G-protein independent 

pathways such as β-arrestin binding to receptors further increase the possible range of 

outcomes of this signaling system [52, 68-73]. 
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Chapter 8

Conclusions and future directions 

8.1 Summary 

Despite years of scientific research and efforts by world health organizations, 

tuberculosis (TB) remains a global health problem and is responsible for ~2 million 

deaths per year. Of great concern is that TB persists as a latent infection in ~2 billion 

humans worldwide, providing a reservoir of potential disease and contagion. Drug-

susceptible TB can be treated only with a lengthy regimen that is fraught with compliance 

and drug toxicity issues. Drug-resistant TB, on the other hand, is a major problem 

worldwide and development of new drugs and strategies is essential to prevent further 

spread of these strains. Single drug therapy is not permitted in the treatment of active TB 

in humans because drug resistance can arise and the standard of care must be adhered to. 

It is difficult to evaluate the effects of new TB drugs or strategies in human clinical trials. 

Thus, there is a critical need for novel approaches and platforms for testing and 

optimizing new therapies for TB.  

The granuloma is where the central battle in TB plays out. The function of 

granuloma is believed to reflect success or failure of the host to contain infection. 

Systems biology approaches presented in this work have generated predictions and novel 

hypotheses regarding cellular and molecular mechanisms influencing granuloma 

formation and function over a time period of days to years. As noted in previous chapters, 

the primary goal of this work is to link processes at multiple biological scales involved 
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within the immune response to Mtb via dynamical computational modeling. The payoff 

to establishing such a linkage lies in bridging studies of therapeutic targets at the 

molecular and cellular scales to the effects of modulation of these targets at the tissue, 

organ, and whole organism levels. To this end, we have identified various extracellular, 

intracellular, or cell membrane-associated processes as targets that determine the 

concentration of TNF, the extent and timing of TNF activities within a granuloma during 

the long-term immune response to Mtb, and thus the outcome of infection at the level of a 

granuloma. These outcomes include containment, clearance, uncontrolled growth of 

bacteria, or excessive inflammation in tissue. We have also studied whether modulation 

of these targets can improve the function of granuloma towards lower bacteria numbers 

and lower kevels of inflammation. These studies are critical to our understanding of 

disease mechanisms as well as identifying efficient immunotherapeutic approaches to 

battle TB. 

In this final chapter, I will briefly summarize the key findings from each phase of 

my research. I will then use these findings to make recommendations for future studies 

toward understanding the immune response to Mtb infection. Specifically, I will address 

the application of new multi-scale systems biology approaches towards identification of 

both host and bacterial factors that determine the outcome of infection, and the 

application of these approaches to identify mechanisms of TB reactivation due to, for 

example, HIV co-infection or anti-TNF therapy. 
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8.2 Key findings by aim 

8.2.1 Aim 1  

We calculated the TNF concentration in a granuloma using a differential equation model 

that considers a simple representation of the spatial structure of a granuloma at steady 

state. We used a simple experimental system for granuloma formation in mice to measure 

critical model parameters. The formation of granulomas was induced in mice following 

injection of Sepharose beads covalently coupled to Mycobacterium purified protein 

derivative (PPD) antigen. Our experiments indicated that macrophages and dendritic cells 

(DCs) are the major TNF-producing immune cells within a granuloma. Further, DCs, 

macrophages and B cells are found to be the major TNFR-expressing cells. Our 

simulations (as described in Chapter 2) suggest that there is a TNF concentration gradient 

in granulomas, such that the highest concentration occurs at the center of a granuloma 

[1]. This gradient results from the emergence of a specific organization of immune cells 

within a granuloma (i.e. concentration of infected macrophages at the core and 

concentration of lymphocytes at the periphery of the granuloma) and the processes of 

TNF/TNFR binding and intracellular trafficking. What might the impact of this gradient 

be? The gradient could allow the spatial coordination of TNF-induced biological 

activities (i.e. activation of NF-κB and apoptotic signaling pathways) within a granuloma. 

Higher concentrations of TNF in the center of granuloma can induce caspase-mediated 

apoptotic pathway that favors antigen cross-presentation as well as the elimination of 

pathogen inside infected macrophages. However, very low levels of TNF at the periphery 

of the granuloma, although unable to induce apoptosis, are sufficient to turn on the NF-
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κB signaling pathway that favors cell survival and expression of pro-inflammatory genes 

in T cells.  

 

8.2.2 Aim 2  

We developed a multi-scale computational model that describes the immune response to 

Mtb in lung over three biological length scales: tissue, cellular and molecular. Using this 

model, we predicted the impact of TNF-associated molecular scale processes on the 

outcome of infection in a single granuloma. We first analyzed the effect of TNFR 

dynamics as described in Chapter 3. Our simulations indicated a key role for TNFR1 

internalization in control of the local TNF concentration and regulation of TNF activities 

during granuloma development [2]. Further, our results demonstrated that TNF-induced 

TNFR1 internalization plays an important role in preventing excessive inflammation in 

tissue. Removal of the process of TNFR1 internalization leads to uncontrollably high 

tissue concentrations of TNF and very high rates of macrophage activation. TNFR1 

internalization kinetics are also predicted to have a significant impact on bacterial 

numbers within a granuloma [2]. Increasing the rate of receptor internalization reduces 

the rate of bacterial clearance. Overall, our results suggest the novel hypothesis that 

TNFR1 internalization kinetics play an important role in balancing inflammation and 

bacterial killing within a granuloma. This finding can be considered in future studies 

investigating approaches to control and therapy of TB, as a number of methods have 

already been proposed to control the rate of TNFR1 internalization in vitro [3-5]. 

Further, we used the model to identify NF-κB-associated processes that influence 

infection outcome and inflammation at the granuloma scale (see Chapter 4). We showed 
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that the dynamics of the TNF-induced NF-κB signaling critically control bacterial load 

and inflammation level in tissue. Activation of resting macrophages, in addition to 

infected macrophages, is required for a protective immune response but must be 

accurately regulated to prevent excessive inflammation. We also showed that the stability 

of mRNA transcripts corresponding to NF-κB-mediated responses, particularly 

macrophage activation and expression of TNF and chemokines, controls bacterial load in 

a granuloma, inflammation level in tissue, and granuloma size. Our model suggests that 

both the extent and the timing of NF-κB-mediated macrophage activation, but only the 

extent of chemokine and TNF synthesis, are critical to control of the immune response to 

Mtb. Our analysis elucidates intracellular NF-κB associated signaling molecules and 

processes involved in immunity to Mtb that may be new targets for disease control. 

 

8.2.3 Aim 3 

We used the multi-scale computational model of TB granuloma (as described in Chapter 

6) to identify functional and biochemical characteristics underlying the higher likelihood 

of TB reactivation that occurs for some TNF-neutralizing drugs. Our model-based 

analyses lead to novel and interesting hypotheses regarding drug-induced TB reactivation 

at the granuloma scale. First, we found that the ability of a drug to bind membrane-bound 

TNF (mTNF) is a major factor impairing granuloma function, leading to TB reactivation. 

This is because the cell membrane provides a scaffold on which TNF at a high 

concentration is available for neutralization before it is released as soluble TNF (sTNF) 

and diluted in extracellular spaces. Second, our results suggest that differences in blood 

concentrations of drugs, TNF/drug binding and unbinding kinetics and the level of drug 
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permeability into lung tissue can dramatically affect the likelihood of reactivation. In fact, 

we found that these factors result in different rates of TB reactivation between antibody-

type drugs (e.g. infliximab) and TNF receptor fusion proteins (etanercept). Finally, 

although there are differences in drug abilities to induce apoptosis or cytolysis in TNF-

expressing key immune cells (e.g. infected and activated macrophages and T cells), our 

analysis suggested that these activities are not as important as other factors in driving TB 

reactivation. These findings suggest characteristics of suitable anti-TNF drugs for 

treatment of inflammatory diseases while balancing high risks of TB reactivation. 

 

8.2.4 Modeling of the impact of receptor organization on the cell membrane on 

receptor signaling 

Using a combination of stochastic (Monte Carlo) and deterministic modeling, we proposed a 

novel mechanism for lipid raft partitioning of G-protein coupled receptors (GPCRs) based on 

reversible dimerization of receptors and then demonstrate that such localization can affect 

GPCR signaling. Modeling results are consistent with a variety of experimental data 

indicating that lipid rafts have a role in amplification or attenuation of G-protein signaling. 

Our work suggests a new mechanism by which dimerization-inducing or inhibiting 

characteristics of ligands can influence GPCR signaling by controlling receptor organization 

on the cell membrane. 

 

8.3 Future directions 

8.3.1 Identification of bacterial factors that influence granuloma function  

One important factor that limits control of TB is the remarkably long period of antibiotic 

treatment necessary to eradicate the pathogen. Although there are antibiotics that rapidly 
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kill Mtb in vitro, in humans these agents require 6-24 months of treatment to be effective.   

Incomplete treatment is not only ineffective but also may increase the risk of 

development of drug-resistant strains of bacteria [6]. The reason that antibiotics are less 

effective against Mtb in vivo remain unclear. One potential hypothesis that could be 

tested using a combination of experimental and computational methods is that the slow 

replication and low metabolic rate of bacteria in the host environment produces an 

antibiotic-tolerant state [7]. A recent study has determined a signal transduction pathway 

in Mtb that is triggered by various growth-limiting stresses and slows bacterial growth by 

redirecting cellular carbon fluxes away from the central metabolic pathways and towards 

storage [8]. Adoption of a quiescent antibiotic-tolerant state by Mtb within the host limits 

our ability to treat TB.  

In this work, I focused my research on identifying host factors (in particular, 

TNF-associated processes) that affect granuloma formation and function in the lung 

during immune responses to Mtb. However, development of effective strategies for 

treatment of TB requires attention to mechanisms that both enhance host immunity to 

Mtb and enhance bacterial sensitivity to antibiotic treatments. To this aim, I suggest 

incorporation of known signaling and metabolic pathways that regulate Mtb growth into 

the multi-scale granuloma model. The triacylglycerol (TAG) pathway triggered by 

stresses such as hypoxic conditions in tissue, for example, has been shown to play an 

important role in inhibiting Mtb growth by affecting tricarboxylic acid (TCA) flux [8]. 

Analysis of these pathways in the context of granuloma development during Mtb 

infection will reveal how bacterial and host factors communicate, and how they are 

affected by each other. Further analyses of the dynamics of immune response which is 
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controlled simultaneously by the dynamics of bacterial and host factors may lead to 

identification of novel molecular targets as well as critical time-points during Mtb 

infection for triggering each of the targets to most efficiently control the infection.     

 

8.3.2 Identification of critical intracellular signaling pathways that control pro- and 

anti-inflammatory responses during the immune response to Mtb 

The immune responses induced by Mtb infection are myriad and complex, and even now 

it remains incompletely understood which responses are required for protection and 

which contribute to pathology [9,10]. In truth, there is significant overlap among 

protective and pathologic responses, with the best outcome achieved by a balance of pro-

inflammatory and anti-inflammatory responses, particularly at the level of the granuloma. 

A significant amount of literature exists exploring the identity of factors (including 

different types of immune cells, cytokines, and chemokines) involved within pro- and 

anti-inflammatory responses during Mtb infection [9-11]. However, there is limited 

understanding of how the complex inflammatory cell signaling network (that controls 

cellular responses to a variety of factors such as antigens, cytokines, growth factors and 

many drugs) is affected by Mtb infection in various immune cells (e.g. macrophages and 

T cells) during the immune response to Mtb. Systematic study of cell signaling networks 

increasingly involves high-throughput proteomics and transcriptional profiling with the 

aim of assembling large-scale interaction networks [12]. However, functional analysis of 

these networks is essential to understand how cells respond to complex sets of signaling 

factors from the environment, and to understand dysfunctional signaling mechanisms in 

diseased cells or infected cells as well as to understand mechanisms of complex drug 



 256 

actions [13]. Recently, protein signaling networks inferred from large-scale biochemical 

data have elucidated profound differences in inflammatory signaling (e.g. NF-κB-

dependent secretion of chemokines and cytokines) between primary human hepatocytes 

and liver cancer cell lines, indicating potential mechanisms by which cancer cells down-

regulate inflammatory responses to avoid immune editing [14]. This highlights the 

importance of studying signaling network differences in understanding disease 

mechanisms as well as identifying therapeutic targets. 

In the context of Mtb infection, a recent study has also indicated that pathogenic 

mycobacteria repress NF-κB signaling in infected macrophages and use this mechanism 

to enhance their survival and growth in macrophages [11]. Based on this observation and 

other studies, one can hypothesize that pathological environmental factors (such as 

infection with Mtb) can induce major functional differences in inflammatory signaling 

network topology in immune cells. Uncovering these differences can reveal important 

insights into disease mechanisms and our understanding of efficient and selective 

immunotherapeutic targets for TB. Thus, I suggest exposing healthy macrophages and T 

cells, infected macrophages, and macrophages or T cells activated with mycobacteria 

and/or mycobacterial antigens to a variety of biochemical factors with either 

inflammation-inducing or -inhibiting characteristics in the presence and absence of a 

variety of drugs (e.g. small molecule kinase inhibitors), and then measuring the levels or 

states of modification of intracellular proteins associated with different signaling 

pathways, secreted cytokines and chemokines, membrane receptors, and 

apoptosis/necrosis. This will yield a large set of data based on which inflammatory 

signaling networks associated with pathogen effects can be inferred by using, for 
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example, multi-linear regression analysis. A comparison between data inferred from 

healthy (resting), infected, and activated immune cells will lead to understanding of 

mechanisms that Mtb uses to enhance its survival in the host, as well as mechanisms that 

host uses to control bacterial growth. 

 

8.3.3 Application of systems pharmacology approaches to develop therapeutic 

strategies to improve granuloma function 

Using the multi-scale granuloma model and extensive sensitivity analysis techniques, we 

have identified and will continue to identify candidate mechanisms at different biological 

scales that could be considered in future studies as therapeutic targets for TB. These 

mechanisms (as shown in examples presented in Chapters 3, 4) include 

inhibiting/activating specific types of immune cells and/or their specific functions, 

inhibiting/inducing cell-type-specific expression of particular cytokines and/or cytokine 

receptors, or inhibiting/activating specific intracellular signaling pathways in a cell-type-

specific fashion. Although identification of these mechanisms is a significant first step 

toward selection of primary drug candidates, it is important to characterize conditions 

under which novel suggested drug candidates would exert an optimal effect with respect 

to efficacy and safety of treatment. In order to suggest efficient treatment strategies, it is 

critical to characterize the time-dependent effects of these drugs on disease progression 

by studying the dynamics of drug responses as a function of the temporal and spatial 

dynamics of drug exposure. The multi-scale granuloma model developed in this research 

provides a platform for developing and optimizing therapeutic strategies that could then 

be tested in animal models. Similar to the incorporation of TNF-neutralizing drugs into 
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the granuloma model, as described in Chapter 6, I suggest combining the multi-scale 

model with Pharmacokinetic-Pharmacodynamic (PK-PD) models describing drug uptake 

and distribution (pharmacokinetics) in lung tissue and in single cells (in the case of 

intracellular targets) as well as multiple downstream responses evoked over different 

time-scales (pharmacodynamics). These models allow us to study and predict biological 

effects of drugs on granuloma function and to characterize pharmacological conditions 

under which these drugs have their optimal therapeutic effects. 

 For example, our analysis in Chapter 4 shows that manipulating the dynamics of 

the NF-κB-mediated responses by controlling the rate of degradation of mRNAs 

corresponding to these responses can be used as a strategy to improve granuloma 

function and to inhibit bacteria growth. A recent experimental study has also indicated 

that efficient degradation of CCR2 mRNA in monocytes by using therapeutic RNA 

silencing (by using siRNAs formulated into lipid nanoparticles) in mice prevents 

monocyte accumulation in sites of inflammation and attenuates disease progression in 

different disease models such as mouse atherosclerosis, myocardial infarction, and cancer 

[15]. Incorporation of mechanism-based PK-PD models into the multi-scale granuloma 

model can help us identify and optimize similar strategies for treatment of TB that could 

be tested in animal models. 

   

8.3.4. Identification of TB reactivation mechanisms by HIV co-infection 

One-third of the world’s population is estimated to be latently infected with Mtb. 

However, latent infection may reactivate to active disease (reactivation TB), with an 

average 10% per lifetime frequency. One important reason for TB reactivation is known 
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to be impaired immunity due to, for example, human immunodeficiency virus (HIV) co-

infection. In fact, reactivation TB is a major source of morbidity and mortality among 

HIV-infected individuals. Of the 9.4 million individuals with new cases of active TB 

each year, approximately 15% are HIV-positive [16]. Further, while most opportunistic 

infections occur when CD4 T cell numbers are at low levels, TB occurs throughout the 

entire spectrum of HIV disease, even when this group of T cells are well-preserved and 

stable in HIV-infected persons [17-19]. This is clearly an important observation, and 

research into factors underlying reactivation in HIV-infected persons may reveal 

unknown mechanisms and strategies for control of Mtb infection and for preventing TB 

reactivation. However, an important barrier against progress of research in this area is the 

lack of appropriate animal models combining latent TB and HIV infection. In a recent 

study, cynomolgus macaques have been used, for the first time, as animal models of 

latent TB for investigation of immunologic and microbiologic responses to simian 

immunodeficiency virus (SIV) co-infection [20]. All latently infected animals in this 

study developed reactivation TB following SIV infection, with a variable time to 

reactivation. Data presented in this study suggest that the extent of early peripheral T cell 

depletion, but not virus load, is associated with reactivation of latent TB in monkey 

models infected with SIV. Although this study marks a significant step in understanding 

the relationships between Mtb and HIV infection, using monkey models for investigating 

TB has limitations that are described in detail in Chapter 1. Thus, I suggest combining the 

computational granuloma model for Mtb infection (as described in Chapters 3, 4) with 

excellent modeling studies performed on HIV infection [21,22] to develop a tractable 

multi-disease computational model of reactivation TB in HIV-co-infected hosts. Such a 
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model can become a useful tool to complement investigations on interactions between 

Mtb and HIV, and on immunologic events that lead to reactivation of latent TB or 

exacerbation of primary infection. This model, in particular, can also be used to test 

various hypotheses presented about how HIV exacerbates TB pathology through the 

manipulation of granulomas [23].      

 

8.3.5 Experimental verification of mechanisms suggested by modeling studies for TB 

reactivation due to anti-TNF therapy 

In chapter 5, we described an approach to dissect the effect of TNF-neutralizing drugs on 

the ability of a granuloma to control infection. Our findings do not support hypotheses 

that assign a key role to apoptotic and cytolytic activities of antibody-type TNF-

neutralizing drugs in determining their ability to reactivate TB, although we did confirm a 

significant reduction in T cell levels as a result of anti-TNF antibody (e.g. infliximab) 

treatments reported in literature [24,25]. To verify the results of our modeling studies, I 

suggest designing experiments to neutralize TNF in non-human primate models of TB, 

without inducing apoptosis or cytolysis in their immune cells. One possible approach 

could be to use RNA silencing techniques to inhibit expression of TNF protein during the 

immune response. Using this technique will help us neutralize TNF activities, without 

inducing cell death because of drug binding to membrane-bound TNF. Therapeutic 

siRNA silencing has already been used in vivo to control inflammation in various mouse 

disease models by formulating siRNAs against CCR2 mRNA into lipid nanoparticles and 

dynamic FMT-CT imaging of siRNA bio-distribution within mouse body [15]. Using this 

approach, we would be able to control the dose of siRNA to neutralize TNF activities at 
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desired levels. We would then be able to compare granuloma outcomes between siRNA-

silenced models with models in which TNF has been neutralized by using anti-TNF 

antibodies or TNF receptors. Comparison of these results will help us better understand 

mechanisms underlying TB reactivation after anti-TNF therapy. 

 

Fig. 8.1 Potential directions for research on the immune response to Mtb infection. The image 
showing triacylglycerol (TAG) biosynthetic pathway of Mtb and its relationship to tricarboxylic acid 
(TCA) cycle is taken from [8].  
 
 

Fig. 8.1 summarizes suggested future directions for research on the immune response to 

Mtb infection. Overall, systems biology approaches, particularly those focused on the 

granuloma, can be very useful in identifying new vaccines or therapeutic strategies for 

TB. For example, combining immune modulation (“immunomodulation”) with 
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antibiotics is a potential strategy for enhancing treatment of TB [26,27]. A computational 

platform such as described in this work could allow for development of various strategies 

that could then be tested in animal models. 
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Appendix A

Supplementary information for Chapter 2  

A.1 Simulation results for the spatial profiles of different forms of TNF in the model 

Sample simulation results from the granuloma model for two sets of parameter values are 

presented in Fig. A.2. This figure displays the spatial profiles of extracellular (free and 

shed TNFR2-bound) and cell-associated (membrane and internalized TNFR1- and 

TNFR2-bound) sTNF concentrations at steady state. The model predicts that the average 

free sTNF concentration in the granuloma (depending on parameter values) lies within 

the range of 10-12-10-10 M (~100-10,000 pg/ml). In the particular simulation indicated in 

Fig. A.2 (A, B), TNF is mostly produced at the inner compartment of granuloma and 

diffuses outward (ksynth_in > ksynth_out), binding to TNF receptors with identical densities on 

all cells (R1_in = R1_out = R2_in = R2_out). For the set of parameter values considered here, 

the average sTNF-bound fraction of cell surface TNFR1 molecules in the inner and outer 

compartments are 0.66 and 0.07 and the average internalized fraction of TNFR1 

molecules in the inner and outer compartments are 0.88 and 0.34, respectively. For a 

second simulation shown in Fig. A.2 (C, D), TNF is homogeneously expressed in the 

whole granuloma (ksynth_in = ksynth_out), while binding to cell surface TNFR1 with the same 

compartment densities and TNFR2 with a higher density in the outer compartment (R1_in 

= R1_out = R2_in < R2_out). The average sTNF-bound fraction of cell surface TNFR1 

molecules in the inner and outer compartments are 0.27 and 0.15 and the average 

internalized fraction of TNFR1 molecules in the inner and outer compartments are 0.76 



  267 

and 0.62, respectively. These simulation results show that differential densities of TNFRs 

and the rate of TNF synthesis in granuloma compartments significantly influence the 

concentration profile of different forms of TNF in the granuloma. 
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Table A.1 Parameters defined or modified based on incorporation of different cell types in the 
granuloma model. 

Parameter Parameter description Value 

fB, fCD4, fCD8, fMac, 
fmDC, fpDC  

Cell fractions of B cells, CD4 and CD8 T 
cells, macrophages, mDCs and pDCs in 

granuloma* 
Measured herein 

kB, kCD4, kCD8, kMac, 
kmDC, kpDC 

Rate of mTNF synthesis by B cells, CD4 
and CD8 T cells, macrophages, mDCs and 

pDCs in granuloma 
Measured herein 

R1_B, R1_CD4, R1_CD8, 
R1_Mac, R1_mDC, R1_pDC 

TNFR1 density in B cells, CD4 and CD8 
T cells, macrophages, mDCs and pDCs in 

granuloma 
Measured herein 

R2_B, R2_CD4, R2_CD8, 
R2_Mac, R2_mDC, R2_pDC 

TNFR2 density in B cells, CD4 and CD8 
T cells, macrophages, mDCs and pDCs in 

granuloma 
Measured herein 

V1 (l)  Mean volume of a macrophage or 
dendritic cell† 1×10-12 

V2 (l) Mean volume of a lymphocyte† 3×10-13 

lg 
Lymphocyte fraction in the whole 

granuloma 
 

s Separation index Varied from 0 to 1 

lo 
Lymphocyte fraction in the outer 

compartment 
 

f1 
Fraction of granuloma cells that compose 

macrophages and DCs in the inner 
compartment 

)1](
1

)1(
1[ g

g

og l
l
ll

−
−

−
−  

f2 
Fraction of granuloma cells that compose 

lymphocytes in the inner compartment 

€ 

lg (1− lo)  

f3 
Fraction of granuloma cells that compose 

macrophages and DCs in the outer 
compartment 

€ 

lg (1− lo)  

f4 
Fraction of granuloma cells that compose 

lymphocytes in the outer compartment goll  

Vin (l) 
Mean cell volume in the inner 

compartment 
21

2211

ff
VfVf

+

+
 

Vout (l) 
Mean cell volume in the outer 

compartment 
43

2413

ff
VfVf

+

+
 

ρin (cell/l) Mean cell number density in the inner 
compartment 

inV
φ−1

 

ρout (cell/l) Mean cell number density in the outer 
compartment 

outV
φ−1

 

rcore (µm) Radius of the inner compartment 

 
* Cell fraction values measured in PPD bead granulomas were normalized before using in the mathematical model such 
that the sum of cell fractions was unity.  
† Average volumes of mouse macrophages and lymphocytes were calculated based on data from [1-3] 
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Table A.2 Parameter sets used to generate curves on Fig. 2.3. 

Simulation 
run Parameter values* 

1 ksynth_in = 0.5, ksynth_out = 0.0, R1_in = 1000, R2_in = 1000, R1_out = 1000, R2_out = 1000, f = 0.4 
2 ksynth_in = 0.3, ksynth_out = 0.1, R1_in = 1000, R2_in = 1000, R1_out = 1000, R2_out = 1000, f = 0.4 
3 ksynth_in = 0.5, ksynth_out = 0.1, R1_in = 4000, R2_in = 1000, R1_out = 1000, R2_out = 1000, f = 0.6 

4 ksynth_in = 0.1, ksynth_out = 0.1, R1_in = 4000, R2_in = 1000, R1_out = 1000, R2_out = 1000, f = 0.4,  
kint1 = 5×10-4 

5 ksynth_in = 0.2, ksynth_out = 0.0, R1_in = 1000, R2_in = 1000, R1_out = 1000, R2_out = 1000, f = 0.7 

6 ksynth_in = 0.1, ksynth_out = 0.1, R1_in = 1000, R2_in = 1000, R1_out = 1000, R2_out = 1000, f = 0.4, 
Kd1 = 1×10-12, kint1 = 5×10-4 

7 ksynth_in = 0.1, ksynth_out = 0.1, R1_in = 1000, R2_in = 5000, R1_out = 500, R2_out = 1000, f = 0.4,  
Kd1 = 1×10-12 

* Parameter definitions and their units are as defined in Table 3. Parameters unspecified in each run (including D1, D2, 
φ, dG, ρ, rg, rm, rbead, rcore,  kTACE, kdeg, Kd1, Kd2, kon1, kon2, kint1, kint2, kshed, krec1, krec2, kt1, kt2, kdeg1, and kdeg2) have the same 
values as indicated in parentheses in Table 2.3. 

 

 
Fig. A.1 A schematic representation of parameters s and f used in the two-
compartment model of PPD-bead granuloma. (A) Parameter s (separation index) 
is defined as indicated in Equation (2.5) to present the level of separation between 
different cell types in the granuloma model (other than sensitivity analysis) when 
all cell types are present. A separation index (s) of 0 is equivalent to a totally 
mixed cellular organization. Increasing s leads to an increase in the level of 
separation in the cellular organization as s = 1 represents a cellular organization 
in which macrophages and DCs are separate from but surrounded by 
lymphocytes. (B) Parameter f is defined as the fraction of cellular granuloma in 
the outer compartment and is only used when distinct cell types are not 
considered in the model (e.g. in sensitivity analysis). Increasing f results in a 
decrease in rcore while rbead and rg are maintained constant. 
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Fig. A.2 Simulation results for the steady-state concentration profiles of the model species, including 
sTNF, sTNF/TNFR2shed, sTNF-bound and internalized TNFRs in a granuloma for two sets of 
parameter values: (A), (B) ksynth_in = 1 #/cell.s, ksynth_out = 0.01 #/cell.s, R1_in = R2_in = R1_out = R2_out = 
2000 #/cell. (C), (D) ksynth_in = ksynth_out = 0.1 #/cell.s, R1_in = R2_in = R1_out = 500 #/cell, R2_out = 5000 #/cell.  
For both simulations, s = 1 and f = 0.5. Other parameter values are as listed in Table 2.2. Arrows 
indicate radius of the bead (rbead) and radius at which the two compartments are separated (rcore). 
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Appendix B

Supplementary information for Chapter 3 

The overall structure of the multi-scale agent-based model for the immune response to 

Mtb infection in the lung (as described in Chapter 3) as well as the detailed description of 

processes at each scale, including the stochastic cellular/tissue scale ABM and the 

deterministic ODE model of TNF/TNFR associated molecular processes, are presented. 

Fig. 3.1 in the main text of Chapter 3 indicates how these models exist separately and 

how they are linked. All parameter definitions and values are listed in Tables B.1, B.2 

and B.5.  

 

B.1 Overall structure of the multi-scale ABM 

The multi-scale ABM was developed based on four considerations: an environment, 

agents (immune cells), ABM rules that govern the agents and their interactions, and the 

time-step (Δt) used to update events. The environment represents a two-dimensional 

section of lung parenchyma as a 100 × 100 square lattice that simulates an area of 2 mm 

× 2 mm. Each grid micro-compartment is thus scaled to the approximate size of a single 

human macrophage, 20 µm in diameter. Discrete agents (macrophages and T cells) are 

recruited from specific micro-compartments on the lattice that represent vascular sources. 

Cells move on the lattice and interact with each other and the environment based on the 

ABM rules that are defined based on known biological activities. Due to the size 
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difference between macrophages and T cells, up to two T cells are permitted to enter the 

same micro-compartment (with probability TmoveT). A T cell may also move into the same 

micro-compartment as a macrophage (with probability TmoveM). This model of cell 

spacing is a compromise between a realistic spatial representation and computational 

tractability and is consistent with observations on macrophage and T cell dynamics 

during development of mycobacterial granulomas that show granuloma-associated T cells 

squeeze through cell junctions created by a dense macrophage network [1].  

Extracellular Mtb and soluble molecules, including chemokines (CCL2, CCL5 

and CXCL9/10/11), soluble TNF (sTNF) and shed TNFR2 are simulated as continuous 

entities that can reside anywhere on the lattice. Extracellular Mtb grow in each micro-

compartment. Soluble molecules diffuse among micro-compartments. Caseation 

represents inflammation of and damage to the lung parenchyma from macrophage cell 

death. In the ABM, caseation is defined to occur when a specific number (Ncaseum) of 

infected or activated macrophages die in a micro-compartment. When a micro-

compartment becomes caseated, any T cell present in the micro-compartment is killed 

and no further cells are permitted to enter the micro-compartment.  

There are two major types of discrete agents in the model, macrophages and T 

cells. Macrophages are either resting (Mr, uninfected), infected (Mi; have taken up Mtb), 

chronically infected (Mci; are unable to clear their intracellular Mtb due to a high number 

of bacterial load), or activated (Ma; can effectively kill bacteria). Three distinct T cell 

classes based on their functions are modeled. The Tγ class represents CD4 and CD8 pro-

inflammatory T cells; Tc class represents cytotoxic T cells (CTLs); and Treg class 

represents regulatory T cells.  
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Cell-cell interactions are governed by ABM rules that are updated within every 

ABM time-step (Δt = 10 min) and will be discussed in the next section. Single-cell 

molecular scale processes, including diffusion of soluble molecules on the lattice, 

secretion of chemokines from individual cells and TNF/TNFR dynamics at the single-cell 

level, that generally occur in shorter time-scales compared to cellular interactions, are 

updated within shorter time-steps (dt = 6 s). Thus, each molecular event is updated 100 

times within each ABM time-step, the time in which each cellular scale event is updated 

once. The overall algorithm of the simulation takes the form outlined indicated in Fig. 

B.1 and will be presented in detail in the following sections.  
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Fig. B.1 The overall outline of the multi-scale granuloma simulations. 

 

B.2 Grid initialization 

A 100 × 100 two-dimensional grid is created. Periodic boundary conditions for cell 

movement and Dirichlet boundary conditions (zero outside grid perimeter) for molecular 

diffusion is used. Nsource = 50 vascular source locations are distributed on the grid. 49 of 

the vascular sources are randomly distributed in 7 × 7 approximately equally sized 

partitions on the grid. One other micro-compartment is randomly selected from the whole 

grid as the last vascular source. Initial resting macrophages that represent resident 

alveolar macrophages are randomly placed on the grid. One infected macrophage with 
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one intracellular Mtb is placed at the center of the grid. This is consistent with 

estimations of the minimum infection dose of Mtb that range from a single bacterium 

upward [2].  

 

B.3 Cellular/tissue scale ABM rules 

Cells move, become recruited to the site of infection and respond to local conditions 

depending on their type and state according to rules that represent known biological 

activities in vivo. ABM rules that govern cell behaviors and interactions are as follows. 

Because the main goal of this study is to investigate the role of TNF availability and 

kinetics of TNF-associated molecular scale processes on the outcome of Mtb infection, 

we discuss TNF-independent chemokine-related processes (such as chemokine secretion, 

diffusion and degradation) in addition to cellular scale immunological details of the ABM 

in this section. 

 

B.3.1 Cell movements 

i) Macrophages:  

Macrophages may stay in place or move in 8 possible directions on the grid based on 

CCL2 and CCL5 chemokine concentrations in their Moore neighborhood, the nine micro-

compartments around the cell location including the micro-compartment occupied by the 

cell. Speed of movement only depends on the state of macrophages with the highest 

speed for Mr and the smallest speed (zero) for Mci. The differences among macrophage 

speeds are shown in the model by time intervals in which each macrophage attempts once 

to move (tmoveMr, tmoveMi, tmoveMa). There are minimum and maximum (saturating) 
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concentration thresholds (τchem and schem) for the effect of each chemokine on the cell 

movement. Chemokine concentrations below τchem or above schem do not have any effect 

on direction of movement. For simplicity we assume similar threshold values for all 

chemokines and cell types. Movement is random if chemokine concentrations in the 

Moore neighborhood are below τchem or above schem. Otherwise, CCL2 and CCL5 

concentrations in the Moore neighborhood determine a linear probability distribution for 

movement. We assume a bias for macrophage movement to the micro-compartment with 

the highest chemokine concentration. Hence, the highest chemokine concentration in the 

Moore neighborhood is multiplied by a factor 1.5 before calculation of movement 

probabilities. Movement is blocked by a caseous micro-compartment or macrophage 

presence and if blocked, no extra attempt for moving is made. 

ii) T cells:  

T cell movements are updated in time intervals of length tMoveT that is determined by the 

speed of T cell migration in vivo. Movement of Tγ cells depends on CCL2, CCL5 and 

CXCL9/10/11 concentrations in the Moore neighborhood. Tc cells move based on CCL5 

and CXCL9/10/11 concentrations and Treg cells move based on CCL5 concentrations. 

The details of T cell chemotactic movements are similar to what was described for 

macrophages. T cell movement is blocked by caseation. However, T cell movement to a 

micro-compartment that contains one macrophage or one T cell is possible with reduced 

probabilities, TmoveM and TmoveT, respectively.  
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B.3.2 Cell recruitments 

i) Macrophages: 

Resting macrophages are recruited every time-step from vascular sources based on 

available TNF and chemokine concentrations in each vascular source, provided that the 

vascular source is not caseated nor blocked by a macrophage or two T cells. For a 

macrophage to be recruited from a vascular source, the following condition must be met. 

If ωrecTNF.[sTNF] + ωrecCCL2.[CCL2] + ωrecCCL5.[CCL5] > τrecMac, Mr recruitment occurs 

with a probability Mrecr; where [sTNF], [CCL2] and [CCL5] are the numbers of sTNF, 

CCL2 and CCL5 molecules in the vascular source micro-compartment, respectively.   

ii) T cells: 

 Recruitment of T cells begins after a delay (tdelay) that represents the time required for 

activation of the adaptive immune response following Mtb infection. T cell recruitment 

occurs for all vascular sources at every time-step with a probability Trecr. If T cell 

recruitment is allowed, then T cells of each class are recruited based on TNF and 

chemokine concentrations in each vascular source as described below, provided that the 

vascular source is not caseated or blocked by two T cells or one macrophage and another 

T cell. For a Tγ to be recruited, the following condition must be met. If ωrecTNF.[sTNF] + 

ωrecCCL2.[CCL2] + ωrecCCL5.[CCL5] + ωrecCXCL9/10/11.[CXCL9/10/11] > τrecTgam, Tγ 

recruitment is permitted with a probability TrecTgam. Otherwise, Tc recruitment can occur. 

If ωrecTNF.[sTNF] + ωrecCCL5.[CCL5] + ωrecCXCL9/10/11.[CXCL9/10/11] > τrecTcyt, Tc 

recruitment is permitted with a probability TrecTcyt. Otherwise, Treg recruitment can occur. 

If ωrecTNF.[sTNF] + ωrecCCL5.[CCL5] > τrecTreg, Treg recruitment is permitted with a 

probability TrecTreg.  
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B.3.3 Cell-cell interactions and state transitions 

All cell-cell interactions and state transitions described below are updated every time-step 

for all cells. 

i) Cell death due to age: 

All macrophages that are initially distributed or recruited on the grid are assigned a 

lifespan selected from a uniform distribution between zero and maxageMac. T cells are also 

assigned a lifespan randomly distributed between zero and maxageTcell. Ma has a shortened 

lifespan of maxageActive. At death, Mr and T cells are removed from the grid. At death, Mi 

and Mci are removed from the grid and intracellular Mtb from dead cells are dispersed 

uniformly in the Moore neighborhood including the micro-compartment originally 

occupied by the cell. Ma death contributes to caseation of the micro-compartment. 

ii) ABM rules for Mr: 

There is a chance of STAT-1 activation in a time-step as a result of interaction between a 

Mr and IFN-γ producing Tγ cells with a probability (nTgam.PSTAT1); where, nTgam is the 

number of Tγ cells surrounding the Mr in the Moore neighborhood including the micro-

compartment occupied by the Mr.  

Mr is able to uptake or to kill extracellular Mtb that reside in the same micro-

compartment. If the number of extracellular Mtb (Bext) ≤ Nrk, Mr kills them. Otherwise, it 

either kills Nrk of the extracellular Mtb with probability Pk or becomes infected (Mi) after 

uptake of Nrk of the extracellular Mtb as its initial intracellular Mtb. 

If both STAT1 and NF-κB are activated in a Mr and it is not already down-

regulated by a Treg, it becomes activated (Ma). If the remaining lifespan of such an 

activated macrophage is greater than maxageActive, it will be shortened to maxageActive. 
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iii) ABM rules for Mi: 

Intracellular Mtb (Bint) replicate in Mi every time-step according to the following 

equation: 

€ 

Bint (t + Δt) = (1+αBi)Bint (t)        (B.1) 

Mi is able to uptake but not kill extracellular bacteria from its micro-compartment with a 

probability (PuptakeMi) that is computed as a function of Bint as follows: 

€ 

PuptakeMi = (Nc − Bint ) /100         (B.2) 

Mi takes up Nrk of extracellular bacteria if Bext > Nrk. Otherwise, it takes up all 

extracellular bacteria that are available in the micro-compartment. If the number of 

intracellular Mtb (Bint) exceeds a threshold Nc, the Mi becomes chronically infected (Mci).  

There is a chance of STAT-1 activation in a time-step as a result of interaction 

between a Mi and IFN-γ producing Tγ cells with a probability (nTgam.PSTAT1) where, nTgam 

is the number of Tγ cells surrounding the Mi in the Moore neighborhood (including the 

micro-compartment occupied by the Mi). If both STAT1 and NF-κB are activated in a Mi 

and it is not already down-regulated by a Treg, it becomes activated (Ma). If the remaining 

lifespan of such an activated macrophage is greater than maxageActive, it will be shortened 

to maxageActive. 

iv) ABM rules for Mci: 

Intracellular Mtb (Bint) replicate in Mci every time-step according to Equation 1. If the 

number of intracellular Mtb exceeds a threshold (Nburst), Mci bursts and its intracellular 

Mtb are evenly distributed to the Moore neighborhood surrounding the Mci (including the 

micro-compartment occupied by the cell). Mci bursting contributes to caseation of the 

micro-compartment. 
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v) ABM rules for Ma: 

Ma is capable of effectively killing extracellular Mtb. Each time-step, Ma kills Nak of the 

extracellular Mtb in its micro-compartment. 

vi) ABM rules for Tc: 

If Tc is not already down-regulated by a Treg and there is a Mi or Mci present in the same 

micro-compartment as Tc, there is a chance of perforin/granulysin-mediated killing of Mi 

or Mci with probability PcytKill. Mi killing by a Tc kills all intracellular Mtb and contributes 

to caseation of the micro-compartment. In the case of Mci killing, the intracellular Mtb 

are killed with probability PcytKillClean. Otherwise, the intracellular Mtb will be uniformly 

distributed in the Moore neighborhood (including the micro-compartment occupied by 

the cell). Mci killing by Tc also contributes to caseation of the micro-compartment. 

vii) ABM rules for Tγ: 

If Tγ is not already down-regulated by a Treg and there is a Mi or Mci present in the same 

micro-compartment as Tγ, there is a chance of Fas/FasL-induced apoptosis of Mi or Mci 

with probability Papop/Fas. As a result of apoptosis, half of the intracellular Mtb in Mi or 

Mci will be killed and the other half will be equally distributed in the Moore 

neighborhood (including the micro-compartment occupied by the cell). 

viii) ABM rules for Treg: 

Regulatory T cells suppress or down-regulate the action of T cells and macrophages 

through poorly understood mechanisms that may occur by cell contact, secretion of 

immunosuppressive cytokines or both [3,4]. Treg here down-regulates all cells 

(macrophages, Tc and Tγ) in its Moore neighborhood including its own micro-

compartment. Down-regulated states last for tregMac, tregTgam and tregTcyt for macrophages, 
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Tc and Tγ cells, respectively. Consequences of Treg down-regulation for each cell type is 

explained in sections that describe ABM rules for that cell type. 

 

B.3.4 Extracellular Mtb growth 

Growth of extracellular Mtb (Bext) in all micro-compartments is calculated based on the 

following equation: 

€ 

Bext (t + Δt) = Bext (t) +αBeBext (t) 1−
Bext (t)
1.1Kbe

 

 
 

 

 
       (B.3) 

 

B.3.5 Chemokine secretion 

Mi, Mci, Ma, NF-κB activated Mr and NF-κB activated Mi are able to secrete chemokines, 

provided that they are not down-regulated by Treg. The rates of chemokine secretion for 

different cell types are as follows. Mci, Ma and NF-κB activated Mi are able to secrete 

chemokines with full secretion rates (rCCL2, rCCL5 and rCXCL9) as listed in Supplementary 

Table S1. NF-κB activated Mr and Mi cells that are not NF-κB activated secrete 

chemokines with half-full secretion rates (0.5 × rCCL2, 0.5 × rCCL5 and 0.5 × rCXCL9). 

Caseated micro-compartments also secrete attractants that attract immune cells. For 

simplicity, we use quarter-full rates of chemokine secretion to simulate the effect of such 

attractants (0.25 × rCCL2, 0.25 × rCCL5 and 0.25 × rCXCL9). Chemokine secretions to the 

micro-compartments on the grid are updated in time intervals of dt. Secretion of TNF will 

be discussed in TNF/TNFR dynamics section. 

 

 



  283 

B.3.6 Diffusion and degradation 

The equation for diffusion and degradation of chemokines and other soluble molecules, 

including sTNF and shed TNFR2, can be implemented numerically on the grid by using 

an iterative finite-difference method. This form of this equation in two dimensions is as 

follows: 

€ 

∂C
∂t

= D(∂
2C
∂x 2

+
∂ 2C
∂y 2

) −δC         (B.4) 

where C is the concentration of diffusing molecule that changes with time (t) in the x and 

y directions, D is the diffusion coefficient for the molecule in the diffusion environment, 

and δ is the degradation rate constant. Rewriting this equation using a finite difference 

approximation for discrete-time discrete-space diffusion on our grid gives: 

€ 

Ci, j (t + dt) = (1−δdt)Ci, j (t) +
λ
4
{Ci−1, j (t) + Ci+1, j (t) + Ci, j−1(t) + Ci, j+1(t) − 4Ci, j (t)} (B.5) 

where Ci,j (t) is the concentration of the diffusing molecule in the micro-compartment (i,j) 

at time t and λ is determined as a function of D, diffusion time-step (dt = 6 s), and lattice 

spacing through which diffusion occurs (dx = 20 µm): 

€ 

λ =
4Ddt
(dx)2

          (B.6) 

Solution to Equation B.5 is stable if λ < 1. Thus, dt and dx must be picked accordingly.  

 

B.3.7 Extensions and updates to the ABM rules described by Ray et al 

In the previous sub-sections we presented the ABM rules describing cellular/tissue scale 

activities and interactions. As mentioned earlier, this model was first developed by 

Segovia-Juarez et al [5] and later extended by Ray et al [6]. The differences and 
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extensions of the cellular/tissue scale ABM used in this study compared with the ABM 

by Ray et al are as follows: 

i) Tγ cells used to have two different active states. These two states have been merged, as 

they were not significantly different and introduced unnecessary complexity to the model. 

ii) In order to have more realistic down-regulatory mechanisms in the model, Tc cells and 

macrophages according to the published data reviewed in [7], in addition to Tγ cells, can 

be down-regulated by Treg cells. When down-regulated, Tc cells lose their cytotoxic 

capabilities for a fixed period of time tregTcyt. Following macrophage down-regulation, 

STAT1 is deactivated and the macrophage does nothing but moves for a fixed period of 

time tregMac. 

iii) The extracellular bacteria threshold for NF-κB activation, BactM, has been extended to 

consider the Moore neighborhood, rather than the local micro-compartment. 

iv) We assume that a fully activated macrophage can only secrete TNF and chemokines 

at the maximal rate. Thus, resting macrophages that have been NF-κB activated but have 

not been STAT-1 activated now secrete TNF and chemokines at half rate compared with 

activated macrophages. 

v) We did not consider possibility of Mtb uptake by infected macrophages in our 

previous model. Infected macrophages now have the ability to uptake additional 

extracellular bacteria; the probability of extracellular Mtb uptake is inversely proportional 

to the number of intracellular Mtb that reside in the macrophage. 

vi) TNF-induced NF-κB activation and apoptosis were previously modeled as events that 

occurred with probabilities of 100% and 4% (approximated via uncertainty analysis) for 
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extracellular TNF concentrations above specific thresholds. Here, we have revised TNF-

induced cell responses as will be discussed in detail in later sections. 

vii) We have revised the user interface for performing our modeling studies so that we 

can easily visualize and track different aspects of the granuloma, including the structure 

and molecular concentration gradients, as it forms and is maintained. In order to satisfy 

the cross-platform requirement, we make use of the Qt framework. Qt is a C++ 

framework for developing cross-platform applications with a graphical user interface 

(GUI). 

 

B.4 ODEs that govern molecular scale TNF/TNFR dynamics 

The binding interactions and reactions controlling TNF/TNFR dynamics at the single-cell 

level regardless of the cell type are schematically illustrated in the main text (Fig. 3.1B). 

TNF is first synthesized by TNF-producing cells (Mi, Mci, Ma, NF-κB activated Mr, Tγ 

and Tc), if not down-regulated by Treg cells, as a membrane-bound precursor form 

(mTNF) that can then be processed and released as a soluble form (sTNF) into 

extracellular spaces. This processing occurs via a cell-associated metalloproteinase called 

TACE. Two types of TNF receptors (TNFR1 and TNFR2) are synthesized and expressed 

on the cell surface as free receptors. Soluble TNF (sTNF) reversibly binds to TNFRs on 

the cell membrane. sTNF-bound cell surface TNFR1 internalizes and sTNF-bound cell 

surface TNFR2 may undergo internalization or shedding into extracellular spaces [8]. 

Internalized receptors may degrade or recycle to the cell membrane where they can re-

bind to sTNF [9]. Ligand-free TNFRs also turn over (internalize) [9,10]. Intact sTNF may 

dissociate from the shed sTNF/TNFR2 complex in the extracellular space [11]. We 
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modeled these molecular processes based on mass action kinetics as shown in Table B.5; 

model equations are listed in Table B.4; definitions and values of the rate constants are 

given in Table B.2. Note that the rates of mTNF synthesis and release from the cell 

membrane and TNFR synthesis (kSynth, kTACE, Vr1 and Vr2) are cell type/state-specific as 

indicated in Table B.2, but other rate constant values are common between all cells. Note 

that this ODE model was presented previously [12] and is described here for 

completeness. 

In the multi-scale model described in this work, the rates of mTNF synthesis for 

different cell types are as follows. Mci, Ma and NF-κB activated Mi are able to synthesize 

mTNF with a full rate (ksynth = ksynthMac) as shown in Table B.2. NF-κB activated Mr and 

NF-κB deactivated Mi express mTNF with a half-full rate (ksynth = 0.5 × ksynthMac). Tγ cells 

and Tc cells express mTNF with rates ksynthTcell and 0.1 × ksynthTcell, respectively. Treg-

down-regulated cells do not express TNF. TACE activity is also assumed to be cell type-

dependent as shown in Table B.2. 

TNF/TNFR dynamics model ODEs are solved for each individual cell on the grid 

in combination with TNF diffusion and degradation equations using the time-step dt. 

Soluble molecules in the model (sTNF and sTNF/TNFR2shed) are expressed as volumetric 

concentration units (e.g. M), whereas cell-associated species are expressed as # of 

molecules per cell. Thus, when a membrane-bound molecule releases to the extracellular 

space (i.e. the micro-compartment occupied by the cell), or when a soluble molecule 

binds to the cell membrane, a scaling factor (ρ/Nav) is required as indicated in 

Supplementary Table S4, where ρ is the cell density in the micro-compartment and can 

be computed as (dx)-3 assuming that each micro-compartment is a cube of side dx. 
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B.5 NF-κB activation and apoptosis 

TNF-induced NF-κB activation and TNF-induced apoptosis are modeled, as described in 

the main text, as Poisson processes with rate parameters computed as functions of 

molecular concentrations from the ODE model. NF-κB activation is checked once for all 

Mr and Mi within each ABM time-step (Δt). NF-κB pathway can also be activated in Mr 

or Mi if the number of extracellular bacteria (Bext) in the Moore neighborhood micro-

compartments exceeds a threshold (BactM). TNF-induced apoptosis is checked once for all 

cells on the grid within each time-step (Δt). If the apoptotic cell is a Mi or Mci, half of the 

intracellular Mtb in Mi or Mci will be killed as a result of apoptosis and the other half will 

be equally distributed in the Moore neighborhood including the micro-compartment 

occupied by the cell. 
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Table B.1 TNF-independent and cellular/tissue scale parameters, definitions and values estimated 
from literature as described in [6], or approximated via uncertainty analysis as described in Chapter 
3 Methods. Further descriptions of parameters, if needed, are presented in Appendix B. 

Parameter Parameter description Value* 
Nsource Number of vascular sources 50 
Ncaseum Number of qualified cell deaths required for caseation 7 
Dchem (cm2/s) Diffusion coefficient of chemokines 10-8-10-7 (5.2×10-8) 
δchem (s-1) Chemokine degradation rate constant 10-4-10-3 (4.58×10-4) 
τchem (molecules) Minimum chemokine concentration threshold 1-10 (2) 
schem (molecules) Saturating chemokine concentration threshold 103-104 (2000) 
Minit Initial number of resident macrophages 105 
maxageMac (day) Maximum lifespan of macrophages 100 
maxageActive (day) Maximum lifespan of an active macrophage 10 
tregMac (hours) Macrophage inactivity time after down-regulation by Treg 12 
tmoveMr (min) Time interval for Mr movement 20 
tmoveMa (hour) Time interval for Ma movement 7.8 
tmoveMi (hour) Time interval for Mi movement 24 
rCCL2 (molecules per 10 min) Full secretion rate of CCL2 35.5 
rCCL5 (molecules per 10 min) Full secretion rate of CCL5 35.5 
rCXCL9 (molecules per 10 min) Full secretion rate of CXCL9/10/11 71 
ωrecTNF Effect of TNF on cell recruitment 1 
ωrecCCL2 Effect of CCL2 on cell recruitment 0.0507 
ωrecCCL5 Effect of CCL5 on cell recruitment 0.0507 
ωrecCXCL9/10/11 Effect of CXCL9 on cell recruitment 0.0254 
Nrk Number of extracellular Mtb engulfed by Mr or Mi 1 
Pk Probability of Mr killing bacteria 0.01-0.1 (0.015) 
BactM Number of extracellular Mtb activating NF-κB in a mac 50-150 (110) 
Nc Number of intracellular Mtb for Mi→Mci transition 10 
Nburst Number of intracellular Mtb that leads to Mci bursting 20-30 (20) 
PSTAT1 Probability of STAT-1 activation in Mr or Mi 0.001-0.1 (0.085) 
Nak Number of extracellular Mtb killed by Ma each time-step 10 
τrecMac TNF/chemokine threshold for Mr recruitment  0.01-0.1 (0.023) 
Mrecr Probability of Mr recruitment 0.01-0.1 (0.04) 
maxageTcell (day) Maximum lifespan of T cells 3 
tdelay (day) T cell recruitment delay 20 
TmoveM Probability of T cell moving to a mac-containing location 0.001-0.1 (0.014) 
TmoveT Probability of T cell moving to a T cell-containing location 0.001-0.1 (0.08) 
Trecr Probability of T cell recruitment 0.05-0.5 (0.15) 
tregTgam (min) Tγ inactivity time after down-regulation by Treg 100 
Papop/Fas Probability of Fas/FasL apoptosis by Tγ 0.01-0.1 (0.06) 
τrecTgam TNF/chemokine threshold for Tγ recruitment 0.1-1.0 (0.4) 
TrecTgam Probability of Tγ recruitment 0.54 
tregTcyt (min) Tc inactivity time after down-regulation by Treg 100 
τrecTcyt TNF/chemokine threshold for Tc recruitment 0.1-1.0 (0.4) 
TrecTcyt Probability of Tc recruitment 0.36 
PcytKill Probability of Tc killing Mi or Mci 0.02 0.2 (0.12) 
PcytKillClean Probability of Tc killing all intracellular Mtb by killing Mci 0.75 
τrecTreg TNF/chemokine threshold for Treg recruitment 0.01-0.1 (0.05) 
TrecTreg Probability of Treg recruitment 0.1 

αBi (per 10 min) Intracellular Mtb growth rate 2×10-4-2×10-3 
(1.4×10-3) 

αBe (per 10 min) Extracellular Mtb growth rate 10-4-10-3 (7×10-4) 
Kbe Capacity of a micro-compartment for extracellular Mtb 200 

* Parameters used for sensitivity analysis are indicated by their ranges of values. Values in parentheses are used to 
generate containment baseline. 
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Table B.2 Molecular/single-cell scale TNF/TNFR parameters, definitions and values estimated from 
literature  

Parameter Parameter description Value* Reference 

ksynthMac (#/cell.s) Full synthesis rate of mTNF for 
macrophages 10-1-1 (0.21) [12] 

ksynthTcell (#/cell.s) Full synthesis rate of mTNF for T cells 10-2-10-1 (0.021) [13] 

TNFR1mac (#/cell) TNFR1 density on the surface of 
macrophages 500-5000 (1100-1900) † [12,14-16] 

TNFR1Tcell (#/cell) TNFR1 density on the surface of T cells 500-5000 (400-1200) † [12,14-16] 

TNFR2mac (#/cell) TNFR2 density on the surface of 
macrophages 500-5000 (400-800) †

 [12,14-16] 

TNFR2Tcell (#/cell) TNFR2 density on the surface of T cells 500-5000 (600-800) † [12,14-16] 
D1 (cm2/s) ‡ Diffusion coefficient of sTNF 10-8-10-7 (5.2×10-8) [17,18] 

D2 (cm2/s) ‡ Diffusion coefficient of shed 
TNF/TNFR2 complex 10-8-10-7 (3.2×10-8) [17,18] 

kTACE_Mac (s-1) Rate constant for TNF release by TACE 
activity on a macrophage 10-4-10-3 (4.4×10-4) [12,19-21] 

kTACE_Tcell (s-1) Rate constant for TNF release by TACE 
activity on a T cell 10-5-10-4 (4.4×10-5)  

δTNF (s-1) sTNF degradation rate constant 10-4-10-3 (4.58×10-4) [22] 

Kd1 (M) Equilibrium dissociation constant of 
sTNF/TNFR1 10-12-10-10 (1.9×10-11) [14,23] 

Kd2 (M) Equilibrium dissociation constant of 
sTNF/TNFR2 10-10-10-9 (4.2×10-10) [14,23,24] 

kon1 (M-1s-1) sTNF/TNFR1 association rate constant 107-108 (2.8×107) [23] 
kon2 (M-1s-1) sTNF/TNFR2 association rate constant 107-108 (3.5×107) [23] 
koff1 (s-1) sTNF/TNFR1 dissociation rate constant kon1×Kd1  
koff2 (s-1) sTNF/TNFR2 dissociation rate constant kon2×Kd2  
kint1 (s-1) TNFR1 internalization rate constant 1.5×10-4-1.5×10-3 (7.7×10-4) [8,23] 
kint2 (s-1) TNFR2 internalization rate constant 3.9×10-4-5×10-4 (4.6×10-4) [24] 
kshed (s-1) TNFR2 shedding rate constant 3.9×10-4-1.5×10-3 (5×10-4) [8,20] 
krec1 (s-1) TNFR1 recycling rate constant 8.8×10-5-5.5×10-4 (1.8×10-5) [9,10] 
krec2 (s-1) TNFR2 recycling rate constant 8.8×10-5-5.5×10-4 (1.8×10-5) [9,10] 
kt1 (s-1) TNFR1 turn-over rate constant 3×10-4-5×10-4 (3.8×10-4) [9,10] 
kt2 (s-1) TNFR2 turn-over rate constant 3×10-4-5×10-4 (3.8×10-4) [9,10] 
kdeg1 (s-1) TNFR1 degradation rate constant 10-5-10-4 (5×10-5) [9,10,14,25] 
kdeg2 (s-1) TNFR2 degradation rate constant 10-5-10-4 (5×10-5) [9,10,14,25] 

Vr1_mac (#/cell.s)  Cell surface TNFR1 synthesis rate 
constant for macrophages kt1×TNFR1mac  

Vr1_Tcell (#/cell.s)  Cell surface TNFR1 synthesis rate 
constant for T cells kt1×TNFR1Tcell  

Vr2_mac (#/cell.s)  Cell surface TNFR2 synthesis rate 
constant for macrophages kt2×TNF21mac  

Vr2_Tcell (#/cell.s)  Cell surface TNFR2 synthesis rate 
constant for T cells kt2×TNF21Tcell  

* Ranges of parameter values used for sensitivity analysis are indicated out of parentheses. Values in parentheses are 
used to generate baseline model results. 
† Baseline model values for TNFR densities on each recruited individual cell was randomly chosen from the range 
shown in parentheses. 
‡ Diffusion coefficients of the soluble species in granuloma were estimated in line with estimates for diffusible factors 
of similar molecular weight in tumors [17,18].  
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Table B.3 Definition of reaction species, reactions describing TNF/TNFR processes and their rates 
(vi). 

Reaction species 

mTNF Membrane-bound TNF sTNF/TNFR2 sTNF/TNFR2 complex on the 
membrane 

sTNF Extracellular soluble TNF sTNF/TNFR1i 
Internalized sTNF/TNFR1 
complex 

TNFR1 Cell surface TNF receptor 1 sTNF/TNFR2i 
Internalized sTNF/TNFR2 
complex 

TNFR2 Cell surface TNF receptor 2 sTNF/TNFR2shed Shed sTNF/TNFR2 complex 
sTNF/TNFR1 sTNF/TNFR1 complex on the membrane   
Model reactions 

1 
mTNF synthesis 

€ 

v1 = kSynth  9 TNFR2 synthesis 

€ 

v9 =Vr2  

2 mTNF → sTNF 

€ 

v2 = kTACE[mTNF] 
10 TNFR1 → TNFR1i 

€ 

v10 = kt1[TNFR1] 

3 
sTNF + TNFR1 ↔ sTNF/TNFR1 

€ 

v3 = kon1[sTNF][TNFR1]− koff1[sTNF /TNFR1] 
11 TNFR2 → TNFR2i 

€ 

v11 = kt 2[TNFR2] 

4 
sTNF + TNFR2 ↔ sTNF/TNFR2 

€ 

v4 = kon2[sTNF][TNFR2]− koff 2[sTNF /TNFR2] 
12 

sTNF/TNFR1i → degradation 

€ 

v12 = kdeg1[sTNF /TNFR1i] 

5 sTNF/TNFR1 → sTNF/TNFR1i 

€ 

v5 = kint1[sTNF /TNFR1] 
13 

sTNF/TNFR2i → degradation 

€ 

v13 = kdeg2[sTNF /TNFR2i] 

6 sTNF/TNFR2 → sTNF/TNFR2i 

€ 

v6 = kint 2[sTNF /TNFR2] 
14 sTNF/TNFR1i → TNFR1 

€ 

v14 = krec1[sTNF /TNFR1i] 

7 sTNF/TNFR2 → sTNF/TNFR2shed 

€ 

v7 = kshed [sTNF /TNFR2]  
15 sTNF/TNFR2i → TNFR2 

€ 

v15 = krec2[sTNF /TNFR2i] 

8 TNFR1 synthesis 

€ 

v8 =Vr1 
16 

sTNF/TNFR2shed → sTNF + TNFR2shed 

€ 

v16 = koff 2[sTNF /TNFR2shed ] 

 
 

Table B.4 Differential equations describing TNF/TNFR processes. 

€ 

d[mTNF]
dt

= v1 − v2       

€ 

d[sTNF /TNFR2]
dt

= v4 − v6 − v7                 

€ 

d[sTNF]
dt

= ( ρ
Nav

)(v2 − v3 − v4 ) + v16  

€ 

d[sTNF /TNFR1i]
dt

= v5 − v12 − v14  

€ 

d[TNFR1]
dt

= v8 − v3 − v10 + v14    

€ 

d[sTNF /TNFR2i]
dt

= v6 − v13 − v15       

€ 

d[TNFR2]
dt

= v9 − v4 − v11 + v15             

€ 

d[sTNF /TNFR2shed ]
dt

= ( ρ
Nav

)v7 − v16 

€ 

d[sTNF /TNFR1]
dt

= v3 − v5     
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Table B.5 Linking parameters used to calculate the probability of TNF-induced cell 
responses, definitions and values estimated in this study  

Parameter Parameter description Value* 

kNF-κB ((#/cell)-1s-1) Rate constant for TNF-induced NF-κB 
activation in macrophages 10-8-10-7 (3.97×10-8) 

kapopt ((#/cell)-1s-1) Rate constant for TNF-induced apoptosis 
in all cell types 5×10-10-5×10-9 (1.33×10-9) 

τNF-κB (#/cell) Cell surface sTNF/TNFR1 threshold for 
TNF-induced NF-κB activation 5-50 (26) 

τapopt (#/cell) Internalized sTNF/TNFR1 threshold for 
TNF-induced apoptosis 50-500 (300) 

* Ranges of parameter values used for sensitivity analysis are indicated. Values in parentheses are 
used to generate baseline model results. 
 



Table B.6 LHS sensitivity analysis results for the effect of TNF-independent and cellular scale parameters on 
model outputs at day 200 post-infection. Parameter definitions are presented in Table B.1. 

 Dchem δchem τchem PSTAT1 Mrecr TmoveM Trecr Papop/Fas τrecTgam αBi αBe 
TNF function-related 
outputs 

           

(No. apoptosis)Macs - + +  ++ --- --- - +++ +++  
(No. apoptosis)Mr - +   +++ --- ---  +++ +++  
(No. apoptosis)Mi & Mci -- ++ + - + --- ---  +++ +++  
(No. apoptosis)Ma     +++ --- --- - +++ +++  
(No. apoptosis)T cells - ++    --- --- - ++ +++  
(No. NFκB activation)Mr  +   +++ --- ---  +++ +++  
(No. NFκB activation)Mi - ++ + - + --- ---  +++ +++  
Cellular-level outputs            
Bint (intracellular Mtb)  +++ + -  --- ---  +++ +++  
Bext (extracellular Mtb) --- +++  ---  --- ---  +++ +++ ++ 
Btot --- +++  ---  --- ---  +++ +++ + 
Total Macrophages   +  +++ --- -  +++ +++  
Mr   +  +++ --   +++ ++  
Mi  +++ ++ -  --- ---  +++ +++  
Mci  +++  --  --- ---  +++ +++  
Ma  + +   --- ---  +++ +++  
Total T cells   +   ---  - +++ +++  
Tγ +  +   ---  - +++ +++  
Tc +  +   ---  - +++ +++  
Treg   +   ---   +++ +++  
Tissue-level outputs            
Caseation  ++ + - +++ --- ---  +++ +++  
Granuloma size    - ++ --- --- - +++ +++  
Tissue concentrations            
[sTNF]avg  +++ + -  --- ---  +++ +++  
[Chemokines]avg   +   --- ---  +++ +++  

Only parameters with significant PRCC values are indicated. Significant positive and negative correlations are shown using +/- as 
follows: 
-/+, 0.001 < p-value < 0.01 
--/++, 0.0001 < p-value < 0.001 
---/+++, p-value < 0.0001 
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Table B.7 LHS sensitivity analysis results for the effect of TNF/TNFR-associated molecular and linking 
parameters on model outputs at day 200 post-infection. Parameter definitions are presented in Tables B.2 
and B.5. 

 D1 δTNF ksynthMac Kd1 kint1 krec1 TNFR1mac kapop τapop kNFκB τNFκB 
TNF function-related 
outputs 

           

(No. apoptosis)Macs + --- +++ -  ---  ++ ---   
(No. apoptosis)Mr +++ --- +++ -  ---  + ---   
(No. apoptosis)Mi & Mci   --- --- +++ ---  +++ --- ---  
(No. apoptosis)Ma  --- +++ -  ---  + -   
(No. apoptosis)T cells   +++   --   --   
(No. NFκB activation)Mr +++ -- +++  --- +++  -  +++ --- 
(No. NFκB activation)Mi -  --- -  +      
Cellular-level outputs            
Bint (intracellular Mtb)  ++ ---  +  -   --- ++ 
Bext (extracellular Mtb)  ++ ---  +  -   --- ++ 
Btot  ++ --- + +  -   --- ++ 
Total Macrophages  +++ --- +   ---   --- ++ 
Mr  ++ --- + +  ---   --- ++ 
Mi  + ---  +  -   --- + 
Mci  + ---  +  -   --- ++ 
Ma   ---       ---  
Total T cells  + --- +   -   --- + 
Tγ  + --- +   -   --- + 
Tc  + --- +   -   --- + 
Treg  + --- + +  -   --- + 
Tissue-level outputs            
Caseation  +++ --- +++ + +++ --- -  --- ++ 
Granuloma size  +++ --- ++ +  --   --- +++ 
Tissue concentrations            
[sTNF]avg   --- +   -   --- + 
[Chemokines]avg  + --- +   -   --- + 

Only parameters with significant PRCC values are indicated. Significant positive and negative correlations are shown using +/- 
as follows: 
-/+, 0.001 < p-value < 0.01 
--/++, 0.0001 < p-value < 0.001 
---/+++, p-value < 0.0001 
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Appendix C

Supplementary information for Chapter 4 

C.1 Supplementary tables 

Supplementary information for Chapter 4 includes: ABM parameter description and 

estimated values (Table C.1), TNF/TNFR dynamics model equations and parameters 

(Table C.2, C.3), NF-κB dynamics model equations and parameters (Table C.4-6), and 

LHS sensitivity analysis results (Table C.7, C.8). 
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Table C.1 TNF-independent and cellular/tissue scale parameters, definitions and values estimated 
from literature or approximated via uncertainty analysis as described in [1,2].  

Parameter Parameter description Value* 
Nsource Number of vascular sources 50 
Ncaseum Number of qualified cell deaths required for caseation 10 
Dchem (cm2/s) Diffusion coefficient of chemokines 10-8-10-7 (5.2×10-8) 
δchem (s-1) Chemokine degradation rate constant 10-4-10-3 (4.58×10-4) 
τchem (molecules) Minimum chemokine concentration threshold 1-10 (2) 
schem (molecules) Saturating chemokine concentration threshold 103-104 (2000) 
Minit Initial number of resident macrophages 105 
maxageMac (day) Maximum lifespan of macrophages 100 
maxageActive (day) Maximum lifespan of an active macrophage 10 
tregMac (hours) Macrophage inactivity time after down-regulation by Treg 12 
tmoveMr (min) Time interval for Mr movement 20 
tmoveMa (hour) Time interval for Ma movement 7.8 
tmoveMi (hour) Time interval for Mi movement 24 
ωrecTNF Effect of TNF on cell recruitment 1 
ωrecCCL2 Effect of CCL2 on cell recruitment 0.0507 
ωrecCCL5 Effect of CCL5 on cell recruitment 0.0507 
ωrecCXCL9/10/11 Effect of CXCL9 on cell recruitment 0.0254 
Nrk Number of extracellular Mtb engulfed by Mr or Mi 1 
Pk Probability of Mr killing bacteria 0.01-0.1 (0.015) 
BactM Number of extracellular Mtb activating a macrophage 50-150 (110) 
Nc Number of intracellular Mtb for Mi→Mci transition 10 
Nburst Number of intracellular Mtb that leads to Mci bursting 20-30 (20) 
PSTAT1 Probability of STAT-1 activation in Mr or Mi 0.001-0.1 (0.085) 
Nak Number of extracellular Mtb killed by Ma each time-step 10 
τrecMac TNF/chemokine threshold for Mr recruitment  0.01-0.1 (0.023) 
Mrecr Probability of Mr recruitment 0.01-0.1 (0.04) 
maxageTcell (day) Maximum lifespan of T cells 3 
tdelay (day) T cell recruitment delay 20 
TmoveM Probability of T cell moving to a mac-containing location 0.001-0.1 (0.014) 
TmoveT Probability of T cell moving to a T cell-containing location 0.001-0.1 (0.08) 
Trecr Probability of T cell recruitment 0.05-0.5 (0.15) 
tregTgam (min) Tγ inactivity time after down-regulation by Treg 100 
Papop/Fas Probability of Fas/FasL apoptosis by Tγ 0.01-0.1 (0.06) 
τrecTgam TNF/chemokine threshold for Tγ recruitment 0.1-1.0 (0.4) 
TrecTgam Probability of Tγ recruitment 0.54 
tregTcyt (min) Tc inactivity time after down-regulation by Treg 100 
τrecTcyt TNF/chemokine threshold for Tc recruitment 0.1-1.0 (0.4) 
TrecTcyt Probability of Tc recruitment 0.36 
PcytKill Probability of Tc killing Mi or Mci 0.02 0.2 (0.12) 
PcytKillClean Probability of Tc killing all intracellular Mtb by killing Mci 0.75 
τrecTreg TNF/chemokine threshold for Treg recruitment 0.01-0.1 (0.05) 
TrecTreg Probability of Treg recruitment 0.1 

αBi (per 10 min) Intracellular Mtb growth rate 2×10-4-2×10-3 
(1.5×10-3) 

αBe (per 10 min) Extracellular Mtb growth rate 10-4-10-3 (7×10-4) 
Kbe Capacity of a micro-compartment for extracellular Mtb 200 

* Parameters used for sensitivity analysis are indicated by their ranges of values. Values in parentheses are used to 
generate containment baseline. 
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Table C.2 Definition of reaction species, reactions describing TNF/TNFR processes and their rates 
(vi). 

Reaction species 

mTNF Membrane-bound TNF sTNF/TNFR2 sTNF/TNFR2 complex on the 
membrane 

sTNF Extracellular soluble TNF sTNF/TNFR1i 
Internalized sTNF/TNFR1 
complex 

TNFR1 Cell surface TNF receptor 1 sTNF/TNFR2i 
Internalized sTNF/TNFR2 
complex 

TNFR2 Cell surface TNF receptor 2 sTNF/TNFR2shed Shed sTNF/TNFR2 complex 
sTNF/TNFR1 sTNF/TNFR1 complex on the membrane TNFi Intracellular translated TNF  
Model reactions 

1 
mTNF expression 
(T cells): 

€ 

v1 = ksynthTcell   
(Macrophages): 

€ 

v1 = eeTNF[TNFi]  
9 TNFR2 synthesis 

€ 

v9 =Vr2  

2 mTNF → sTNF 

€ 

v2 = kTACE[mTNF] 
10 TNFR1 → TNFR1i 

€ 

v10 = kt1[TNFR1] 

3 
sTNF + TNFR1 ↔ sTNF/TNFR1 

€ 

v3 = kon1[sTNF][TNFR1]− koff1[sTNF /TNFR1] 11 TNFR2 → TNFR2i 

€ 

v11 = kt 2[TNFR2] 

4 
sTNF + TNFR2 ↔ sTNF/TNFR2 

€ 

v4 = kon2[sTNF][TNFR2]− koff 2[sTNF /TNFR2] 
12 

sTNF/TNFR1i → degradation 

€ 

v12 = kdeg1[sTNF /TNFR1i] 

5 sTNF/TNFR1 → sTNF/TNFR1i 

€ 

v5 = kint1[sTNF /TNFR1]  
13 

sTNF/TNFR2i → degradation 

€ 

v13 = kdeg2[sTNF /TNFR2i] 

6 sTNF/TNFR2 → sTNF/TNFR2i 

€ 

v6 = kint 2[sTNF /TNFR2] 
14 sTNF/TNFR1i → TNFR1 

€ 

v14 = krec1[sTNF /TNFR1i] 

7 sTNF/TNFR2 → sTNF/TNFR2shed 

€ 

v7 = kshed [sTNF /TNFR2]  
15 sTNF/TNFR2i → TNFR2 

€ 

v15 = krec2[sTNF /TNFR2i] 

8 TNFR1 synthesis 

€ 

v8 =Vr1  
16 

sTNF/TNFR2shed → sTNF + TNFR2shed 

€ 

v16 = koff 2[sTNF /TNFR2shed ] 
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Table C.3 Molecular/single-cell scale TNF/TNFR parameters, definitions and values estimated from 
literature  

Parameter Parameter description Value* Reference 
ksynthTcell (#/cell.s) Full synthesis rate of mTNF for T cells 10-2-10-1 (0.021) [3] 

TNFR1mac (#/cell) TNFR1 density on the surface of 
macrophages 500-5000 (1100-1900) † [4-7] 

TNFR1Tcell (#/cell) TNFR1 density on the surface of T cells 500-5000 (400-1200) † [4-7] 

TNFR2mac (#/cell) TNFR2 density on the surface of 
macrophages 500-5000 (400-800) †

 [4-7] 

TNFR2Tcell (#/cell) TNFR2 density on the surface of T cells 500-5000 (600-800) † [4-7] 
D1 (cm2/s) ‡ Diffusion coefficient of sTNF 10-8-10-7 (5.2×10-8) [8,9] 

D2 (cm2/s) ‡ Diffusion coefficient of shed 
TNF/TNFR2 complex 10-8-10-7 (3.2×10-8) [8,9] 

kTACE_Mac (s-1) Rate constant for TNF release by TACE 
activity on a macrophage 10-4-10-3 (4.4×10-4) [4,10-12] 

kTACE_Tcell (s-1) Rate constant for TNF release by TACE 
activity on a T cell 10-5-10-4 (4.4×10-5)  

δTNF (s-1) sTNF degradation rate constant 10-4-10-3 (4.58×10-4) [13] 

Kd1 (M) Equilibrium dissociation constant of 
sTNF/TNFR1 10-12-10-10 (1.9×10-11) [5,14] 

Kd2 (M) Equilibrium dissociation constant of 
sTNF/TNFR2 10-10-10-9 (4.2×10-10) [5,14,15] 

kon1 (M-1s-1) sTNF/TNFR1 association rate constant 107-108 (2.8×107) [14] 
kon2 (M-1s-1) sTNF/TNFR2 association rate constant 107-108 (3.5×107) [14] 
koff1 (s-1) sTNF/TNFR1 dissociation rate constant kon1×Kd1  
koff2 (s-1) sTNF/TNFR2 dissociation rate constant kon2×Kd2  
kint1 (s-1) TNFR1 internalization rate constant 1.5×10-4-1.5×10-3 (7.7×10-4) [14,16] 
kint2 (s-1) TNFR2 internalization rate constant 3.9×10-4-5×10-4 (4.6×10-4) [15] 
kshed (s-1) TNFR2 shedding rate constant 3.9×10-4-1.5×10-3 (5×10-4) [12,16] 
krec1 (s-1) TNFR1 recycling rate constant 8.8×10-5-5.5×10-4 (1.8×10-5) [17,18] 
krec2 (s-1) TNFR2 recycling rate constant 8.8×10-5-5.5×10-4 (1.8×10-5) [17,18] 
kt1 (s-1) TNFR1 turn-over rate constant 3×10-4-5×10-4 (3.8×10-4) [17,18] 
kt2 (s-1) TNFR2 turn-over rate constant 3×10-4-5×10-4 (3.8×10-4) [17,18] 
kdeg1 (s-1) TNFR1 degradation rate constant 10-5-10-4 (5×10-5) [5,17-19] 
kdeg2 (s-1) TNFR2 degradation rate constant 10-5-10-4 (5×10-5) [5,17-19] 

Vr1_mac (#/cell.s)  Cell surface TNFR1 synthesis rate 
constant for macrophages kt1×TNFR1mac  

Vr1_Tcell (#/cell.s)  Cell surface TNFR1 synthesis rate 
constant for T cells kt1×TNFR1Tcell  

Vr2_mac (#/cell.s)  Cell surface TNFR2 synthesis rate 
constant for macrophages kt2×TNF21mac  

Vr2_Tcell (#/cell.s)  Cell surface TNFR2 synthesis rate 
constant for T cells kt2×TNF21Tcell  

* Ranges of parameter values used for sensitivity analysis are indicated out of parentheses. Values in parentheses are 
used to generate baseline model results. 
† Baseline model values for TNFR densities on each recruited individual cell was randomly chosen from the range 
shown in parentheses. 
‡ Diffusion coefficients of the soluble species in granuloma were estimated in line with estimates for diffusible factors 
of similar molecular weight in tumors [8,9]. 
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Table C.4 Definition of reaction species, reactions describing NF-κB signaling and response 
associated processes in macrophages and their rates (vi). 

Reaction species 
sTNF/TNFR1 sTNF/TNFR1 complex on the membrane NFkB Cytoplasmic NF-κB 
IKKn Neutral form of IKK kinase NFkBn Nuclear NF-κB 
IKKa Active form of IKK A20 Translated A20  
IKKi Inactive form of IKK A20t A20 transcript 
IKKii Inactive intermediate form of IKK GA20 State of A20 gene 

KNN 
Total number of IKK molecules (assumed 
constant in time) GIkB State of IκBα gene 

IKKKa Active form of IKKK GR 
State of genes corresponding 
to NF-κB mediated responses  

IKKKn Neutral form of IKKK chemi 
Intracellular translated 
chemokines 

KN 
Total number of IKKK molecules (assumed 
to be constant in time) chemt Chemokine transcript 

IkB Cytoplasmic IκBα TNFi Intracellular translated TNF 
IkBn Nuclear IκBα TNFt TNF transcript 

IkBt IκBα transcript ACT Generic macrophage-
activating molecule 

IkBp Phosphorylated cytoplasmic IκBα ACTt ACT transcript 
NFkB|IkB Cytoplasmic IκBα|NF-κB complex IAP Inhibitor of apoptosis protein 

NFkB|IkBp 
Phosphorylated cytoplasmic IκBα in 
complex with NF-κB IAPt IAP transcript 

NFkB|IkBn Nuclear IκBα|NF-κB complex   
Model reactions  

17 
IKKK kinase activation and activity attenuation by A20 

€ 

v17 = ka[sTNF /TNFR1].([KN ]− [IKKKa]).
kA 20

kA 20 + [A20]
 42 

Transport of NF-κB|IκBα complex out of 
nucleus 

€ 

v42 = e2a[NFkB | IkBn ] 

18 Spontaneous inactivation of IKKKa 

€ 

v18 = ki[IKKKa] 
43 A20 gene activation due to NF-κB binding 

€ 

v43 = q1[NFkBn ](2 − [GA 20])  

19 IKKii→IKKn 

€ 

v19 = k4 ([KNN ]− [IKKn]− [IKKa]− [IKKi]) 
44 

A20 gene inactivation due to removal of 
NF-κB molecules by IκBα 

€ 

v44 = q2[IkBn ][GA 20] 

20 
IKKn→IKKa mediated by IKKKa phosphorylation at two 
sites 

€ 

v20 = k1[IKKKa]
2[IKKn] 

45 
IκBα gene activation due to NF-κB 
binding 

€ 

v45 = q1[NFkBn ](2 − [GIkB ])  

21 
IKKa → IKKi mediated by A20 

€ 

v21 = k3[IKKa].
k2 + [A20]

k2
 46 

IκBα gene inactivation due to removal of 
NF-κB molecules by IκBα 

€ 

v46 = q2[IkBn ][GIkB ] 

22 IKKi → IKKii 

€ 

v22 = k4[IKKi] 
47 

NF-κB mediated response gene activation 
due to NF-κB binding 

€ 

v47 = q1r[NFkBn ](2 − [GR ])  

23 IκBα phosphorylation by IKKa 

€ 

v23 = a2[IKKa][IkB] 
48 

NF-κB mediated response gene 
inactivation due to spontaneous removal 
of NF-κB molecules 

€ 

v48 = q2rr[GR ] 

24 
Degradation of phosphorylated IκBα 

€ 

v24 = tp[IkBp ] 
49 

NF-κB mediated response gene 
inactivation due to removal of NF-κB 
molecules by IκBα 

€ 

v49 = q2r[IkBn ][GR ] 

25 Phosphorylation of IκBα in complex with NF-κB by IKKa 

€ 

v25 = a3[IKKa][NFkB | IkB]  
50 

Constitutive transcription of TNF and 
chemokines 

€ 

v50 = c1rrchemTNF  

26 
Degradation of phosphorylated IκBα in complex with 
NF-κB 

€ 

v26 = tp[NFkB | IkBp ] 
51 

NF-κB dependent transcription of 
chemokines and TNF 

€ 

v51 = c1r[GR ] 
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Table C.4 (continued) 

27 
Liberation of free NF-κB due to degradation of IκBα in 
their complex 

€ 

v27 = c6a[NFkB | IkB] 
52 Chemokine mRNA degradation 

€ 

v52 = c3rchem[chemt ] 

28 Formation of NF-κB and  IκBα complex  

€ 

v28 = a1[NFkB][IkB] 
53 Chemokine translation 

€ 

v53 = c4chem[chemt ]  

29 Transport of free cytoplasmic NF-κB to nucleus 

€ 

v29 = i1[NFkB] 
54 Intracellular chemokine degradation 

€ 

v54 = c5chem[chemi] 

30 Association of nuclear NF-κB with nuclear IκBα  

€ 

v30 = a1kv[IkBn ][NFkBn ] 
55 Chemokine secretion 

€ 

v55 = e3chem[chemi] 

31 A20 translation 

€ 

v31 = c4[A20t ] 
56 TNF mRNA degradation 

€ 

v56 = c3rTNF[TNFt ] 

32 Constitutive degradation of A20 

€ 

v32 = c5[A20] 
57 TNF translation 

€ 

v57 = c4TNF[TNFt ] 

33 NF-κB inducible transcription of A20 

€ 

v33 = c1[GA 20] 
58 Intracellular TNF degradation 

€ 

v58 = c5TNF[TNFi] 

34 Degradation of A20 transcript 

€ 

v34 = c3[A20t ] 
59 Constitutive transcription of ACT 

€ 

v59 = c1rrACT  

35 IκBα translation 

€ 

v35 = c4[IkBt ] 
60 ACT mRNA degradation 

€ 

v60 = c3rACT [ACTt ] 

36 Constitutive degradation of IκBα 

€ 

v36 = c5a[IkB] 
61 ACT translation 

€ 

v61 = c4ACT [ACTt ] 

37 Transport of IκBα into nucleus 

€ 

v37 = i1a[IkB] 
62 ACT degradation 

€ 

v62 = c5ACT [ACT] 

38 Transport of IκBα out of nucleus 

€ 

v38 = e1a[IkBn ] 
63 Constitutive transcription of IAP 

€ 

v63 = c1rrIAP  

39 NF-κB inducible transcription of IκBα 

€ 

v39 = c1[GIkB ] 
64 IAP mRNA degradation 

€ 

v64 = c3rIAP[IAPt ] 

40 Degradation of IκBα transcript 

€ 

v40 = c3[IkBt ] 
65 IAP translation 

€ 

v65 = c4 IAP[IAPt ] 

41 Association of NF-κB with IκBα in cytoplasm  

€ 

v41 = a1[IkB][NFkB]  
66 IAP degradation 

€ 

v66 = c5IAP[IAP] 
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Table C.5 Molecular/single-cell scale NF-κB signaling associated parameters, definitions and values 
from [20], or approximated via uncertainty analysis.  

Parameter Parameter description Value* 
(1) Concentration of intracellular signaling molecules 
KN (#/cell) Number of IKKK molecules 3.16×104-3.16×105 (105) 
KNN (#/cell) Number of IKK molecules 6.32×104-6.32×105 (2×105) 
NF-κBtot (#/cell) Average number of NF-κB molecules 3.16×104-3.16×105 (105) 
(2) Activation of the signal transduction cascade 
ka (s-1) IKKK activation rate 6.32×10-7-6.32×10-6 (2×10-6) 
ki (s-1) IKKK inactivation rate 3.16×10-3-3.16×10-2 (10-2) 
k1 (s-1) IKKn activation rate 1.9×10-10-1.9×10-9 (6×10-10) 
kA20 (#/cell)  Michaelis coefficient in TNFR1 activity attenuation 3.16×104-3.16×105 (105) 
k2 (#/cell) Michaelis coefficient in IKKa inactivation 3.16×103-3.16×104 (104) 
k3 (s-1) IKKn inactivation rate 6.32×10-4-6.32×10-3 (2×10-3) 
k4 (s-1) IKKi→IKKii and IKKii→IKKn transformation 3.16×10-4-3.16×10-3 (10-3) 
(3) A20 and IκBα  synthesis 
q1 (s-1) NF-κB binding at A20 and IκBα gene promoters 1.26×10-7-1.26×10-6 (4×10-7) 
q2 (s-1) IκBα inducible NF-κB detaching from A20 and IκBα genes  3.16×10-7-3.16×10-6 (10-6) 
c1 (s-1) Inducible A20 and IκBα mRNA synthesis 3.16×10-2-3.16×10-1 (10-1) 
c3 (s-1) A20 and IκBα mRNA degradation 2.37×10-4-2.37×10-3 (7.5×10-4) 
c4 (s-1) A20 and IκBα translation 1.58×10-1-1.58 (5×10-1) 
c5 (s-1) A20 degradation rate 1.58×10-4-1.58×10-3 (5×10-4) 
(4) IκBα  interactions 
a1 (s-1) IκBα-NF-κB association 1.58×10-7-1.58×10-6 (5×10-7) 
a2 (s-1) IκBα phosphorylation 3.16×10-8-3.16×10-7 (10-7) 
a3 (s-1) IκBα phosphorylation in IκBα|NF-κB complexes 1.58×10-7-1.58×10-6 (5×10-7) 
tp (s-1) Degradation of phosphorylated IκBα 3.16×10-3-3.16×10-2 (10-2) 
c5a (s-1) Spontaneous IκBα degradation 3.16×10-5-3.16×10-4 (10-4) 
c6a (s-1) Spontaneous IκBα degradation in IκBα|NF-κB complexes 6.32×10-6-6.32×10-5 (2×10-5) 
(5) NF-κB and IκBα  transport between cytoplasm and nucleus 
i1 (s-1) NF-κB nuclear import 3.16×10-3-3.16×10-2 (10-2) 
e2a (s-1) IκBα|NF-κB nuclear export 1.58×10-2-1.58×10-1 (5×10-2) 
i1a (s-1) IκBα nuclear import 6.32×10-4-6.32×10-3 (2×10-3) 
e1a (s-1) IκBα nuclear export 1.58×10-3-1.58×10-2 (5×10-3) 
kv Ratio of cytoplasmic to nuclear volume for a macrophage 5 
(6) NF-κB-mediated cell responses and apoptosis 
q1r (s-1) NF-κB binding at response gene promoters 3.16×10-8-3.16×10-7 (10-7) 

q2r (s-1) IκBα inducible NF-κB detaching from response gene 
promoters  

3.16×10-8-3.16×10-7 (10-7) 

q2rr (s-1) Spontaneous NF-κB detaching from response gene 
promoters 

3.16×10-4-3.16×10-3 (10-3) 

c1r (s-1) Inducible response mRNA synthesis 0 (only resting macrophage), 
1.58×10-2-1.58×10-1 (5×10-2) 

c1rrchemTNF (s-1) Constitutive transcription rate for chemokines and TNF  

0 (resting macrophage), 
0.5× c1r (infected macrophage), 
c1r (activated or chronically-
infected macrophage) 

c3rchem (s-1) Chemokine mRNA degradation rate 6.1×10-5-6.1×10-4 (1.92×10-4) 
c4chem (s-1) Chemokine translation rate 1.42×10-1-1.42 (4.5×10-1) 
c5chem (s-1) Intracellular chemokine degradation rate 1.58×10-5-1.58×10-4 (5×10-4) 
e3chem (s-1) Chemokine secretion rate 4.4×10-6-4.4×10-5 (1.39×10-5) 
c3rTNF (s-1) TNF mRNA degradation rate 1.2×10-4-1.2×10-3 (3.8×10-4) 
c4TNF (s-1) TNF translation rate 4.74×10-2-4.74×10-1 (1.5×10-1) 
c5TNF (s-1) Intracellular TNF degradation rate 1.58×10-4-1.58×10-3 (5×10-4) 
e3TNF (s-1) TNF secretion rate 7.87×10-7-7.87×10-6 (2.5×10-6) 
c1rrACT (s-1) ACT mRNA constitutive synthesis rate 3.16×10-4-3.16×10-3 (1×10-3) 
c3rACT (s-1) ACT mRNA degradation rate 6.1×10-5-6.1×10-4 (1.92×10-4) 
c4ACT (s-1) ACT translation rate 1.58×10-1-1.58 (5×10-1) 
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Table C.5 (continued) 
c5ACT (s-1) ACT degradation rate 1.58×10-4-1.58×10-3 (5×10-4) 
τACT (#/cell) ACT concentration threshold for macrophage activation 8-80 (25) 
kACT ((#/cell)-1s-1) Macrophage activation rate constant 1.46×10-6-1.46×10-5 (7.7×10-6) 
c1rrIAP (s-1) IAP mRNA constitutive synthesis rate 3.16×10-4-3.16×10-3 (1×10-3) 
c3rIAP (s-1) IAP mRNA degradation rate 6.1×10-5-6.1×10-4 (1.92×10-4) 
c4IAP (s-1) IAP translation rate 1.58×10-1-1.58 (5×10-1) 
c5IAP (s-1) IAP degradation rate 1.58×10-4-1.58×10-3 (5×10-4) 
kIAP (#/cell) Apoptosis inhibition coefficient 1.22×101-1.22×102 (3.86×101) 

€ 

kapopt
0 ((#/cell)-1s-1) Intrinsic TNF-induced apoptosis rate constant 4.2×10-10-4.2×10-9 (1.33×10-9) 

τapopt (#/cell) 
Internalized sTNF/TNFR1 threshold for TNF-induced 
apoptosis 50-500 (300) 

* Parameters used for sensitivity analysis are indicated by their ranges of values. Values in parentheses are used to 
generate containment baseline. 
† Baseline model values for intracellular NF-κBtot on each recruited individual macrophage was randomly based on a 
log-normal distribution as described in [20]. 
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Table C.6 Differential equations describing molecular single-cell scale TNF/TNFR and NF-κB 
signaling and response associated processes. 

€ 

d[mTNF]
dt

= v1 − v2        

€ 

d[A20t ]
dt

= v33 − v34
 

€ 

d[sTNF]
dt

= ( ρ
Nav

)(v2 − v3 − v4 ) + v16  

€ 

d[IkB]
dt

= v23 − v28 + v35 − v36 − v37 + v38
 

€ 

d[TNFR1]
dt

= v8 − v3 − v10 + v14    

€ 

d[IkBn ]
dt

= −v30 + v37 − v38
 

€ 

d[TNFR2]
dt

= v9 − v4 − v11 + v15              

€ 

d[IkBt ]
dt

= v39 − v40
 

€ 

d[sTNF /TNFR1]
dt

= v3 − v5    

€ 

d[NFkB | IkB]
dt

= v41 − v27 − v25 + v42
 

€ 

d[sTNF /TNFR2]
dt

= v4 − v6 − v7                

€ 

d[NFkB | IkBn ]
dt

= v30 − v42
 

€ 

d[sTNF /TNFR1i]
dt

= v5 − v12 − v14  

€ 

d[GA 20]
dt

= v43 − v44  

€ 

d[sTNF /TNFR2i]
dt

= v6 − v13 − v15        

€ 

d[GIkB ]
dt

= v45 − v46
 

€ 

d[sTNF /TNFR2shed ]
dt

= ( ρ
Nav

)v7 − v16 

€ 

d[GR ]
dt

= v47 − v48 − v49
 

€ 

d[IKKKa]
dt

= v17 − v18
 

€ 

d[chemt ]
dt

= v50 + v51 − v52
 

€ 

d[IKKn]
dt

= v19 − v20
 

€ 

d[chemi]
dt

= v53 − v54 − v55
 

€ 

d[IKKa]
dt

= v20 − v21
 

€ 

d[TNFt ]
dt

= v50 + v51 − v56
 

€ 

d[IKKi]
dt

= v21 − v22
 

€ 

d[TNFi]
dt

= v57 − v58 − v1
 

€ 

d[IkBp ]
dt

= v23 − v24
 

€ 

d[ACTt ]
dt

= v59 + v51 − v60
 

€ 

d[NFkB | IkBp ]
dt

= v25 − v26
 

€ 

d[ACT]
dt

= v61 − v62
 

€ 

d[NFkB]
dt

= v27 − v28 + v26 − v29
 

€ 

d[IAPt ]
dt

= v63 + v51 − v64
 

€ 

d[NFkBn ]
dt

= v29 − v30
 

€ 

d[IAP]
dt

= v65 − v66
 

€ 

d[A20]
dt

= v31 − v32
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Table C.7 LHS sensitivity analysis results for the effect of important NF-κB-
associated model parameters (groups 1-3) on model outputs at day 200 post-
infection. Parameter definitions are presented in Table C.5. 

 NF-κBtot ka ki q1 c1 c3 c4 c5 
TNF function-related 
outputs  

       

(No. apoptosis)Macs         
(No. apoptosis)Mr         
(No. apoptosis)Mi & Mci      --   
(No. apoptosis)Ma       - + 
(No. apoptosis)T cells +      -- ++ 
(No. activation)Mr ++ ++    ++ -- ++ 
(No. activation)Mi       -  
Cellular-level outputs         
Bint (intracellular Mtb) -- --- + + + --- ++ -- 
Bext (extracellular Mtb) -- ---  + ++ --- ++ -- 
Btot -- --- + + ++ --- ++ -- 
Total Macrophages         
Mr --- --- +++ ++ +++ --- +++ --- 
Mi and Mci -- --- + + + --- ++ -- 
Ma + +    ++ -- ++ 
Total T cells + +      + 
Tγ  +     - + 
Tc + +     - + 
Treg + ++    +  ++ 
Tissue-level outputs         
Caseation -    +    
Granuloma size         
Tissue concentrations         
[sTNF]avg       -- ++ 
[Chemokines]avg      -- - + 

Only parameters with significant PRCC values are indicated. Significant 
positive and negative correlations are shown using +/- as follows: 
-/+, 0.001 < p-value < 0.01 
--/++, 0.0001 < p-value < 0.001 
---/+++, p-value < 0.0001 

 

 



Table C.8 LHS sensitivity analysis results for the effect of important NF-κB-associated model parameters (group 
6) on model outputs at day 200 post-infection. Parameter definitions are presented in Table C.5. 
 c1r c3rchem c4chem e3chem c3rTNF c4TNF c5TNF e3TNF c4ACT c5ACT τACT c5IAP 
TNF function-related 
outputs 

            

(No. apoptosis)Macs +++    -- +++ --- +++     
(No. apoptosis)Mr +++    --- +++ --- +++     
(No. apoptosis)Mi & Mci     -- ++ --- +++ --- +++ +++  
(No. apoptosis)Ma +++     +++  +++ ++ -- -  
(No. apoptosis)T cells +++    -- +++ --- +++ +    
(No. activation)Mr +++    +    +++ --- ---  
(No. activation)Mi +++    ++  ++ - +++ --- ---  
Cellular-level outputs             
Bint (intracellular Mtb) ---    ++ --- ++ -- --- +++ +++  
Bext (extracellular Mtb) ---    ++ -- ++ -- --- +++ +++  
Btot ---    ++ --- ++ -- --- +++ +++  
Total Macrophages  --- ++ +++ +++ --- +++ ---    - 
Mr --- -- + +++ +++ --- +++ --- --- +++ +++  
Mi and Mci ---    ++ --- ++ -- --- +++ +++  
Ma +++    +++ -- +++ --- +++ --- ---  
Total T cells +++   ++ +++ -- +++ --- +++ --- ---  
Tγ +++   ++ +++ -- +++ --- +++ --- ---  
Tc +++   ++ +++ -- +++ --- +++ --- ---  
Treg +++   + +++ -- +++ --- +++ --- ---  
Tissue-level outputs             
Caseation --- +++ -- - +++ --- +++ ---    --- 
Granuloma size --- --  +++ +++ --- +++ ---    -- 
Tissue concentrations             
[sTNF]avg +++     ++  ++    - 
[Chemokines]avg +++ --- +++ +++ +++ --- +++ ---    -- 

Only parameters with significant PRCC values are indicated. Significant positive and negative correlations are shown using +/- as 
follows: 
-/+, 0.001 < p-value < 0.01 
--/++, 0.0001 < p-value < 0.001 
---/+++, p-value < 0.0001 
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Appendix D

Supplementary information for Chapter 6 

D.1 Drug transport from the blood into the lung tissue 

To study the effect of TNF inhibitors on the immune response to Mtb, we first run the 

base model described in Chapter 3 in the absence of TNF inhibitors by using a baseline 

set of parameter values that leads to stable control of infection (containment) in a 

granuloma as described in Chapter 3 and [1]. After 100 days, at which time a well-

circumscribed granuloma with stable bacterial levels (<103 total bacteria) forms, the 

granuloma is exposed to a TNF-neutralizing drug that enters the grid representing lung 

parenchyma via vascular sources, and diffuses among micro-compartments. The flux of a 

drug from a blood vessel into the tissue is related to the vascular permeability coefficient 

of the drug (kc) and the drug gradient across the vessel wall by: 

      (D.1) 

where Cp is the concentration of the drug in blood, [Drug] is the concentration of the drug 

in tissue that is a function of time and distance from the vessel (r), [Drug]r = 0 is the 

concentration of the drug at the outside wall of the vessel, and Ddrug is drug diffusion 

coefficient in tissue. Using this equation and rearranging it for discrete-space flux on the 

2-D grid gives: 

   (D.2) 
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where Csource = Ci,j represents the drug concentration at the outside wall of the vascular 

source located at the micro-compartment (i,j) and dx = 20 µm is the lattice spacing 

through which diffusion occurs. Equation D.2 implies that at very large vascular 

permeabilities (kc→∞), Ci,j tends to blood concentration of the drug (Cp). However, a zero 

permeability coefficient (kc = 0) leads to Ci,j = (1/4){Ci-1,j + Ci+1,j + Ci,j-1 + Ci,j+1} meaning 

that the drug flux from the blood vessel into the tissue becomes zero. Drug diffusion 

among micro-compartments on the grid with periodic boundary conditions occurs as 

described in Chapter 3 and [1].  

TNF-neutralizing drugs differ in their dosing regimens and pharmacokinetic 

properties, including route of administration (intravenous versus subcutaneous), drug 

half-lives in plasma and the blood concentration peak-trough ratios. Etanercept and 

adalimumab are, for example, administered in frequent (weekly or bi-weekly) small 

subcutaneous doses that rapidly lead to smooth and uniform concentration-time profiles 

at steady state [2]. This is consistent with assuming a constant blood concentration (Cp = 

constant) for these drugs in our model. However, infliximab is dosed every eight weeks 

in relatively large intravenous boluses that result in wide fluctuations in blood 

concentration of the drug [2,3]. To study the effect of these fluctuations on the function 

of a granuloma, we also simulate infliximab-mediated TNF neutralization in which blood 

concentration of infliximab follows a pharmacokinetic model (Cp = f (t)) presented by St 

Clair et al [4].  
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D.2 Neutralization of TNF by TNF inhibitors 

Once TNF inhibitors penetrate from blood into the lung tissue, they can bind TNF and 

thus block TNF-mediated signaling in a granuloma. To analyze the effects of TNF-

neutralizing drugs with various TNF binding properties, including TNF/drug association 

and dissociation kinetics, stoichiometry of binding as well as drug ability to bind mTNF 

versus sTNF on immunity to Mtb, we define three hypothetical classes of TNF inhibitors 

(Fig. 6.1C). These classes are defined based on TNF binding characteristics reported for 

human TNF-neutralizing drugs (including infliximab, adalimumab, etanercept and 

certolizumab) as described in Methods in the main text. An sTNF molecule with either 

one, two or three drug molecules bound is neutralized and not able to bind TNFR1 or 

TNFR2. This assumption is consistent with experimental data indicating that only 

trimeric TNF is biologically active and that both monomeric TNF and artificially 

prepared dimeric TNF do not efficiently trigger signaling in cells [5,6]. TNF/drug 

interactions for different classes of TNF inhibitors are modeled based on mass action 

kinetics. The reactions and equations are listed in Table D.2. These equations are solved 

in combination with TNF/TNFR kinetic equations from the base model presented in 

Chapter 3. 

 

D.3 TNF inhibitors with apoptotic and cytolytic activities 

 Some TNF inhibitors are reported to induce apoptosis or complement-dependent 

cytotoxicity (CDC) in TNF-expressing cells. This results from drug binding to mTNF and 

cross-linking of mTNF [7,8]. Based on descriptions presented for three classes of TNF 
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inhibitors, only a Class 3 TNF inhibitor has the potential to cross-link mTNF and mediate 

cell death.  

We describe drug-induced cell death for each individual TNF-expressing cell 

(including infected, chronically infected and activated macrophages and T cells), as a 

Poisson process with a probability determined within each time-step (Δt), based on a 

Poisson rate parameter that is a function of the drug-induced death rate constant (kapopt), 

the concentration of mTNF molecules that are bound to more than one drug molecule 

[mTNF/(drug)>1], and the concentration threshold for [mTNF/(drug)>1] for inducing 

apoptosis or CDC (τdeath-Drug): 

€ 

Pdeath−Drug =
   0                                              ; [mTNF /(drug)>1] < τ death−Drug     

1− e−kapopt ([mTNF /(drug )>1 ]−τ death−Drug )Δt  ; [mTNF /(drug)>1] ≥ τ death−Drug

 
 
 

 (D.3) 

This description for the drug-induced cell death is in line with the approach we used to 

describe TNF-induced apoptosis, one of the processes that serve as the link between the 

single-cell/molecular scale TNF/TNFR kinetics and the cellular/tissue scale dynamics in 

the baseline model (Chapter 3) [1]. We assume that drug-induced death events, apoptosis 

and CDC, occur with equal chances. The difference between the consequences of 

apoptosis and CDC is only significant if the target cell is an infected or a chronically 

infected macrophage. Cell lysis as a result of CDC leads to the release of intracellular 

bacteria to the environment similarly to death due to age or bursting of a chronically 

infected macrophage as described in Chapter 3 [1]. However, drug-induced apoptosis, 

similarly to TNF-induced apoptosis, kills a fraction (we assume half) of intracellular 

bacteria [9]. 
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D.4 Parameter estimation 

We estimated values of the base model parameters, including ABM parameters, single-

cell molecular scale TNF/TNFR kinetic parameters as well as TNF response (NF-κB 

activation and apoptosis) parameters based on available experimental data or via 

uncertainty analysis as described in Chapter 3 and [1]. TNF inhibitor-associated 

parameter values are estimated based on literature data on human TNF-neutralizing drugs 

and are listed in Table D.1. Blood concentrations of TNF inhibitors are consistent with 

average steady state blood concentrations reported for human TNF-neutralizing drugs (Cp 

= constant) [2]. When pharmacokinetic fluctuations of the concentration of a drug in 

blood is particularly of interest, we use Cp = f (t); where f (t) is the blood concentration-

time profile as reported in literature for the drug.  

 

D.5 Sensitivity analysis 

When computational models include parameters describing a large number of known 

biological processes, it is critical to understand the role that each of these parameters 

plays in determining output. Sensitivity analysis is a technique to identify critical 

parameters of a model and quantify how input uncertainty impacts model outputs. Latin 

hypercube sampling (LHS) is an algorithm that allows multiple parameters to be varied 

and sampled simultaneously in a computationally efficient manner [10]. We have 

previously used LHS sensitivity analysis as described in [1] to analyze the impact of base 

granuloma model parameter values on outputs, including bacterial and immune cell 

numbers, TNF concentration, granuloma size and caseation. Here, we use sensitivity 

analysis to investigate whether the significance of the base model parameters in the 
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presence of TNF inhibitors in the tissue differs from their significance in the absence of 

TNF inhibitors. We use base model parameter ranges as specified in Chapter 3 and [1] for 

sensitivity analysis. Results of sensitivity analysis will help us identify critical immune 

processes that impact granuloma function following anti-TNF treatments. The correlation 

of model outputs with each parameter is quantified via calculation of a partial rank 

correlation coefficient (PRCC). PRCC values vary between -1 (perfect negative 

correlation) and +1 (perfect positive correlation) and can be differentiated based on p-

values derived from Student’s t test. LHS simulations sampled each parameter 250 times. 

Each sampled parameter set was run twice and averages of the outputs were used to 

calculate PRCC values. The choice of the number of simulations is determined by the 

desired significance level for the PRCC [10,11]. Here, 250 runs imply that PRCC values 

above +0.24 or below -0.24 are significantly different from zero (p < 0.001).  

 

D.6 Computer simulations and visualization 

The model was implemented in C++. We use Qt, a C++ framework for developing cross-

platform applications with a graphical user interface (GUI), to visualize and track 

different aspects of the granuloma, including the structure and molecular concentration 

gradients, as it forms and is maintained. Simulations can be run with or without graphical 

visualization. Simulations were run on Linux and Mac operating systems. 
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Table D.1 Model parameters associated with TNF neutralization reactions, definitions, and values. 

Parameter Parameter description Value Reference 
Ddrug (cm2/s) * Diffusion coefficient of drug 2.3×10-8 [12,13] 
kc (cm/s) † Drug permeability in the lung tissue 1.1×10-8-1.1×10-7 [14] 
Cp (M) Blood concentration of the drug 1.25×10-8 (etanercept) 

3.67×10-8 (adalimumab) 
7.5×10-8 (infliximab) 

[2] 

kon_TNF/Drug (M-1s-1) TNF/drug association rate constant 2.6×105 (etanercept) 
1.33×105 (adalimumab) 
5.7×104 (infliximab) 

[15,16] 

koff_TNF/Drug (s-1) TNF/drug dissociation rate constant 1.3×10-3 (etanercept) 
7.31×10-5 (adalimumab) 
1.1×10-4 (infliximab) 

[15,16] 

kdeg_Drug (s-1) Drug degradation rate constant 1×10-6 [3] 
kdeg (s-1) sTNF degradation rate constant 4.58×10-4 [17] 
kTACE (s-1) Rate constant for TNF release by 

TACE activity 
4.4×10-4 (macrophages) 
4.4×10-5 (T cells) 

[18-22] 

kdeath-Drug = kapopt 
((#/cell)-1s-1) 

Rate constant for drug-induced cell 
death and TNF-induced apoptosis 

1.33×10-9  Estimated [1] 

τdeath-Drug (#/cell) Concentration threshold for drug-
induced cell death 

5-80 Estimated  

* Diffusion coefficient of the drug in tissue/granuloma was estimated in line with estimates for diffusible factors of 
similar molecular weight in tumors [12,13].  
† Drug permeability into lung tissue was estimated based on estimated tissue:blood concentration ratios for most 
antibodies reported to be in the range of 0.1-0.5 [14]. 
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Table D.2 Definition of species involved in TNF neutralization, reactions, their rates (ri) and model 
equations. 

Membrane-bound reaction species Soluble reaction species 
mTNF Membrane-bound TNF sTNF Extracellular soluble TNF 
mTNF/(drug)1 1:1 mTNF/drug complex  Drug TNF-neutralizing drug 
mTNF/(drug)2 1:2 mTNF/drug complex  sTNF/(drug)1 1:1 sTNF/drug complex  
mTNF/(drug)3 1:3 mTNF/drug complex  sTNF/(drug)2 1:2 sTNF/drug complex  
  sTNF/(drug)3 1:3 sTNF/drug complex  
TNF neutralization reactions 
1* mTNF + Drug ↔ mTNF/(drug)1 

€ 

r1 = kon _TNF /Drug[mTNF][Drug]− koff _TNF /Drug[mTNF /(drug)1] 

2† mTNF/(drug)1 + Drug ↔ 
mTNF/(drug)2 

€ 

r2 = kon _TNF /Drug[mTNF /(drug)1][Drug]− koff _TNF /Drug[mTNF /(drug)2]  

3 mTNF/(drug)2 + Drug ↔ 
mTNF/(drug)3 

€ 

r3 = kon _TNF /Drug[mTNF /(drug)2][Drug]− koff _TNF /Drug[mTNF /(drug)3] 

4 mTNF/(drug)1 → sTNF/(drug)1 

€ 

r4 = kTACE[mTNF /(drug)1] 
5 mTNF/(drug)2 → sTNF/(drug)2 

€ 

r5 = kTACE[mTNF /(drug)2] 
6 mTNF/(drug)3 → sTNF/(drug)3 

€ 

r6 = kTACE[mTNF /(drug)3] 
7 sTNF + Drug ↔ sTNF/(drug)1 

€ 

r7 = kon _TNF /Drug[sTNF][Drug]− koff _TNF /Drug[sTNF /(drug)1] 

8 sTNF/(drug)1 + Drug ↔ 
sTNF/(drug)2 

€ 

r8 = kon _TNF /Drug[sTNF][sTNF /(drug)1]− koff _TNF /Drug[sTNF /(drug)2] 

9 sTNF/(drug)2 + Drug ↔ 
sTNF/(drug)3 

€ 

r9 = kon _TNF /Drug[sTNF][sTNF /(drug)2]− koff _TNF /Drug[sTNF /(drug)3]  

10 sTNF/(drug)1 → Drug (sTNF 
degradation) 

€ 

r10 = kdeg[sTNF /(drug)1] 

11 sTNF/(drug)2 → 2Drug (sTNF 
degradation) 

€ 

r11 = kdeg[sTNF /(drug)2] 

12 sTNF/(drug)3 → 3Drug (sTNF 
degradation) 

€ 

r12 = kdeg[sTNF /(drug)3] 

13 sTNF/(drug)1 → degradation 

€ 

r13 = kdeg_ Drug[sTNF /(drug)1] 

14 sTNF/(drug)2 → degradation 

€ 

r14 = kdeg_ Drug[sTNF /(drug)2] 

15 sTNF/(drug)3 → degradation 

€ 

r15 = kdeg_ Drug[sTNF /(drug)3]  

16 Drug → degradation 

€ 

r16 = kdeg_ Drug[Drug] 
Model equations for TNF neutralization-associated reactions ‡ 

€ 

∂[mTNF]
∂t

= −r1  

€ 

∂[mTNF /(drug)1]
∂t

= r1 − r2 − r4  

€ 

∂[mTNF /(drug)2]
∂t

= r2 − r3 − r5 

€ 

∂[mTNF /(drug)3]
∂t

= r3 − r6 

€ 

∂[sTNF]
∂t

= −r7  

€ 

∂[sTNF /(drug)1]
∂t

= ( ρ
Nav

)r4 + r7 − r8 − r10 − r13  

€ 

∂[sTNF /(drug)2]
∂t

= ( ρ
Nav

)r5 + r8 − r9 − r11 − r14  

€ 

∂[sTNF /(drug)3]
∂t

= ( ρ
Nav

)r6 + r9 − r12 − r15  

€ 

∂[Drug]
∂t

= −( ρ
Nav

)(r1 + r2 + r3) − r7 − r8 − r9 + r10 + 2r11 + 3r12 − r16  

* Drug binding to mTNF is only relevant to Class 2 and Class 3 TNF-neutralizing drugs. 
† Sequential binding of drug to sTNF and mTNF is only relevant to Class 3 TNF neutralizing drugs. 
‡ When a membrane-bound molecule releases to the extracellular space (i.e. the micro-compartment occupied by the 
cell), or when a soluble molecule binds to the cell membrane, a scaling factor (ρ/Nav) is required, where ρ is the cell 
density in the micro-compartment and can be computed as (dx)-3 assuming that each micro-compartment is a cube of 
side dx, and Nav is the Avogadro’s number. 
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Table D.3 PRCC values for the LHS sensitivity analysis of the effect of cellular/tissue scale and TNF-
associated molecular scale parameters on model outcomes during treatment with etanercept at a 
permeability coefficient of kc = 1.1×10-7 cm/s (Only parameters with significant PRCC values are 
indicated). 

 Selected model outputs 
Model 
parameters 

Total number of 
bacteria 

Average sTNF 
concentration 

Granuloma size Caseation 

δchem +0.37 +0.35 +0.33 +0.33 
TmoveM -0.49 -0.50 -0.45 -0.37 
τrecTgam +0.44 +0.23   
Trecr    -0.29 
αBi +0.23 +0.24 +0.27 +0.57 
δTNF     
ksynthMac -0.51 -0.33 -0.39  
ksynthTcell   +0.27  
kTACEMac     
Kd1  +0.30 +0.25  
kapop     
kNF-κB -0.32 -0.31 -0.29 -0.34 
τNF-κB +0.27 +0.21  +0.22 
 

 

 
Table D.4 PRCC values for the LHS sensitivity analysis of the effect of cellular/tissue scale and TNF-
associated molecular scale parameters on model outcomes during treatment with infliximab at a 
permeability coefficient of kc = 1.1×10-7 cm/s (Only parameters with significant PRCC values are 
indicated). 
 Selected model outputs 
Model 
parameters 

Total number of 
bacteria 

Average sTNF 
concentration 

Granuloma size Caseation 

δchem +0.34 +0.32 +0.32 +0.22 
TmoveM -0.36 -0.39 -0.37 +0.24 
τrecTgam +0.26 +0.27 +0.28  
Trecr     
αBi +0.39 +0.36 +0.42 +0.55 
δTNF     
ksynthMac -0.49  -0.39 -0.37 
ksynthTcell     
kTACEMac +0.24 +0.44 +0.32 +0.29 
Kd1  +0.24   
kapop -0.27 -0.25 -0.24 -0.23 
kNF-κB -0.19    
τNF-κB     
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Appendix E

Supplementary information for Chapter 7 

E.1 Monte Carlo (MC) simulation procedure 

The two-dimensional cell membrane surface was modeled as a 700 by 700 triangular 

lattice with periodic boundary conditions and a lattice spacing of 0.5 nm. Low diffusivity 

regions with uniform distribution and defined surface area (2-30% of the cell membrane) 

were designated as raft regions on the lattice. Simulations were initiated by placing 

receptor molecules (hexagons with a diameter of 5 nm, the approximate diameter of a 

single GPCR) randomly on the lattice. Placement on all lattice sites, whether in raft or 

non-raft regions, was equally likely. No two molecules were allowed to occupy the same 

lattice site. Thus, if the selected site was occupied, a new random lattice site was selected. 

Simulations were then run by random choosing of a single receptor and probability-based 

selection of an event (movement, dimerization, monomerization, ligand binding or 

unbinding) to occur at each time step. Possible events are limited to movement, 

dimerization and monomerization in the absence of ligand. The time step of each 

simulation was calculated from the fastest event in the system, either a reaction event or a 

move event controlled by diffusivity, and total number of receptors. Thus, the inverse of 

the rate constant for the fastest event, divided by total number of receptors, was used as 

the MC time step. The rate constant for move event was calculated as kmove = 6D/l2; 

where l is the triangular lattice spacing and D is the diffusion coefficient. To ensure that 

the model results are independent of MC time step, simulations were run with time steps 
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smaller than the MC time step and results were shown to be indistinguishable. 

Simulations were written in C++ and were run on a Mac Pro with 2 × 2.66 GHz Dual-

Core Intel Xeon processors. 

During the simulation, receptors were randomly picked at each time step to react 

(dimerization, monomerization, ligand binding or unbinding) and move based on 

probability of these events. The probability of dimerization (and monomerization) was 

the same for all ligand-bound receptors but different from unligated ones. The probability 

of movement was determined by the location of receptor (raft or non-raft region). Details 

of the simulation procedure during a single time step of simulation are described below. 
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With a discrete-time model like the one used here, the dimerization and 

monomerization reactions can be modeled as Poisson processes. As a result, the 

probabilities of dimerization and monomerization can be derived from the reaction rate 

constants kdimer and kmono using a Poisson distribution. With sufficiently small time-steps 

(Δt), this relationship simplifies such that the probability of a reaction is approximately 

proportional to the reaction rate constant as shown below [1]. 

€ 

Pmono =1− e−kmonoΔt ≈ kmonoΔt          (E.1) 

         (E.2) 

Similarly, the probabilities of ligand binding to receptors and ligand unbinding 

from receptors can be calculated using the following equations: 

        (E.3) 

         (E.4) 

where, [L] is the ligand concentration and kf and kr are ligand/receptor association and 

dissociation rate constants, respectively. 

The probability of a diffusion event, Pmove, was calculated using the translational 

diffusion coefficient Dt of the membrane for GPCRs. For a single particle exhibiting 

Brownian diffusion on a triangular lattice, the probability of a particle moving at least 

one lattice spacing, l, in one iteration time step, Δt, can be expressed as: 

        (E.5) 

Thus, at small time step values, the probability of a move is nearly proportional to the 

diffusion coefficient of the cell membrane which was assumed to be smaller for the lipid 

rafts compared with the non-raft region. 
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E.2 Receptor phosphorylation can be regulated by lipid rafts 

Using the ODE model (Fig. 7.2B) we also asked whether dimerization-mediated receptor 

clustering in lipid rafts affects receptor phosphorylation. Receptor clustering into lipid 

rafts with a high concentration of G-protein relative to the non-raft region (r = 0.8) may 

enhance their diffusion-limited phosphorylation by kinases (GRKs) recruited by βγ-

subunits of G-proteins. However, the level of enhancement in the number of 

phosphorylated receptors in the cell membrane depends on the rate of receptor 

internalization (Fig. E.5). Recent experiments have shown that dimerization of the 

thyrotropin-releasing hormone (TRH) receptor potentiates hormone-dependent GRK-

mediated receptor phosphorylation [2]. Although disruption of the plasma membrane 

integrity by cholesterol depletion has been reported to impair the effectiveness of TRH 

signaling via G-proteins [3], no data are available on how dimerization of TRH receptors 

influences their organization on the membrane. Our combined model of receptor 

dimerization and G-protein signaling can connect these experimental observations and 

predicts the increase in the level of receptor phosphorylation due to dimerization-

mediated enrichment of receptors in lipid rafts.  
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Fig. E.1 Formation of oligomers via diffusion-limited partner switching. 

 

 
Fig. E.2 Variation of average receptor-receptor interaction time with kmono and kdimer. MC 
Simulations were run with receptor density of 18% and membrane diffusion coefficient of 10-9 cm2/s. 
Dimensionless average interaction time is indicated by color. 
 

 

 
 



  325 

 
Fig. E.3 Predicted variation of enrichment ratio with kmono and kdimer for different values of diffusion 
coefficient in lipid raft and non-raft regions of the cell membrane. Diffusion coefficients in lipid raft 
and non-raft regions are respectively (A) 10-11 cm2/s and 10-10 cm2/s, and (B) 10-11 cm2/s and 10-9 
cm2/s. Simulations were run to equilibrium with receptor density of 18%. In this set of simulations, 
rafts make up 20% of the simulated membrane and raft diameter is 50 nm. 
 

 
 

 
Fig. E.4 Scatter plots for the effect of relative G-protein density (r) on the model outcome, signal 
amplification ratio, at three levels of lipid raft coverage: (A) 2%, (B) 10%, and (C) 30%. Ranges for 
all other parameters are indicated in Table 7.1. The largest values of receptor dimerization-
dependent enrichment ratio (found from MC simulations) were used. 
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Fig. E.5 Predicted effect of receptor localization within lipid rafts on the number of phosphorylated 
receptors in the membrane. Results are shown for two different values of receptor enrichment ratio 
(2.5 and 4.5 for low and high level of enrichment, respectively) based on MC simulation results. 
Receptor clustering in lipid rafts enhances their G-protein dependent phosphorylation. kint for the 
fast and slow receptor internalization was assumed to be 10-1 s-1 and 10-3 s-1 respectively. Relative G-
protein density in lipid rafts, r, was assumed to be 0.8. Membrane diffusivities in the raft and non-
raft regions and lipid raft size and coverage are the same as Fig. 7.6A. Other parameter values are as 
listed in Table 7.1. 
 

 

 

 

 

 

 

 

 

 

 

 

 



  327 

E.3 Reference 

1. Rowley RL (1994) Statistical mechanics for thermophysical property calculations. 
Englewood Cliffs, NJ: Prentice-Hall.  

2. Song GJ, Jones BW, Hinkle PM (2007) Dimerization of the thyrotropin-releasing 
hormone receptor potentiates hormone-dependent receptor phosphorylation. Proc Natl 
Acad Sci U S A 104: 18303-18308. 

3. Ostasov P, Bourova L, Hejnova L, Novotny J, Svoboda P (2007) Disruption of the 
plasma membrane integrity by cholesterol depletion impairs effectiveness of TRH 
receptor-mediated signal transduction via G(q)/G(11)alpha proteins. J Recept Signal 
Transduct Res 27: 335-352. 

 


	Title-Page-1
	Title-Page-2
	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Chapter6
	Chapter7
	Chapter8
	Appendix A
	Appendix B1
	Appendix B2
	Appendix B3
	Appendix C1
	Appendix C2
	Appendix C3
	Appendix D
	Appendix E.pdf

