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ABSTRACT 

Owing to their light mass and high Young’s modulus, carbon nanotubes (CNTs) 

and graphene are promising candidates for nanoelectromechanical resonators capable 

of ultrasmall mass and force sensing. Unfortunately, the mass sensitivity of CNT 

resonators is impeded by the low quality factor (Q) caused by intrinsic losses. 

Therefore, one should minimize dissipations or seek an external way to enhance Q in 

order to overcome the fundamental limits.  

In this thesis, I first carried out a one-step direct transfer technique to fabricate 

pristine CNT nanoelectronic devices at ambient temperature. This process technique 

prevents unwanted contaminations, further reducing surface losses. Using this 

technique, CNT resonators was fabricated and a fully suspended CNT p-n diode with 

ideality factor equal to 1 was demonstrated as well. Subsequently, the frequency tuning 

mechanisms of CNT resonators were investigated in order to study their nonlinear 

dynamics. Downward frequency tuning caused by capacitive spring softening effect 

was demonstrated for the first time in CNT resonators adopting a dual-gate 

configuration.  

Leveraging the ability to modulate the spring constant, parametric amplification 

was demonstrated for Q enhancement in CNT resonators. Here, the simplest parametric 

amplification scheme was implemented by modulating the spring constant of CNTs at 

twice the resonance frequency through electrostatic gating. Consequently, at least 10 

times Q enhancement was demonstrated and Q of 700 at room temperature was the 

highest record to date. Moreover, parametric amplification shows strong dependence 
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on DC gate voltages, which is believed due to the difference of frequency tunability in 

different vibrational regimes.  

Graphene takes advantages over CNTs due to the availability of wafer-scale 

graphene films synthesized by chemical vapor deposition (CVD) method. Thus, I also 

examined graphene resonators fabricated from CVD graphene films. Ultra-high 

frequency (UHV) graphene resonators were demonstrated, and the Qs of graphene 

resonators are around 100. Future directions of graphene resonators include 

investigating the potential losses, exploring the origin of nonlinear damping, and 

demonstrating parametric amplification for Q enhancement. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Introduction 

Microelectromechancial systems (MEMS) are in general referred to miniature and 

multifunctional microsystems. They are usually built by micromachining techniques 

and composed of two essential components: mechanical elements and microelectronic 

circuits which control the mechanical elements [1-2]. Over the past decades, MEMS 

have been intensively studied in forms of sensors and actuators and deployed in a 

variety of technologies. We can easily find them employed in our daily life such as 

piezoelectrics in inkjet printers, accelerometers in video game controllers (Nintendo 

Wii), and pressure sensors in car tires. 

In the meantime, with the fabrication techniques of microelectronics pushed deep 

into the submicron scale, nanoelectromechanical systems (NEMS), a successor of 

MEMS, have also attracted great interests from researchers [3-5] due to their intriguing 

attributes. The effective masses of NEMS are usually less than femtograms (10
-15 

g) 

and can be as low as attogram (10
-18 

g) if carbon materials are utilized. Thus, NEMS 

are expected to operate at much higher frequencies with lower power consumption, and 

to have mechanical quality factors (Q) around tens of thousands [6]. These remarkable 

properties make them promising in ultrasmall mass and force sensing [7-11]. In 

principle, the sensitivity can be improved by reducing the effective mass of a system 

http://en.wikipedia.org/wiki/Piezoelectric
http://en.wikipedia.org/wiki/Inkjet_printer
http://en.wikipedia.org/wiki/Wii
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(nanostructure or low mass density), increasing the resonance frequency, and 

decreasing the linewidth of the resonance. Hence, carbon nanotubes (CNTs) and 

graphene would be the potential candidates to achieve the ultimate single-molecule and 

atomic sensing due to their high stiffness, light effective masses and ultrasmall cross 

sections. In addition, they can be defect-free since they are formed through bottom-up 

technique. To this end, I focused on these two carbon materials as NEMS mechanical 

elements in this thesis. First, I implemented both self-detecting carbon nanotube and 

graphene nanoelectromechanical resonators. Subsequently, I utilized these resonators 

made out of CNTs and graphene to investigate their linear and nonlinear dynamics 

throughout this thesis.  

In this chapter, I would like to briefly introduce their remarkable electrical and 

mechanical properties. First, the history of carbon allotropes is described shortly in 

section 1.2, and the synthesis of nanotubes and graphene is introduced in section 1.3. 

Their electrical properties are then discussed in section 1.4 and their mechanical 

properties are presented in section 1.5. In section 1.6, I recap previous works regarding 

nanotube and graphene nanoelectromechanical resonators. In the end, this chapter is 

concluded with a summary and the outline of this thesis.  

 

 

1.2 History of carbon allotropes  

Carbon plays an irreplaceable role in the nature since it is the basis of all organic 

compounds. Due to the flexibility of carbon-carbon bonding, carbon allotropes are 

formed either naturally or artificially and show a variety of physical properties. 

Graphite and diamonds are only carbon allotropes occurring naturally. On the other 
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hand, the artificial ones are studied and developed due to the demands for new 

materials driven by diverse applications. Among these carbon allotropes, “graphene” – 

a two-dimensional (2D) structure– is called the mother of all graphitics since it is the 

building block for graphitics of all dimensionalities and also the basis to understand the 

electrical properties of other carbon allotropes. Graphene is a flat monolayer of carbon 

atoms tightly packed into a honeycomb lattice. Graphene can be wrapped up into 

fullerenes (C60, carbon atoms are arranged spherically and treated as zero-dimensional 

(0D) objects with discrete energy states) [12], or rolled into one-dimensional (1D) 

nanotubes (rolling it along a given direction and reconnecting the carbon bonds) [13] or 

stacked into 3D graphite, as shown in Figure 1.1 [14].  

Over the past two decades, progress in chemistry and manufacturing has led to the 

success of synthesizing these different dimensional carbon allotropes. Fullerenes were 

carried out first [12] and several years later, “helical microtubules of graphitic carbon” 

known as “carbon nanotube” was observed by Iijima [13]. The success of synthesizing 

nanotubes allows nanotubes widely used to fabricate novel nanoelectronics based on 

their 1D structures and remarkable mechanical and optical properties. To synthesize 

graphene, a number of researches have been conducted over a century. Unfortunately, 

although graphene is thought as the mother of all graphitics, it was believed not existing 

in a free state due to its instability with respect to the formation of fullerenes or 

nanotubes. It was only studied as a theoretical model to predict the electrical properties 

of other carbon allotropes on that time. However, this thought of graphene being 

inaccessible was overturn in 2004 when free-standing graphene was unexpectedly 

found by peeling off graphites [15]. The founding of graphene makes it a rising star 

extensively explored by the electronics community nowadays, not just a theoretical 

model in condensed matter physics.  
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Figure 1.1. Carbon allotropes. Graphene (top) is a 2D honeycomb lattice of carbon 

atoms. Fullerenes (C60, bottom left) are viewed by wrapping graphene with the 

introduction of pentagons on the hexagonal lattice. Carbon nanotubes (bottom 

middle) are rolled-up cylinders of graphene. Graphite (bottom right) can be viewed 

as a stack of graphene layers [14]. 

 

  

1.3 Synthesis of carbon nanotubes and graphene   

1.3.1 Carbon nanotubes 

A nanotube can be thought by rolling a graphene sheet along a given direction to 

form a hollow cylinder of covalently bonded carbon atoms. Depending on how many 

graphene sheets (walls) are rolled concentrically, a nanotube can be further classified 

as: a single-walled carbon nanotube (SWNT) or a multi-walled carbon nanotube 

(MWNT). The first acquirement of nanotubes was reported by Iijima in 1991 [13] who 
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utilized the arc-discharge method to create nanotubes. Several Years later, two 

different methods to synthesize nanotubes by either laser-ablation [16] or catalytical 

[17] method were developed. The chemical vapor deposition (CVD) with 

catalyst-assistance method is most widely adopted to synthesize carbon nanotubes 

today, since it can produce nanotubes with few or free defects. Typically, SWNTs are 

1−2 nanometers in diameter and few micrometers in length, as shown in figure 2(a); for 

other specific applications, aligned SWNTs up to millimeter long have also been 

reported [18]. The diameters of MWNTs are usually in the range of 2-25 nanometers 

and several tens of micrometers in length (figure 2(b)). In addition, vertical MWNT 

forests (figure 2(c)) also have attracted a lot of interests in applications of inter-connect 

or as microfluidic devices; they can be grown up to several centimeters in length [19]. 

In this thesis, we focus on individual SWNT synthesized by CVD method with 

catalyst-assistance. 

 

 

 

 

Figure 1.2. Different types of carbon nanotubes. (a) Single-walled carbon nanotube (b) 

Multi-walled carbon nanotube (c) Carbon nanotube forests. (www. wikipedia.com) 
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1.3.2 Graphene  

Similar to nanotubes of single-walled and multi-walled forms, graphene can also be 

classified as single-layer, bilayer, and few-layers graphene. To distinguish the number 

of layers, one can simply place graphene on an oxidized Si substrate (SiO2=285 nm) 

to compare the contrast of graphene through the optical microscope [15], as shown in 

figure 1.3(a). The area with lighter color indicates single- or bilayer graphene. For 

more precise discrimination, one can measure the Raman spectrum of graphene and 

compare the ratio of G to 2D peaks [20] (figure 1.3(b)) to determine the layer numbers. 

To create graphene, three distinct approaches have been employed so far. The first 

method is the mechanical exfoliation of graphite, which is also known as the “Scotch 

tape” or peeling-off method [15]. In this approach, graphene sheets are obtained by 

repeatedly peeling off graphite with scotch tape. The second one is the CVD epitaxial 

growth, by which graphene film is synthesized by decomposing methane (CH4) on a 

metal (Ni, Cu, Ru) substrate [21-22] at high growth temperature. The third one is 

epitaxial growth on electrically insulating surface (SiC) at very high temperature 

(usually 1200~1600 
0
C) [23]. The principle of this method relies on that sublimation 

rate of silicon is higher than that of carbon; thus excess carbon atoms are left behind 

on the surface and rearrange to form graphene.  

The mechanical exfoliation of graphites and CVD epitaxial growth on metal 

substrates are most common methods adopted to obtain graphene. The mechanical 

exfoliation method yields small-area graphene sheets but with high quality since this 

method can avoid contaminations and chemical residues resulting from the fabrication 

and solution process. However, the main drawback of exfoliation method is that it can 

only produce small graphene pieces, leading to it useful only in the laboratories for 
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fundamental study. To produce large-scale graphene films, the CVD epitaxial growth 

on metal substrates is thought as a much feasible method. The growth of single-layer 

and bilayer graphene films up to wafer-scale on metal substrates has been demonstrated 

[24-26]. The main challenge of CVD method is the homogeneity of graphene films. In 

addition, since the graphene films are grown on metal substrates, an additional process 

step – transferring graphene from metal substrates to device substrates –is required for 

fabricating graphene devices. This transferring step may cause undesired contamination 

and chemical residues on the graphene films, degrading the quality of graphene films. 

Another serious concern is the wrinkle caused by the difference of thermal conductivity 

between the graphene and metal substrates. It may induce unwanted defects on the 

surface of graphene. In this thesis, we synthesized both single-layer and bilayer 

graphene on copper foils by CVD epitaxial method [25].  

 

 

 

Figure 1.3. Methods of determining layer numbers of graphene sheets. (a) Comparing 

color contrast through the optical microscope: the area with lighter color represents 

fewer layers [15]. (b) Raman spectrum of graphene and graphite. The G peak is at 

~1580 cm
-1

 and 2D peak is at ~2700 cm
-1

. The ratio of intensity of G peak to 2D peak 

shows obvious difference for graphene and graphite [20].    
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1.4 Electrical properties of carbon nanotubes and graphene 

1.4.1 Band structures 

Graphene is a 2D monolayer composed of carbon atoms arranged in a hexagonal 

structure (figure 1.4(a), left panel). The structure can be viewed as a triangular lattice 

with a basis of two atoms per unit cell. The lattice vectors a1 and a2 are written as:  

)3,3(
2

),3,3(
2

21 
a

a
a

a
 (1.1) 

 

, where a =1.42 Å  is the nearest carbon-carbon distance. The reciprocal-lattice vectors 

are then given by: 

)3,1(
3

2
),3,1(

3

2
21 

a
b

a
b



 (1.2)
 

In figure 1.4(a) (right panel), two points K and K’ named ‘Dirac points’ at the corners 

of the Brillouin zone (BZ) of graphene are particularly important for the band structure 

of graphene. The energy dispersion relation of graphene simulated by the tight-binding 

model is illustrated in figure 1.4(b). The Dirac points are where conduction band and 

valence band meet at energy E= 0 corresponding to the Fermi energy. The linear energy 

dispersion shows that graphene is a gapless semimetal and charges in graphene are 

massless Dirac fermions.   

Since nanotubes can be thought as formed by rolling up graphene, thus we can 

expect that nanotubes inherit their remarkable electrical properties from graphene. 

Rolling graphene to form nanotubes with diameters of few nanometers, the quantum 

confinement of electrons will result in the quantization of K values and produce unusual 

electrical properties related to the one dimensional transport. As a consequence, the 

band structure of a nanotube is equivalent to slicing the corn band structure of graphene 

at given K values, as shown in figure 1.4(c), showing nanotubes are either metallic or 

semiconducting [27].  
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Figure 1.4. Band structures of graphene and carbon nanotubes. (a) Honeycomb lattice 

and its Brillouin zone. Left panel: a1 and a2 are lattice vectors. Right panel: b1 andb2 are 

reciprocal-lattice vectors and K and K’ are Dirac points at the corners of Brillouin zone 

of graphene. (b) Linear energy dispersion of graphene. The conduction band and 

valence band meet at energy E= 0 corresponding to the Fermi energy. (c) Band structure 

of nanotube is equivalent to slicing the corn band structure of graphene at given K 

values [14, 27]. 

 

More specifically, a carbon nanotube can be specified by a set of two numbers (n, m) 

that determines the chirality of nanotube. These quantities are defined from the 

honeycomb lattice of graphene in figure 1.5(a). The chiral vector is Ch =na1+ma2 = (n, 

m) and the chiral numbers n, m are integers (0 ≤ |m| ≤ n). a1 and a2 are the lattice vectors 
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same as mentioned in figure 1.4(a). The length of the unit vectors is a, and we can 

express the diameter of a nanotube as: 

nmmn
aC

d
h

 22

  (1.3)
 

Metallic carbon nanotubes are obtained when the difference n-m is a multiple of 3 [27], 

and the rest are semiconductive nanotubes. So statistically, there should be twice as 

many semiconductors as there are metals. The chiral angle from the figure 1.5 (a) is 

defined with the expression: 

nmmn

mn

aC

aC

h

h









22
1

1

2

2
cos 





 (1.4) 

Depending on the chiral angle with respect to the lattice, the relative arrangement of 

the atoms in the wall of a nanotube with respect to the axis is different. As a result, 

nanotubes can be further classified as “armchair” carbon nanotubes (θ = 30
0
), “zigzag” 

carbon nanotubes (θ = 0
0
), and “chiral” carbon nanotubes (θ is arbitrary), as shown in 

figure 1.5 (b). 

 

 

Figure 1.5. Structures of carbon nanotubes. (a) A nanotube is constructed by 

connecting the sites O to A and B to B’. The vectors OA and OB define the chiral 

vector Ch. The chiral angle θ is measured with respect to the standard direction given 

in the figure (zigzag direction). (b) From top to bottom are an “armchair” carbon 

nanotube (θ = 30
0
), a “zigzag” carbon nanotube (θ = 0

0
), and a “chiral” carbon 

nanotube (θ is arbitrary), respectively [28].  
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1.4.2 Band gap 

The biggest difference between metals and semiconductors is that semiconductors 

have band gap, allowing the field-effect transistors (FET) made out of semiconductors 

able to switch off. This switch-off behavior is important for modern integrated circuits. 

Nanotubes can be either metallic or semiconductive determined by their chiral vectors, 

and the band gap of semiconductive nanotubes can be predicted by the band theory with 

Eg = 0.7/d (eV), where d is the diameter of nanotubes in nanometers [29]. On the other 

hand, for metallic nanotubes, most still have small band gap (typically less than 100 

meV) due to perturbations such as curvature, strain, and twist on the nanotubes. The 

three-terminal conductance measurement is widely adopted to provide a direct means 

to identify semiconductive or metallic nanotubes (see next transistor subsection).   

Graphene is a semimetal with zero band gap as shown in figure 1.6(i) [30], 

meaning that FETs with channels made out of large-area single layer graphene cannot 

be switched off. Thus, graphene FETs are limited for being applied in integrated 

circuits. To overcome this disadvantage, three distinct approaches to modify the band 

structure of graphene for opening band gap were proposed. The first method is to form 

graphene nanoribbons (GNRs) by constraining large-area single-layer graphene into 

one dimension [31-33]. The second one is by biasing bilayer graphene with dual-gate 

configurations [34-36] and the third one is to apply strain to graphene sheets [37].  

Theoretically, both two types of nanoribbons, armchair and zigzag nanoribbons, 

are predicted to have band gap (figure 1.4 (ii)) and the opening of band gap is 

approximately estimated proportional to the inverse of the nanoribbons’ width [32]. In 

addition, the band gap opening of nanoribbons has been demonstrated experimentally 

for the width down to 1 nm as well. Theory and experiments both show band gap in 
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excess of 200 meV [31-32]. Moreover, bilayer graphene is also gapless, and its 

valence and conduction bands have a parabolic shape near the K point, as shown in 

figure 1.4 (iii). When an electrical field is applied perpendicular to the bilayer 

graphene, band gap opens due to symmetry broken and the bands near the K point 

take on the so-called Mexican-hat shape, as shown in figure 1.4 (iv). The band gap 

opening was predicted by theory [34] and has been verified in experiments [35-36]. 

 

 

Figure 1.6. Band gap opening of graphene. Band structure around the K point of (i) 

large-area single-layer graphene, (ii) graphene nanoribbons, (iii) unbiased bilayer 

graphene, and (iv) bilayer graphene with an applied perpendicular electrical field [30]. 

 

 

1.4.3 Carbon nanotube and graphene transistors 

A general FET consists of a gate, a channel (usually made out of semiconductive 

materials) connecting source and drain electrodes, and an insulating layer separating 

the gate from the channel (figure 1.7(a)) [38]. The operation of a FET is simply by 

applying a gate voltage to control conductivity of the channel, and thus the drain 

current. For high-speed operations, FETs should respond quickly to the variations in 

gate voltages (VGS) and the fast response requires a short gate and fast carriers in the 

channel. In other words, thin channel and high carrier mobility are preferred. The high 
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mobility and thin thickness own by nanotubes and graphene make them potential 

candidates applied in high-speed nanoelectronics. The first nanotube FET was carried 

out in 1998 [39], and high-speed nanotube FET operating in gigahertz was 

demonstrated in 2004 [40]. In 2004, the observation of field effect in graphene was 

first reported [15], and then the first graphene transistor was fabricated in 2007 [41]. 

Year later, graphene FET operating in gigahertz was reported [42] as well. 

The operation of nanotube or graphene FET is analogous to the metal-oxide- 

semiconductor field-effect transistors (MOSFET). Here, a three-terminal nanotube 

transistor illustrated in Fig. 1.7(a) is taken as an example to describe the basic 

operation. The position of the Fermi level in a semiconductive nanotube can be tuned 

capacitively by the gate voltages. Negative (positive) charges built up in the nanotube 

are induced when positive (negative) voltages applied on the gate electrode. The 

additional charges will change the position of the valence and conduction bands relative 

to the Fermi level in the nanotube. As a consequence, the position shifting of Fermi 

level will modify the nanotube conductance. There are three different operation regimes 

when different gate voltages are applied (figure 1.7(b)). For a typical nanotube FET, 

nanotubes are usually p-type doped with excess positive charges. The p-type doping is 

due to the underlying oxide and various absorbates on the surface of nanotubes. As 

applying negative gate voltages, the Fermi energy is inside the valence band and the 

transport is due to the holes; thus this operation region is called “p-regime”. When gate 

voltages are 0~5V, the Fermi energy is in the band gap and the transport through the 

nanotube is “off”, which is called band-gap regime. For gate voltages larger than 5V, 

the Fermi energy will be shifted to the conduction band and the transport is due to 

electrons, which is called “n-regime” as shown in figure 1.7(c). 
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Figure 1.7. Operation of a carbon nanotube FET. (a) Schematic of a carbon nanotube 

FET. (b) Conductance vs. Vbg at the p-type, band gap and n-type regimes are 

illustrated. The maximum n-type conductance is less than the maximum p-type 

conductance. This is mainly due to tunneling barriers for electrons in the n-region. 

Since the contacts (Pd in this case) are typically p-type, there is no barrier for holes in 

the p-region. (c) Band diagram of p-type, band gap, and n-type operation regimes [38].  
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1.5 Mechanical properties of carbon nanotubes and graphene 

In terms of mechanical properties, nanotubes and graphene are the one of stiffest 

materials due to sp
2
 hybridized carbon-carbon bond. This remarkable mechanical 

property is characterized by the Young’s modulus (E). It has been demonstrated that the 

Young’s modulus of both nanotubes and graphene can reach ~1TPa [43-45], roughly 10 

times greater than the steel. Besides, they are also expected to withstand large strains of 

up to 6~10%. Moreover, the strength of carbon-carbon bond makes them quite flexible 

and able to return to their original shape after bending. This excellent mechanical 

property leads them to be applied in many fascinating applications. For example, 

flexible, high-aspect-ratio nanotube atomic force microscope (AFM) tips and 

nanotweezers have been demonstrated [46-47]. 

Another unique mechanical property is that nanotubes and graphene are not 

piezoelectric materials. Piezoelectric effect is that the strain caused by the deformation 

will induce a voltage across the material and this effect is reversible. For nanotubes, an 

electrical effect has been observed: the charges injected to nanotubes will cause the 

nanotubes to elongate or shrink and it has advantages over piezoelectric effect. It can 

achieve strains greater than 1% (10 times larger than piezoelectrics), operate at high 

temperature and be achieved by few volts rather than hundreds. Utilizing this electric 

effect, nanotube based nonvolatile random-access memory (NRAM) has been proposed 

[48]. The basic NRAM cell is composed of two nanotubes: one nanotube is suspended 

over another one perpendicularly. This NRAM cell can store a bit of information due to 

the bistable property. In the “on” state, the nanotubes will contact with each other; when 

it is “off”, both nanotubes are separated. The switch between “on” and “off” states are 

conducted by applying opposite (same) parity of voltages on nanotubes. Since the 
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states of a NRAM cell are switched mechanically, it does not encounter the problem 

of charge storage suffered by a conventional RAM and makes it is a very promising 

candidate as high-speed memory.  

The last mechanical property we would like to discuss is the change of band gap 

induced by strain. As mentioned in previous section, induced-strain is one of three 

approaches proposed for band gap opening of graphene. So far, this method has been 

extensively studied and the effect of uniaxial strain on the band structure has been 

simulated [37]. However, the simulation result shows that it is possible to open the 

band gap by inducing strain but it requires a global uniaxial strain exceeding 20%, 

which is difficult to achieve in practice. Moreover, little is known about if other types 

of strain will influence the band structure of graphene and more studies are needed to 

clarify these uncertainties.  

For nanotubes, their band structure is determined by the chiral vectors and the 

chirality is directly related to the bond length. Therefore, when a strain is induced, it 

will change the bond length and the periodicity of boundary condition, eventually 

leading to the change of band structure to decrease or increase the band gap. It has 

been predicted theoretically [49-50] that it is possible to modify the band gap of a 

semiconducting nanotube and induce a band gap in metallic tubes by applying strain on 

them. In addition, it has been experimentally shown that the band gap (Eg) of a 

semiconductive nanotube can be tuned by applying a small mechanical strain, σ [51] as 




3cos
%

100
meV

d

dEg


 (1.5)
 

, where  is the chiral angle and the sign up front depends on the exact wrapping 

vectors.      
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1.6 Previous works on carbon nanotube and graphene resonators  

1.6.1 Carbon nanotube resonators 

The first nanotube resonator was made out of MWNTs for the purpose of measuring 

the elastic modulus of nanotubes [52], and the experiment setup is illustrated in figure 

1.8(a). A DC voltage was applied on the nanotube to induce charges on it, and the 

nanotube was placed in an oscillating electric field created by applying an AC voltage to 

a nearby electrode. The motion of nanotube was actuated by this oscillating electrical 

field when the oscillating frequency matches the natural resonance frequency of 

nanotube. The motion of nanotube was then detected by using transmission electron 

microscope (TEM) [52] or scanning electron microscope (SEM) [53]. Later, another 

approach was proposed by using nanotube as a field emitter [54] to measure its 

resonance frequency. The nanotube was actuated electrically and the resonance 

frequency was determined by measuring the emission current. However, although both 

methods successfully detected the resonance of nanotube, a couple of issues were 

resulted from. First, to detect the resonance by using TEM or SEM, or applying few 

hundred volts to create emission current is unrealistic for any industrial application. 

Secondly, electron beams used for imaging in TEM and SEM will damage nanotubes 

both structurally and electrically. In addition, the sensitivities obtained by these 

methods are poor and limit further studies on nanotube resonators. To this end, an 

electrical method in conjunction with the concept of mixing technique has successfully 

actuated and detected nanotube resonators simultaneously on a single chip [55], as 

shown in figure 1.8(b). This approach simplifies the measurement setup, increases the 

measurement sensitivity significantly and has been widely adopted by the subsequent 

works based on nanotube resonators [56-60]. Thereafter, researchers were continuously 
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developing different methods in detecting the resonance of nanotube resonators. For 

example, the mechanical detection of nanotube resonators’ vibration has been 

demonstrated in air at atmospheric pressure by means of a novel scanning force 

microscopy (SFM) method [61]. The vibration of fundamental mode and higher 

eigenmodes was successfully imaged then.   

 

 

Figure 1.8. Previous works on carbon nanotube and graphene resonators. (a) 

Experimental schematic done by [52] and images of first and second harmonics of 

vibrating nanotube cantilevers. (b) Device geometry and diagram of experimental 

setup done by [55]. (c) First graphene mechanical resonators done by [65]. 

 

Due to their low mass and high Young’s modulus, nanotube resonators are 

expected to have ultrahigh resonance frequency. Nanotube resonators operating at 
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GHz have been implemented, showing their potentials applied in radio frequency (RF) 

circuits [56, 61]. Furthermore, the minimum detected mass of nanotube resonators at 

sub-attogram level were also demonstrated [57-60]. In addition, they were also used to 

study the quantum theories. For instance, cooling nanotube resonators to the phononic 

state with a constant electron current was demonstrated experimentally [62] and the 

mechanical vibration coupled the charge transport at low temperatures was also 

realized [63-64]. However, even though a host of works based on CNT resonators have 

been demonstrated so far, there are still some challenges left. Firstly, the conventional 

process techniques to fabricate nanotube devices result in unwanted contaminations 

and damages on nanotubes and limit their further applications. Thus, a simple process 

technique to fabricate ultraclean nanotube electronics is much desired. Secondly, the 

fundamental operations of nanotube resonators are still not fully explored, such as 

frequency tuning mechanisms and nonlinear dynamics. Lastly, the biggest challenge is 

to improve their low quality factors, which limit their sensitivity in sensing applications 

significantly. The low quality factor is attributed to several intrinsic dissipations and a 

potential solution will be to seek an external way to enhance the low quality factor.  

 

1.6.2 Graphene resonators 

The first graphene resonator was demonstrated by the Cornell group in 2007 [65]. It 

was fabricated by placing a mechanical exfoliated graphene sheet on the pre-patterned 

structure, as shown in figure 1.8(c). The resonance of graphene resonators was 

measured by using interferometry method, while the graphene beam was actuated 

through thermal expansion/extraction caused by shining the graphene sheet with a 

laser beam and detected by measuring the reflected light intensity with another laser 
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source. Later, the UAB group applied radio frequency voltages to electrostatically 

drive the suspended graphene sheets into motion and detect the mechanical vibrations 

by using scanning probe microscopy, which allowed identification and spatial imaging 

of the shape of the mechanical eigenmodes [66]. Though both methods successfully 

detected the resonance frequencies of graphene resonators, a self-detecting scheme is 

still preferred. To this end, the Columbia group adopted the measurement setup used 

in measuring nanotube resonators to detect graphene resonators [67]. Utilizing this 

electrical approach relies on the strong gate response of conductivity of single-layer 

graphene. Their results show the feasibility of actuating and detecting resonance on a 

single chip and open up the possibility of graphene resonators applied in other fields. 

Later, the Columbia group further simplified the measurement scheme to actuate and 

detect the mechanical motion directly by using a vector network analyzer [68].   

In the meantime, the Cornell group also tried to fabricate graphene resonators by 

replacing the exfoliated graphene with either graphene grown on SiC substrate or by 

CVD method [69-71]. Those resonators showed similar characteristics of low quality 

factor values (~100) at room temperature. The actual dissipations causing low Q are 

still unclear currently and spurious edge mode, clamping loss, and interlayer friction 

were suggested [72-74]. To figure out the possible damping in graphene resonators, 

the Cornell group changed the beam geometry by fabricating drum-like graphene 

resonators and obtained Q up to ~2400. The improvement of Q is believed due to the 

elimination of spurious edge mode [75]. Recently, nonlinear damping is demonstrated 

to play an important role in determining Qs of nanotube and graphene resonators [76]. 

However, more work are still needed in order to fully explore the behind mechanisms. 

In addition, like nanotube resonators, graphene resonators are also considered as good 

mechanical sensors in detecting mass, gas and strain [77-79]. So far, only very few 
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works based on graphene resonators have been reported. Many interesting issues such 

as quality factor enhancement, nonlinear dynamics, and single-molecule sensing are 

still waiting for being explored.   

 

 

1.7 Summary and outline of the thesis 

Carbon nanotubes and graphene are materials with excellent electrical and 

mechanical properties. Their nanometer cross section, high stiffness, great flexibility, 

and transistor properties make them ideal blocks in NEMS. We are therefore interested 

in carbon based NEMS resonators and focus on their fundamental operations. Chapter 

2 gives a short introduction regarding NEMS and beam theory. In addition, the origins 

of dissipations occurring in resonators and the conventional measurement setups are 

also included. Chapter 3 describes our unique one-step direct transfer process technique 

to fabricate pristine SWNT nanoelectronics. Using this process technique, both SWNT 

resonators and suspended SWNT p-n diodes are demonstrated. Chapter 4 describes the 

capacitive spring softening effect in SWNT resonators and the differentiation of 

vibrational modes. Chapter 5 presents parametric amplification in SWNT resonators, 

which allows us to enhance the quality factors of SWNT resonators at least 10 times 

and obtain the highest Q reported at room temperature. Chapter 6 presents our ongoing 

work on graphene resonators. The ability to synthesize large areas of both single-layer 

and bilayer graphene films with well homogeneity allows us to systematically study 

the graphene resonators. Lastly, we propose the future research directions of graphene 

resonators including exploring the loss mechanisms and realizing parametric 

amplification for Q enhancement in graphene resonators.  
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CHAPTER 2  

REVIEW OF NANOELECTROMECHANICAL SYSTEMS 

 

2.1 Introduction 

NEMS are emerging technologies over the last decade and evolving continuously 

with the progress of lithography and material synthesis. They are considered as MEMS 

scaled down to submicron dimensions, and the shrink of dimensions brings out the 

reduction of the system’s effective mass, directly leading to the increase of resonance 

frequency and the decrease of the system’s force constant. These specific properties 

straightly translate into high sensitivity to the surroundings, low operating power 

consumption and more possibilities of applications employed with their nonlinear 

properties. So far, they have been served in many unprecedented applications [1-3] and 

used for fundamental studies of classic and quantum physics [4]. In this chapter, we 

will briefly introduce the development of NEMS to date [5-6]. 

In general, NEMS can be depicted as generic multi-terminal electromechanical 

systems, as shown in figure 2.1. The electrical input signals are transduced as 

mechanical stimulus to stimulate the mechanical system and the mechanical response 

are converted to electrical signals by the output transducers. Additional electrical 

control signals can be applied to perturb the mechanical system in order to change its 

properties, such as resonance frequency and quality factor. Various types of device 

geometries have been employed in NEMS today and the three most common seen 
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geometries, cantilevers (singly-clamped beam) [7], doubly-clamped beams [8], and 

paddles (torsional resonators) [9] are illustrated in figure 2.2, respectively. In this 

thesis, we adopted the doubly-clamped beam structure to fabricate carbon nanotube 

and graphene nanoelectromechanical resonators  

 

 

Figure 2.1. Schematic of a multi-terminal nanoelectromechanical system. Electrical 

input signals are transduced as mechanical stimulus to excite the system and 

mechanical responses are converted to output electrical signals. Additional electrical 

control signals can be applied to perturb the mechanical system in order to change its 

parameters [5].  

 

 

 

 

Figure 2.2. Various types of NEMS resonators. (a) A cantilever (singly-clamped beam) 

[7] (b) Doubly-clamped beams [8] (c) A paddle (torsional resonator) [9]. 
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The resonance frequency of MEMS resonators can be calculated by using 

molecular dynamics (MD) simulation and it has been proven that these calculations are 

still valid even when structure sizes are reduced down to nanoscale [10]. Thus, the 

fundamental resonance frequency of a doubly-clamped beam NEMS resonator can be 

expressed [11]:  

)(05.1
2 2

0
0

L

hE
f




  (2.1) 

, where E is the elastic modulus, ρ is the mass density of the beam, and h and L are the 

thickness and length of the beam, respectively (see section 2.3 for details). Basically, 

the behavior of a mechanical resonator in the linear operation regime can be 

approximated by using a simple harmonic oscillator (SHO). As a result, the SHO 

model is first introduced in section 2.2 to illustrate the basic operation of mechanical 

resonators. Following the SHO section, beam mechanisms and nonlinear dynamics 

based on doubly-clamped beam resonators are presented in section 2.3 for further 

discussion.  

To actuate and detect the resonance of NEMS resonators, various techniques, such 

as optical interferometry and magnetomotive have been utilized [12-13]. In section 2.4, 

we will briefly describe these two measurement schemes. Then, in section 2.5, we will 

focus on a capacitive approach in conjunction with the mixing technique to actuate and 

detect the motion of nanotube and graphene resonators electrostatically [14-15].  

The minimum operation energy for a system is defined as the energy which drives 

the system is comparable to the thermal fluctuations (kBT) and can be estimated as  

Pmin= kBTω0/Q  (2.2) 

, where kB is the Boltzmann constant, T is the temperature in Kelvin, ω0 is the resonance 

frequency and Q is the quality factor. Large Q means low operating power level and 
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high attainable sensitivities. For NEMS device dimensions made out via e-beam 

lithography today, the minimum power level is usually in the order of attowatts [5].  

The quality factors of typical NEM resonators are in the range of 10
3
-10

5
, which are 

much higher than those usually available with electronic oscillators. A distributing 

trend in the quality factors of resonators as a function of resonators’ volume has been 

noticed [5]. As the cross-section area further shrinks down to several nanometers, the 

quality factors decrease below 1000. The quality factors are affected by various loss 

mechanisms and will be discussed in section 2.6. High operating frequencies with low 

power consumption and high quality factors have made NEMS promising for a variety 

of fascinating applications. Two emerging applications will be described in section 2.7.   

 

 

2.2 Simple harmonic oscillators 

A SHO is a well-studied model, and broadly adopted in both classic and quantum 

physics. In addition, it is also the basic to understand the operation of any resonance 

systems. A common example of a SHO is a massless spring with a spring constant k and 

a mass m attached to it, as shown in figure 2.3(a). For small displacements, the spring 

follows Hooke’s law, F = kx, where x is the displacement from the equilibrium. If x 

describes the position of the mass, the equation of motion is given by:  

0)()(  tkxtxm   (2.3) 

The solution of the equation (2.3) is in the form of: 

)cos()(
00

  txtx  (2.4) 

, where mk /
0
 is the resonance frequency of the system, and x0 and  are the 

amplitude and the phase of the motion, respectively. In reality, a damping term related 
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to the velocity of the mass (dx/dt) and a driving force term should be included. The 

equation of motion then can be modified as: 

)cos()()()( 0 tFtkxtxbtxm    (2.5) 

, where b is the damping coefficient, the driving force is assumed sinusoidal, and F0 is 

the force amplitude. The steady solution to the modified motion equation is:  
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, where  

mb 2/  (2.8) 

mk /
0
  (2.9)  

Considering the damping in the system, the quality factor is defined in terms of the total 

energy divided by the energy loss in the system: 

)(2
periodoneduringlostEnergy

EnergyTotal
Q   (2.10) 

Therefore, we have Q=ω0/2β and b=mω0/Q and equation (2.5) can be rewritten as: 

)cos()()()( 0
0 tFtkxtx

Q

m
txm 


   (2.11) 

Figure 2.3(b) shows the frequency dependence of the amplitude and the phase of the 

response. The amplitude reaches maximum at the resonance frequency (f = 50), where 

the value is Q times higher than the non-resonance response. The frequency 

dependence of the amplitude is in the form of a Lorentzian shape and the width of half 

maximum is given by Δω=ω0/Q. In addition, the phase of the signal goes through 180
0 

phase shift.  
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Figure 2.3. A simple harmonic oscillator. (a) A SHO has a massless spring with a spring 

constant k and a mass m attached to it. (b) The amplitude and the phase of the SHO 

response are plotted as a function of the driving frequency. The maximum amplitude at 

the resonance frequency is Q times larger than the off-resonance response. At the same 

time the phase of the response goes through 180
0
 shift [20].   

 

 

Figure 2.4. Lateral vibration of a beam. (a) Schematic of a bending beam. (b) Force 

acting on an element. 

C 
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2.3 Beam mechanisms 

2.3.1 Euler-Bernoulli beam equation 

Consider a beam of length L subjected to an external force f (x, t) per unit length, as 

shown in figure 2.4(a). Assume the beam vibrates laterally and its vertical displacement 

in the y direction is denoted as uy (x, t). The forces acting on an infinitesimal element are 

depicted in figure 2.4(b), where M (x, t) is the bending moment and V (x, t) is the shear 

force. If the beam has a Young’s modulus E, a mass density ρ, a cross sectional area A 

and moment of inertia I about the axis perpendicular to the plane x-y, according the 

Newton’s second law, the net forces and the moment equation at point C are given by: 

 
yy

umF 
 (2.12) 

  0
C

M  (2.13) 

, where m is the mass of the element equal to ρAΔx and yu is the acceleration in the y 

direction. Summing the forces in figures 2.4(b), equation (2.12) becomes: 
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Applying the moment equation at point C, equation (2.13) becomes: 

0
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For an infinitesimal Δx, ΔV and ΔM are approximated as: 

x
x

M
Mx

x

V
V 









 ,  (2.16) 

Substitute equation (2.16) into equation (2.14) and (2.15) and ignore higher order term:  
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Substitute equation (2.18) into equation (2.17), then it yields: 
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From Euler-Bernoulli beam theory, the bending moment M is given by:  
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Substitute equation (2.20) into equation (2.19), and the equation of motion is obtained: 
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For free vibration, F=0, then the equation reduces to: 
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Solving equation (2.22) with the method of separation of variables uy (x, t) =U(x)T(t) 
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The general solution U (x), which is called the normal mode, is in the form: 

 ,sinhcoshsincos)(
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, where C1, C2, C3, and C4 are constants and β=ωn
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Since the moment of inertia for a beam with a rectangular cross section is I = bh
3
/12, 

where b is the width and h is the thickness, then f0 = ω0/2π can be rewritten as:   




E
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h
f

20   (2.26) 

, where α is 1.05 for doubly-clamped beams and 0.162 for cantilevers [11]. 
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In reality, tension in the beam has to be included. For a tensile tension, equation (2.22) 

then is written as:  
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,where T is the tension in the beam, which is composed of its inherent tension T0 and 

the additional tension ΔT due to its bending that induces an extension ΔL in the length 

of the beam. ΔT is given by the strain, or ΔL/L multiplied by Young’s modulus E and 

cross section area A. Therefore, equation (2.27) becomes: 
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A general solution to equation (2.28) is: 
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And the fundamental resonance frequency (f) with tension being considered is 

3

2
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TL
ff   (2.30) 

, where f0 is the fundamental frequency as expressed in equation (2.26). In addition, 

the tension can be compressive and under compressive tension, “+” is replaced by “-“, 

which cause a decrease in resonance frequency. 

 

 

2.3.2 Nonlinear dynamics in NEMS resonators 

Nonlinear behaviors observed in NEMS resonators have attracted great interests 

over the last few years [16]. For a practical need, it is necessary to understand these 

behaviors in order to avoid them when they are unwanted and exploit them efficiently 
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when they are helpful. The origins of nonlinearities may come from the effect of 

external potential or the device geometry, where the Duffing nonlinearity, αx
3
, is 

induced. In addition, they may originate from the detection/actuation schemes due to 

practical reasons. In fact, the nonlinearity appears not only in the form of αx
3
, but also 

possibly occurs in the damping mechanisms x
2
*(dx/dt), which has been demonstrated 

important in investigating nanotube and graphene resonators [17].  

 

A. Duffing resonators 

Modeling a mechanical resonator as a SHO is usually a good approximation, since 

most materials can sustain relatively large deformations without breaking away the 

stress-strain relation from a linear fashion. However, nonlinear behaviors may occur 

even before the intrinsic nonlinear regime is reached. As a consequence, they may 

enter the equation of motion in the form of a force which is proportional to the cube of 

the displacement αx
3
, and will turn a SHO into a so-called Duffing resonator. 

Qualitatively speaking, the Duffing nonlinearity, αx
3
, can be positive to assist the 

restoring force, making the resonator stiffer, and lead to the increase in resonance 

frequency. On the other hand, it can be negative as well, against the restoring force, 

letting the resonator softer, and reduce the resonance frequency. For a quantitative 

view, the equation of motion with Duffing nonlinearity included can be written as: 
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, where α is given by [18]:   
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The Duffing nonlinearity is proportional to the cube of the displacement, so for small 

displacement, it can be neglected and the response is still Lorentzian. As the driving 
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amplitude increases, it starts to affect the response and above the critical amplitude 

(ac), the peak is pulled to the higher frequency and a backbone curve shape appears, as 

shown in figure 2.5 (a). The critical amplitude, ac, is the onset of the nonlinearity and 

expressed as [18]:   

Q
ac




33

8
0  (2.32) 

It has been demonstrated that the linear operation dynamic range (DR) is directly 

related to the critical amplitude, while small critical amplitude will lead to small 

useful linear dynamic range. It has also been further approved that the onset of this 

nonlinear regime decreases with decreasing diameter, while the thermomechanical 

noise increases with aspect ratio. So for nanotube and graphene resonators with high 

aspect ratio, the useful linear dynamic range is severely limited and result in that many 

applications will involve operation in the nonlinear regime. 

 

B. Nonlinear damping in resonators  

We further consider the effect of nonlinear damping (x
2
*(dx/dt)) and include it in 

the equation of motion, and therefore the equation (2.31) is modified as: 

)cos()()()()()( 0
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0 tFtxxtxtkxtx
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m
txm 


   (2.33) 

, where η is the nonlinear damping coefficient. By solving equation (2.33) (see ref. [16] 

for details), we obtain the modified critical amplitude (ac’), which is proportional 

to
'3

1


, where




 0' , and the magnitude of the response︱a︱is plotted as a 

function of driving frequency in figure 2.5 (b). In figure 2.5(b), the thin solid curve 

shows the response without any nonlinear damping (η = 0), which is similar to the 
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curve shown in figure 2.5(a). The thin dotted curve shows the response without any 

linear and nonlinear damping included (Q
-1

= 0, and η = 0). However, as the nonlinear 

damping is put into consideration, it will reduce the critical amplitude (the thick dotted 

curve shown in figure 2.5(b)). Since the linear dynamic range is directly related to the 

critical amplitude, reduce of critical amplitude caused by the nonlinear damping will 

lead to the decrease of useful linear operation range.  

 

 

 

 

Figure 2.5. Nonlinear dynamics in NEMS resonators. (a) Duffing resonator response: 

amplitude response vs. driving frequency [18]. (b) Duffing resonator response with 

nonlinear damping term included [16]. The thin solid curve show the response without 

any nonlinear damping (η = 0). The thin dotted curve shows the response without any 

linear and nonlinear damping (Q
-1

= 0, and η = 0). The thick dotted curve is the 

response with η not equal to zero, and we can see significant reduction of the critical 

amplitude. 
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2.4 NEMS measurement techniques 

Optical, magnetomotive, and electrostatic (capacitive) measurement schemes have 

been widely adopted to measure the resonance of NEMS resonators. However, as the 

dimensions of resonators are scaled to nanometers, these methods somehow become 

difficult scalable. They are limited due to the diffraction of light or due to the effect of 

increasing parasitic capacitance for both magnetomotive and capacitive schemes. In 

this section, we briefly introduce the interferometry and magnetomotive schemes and 

leave the electrostatic setup discussed later in section 2.5.  

 

2.4.1 Optical interferometry 

The interferometry setup is illustrated in figure 2.6(a) [13, 19]. The intensity of a 

blue diode laser focused on the beam is modulated by a network analyzer, to cause a 

periodic contraction/expansion of the beam, then leading to motion. The vibration of 

the beam is then detected by monitoring the reflected light intensity from a second red 

laser with a high-speed photodiode. The main advantage of this approach is that the 

resonating structure does not require electrical contacts, while the disadvantage is that 

the effectiveness of driving a beam depends directly on the proximity of the laser spot 

to the structure and the thermal conductivity of the material. Therefore, when the 

resonators further shrink down, it is getting harder to realize this excitation scheme in 

measuring resonance. 

 

2.4.2 Magnetomotive 

To actuate the resonator, a conducting mechanical structure, usually a conducting 

loop such as a doubly-clamped beam, is placed in a static magnetic field (B), which is 
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perpendicular to the plane of vibration, as shown in figure 2.6(b) [12]. With an AC 

current (I) passing through the beam, an AC Lorentz force (FLorentz = IBL; L is the beam 

length) is induced to drive the beam. The maximum vibration is expected to occur 

when the AC current frequency matches the natural resonance frequency. The motion 

of the beam is then detected by measuring the electromotive force (EMF) across the 

beam which is created when the flux enclosed in the conducting loop varies. The main 

drawback of this scheme is that for small resonators whose resistances are much higher 

than the impedance of the measurement circuit, the impedance mismatch makes it 

difficult to detect high frequency signals.  

 

 

Figure 2.6. Two common NEMS measurement schemes. (a) Optical interferometry 

[19]: a blue laser is modulated by a network analyzer to cause contraction/expansion 

of the beam, then leading to motion. The vibration is detected by monitoring the 

reflected light intensity by using a second red laser with a high-speed photodiode. (b) 

Magnetomotive [12]: with an AC current passing through the beam, an AC Lorentz 

force is induced to drive the beam. The motion of the beam is detected by measuring the 

electromotive force across the beam. 
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2.5 Electrostatic (Capacitive) measurement scheme  

Due to their extremely small cross-section, it is difficult to actuate and detect the 

carbon nanotube resonators’ resonance by using conventional optical interferometry or 

magnetomotive techniques. To this end, an electrostatic measurement scheme in 

conjunction with the concept of mixing theory has been employed [14], which allows 

us to actuate and detect the resonance of nanotube resonators simultaneously on a 

single chip. Owing to its simplicity and sensitivity in detecting the resonance signals, 

we adopted this scheme for studying nanotube and graphene resonators in this thesis. 

Here, we summarize this technique in detail from previous work [20].  

 

2.5.1 Actuation of carbon nanotube resonators   

The motion of CNT is actuated through the electrostatic interaction between the 

tube and the underneath gate electrode. Appling gate voltage (Vg) will induce extra 

charges on the CNT given by q = CgVg, where Cg is the capacitance to the gate. As a 

result, an electrostatic force (Fel) is induced to pull down the CNT and expressed as: 

2'

2

1
ggel VCF   (2.34) 

where C’g is the derivative of Cg with respect to the distance between the CNT and gate.  

Modulating Vg with an AC voltage at frequency ω, the modulated gV
~

is then: 
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Substituting equation (2.28) into equation (2.27) and neglecting the higher order term, 

the electrostatic force is expressed as: 
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From equation (2.36), Fel has two components: the DC term (
2'

2

1 DC
ggVC ) controlled by 

Vg
DC

 will increase the tension on the CNT and the AC term ( 
g

DC
gg VVC

~' ) caused by 


gV

~
will lead the CNT into motion. As driving frequency ω approaches the resonance 

frequency ω0, the displacements become larger and reach the maximum as ω = ω0. 

 

2.5.2 Detection of resonance   

To detect the motion of nanotube, we rely on its transistor properties. Since the 

conductance of nanotube is determined by the induced charge on it [18], therefore, the 

modulation in the induced charge ( q~ ) will lead to a modulation in the conductance, 

qdqdGG ~)/(
~
 . The induced charge is modulated by either the applied AC gate voltage 

( 
gV

~
) or the capacitance to the gate ( )(

~
gC ): 

 gg
DC
gg VCVCq

~
)(

~~   (2.37) 

, where the cross term is neglected since the amplitude of modulation is assumed small. 

If Z(ω) is the distance between the nanotube and the gate, Z0 is the initial distance, and z 

(ω) is the vibration amplitude, then Z(ω) is express as: 

)cos()()( 0 tzZZ    (2.38) 

In addition, the modulated )(
~

gC caused by the nanotube’s motion is approximated as: 

)()(
~ '  zCC gg   (2.39) 

Therefore, the conductance modulation due to the vibration of nanotube is: 
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In equation (2.40), the conductance is modulated with the driving frequency and is 

proportional to the amplitude of vibration. The maximum conductance occurs as the 
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driving frequency equals to the resonance frequency. However, for nanotube resonators 

with length in several μm, the resonance frequencies are around tens of megahertz. 

Thus, to measure the conductance modulation directly, we have to detect this small 

electrical signal at a high frequency out of a highly resistive device. High operating 

frequency and high resistance result in low readout frequency (only few hundreds of 

hertz), which is much smaller than its resonance frequency. To solve this difficulty, the 

concept of mixing technique is employed. 

 

2.5.3 Mixing theory 

In general, the mixing technique is to utilize a transistor as a mixer to up-convert or 

down-convert the signal frequency and this concept has been widely implemented in 

communications and RF circuits with Si-based transistors. Mixing technique based on 

nanotube transistors has also been demonstrated [22] and this nonlinearity in the I-Vg 

dependence solves the difficulty of detecting the resonance of nanotube resonators 

caused by the low readout frequency. The mixing theory is described briefly below: 

If the conductance (G) of nanotube is modulated at frequency ω, G is then written as: 

 GGtGGG DCDC ~
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~
  (2.41) 

And assume the source electrode is modulated at a slightly offset frequency ω+Δω 
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Since the current I is the product of the Vsd and G, with equation (2.41) and (2.42) and 

without considering the current at LO frequency (  
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In equation (2.43), the amplitude of the mixing current (I
Δω

) at the intermediate 

frequency Δω is equal to  
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Since the intermediate frequency Δω can be arbitrary small, this technique allows us to 

measure the amplitude of high frequency conductance modulations of nanotube by 

measuring the mixing current at frequencies that are within the readout bandwidth. 

 

2.5.4 Measurement setup 

There are three kinds of measurement setups used to implement the mixing concept. 

First one is called “two-source setup”, where two RF signal generators and an external 

mixer are required. The second one is called “single-source setup”, where the concept 

of amplitude modulation (AM) is utilized and only one signal generator is needed. Last 

is “DC mixing current setup”, where the mixing current is measured in the DC level.  

 

A. Two- source setup 

The “two-source setup” is illustrated in figure 2.7(a). One RF signal is added to a 

DC Vg through a bias-T and applied to the gate. The AC signal (ω) applied on the gate 

is to drive the nanotube and the DC voltage is to increase the tension on the nanotube. 

The second RF signal (ω+Δω) from the other RF generator is applied to the source for 

mixing. The mixing current through the nanotube is detected by a lock-in amplifier and 

the reference signal to the lock-in amplifier is provided by separately mixing these two 

RF signals by an external mixer. The lock-in amplifier can also serve as a low-pass 

filter to eliminate the high-frequency components from mixer. All voltages are given by  
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))cos((
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, where ω, Δω, and  are driving frequency, offset frequency and the gate-source phase 

difference, respectively. 

 

B. Single-source setup 

Single-source setup is to utilize the concept of effective gate voltage (Vg
eff

) felt by 

the nanotube. This concept can be realized by performing AM within a single RF signal 

generator, which simplifies the measurement setup and reduces demands of 

instruments. Vg
eff

 felt by a nanotube is given by the voltage on the gate with respect to 

the potential of a nanotube, Vg−Vtube. If an AC signal is applied to the source, Vg
eff

 can 

be written as:  


sd

DC
g

eff
g VVV

~

2

1
  (2.47) 

In equation (2.47), we found that it is not necessary to apply an AC signal on the 

gate to actuate the nanotube. In principle, both driving signal (Vsd
ω
) and the mixing 

signal (Vsd
ω+Δω

) can be applied to the source. This significantly simplifies the setup 

because we can produce both signals with one RF signal generator by using its built-in 

AM capability, as shown in figure 2.7(b). AM at frequency Δω with strength m for an 

arbitrary signal Acos(ωt) is defined as: 

))cos(())cos((
2

)cos(

)cos())cos(1(

tt
Am

tA

tAtmV
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






 (2.48) 

Therefore, if an AM signal is applied to the source electrode, it is equivalent to: 

)cos(
~~

tVV sdg    (2.49) 

))cos((
~~

tmVV sdsd    (2.50) 
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Vsd
ω+Δω

 will mix with Vg
ω
 and produce a signal of the same phase and magnitude. 

C  DC mixing current measurement 

In previous two setups, we measure the current signal at arbitrary small frequency 

Δω. This arbitrary Δω can be very small even to be zero, meaning that we can measure 

the resonance signal in the DC level without a lock-in amplifier required. This also can 

be explained by expressing Isd with a Taylor expansion. 
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For simplicity, Vsd can be zero and we have Isd 
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If δV=Vaccos(ωt), then 
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The DC mixing current term is  


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This setup is much simpler than previous two since only one signal generator is required 

and no lock-in amplifier is needed. However, this setup has its own drawbacks: first, 

since the current amplifier will produce DC voltage, therefore it needs to be zeroed in 

order to distinguish the mixed current from the current due to this amplifier voltage. In 

addition, the noise level is higher at 1 KHz due to 1/f noise.  
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Figure 2.7. Electrostatic measurement setups of measuring nanotube resonators. (a) 

Two-source setup. Two high frequency signals are applied on the gate (HF) and on 

the source ((LO). A DC gate voltage is coupled with HF signal through a bias-T and 

connected to the gate. The mixing current is detected by the lock-in amplifier. The 

reference signal to the lock-in amplifier is provided by mixing these two high 

frequency signals with an external mixer. (b) Single-source setup. Both driving and 

mixing signals can be produced with one RF signal generator by using its built-in 

AM capability. 
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2.5.5 Fitting the resonance frequency 

Once the mixing current is measured, the next step will be to extract the resonance 

frequency and quality factor from it. For the convenience, here we reproduce the 

mixing current I
Δω

: 

sdgg
DC
ggsd VVCVzC

dq

dG
VGI

~
)

~
)((

2

1~~

2

1 '    (2.55) 

, where sdV
~

and gV
~

are the AC voltages on the source and gate electrodes, respectively. 

Cg is gate capacitance, dG/dq is the transconductance, and z(ω) is the amplitude of 

vibration. In equation (2.55), the mixing current is the combination of two current 

sources. The first term called “I
Peak

” is the current due to the mechanical vibration of the 

nanotube. The second term, I
BG

, is the current due to the direct electrical modulation of 

the nanotube’s potential by the AC gate voltage and is frequency independent. We can 

further derive I
Peak 

(ω) and I
BG 

(ω) with the solution to SHO and get: 
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dq
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2

1
)(   (2.57) 

In principle, we could just add these two terms to form the total current. However, 

since these terms are from very different physical origins. The I
Peak

 comes from the 

electrons driven on and off of the nanotube due to the change in the potential in phase 

with the mechanical motion of the nanotube. The I
BG

 originates from the electrons 

moving on the nanotube due to the change in the potential in phase with voltages 

applied to the gate and source electrodes. Therefore, there is an arbitrary phase shift 

between these two terms, which causes them to interfere with each other [23]. 

Therefore, to fit with the total current, we have to add the peak and the background 
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current contributions with a phase shift Δ between them. The total current then can be 

written as: 
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For further simplification, since the background current changes with driving 

frequency, for the frequency interval of the resonance, we can approximate its 

frequency dependence by a straight line. So I
BG

 can be expressed as 
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BG   (2.59) 

Substituting equation (2.59) into equation (2.58), total mixing current is expressed as 

the following form 
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A, B, H, f0, Γ and Δ are independent fitting parameters. We can convert these fitting 

parameters into experimental parameters, such as the resonance frequency (f0), quality 

factor (Q), I
Peak

, and I
BG

 in the following fashion. 


 0

f
Q  (2.61) 

HQI Peak   (2.62)  

0BfAI BG   (2.63) 
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2.6 Losses 

Quality factor is a major figure of merit for NEMS resonators. Firstly, the inverse of 

Q describes the energy loss in systems and is additive for different dissipation 

processes. Secondly, Q delivers the characteristics of NEMS resonators straightly. For 

example, the sensitivity of mass or force sensing is proportional to the inverse of Q, 

and the bandwidth of being a RF filter is also determined by Q. Typical NEMS 

resonators operate with Qs in the range of 10
3
-10

5
. However, as the cross-section area 

further shrinks down to few nanometers, Qs are usually below 100 and rarely exceed 

1000. The variation of NEMS resonators’ Qs is due to a variety of dissipations and 

these damping mechanisms have been extensively explored thus far. Therefore, it is 

worthwhile to discuss these dissipations here as studying NEMS resonators.  

The sources of dissipations in NEMS resonators can be generally divided into two 

categories as either intrinsic or extrinsic dissipations. Intrinsic losses may come from 

defects and impurities within the lattice or from fundamental processes within the 

lattice such as phonon-phonon interactions and electron-phonon interactions. Extrinsic 

losses, such as gas friction, clamping loss, and surface loss are due to interactions with 

their surroundings. To improve Q, little can be done for intrinsic losses to control 

dissipation from these intrinsic sources rather than choosing resonator materials 

carefully. On the other hand, eliminating dissipation from the extrinsic sources is more 

realistic and feasible by lowering pressures or changing device geometries. Below 

several common intrinsic and extrinsic losses in NEMS resonators will be described. 

We also added comments on these losses to discuss their influence in determining Qs 

of nanotube resonators.  
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2.6.1 Intrinsic Losses 

In a perfect crystal, the intrinsic dissipations come from fundamental processes in 

the lattice, such as phonon-phonon interactions and electron-phonon interactions. On 

the other hand, in a defected crystal, the losses are due to the defects and impurities in 

the lattice. These intrinsic dissipations, in principle, set the upper bounds of resonators’ 

Qs, since little can be done to control these intrinsic losses. Here, we summarize some 

common intrinsic losses occurring in NEMS resonators and more thorough details can 

be found in [8, 24-26]. Many of these intrinsic losses can be calculated with a standard 

anelastic solid model [25]. The concept of this model is that mechanical vibration of a 

solid takes the system out of equilibrium. For an anelastic solid, this state is not stable, 

and the system tends to relax to its equilibrium through various mechanisms within a 

finite relaxation time. These relaxation mechanisms such as interaction with 

point-defects and thermal relaxation will lead to energy dissipation from the 

mechanical mode and is expressed: 


















2

1

)(1 


Q  (2.64) 

, where ω is the mechanical vibration frequency and Δ is the mechanism-dependent 

dissipation strength and τ is the relaxation time.  

  

A. Phonon-Phonon interactions 

A real crystal is always aharmonic and this aharmonicity in the lattice causes the 

nonlinearity between the stress and strain in a solid, allowing the possibility of energy 

transfer between phonon-phonon scatterings. For a mechanical resonator with length L, 

it can be viewed as an acoustic mode with wavelength L. The energy transferring due 

to phonon-phonon scattering means that an acoustic mode can lose energy to higher 
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energy thermal phonons. The phonon-phonon interaction can be further classified by 

comparing the mean free path (lT) of thermal phonons to the wavelength of the acoustic 

mode. When lT is comparable to L, the ballistic limit occurs. In this case, the losses to 

the resonator are due to individual scattering between the acoustic mode and thermal 

phonons, which is called Landau-Rumer effect. On the other hand, when lT <<L, 

diffusive limit occurs. The loss results from thermal phonons relaxing to equilibrium, 

which is called Akhizer effect. In this case, the phonons are viewed as a viscous 

“thermal gas” for the acoustic mode. The extreme diffusive case is called thermoelastic 

effect, in which phonons thermalize so fast that they can be thought as creating a 

temperature field. This temperature gradient provides a dissipation path for the system 

to dissipate energy, leading to loss. Thermoelastic effect is suggested a potential 

dissipation that results in low Qs of nanotube resonators and more details will be 

discussed in section 5.2. 

 

B. Electron-Phonon interactions 

Electron-phonon interaction occurs in metallic resonators. The mechanical motion 

of the resonator results in the ion oscillation and creates an oscillating electrical field. 

Therefore, the free electrons can be considered as a viscous gas that moves in this field 

and dissipates energy. The dissipation is calculated in the form [24]: 

22
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e

mE
Q eF




  (2.65) 

, where EF is the Fermi energy, and e and me are the electron charge and electron mass, 

σ is the electric conductivity, ρ is the density, and v is the velocity of sound wave. From 

previous literature, Qs of nanotube resonators measured by both electrical and 

nonelectrical methods are consistently low at room temperature, suggesting moving 
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electrons are not involved in producing dissipation. In addition, both metallic and 

semiconductive nanotube resonators show similar Qs. Therefore, it is reasonable that 

we can eliminate this damping source in nanotube resonators.  

 

C. Two-level system 

In general, internal defects include both surface defects and bulk defects. These 

defects can be contamination, intrinsic impurity atoms in the lattice and dangling or 

broken bonds on the surface. The dissipation caused by the internal defects is due to 

the acoustic phonon captured by these defects, which allows transition between two 

configurational minima. This mechanism can be addressed by using the formalism of 

two-level systems (TLS) [26]. The dissipation of a TLS with energy E has been 

calculated in two extreme cases:  
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 @,@
2

1
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1
 (2.66) 

The dissipation caused by TLS in both nanotube and graphene resonators have been 

theoretically calculated [27]. The calculated dissipation (Q
-1

) is around 10
-22

 which is 

much smaller than the experimental value, suggesting that we can ignore this effect 

when considering potential damping mechanisms in nanotube resonators.   

 

 

2.6.2 Extrinsic Losses 

A. Gas friction 

The gas can be the dominant dissipation source for a resonator depending on the 

pressure inside the chamber. At high pressures (approximately above 1 torr), air can be 

considered as a viscous fluid. This viscous damping by the surrounding gas is 
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expressed as pQgas ~1 [28]. Fortunately, it is easy to achieve lower pressures while 

viscous damping no longer dominates. At lower pressures, where the mean free path 

of the gas molecules is much larger than the length scale of the device, energy may still 

be dissipated through momentum transfer to individual molecule. In this case the 

dissipation is calculated to be [29]:  

eff

gas
M

pA
Q 1  (2.67) 

, where p is the pressure, A is the surface area, Meff is the effective mass of the 

resonator, ω is frequency, and v is the thermal velocity of the gas. From equation 

(2.64) and multiple experiments, gas friction is not a significant dissipation source 

below 10m torr and thus has little effect on Q, as shown in figure 2.8(a). In previous 

studies and our work, nanotube resonators were all measured at pressure below 10
-4

 

torr, indicating that gas friction should be minimized and will not contribute low Qs. 

 

B. Clamping loss 

Clamping loss is that a resonator loses its mechanical energy to the supports due to 

the strain at the connection to the support structure. In principle, it is expected to be 

temperature independent and especially important to doubly-clamped beam 

resonators. It has been experimentally demonstrated that with identical beam length, a 

free-free beam resonator shows roughly 2.5 times improvement over a 

doubly-clamped beam resonator [30]. Also, singly-clamped beam resonators (or 

cantilever) tend to have higher quality factors than doubly clamped beam resonators 

due to reduction of clamping loss [11]. In typical, clamping loss is theoretically 

modeled as elastic radiation of energy through the supports and predict a loss for a 

rectangular beam in the form of: 
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5

4
1

l

bh
Qclamping 

  (2.68) 

, where b is the beam width, h is the beam thickness, l is the beam length, and the 

proportionality constant is dependent upon material properties. From equation (2.68), 

to reduce clamping loss, a beam with a high aspect ratio is desirable. Since nanotubes 

and graphene have very high aspect ratio, they are expected to have minimum 

clamping loss. However, although according to equation (2.68) the clamping loss 

should not a dominant loss for current NEMS resonators in comparison with other loss 

sources, the theory behind the clamping loss is still not fully developed and maybe 

there is still a significant form of dissipation existing for NEM resonators. 

   For nanotube resonators, we know that nanotubes have high aspect ratio so that the 

clamping loss is expected to be low and negligible comparing to other losses. In 

addition, theoretical calculation also shows that the calculated dissipation is at least 10 

times smaller than experimental data [20] and nanotube resonators with different 

geometries also show similar Qs. Therefore, we can exclude the clamping loss in 

nanotube resonators. 

 

C. Surface loss 

Resent experiments [5] have shown a distributing trend in the quality factors of 

resonators as a function of their volume, as shown in figure 2.8(b). The measured 

quality factor decreases in a linear fashion as the surface-to-volume ratio (S/V) 

increases, directly indicating that the surface loss plays an important role in determining 

the quality factors. This phenomenon can be further understood from a macroscopic 

view. Since dissipation arises from internal defects, therefore, when the system size is 

quite large, one only needs to consider bulk defects distribution. However, as the 
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system size shrinks the surface defects start to contribute and even dominate. For large 

S/V ratio, the number of defects (dissipation) increases linearly with S/V. Those 

surface defects can be adsorbed molecules, dangling bonds, or amorphous oxide layers 

that occur at the surface. They absorb energy from the fundamental resonance mode 

and transfer it to other modes and dissipate as thermal energy. 

This linear trend dominated by surface losses can also be explained by looking at 

the definition of the quality factor, Q=2πE0 / ΔE, where E0 is the energy initially 

stored in the resonator, ΔE is the loss of energy per cycle. For resonating beams, the 

energy of a resonator is stored in the elastic strain throughout its volume and thus is 

proportional to its volume, V. If we assume that energy is predominately dissipated at 

the surface, then we would expect that the energy lost per cycle would be proportional 

to the surface area S, and thus: 

11 /   LVSQsurface  (2.69) 

Here, we would like to point out a general misconception that surface roughness gives 

rise to dissipation. A “static” rough surface will not cause dissipation, since dissipation 

only occurs at defects with a time-dependent potential. A time dependent potential can 

be formed either by a dangling bond, defects or impurity atoms moving back and forth 

either inside the structure or on the surface, and contaminant atoms or molecules on the 

surface with appropriate time dependence. It has been shown that various surface 

treatments such as annealing [31], oxygen removal from the surfaces [32], and surface 

passivation [33] can decrease the dissipation in mechanical resonators, further 

demonstrating the importance of surface loss in determining quality factors of 

small-sized resonators. 
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D. Ohmic loss 

Ohmic loss is associated with the external circuit and caused by electrons moving 

through the resonator due to capacitive coupling to a nearby gate. When the time for 

one oscillation is matched to the time for electrons to flow through the resonator, charge 

flow through the resonator will dissipate energy through Joule heating. We can further 

model the system can as a variable capacitor in series with a resistor (R), where a 

voltage V is applied. The vibration with amplitude z will lead to the change in the 

capacitance as ΔC = C’z, where C’ is the derivative of the capacitance with respect to 

Z. The induced charges can be expressed as Δq = C’zV. The time for charge to flow 

through the resistor is determined by the RC constant of the circuit, t = 2πRC. As the 

result, the energy dissipated strength (ΔE) on the resonator due to ohmic loss can be 

expressed as  
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tRIE
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22 '

)( 


  (2.70) 

, where k is the spring constant of the resonator. The ohmic loss has also been 

examined in nanotube resonators [20] and excluded as the main dissipation in 

nanotube resonators. If it is the dominant loss, we should see that nanotube resonators 

with smaller contact resistance have higher Qs. However, no resistance dependent 

behavior has been reported, indicating ohmic loss is not the main dissipation, neither. 

 

 



 

58 

 

 

Figure 2.8. Extrinsic losses. (a) Gas friction loss: At high pressures, air can be 

considered as a viscous fluid, and the viscous damping is proportional to the square 

root of the pressure. For pressure below 10
-2

 torr, gas friction is not a significant 

dissipation source [28]. (b) Surface loss: The measured quality factors decrease in a 

linear fashion as the surface-to-volume ratio increases [5]. 

 

 

 

2.7 Applications 

With their nanometer scale geometry sizes and high operation frequencies, NEMS 

hold great promises for much advanced performances in a broad range of applications. 

To date, they have been served in many unprecedented applications such as mass 

spectrometry [34-35], communications systems [36], and nanobiotechnology [37-38] 

and used for fundamental studies of both classic and quantum physics [39-42]. In 

addition, NEMS-based modulators of light utilizing the concept of optomechanics [43] 

and NEMS-based mechanical mixers for signal processing have been demonstrated as 

well [44]. In this section, we will discuss a couple of emerging NEMS applications.   
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2.7.1 Mass spectrometry 

Mass spectrometry is an analytical technique used for determining the mass of 

particles and the elemental composition of molecules. It has already been demonstrated 

to provide rapid and quantitative identification of protein species with relatively low 

sample consumption as well [45-46]. For ultimate individual cell analysis, mass 

spectrometry with a sensitivity of a few to single molecule will be necessary, implying 

NEMS hold great potential in this field. For a NEMS resonator functioning as a mass 

sensor, the mass sensitivity (Δm) is determined by the shift of resonance frequency 

when deposited mass is adsorbed onto the resonator and is given by [1] 


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
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
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0

0

0

2 effeff mm
m  (2.71) 

, where meff is the effective mass of the resonator, ω0 is the resonance frequency, and 

Δω is the frequency resolution. The quantity (2meff/ω0)
-1

, denoted as the mass 

responsivity (R), is an important parameter to evaluate a resonator as a mass sensor. 

High R enables better sensitivity and can be obtained with low meff and high ω0, 

suggesting that carbon nanotubes and graphene are promising candidates due to their 

low mass and high Young’s modulus. Furthermore, the frequency resolution, in general, 

can be approximated roughly by the quality factor, and therefore the minimum 

detectable mass can then be simply rewritten as
Q

m
m

eff
2 . So far, the mass 

sensitivity around zeptogram (zg) has been demonstrated [34-35]. 

 

2.7.2 BioNEMS 

In the early 1990’s, the micron scale mechanical resonator was first employed to 

study biological molecules and their interactions, opening up the applications of 

http://en.wikipedia.org/wiki/Molecule
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MEMS in biosesning [47]. After this pioneering work, developments in biochemical 

microarray technologies showed significant advances in analyzing protein receptors, 

their ligands, and the gene expression profiles [48-49]. Nowadays, microarrays of a 

few thousand targets have become an important technique in biosensing, and are 

commercially available and widely used. However, although they are commercially 

widespread, several challenging issues are waiting for being overcome. Firstly, the 

large size of the reader instrumentation and the intrinsic limitations of the fluorescence 

analysis make them not suitable for applications where both portability and robust 

performance are required. Furthermore, it is a single-use methodology and thus the 

devices cannot easily accommodate to applications that require continuous monitoring. 

Lastly, those microarray devices rely on significant volumes of analyte, making them 

poor for exploring gene expression at the cellular scale.  

To solve these practical concerns, the BioNEMS is probably a promising solution 

since they offer many advantages unattainable from micron scale mechanical devices 

[50]. Firstly, BioNEMS are scalable and they can interact with highly controlled, 

extremely reduced population of analytes. Secondly, their small active mass promises 

sensitivity to single molecule; and their fluid-loaded response can easily provide 

response times around microseconds. In addition, BioNEMS force measurements offer 

an attractive alternative to the fluorescent labeling and optical detection that are 

principal protocols for biochemical microarray assays.  Lastly, with their nanoscale 

feature size, they can be performed extremely locally and provide assays on samples 

smaller than the diffraction limit.  
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2.8 Conclusion 

In this chapter, we describe several intriguing attributes of NEMS resonators. To 

model a NEMS resonator, we start from a linear SHO model and then review the 

beam mechanisms of doubly-clamped beam resonators. In addition, the nonlinear 

dynamics in NEMS resonators, such as Duffing oscillator and nonlinear damping are 

also discussed briefly. To measure the resonance of NEMS resonators, various 

approaches have been employed so far. We summarized the electrical scheme in 

conjunction with the mixing concept employed in measuring nanotube and graphene 

resonators. Furthermore, we also discussed several important dissipation mechanisms 

in NEMS resonators. In last section, we described two emerging NEMS applications. 

In mass spectrometry, the mass sensitivity is directly related to the effective mass and 

the quality factor of the resonator. For biosensing, small volume and light active mass 

are much desired. Based on those discussions, carbon-based NEMS resonators would 

be potential candidates in realizing these prospects due to their extremely light mass 

and ultrahigh elastic modulus. This motivates and drives us to focus on NEMS 

resonators made out of carbon nanotubes and graphene. 
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CHAPTER 3  

ONE-STEP DIRECT TRANSFER OF PRISTINE 

SINGLE-WALLED CARBON NANOTUBES FOR 

FUNCTIONAL NANOELECTRONICS 

 

 

 

3.1 Introduction 

SWNTs are 1D nanostructures with remarkable electrical, mechanical, and optical 

properties [1-3]. They are ideal platform for studying low dimensional physics as well 

as exploring novel applications with quantum-size effect [4-7]. Their high carrier 

mobility leads to high speed nanoelectronics [8-10]. In addition, their low mass 

density and high Young’s modulus make them ideal building blocks in NEMS with 

potential applications as ultrasensitive sensors [11-14]. Furthermore, semiconducting 

SWNTs are direct-bandgap materials capable of efficient absorption and emission of 

photons [15-18]. SWNT p-n diodes have been fabricated [19-21] with ideality factors 

close to unity, and light emitting diodes (LEDs) and photodetectors using SWNTs 

have also been demonstrated [22-24]. Recent study also showed extremely efficient 

multiple electron-hole pairs generation in SWNTs, suggesting potential photovoltaic 

applications utilizing SWNTs as the light absorber [25].  

However, in spite of a variety of remarkable advantages possessed by SWNTs, 

their applications are constrained by fabrication issues: fabricating functional 

nanoelectronics with pristine SWNTs at ambient temperature and placing SWNTs 
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onto the designed positions parallelly. Conventionally, SWNT nanoelectronics are 

fabricated with either post-growth fabrication or post-fabrication growth approach [1, 

26-27] (see section 3.2 for details). The post-growth fabrication was first developed 

and widely adopted today; however, using this approach, SWNTs are inevitably 

contaminated by organic residues resulting from the lithography and solution 

processing. As a result, to eliminate contaminations, the post-fabrication growth 

method was proposed to avoid those solution processing. The later method results in 

ultraclean SWNT devices, but the high growth temperature (~900 °C) prohibits its 

wide applications. More recently, SWNTs grown on substrate were transferred onto 

electrodes by stamping [28-29]. However, in this method, potential contamination and 

damages to SWNTs can come from the stamping process, and the registry of SWNTs 

to the electrodes is entirely random.  

To this end, our goal is to develop a novel process technique in order to avoid all 

the drawbacks described above. In section 3.3, the one-step direct transfer technique to 

fabricate functional nanoelectronics with pristine SWNTs at ambient temperature is 

presented. This process technique is first characterized by evaluating the electrical 

conductance, process yield and feasibility on different substrates. To further verify the 

reliability of this one-step direct transfer technique, we successfully fabricated SWNT 

resonators with gate-tunable resonance frequencies (section 3.4) and demonstrated a 

fully suspended SWNT p-n diode with the ideality factor equal to 1 (section 3.5). In 

addition, by using this process technique, we are able to add additional end-gate 

electrodes to fabricate nanotube resonators with dual-gate configurations to investigate 

the frequency tuning mechanisms, which will be discussed in next chapter.  
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3.2 Conventional process methods to make SWNT nanoelectronics 

3.2.1 Post-growth fabrication method 

Briefly speaking, the SWNTs are first placed onto the device substrate by either 

direct CVD growth or indirect solution process. Standard lithography is then carried out 

to construct the device structures. The procedure of the post-growth fabrication to 

make a typical SWNT resonator is illustrated in figure 3.1 (a). 

Firstly, catalyst pads are patterned by using standard lithography on a Si/SiO2 wafer 

for SWNT CVD growth. To grow SWNTs, the substrate is placed into a CVD furnace, 

where carbon source gas, such as CH4 or C2H2 is flowing at high temperature. After 

growth, source/drain electrodes are defined on the top of the catalyst pads and contact 

metals, usually Au or Pd, are deposited. To suspend the nanotubes, wet etching is 

conducted by using buffered hydrofluoric acid (BHF) to remove the underneath SiO2. 

Lastly, a critical point drying step is manipulated to prevent the CNTs from breaking or 

contacting the substrate due to the tension on the nanotube caused by the water.  

Since all lithographical processes are conducted after CNTs are placed onto the 

substrates, CNTs will inevitably experience these photo- or e-beam resistors and 

various chemical solutions. As a result, they are very likely damaged and contaminated 

by those organic residues. Those contaminations may either increase tension on the 

nanotubes leading to fundamental frequency shifted, or dope the nanotubes causing the 

direct point shifted, or increase the effective mass of nanotubes that will reduce the 

sensitivity of CNT resonators. These unwanted behaviors degrade the performance and 

also limit their applications in exploring fundamental studies of physics if ultraclean 

nanotubes are required. 
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Figure 3.1. Conventional process methods to make CNT devices. (a) Post-growth 

fabrication. Catalyst pads are patterned by using standard lithography on a Si/SiO2 

wafer for CNT CVD growth. After CNT growth, metal contacts are defined and 

deposited on top of the catalyst pads. For making a CNT resonator, wet etching is 

conducted by using BHF to remove underneath SiO2. A critical-point drying step is then 

performed to suspend the CNT in order to prevent CNT from contacting the bottom. (b) 

Post-process growth. Conventional lithography is carried out first to define electrical 

contacts made out of high melting temperature metals on a Si/SiO2 wafer. A catalyst pad 

is then placed on the top of contact metals and CNTs are subsequently grown across the 

trench directly on top of the electrodes by CVD method. 
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3.2.2 Post-process growth method 

To avoid the contaminations resulting from the organic resides and solution 

process, the post-process growth approach reverses the process steps of the post-growth 

fabrication. Instead of placing SWNTs on the substrate first, lithography is carried out 

first to construct the device structures and nanotubes are grown subsequently. The 

process flow is depicted in figure 3.1(b). First, the trenches in SiO2 are defined by 

conventional lithography and then removed by wet etching. The electrical contacts 

made out of high melting temperature metals such as Platinum (Pt) are defined and 

deposited. A catalyst pad is then placed on the top of contact metals; thereafter, 

suspended SWNTs are subsequently grown across the trench directly on top of the 

electrodes by CVD method.  

Although this approach results in ultraclean SWNT devices, the high growth 

temperature (700~900 °C) unfortunately prohibits its wide applications. Firstly, the 

applicable device substrates are limited by this high growth temperature. For instance, 

polymer substrates for fabricating flexible nanoelectronics cannot endure temperature 

higher than 200 °C. In addition, for nanoelectromechanical sensors, room temperature 

fabrication of pristine CNT resonators is much preferred. Moreover, the chosen contact 

metal, Pt, cannot form a good ohmic interface with respect to nanotubes. As a result, a 

barrier has always occurred between Pt and nanotubes, leading to much higher contact 

resistance and affects its performance in a variety of applications, such as electron 

transport or RF circuits, in which impedance matching is crucial.  
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3.3 One-step direct transfer of pristine SWNTs 

To solve the problems mentioned above, we successfully carried out a one-step 

direct transfer technique to fabricate functional devices from pristine suspended 

SWNTs at room temperature. Briefly, suspended SWNTs grown by CVD method on a 

separate growth substrate are aligned and directly transferred onto the device substrate 

containing prefabricated electrodes to form nanoelectronics. Specifically, our approach 

can be further divided into three steps: the synthesis of suspended SWNTs, the process 

of pre-patterning device electrodes, and the direct transfer of SWNTs from the growth 

substrate onto the device substrate. Details are described below.   

 

3.3.1 Synthesis of suspended carbon nanotubes 

The synthesis of suspended SWNTs is illustrated in figure 3.2(a). Here, a 

double-side polished (DSP) quartz substrate is chosen as the growth substrate due to its 

transparency for alignment purpose and its endurance in high growth temperature. 

Firstly, a conventional photolithography (GCA AC200 AutoStepper) is carried out to 

define the area of each pillar (5 x 20 μm
2
), and then followed by plasma dry etching 

(LAM 9400) to form the pillars. We note that a slack is naturally formed when SWNTs 

are suspended across the trench. To prevent suspended nanotubes from contacting the 

bottom due to the slack, the ratio of the pillars’ height to the distance between a pair of 

pillars is kept lager than 1/3 [30]. For CVD growth, 3 Å  Fe is deposited by using 

e-beam evaporator (SJ-26) as growth catalysts. An ethanol recipe is used in our 

experiment for SWNT growth, where SWNTs are grown in a horizontal furnace with 

He (100 sccm), H2 (40 sccm), and ethanol bubbler (120 sccm) flowing for 20 minutes 

at 925 
0
C, as shown in figure 3.2(b).  
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(a) 

 

(b) 

 

 

Figure 3.2. Synthesis of suspended carbon nanotubes. (a) A quartz substrate is chosen as 

growth substrate. Conventional lithography with plasma dry etching is used to form 

pillars. 3 Å  Fe is deposited as catalyst for CVD growth. (b) Ethanol bubbler recipe for 

SWNT growth. 

 

3.3.2 Process of pre-patterning device electrodes: 

Figure 3.3(a) illustrates the procedure of preparing device electrodes. Firstly, 

SiO2/Si3N4 = 500nm/500nm are deposited on Si wafer by low pressure chemical vapor 

deposition (LPCVD). Following photolithography and a sequence of etching processes, 

source/drain electrodes are patterned. Then, the top Si3N4 layer is etched away first by 
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anisotropic plasma-etching (LAM 9400) and SiO2 is removed by isotropic wet-etching 

with BHF. Note that BHF is a good selective etchant against SiO2 and Si3N4, so an 

undercut structure is expected to form due to isotropic wet- etching (figure 3.3(b)). The 

undercut structure will avoid electrical shortage between top and bottom electrodes 

when blanket deposition of Cr/Au=5nm/50nm is conducted. Lastly, we define bottom 

gate electrodes and etch Cr/Au by chrome (Cr-14) and gold (GE-8148) etchants 

 

 (a) 

 

    (b) 

 

Figure 3.3. Process of pre-patterning device electrodes. (a) Si3N4/SiO2 are deposited on 

Si wafer by LPCVD. Photolithography is conducted to pattern source/drain electrodes. 

Plasma dry etching and wet etching with BHF are performed subsequently to form an 

undercut structure. Another photolithography step is processed to define bottom gate 

electrodes. (b) SEM image of an undercut structure.  
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3.3.3 Stamping (Direct transfer of nanotubes) 

After synthesizing suspended SWNTs and preparing the device substrate, the last 

step is to directly transfer suspended SWNTs onto the device substrate. The transfer 

process is shown in figure 3.4. Contact aligner (Karl Suss MJB-3) is used to manipulate 

the one-step direct transfer. Firstly, the quartz substrate is mounted upside-down on a 

blank glass mask, while the device substrate is placed on the sample stage of the 

manipulator (left panel). The quartz substrate is then aligned to the device substrate and 

subsequently brought into contact by lifting the stage (middle panel). Since the spacing 

of the pillars is designed to be wider than the electrode spacing, SWNTs are cut off at 

the contact points between the pillars and the substrate and span across the electrodes 

(right panel). As a result, functional SWNT nanoelectronics are readily formed without 

the need of further lithography, eliminating potential contamination on the nanotubes.  

 

 

 

 

Figure 3.4. Schematic of one-step direct transfer procedure. A quartz substrate with a 

suspended SWNT grown on is mounted upside-down on a blank mask, and a device 

substrate with prefabricated electrodes is placed on the stage of the contact aligner (left 

panel). The quartz substrate is aligned to the device substrate and subsequently brought 

into contact by lifting the stage (middle panel). SWNTs are cut off at the contact points 

and span across the electrodes (right panel). 
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3.3.4 Characterizations  

We first characterize our one-step direct transfer technique by taking SEM images 

of implemented devices, and evaluating the electrical conductance of a suspended 

SWNT FET, the yield of transfer process, and its feasibility applied on different 

dielectric substrates.  

 

A. SEM imaging 

The process technique is examined first by taking the SEM images to view the 

appearance of implemented devices. Figure 3.5 (a) and (b) show the lateral and top 

views of devices fabricated by using the one-step direct transfer technique. Nanotubes 

indicating by red arrows span across four pre-patterned metal electrodes. 

 

 

 

Figure 3.5. SEM image of devices fabricated by the one-step direct transfer technique. 

Left panel: lateral view and right panel: top view. Nanotubes span across four 

pre-patterned metal electrodes and the arrows indicate the positions of nanotubes. 

 

B. Electrical conductance 

The electrical contact between a nanotube and metal electrode resulting from our 

one-step direct transfer is evaluated by using a suspended SWNT FET configuration 

(Figure 3.4). Nanotube channel lengths are designed to be 1-3 μm, while Au and Pd are 

explored as bottom-contact metals. Figure 3.6(a) shows a conductance vs. gate voltage 
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curve for a typical nanotube transistor. Classic transfer characteristics of a p-channel 

FET is observed, with ON state conductance of 12 μS and ON/OFF ratio larger than 4 

orders of magnitude [31]. The device also exhibits negligible hysteresis, indicating that 

the nanotube is indeed suspended in air. Hysteresis is caused by charges on the SiO2 if 

nanotubes are laid on the SiO2. Similar results are obtained on 50 devices, and 

histogram suggests an average ON state conductance of ∼12 μS (Figure 3.6(a), inset). 

These results are comparable with top-contacted nanotube transistors, confirming that 

our simple on-step direct transfer technique results in similar contact resistance as 

conventional fabrication technique. In addition, thermal annealing is helpful for 

reducing the device contact resistance but not necessary for freshly deposited metals. 

Typical annealing is carried out at 250 °C in helium for 5 min for Pd and at 400 °C for 

Au.  

 

 

Figure 3.6. Characteristics of the one-step direct transfer technique. (a) Conductance 

vs. Vg for a typical suspended SWNT transistor. Classic transfer characteristics of a 

p-channel FET is observed, with ON state conductance of 12 μS and ON/OFF ratio 

larger than 4 orders of magnitude. The device also exhibits negligible hysteresis, 

indicating that the nanotube is indeed suspended in air. The inset shows the conductance 

histogram of 50 devices, and histogram suggests an average ON state conductance of 

∼12 μS. (b) Optical image of SWNT devices on transparent glass substrate. Die with 

size 1 cm × 1 cm is placed on top of a “Michigan Engineering” logo. 
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C. Yield  

We further evaluate the yield of our one-step direct transfer technique to fabricate 

SWNT devices. Firstly, SEM is taken to identify 14 pairs of pillars on quartz substrate 

where one or a few nanotubes are grown and suspended across. After transfer, electrical 

measurements confirm that 13 out of 14 corresponding devices are successfully 

fabricated, converting to ∼92% transfer yield. 100% transfer is possible by modifying 

our setup to allow precise control of contact force. The overall yield is thus dictated by 

the growth yield of nanotubes suspended across the pillars, which can be controlled 

statistically by the pillar dimensions and growth condition. In general, we tune our 

growth condition to have on-average a single nanotube within an individual device, 

which results in an overall device yield of ∼20-40%.  

 

 

D. Feasibility 

Our technique can be widely adopted on different types of substrates since the 

transfer process is carried out under ambient condition. SWNT devices on a transparent 

glass substrate have been demonstrated through one-step direct transfer (Figure 3.6 (b)). 

In addition, we have also fabricated nonsuspended SWNT FET devices on substrate 

with high-κ dielectrics (data not shown). Moreover, we believe the technique can be 

readily applied onto a plastic substrate for flexible nanoelectronics and nanophotonics. 
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3.4 SWNT nanoelectromechanical resonators 

To demonstrate the versatility of our technique, we first fabricate SWNT resonators 

by our one-step direct transfer technique. The SEM image of a typical SWNT resonator 

is shown in figure 3.7(a), with nanotube length of 1-3 μm and nanotube/bottom-gate 

separation of 1 μm. To measure the resonance frequency of the nanotube resonator, we 

adopt the single-source mixing technique (AM modulation) described in section 2.5. 

For the sake of convenience, we reproduce the measurement setup in figure 3.7(b). For 

internal AM modulation, a small signal at low frequency (1 KHz) is modulated with 

high frequency signals inside the RF signal generator (Agilent 8648B) and this small 

signal is also send to the lock-in amplifier (Stanford Research SR830) for reference. 

The AM signal was then sent to the source electrode to actuate the resonator through 

electrostatic interaction, and the mixing current from the drain electrode was read by the 

lock-in amplifier. The SWNT resonators are measured in a vacuum chamber at pressure 

below 10
-4

 torr and Vsd
ac 

= 10 mV is applied to drive the nanotube into vibration. 

The electromechanical responses of a typical SWNT resonator with channel length 

of 3 μm is shown in figure 3.7(c). The DC gate voltage (Vg) is fixed at 3 V, and the 

frequency-dependent mixing current (Imix) swept between 20 and 30 MHz reveals a 

clear peak, corresponding to the guitar-string like resonance mode of the doubly 

clamped nanotube resonator (Figure 3.7(c), dots). To obtain the resonance frequency, 

we fit the experimental data with equation (2.60) (Figure 3.7(c), line), yielding the 

resonance frequency, f0 = 26.1 MHz with quality factor Q = 90. We further investigate 

the frequency tuning of nanotube resonator by sweeping the Vg. In figure 3.7(d), mixing 

current (in color) is plotted as a function of driving frequency and Vg. Three resonance 

modes are clearly observed with strong gate dependence, which corresponds to the 
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in-plane and out-of-plan vibrational modes of the nanotube [32]. More details of 

different vibrational modes of nanotube resonators will be discussed in the next 

chapter. The resonance signals of three vibrational modes at Vg= 7 V are plotted in 

figure 3.7(e) (dots) with well fit (red), showing Q are around few dozens.  

We further extract the resonance frequencies with respect to the Vg
DC

 for all three 

modes and plot them in figure 3.7(f). Three types of gate dependence are observed, 

quadratic (f ∼ Vg
2
, in red), linear (f ∼ Vg, in black), and sublinear (f ∼ Vg

0.7
 in green), 

which correspond to bending regime, catenary regime, and elastic regime, respectively 

[33]. Increased tension due to increased gate voltage causes transition from the bending 

regime to the catenary regime, and eventually to the elastic regime, which is clearly 

visible for the second vibrational mode. Similar results have been obtained on other 

SWNT resonators, with quality factors ranging among 30-150 at room temperature, and 

resonance frequencies among 5-200 MHz. These results are comparable with previous 

devices made by conventional techniques, suggesting that our much simplified 

fabrication technique yields high quality nanotube resonators. In addition, multiple 

resonators can be fabricated on a single nanotube, opening up possibilities for 

investigating coupled 1D NEMS resonators in series.  
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Figure 3.7. SWNT nanoelectromechanical resonators. (a) SEM image of a typical 

SWNT resonator. An arrow indicates the position of nanotube. (b) Measurement setup 

of one-source mixing (AM) technique. (c) Mixing currents as a function of driving 

frequency at Vg = 3 V, and ac driving voltage amplitude Vsd = 10 mV is plotted. Dots 

are the experimental data, and the solid line is the Lorentzian fitting which yields f = 

26.1 MHz and quality factor Q = 90. (d) Mixing current (in color scale) is plotted as a 

function of driving frequency and Vg. Three vibrational resonances are clearly observed. 

(e) The resonance signals of three vibrational modes at Vg= 7 V are plotted (dots) and 

with well fit (red), showing Q are around few dozens. (f) Resonance frequencies vs. Vg 

for all three modes. The data are plotted in color, quadratic dependence (f ∼ Vg
2
) in red, 

linear (f ∼ Vg) in green, and sublinear (f ∼ Vg
0.7

) in purple. 
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3.5 Tunable SWNT p-n diodes   

The second type device fabricated with our transfer technique is a fully suspended 

SWNT p-n diode. As shown in figure 3.8(a), a SWNT is transferred and suspended 

across two split bottom gates, G1 and G2. The polarity of the two nanotube sections 

above the bottom gates is controlled by electrostatic doping through applying gate 

voltages, respectively. I-V characteristics of a typical device are shown in figure 3.8(b) 

When gate voltages of Vg1 = Vg2 = -2 V are applied, a linear I-V is observed with 

resistance of 300 kΩ. In this case, both sections are p-doped, and the device behaves as 

a resistor (Figure 3.8(b), in blue). When the gate voltages are changed to Vg1 = 4 V and 

Vg2 = -4 V, we obtain a rectified I-V curve. Here positive Vg1 n-dopes the nanotube 

section above G1 and negative Vg2 p-dopes the nanotube section above G2, forming a 

p-n junction (Figure 3.8(b), in red). Significantly, a log-scale I-V plot (Figure 3.8(c)) 

reveals that the fully suspended SWNT p-n diode has an ideality factor of 1 and 

reversed saturation current of 45 pA at room temperature. These results point toward 

novel optoelectronic applications by exploiting a fully suspended SWNT ideal diode. 

 

 

Figure 3.8. A Fully suspended SWNT p-n diode. (a) Schematic of device geometry. The 

separation between two gates is 1 μm, and the width of each gate electrode is also 1 μm. 

The separation between nanotube and gate electrode is 2 μm. (b) I-V characteristics of a 

suspended SWNT p-n diode. (c) I-V plot in absolute magnitude of the current at gating 

voltages Vg1= -Vg2 = 4 V (blue dots). The red line corresponds to ideality factor n = 1 in 

ideal diode equation. 
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3.6 Conclusion 

In summary, we have reported a powerful yet simple one-step fabrication technique 

for SWNT devices. Our method eliminates the organic residues on SWNTs resulted 

from conventional processing approaches. Using this technique, we demonstrate the 

fabrication of SWNT resonators and fully suspended SWNT ideal diodes. The results 

open up opportunities for the fundamental study of electron transport physics in 

ultraclean SWNTs. In addition, the technique can find wide applications for pristine 

nanotube electronic and photonic devices. It should also benefit the integration of a 

nanotube device onto a nonconventional substrate where device processing needs to be 

carried out at ambient conditions.  

 

 

*This chapter is written based on our work published in Nano Letters, Volume 10, 

page 1032-1035, 2010.   
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CHAPTER 4  

CAPACITIVE SPRING SOFTENING IN 

SINGLE-WALLED CARBON NANOTUBE 

NANOELECTROMECHANICAL RESONATORS 

 

 

 

4.1 Introduction 

Limited by nanotubes’ extremely small cross section, an electrical measurement in 

conjunction with the mixing technique is usually adopted [1] to measure the resonance 

of SWNT resonators. This electrical approach enable us to actuate and detect SNWT 

resonators simultaneously on a single chip through capacitive gate coupling, offering in 

situ frequency tuning over wide frequency range [2-4]. In this chapter, the gate-induced 

frequency tuning is studied, which is known to be governed by two mechanisms: the 

elastic hardening effect which increases the resonance frequencies, and the capacitive 

softening effect which decreases the resonance frequencies [5-6]. The basic concepts of 

both mechanisms are introduced in section 4.2. However, although elastic hardening 

effect has been widely reported in SWNT resonators [1, 7-8], the field-induced 

capacitive spring softening has rarely been observed [9]. In section 4.3, we demonstrate 

the capacitive spring softening effect in SWNT resonators by utilizing a dual-gate 

configuration containing both bottom-gate (BG) and end-gate (EG) capable of tuning 

the resonance frequency through capacitive coupling. Downward resonance frequency 

tuning is observed with increasing end-gate voltage, which is attributed to the 
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capacitive softening of the spring constant. Furthermore, SWNT resonators are known 

to exhibit multiple vibrational modes, in-plane and out-of-plane, and their higher order 

modes [10]. In our dual-gate configuration, the in-plane modes are expected to reveal a 

much stronger capacitive softening effect than the fundamental out-of-plane mode, 

suggesting that our results also provide an experimental tool for differentiating 

vibrational modes (see section 4.4). Lastly, we investigate how the coupling between 

BG and EG affects the capacitive softening effect in section 4.5. 

 

4.2 Frequency tuning mechanisms 

It has been well studied that the gate-induced frequency tuning of NEMS resonators 

is governed by two mechanisms: The elastic hardening effect originated from the 

increased tension on the beam will increase the resonance frequencies. The capacitive 

softening effect caused by a beam oscillating in a constant electric field can reduce the 

effective spring constant, leading to the decrease of the resonance frequencies [5]. 

These two mechanisms can be explained more explicitly by the equation of motion of 

the beam, where the electrostatic force, attracting the beam towards the gate, and the 

elastic restoring force, trying to pull the beam back to its undeformed state, are 

included. The equation of motion is expressed as: 

2
0 )],([

2

1
)]([ VtxzCSuuuTTuEI zttxxxxxxx    (4.1) 

, where total displacement u(x, t) is a sum of a static DC displacement zs(x) and a 

time-varying AC displacement z(x,t) and written as u(x, t) = zs(x)+z(x,t). S is the beam’s 

cross-sectional area, E is Young’s modulus of the material, ρ is the beam density, and I 

is the moment of Inertia. The total tension term in brackets is a sum of residual tension 

T0 and bending-induced tension T(ux). The frequency can be solved and expressed as: 
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The different frequency tuning behaviors can be explained from equation (4.2). If 

the direction of electrostatic force is perpendicular to the motion of the beam, there is no 

electrostatic interaction between the motion and the electrostatic force (the K2V 
2
 term is 

zero). Therefore, the frequency increases because increasing the gate voltage only 

stretches the beam to increase the tension of beam and then increases the static 

displacement Adc. However, on the other hand, if the direction of the motion of the beam 

is parallel to electrostatic force, both stretching (increase in Adc) and electrostatic 

interaction (described by the K2V 
2
 term and will lead to the decrease of frequency) have 

to be included. Electrostatic attraction to the gate has a softening effect on the beam for 

low gate voltages. As the gate voltage continues increasing, the hardening due to 

stretching will overcome it and lead to the increase of resonance frequency again. 

 

4.3 Capacitive spring softening effect in SWNT resonators  

The elastic hardening effect in SWNT resonators has been widely reported 

everywhere. However, the field-induced capacitive spring softening effect has rarely 

been observed, since in a conventional SWNT resonator [1-2, 7], only the bottom-gate 

is used for frequency tuning. The motion of nanotube is perpendicular to the electric 

field, resulting in negligible spring softening. To this end, we demonstrate SWNT 

resonators with a dual-gate configuration, which enables both upward and downward 

frequency tuning by exploring both elastic hardening and capacitive softening effects. 
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4.3.1 Dual-gate SWNT resonators 

Our SWNT resonators with a dual-gate configuration are fabricated using our 

one-step direct transfer technique. Figure 4.1(a) shows the SEM image of a typical 

dual-gate SWNT resonator. Suspended nanotube (indicated by the arrow) spans across 

the source (S) and drain (D) electrodes (in green) with an underneath bottom-gate and 

nearby end-gates electrostatically coupled to the nanotube. For a typical device, the S 

and D electrodes are 2 μm wide, separated by 3 μm, and the distance between 

nanotube and the BG is 1 μm. To explain how our dual-gate nanotube resonators can 

realize frequency-tuning through elastic hardening and capacitive softening 

mechanisms, a qualitative sketch is illustrated in figure 4.1(b). SWNT resonators 

exhibit two types of vibration modes: the in-plane mode (left-top panel) moves along 

the y-direction, and the out-of-plane mode (right-top panel), vibrating like a jumping 

rope, moves along the x-direction. The details of in-plane and out-of-plane modes will 

be described in next section. When a voltage Vbg is applied on the BG electrode, the 

electrostatic force will pull down the nanotube toward the gate (gray arrow, along the 

z-direction), thus increasing the nanotube’s tension and resulting in elastic hardening. 

Since the electrostatic force is perpendicular to the vibration directions of both 

in-plane and out-of-plane modes, the effect of capacitive softening is negligible. On 

the other hand, when an end-gate voltage Veg is applied, the electrostatic force (red 

arrow) will have component along y-direction in addition to z-direction. As the result, 

the in-plane vibrational modes will be impeded by the electrostatic force, leading to a 

strong capacitive softening effect compared to out-of-plane mode. Our dual-gate 

resonator design differs from previous work [5-6], where the second gate electrode 

(side-gate) is also perpendicular to the resonator beam. The adoption of end-gate 
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design drastically reduces the fabrication complexity, also enhances the softening 

effect for the in-plane vibrational modes. 

 

 

 

 

Figure 4.1. Device geometry of a dual-gate SWNT resonator. (a) The SEM image of 

SWNT NEM resonators. The source and drain electrodes are colorized (green) and 

50-nm-thick Au is used as the bottom-contact metal. The arrow indicates the position 

of a suspended SWNT. (b) A qualitative sketch illustrates how electrostatic force 

interacts with different resonance modes when a bias voltage is applied on BG or EG 

electrodes. 

 

 

4.3.2 Tuning the resonance frequency 

To experimentally examine these two frequency tuning mechanisms, we 

systematically apply voltages on both bottom-gate and end-gate electrodes. Again, we 

adopt the single-source mixing measurement setup (AM modulation, section 2.5) to 

detect the resonance frequency of the nanotube resonator by measuring the frequency- 

dependent mixing current (Imix). The measurement is done in a vacuum chamber at 

pressure below 10
-4

 torr and a small AC driving voltage (Vsd) of 10 mV is applied to the 

drain electrode to actuate the SWNT resonator through electrostatic interaction.  
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A. Elastic hardening effect 

We first studied the frequency tuning using bottom-gate electrode. As shown in 

figure. 4.2(a) inset, nanotube resonances are clearly visible, and resonance frequency 

increases from 11 MHz to 22 MHz as │Vbg│ increases from 0 V to 2 V. We further 

extract resonance frequencies at different Vbg between -2V to 2V, and the results can 

be fitted with a parabolic function [Fig. 4.2(a)]. Our observation of frequency tuning 

using BG electrode agrees well with elastic hardening effect reported on nanotube 

resonators. At small BG voltages, the nanotube resonators operate in the bending 

regime,
 
in which resonance frequency f depends quadratically on the BG voltages. The 

reonant frequency at bending regime can be fit by [9]: 

2

0

2
'

0

1

96
28.0 bgbg AVfV

EIs

C
ff 


 (4.3)                                                 

, where f0 is the fundamental frequency, C’ is the first derivative of capacitance to 

nanotube/gate distance, s is the slack, μ is linear mass density, E is Young’s modulus, 

I is the moment of inertia, and A is termed as elastic hardening tuning coefficient. 

Fitting the experimental data in figure 4.2(a) with equation (4.3) yields measured 

coefficient A of 1.910
6
 HzV

-2
. To compare Ameasured with the theoretical value Atheory, 

we adopted a cylinder over a metal plane to model the capacitance
)

2
ln(

2 0

d

Z

L
C




, 

where ε0 is the dielectric constant; L is the nanotube length; Z is the separation 

between tube and bottom electrode; d is the diameter of nanotube. Assuming a small 

slack of 1% and using typical SWNT parameters listed in Table 4.1, the Atheory value 

calculated using equation (4.3) is 2.510
6 

HzV
-2

, which agrees well with measured A.  
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B. Capacitive softening effect 

Next, we examined the frequency dependence of end-gate voltage [Figure. 

4.2(b)]. Interestingly, as shown in figure 4.2(b) inset, nanotube resonance frequency 

decreases as │Veg│ increases. The extracted resonance frequencies at different Veg 

between -10V to 10V exhibit a negative curvature with increasing field. The observed 

downward frequency tuning by EG is in strong contrast to elastic hardening, but it can 

be explained by the capacitive softening effect. To analyze the capacitive softening 

effect, we start from
m

k
f )

2

1
(


  , where k and m are the spring constant and mass 

of the nanotube. Since the capacitive softening effect will reduce the effective spring 

constant, the resonance frequency can be rewritten as 
m

kk
f
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2

1
(


, where 

ksoftening is the derivative of electrostatic force, and is written as ksoftening=
2
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 and m=μL, then the 

frequency dependence of the capacitive softening effect can be expressed as: 
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, where C” is the second derivative of capacitance, and B is termed the capacitive 

softening coefficient. Again, fitting the experimental data in figure 4.2(b) with 

equation (4.4) yields the measured coefficient B of 0.810
12 

Hz
2
V

-2
. To calculate the 

theoretical value of Btheory, a finite-element simulation (COMSOL) is performed to 

obtain C” for EG. The structure for simulation in COMSOL is illustrated in figure 4.3. 

Using typical SWNT parameters listed in Table 4.1 and C” obtained from simulation, 

we calculate a Btheory from equation (4.4) of 0.9610
12

Hz
2
V

-2
, which agrees well with 

measured B. Similar results have been observed on 3 dual-gate resonators, offering a 
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reliable approach for studying both elastic hardening and capacitive softening effects 

in nanotube resonators for the first time. 

 

 

Figure 4.2. Resonance characteristics of a dual-gate SWNT resonator. (a) Elastic 

hardening effect, and (b) Capacitive softening effect, observed on a SWNT resonator 

by biasing BG and EG, respectively. Insets of (a) and (b): mixing current (Imix) vs. 

driving frequency (f) at different BG and EG voltages. Resonance peak shifts to higher 

frequency as │Vbg│= 0.5, 1, and 1.5V is applied, and shift to lower frequency as 

│Veg│= 3, 7, and 9V is applied.  

 

 

 

 

Figure 4.3.  Modeling geometry for finite-element simulation of capacitance. 
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Parameter Symbol Value 

Diameter 

Length 

Slack  

Elastic modulus 

Linear mass density 

Moment of inertia 

Dielectric constant 

Distance between CNT and BG 

d 

L 

s 

E 

μ 

I 

εo 

Z 

2nm 

3μm 

 1% 

1TPa 

510
-15 

(kg/m) 

710
-37

 

8.8510
-12 

1μm 

 

    Table 4.1. Key values of nanotube parameters used for numerical calculation. 

 

 

4.4 Capacitive softening effect on different vibrational modes   

SWNT resonators are known to exhibit multiple vibrational modes, including 

in-plane, out-of-plane, and their higher order modes. The behaviors of these 

vibrational modes have been studied both theoretically and experimentally [9-10]. 

Here, we reproduce the definition of both modes. The in-plane mode (left-top panel, 

figure 4.1(b)) moves along the y-direction, and the out-of-plane mode (right-top panel, 

figure 4.1(b)), vibrating like a jumping rope, moves along the x-direction. In principle, 

the in-plane and out-of-plane modes are degenerated at zero slack. However, with 

finite slack there will be frequency discrepancy between them due to the symmetry 

broken. In addition, the harmonics of both modes can be excited with frequency 

increase accompanying with the increase of the number of nodes in each mode. 

Therefore, we should see several distinct resonance modes, the harmonics and the 
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fundamental in-plane and out-of-plane modes, in a SWNT resonator. The resonance 

frequencies of these modes and their higher order harmonics have been predicted 

theoretically by considering the effect of slack, as shown in figure 4.4 [10].   

 

 
Figure 4.4. Numerical calculations of different vibrational modes. Fundamental and 

harmonics of in-plane and out-of-plane modes are calculated numerically [10]. The 

first vibrational mode is fundamental out-of-plane mode.    

 

Based on this unique property in resonance, we therefore examined the capacitive 

softening effect on different vibrational modes. Figure 4.5(a) shows the mixing current 

(in color) plotted as a function of driving frequency and EG voltage. Three resonance 

modes are clearly visible with f up to 23MHz, and they all exhibit capacitive softening 

effect with applied Veg. The Veg-dependent resonance frequencies for all three modes 

are plotted in the inset of figure 4.5(a). Importantly, three vibrational modes show 

drastically different frequency tunability. Fitting the experimental data in figure 4.5(a) 

inset with equation (4.4) yields B = 0.16, 0.8, and 0.7610
12

Hz
2
V

-2
 for vibrational 

modes from bottom to top, respectively. The two higher frequency modes exhibit ~5 



 

94 

 

times larger capacitive softening effect compared to the lowest frequency mode. 

Similar measurements were performed on 3 other SWNT resonators with the same 

device geometry, and the results are shown in figure 4.5(b). The softening coefficients 

for the first vibration modes are always much smaller than those of higher order 

modes, differed by 4 to 6.3 times. This observation agrees with our qualitative 

analysis shown in figure. 4.1(b), where differences in softening coefficients are 

expected for in-plane and out-of-plane modes. Therefore, we attribute the first 

vibrational mode with much smaller softening coefficient as out-of-plane mode, and 

the higher order vibrational modes with larger softening coefficients as in-plane 

modes. Our results also agree with the theoretical prediction of the first vibrational 

mode being the fundamental out-of-plane mode (seen figure 4.4).  

 

 

 

Figure 4.5. Capacitive softening effect on different vibrational modes. (a) Mixing 

current Imix (color scale) is plotted as a function of driving frequency and Veg. Inset: 

Resonance peaks (dots) of different modes are plotted with respect to Veg. Red lines 

are fitting curves with equation (4.5). (b) Measured softening coefficients (Bs’) of 

different modes for three resonators. The softening coefficients for the first vibration 

modes (green squares) are always much smaller than those of higher order modes 

(blue triangles and purple circles), differed by 4 to 6.3 times. 
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4.5 Coupling between BG and SG 

Lastly, we investigated how the coupling of BG and EG affects the capacitive 

softening effect. A 2D plot of resonance frequency (in color) vs. Vsg and Veg for the 

second vibrational mode is shown in figure 4.6(a). The resonance frequencies show 

symmetric tuning around gate voltages corresponding to the charge neutral point, 

although a shift of neutral point is clearly observed. Furthermore, the Veg-dependent 

resonance frequencies for different fixed Vbg are plotted in figure 4.6(b). As │Vbg│ 

increases from 0V to 2V, the downward frequency tuning is again clearly visible, but 

the curves are shifted toward higher Veg value. The shift rises from our dual-gate 

geometry, where the charge neutral point will shift as voltage being applied onto the 

EG. The capacitive softening equation can be modified by including the effect of 

elastic hardening and an offset voltage, V0, to account for the effect of BG: 

2
0

22
0
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0

2'
0

2 )()()( VVBAVfVVBff egbgeg   (4.5)                                                                                                                                                                                                                     

Fitting data in figure 4.6(b) with equation (4.5), we extracted the softening coefficient 

B and offset voltage V0, and the results are plotted in figure 4.6(c). The softening 

coefficient (red circles) remains nearly constant at different Vbg voltage, while V0 (blue 

squares) varies linearly with respect to Vbg. A linear fit of V0 vs. Vbg yields a slope of 

~3, suggesting that the BG is about three times more effective than EG for 

electrostatic charging.  

 

4.6 Summary 

In summary, we report the observation of capacitive softening effect in SWNT 

resonators adopting a dual-gate configuration. While in-plane vibrational modes show 

strong softening effect when EG voltage is applied, the fundamental out-of-plan mode 
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exhibits small/negligible spring constant softening. Our results not only provide a new 

experimental tool for differentiating nanotube vibrational modes, but also enable 

additional freedom for exploring non-linear effects in nanotube resonators. The 

capability of spring constant tuning by EG coupling enables parametric amplification 

for quality factor enhancement [11],
 
and makes possible nanotube resonator based 

room temperature single molecule mass sensor. 

 

 

Figure 4.6. Dual-gate frequency tuning of SWNT resonators. (a) 2D plot of resonance 

frequency (in color) vs. Vsg and Veg for the second vibrational mode. (b) Resonance 

frequencies (blue dots) vs. Veg curves for Vbg = 0, -1, -1.25, -1.5, and -2V, from bottom 

to top. The neutral point V0 shifts to higher voltages as │Vbg│ increases. (d) Offset 

voltage V0 (blue squares) and coefficient B (red circles) vs. Vbg extracted from (c). A 

linear fit of V0 vs. Vbg yields a slope of ~3. 

 

*This chapter is written based on our work published in Nano Letters, Volume 11, 

page 1448-1551, 2011.  
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CHAPTER 5   

PARAMETRIC AMPLIFICATION IN  

SINGLE-WALLED CARBON NANOTUBE 

NANOELECTROMECHANICAL RESONATORS 

 

 

 

5.1 Introduction 

Owing to their low mass and high operating frequency, nanoelectromechanical 

systems are expected to have excellent sensitivities in ultrasmall mass and force 

sensing and mass sensitivity below a single Delton has been predicted theoretically 

[1-6]. In principle, the minimum detectable mass (Δm) is proportional to the effective 

mass of the system and limited by the readout frequency resolution, which can be 

approximated by ω0/Q. Therefore, we can roughly express Δm as
Q

m
m

eff
2 . For 

better mass sensitivity, one would prefer a resonator with the lightest mass and the 

highest Q. As a result, SWNT resonators standing out with one of the highest Young’s 

modulus and the lightest effective mass are considered as promising candidates to 

achieve this ultimate goal. Unfortunately, the mass sensitivity of SWNT resonators is 

impeded by their poor Qs, usually around 100 at room temperature [7-10], indicating 

the importance of enhancing Q for nanotube resonators as mass sensors.  

The origin of dissipation in nanotube resonators that causes low Q is still unknown 

currently and several possible dissipations have seen suggested. In section 2.6, we 
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discussed that surface loss increases linearly with the increasing surface-to-volume 

ratio and plays an important role in determining Q of nanometer-scale resonators. 

Another possible loss mechanism is that strain in nanostructure will generate local 

temperature difference, leading to irreversibly heat flow along local temperature 

gradients and inducing the thermoelastic damping [11-12]. A recent study has shown 

that low Qs and temperature-dependent behavior are due to the thermal fluctuations of 

many vibrational modes, called entropic broadening effect [13]. More details about 

losses in nanotube resonators will be discussed in section 5.2. If low Qs are limited by 

the fundamental constrains, the solution to improve nanotube resonators’ sensitivity 

will be to seek an external way to enhance the Q. To this end, we utilized the concept 

of parametric amplification for Q enhancement.  

The concept of parametric amplification will be described in section 5.3. In section 

5.4, we demonstrate parametric amplification in SWNT resonators by modulating the 

spring constant of nanotubes at twice the resonance frequency through electrostatic 

gating, and achieve 10 times Q enhancement. The highest Q obtained at room 

temperature is around ~700, which is 3-4 times better than previous Q reported for 

doubly-clamped SWNT resonators. Furthermore, efficient parametric amplification is 

found to only occur in the catenary vibrational regime and details will be discussed in 

section 5.5. Lastly, we examine the threshold voltage (Vt) of parametric amplification 

in section 5.6. The experimental results show good agreement with the theoretical Vt 

values, suggesting the possibility to predict and control Vt . Our results open up the 

possibility to employ light-weight and high-Q carbon nanotube resonators in single 

molecule and atomic mass sensing.  
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5.2 Losses in carbon nanotube resonators  

   The actual dissipations in nanotube resonators resulting in low Qs are still unclear 

currently. They are believed to be a combination of several loss mechanisms. Here, we 

summarized previous studies and listed the potential dissipations below. 

 

A. Entropic spectral broadening 

Entropic broadening effect is that thermal fluctuations will induce strong coupling 

between resonance modes. This will lead to spectral fluctuations and contribute to low 

Qs and resonance frequency peak shift observed in resonators. In other words, this 

effect becomes more dominant for resonators with small bending rigidity (k), since they 

are expected to have larger fluctuations in thermal equilibrium. Specifically, the quality 

factor and frequency shifts are arising from the change in length caused by thermal 

fluctuation of each resonance mode. The change in length leads to the strain being 

modified; thus, the first and second moment of the strain shift (Δε and σε
2
) will account 

for the frequency shift and quality factor, respectively. The Δε and σε
2
 are expressed as: 
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, where L is the beam length, nf is the number of independent degrees of freedom with 

significant fluctuation amplitudes, lp is the persistence length, N is the axial tension 

and k is the bending rigidity. From equation (5.1), Δε leads to Δf ~ T and the strain 

variance σε
2
 predicts that δf (Q

-1
) ~ T. The δf prediction constitutes entropic spectral 

broadening and Q
-1

 can be further predicted by:   
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L
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With equation (5.2), the Q is calculated around 100 for nanotube resonators, closed to 

the experimentally observed Q. It agrees well with both low Q and temperature- 

dependent behavior so we believe it is the most likely loss in CNT resonators.  

To determine if entropic broadening effect is significant in NEMS resonators, a key 

length-scale called persistence length lp=k/kBT is defined. For short 1D structures with 

length L<< lp, such as conventional NEMS resonators, they are dominated by elastic 

effects and thus behave like rigid rods. On the other hand, for long 1D structures with 

L>>lp, such as organic polymers, they will be dominated by configurational entropic 

effects. For a typical micron-scale nanotube resonators, the diameter is usually around 

few nanometers, yielding to a much smaller bending rigidity for flexural modes and 

thus its length is closed to the persistence length (L ≤ lp). As a result, they will behave as 

semi-flexible polymers, where the bending energy and configurational entropy will 

contribute comparably to the total free energy.  

 

B. Thermoelastic effect 

A normal vibration mode of an elastic resonator will experience damping due to 

their nonlinear interaction with surrounding elastic modes excited thermally, or 

phonons. When a resonator is vibrating, the solid is taken out of equilibrium, having an 

excess of kinetic and potential energy. The coupling of the strain field to a temperature 

field provides an energy dissipation mechanism that allows the system to relax back to 

equilibrium. Relaxation is achieved through the irreversible flow of heat driven by local 

temperature gradients that through the coupling accompany the strain field. This 

process of energy dissipation is called thermoelastic damping.  

The thermoelastic effect can be expressed by a standard model. The dissipation 

strength is given by  
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C

TE2
  (5.3) 

, where α is the thermal expansion coefficient, T is the temperature, E is elastic 

modulus, C is the heat capacity. So the overall value of loss is given by 
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Q  (5.4) 

In previous study, Q around 400 is calculated with equation (5.4), setting up the upper 

bound of quality factor of carbon nanotube resonators. The calculated Q is also closed 

to experimentally observed Q, meaning that it may also be a potential dissipation in 

nanotube resonators. 

 

C. Surface loss 

It has been observed that the measured quality factors decrease in a linear fashion 

as the surface-to-volume ratio increases, directly indicating that the surface loss plays 

an important role in determining the quality factor. Those surface defects can be 

adsorbed molecules, dangling bonds, or amorphous oxide layers that occur at the 

surface of a resonator. They will absorb energy from the fundamental resonance mode 

and transfer it to other modes and thermal energy that induce dissipation. Nanotube 

resonators follow this distributing trend, implying that surface loss may be the main 

dissipation. However, for resonators made out of pristine nanotubes, surface loss 

(dangling bond, surface defects) should be eliminated. Moreover, nanotube resonators 

fabricated by different process methods show similar Q, further proving that low 

quality factors are limited by other loss mechanisms rather than surface loss. Most 

importantly, the Q of nanotube resonators has strong temperature-dependent behavior, 

which cannot be explained by surface loss.      
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5.3 Parametric amplification  

Conceptually, parametric resonance is excited by a time-varying modulation of a 

system parameter. A common example of parametric resonance is a pendulum, with 

the length of the cord changing with time. If the length decreases when the pendulum 

is in the lower position and increases in the upper position, oscillations of the 

pendulum will build up. The first application of parametric amplification in a 

mechanical resonance system was demonstrated by Rugar and Grütter [14]. In their 

work, parametric amplification in a mechanical cantilever was obtained by 

periodically modulating the spring constant on the basis of gate capacitive coupling. 

Thereafter, numerous studies based on parametric amplification in NEMS resonators 

have been conducted by many other schemes, for example, exploiting stress via 

piezoelectric electromechanical coupling [15] or a Lorentz force [16].  

To understand parametric amplification in SWNT resonators, we start from the 

equation of motion. It has been shown that nonlinear damping [17] is highly important 

for SWNT and graphene resonators [18]. Here for simplicity, we drop the nonlinear 

damping terms and model the SWNT resonator as a classical driven damped harmonic 

oscillator with a time-varying spring constant. The equation of motion is then 

expressed as is expressed as [14]:  
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tFxtkk
dt

dx

Q
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xd
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
 (5.5)                                                                          

, where x is the displacement of the nanotube , F(t) is the external driving force, Q is 

the quality factor, ω0 is the resonance frequency, k0 is the unperturbed spring constant, 

and kp is the modulated spring constant created by electrostatic coupling, written as 

kp=Δk sin2ω0t. m, k0, and ω0 are related by k0=mω0
2
. To solve the equation (5.5), the 
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normal mode approach described by Louisell is used and details can be found in 

Rugar and Grütter’s work [14]. The parametric amplification will lead to a vibration 

amplitude gain (G) given by [14]: 
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 (5.6)                                                                       

, where  is the phase between the driving and pumping signals, Vt is the threshold 

voltage determined by the system parameters, and Vp is the pumping voltage for 

parametric amplification. The equation (5.6) shows that the gain is phase sensitive and 

gain will increase as Vp approaches Vt when an appropriate  is satisfied, as shown in 

figure 5.1(a). For  =π/2 (black curve) and  =π/6 (green curve), gain increases as Vp 

approaches to Vt. But For  = 0, the gain is always less then unity and decreases as Vt 

increases; For different fixed Vp (figure 5.1(b)), the maximum gain occurs at  = π/2, 

and the minimum is always at  = 0.     

 

 

 

Figure 5.1. Simulation results of parametric amplification. For  =π/2 (black curve) and 

 =π/6 (green curve), gain increases as Vp approaches Vt. But for  = 0 (purple curve), 

the gain is always less than 1 and decreases as Vt increases (b) In fixed Vp case, for 

different fixed Vp, the maximum gain occurs at  = π/2, and the minimum is at  = 0. 



 

105 

 

5.4 Parametric amplification in SWNT resonators   

5.4.1 Device fabrication 

To experimentally verify the parametric amplification in SWNT resonators, we 

fabricated SWNT resonators using our one-step direct transfer technique. For a typical 

device, the source and drain electrodes are 2 μm wide, separated by 3 μm, 50 nm Au is 

used as contact metal, and the distance between nanotube and the bottom gate is 1 μm. 

The SEM image of a typical resonator is shown in figure 5.2(a).  

 

5.4.2 Measurement setup 

To actuate and detect resonance signals from our SWNT resonators, we employ the 

frequency modulation (FM) single-source mixing technique [19] instead of amplitude 

modulation (AM) method [20] in our measurement setup, as shown in figure 5.2(b). For 

external FM modulation, a small signal from a lock-in amplifier (Stanford Research 

SR830) at low frequency (616.3Hz) is sent to the RF signal generator (Agilent 8648B). 

The FM signal is then sent to the source electrode to actuate the resonance and the 

mixing current from the drain electrode is measured by the lock-in amplifier. To 

achieve parametric amplification, the second AC voltage (pumping voltage, Vp) from 

the second RF signal generator (Agilent 8648C) at twice the resonance frequency 2f0 is 

added to the DC gate voltage through a bias-T, and is applied to the gate electrode to 

modulate the spring constant of the nanotube. We note that the FM mixing technique is 

chosen as the detection technique because of its better noise-rejection in comparison to 

the AM method and the background current is zero (an advantage in detecting 

resonance). In addition, since noise is affected by the amplitude variation, higher noise 

level is expected for AM method. The results of parametric amplification achieved by 
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both AM and FM techniques are plotted in figure 5.2 (c) for comparison. For the same 

device with identical DC gate voltage (Vg) and driving voltage (Vsd) applied, we 

observed that for same pumping voltage (Vp = 50 mV), there is rare enhancement 

appearing in AM measurement scheme (left panel). On the other hand, a significant 

peak enhancement shows up when FM is adopted (right panel).  

 

 

 

Figure 5.2. Experimental setup of parametric amplification. (a) SEM image of a typical 

SWNT resonator. (b) Schematic of the experimental setup for parametric amplification 

in SWNT resonators. (c) The comparison of AM and FM technique for parametric 

amplification. Left panel: parametric amplification measurement conducted by using 

AM method. No obvious peak enhancement shows up. Right panel: parametric 

amplification conducted by using FM method. A significant peak enhancement appears 

and the linewidth is reduced, indicating a Q enhancement. 
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5.4.3 Demonstration of parametric amplification   

To demonstrate parametric amplification, the SWNT resonator is measured in a 

vacuum chamber at pressure below 10
-4

 torr and δVsd = 20 mV is applied to drive the 

nanotube. The mixing current as a function of driving frequency at different pumping 

voltages are plotted in figure 5.3(a). At Vp= 0, we observe a nanotube resonance at f0 = 

23.1 MHz with a poor Q of 24±1. As we increase the Vp at 2f0 frequency, resonance 

peak amplitude is significantly enhanced and peak width is reduced, indicating a Q 

enhancement. The quality factors are extracted by fitting the experimental data of 

figure 5.3(a) with [19]: 
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Figure 5.3(b) shows the Q (blue squares) and corresponding gain (Qp/Q0) (red 

triangles) at different Vp. A clear Q enhancement is observed as Vp gradually increases. 

The maximum enhancement of Q is achieved at Vp= 25 mV with Q=235±9 (blue 

curve), showing remarkably a 10-fold enhancement compared to the signal without 

pumping (red curve, Q=24±1). We further compare our Q value with previous works 

on doubly-clamped SWNT resonators [7-8, 10, 20-23]in Fig. 5.3(c). Overall, previous 

room temperature Q record is around 200, while our highest Q through parametric 

amplification is ~700 (marked as a star and the resonance signal with fitting curve is 

shown in figure 5.3(d)), showing at least three times improvement. 
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Figure 5.3. Demonstration of parametric amplification in SWNT resonators. (a) 

Frequency modulated mixing currents are plotted as a function of driving frequency at 

different pumping voltages ranging from 0 (red), 10 (green), 20 (orange), to 25 (blue) 

mV. Significant enhancement in peak current and quality factor was observed. (b) Q 

(blue squares) and gain (Qp/Qo) (red triangles) vs. Vp. The quality factor increases from 

24±1 (Vp = 0 V) to 235 ±9 (Vp = 25 mV), corresponding to ~10 times enhancement of Q. 

(c) List of maximum Q’s (blue squares) reported at room temperature in previous 

literatures. Our maximum Q achieved through parametric amplification is around 700 

(marked as star) (d) the resonance signal (blue dots) with fitting curve (red).  
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5.5 Dependence of DC gate voltage and AC driving voltage  

5.5.1 DC gate voltage dependence 

Next, we examined effects of system parameters on parametric amplification by 

looking at the DC gate voltage dependence and the AC driving voltage dependence on 

parametric amplification. Figure 5.4 (a) and 5.4(c) show the maximum gains at 

different DC gate voltages obtained from two SWNT resonators, respectively. On both 

devices, we consistently observed effective parametric amplification with gain 

between 2 to 4 at higher DC gate voltages (blue triangles), but no amplification with 

gain ~ 1 at lower gate voltages (red triangles). To understand this disruption of 

parametric amplification, we plotted resonance frequency vs. Vg for both resonators in 

the figure 5.4(b) and 5.4(d), respectively. The resonance frequency is up-shifted at 

higher potential due to elastic hardening [21, 24-25], and two vibrational regimes, 

bending and catenary regimes, are clearly observed [26]. Comparing the gain obtained 

at different DC gate voltages with the corresponding vibration regimes, we found that 

efficient parametric amplification only occurs in the catenary regimes for both 

resonators. This can be explained by the much stronger spring constant modulation, 

gg dV

df
f

dV

dk
 , in catenary regime. Extracting df/dVg from figure 5.4(b) and 5.4(d) 

suggests 3~8 times greater frequency tunability in catenary regime than in bending 

regime. It is possible to achieve effective parametric amplification in the bending 

regime by applying large pumping voltage, in which case nonlinear effects need to be 

considered. 
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5.5.2 AC driving voltage dependence  

We also examined the effect of excitation driving voltage (Vsd) on parametric 

amplification, and the results of maximum gain vs. Vp with different Vsd at a fixed DC 

gate voltage (Vg= -4 V) are plotted in Fig. 5.4(e). The experimental data did not reveal 

any dependence between maximum gain and Vsd when the Vsd was increased from 20 

mV to 60 mV. This result is consistent with observations from previous work, where 

no dependence was observed between the gain and Vsd  [15].   

 

 

 

Figure 5.4. Maximum gain dependence on gate voltages and excitation voltages. (a), (c) 

Maximum gain vs. DC gate voltages of two SWNT resonators. The maximum gains are 

between 2~4 (blue triangles) in the catenary regime but drop to 1 (red squares) in the 

bending regime for both devices. (b), (d) The resonance frequency vs. DC gate voltages 

for two SWNT resonators. Two vibrational regimes, bending and catenary regimes, are 

shown clearly in both devices. (e), Gain vs. Vp at different driving voltages (Vsd) ranging 

from 20 (red), 40 (green) to 60 (blue) mV. No obvious dependence between gain and Vsd 

is observed.    
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5.6 Threshold voltage of parametric amplification  

Last, we examine the threshold voltage for parametric amplification (Vt). As 

shown in figure 5.5(a), gain increases sharply with increasing Vp, agreeing with 

optimum parametric amplification near the threshold voltage. In order to extract Vt 

from the measurement data, we note that equation (5.2) is derived under fixed phase 

lag between driving and pumping. However, our two-source FM technique will 

introduce a time varying phase lag, and hence the overall gain is an average result due 

to random phases. Therefore, the average gain using our measurement technique can 

be written as  
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Fitting data in figure 5.5(a) with equation (5.4), we find a Vt = 0.24 V at Vg = -5 V. 

Furthermore, the average gain under constant pumping frequency at 20 and varying 

driving frequency can be calculated using G = (1-(Vp/Vt)
2
)
-1

 from ref [17]. The 

analytical fitting (green curve) yields Vt = 0.23 V at Vg = -5 V, consistent with the 

numerical fitting result. We further extract Vt values under various Vg, and plot them 

in Fig. 5.5(b) (red squares). To model Vt dependence on Vg, we follow the derivation 

of Rugar and Grütter [14] and have Vt expressed as Vt = 2k0 /QVgCg”, where Vg is the 

DC gate voltage and Cg” is the second derivative of the gate capacitance with respect 

to the distance between the nanotube and gate. To calculate the theoretical values of Vt, 

we adopt the cylinder over an infinite plane model for capacitance, )
2

ln(

2 0

d

Z

L
C




, 

and the results are plotted as blue diamonds in figure 5.5(b). Detail parameters of 



 

112 

 

SWNT resonators are listed in Table 4.1. The experimental results show good 

agreement with the theoretical Vt values, suggesting the possibility to predict and 

control Vt by changing the device geometries and gate coupling. We also notice the 

deviation from the theoretical Vt at Vg = -6 V, and its origin is not clear at this time. 

 

 

 

Figure 5.5. Threshold voltages of parametric amplification. (a) Gain (blue squares) vs. 

Vp at Vg= -5 V. The red curve is numerical fit by using equation (4), and Vt = 0.24 V is 

obtained. (b) Comparison of calculated Vt (blue diamonds) and measured Vt (red 

squares) at different gate voltages.    

 

 

5.7 Summary 

In summary, we employ the technique of parametric amplification by modulating 

the spring constant of SWNT resonators at twice the resonance frequency, and achieve 

10 times Q enhancement. The highest Q obtained at room temperature is around ~700, 

which is 3-4 times better than previous Q reported for doubly-clamped SWNT 

resonators. Furthermore, efficient parametric amplification is found to only occur in 



 

113 

 

the catenary regime due to the difference of frequency tenability at different vibration 

regimes. Our results enable the light-weight carbon nanotube as high-Q NEMS 

resonator for single molecule and atomic mass sensing. We also expect the parametric 

amplification technique can be applied to other low-Q NEM resonators suffering from 

intrinsic loss mechanisms, such as graphene resonators [27]. The 2f0 modulation 

through electrostatic gating offers a simple technique which can be easily adopted in 

various device geometries and the flexibility to be integrated with NEMS applications.  

 

*This chapter is written based on our work published in Applied Physics Letters, 

Volume 99, 083110, 2011.  
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CHAPTER 6  

GRAPHENE ELECTROMECHANICAL RESONATORS 

 

6.1 Introduction 

The mass responsivity (R) defined by (2meff/ω0)
-1

 is an important index to evaluate 

a resonator as a mass sensor. High R allows better mass sensitivity and is obtained 

with low meff and high ω0. Thus, the ultimate NEMS structure will be a resonator with 

one-atom-thick beam and it has to be robust, stiff, and stable, suggesting that a 

resonator made out of graphene sheet would be a perfect candidate.  

Graphene is a flat monolayer of carbon atoms tightly packed into a honeycomb 

lattice, and is very stiff due to the sp
2
 carbon–carbon bonding. In addition, it is one of 

the lightest materials, and thus even a few molecules adsorbed onto the graphene will 

make up a significant fraction of the total mass. Furthermore, its ultra-rigid mechanical 

property [1] pushes its resonance frequency into RF region [2-3]. Low mass density and 

high resonance frequency are expected to result in exceptional mass responsivity. As 

well as its superior material properties, graphene also possesses advantages on 

fabricating NEMS devices. Wafer-scale uniform single layer (SLG) and bilayer 

graphene (BLG) films have been demonstrated by using CVD growth method on metal 

substrates [4-7]. The graphene films grown by CVD method also show good quality in 

both electrical and thermal conductivity in comparison of mechanical exfoliated ones. 

By transferring these wafer-scale graphene films onto process substrates, one can utilize 
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the conventional top-down processing techniques to fabricate NEMS devices on 

“graphene substrates”. The combination of bottom-up graphene synthesis and top-down 

NEMS fabrication enables large scale parallel arrays of graphene resonators for scalable 

device applications.  

In this chapter, we present our initial experimental results of graphene resonators 

and point out some problems from which graphene resonators are suffering as the 

future research directions. The process procedure of graphene resonators is illustrated 

in section 6.2 and the measurement setup is described in section 6.3. In section 6.4, the 

initial experimental results of our graphene resonators are presented. Graphene 

resonators also suffer the issue of low Q. Future directions of graphene resonators 

include investigating the potential losses, exploring the origin of nonlinear damping, 

and demonstrating parametric amplification for Q enhancement, which will be 

described in section 6.5. Making a large array of graphene resonators with different 

geometry aspect ratio (w/l) should give us more insight ideas regarding these issues. 

For Q enhancement of graphene resonators, we expect the same approach we applied 

on the SWNT resonators would improve the Q of graphene resonators more 

efficiently. 

 

 

6.2 Fabrication of graphene resonators 

6.2.1 Synthesizing graphene films by CVD method  

Following the recipes of Lee et al [5], we use 25µm thick copper foil (99.8%, Alfa 

Aesar) as starting substrate to grow graphene films. Firstly, the copper foil is loaded 

into a furnace of a commercial CVD system (Firstnano Easytube 3000). The system is 
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purged with argon gas (Ar) and evacuated to a vacuum of 0.01 torr. The sample is 

then heated to 1000 °C in H2 environment with vacuum level of 0.35 torr. Depending 

on the layer numbers of graphene film, CH4 is purged during the heating-up period 

accordingly. When 1000 °C is reached, CH4 (70 sccm) is flowed for 15 minutes at 

vacuum level of 0.45 torr for graphene growth. The system is then cooled down 

slowly to room temperature with a feedback loop to control the cooling rate.  

 

6.2.2 Transferring graphene films  

The basic procedure of transferring graphene onto substrate is described below. A 

thin polymer film is first deposited onto the copper foil after graphene is grown. Then 

the copper foil is etched away in acid solution, leaving graphene attached with the 

polymer film. This polymer film is then deposited onto an arbitrary substrate and after 

removing the polymer, graphene is left on the substrate. Specifically, we coat our 

sample with Polymethyl methacrylate (950 PMMA A4) and cured it at 180°C for 5 

minutes. The other side of the sample is etched by O2 plasma for 30 seconds to 

remove the graphene on that side. The sample is then left in solution (Aluminum 

Persulfate) for at least 12 hours to completely dissolve away the copper and 

transferred on to the substrate. Lastly, the PMMA is cleaned with acetone for 4 hours 

and rinsed with IPA. 

 

6.2.3 Suspending graphene beams  

The process flow of fabricating suspended graphene resonators is illustrated in 

Figure 6.1. Firstly, 285 nm thermal SiO2 is grown on a degenerately doped silicon 

wafer. To reduce the effect of parasitic capacitance, a local gate is employed instead 
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of using conventional global gate. A local gate electrode is placed on the surface and 

covered by PECVD SiO2 (450 nm). Then, the un-patterned CVD graphene film is 

transferred onto the wafer for further processing. The transferred graphene are 

patterned into an array of rectangles with different aspect ratios by using standard 

photolithography. The remaining photoresist is cleaned by soaking the sample in the 

solvent for 4 hours. Next, Cr/Au=5 nm /100 nm are deposited as contact metals. To 

make suspended graphene beams, SiO2 underneath the graphene is removed by using 

BHF. Lastly, we dry the sample by conducting a critical-point dry step (915B 

Supercritical Dry) to avoid tension on the graphene beam caused by water.  

 

 

 

Figure 6.1. Procedure of fabricating graphene resonators. 285 nm thermal SiO2 is first 

grown on a degenerately doped silicon wafer. A local gate electrode is placed on the 

surface and covered by PECVD SiO2 (450 nm). Then, the un-patterned CVD graphene 

film is transferred onto the wafer for further processing. The transferred graphene are 

patterned into an array of rectangles with different aspect ratios by using standard 

photolithography. Next, Cr/Au=5 nm /100 nm are deposited as contact metals. To 

make suspended graphene beams, SiO2 underneath the graphene is removed by using 

BHF and the sample is dried by a critical-point dry step to avoid tension on the 

graphene beam caused by water.   
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6.3 Measurement setup  

To actuate and detect graphene resonators, the electrical approach same as we 

utilized in measuring nanotube resonators is adopted. Employing this approach to 

measure the resonance signals relies on good gate response of conductivity of SLG 

and BLG [3], meaning that high quality graphene films are required. In our 

measurement setup, both amplitude modulation (AM) and frequency modulation (FM) 

are utilized [8-9], as shown in figure 6.2. A small signal (Δω) from a lock-in amplifier 

is sent to the signal generator to be modulated with the driving signal (ω). The 

modulated signal is then sent to the source electrode to actuate the resonance and the 

mixing current from the drain electrode is measured by the lock-in amplifier to 

determine the resonance.  

 

 

Figure 6.2. Measurement setup of measuring graphene resonators. A small signal (Δω) 

from a lock-in amplifier is sent to the signal generator to be modulated with driving 

signal (ω). The modulated signal is then sent to the source electrode to actuate the 

resonance and the mixing current from the drain electrode is measured by the lock-in 

amplifier to determine the resonance. For parametric amplification, the pumping 

signal at frequency 2ω0 is added to the DC gate voltage through the bias T and applied 

to the gate electrode. 
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6.4 Experimental results 

The SEM image of a doubly-clamped graphene resonator with dimensions of 1 x 3 

μm
2
 (w x l) is shown in figure 6.2 (a), where a well-defined suspended graphene beam 

is clamped by metal contacts at both ends. Here, we note that the solution process to 

remove the underneath SiO2 is a very critical step. Graphene beams may be damaged 

during this process, resulting in the graphene beam broken, or torn apart, as shown in 

figure 6.2 (b). Next, we evaluate the electrical conductance of our graphene devices by 

using a suspended graphene FET configuration. Figure 6.3 (a) shows the conductance 

vs. gate voltage for a typical suspended graphene transistor (1 x 1 μm
2
). The resistance 

is ~7 kΩ. In addition, the curve exhibits negligible hysteresis, indicating that the 

graphene beam is indeed suspended in the air. 

 

 

 

Figure 6.3. SEM image of a doubly-clamped graphene resonator. (a) A well defined 

suspended graphene beam (1 x 3 μm
2
) is clamped by metal contacts at both ends. (b) A 

graphene beam is broken and torn apart after solution process.  

 

Last, we measure the resonance signals of graphene resonators. The graphene 

resonators are measured in a vacuum chamber at pressure below 10
-4

 torr and Vsd
ac 

= 20 
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mV is applied to drive the graphene beam into motion. The electromechanical response 

of a typical graphene resonator with dimensions of 1 x 3 μm
2
 is shown in figure 6.3 (b). 

The DC gate voltage (Vg) is fixed at 3 V, and the frequency-dependent mixing current 

(Imix) swept between 27 and 31MHz reveals a clear resonance mode of the doubly 

clamped graphene resonator (black line). To obtain the resonance frequency, we fit the 

experimental data with equation (5.3) (red line), yielding the resonance frequency, f0 = 

29 MHz with quality factor Q = 70, which is a typical value obtained in graphene 

resonators.  

 

 

 

 

Figure 6.4. Characterization of graphene resonators. (a) Conductance vs. gate voltage 

of a typical graphene transistor (1 x 1 μm
2
). The curve exhibits negligible hysteresis, 

indicating that the graphene beam is indeed suspended in the air. (b) Electromechanical 

response (black line) of a typical graphene resonator with dimensions of 1 x 3 μm
2
. The 

DC gate voltage (Vg) is fixed at 3 V and the resonance frequency is f0 = 29 MHz with 

quality factor Q = 70. 
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6.5 Outlook of graphene resonators 

6.5.1 Exploring nonlinear dynamics 

For resonators with atomic-scale transverse dimensions, such as nanotube and 

graphene resonators, previous study showed that the simple linear damping scenario 

breaks down and their behaviors have to be explained by including a nonlinear 

damping term ηx
2
 dx/dt, where η is the coefficient of nonlinear damping [10-11]. The 

effect of nonlinear damping is prominent, especially in determining DR and Q. As the 

driving force increases, the nonlinear damping starts to be dominant due to larger 

vibrational amplitude. As a result, the quality factor is no longer independent on driving 

force and Q
-1 

is proportional to m
-1

η
1/3

f0
-2/3

Fdrive
2/3

. These results show the possibility in 

controlling the quality factor by exploiting the nonlinear damping. For example, higher 

Q can be obtained by minimizing the driving force.    

The origin of nonlinear damping is still unknown currently. It may stem from the 

concerted effect of a standard dissipation channel such as contamination and 

geometrical nonlinearity arising from the elongation of a doubly clamped resonator on 

deflection. Exploring the possible origins is essential when we try to exploit the 

nonlinear damping to control the Q. Therefore, it is worthwhile to investigate the 

dependence of nonlinear damping on contamination, clamping configuration and 

suspended length. To examine the effect of contamination, a current annealing 

technique to remove contamination from graphene surface [12] can be employed. 

Extracting and comparing η with and without the presence of contamination, the 

dependence of contamination on nonlinear damping should be revealed. In addition, 

the dependence of clamping and suspended length on nonlinear damping can be 

studied by testing graphene resonators arrays with different aspect (l/w). By analyzing 
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experimental results along with theory, the behind mechanisms is believed to be 

explored and allow us to utilize nonlinear damping more efficiently to purchase 

high-Q graphene resonators.   

 

6.5.2 Pursuing high-Q graphene resonators 

Increasing quality factors of graphene resonators is the priority when we try to sell 

them as promising candidates in future NEMS. As a result, understanding the possible 

constrains of quality factors is important. In addition, if the low Q is due to the 

intrinsic limits, we then may need to seek an external way to enhance the Q. 

 

A. Losses in graphene resonators 

The main dissipations in graphene resonators are still under debate so far. Previous 

studies have suggested several possible loss mechanisms and predicted the intrinsic 

limits of quality factors theoretically [13-16]. Firstly, the “spurious edge modes” due 

to different vibrational properties of the edge carbon atoms has been proved as one 

important loss source both theoretically and experimentally. In addition, loss due to 

the friction between the graphene and supporting substrate (clamping loss) is 

calculated. The simulation results indicate that clamping loss will significantly reduce 

Q and setup the upper limit of Q. In addition, the interlayer friction also shows 

considerable affect on Q, implying BLG resonators may have relatively lower Q than 

SLG resonators. Intrinsic thermoelastic loss is also believed to play a pivotal role in 

limiting the Q for true low dimensional resonators. Lastly, entropic spectral broadening 

could also be a possible loss in graphene resonators.   

As discussing in section 2.6, for a conventional doubly-clamped beam resonator, 



 

125 

 

the clamping loss is proportional to (l/w)
3
, where l and w are the length and width, 

respectively. Large aspect ratio is expected to result in large clamping loss. Here, to 

examine the theoretical prediction, a series of graphene resonators with controlled 

aspect ratio (l/w) can be carried out to test the dependence of clamping loss on Q. Due 

to the well homogeneity of our graphene films, the parasitic effects such as surface 

losses are expected to be suppressed, making our graphene resonators an excellent 

platform for systematic studies of the clamping loss. In addition, the effect of interlayer 

friction can be verified by fabricating resonators with both SLG and BLG films.  

Moreover, based on the theoretical prediction, the upper bound of quality factor 

setup by the clamping loss is below a thousand, meaning that little can be done to 

improve Q from device fabrication side. As a consequence, an external approach for Q 

enhancement is necessary. To this end, exploiting parametric amplification for Q 

enhancement in graphene resonator will be a more feasible approach. 

 

B. Parametric amplification in graphene resonators  

To achieve parametric amplification, the measurement setup is illustrated in figure 

6.2. An AC pumping voltage from the second RF signal generator is added to the DC 

gate voltage through a bias-T to modulate the spring constant of the graphene at 2f0. 

From our preliminary results, we have demonstrated ~10 times enhancement of quality 

factor and achieved the highest Q of nanotube resonators at ambient temperature. 

Unlike a nanotube resonator with a slack, the beam of a graphene resonator is much 

stretched. As a consequence, we believed that parametric amplification will produce 

more efficient enhancement of quality factor in graphene resonators, enabling the 

light-weight graphene as high-Q NEMS resonator for single molecule and atomic mass 

sensing.  
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CHAPTER 7  

CONCLUSION 

 

 

In summary, I have implemented both self-detecting SWNT and graphene 

nanoelectromechanical resonators. To study their nonlinear dynamics, I investigated 

the frequency tuning mechanisms of SWNT resonators and demonstrated parametric 

amplifications for Q enhancement in SWNT resonators. 

In chapter 3, I first carried out a one-step direct transfer technique to fabricate 

pristine SWNT nanoelectronics at ambient temperature. Briefly speaking, suspended 

SWNTs are grown across pillars on a quartz substrate, while predesigned electrodes are 

fabricated on a separate device substrate. The transfer of suspended SWNTs to the 

device substrate is implemented by simply bringing two substrates into contact. This 

process technique prevents unwanted contaminations from conventional lithography 

and further reduces surface losses. By using this technique, I fabricated SWNT 

resonators and also demonstrated a fully suspended SWNT p-n diode with ideality 

factor equal to 1.     

SWNT resonators can be electrically actuated and detected by using a capacitive 

measurement scheme in conjunction with the mixing technique. Therefore, in chapter 

4, the gate-induced frequency tuning mechanisms of SWNT resonators was studied. 

SWNT resonators adopting a dual-gate configuration were fabricated by using the 

one-step direct transfer technique and downward frequency tuning caused by capacitive 

spring softening was demonstrated for the first time in SWNT resonators. In addition, 
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in-plane vibrational modes show stronger softening effect than fundamental 

out-of-plane mode, suggesting that the dual-gate configuration can also serve an 

experimental tool for differentiating vibrational modes.   

For SWNT resonators as mass sensors, their mass sensitivities are impeded by the 

low quality factor. In chapter 5, parametric amplification was demonstrated for Q 

enhancement in SWNT resonators and the simplest parametric amplification scheme 

was implemented by modulating the spring constant of nanotube at twice the resonance 

frequency through electrostatic gating. Consequently, at least 10 times Q enhancement 

was achieved and Q of ~700 was the highest value reported at room temperature to 

date. In addition, this parametric amplification technique was expected able to be 

applied to other low-Q NEMS resonators. The 2f0 modulation through electrostatic 

gating offers a simple technique which can be easily adopted in various device 

geometries and the flexibility to be integrated with NEMS applications.  

Lastly, in chapter 6, I examined the graphene resonators fabricated from 

wafer-scale graphene films grown by CVD method. Ultra-high frequency (UHV) 

graphene resonators were demonstrated, and the Qs of graphene resonators are around 

100. The main dissipations leading to low Q are still unknown currently. As a result, 

improving low Q will be an important task. Future directions of graphene resonators 

include investigating the potential losses, exploring the origin of nonlinear damping, 

and demonstrating parametric amplification for Q enhancement. Leveraging the ability 

to fabricate a large array of graphene resonators from wafer-scale graphene films, 

those effects can be investigated systematically. These findings will be valuable for 

understanding the fundamental operations of graphene resonators and open up an 

opportunity to integrate them with other NEMS systems.  


