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CHAPTER I

INTRODUCTION

Deafness affects a large number of people throughout the world. Studies from the Center

for Disease Control (CDC) National Health Interview Survey (NHIS) show that as of 2005,

over 600,000 people across all age groups suffer from deafness in the U.S. alone [1]. The

combined efforts of a countless number of scientists from the fields of otolaryngology,

physiology, bioengineering, signal processing, and integrated circuit (IC) technology have

enabled persons suffering from deafness to receive a cochlear implant (CI). These devices

allow patients to have a good understanding of speech without the aid of other techniques,

such as lip-reading. The first CI device was approved by the Food and Drug Administration

(FDA) in 1984 [2] and many improvements have been made since then. As of 2010, accord-

ing to the National Institute on Deafness and Other Communication Disorders (NIDCD),

there are over 219,000 CIs currently implanted worldwide including 42,600 adults and

28,400 children in the U.S. [3]. This document describes a further improvement to existing

implant technology by including all of the computational and communication capability

required for a CI in a system-on-a-chip (SoC) to enable a fully-implantable Cochlear Pros-

thesis. 

Performance improvements and technology scaling have allowed the IC industry to

create devices and systems unimaginable to previous generations. In the recent past, most

design effort and improvement have been used to develop high performance systems. How-

ever, in an ever more mobile society, low-power portable devices are moving to the fore-

front of research and design efforts. These new efforts have allowed the design and

manufacturing of SoCs that enable the integration of digital, analog, mechanical, biologi-
1



cal, chemical, and other design domains. The CI industry has yet to combine all of the func-

tionality required into a single chip. The research discussed here will enable that transition

by integrating the digital signal processing (DSP) functionality required into an SoC. This

work is part of research conducted as part of the National Science Foundation (NSF) Engi-

neering Research Center (ERC) for Wireless Integrated Microsystems (WIMS) for the

cochlear prostheses testbed [4].

Increased integration of components into a single SoC will enable performance

improvements in remote sensing and biomedical applications. The microsystem described

here combines an energy efficient microcontroller unit (MCU), a low-power DSP core, and

a monolithic hybrid LC (inducutor-capacitor) and ring oscillator clock reference into a

single bulk CMOS SoC intended for use in CIs. By merging all of these components on a

single substrate, the area and power consumption of the system can be greatly reduced

without sacrificing performance compared to present CI systems. While this is a significant

step towards a fully-implantable CI system, there is still further integration to be done. This

work will not include an analog to digital converter (ADC) or a radio frequency (RF) com-

munication interface on a single silicon substrate. However, the system presented here will

support interfaces for them and demonstration vehicles will show the full system in opera-

tion with the ADC and RF interface as separate discrete components. This move towards a

fully-implantable CI is not possible with traditional CI approaches due to size and power

requirements. Although this work was primarily targeted towards integration into a CI, the

same SoC platform or standalone MCU was utilized in remote environmental sensors [5]

at the University of Michigan as part of the WIMS ERC.

1.1 WIMS Overview

WIMS represent the cutting edge of ultra low-power, embedded sensor-system

research. The WIMS Center at the University of Michigan has developed two testbeds to

demonstrate and integrate different aspects of WIMS technology that are being developed

by various research groups. These testbeds bridge the gap between individual research

ideas and system-level implementation of those ideas. Each testbed requires a microcon-

troller for control and data processing. However, performance and interfacing requirements

between the two testbeds vary slightly. The MCU is the most active component in the
2



system so power must be kept to an absolute minimum to sustain sufficient battery life,

while providing sufficient processing power as required by the testbeds.

A goal of the WIMS project is to develop low-power electronic components that

could be used in a wide variety of microsystems. The WIMS testbeds fall into two catego-

ries: remote environmental sensors and biomedical implants. They will be described briefly

in the next sections to give the reader a feeling for the breadth of applications that have been

addressed. The WIMS microcontroller was designed with these target applications in mind.

Three design generations (Gen-0, Gen-1, and Gen-2) of the WIMS MCU were designed

and tested. Gen-0 was a platform test vehicle and will not be discussed here. Gen-1 will be

described in certain situations as it was used heavily in the environmental testbed evalua-

tion. Gen-2 is the focus of the work described here and contains several improvements over

the Gen-1 prototype [6] - [8]. Unless otherwise stated, all data and figures discuss the Gen-

2 system.

1.1.1 Environmental Monitor Testbed
The original detailed goals of the Environmental Testbed are described in [9] and

are summarized here. The differentiation and determination of complex mixtures of toxic

gases and vapors remains a challenging analytical problem of significant importance in

assessing human exposures, monitoring industrial emissions, biomedical surveillance and

diagnosis, and homeland security. To address this challenge, the WIMS ERC launched the

Environmental Monitor Testbed to develop a wireless, Micro Gas Chromatograph (µGC)

using Micro-Electro-Mechanical Systems (MEMS). The µGC, shown in Fig. 1.1, is com-

prised of a sample inlet with particulate filter, on-board calibration-vapor source, multi-

stage pre-concentrator and focuser, dual-column separation module with pressure- and

temperature-programmed separation tuning, an array of microsensors for analyte recogni-

tion and quantification, system pressure and temperature sensors, and a pump and valves to

direct sample flow. The goal is a fully operational microinstrument that occupies forty

cubic centimeters, operates on a few milliwatt average battery power, provides simulta-

neous determinations of approximately thirty vapors at low- or sub-part-per-billion (ppb)

levels in a few minutes, has an embedded controller, and can be remotely controlled and

monitored through a wireless communication link. In early tests of the µGC, the design
3



team determined the components of mixtures of more than ten vapors in less than twelve

minutes with low-ppb detection limits [5]. 

The Gen-1 WIMS MCU was designed to provide all control and data processing

required by the µGC system while minimizing the system’s total power dissipation. There

was a delicate balance between processing and compressing µGC data on-chip versus

transmitting that data over the wireless link to a host computer for processing and analysis.

Unfortunately, the WIMS Gen-1 MCU was never interfaced with the final µGC system due

to the timing of completion of the different projects. However, progress was made in the

software development of the µGC software using the Gen-1 MCU.

With the help of WIMS researchers under Professor Nayda Santiago at the Univer-

sity of Puerto Rico in Mayaguez (UPRM), software algorithms were developed to extract

and compress critical data points that appear as spikes or peaks in the µGC’s voltage output.

Results show that up to 36x data compression is possible using UPRM’s peak detection

algorithm [10]. Fig. 1.2 shows the original µGC data on the left with the compressed µGC

data on the right. What were originally 4,341 data points have been compressed into 120

points while maintaining important peak characteristics such as height, width, and area.

Although the peak detection algorithm is a software optimization, it affects the hardware

design because the level of data compression determines the amount of SRAM required for

Figure 1.1: Concept diagram of WIMS µGC layout [9].
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data storage on the MCU. By reducing SRAM size, memory power and silicon area are

minimized. From a system perspective, data compression also reduces wireless transmitter

power because less data needs to be transmitted. This is just one example of how hardware

and software co-design is important for minimizing system power. Ideally, the MCU would

accomplish all data processing on-chip by performing both peak detection and component

analysis so that only the final results are transmitted to the host computer.

1.1.2 Cochlear Prosthesis Testbed
The Cochlear Testbed is described in [9] and summarized here. Improving medical

interfaces to the human body promises significant enhancements in quality of life for mil-

lions of people by providing diagnostics and therapies to improve function impaired by

deafness, paralysis, seizures, blindness, and more. Realizable biomedical devices require

meaningful technological advances on several fronts before they reach their full clinical

potential. The WIMS approach brings together key components by developing smart neural

microprobes and wireless, low-power, reconfigurable microsystems. The Cochlear Pros-

thesis Testbed integrates a high-density electrode array, a surgeon controllable articulated

positioner, on-board circuit self-diagnostics, embedded MCU, and a bidirectional wireless

link. The objectives of the prototype, shown in Fig. 1.3, are to demonstrate a fully implant-

able auditory prosthesis with untethered communication using rechargeable thin film bat-

teries. Tests with WIMS probes demonstrate the ability to provide position feedback to

allow precise positioning of electrodes.

Figure 1.2: Original µGC data (left); Compressed µGC data (right).
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As in the Environmental Testbed, the WIMS MCU serves as the primary control

module for the cochlear implant system. A low-power DSP core was integrated with the

Gen-2 WIMS MCU to provide the data processing capability required by the Continuous

Interleaved Sampling (CIS) CI speech processing algorithm (see Section 2.4). The CIS

DSP processes microphone data without assistance from the MCU, allowing the microcon-

troller to perform other tasks, or enter into sleep mode. Integrating the CIS DSP with the

WIMS MCU allows the DSP to take advantage of the existing peripheral communication

circuitry on the MCU [11].

1.2 Dissertation Thesis Overview

This introductory chapter gives a brief overview of this dissertation. Chapter II

gives background on the physiology of the human ear and describes the function and com-

ponents of state-of-the-art Cochlear Implants including various signal processing algo-

rithms, including CIS. Chapter III describes the WIMS Microcontroller in great detail. The

MCU instruction set architecture is outlined including motivation for many power saving

features. Peripheral components are described including communication interfaces,

memory architecture, and clock generation and distribution. The DSP implementation is

reported as a separate subsystem. Chapter IV gives the mixed signal design methodology

used to create the MCU. Silicon measured results are given for all previously discussed

components in Chapter V. Chapter VI compares the WIMS CI to other commercial and

Figure 1.3: Concept drawing of the WIMS Cochlear Implant assembly [9].
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academic CI systems and describes the achievements of the WIMS Cochlear Prosthesis

testbed demonstration vehicle. Finally, future research direction ideas are presented. The

user manual for the WIMS MCU is give in Appendix A as a reference.
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CHAPTER II

COCHLEAR IMPLANTS

CIs are medical devices implanted in persons who have a degradation or absence of sensory

hair cells in the inner ear. In a properly functioning ear, the hair cells in the inner ear gen-

erate electrical signals that can be sensed by the neurons and sent to the brain for process-

ing. The purpose of a CI is to perform the function of the hair cells if they are not working

properly. Fig. 2.1 shows a schematic diagram of a generic CI and the intercommunication

of the different components. A microphone receives the sound and converts it to electrical

energy where the automatic gain control (AGC) compresses the dynamic range of the sig-

nal. Next, a speech processor performs computations on the signal to generate the cochlear

stimulation profile. Data is transmitted through a radio frequency (RF) transcutaneous link

to the internal electronics where it is received and processed. Electrical current is delivered

to the cochlea to perform the nerve stimulation. 

Two types of CIs available today: body-worn (BW) and behind-the-ear (BTE). In a

BW device, the batteries and speech processor are worn on the waist, torso, or elsewhere

in a pager-size housing. Cables run between the microphone, which is worn behind the ear,

and the speech processor. A small cable also runs from the speech processor to the trans-

AGCMic Speech
Processor

Internal
Processor

Current
Drivers Electrodes

Transcutaneous
Link

Figure 2.1: Generic cochlear implant block diagram.
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mitter, which is located above and behind the ear. The receiver and electrodes are implanted

inside the patient’s inner ear.

With advances in IC and electronic technology, the state of the art is moving

towards BTE devices. In a BTE device, the battery and speech processor are moved from

the body-worn pack into the BTE housing along with the microphone. The transmitter,

receiver, and electrodes remain unaffected. BTEs have the advantage of being less cumber-

some for the active patient. However, BW implants will continue to be available because

many children find them more comfortable and a hip-worn pack is more concealable in

some situations, and therefore, preferred by some adults [2].

CIs also differ in the number of channels that the sound information is divided into

before the signal processing begins. One of the first CIs was a single-channel implant called

the House/3M implant and was first implanted in the 1970’s [12]. This device contained

only one band of signal information and only one electrode was implanted in the cochlea.

Today, all implants contain multiple channels of signal information and multiple electrodes

are used for stimulation. Researchers still debate which are the best methods for processing

the sound and driving the electrodes, and what is the optimal number of electrodes.

A majority of patients with cochlear implants today receive a CI in only one ear. As

our understanding of implants and how they are received by patients has grown in recent

years, much research has gone into bilateral implants: having implant circuitry and proces-

sors for both ears. Many effects of a bilateral implant are still being studied and will not be

discussed here, but bilateral implantation is a promising approach that appears to provide

better speech reception and sound localization abilities for many of its users [13].

The next sections give more detail on the human ear and the workings of each of

the components that make up CI electronics.

2.1 The Human Ear

The human ear consists of the three main sections shown in Fig. 2.2: the outer, mid-

dle, and inner ear. The outer ear is composed of the auricle and auditory canal. Their func-

tion is to funnel sound into the middle ear region, made up of the eardrum and ossicles. The

eardrum converts the pressure wave from the auditory canal into vibrations which the oss-
9



icles then amplify. The ossicles are three interconnected bones (hammer, anvil, stirrup)

which amplify the vibrations of the eardrum and deliver them to the liquid-filled inner ear.

The inner ear contains the cochlea, semicircular canals, and auditory nerve. The semicircu-

lar canals are not involved in the perception of sound, but rather, they act like accelerome-

ters and assist in balance. Fig. 2.3 shows a cross section through a turn of the cochlea. The

cochlea is a helical-shaped liquid-filled organ made up of the scala vestibuli (SV) at the

apex, scala media (SM) or cochlear duct in the middle, and scala tympani (ST) at the base

(opening). Reissner’s membrane separates the SV and SM and the basilar membrane sep-

arates the SM and ST. The basilar membrane, shown in Fig. 2.4, contains the hair cells that

convert the mechanical energy into electrical energy for the neurons. Each hair cell is sen-

sitive to particular frequencies; the hair cells are arranged logarithmically by pitch in the

basilar membrane with the lower tones located at the apex and the higher tones located at

the base. The function of the frequency-sensitive hair cells is to release a small electrical

current, corresponding to the vibrations they receive, which is then sent to the brain through

the auditory nerve.

Eardrum Semicircular 
Canals

Auricle

Outer Ear Inner 
Ear

Middle 
Ear

Cochlea

Auditory Nerve

Auditory Canal

The Ossicles 

Figure 2.2: The human ear [14].
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2.2 Implant Electronics

CIs are made up of the following major components: microphone, speech proces-

sor, receiver and transmitter for the transcutaneous link, electrodes, and batteries. In various

CIs, these components are implemented in vastly different ways. This section gives a brief

description of the components and their operation in the system that is generic enough to

apply to any CI implementation. It also describes the more common variations. However,

because a design decision made for one component can greatly affect the capabilities and

requirements for another component, this is not intended to be an exhaustive discussion of

all the possible CI configurations. 

Figure 2.3: Cross section through a cochlea turn [15].
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2.2.1 Microphone

The audible range for humans is usually considered 20Hz to 20KHz, but most CIs

concentrate on frequencies between 300Hz and 10KHz due to electrode limitations and

other factors. These electrode limitations will be discussed further in Section 2.2.4. A

microphone with a wide input dynamic range is required. Also, because most implants are

monolateral, a broad directional microphone is best suited for CIs. Some implants available

today have optional focused directional microphones that can be plugged into the implant

in order to aid the patient in receiving sounds from one person when in a crowded room, or

when there is a lot of background noise.

2.2.2 Signal Processor

The purpose of the signal processor is to convert the electrical signals from the

microphone into waveforms that can drive current into the electrodes in a manner that

enables the patient to perceive the sounds like a person with normal hearing. This is a com-

plex process that is the focus of numerous researchers. New speech processing algorithms

are being developed and tested at a phenomenal rate. The speech processing algorithms that

Frequency (Hz)

Figure 2.4: The basilar membrane frequency mapping.
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have been successful to date, along with a few of the more promising ones on the horizon,

will be discussed in Section 2.4

2.2.3 Communication Interface

In a conventional CI, the receiver and transmitter perform the task of getting the

information and power from the speech processor into the electrodes inside the cochlea.

The information transmitted across this link can vary depending upon the type of algorithm

the CI is running. Also, most CIs allow for a bidirectional link in which information about

electrode performance can be fed back from the electrodes so it can be obtained by an audi-

ologist. Typically, the information transmitted to the electrodes includes an address for the

electrode site(s), the amplitude of the pulse, and the pulse duration. Pulse rate is another

important variable; depending on the capabilities of the electrodes and the transmission

procedures, pulse rate may be sent as data or be determined by the frequency of transmis-

sions.

CIs with transcutaneous communication links have no physical wire connecting the

internal and external components whereas devices using percutaneous links use a wire run-

ning through the skin to connect the internal and external components. Transcutaneous

links are limited by the capabilities of the RF transmission link. Percutaneous links offer

much better signal integrity and put fewer limits on the type of stimuli sent to the elec-

trodes. While these are useful in testing new algorithms or electrodes, patients and doctors

prefer to have transcutaneous links for aesthetic and health reasons. Transcutaneous links

are utilized in all commercial CIs today. 

2.2.4 Electrodes

The electrodes and electrode carrier are implanted inside the cochlea by a surgeon.

They must be bio-compatible and mechanically stable in order to sustain vibrations from

head movement. Their purpose is to stimulate the cochlea with electrical current. Electrode

stimulation can happen with either an analog or pulsatile signal, depending on the type of

speech processing algorithm used. Pulsatile stimulation can happen in one of several ways:

monopolar, bipolar, or dual electrode configurations. Monopolar, or common ground, stim-
13



ulation fires one electrode at a time with reference to a common ground electrode for any

stimulating site. In bipolar stimulation, each firing electrode has a nearby ground electrode

to provide a shorter path for current and a more localized stimulation. For dual electrode

stimulation, two electrodes in close proximity are fired simultaneously in order to stimulate

nerves around both electrodes. The choice of stimulation methodology depends on the

speech processing algorithm used, the electrode array capabilities, and the specific patient’s

remaining hearing function. Newer CI systems are being made with multiple options.

Commercial electrode arrays are presently limited to between eight and thirty-one

electrodes. Increasing the density of the electrodes in the array is one area that is being

investigated in order to improve CI performance [16]. The Michigan Cochlear Electrode

Array is a 128-site array. A 32-site prototype array is shown in Fig. 2.5. Depending on the

speech processing algorithm, not all of the electrodes are used for stimulation at all times.

In addition, some electrodes may be useless to the patient for a variety of reasons. These

electrodes are detected and noted as unusable during the CI fitting procedure. The implants

are then programmed to not use these electrodes for stimulation purposes.

2.2.5 Batteries

As with any low-power system, the battery is one of the key elements as it deter-

mines the amount of time the system is able to sustain functionality. For a BTE implant, a

standard hearing aid battery is suitable. For BW implants, standard AA batteries are used.

Typical battery lifetimes in a CI range from nine hours to three to five days in today’s sys-

tems [18], [19].

Figure 2.5: Michigan cochlear electrode array [16].
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2.3 Patient Fitting Procedure

Upon receiving an implant, the patient must undergo a fitting procedure with an

audiologist in order to obtain the best performance with their CI. This procedure takes place

four to six weeks after the implant surgery to allow for healing of the inner ear. The fitting

procedure consists of the audiologist turning on each electrode and the patient responding

when they perceive sound, to establish the minimum current level for each electrode. The

audiologist also finds the maximum comfortable current level for each electrode. This

enables the audiologist to program the device to use only electrodes that have good contact

to underlying nerves and to balance the sound between electrodes representing different

frequencies. The speech processor has many features that can be programmed specifically

for the patient [17]. Several of these features will be discussed in the following sections.

The combination of having numerous attributes available for programming and the

high degree of variability from patient to patient makes for a sometimes lengthy fitting pro-

cedure. Often, patients will come back several times in the first few months in order to

modify settings. Checkups are performed annually, or bi-annually, after the first satisfac-

tory settings are found.

2.4 Sound Processing Strategies

Most of the programmable features discussed previously occur in the speech pro-

cessing algorithm and, apart from the electrode to cochlea interface, the speech processor

has the greatest potential to either improve or hinder the patient’s speech perception perfor-

mance. A brief overview of several of the possible strategies are presented here, with

emphasis on the newer algorithms that are common in CIs today, along with a few that are

being examined for possible future use. Table 2.1 shows the algorithms provided on some

commercially available CI models from Cochlear Corporation (CC) [20], Med-El (ME)

[18], and Advanced Bionics (AB) [19].

The relevant algorithms can be broken into three major categories: Waveform

(Compressed Analog: CA, Simultaneous Analog Stimulation: SAS), Interleaved (Contin-
15



uous Interleaved Sampling: CIS, HiResolution: HiRes), and Feature Extraction (Spectral

Peak: SPEAK, Advanced Combination Encoders: ACE). Each category is discussed below,

along with some possible variations in their implementation.

2.4.1 Waveform Strategies

CA was the first algorithm instituted in multichannel CIs by Symbion Inc. in a

device called the Ineraid [21]. Fig. 2.6 shows the block diagram of the Ineraid device. The

signal is taken from the microphone, compressed with the AGC, and split into four bands

in the speech range as shown in the diagram. Compression is performed in order to reduce

the dynamic range of the input signal so that it is on the order of the electrical stimulation

Table 2.1:  Commercially available CI products and their available speech processing algorithms.

Product

Algorithms

Waveform Interleaved Feature Extraction

CA SAS CIS HiRes SPEAK ACE
CC Freedom No No Yes No Yes Yes

CC ESPirt 3G No No Yes No Yes Yes
ME TEMPO+ No No Yes No No No
AB Platinum No Yes Yes Yes No No

AB Auria No No Yes Yes No No

Figure 2.6: Block diagram of the Compressed Analog signal processing algorithm used in the Ineraid
device by Symbion Inc.
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that will happen at the electrode array. It is also possible to move the compression function

to the back end of the circuit as is typically done in implants today. 

After the signal is split into its channels, different gains are applied to each channel

to ensure that the signals do not surpass the dynamic range of the electrodes and to empha-

size the higher frequency bands. Stimulation is then provided to all four electrodes simul-

taneously in an analog format.

A version of the CA algorithm, called SAS, was developed by Advanced Bionics.

The AGC was moved so that it follows the bandpass filters, and it used a non-linear com-

pression function. In addition, the device was expanded to contain eight channels instead

of four, mostly due to advances in electrode technology, not speech processing technology

[22].

2.4.2 Interleaved Strategies

CIS, developed by Dr. Blake Wilson at the Research Triangle Institute (RTI), is by

far the most common algorithm used by cochlear speech processors today. CIS has the best

speech comprehension performance of any commercially available algorithm with existing

electrodes [23]. Fig. 2.7 is a block diagram for an n-channel CIS processor. It has obvious

similarities to the CA approach, as both are multi-channel algorithms.

The addition of the pre-emphasis high pass filter (HPF) attenuates frequencies

below 1.2kHz in order to help the lower frequency weak consonant sounds to compete with

stronger vowel sounds that are typically above 1.2kHz. Next, the sound is split and filtered

into several different channels by the logarithmically-spaced bandpass filters (BPFs).

Envelope detection by the low pass filter (LPF) and full- or half-wave rectifier is next, fol-

lowed by the non-linear compression to reduce the dynamic range of the signal. Next is the

volume control, which is managed by the patient and is the same for all channels.

The final stage, before transmission to the electrodes, is the pulse modulation. The

output of each channel is modulated with non-overlapping bi-phasic pulses. The pulse

amplitude, both positive and negative phases, is determined by the amplitude of the signal

in the channel. The pulse rate (pulses delivered per second), pulse width, and channel to
17



electrode assignment are all factors that are patient specific and are programmed by the

audiologist. These pulses are delivered at a high rate of typically 1,000 pulses per second

(pps) per electrode. It is important to ensure that the pulse rate is higher than twice the

cutoff frequency of the LPF envelope detector in order to prevent aliasing effects. Also, the

positive and negative halves of the bi-phasic current pulses must be balanced because any

charge imbalance can cause damage to the inner ear tissue. Other programmable features

in the CIS algorithm normally include the BPF frequency ranges and compression function.

The compression function will be discussed in more detail in Section 3.3.

HiResolution (HiRes) from Advanced Bionics is the newest commercially available

speech processing strategy. Implants using this algorithm were approved for implantation

by the FDA in 2000. The differences between HiRes and CIS include a wider input

dynamic range in the input ADC and front-end, a higher frequency cutoff in the envelope

detection LPF, and higher pulse rates with the capability for paired stimulation [24]. Recent

research has shown that fine structure temporal cues in speech are above the standard 200

to 400Hz typical LPF in CIS. HiRes increases this LPF up to 2800Hz in order to obtain a

sharper envelope and replicate timing information faster than a standard CIS implemena-

Figure 2.7: Block diagram of an n channel CIS signal processing algorithm.
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tion. Faster pulse rates (up to 89,600 pps) are employed; this is achieved more with

increased electrode performance than increased signal processing capability. These small

modifications to a standard CIS algorithm appear to help patient perception in noisy envi-

ronments.

2.4.3 Feature Extraction and Spectral Information Strategies

Spectral information strategies began with the development of feature extraction

strategies. Feature extraction strategies, such as F0/F2, F0/F1/F2, and Multipeak (MPEAK)

differ from CA or CIS in that they try to present special features of the incoming sound to

the cochlea instead of trying to represent the full waveform of information to the ear in

either waveform or pulsatile format. They do this by utilizing methods such as zero-detec-

tion to extract features of the fundamental frequency (F0) and the formants (F1, F2) of the

sound. This information would then be presented to the cochlea by stimulating the proper

electrodes corresponding to the frequencies extracted. This approach has worked well

under ideal circumstances, but background noise often causes errors in the zero detection

circuitry, leading to frequencies being generated in the output that are not present in the

input.

The next algorithm developed was called Spectral Maxima Sound Processor

(SMSP). SMSP is similar to the later-developed CIS algorithm in that it compresses the

input, splits it into different bands, and extracts the envelope. The differences lie in a few

of the cutoff frequencies for the filters, and in that SMSP uses sixteen channels as opposed

to the eight that are generally used in CIS. Also, SMSP employs an n-of-m strategy

whereby, for each input time slice, it chooses to stimulate n of the m available electrodes

corresponding to the n largest amplitude signals. The first SMSP implementation by

Cochlear Corporation stimulated six electrodes out of sixteen channels. SMSP stimulates

at a slower rate than CIS processors. Spectral Peak (SPEAK) was developed by incorporat-

ing a few small changes into the SMSP algorithm. First, it was expanded to twenty channels

and the n stimulated electrodes were variable from patient to patient depending on pre-pro-

grammed thresholds and the energy distribution across the frequency ranges. Advanced

Combination Encoders (ACE) has since been developed, and is often described as a com-

bination of SPEAK and CIS. It takes the fast stimulation rates from CIS and the n-of-m fea-
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tures from SPEAK [22]. It is also possible to expand CIS to more than eight channels as

well as employ an n-of-m strategy among the channels and electrodes.

2.5 Implementation Methods

There are several options available when deciding how to implement a specific

speech processing algorithm in integrated circuit (IC) technology. 

2.5.1 Software Programmable DSP

The programmable DSP market was worth $12 Billion in 2009 and is expected to

grow to $15 Billion by 2012 [25]. This has created a competitive market with several

options available for the consumers, in this case, CI manufacturers. The variety, flexibility,

and availability of these off-the-shelf products has made them highly feasible in CI sys-

tems. Texas Instruments has developed the TMS320C5402, with help from Advanced

Bionics Corporation, specifically for use in the Clarion and other CI systems [26], [27].

Motorola also has DSP chips currently being used in both research and commercial implant

processors [28] - [30]. Table 2.2 gives a summary of some of the available DSP choices

available in both academic and commercial CI work.

It is important to note that the Champ-LP processor is actually an array of sixteen

custom designed, low frequency DSP chips. This allows for the chips to take the perfor-

mance penalty and power savings of running at a lower voltage than is typical for circuitry

in that process. However, it is not clear what algorithm(s) Champ-LP is capable of execut-

ing or how much flexibility exists in fitting the algorithm to the patient’s needs.

One drawback to designing a full CI system which utilizes an off-the-shelf pro-

grammable DSP chip is that other circuitry is necessary to facilitate system control, elec-

trode stimulation, data communication, and patient fitting. The Sharp system requires

adding a ROM, three serial ports, one parallel port, and an ADC to the existing DSP chip.

This greatly increases the system size and power consumed performing inter-chip commu-

nication.
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2.5.2 Analog Signal Processing

Several attempts have been made to design analog circuitry that can perform the

same tasks as the programmable DSP chips, and the results have been favorable. Table 2.3

shows a summary of some analog implementations that have been developed. It is obvious

that the power savings for these analog implementations over programmable DSPs are

great. However, they do not have the same sleep or standby mode advantages that the dig-

ital implementations realize. The speech processing algorithm is constantly running to con-

tinuously process sound and deliver it to the patient’s cochlea, but there is not always

information in every channel to be processed. Digital circuitry can easily shut off particular

units or entire channels when inputs to that channel are below a certain threshold. The

analog counterparts must remain awake and keep bias currents running in case the channel

is required to start computation again. The “wake-up time” for analog circuitry is usually

greater than that of digital circuits and therefore sleep modes are not as prevalent in analog

circuitry.

As with programmable DSP implementations, other components must be added to

perform the system's required tasks. Consider also that the analog systems must communi-

cate with several pieces of digital equipment and software during the patient fitting process.

While both analog implementations above tout programmable filters and channel variables,

it is unclear how easily they will integrate with the audiologist’s equipment.

Table 2.2:  Summary of programmable DSP options.

Processor Technology
(µm)

Area
(mm2)

Power 
Supply (V)

Freq.
(MHz)

Current
(mA)

Standby 
Current 

(mA)
5402a 0.18 100b 1.8 100 45 2

Champ-LPc 0.35 48 0.85 N/A 7.1 N/A

Sharpd N/A 400b 3.3 100 48.2 32.3

a. Texas Instruments TMS320C5402 [26].
b. Area includes standard QFP package
c. [31].
d. Uses Motorola DSP56309 [28] with other off-the-shelf components [29]
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2.5.3 Integrated SoC

A third approach to implementing DSP functionality for a CI is to integrate the DSP

functionality onto the same silicon that performs other tasks for the CI system such as clock

generation, analog to digital conversion, RF communication, electrode telemetry feedback,

and system control. Only in recent years has this become possible with the advances in IC

technology.

A digital microcontroller that processes instructions and other mixed-signal com-

ponents are needed in order to perform the system tasks previously described. This is typ-

ically done by a small, low-power microcontroller with several peripheral units closely

integrated. Several product lines of microcontrollers are available from industry, including

Motorola, Intel, ARM, and Texas Instruments. In order to add DSP capability to the exist-

ing microcontroller, one of two approaches can be utilized.

Instructions can be added to the microcontroller instruction set architecture (ISA)

that perform DSP-like tasks utilizing high performance computational units. While this has

the advantage of being the easiest approach to implement, it can be difficult to achieve the

required performance from this method because, without greatly increased complexity, the

microcontroller cannot perform its two tasks concurrently. It can be either controlling com-

ponents of the system or processing incoming sound signals.

A second approach would be to add a DSP module to the microcontroller that could

independently process speech. The DSP block could be treated like any other peripheral

component by the microcontroller. It would just need to be initialized, and could then pro-

cess speech signals by itself. Examples of this approach are an ARM core combined with

Table 2.3:  Summary of analog signal processing options.

Processor Technology
(µm)

Area
(mm2)

Power 
Supply (V)

Power 
(µW)

Toumazoua 0.8 N/A 5.0 sub 1000

Sarpeshakarb 1.5 22c 2.8 400d

a. [32]
b. [34], [35]
c. Area is for a 2-channel signal processing chip
d. Power is estimated for a 32-channel version not actually implemented
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a programmable DSP [36] and Texas Instruments’ TMS320DM310, which includes a

microcontroller, peripherals, and a programmable DSP core. While these implementations

have the advantage of being a fully integrated SOC, if the application is known prior to chip

design and development, the DSP core could be tuned to the CI speech processing algo-

rithms in order to increase performance in all areas.

2.6 Cochlear Implant Improvements

With improvements in the electrode array density and performance, research is pro-

gressing towards improving the quality of hearing for patients with CIs [37]. Perhaps even

making listening to music enjoyable for CI patients. Improving on existing sound process-

ing algorithms as well as developing new algorithms will assist in obtaining this achieve-

ment. As an aesthetic improvement, making a device that is fully implantable would benefit

patients concerned with hiding the visible components of a CI. This will require further

improvements in battery technology, especially charging techniques, and implementing a

microphone system that allows for good sound pick up as well as minimal data loss upon

transmission to the signal processing unit. The science, engineering, medical, and psycho-

logical professionals working on all of the above improvements are making progress

towards making persons with a CI virtually indistinguishable from healthy hearing individ-

uals.

2.7 Conclusions

In the past two decades, CI devices have improved the life and function of people

who otherwise would be forced to rely on others for assistance to accomplish everyday

tasks. It is exciting to see how beneficial current CIs are to the people who have them, and

to work on technologies that will make them even more effective and convenient for future

patients. Through continuing research, testing, and exploration, one can only hope that

deafness will become a thing of the past. 

The next chapter will describe the work done in order to improve the efficiency and

reduce the footprint of Cochlear Implant signal processing, control, and communication as

part of the WIMS MCU.
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CHAPTER III

WIMS MICROSYSTEM

Primary design considerations for a battery powered bio-medical implant system are

patient safety followed by power consumption and volume or area. The WIMS Microcon-

troller was designed and built with these targets in mind. The first generation of the WIMS

Microcontroller was designed for use in an Environmental Testbed [5]. Due to the

increased computational demands for sound processing in CIs, the second generation

WIMS processor added a DSP and made some improvements to the WIMS ISA and per-

formance. The first generation processor will not be discussed in detail here as it was cov-

ered in detail in [38].

3.1 Microsystem Architecture

The complete microsystem is shown in Fig. 3.1 as part of the WIMS CI System. The

electrode array is described in [16] and its communication interface has been specifically

designed to work with the DSP and Universal Synchronous-Asynchronous Receive-Trans-

mit (USART) port on the WIMS Microcontroller. The telemetry coil and RF interface also

utilize a USART port on the Microcontroller in order to receive instructions and send back

data. The ADC is included to convert sound samples for the DSP. A mock up of this com-

plete CI will be discussed in Section 6.2. The current section will deal with the WIMS

microcontroller in detail.

The main components of the microcontroller are the 16-bit datapath, DSP, memory

system, communication peripherals, and a hybrid clock source. The WIMS Microcontroller

User Manual in Appendix A provides detailed information for system integrators, software
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programmers, and users. It provides a full description of the processor organization and

instruction set architecture (ISA). The ISA is summarized in the next section.

3.1.1 Instruction Set Architecture
The primarily load-store ISA1 contains eighty-five instructions supporting eight

addressing modes and single- and multi-word arithmetic, shift, logical, and control-flow

operations. Instructions in the custom ISA were carefully chosen to minimize decode com-

plexity and power without sacrificing functionality. One level of interrupt and subroutine

support is available in hardware. Nested interrupts and subroutines are enabled through

software control of the hardware stack and frame pointer. 

The 16-bit MCU has a 24-bit unified data and instruction address space and can

access sixteen data registers and fourteen address registers. The data registers are split

evenly into two register windows. A separate address register window is included with six

address registers in each window, with the stack and frame pointers available in both win-

dows. The data and address windows are separated in order to allow compiler optimization

of window switching. Register windows can be utilized to achieve up to 19% reduction in

1.  The author wishes to thank Matt Guthaus for his contributions to the original WIMS ISA specification 
and Rob Senger and Rajiv Ravindran for their assistance in optimizing future ISA versions.

Figure 3.1: Complete microsystem architecture.
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power consumption and 30% improvement in performance when compared to a non-win-

dowed architecture [39].

Table 3.1 shows a detailed breakdown of the available instructions by type. There

is additional support in the ISA for Direct Memory Access (DMA) instructions, but these

instructions were not implemented on the Gen-2 WIMS Microcontroller due to time and

area constraints. The DMA instructions would provide more efficient spilling of registers,

subroutine calls, and loading of the scratchpad memory with data. These instructions were

implemented in a subsequent version of the WIMS processor by Dr. Brown’s students

(Spencer Kellis, Nathaniel Gaskin, Bennion Redd, and Jeff Campell) at the University of

Utah [40], [41]. 

A custom C compiler for the WIMS ISA was developed by Rajiv Ravindran,

Ganesh Dasika, and Professor Scott Mahlke. The compiler, based off Trimaran [42], uti-

lizes the existing WIMS assembler to map assembly language to binary code. Scripts are

then available to load the binary code into the MCU via one of the external interfaces. The

compiler has shown how to utilize the unique features of the WIMS ISA in order to yield

efficient code. Register windowing schemes and DMA instructions were analyzed in [43].

Performance improvements utilizing the scratchpad memory for efficient use of commonly

executed loop code was shown in [44]. The WIMS compiler group was also helpful in ana-

lyzing and optimizing the Gen-1 architecture and specifying the Gen-2 machine.

3.2 Microcontroller

Next, this section will discuss the main components of the MCU along with the test-

ability features that have been included. The memory architecture will be discussed first,

followed by the pipeline and peripheral components. Last, the testability features will be

described.

3.2.1 Memory Architecture
Previous work has shown that large SRAMs consume more power than small

SRAMs [45]. By subdividing the memory structure into blocks, at the cost of extra area for

duplicated sense amps and other peripheral circuitry, one can obtain a memory structure

that dissipates less power. The Artisan SRAM compiler was used to implement memories
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in the TSMC 0.18µm process. Based upon analysis of various sizes of memory blocks, and

considering both area and power dissipation, the optimal configuration for 32KB of on-chip

memory was found to be four banks of 8KB each as shown in Fig. 3.2. With this topology,

all single-port memory banks that are not being accessed can be disabled on a cycle-by-

cycle basis. It also allows instruction and data accesses to different banks of memory on the

same cycle without stalling the pipeline. Dual ported SRAMs were not used because they

occupied approximately twice the area of the single ported SRAMs of the same storage

capacity. A dedicated memory management unit (MMU) in the core routes data from the

correct bank to the requesting unit and disables inactive banks of memory. The memory

speed is sufficiently fast to allow all accesses to complete within one cycle without the need

for caches. 

As a power saving feature, a modified scratchpad memory as shown in [45] - [47]

was added to our chip. The scratchpad memory, also known as a loop cache, is a small, low-

power 512-byte memory that is pre-loaded with the most commonly executed instructions

(typically loop code) or commonly accessed data as determined through compiler profiling.

This will greatly reduce the power consumption of the controller considering that embed-

Table 3.1: ISA Summary.

Type and 
Number Instruction Category

Load Byte Word Absolute Indirect Update Imm Register

13 8 5 2 8 4 7 4

Store Byte Word Absolute Indirect Update Imm Register

10 5 5 2 8 4 4 4

Arithmetic Add Sub Mult Div Compare Shift Multi Opa

23 3 2 4 4 3 6 11

Logical And Or Xor Shift Rotate Imm Register

13 2 2 2 3 2 6 6

Bit Ops Set Reset Toggle Imm Register — —

5 2 2 1 3 2 — —

Non-Windowed Data Address — — — —

8 4 4 — — — —

Control Jump Branch Return Interrupt Absolute Relative —

9 5 1 1 2 6 3 —

Test
Please see Appendix A for more details on the test instructions

4

a. Built-in support for multi-word operations
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ded controllers typically run the same software throughout their lifetime and much of that

time is spent executing loop code. The DSP is also given direct control over the scratchpad

in order to store the non-linear compression look-up-table (LUT). An additional interface

to up to 128KB of external memory is available for applications that may require more stor-

age. 

3.2.2 Pipeline
At the heart of any MCU is the pipeline to process instructions. Fig. 3.3 shows a

block diagram of the WIMS MCU pipeline. The Instruction Fetch (IF), Instruction Decode

(ID), and Execute (EX) stage compromise the 3-stage pipeline which efficiently imple-

ments the WIMS ISA. The Program Counter (PC) determines the instruction fetch address

and can auto increment, take an interrupt address, or a branch/jump address from the EX

stage. The sixteen data registers and fourteen address registers are split across independent

windows. Memory and peripheral access are all handled through the memory management

unit (MMU). All peripheral units’ control and data registers are memory mapped. 

Figure 3.2: Normalized power and area trade-offs for possible memory configurations.
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The boot ROM assists with loading of the on-chip memory and setting the default

states for all of the peripheral components. The WIMS MCU supports several startup sce-

narios based on external interrupts triggering specific interrupt code in the boot ROM. Code

can be executed directly from the external memory, loaded from the external memory into

the on-chip memory, or be loaded into the on-chip memory from the USART port. A flow

chart for the boot up scenarios is shown in Appendix A.

3.2.3 Peripherals
Available communication interfaces include two USART ports and three Serial

Peripheral Interface (SPI) ports. There are also three programmable timer interfaces which

can interrupt the core or provide waveforms directly to external pins. 

In order to support the cochlear DSP, two of the SPI interfaces have shared control

between the MCU and the DSP. The controlling unit is selected via software. The control-

ling unit determines the clock domain for each SPI interface and where data and commands

Figure 3.3: Pipeline block diagram.
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are routed. In addition, the SPI interfaces have multiple operating modes to support several

different external components. For backwards compatibility, there is an environmental

mode to support the UMSI chip interfaces [48].There is also a cochlear mode to interface

directly with the custom Michigan Electrode Array [16].

3.2.4 Testability
Several features are included in the MCU to facilitate post production testing. When

choosing the test features to include, minimal overhead was the key metric. Therefore,

trying to reuse existing features and hardware was usually the method chosen. There is sup-

port in the ISA for accessing data in test mode as well as hardware support for reusing exist-

ing pins for monitoring key registers on chip.

The ISA includes stop, start, and single-step instructions that can be included in any

program to hold the MCU at particular points of program execution. Breakpoint modes are

also included in the ISA to facilitate finding out what portion of a program is causing a par-

ticular failure. The MCU can be told to break on an address, data, or interrupt level match.

Once a match is encountered, the MCU will halt execution by inserting a stop instruction

after the instruction that caused the data match. At that point, the built in test interface (TI)

can be used to interactively interrogate the registers and ascertain the cause of the failure.

The TI is wrapper around one of the existing USART peripherals; it is used only for

debugging. When the TI is activated via a special test pin being driven high, it is given the

highest priority interrupt level so that it can always insert an instruction into the pipeline

when the MCU is in a stop state. If the TI is not activated via the test pin, it can be used as

a standard USART port. The TI can also output data, and is given special access to any of

the address, data, or status registers on the chip to output them for debugging. In the Gen-

1 chip, all of the pipeline registers were specially mapped and available for the TI to inter-

rogate and output. However, this access was deemed too resource intensive for the added

visibility it provided so it was not included in the Gen-2 processor. An additional test mode

feature is that all of the external memory interface pins are reused to output the value of the

PC and EX stage write data (to memory or registers). This helps in monitoring the state of

the MCU while sending in debugging instructions.
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In addition to the software and ISA support, hardware support is included for testing

certain features. An external clock source for the MCU can be provided and chosen via an

external pin. This will bypass the on-chip clock generation in case there are any problems

with the on-chip clock and allows for testing performance of the MCU outside of clock

rates that can be generated on-chip. Three pads are also multiplexed to simplify testing of

the on-chip clock generation. The three pins create a shift register out of the thirty-two con-

trol bits in the clock generation IP block. The output is routed directly to a bonding pad for

monitoring.

3.2.5 Summary
The MCU is a highly flexible processor specifically targeted at remote, low-power

applications. The ISA provides enough support for on-chip data processing, debugging

applications in the field, and support for compiler optimizations. Efficient implementation

of several peripheral communication interfaces allow for adaptation to many possible

applications and external interfaces. 32KB of on-chip SRAM, 128KB of available off-chip

SRAM, and a 512B on-chip scratchpad memory provide a good balance of power, perfor-

mance, and chip real estate for several applications. 

3.3 Digital Signal Processor

A DSP module was added to the WIMS Microsystem in order to increase the pro-

cessing capability while at the same time reducing the power consumption required to per-

form the CI sound processing [49]. A low-power implementation was the first goal, but the

system also needed to be flexible enough to allow for patient-specific programming com-

parable to that of commercial CIs. The CIS algorithm was chosen due to its popularity in

commercial devices and high speech recognition rates among patients [23]. 

At a high level, the DSP performing the CIS algorithm takes input samples from an

ADC and splits the sound into several channels based on frequency. Each channel is pro-

cessed further to find the envelope and compress the dynamic range. Volume adjustments

can be made before sequencing through each channel and passing its data to a correspond-

ing electrode to provide stimulation. Additionally, test and programming features need to
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be included in the DSP for safety and further research along with the patient fitting proce-

dure.

Integrating the DSP core was done by taking advantage of the existing processing

capabilities and communication interfaces of the MCU. The DSP expects the MCU to per-

form all of the system setup and can therefore eliminate many components required in a

standalone DSP implementation. In order to communicate with the ADC and electrode

array, the MCU allows the DSP to take control of two SPI peripheral units by setting con-

trol bits in the peripheral units. The DSP also expects the MCU to put the SPIs into the cor-

rect modes before giving control over to the DSP. Read access to the 512-byte on-chip

scratchpad memory is given to the DSP. This allows the DSP to use it for efficient storage

of the dynamic range compression via a look up table (LUT). 

The parallel nature of the CIS algorithm provides for a significant reduction in hard-

ware by pipelining the datapath and allowing all channels to share the same hardware for

filters, LUT, volume, and pulse modulation. Control circuitry is also simplified by allowing

finite state machines (FSMs) in the control unit to reuse states for each channel.

3.3.1 Architecture
Fig. 3.4 shows a block diagram of the fully-synthesizable signed-magnitude fixed-

point DSP core. The highpass filter (HPF), bandpass filters (BPFs), and lowpass filters

(LPFs) are implemented as cascaded infinite impulse response (IIR) stages due to the low

memory requirements and simplicity of the hardware. They are 1st, 6th, and 4th order,

respectively. Equation 3.1 through 3.3 show the filter equations for the HPF, BPFs, and

LPF in terms of their coefficients (an, bn) and the input samples (zn).

All filter coefficients are programmable by the MCU to provide the required flexi-

bility for patient fitting procedures. All filters realize a vast reduction in area, due to the

multiply-intensive nature of filters, by sharing the same cascade stage hardware. Register

storage for the filter coefficients and output data from each datapath stage is a significant

portion of the architecture. Clock gating is performed on these registers to reduce the clock

tree loading, and therefore power consumption.
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Compressing the dynamic range, and therefore the number of bits required to

encode the signal amplitude, saves power and area by reducing the datapath width from six-

teen to eight bits for all downstream calculations and storage. This logarithmic compression

is done using the low-power scratchpad memory to store the LUT data. By allowing the

MCU, and therefore the software, to control the data in the 512-entry LUT, the patient can

have the compression function fitted to achieve their best performance. 

Similarly, the patient can use the volume control to set the volume gain for each

channel independently. Equation 3.4 shows the volume equations where THR is the

Figure 3.4: CIS DSP architecture block diagram.
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patient’s minimum hearing THReshold and MCL is the patient’s Most Comfortable Level.

Both THR and MCL are measured by the audiologist and are channel dependent. 

(3.1)

(3.2)

(3.3)

(3.4)

Pulse rate, channel to electrode assignment, and pulse duration are all programma-

ble in the modulator FSM via the MCU interface. The current implementation allows for

any bi-phasic pulse stimulation information to be sent to the electrodes through one of the

system’s SPI interfaces. The maximum pulse rate is 3,000 pulses per second. If more com-

plex stimulation profiles are desired, the MCU can read the data coming out of the DSP

volume stage and perform computations to calculate the appropriate pulse characteristics.

It can then take control of the SPI interface and send information to the implanted elec-

trodes, bypassing the DSP modulator FSM. This makes the microsystem a useful tool to

evaluate experimental stimulation profiles.

3.3.2 Modes of Operation
The DSP core has four operating modes: stimulation, programming, test, and sleep.

For typical operation, the DSP will be in stimulation mode and will process samples and

generate stimulation pulses automatically. The MCU can be in standby mode during this

time. Input data is received from the external ADC through one of the shared SPI interfaces.

Programming mode will allow the MCU to set up all filter coefficients, LUT data, and the

stimulation profile. Test mode allows for any of the datapath stages to be bypassed via the

multiplexors at each output node to provide observability and controllability over each

component in the DSP. Sleep mode allows all DSP components to be shut down in order to
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conserve power. While in stimulation mode, any unused DSP datapath stages are shut down

through the control unit by utilizing the existing sleep mode circuitry.

Assuming a 22kHz front-end ADC, which is standard for speech processing within

the human audible range of 0 to 10kHz, the DSP must operate at 3MHz to provide adequate

output data for high pulse rate stimulation. This calculation is based on the DSP processing

time of a single sample and the data transmission rate to the electrodes.

One key benefit of this DSP architecture is important to point out here. Since all

processing units are used in series, all that is required to increase the number of channels is

to increase the storage for new channel coefficients and increase the operating frequency

of the DSP. There is margin available to run the 3MHz DSP much faster in the TSMC

0.18µm process. Thus, scaleability is a large benefit of this DSP architecture.

3.3.3 Interfaces
The DSP has to communicate with several different components in different modes

of operation. This section outlines the operation of the interfaces to the MCU, ADC, and

electrode array. 

3.3.3.1 Microcontroller
The DSP can be considered a slave to the MCU. The MCU can program all vari-

ables and coefficients for the DSP as well as the clock domains and access control for the

shared SPI units and scratchpad memory. The DSP can then access and send all information

via the memory management unit (MMU). This master/slave relationship between the

MCU and DSP allows for efficient reuse of system resources with minimal overhead. 

This master/slave organization allows the MCU to control either SPI interface and

to inject data samples into the DSP or send data directly to the electrode array. While this

mode of operation would be used only for experiments, it is useful for debugging or exper-

imental algorithm investigation. 

3.3.3.2 Analog to Digital Converter
The SPI interface supports interfacing to the AD7708 [50], AD7888 [51], or com-

patible ADC. The interrupt from the SPI interface tells the DSP control unit that a new

sample is available and ready for processing. The DSP control unit will then present the
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sample to all channels at the next cycle of channel processing. This ensures that all channels

process the same data. 

3.3.3.3 Electrode Array
The Michigan Electrode Array has an SPI interface for receiving data that will drive

the electrodes. A custom data transmission protocol is used by the DSP to send the elec-

trode address and the amplitude of stimulation pulses for each channel. The channels are

serially sequenced and the delay between pulses is programmable. Since the pulses per

second delivered to the electrodes are set by the transmission rate through the SPI interface,

this interface has priority over all other DSP operations. The DSP channel to electrode

assignment is also programmable via the MCU setup routine.

3.3.4 Conclusions
The custom DSP presented here is an efficient implementation of the CIS sound

processing algorithm. It converts sound samples into signals that can be understood by the

electrode array in order to deliver stimulation to the cochlea and allow a CI patient the per-

ception of sound and ability to comprehend spoken language. The four modes of operation

allow for system integration and setup. The DSP is flexible and expandable for future

developments in electrode technology or signal processing. Modifying the DSP presented

here to support the HiResolution algorithm described in Section 2.4 would only require

changing the LPF cutoff frequencies and increasing the speed of the modulator FSM.

3.4 Clocking Scheme

The ability to dynamically scale CPU clock frequency with workload has become

an important technique for reducing active and standby power consumption in nanoscale

embedded systems. Dynamic frequency scaling (DFS) has been used successfully to reduce

power in portable embedded applications such as PDAs and cell phones. Recently, even

high-performance microprocessors such as Intel’s dual-core Montecito have adopted com-

plex dynamic voltage and frequency scaling (DVFS) control circuits to maintain power and

temperature within acceptable limits [52].

Many DFS circuits are implemented with a phase locked loop (PLL), which is used

to multiply a low frequency reference signal that is typically derived from an external crys-
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tal oscillator (XO). The PLL prescaler can be changed to generate a new clock frequency,

however, even relatively fast-locking PLLs incur a delay on the order of microseconds to

regain lock after the prescaler has been changed [53], [54]. During this time, the system

clock is typically unusable, which can easily translate into thousands of missed CPU cycles.

To avoid stopping the CPU, dual-PLL DFS architectures such as [55] use one PLL to pro-

duce a usable system clock while the second PLL’s prescaler is changed. After the second

PLL has locked onto the new frequency, the system clock can be switched. This approach

is problematic when transitioning from low to high frequency to handle sudden, unexpected

increases in workload as might occur in interrupt-driven embedded systems. For real-time

applications, the delay to lock the second PLL on a higher frequency can result in unaccept-

able performance degradation. A two PLL system is also significantly extra area compared

to single PLL systems. DFS architectures proposed in [53], [56] avoid this problem by run-

ning a single PLL at high frequency and dividing the clock down. Using a frequency divider

on the output allows for nearly instantaneous frequency switching without incurring the

lock penalty associated with changing the PLL prescaler. However, by maintaining the

PLL at a high frequency and using clock division, the PLL dissipates more power than if

the prescaler were reduced during times of low CPU activity.

3.4.1 Dynamic Frequency Scaling
Most DFS circuits require full-custom design with careful transistor level simula-

tion to avoid glitches on the clock during frequency transition. In this work, we present an

HDL-synthesizable, low-latency, glitch-free dynamic clock frequency controller that

switches frequencies without halting the CPU. Rather than a traditional bottom-up

approach using a low frequency external XO reference that is multiplied by an on-chip

PLL, our implementation employs an all-silicon hybrid temperature compensated LC oscil-

lator (TC-LCO) to eliminate the need for both the PLL and external reference. The TC-

LCO produces a high-accuracy, low-drift, and low-jitter 1GHz sinusoidal reference that is

frequency divided and turned into a square wave. A ring oscillator is also provided for low

power standby mode. 

Fig. 3.5 shows the novel DFS circuit. A simple flip-flop chain divides the mono-

lithic clock reference (2f0) to produce eight frequencies ranging from f0=100MHz to
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f7=781kHz if the TC-LCO is enabled and from f0=10MHz to f7=78.1kHz if the ring oscil-

lator is enabled. The eight selectable frequencies supply two software controlled 8-to-1

multiplexers that provide separate clocks to the MCU and DSP cores. The multiplexers’

outputs (fMCU, fDSP) are not hazard-free and require parallel chains of synchronizing flip-

flops (FF0, FF1) to remove glitches and eliminate metastability that might occur when

switching between frequencies. Optional 2-to-1 multiplexers select between the on-chip

clocks and an external clock; however, these multiplexers cannot be changed dynamically.

This DFS circuit can easily be expanded to provide additional, independently selectable

clocks if required.

Glitches on the clock signal can result in logic failure through two primary mecha-

nisms. If the glitch is small enough that some downstream clocked elements treat the glitch

as if it were a clock pulse and some do not, this can cause a failure. Alternatively, if the

glitch occurs too close to an adjacent clock edge, this can lead to a timing failure. By clock-

ing the synchronization flip-flops with 2f0, the delay between consecutive rising (falling)

and falling (rising) edges on FF0.Q is forced to be greater than or equal to the half-period
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of f0. Assuming the digital logic is designed to operate at a maximum frequency f0, this

implementation will prevent both of the aforementioned glitch-related timing errors even

in latch-based designs. Fig. 3.6 shows examples of how the circuit suppresses glitches on

the fMCU multiplexer output during frequency transitions. As the software dynamically

switches the clock selection multiplexer between f0, f2, and f1, glitches occur on fMCU at the

instant of the switch. These glitches are restricted to frequency f0 by FF0 and should not

cause logic malfunction in the MCU core. 

Although only FF0 is required for glitch suppression on the selected clock, a meta-

stable value could be latched into FF0 if fMCU were sampled while in the process of tran-

sitioning. This is possible if any of the eight paths through the clock divider chain violate

setup time on FF0. Metastability could also occur if the MCU clock multiplexer selected a

new frequency as FF0 sampled fMCU. These timing problems can be avoided through care-

ful design and simulation of the various timing paths through the DFS circuit. However, in

a fully synthesized design where there is limited control over the synthesized result, it can

f0

Clock Sel

fMCU

2f0

FF0.Q

FF1.Q

f2

f0 f2 f1

f1

glitch

Figure 3.6: Glitch suppression on fMCU during frequency transitions.
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be difficult and time consuming to guarantee the necessary timing accuracy to completely

avoid metastability in FF0. As a relatively simple solution to this problem, FF1 was added

to minimize the probability of metastability on the clock output. To approximate the Mean

Time Between Failures (MTBF) caused by a metastable output from FF1, the equations

from [58] can be used.

From Equation 3.5, fclk is the clock frequency currently selected, 2f0 is the synchro-

nization flip-flops’ sampling frequency, ta is the flip flop aperture time, τs is the regenera-

tion time constant, and n is the number of synchronization flip flops. Both ta and τs can be

approximated at 200ps for this analysis in a 180nm process. For the current configuration

where n=2 flip-flops, the worst case MTBF occurs when fclk=f0=100MHz. 

(3.5)

At this speed, the DFS circuit would be expected to have a metastability failure once

in 150 years. Adding a third flip flop to the synchronization chain would increase the

MTBF to 2.85x1018 years at the expense of another cycle of clock switching latency.

The proposed DFS circuit is particularly well suited for integration with high fre-

quency TC-LCOs because the 2f0 required for synchronization is already generated when

using a FF chain to divide the LCO’s high oscillation frequency. LCOs must operate at high

frequencies to minimize inductor area [59]. An additional benefit of dividing a high fre-

quency reference clock by N is that the relative period jitter for the divided clock is reduced

by a factor of N1/2. In contrast, when a low-jitter XO reference is multiplied N times using

a PLL, the relative period jitter is increased by N1/2 [60]. It is worth noting that our DFS

circuit could be used with a PLL as the clock source, however power consumption would

increase in order to produce 2f0.

3.4.2 Mobius Microsystems’ IP
The self-referenced hybrid clock synthesizer1, shown in Fig. 3.7, includes a free-

running RF LCO, a low power ring oscillator, a temperature-compensated bias circuit, and

MTBF tafclk2f0
tw
τs
-----– 

 exp 
  1–

=

tw
n 1–
2f0

------------=
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an arbiter [61] for asynchronous glitch-free switching between the two oscillators. The syn-

thesizer supports a reduced power standby mode in which the TC-LCO is powered down

while the system operates from the low power, low frequency ring oscillator. The entire

clock synthesizer occupies 0.25mm2 of silicon area.

The RF LCO includes a complimentary and cross-coupled negative-transconduc-

tance sustaining amplifier, a single differential inductor, and a bank of switched capacitors

in parallel with the LC tank. The LCO generates a 1GHz reference signal that is followed

by a frequency divide-by-5 circuit. Frequency deviation due to process variation can be cor-

rected by trimming the capacitance in the LC tank using an 8-bit calibration byte. The mea-

sured calibration range is ±10.75%, giving an initial calibrated accuracy of ±420ppm at

1.  The author wishes to thank the group at Mobius Microsystems for their development of this IP: Michael 
McCorquodale, Scott Pernia, Justin O’Day, Gordy Carichner, and Sundus Kubba.
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25°C. The ring oscillator contains five differential stages and nominally outputs a 20MHz

signal that can be calibrated via the digital interface to account for process variation. The

LCO dissipates 9.62mW and the ring oscillator dissipates 0.82mW at 1.8V.

3.4.3 Conclusions
The flexibility provided by both the hybrid clock synthesizer and the DFS circuit is

an excellent feature for a general purpose MCU. The merging of these two components to

provide a wide range of accuracy and current consumption for both the MCU and DSP

allows adaptation under software control to the required computing performance.

3.5 Summary

This chapter has described the WIMS Gen-2 Microsystem in detail. The microsys-

tem architecture was described and each component was discussed further. The MCU ISA

was explained and the core of the WIMS microcontroller was described. The peripheral

communication capabilities were outlined. The distinct features of the microsystem were

reported: LCO, DFS, DSP, and scratchpad memory. Special attention was paid to the DSP

architecture and its application to the CIS algorithm and CI component interfaces.

The next chapter will describe the design methodology used to implement the

WIMS Gen-2 Microsystem. 
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CHAPTER IV

MICROSYSTEM DESIGN METHODOLOGY

Once a microsystem has been described in technical detail as in Chapter III and

Appendix A, the implementation of said microsystem is a significant challenge. It requires

contributions from a large group of people all working together. This chapter describes the

methodology used by the members of Dr. Brown’s research group1 to fully implement the

WIMS Gen-2 Microsystem.

4.1 Design Methodology

Microsystems are defined as intelligent miniaturized systems comprised of sensing,

processing and/or actuating functions where two or more of the following technologies are

combined onto a single or multi-chip hybrid: electrical, magnetic, mechanical, optical,

chemical, or biological [62]. The primary motivations driving microsystem development

are the need to increase functionality and performance while reducing system size, cost,

integration complexity, and power dissipation. The proliferation of portable electronic

devices in recent years has hinted at a bright future for microsystems, especially when one

considers the interest in remote sensor devices and biomedical implants enabled by

advances in low-power design and nanoscale integration.

Building a complete microsystem involves several challenges, as these designs

unite not only analog and digital circuit domains, but also the magnetic, mechanical, bio-

1.  Specifically, the author would like to thank Robert Senger, Michael McCorquodale, Matt Guthaus, Fadi 
Gebara, and Steve Martin for the contributions to the various versions of the WIMS Microsystems.
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logical, chemical, or electrical domains. Digital microcontrollers are manufactured almost

exclusively in CMOS technology, but many of the desired peripheral components are not

compatible with CMOS and must be fabricated separately or adapted to use CMOS. More-

over, the design constraints associated with these systems can be as specific as the material

properties of a layer that defines a microstructure, and as broad as an abstraction of the

embedded processor that supports the firmware for the microsystem. A successful micro-

system design requires integration and cross-boundary communication from designers

working at the device level up to the application software engineers. A variety of tools for

the support of such designs exists, but as yet, there is no complete end-to-end framework

for microsystem development. This work leveraged advances in integrated circuit (IC)

computer aided design (CAD) tools, applying them to microelectromechanical systems

(MEMS) and mixed-signal circuits to address the challenges of microsystem development

by integrating hardware and software domains and identifying gaps that require new design

automation.

4.1.1 Design Trends and Challenges with Microsystems Technology
Fig. 4.1 illustrates a generalized end-to-end wireless integrated microsystem. The

figure shows a variety of technologies that might be included, along with the wide range of

design tools that might be needed for their design. For example, MEMS components are
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Clock 

Sensor/Actuator 
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RFIC/RFMEMS
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RFIC Tools
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ADC

MS-HDL 
Custom 
IC Tools

Figure 4.1: The anatomy of a generalized wireless integrated microsystem. Key technologies and
associated development tools are shown.
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often developed with finite element (FE) tools that simulate a mechanical response to an

applied stimulus [63], while the microprocessor section would typically be synthesized

from a hardware description language (HDL). Digital IC design tools are now ubiquitous

and offer the designer tremendous flexibility through system abstraction. Only recently

have such trends developed in the analog and mechanical domains.

Several MEMS technologies warrant integration with integrated circuitry. Indeed,

a great deal of research has been underway in this field, including activities in monolithic

MEMS-based oscillators [64], accelerometers [65], and switches [66], for example. Only

recently have such subsystems been developed, so gaps in the related CAD framework are

not surprising. Clearly, a design flow that supports the convergence of these technologies

is required if complete systems are to incorporate these research breakthroughs. Past

MEMS development has typically been ad-hoc and bottom-up in nature. This design

approach is an outgrowth of both the disparate nature of MEMS technologies and the fact

that most MEMS work to date has been focused on device development. After device opti-

mization, supporting electronics are added incrementally. These devices are now appearing

in larger systems and the typical development strategy is to partition sections of the micro-

system into the mechanical, analog, or digital domains. With initial efforts focused on the

hardware, software development is often neglected at this early stage of the design. Design

activities can become disjoint and ad-hoc, with each subsystem being designed with a sep-

arate tool suite and with little, if any, cross-domain verification. 

As discussed previously, MEMS technology has been designed almost exclusively

with finite element tools; however, the majority of these simulators do not support an inter-

face with a standard IC framework. Therefore, in almost all applications, some level of

model extraction and abstraction is required for simulation of the MEMS component with

the supporting analog electronics. Often, this extraction is tailored to each component and

it must be completed by the designer without the aid of design automation. Additionally,

some of these systems require logic for programming or trimming, and in many applica-

tions, a complete embedded processor is required to support the system. Here the standard

tool suites allow designers to synthesize digital logic and physical design from a hardware
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description language, but chip verification with the integrated analog and MEMS devices

is typically not performed. 

As Fig. 4.1 and the previous discussion illustrate, a variety of CAD tools are

required for the development of microsystems. A specific design challenge is system veri-

fication across these various design platforms. Clearly, the complexity of microsystem

design is significant. Attention to design methodology has become increasingly important

in order to develop systems efficiently and close the gap between manufacturing and design

capabilities [67].

4.1.2 Design Methodology Comparison

4.1.2.1 Typical Design Methodology: Bottom-Up
A bottom-up design methodology involves the development of each block from the

device to system level. Devices are combined to form blocks, which are then combined to

complete and verify the system. In [68], the problems associated with a bottom-up meth-

odology are addressed. They include lack of architectural study and optimization, costly

redesign effort associated with iteration through the flow, and significant processing time

for system-level simulation, if it is even possible. Software development of the compiler

and application code typically occur independently of the hardware design flow. This dis-

continuity between the software and hardware flows leads to non-optimal system perfor-

mance as a result of functionality or resource limitations and power or performance

bottlenecks that inevitably manifest during the application deployment and system integra-

tion stages.

Fig. 4.2 illustrates this typical design methodology as applied to microsystems tech-

nology. Here a system specification is partitioned into one software domain and three hard-

ware domains: digital, analog, and mechanical. The software flow is relatively

straightforward. Assembler and compiler development can begin once the instruction set

architecture (ISA) has been formulated. Then the compiler and application code can be

written and iteratively debugged. Hardware design activities progress from the device to

block level and from the block to system level. A macro is delivered from each domain, and

the system is assembled with an automatic place and route (APR) tool. The system is then

verified and only at this point are system-wide integration problems identified. Time-con-
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Figure 4.2: Typical ad-hoc and bottom-up microsystems design methodology.
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suming redesign is often required at lower levels along with APR iterations to optimize

macro placement.

Although this methodology has been employed in the past, it is clearly insufficient

for complex microsystems. As the field matures, microsystems will likely contain several,

if not hundreds, of magnetic, mechanical, optical, chemical, or biological components

along with the supporting analog and digital electronics. A proper, efficient, and exhaustive

design methodology and framework are required to support increased levels of integration.

Hardware-software codesign methodologies must be adopted early in the design flow to

ensure that software runs efficiently with minimal power.

4.1.2.2 New Design Methodology: Top-Down
In the top-down approach [69], hardware development would proceed from the

system to device level. The system hardware could be studied and optimized with a mixed-

signal hardware description language (MS-HDL) from which the abstract circuit blocks

would be derived. Device-level designs would then be completed, and achieved perfor-

mance could be benchmarked against the original specification using the abstract blocks

and system model. Software design should proceed in parallel with the hardware, but with

cross-domain performance evaluations to pinpoint architectural shortcomings.

A major goal of this top-down approach was to achieve hardware abstraction and

cross-domain simulation for MEMS, analog, and digital electronics at every level. The

environment also needed to support simulation of abstract hardware with device primitives

in order to accurately model digital programming of analog and mechanical components

before synthesis of the digital circuit blocks. A model that could be modified easily for

system verification based on the realized subsystem performance was desirable. The com-

plete tool suite had to support low-level simulation including FE and basic transistor-level

analysis, as well as non-linear RF and noise analysis. Support for HDL synthesis, timing

verification, and automatic place-and-route was mandatory for digital design and final chip

assembly.
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4.1.3 Top-Down Microsystem Design Flow

4.1.3.1 Hardware Design Flow

Although no single design framework addresses all the integration challenges pre-

sented by this complex embedded system, the Cadence AMS, or Analog Mixed Signal,

environment is well-suited to achieving many of these goals for system-level development

of microsystems hardware. The Cadence AMS environment supports Verilog-AMS, an

analog and digital HDL which is a superset of the Verilog and Verilog-A languages. Ver-

ilog-AMS is also able to perform behavioral modeling of mechanical devices. Prior to the

emergence of Verilog-A, many MEMS engineers had used device-level models, including

primitives, for MEMS component modeling. Clearly, the Verilog-A language is a signifi-

cant improvement over this technique, as it provides added modeling flexibility while min-

imizing complexity. Additional tools used in this work included Spectre for analog

subsystem and transistorlevel design, Coventorware for FE analysis of MEMS compo-

nents, Synopsys for digital synthesis and timing analysis, Cadence First Encounter for auto-

matic place and route (APR), and Mentor Graphics Calibre for design rule check (DRC)

and layout versus schematic (LVS). The requirement of such an extensive and disparate

tool suite is a significant challenge faced in the development of microsystems technology.

The detailed design methodology that was developed to build this microsystem is

illustrated in Fig. 4.3. Verilog-AMS was employed to realize the system specification.

MEMS and analog components were modeled in Verilog-A, while the microprocessor core

and digital peripherals were modeled in Verilog. From this system model, a natural parti-

tion of top-down subsystem design activities followed. Each block was specified with an

abstraction for the hardware. In parallel with behavioral verification of the digital section,

the blocks in the mechanical and analog domains were developed and performance metrics

were determined. Updated Verilog-A was developed to model achieved performance from

FE simulation in the mechanical domain, while device-level design and analysis using

Spectre led to achieving the analog specification. A complete behavioral description of the

digital electronic hardware was realized. At this point, the first cross-domain verification

of the system was performed. Once the HDL from each domain had been updated with the

achieved performance, verification of the system model was trivial. In the Cadence AMS
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Figure 4.3: The top-down microsystems design methodology.
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environment, HDL and primitives may be mixed, and critical subsystem performance met-

rics can be determined quickly with a detailed model for the subsystem and an abstract

model for the remainder of the system. This was particularly significant when considering

analog and MEMS device-level performance that required digital programming which was

described only in HDL. 

A system-wide simulation was completed and iteration in the mechanical and

analog design activities continued, as required by system performance specifications. This

first cross-domain simulation offered significant benefits over the bottom-up methodology

described previously. First, design effort had not been expended synthesizing the digital

electronics. Second, iteration in the design of the MEMS and analog circuits occurred early

in the design flow. Finally, the system simulation was fast, as it was described in behavioral

HDL, rather than by a device-level netlist. Simulation was also timely in the case of a prim-

itive-level subsystem simulation, as the remainder of the system was described by HDL and

only the critical blocks were modeled at the device-level.

System development continued with a typical physical design flow. The digital sec-

tions were synthesized and the mechanical and analog sections were custom designed.

Timing information from the synthesis tool was used in iteration to achieve digital timing

closure. Similarly, parasitic extraction and back-annotation afforded an iterative process

for completing the mechanical and analog sections. Once timing closure was satisfied in

each domain, a second cross-domain simulation was executed for system verification based

on physical design. Again, the HDL for the subsystems was updated, and system simulation

was timely and accurate. Physical design iteration continued until timing closure was

achieved for the complete system. The domain-specific design activities were completed

with the delivery of a hard macro. 

The final hardware development activities included APR, physical design verifica-

tion (DRC, LVS), layout parasitic extraction (LPE), and back-annotation. A final cross-

domain verification was completed following parasitic extraction. APR iteration was also

necessary.
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4.1.3.2 Software Design Flow
To reduce software design time, prevent costly hardware revisions, and achieve the

best possible microsystem performance and power dissipation, software development

should proceed in a parallel, tightly coupled fashion with the hardware design flow. Fig. 4.3

shows that software and digital hardware development began with an architectural specifi-

cation in the form of an ISA. This laid forth the general machine architecture and the pro-

posed instruction set for the microsystem. The ISA should be a joint effort of the hardware

designers, compiler developers, and software engineers. Careful consideration was given

to the final microsystem application(s) to ensure that the necessary instruction and hard-

ware support were provided. Compiler input was essential at this early stage to avoid inef-

ficiencies in the instruction set.

A C-language instruction-level model of the microsystem was developed to provide

the compiler and application developers with a convenient platform to evaluate their soft-

ware. This C-simulator modeled microsystem behavior at a higher level of abstraction than

the behavioral Verilog model used in the digital domain. With the C-model as a develop-

ment platform, both an assembler and compiler were written to support the WIMS ISA. At

this stage, the first cross-domain verification took place between the software and digital

domains. Focused and random test cases were run on both the C-model and Verilog model

and any discrepancies in machine state were resolved. Thus, the C-model served to verify

functionality of the behavioral Verilog prior to synthesis. By annotating the C-model with

preliminary performance and power estimates, compiler developers were able to suggest

architectural enhancements or add new instructions to the ISA in order to improve software

performance and reduce power. Iteration of both the C-model and Verilog model were

required to implement changes as a result of this cross-domain verification. 

Following the initial cross-domain verification step, the machine architecture was

frozen and application software development efforts began. Once the hardware extraction

step was completed in the digital domain, the extracted parasitics were used in conjunction

with Synopsys Nanosim simulations to estimate an average energy-per-instruction (see

Section 5.1.4). The average instruction energies were annotated into the C-model and used

by the compiler to further optimize compiled code. Iteration of the application code and

compiler was required to achieve the minimum application power. For the second cross-
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domain verification, the annotated C-model was compared against the annotated structural

Verilog to ensure that the Verilog machine state still matched the C-model. Test code was

run on both the C-model and the Verilog model to correlate the power estimates. Using the

C-model, application development was able to continue until the hardware had been fabri-

cated and tested.

4.1.3.3 Digital Design and Verification
An extensive verification environment was designed using Perl scripts to facilitate

functional verification of the digital core. Focused assembly language test cases were used

to test the basic operation of each instruction in the ISA, as well as anticipated corner cases.

Each test was assembled and run on our cycle-based behavioral Verilog model using

Cadence-XL’s Verilog simulator. The same test case was executed on an instruction based

C-simulator model of the processor. Important register values were dumped by each simu-

lator for every instruction executed, along with the data stored in memory at the end of the

simulation. By comparing model dumps, bugs could be isolated and corrected. 

A random assembly code generator was designed and used to generate millions of

lines of random test cases. These detected functional bugs that might have been missed in

the focused test cases, particularly any unexpected interdependencies between instructions

as they progressed down the pipeline. Approximately 30 million lines of assembly code

were executed on each of the simulators for functional verification of the Verilog. Addi-

tional test cases were written with the sole purpose of verifying interrupts and the timing of

peripherals such as the USART, SPI, and timers.

The same level of verification mentioned above was completed after logic synthesis

in Synopsys and again after APR in Cadence Silicon Ensemble, effectively guaranteeing

that functional bugs were not introduced by the synthesis and APR tools. PrimeTime was

used for static timing analysis with back-annotated parasitics to ensure that all paths met

timing specifications. DRC and LVS verification were performed for each sub-block and

at the top level using Calibre.

Matlab Simulink was used to model the DSP filters and data processing for both

verification of the CIS algorithm and comparison to the DSP RTL code. A model of the

ADC converted audio files into samples for processing and a cycle-by-cycle output state
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from each stage was compared to the RTL simulator output. The Matlab model read the

same filter coefficients used by the RTL. It also had the capability to generate filter coeffi-

cients for a set of particular desired filter characteristics. Fig. 4.4 and Fig. 4.5 show a

sample input waveform and the corresponding filter output for a single channel.

Similar to the C model for the MCU, a C model of the CIS DSP was written to con-

firm operation of the RTL. The C model was needed in addition to the Matlab model

because it was much simpler to implement the control and stimulation components of the

DSP system in C than in Matlab. The Matlab and C filter functions were confirmed to be

identical throughout the design and verification process.

4.2 Conclusions

A full chip mixed signal design methodology has been outlined and described using

the WIMS SoC as an example design. It is a many faceted problem that utilizes many tools

Figure 4.4: Matlab Simulink DSP model input waveform.

Figure 4.5: Matlab Simulink DSP model channel seven output waveform.
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and languages to cover the design, implementation, verification, and fabrication of the

design. By leveraging advances in mixed-signal and IC design tools, we developed an effi-

cient top-down design flow that promotes hardware-software codesign. The design meth-

odology has been employed in the development of a complete microsystem with a

dedicated power-aware compiler as part of a larger application framework.

During the development of this design methodology and SoCs an intellectual prop-

erty (IP) repository was created in order to hold and distribute design data, flows, and IP

among researchers [70], [71]. The site has successfully distributed IP to dozens of research-

ers at several institutions. The time and effort to develop a repository such as this is more

than made up for by the time saved using the contents.

Chapter V will present the post-fabrication measured silicon results for the WIMS

Microsystem that was built using the methodology described in this chapter.
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CHAPTER V

MICROSYSTEM RESULTS

After completing the design and implementation of a Microsystem as complex as the one

described here, seeing a functioning piece of silicon that works as expected is a noteworthy

achievement. It is a difficult task and required some iterations to get correct, but is satisfy-

ing nonetheless. This chapter describes the measured results and completed milestones

obtained by this work1. 

5.1 Microsystem Measured Results

Fig. 5.1 shows the microsystem fabricated in TSMC 0.18µm mixed-mode bulk

CMOS containing 2.3 million transistors and occupying 9.18mm2. The dies were packaged

in 128 pin PGA packages. The major system level blocks are outlined in the die micro-

graph. A significant portion of the silicon area is occupied by the on-chip memory, as is

typical in digital chips. The DSP is the next largest component due to the many parallel

channels and storage required for filter coefficients. The pipeline and peripherals are fol-

lowed by the clock generation IP in terms of area consumed. This section details the mea-

sured results.

5.1.1 Post-fabrication Testing
Functional testing of the digital core was performed using a 400/200MHz in-house

HP82000 digital tester equipped with a customizable Design Under Test (DUT) board

1.  The author would like thank Rob Senger and Alan Drake for all their assistance and mentoring with the 
HP82000 equipment.
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shown in Fig. 5.2. Verification of the design was done by generating test vectors from Ver-

ilog simulations and running them on the tester. The same Verilog simulations used in the

design validation phase were used in the post production testing phase, along with other

custom built test cases to measure silicon performance. Instructions were loaded both from

the USART and external memory interface. Performance characteristics were measured

using the other external equipment shown in Fig. 5.2.

5.1.2 Microsystem Results
Table 5.1 shows the measured power consumption for different components of the

Microsystem under different operating conditions. This data is taken after a focused ion

beam (FIB) fix to some memory control signals in order to save current on inactive memory

Figure 5.1: Die micrograph of fabricated microsystem.
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banks. It shows the wide operating capabilities of the MCU from 36.60mW at 100MHz and

1.8V to 1.67mW at 1.2V with 330µW standby power consumption. A significant portion

Table 5.1: Measured power for different operating conditions.

VDD = 1.8V VDD = 1.2V
Component 100MHz DSP Modea

a. DSP operating frequency is 3MHz. Other components operating at speed neces-
sary to support DSP functionality.

Standby 1MHz DSP Modea Standby
MCU Core (mW) 16.69 1.63 0.54 0.31 0.44 0.10

Memory (mW) 7.83 0.12 0.12 0.04 0.03 0.03
DSP (mW) 2.46a 2.46 0.27 1.14a 1.14 0.06

Clock (mW) 9.62b

b. LC oscillator is operating, ring oscillator is off.

0.76c

c. Ring oscillator is operating, LC oscillator is off.

0.76c 0.18c 0.18c 0.18c

Total (mW) 36.60 4.97 1.69 1.67 1.79 0.33

Figure 5.2: HP82000 test setup.

CSA11801A

E4405B

HP82000
PGA Packaged 

WIMS chip

HP3458A
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of the standby power consumption is from the on-chip clock source. The expected power

consumption for the DSP running at the maximum stimulation rate is 1.79mW.

Each major block of the microsystem is shown in Table 5.2 and important statistics

are called out. The IO is not called out specifically, but makes up the remainder of the total

numbers. The memory and DSP make up more than 1/3 of the chip area.

5.1.3 Microcontroller Results
The microcontroller and peripherals perform system control and a majority of the

processing when not in DSP mode. Fig. 5.3 shows power versus VDD curves at several dif-

ferent operating frequencies. The core will not operate at 100MHz below 1.45V. Signifi-

cant system level power savings can be obtained by using the on-chip selectable clock

sources in order to optimize the power versus frequency trade-offs based on the workload

requirements. It is up to the software to detect when higher workloads are required based

on interrupts from external interfaces or commands from these interfaces. 

5.1.3.1 Scratchpad Memory
Fig. 5.4 shows the power savings obtained by the compiler taking advantage of the

scratchpad memory for several benchmark programs [72], [73] running at 100MHz and uti-

lizing the scratchpad memory for data or instruction storage [38]. A single access to the

scratchpad consumes 45% of the energy that an access to SRAM consumes. As expected,

a higher percentage of scratchpad accesses yields a higher energy savings. A total savings

of anywhere from 4 to 20% can be obtained.

5.1.4 Energy Per Instruction
As battery-operated embedded systems proliferate, the need for good system level

power modeling increases. Modeling the power dissipated by an arbitrary software pro-

Table 5.2: Chip statistics breakdown. 

Pipeline Peripherals DSP CLK Memory Total

Area (µm2) 439,365 366,887 1,274,374 251,940 2,250,148 9,138,529

Transistor Count 102,527 93,048 376,903 634 1,700,126 2,279,617

Decoupling Cap (pF) 153a

a. The Pipeline and Peripherals (I/O) share a power supply, and therefore the 153pF.

153a 418.2 382.5 724.2 -
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gram running on system hardware is not challenging. Various high-level architectural mod-

eling tools exist, but as is typical of high-level models, they lack accuracy. Lower-level

power modeling tools, typically built on parasitic annotated netlists and switching stimuli,

are more accurate, but are too slow for modeling large chips, and totally impractical for

comparing different software optimizations. To quickly estimate the energy consumed in

executing a given software program with enough accuracy to support compiler optimiza-

tions, a new approach was needed.

Instruction level power modeling is a method of calculating a program's total

energy by summing the energies of each individual instruction. Because instruction ener-

gies are typically calculated using DC current measurements of actual hardware, the pre-

dicted program energy is more accurate than anything from high-level simulators. Because

the instruction energies are simply summed to produce the final program energy estimate,

instruction level power simulators are fast. Inevitably, architectural factors such as pipelin-

ing (stalls) and memory hierarchy complicate the measurement of instruction energies.

Switching activity, which varies with data and with instruction ordering, will also affect the

energy. Prior work on instruction level modeling has derived instruction energies from

actual chip power measurements. While this has worked well if hardware is available, it

cannot be used to guide the hardware design phase. As part of the WIMS microcontroller

Figure 5.3: Power versus VDD scaling for the MCU and Memory.
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project, a simple instruction-level power model was developed and demonstrated in both

simulation (pre-fabrication) and in hardware (post-fabrication) [74].

A complete framework for instruction level power modeling was first developed by

Tiwari, Malik and Wolfe in [75]. They validated their proposed methodology using two

off-the-shelf microprocessors, the Intel 486DX2 and Fujitsu SPARClite 934 [76]. Tiwari

asserts that instruction power can be broken down into base cost, circuit state overhead,

stall cost, and cache miss cost. Instruction base cost can be defined as the minimal energy

dissipated by an instruction during execution. To calculate base cost, an instruction is run

in an infinite loop and the current is measured. However, running the same instruction

repeatedly does not accurately model typical program execution because it generates very

little processor switching activity. Tiwari refers to this switching current as circuit state

overhead, and considers it separately from the base cost. Similarly, any additional current

contributed by pipeline stalls or cache misses is measured separately and added to the base

cost to produce the total average current required to execute each instruction.

Figure 5.4: Power savings utilizing scratchpad memory or loop cache.
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Circuit state overhead, also commonly known as dynamic switching power, is

added to the base cost to model the increased switching activity that occurs when two dif-

ferent instructions execute sequentially. To calculate this extra power required by pairs of

dissimilar instructions (or data), Tiwari ran test cases with various instruction sequence

pairs and determined that the circuit state overhead was typically 15mA for the Intel

486DX2 processor. Thus, totaling the base costs for each instruction plus 15mA was usu-

ally sufficient to account for circuit switching overhead. The 15mA number was obtained

after extensive measurements of instruction pair combinations, and must be determined

separately for each processor type. In [77], Tiwari presents a more detailed analysis of the

SPARClite 934, with extensive simulations of instruction pairs to better model circuit state

overhead. Although the method yields good results with typically less than 3% error, the

number of measurements required is prohibitive for large instruction sets. Complexity can

be reduced by grouping similar instructions. For an instruction set with n instructions (or

instruction groups), n test cases are required for base cost and n!/(2(n-2)!) test cases are

required to measure circuit state overhead for every possible instruction pair combination.

Thus, (n2+n)/2 test cases must be written and the current measured for each run. For n=30

instruction groups, which is a relatively small number for modern processors, that is 465

separate test cases. We developed a more efficient estimation methodology that requires

only O(n) test cases while still providing a reasonable accounting for circuit switching

energy. 

In [78], Klass proposes a NOP model to reduce the number of test cases required to

estimate the circuit state overhead from O(n2) to O(2n). The NOP model is based on the

assumption that the overhead energy for an instruction is not strongly dependent on the

adjacent instruction, but depends on whether the adjacent instructions are the same or dif-

ferent from each other. Similar to Tiwari, Klass' NOP model calculates a particular instruc-

tion's energy as either the base energy or the base plus the overhead energy, depending on

whether the previous instruction was the same or different than the current instruction. The

NOP model differs in that only one overhead energy is calculated for each instruction

instead of separate energies for every combination of instructions. To do this, Klass alter-

nates the target instruction with ‘no-ops’ in the program loop. Instructions are not grouped

according to similar function, so n test cases are required for the base energy and another n
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test cases for the overhead energy. Demonstrating his method in simulation only, Klass

reports an error of less than 8% in modeling the transition energy (circuit state overhead)

between any two instructions.

5.1.4.1 Experimental Hardware Methodology
Similar to Tiwari's method, our instruction level power model can be derived using

current measurements taken from a fabricated microprocessor core. However, there are

several important differences between the methodologies that will be highlighted in this

section. Our method calculates the energy per instruction (EPI), rather than an instruction's

average current, which was the primary metric used for analysis in [75]. EPI is a more illus-

trative metric for comparison than average current as many multi-cycle instructions dem-

onstrate relatively low average current draw but take multiple CPU cycles to execute, and

thus require more energy than single-cycle instructions which might have higher average

current, but for only one cycle.

To measure the instruction energies, a laboratory ammeter, power supply, digital

tester, and chip evaluation board are required. The ammeter must be connected in series

with the test chip's core power supply pins. A separate ammeter may be used for the I/O

power supply (or any additional power domains), if desired. This work focuses on core

power only. To achieve accurate current measurements, test cases must be looped long

enough for the ammeter to provide a stable reading.

 Perhaps the most difficult and time-consuming part of measuring instruction power

is developing the suite of test cases. To avoid writing a separate test case for each instruc-

tion, instructions can be organized into groups based on the functional units they exercise.

For example, in many processors, 'add' and 'sub' instructions use almost identical hardware

and can be grouped together. Intelligent grouping is critical to minimize the number of test

cases, especially for complex processors having hundreds of instructions. However, knowl-

edge of a processor's architecture is necessary to properly group instructions. 

Unlike [75], which repeats the same instruction type consecutively within the pro-

gram loop, our method inserts ‘no-ops’ between each instruction contained in the program

loop. An example program is shown in Fig. 5.5, with Part B containing the instruction-no-

op sequence. By inserting ‘no-ops’ between each instruction, switching activity is
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increased to a level that more accurately parallels switching activity generated by a normal

program. [75] neglects switching activity in the base instruction cost, and models it by

adding a circuit state correction factor. To get accurate circuit state correction factors, all

possible combinations of instruction groups must be executed and the current measured. As

derived previously, for an n group instruction set, (n2+n)/2 test cases would be required to

calculate the base cost and circuit state overhead for every instruction combination. This

method builds the switching energy directly into the instruction base cost by using inter-

leaved ‘no-ops’ to force switching activity. The result is that only n test cases are required,

thus greatly reducing the time required to estimate instruction energy. Another instruction

could probably be used in place of ‘no-ops’; however, ‘no-ops’ are an obvious choice, as

they avoid unwanted data hazards that would result in pipeline stalls. It is important to

avoid pipeline stalls and interrupts when measuring average instruction energy. Separate

test cases can be written to measure the energy dissipated by stalls, and this can be factored

in later.

Another difference between Tiwari's method and the method used in this work

involves the program loop. Tiwari suggests that the program loop contain enough instruc-

loop_start:
// Part A: initialize registers and memory data
ldbi r0, 0xff
ldbi r1, 0xa0
. . .
. . .
// Part B: measure current for instruction group
add r0, r1
noop
add r1, r3
noop
sub r2, r1 
noop
sub r4, r0
noop
. . .
. . .
jmp loop_start  // Part C: infinitely loop test case

Figure 5.5: Sample assembly loop for energy per instruction measurements.
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tions so that the jump at the end of the loop will have minimal effect on the measured

instruction current. In the WIMS power estimator, this potential source of error was elimi-

nated by creating a boot-up case that is essentially a shell of the main program loop for each

instruction test case. It includes Parts A and C from Fig. 5.5, but omits Part B. The boot-up

case is looped repeatedly and the energy is measured and subtracted from the measured

energy of the corresponding instruction test case, which has Parts A, B, and C. This has the

effect of subtracting the jump instruction's energy from the total loop energy. Also, setup

instructions can be included in the program loop (Part A) and subtracted out using the boot-

up case. This is helpful when setting up data values to be used by the looped instructions.

Each time through the loop, the data is re-initialized so the same values are used consis-

tently, resulting in more stable current measurements. Creating the boot-up test cases from

the individual instruction test cases is trivial because all it requires is deleting Part B from

the program loop. Through our experiments, we found that many test cases can share the

same boot-up case. Even using a boot-up test case, experiments show that Part B should

contain at least 50 instructions (excluding ‘no-ops’) to ensure a sufficiently diverse assort-

ment of data and address switching.

To calculate the energy required per instruction group, the test case's average cur-

rent must first be converted into energy by multiplying the CPU time required to execute

the loop, tloop, by the measured current value, Iloop, and by the supply voltage, VDD. The

result, Eloop, is the total energy, as shown in Equation 5.1, required to execute the entire

program loop. 

(5.1)

However, to calculate the EPI as shown in Equation 5.2, the energy from Parts A

and C must be subtracted from the total. This is accomplished by converting the corre-

sponding boot-up test case's measured current into energy, Einit, and subtracting. The

remainder, EpartB, is the energy dissipated by only Part B of the loop, which is composed

of no-op energy plus the energy dissipated by the instruction of interest. 

(5.2)

Eloop IlooptloopVDD=

EpartB Eloop Einit–=
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To calculate ‘no-op’ energy, a separate ‘noop' test case is written that contains hun-

dreds of random instructions. ‘No-ops’ are inserted at random locations in the test case, and

the test case is executed and current measured and energy calculated both with, Erandnoop,

and without, Erand, ‘no-ops’ inserted. The difference divided by the number of ‘no-op’

instructions, nrandnoop, that were executed gives the average energy per ‘no-op’, Enoop, in

Equation 5.3.

(5.3)

Equation 5.4 shows that the ‘no-op’ energy can then be multiplied by the number

of ‘no-ops’ in Part B, npartBnoop, of the program loop and subtracted. Dividing the result by

the number of non ‘no-op’ instructions in Part B, ntarget, gives the EPI with average switch-

ing included, Etarget. 

(5.4)

This is different from [75], [77] which estimated switching power separately from

the base instruction cost.

Depending on machine architecture, additional measurements might need to be per-

formed. Conditional branch instructions exhibit different energies depending on whether

the branch is taken or not. Separate test cases must be written to measure the branch-taken

and not-taken energies. Hierarchical and banked memory architectures add an additional

layer of complexity to the energy model. The same instruction, when fetched from different

size memory banks or caches, will dissipate different energies. For this reason, a memory

correction factor is required to either add or subtract energy from the base instruction cost.

The memory energies can be determined using separate test cases that exercise the different

memory banks. For cached memory hierarchies, the cache-hit energy and cache-miss

energy must both be determined. 

A similar methodology can be implemented using simulation platforms, like Nano-

Sim and UltraSim, in order to estimate the EPI of components that are in the design phase.

However, these energies will only be as accurate as the simulators. The benefit is that data

Enoop
Erandnoop Erand–

nrandnoop
-----------------------------------------=

Et etarg
EpartB EnoopnpartBnoop–

nt etarg
-----------------------------------------------------------=
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can be gathered sooner and used to make design decisions as well as compiler optimizations

to improve the hardware-software co-design process.

5.1.4.2 Hardware Energy Per Instruction Results

Each test case was looped infinitely on the digital core, and current measurements

were recorded. Based on these measurements, the energy per instruction group was calcu-

lated, as shown in Table 5.3. The energy values include the energy required to fetch the

instruction from the on-chip main memory banks. The right column contains the effective

execution time at 100MHz for each instruction, which is not the same as the time an instruc-

tion spends in the pipeline. Because a pipeline has multiple concurrently executing instruc-

tions, the time column should be calculated by taking the ideal clock cycles per instruction

(CPI) of the instruction being executed (assuming no data hazards), and multiplying by the

clock period. Although an ‘add’ instruction takes 30ns to run through the three-stage WIMS

pipeline at 100MHz (assuming no stalls), the ideal CPI is 1, and thus the effective execution

time assigned to the ‘add’ for the purposes of energy calculation is 10ns.

The results in Table 5.3 provide several interesting insights into the power effi-

ciency of the WIMS ISA. Instructions using absolute addressing require significantly more

energy than relative addressing because of an extra instruction fetch to retrieve the full 24-

bit address. Memory bit manipulation instructions such as ‘test-and-set bit’ are costly at

1.10nJ, because of two memory accesses; however, they are more efficient than breaking

the instruction into its subcomponents. A separate ‘load-relative’, bit mask (boolean), and

‘store-relative’ instruction sequence would require 0.66+0.38+0.55=1.59nJ. Although

multiply and divide instructions consume almost 5nJ of energy, they are significantly more

energy efficient than full 16-bit multiply or divide emulation using ‘add’, ‘sub’, ‘shift’,

‘compare’, and ‘branch’ instructions. However, if one of the multiplicands is known in

advance and is close to a power of two, it would require less energy to decompose the mul-

tiply into shifts and adds. For example, to multiply a number n by a known constant 10

(10=23+1+1), a shift left of n by 3, followed by two summations of n costs only 1.21nJ

compared to 4.99nJ for a multiply instruction. With knowledge of these energy numbers, a

compiler can make appropriate decisions about when to use multiply or divide instructions

versus shifts and addition or subtraction. ISA designers will observe that for some com-
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monly executed operations, dedicated complex instructions can save enough energy to jus-

tify the additional hardware overhead. 

Table 5.4 shows the measured memory energy correction factors for different

memory blocks on the WIMS MCU. They were determined by modifying test cases used

for Table 5.3 to access different memory blocks. These numbers are negative because they

are calculated relative to the access energy of the higher-power on-chip SRAM. The first

column shows the different types of memory accesses that were measured. Only the first

row, instruction fetch, contains fetch energy (per word of data); the remaining rows mea-

sure the energy for data (load/store) accesses only. The numbers in the second column do

not include the energy required to access the external memory itself, but only to drive the

values through the external memory bus and associated control logic. External memory

energy will depend mostly on the size and configuration of the external memory modules.

The third column shows the energy to access the on-chip scratchpad memory. The fourth

column is for memory-mapped register accesses (MMR), which only apply to load/store

data transfers, not fetches. The final column shows the energy required to fetch instructions

from the boot ROM. 

All instruction energy measurements from Table 5.3 were performed using the on-

chip SRAM for both instruction and data memory. To account for different access energies

for the other memory blocks, the correction factors from Table 5.4 are used to adjust the

Table 5.3: Energy per instruction.

Instruction 
Group Energy (nJ) Time (ns) Instruction 

Group Energy (nJ) Time (ns)

add-sub 0.43 10 win swap 0.33 10

shift 0.35 10 load imm 0.35 10

boolean 0.38 10 branch-nt 0.31 10

compare 0.37 10 branch-t 1.03 30

multiply 4.99 180 jmp abs 0.97 30

divide 4.89 180 jmp rel 0.72 20

copy 0.38 10 jmp abs sub 1.02 30

bit 1.10 20 jmp rel sub 0.63 20

load abs 0.94 20 return 0.67 20

load rel 0.66 10 swi 1.01 30

store abs 0.80 20 -- -- --

store rel 0.55 10 no-op 0.35 10
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values in Table 5.3. For example, to find the energy of a ‘store-relative’ instruction that was

fetched from the scratchpad memory and stored data back to the scratchpad, 0.55nJ is taken

from Table 5.3 as the base instruction cost. The instruction fetch correction factor is read

from Table 5.4 in the scratchpad column along with the store relative correction factor. The

three energies are summed to give 0.55 - 0.09 - 0.11 = 0.35nJ for the ‘store-relative’. This

number is 36% less than 0.55nJ for ‘store-relative’ to use main memory, and clearly illus-

trates the benefits of having low power memory structures for commonly accessed code. A

major benefit of using memory energy correction factors is that only a few of the test cases

from Table 5.3 need to be modified and re-run to generate the data in Table 5.4.

To validate the accuracy of the energy model proposed in this paper, the C-language

instruction level simulator of the WIMS processor was modified to include the calculated

instruction energies and memory energy correction factors presented here. Six test cases

were written that use all of the instruction groups listed in Table 5.3, along with an assort-

ment of different memory banks. The C-simulator was run on each of these test cases and

the total energy was predicted. The same test cases were looped on the WIMS processor

hardware and the energy was calculated from the measured current. The error between the

predicted and measured energies was less than 4% for all six test cases. 

5.1.5 Digital Signal Processor
When running in DSP mode, the MCU core and memory are clocked at the lowest

possible frequency to support DSP operation while the DSP is clocked at 3MHz to provide

the required data throughput to stimulate the cochlear probes. At 1.2V in DSP mode, the

Table 5.4: Energy memory correction factors.

Memory Access Ext Mem (nJ)a Scratchpad (nJ) MMR (nJ) Boot ROM (nJ)

instruction fetch -0.11 -0.10 N/A -0.08

mem bit set/rstb -0.30 -0.30 -0.34 N/A

load absoluteb -0.18 -0.18 -0.16 N/A

load relativeb -0.19 -0.19 -0.20 N/A

store absoluteb -0.07 -0.08 -0.08 N/A

store relativeb -0.09 -0.11 -0.10 N/A

a. Excludes memory access energy as this is memory dependent
b. Fetch energy counted separately
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DSP dissipates 1.14mW of the total 1.79mW system power. 1.79mW is the lowest reported

active power consumption for a CI-specific DSP. This clearly demonstrates the benefits of

designing dedicated hardware accelerators, such as the CIS DSP, for power constrained

designs that run highly parallel algorithms. 

Fig. 5.5 shows VDD and frequency scaling possibilities for the DSP core using the

on-chip DFS circuit. Power consumption can get below 600µW for the DSP at 1.2V and

1.5MHz if the full processing and stimulation of 3MHz is not required. This on-chip, soft-

ware selectable performance is something that is not typically available in other application

specific signal processing chips. 

5.1.6 Dynamic Frequency Scaling
The WIMS DFS circuit from Section 3.4.1 was described entirely in behavioral

Verilog HDL, synthesized with Synopsys Design Compiler, and placed-and-routed using

Cadence Silicon Ensemble with Artisan standard cells. The DFS unit is one of many

macros contained within the peripheral block labelled I/O in Fig. 5.1. No custom design,

custom layout, or transistor-level simulation was required to ensure a glitch-free clock

when multiplexing between frequencies. This distinguishes the WIMS design from other

DFS implementations proposed to date [55], [64], [79] - [80], and makes it ideal for ASIC

design cycles constrained by time and manpower. Although it does not provide the range

Figure 5.5: Power versus VDD scaling for the DSP.
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of frequency and phase options as do spread spectrum clock synthesizers such as the 'flying

adder' [80], the WIMS design is much simpler, lower-power, fully HDL-synthesizable, pro-

vides ample frequency selections for many DFS applications, and is not restricted to ring

oscillator based VCO/PLL clock architectures as is [80]. 

Fig. 5.6 shows oscilloscope traces of the DFS unit switching frequencies while the

MCU core is actively running. From the instant that software changes the clock multiplexer

select line, there is a latency of only n/2f0 plus a mux delay until the new frequency has

propagated from the multiplexer through the synchronization chain (n=2 flip-flops) and to

the clock tree. When the LCO is operating, f0=100MHz, the latency is about 11ns including

a 1ns multiplexer delay. When using the low-power ring oscillator, f0=10MHz, the total

latency increases to about 101ns. The power dissipated by our DFS unit is a relatively con-

Figure 5.6: Oscilloscope traces showing low-latency dynamic frequency scaling of (top) the TC-LCO
clock and (bottom) the TC-LCO and ring clock.
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stant 480µW at 1.8V and is much lower than the 150mW reported by [80]. The LCO dissi-

pates 9.62mW and the ring oscillator dissipates 0.82mW at 1.8V. The entire clock

synthesizer occupies 0.25mm2 of silicon.

5.1.7 Performance Comparison
This section compares the WIMS MCU to other commercially available micropro-

cessors as well as the WIMS DSP capabilities and performance to other cochlear implant

processing components. Table 5.5 compares the Gen-2 WIMS core against commercially

available processor cores in similar processing technologies. It is difficult to do an accurate

comparison of different processors due to the many factors involved, so this table is

intended to provide only a rough comparison. Table 5.6 examines the WIMS core and the

ARM7TDMI to provide a more detailed comparison. The ARM7TDMI offers 32-bit

instructions and data with a 16-bit Thumb instruction mode for more compact code.

Although the WIMS datapath is only 16-bits wide, the ALU does support multi-word

(16b+) signed integer arithmetic for the few applications that might require that level of

precision. The WIMS core offers a wide variety of peripherals not present on the ARM core

and is 20% more power efficient. The WIMS MCU’s large selection of peripherals almost

doubles the size of the core, which is one reason why the ARM core is smaller. The WIMS

DSP is far and away the lowest power consumption of any of the other DSPs listed.

Although this analysis may be too simplified to definitively claim that the WIMS core is

Table 5.5: Comparison of commercially available cores with the Gen-2 WIMS MCU.

Processor Process

(µm)

Voltage

(V)

Frequency

(MHz)

No. 

Bits

Active 

Power (mW)

Standby

Power (µW)
TI MSP430F21x1 0.18 1.8 16 16 11.5 126
National CP3000 0.25 2.5 24 16 30.0 2250
Infinion C166S 0.18 1.8 80 16 160.0 990
ARM7TDMI 0.18 1.8 115 32 24.2 -

TI C5402 DSP 0.18 1.8 100 24 81.0 36
Tensilica Xtensaa

a. [81]

0.18 1.8 200 32 80 -
WIMS Core 0.18 1.8 100 16 16.7 170
WIMS DSP 0.18 1.8 3 16 1.8 330
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more power efficient than commercially available cores, certainly the WIMS core is very

competitive with the best commercial offerings.

5.2 Conclusions

This chapter has described the performance achieved by the WIMS Microsystem.

The main components include the MCU, DSP, DFS, and scratchpad memory. A methodol-

ogy and results were presented for calculating the EPI for the WIMS MCU to help with

design optimization of the core as well as compiler optimization of code performance for

power consumption. These metrics directly impact performance and battery life for embed-

ded applications. The WIMS Microsystem compared favorably to commercially available

microcontrollers. 

While not described in detail, the LCO IP is a significant advantage in microsystem

capabilities when combined with the DFS circuit and compared to commercially available

microprocessors. It provides, with minimal overhead cost, a wide operating range for appli-

cation and system specific performance while eliminating the need for any other clock ref-

erence on board.

Table 5.6: Detailed comparison of Gen-2 WIMS core with ARM7TDMI.

Parameter ARM7TDMI WIMS
Instruction Width 32, 16b 16b

Data Width 32, 16, 8b 16+, 8b
Address Space 32b 24b

Pipeline 3-stage 3-stage
Interrupt Levels 2 32

Peripherals Coprocessor & ETM interfaces, 

JTAG, real-time debug unit

USART (2x), SPI (3x), Timer (3x),

external memory interface
Process 0.18µm 0.18µm
Voltage 1.8V 1.8V

Area 0.59mm2 0.80mm2

Frequency 115MHz 100MHz
µW/MHz 210 167
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The DSP has been shown to be sufficient in processing capability and flexibility for

the CIS algorithm across patient parameters. The DSP performance will be compared to

commercial CIs in more detail in the next chapter.
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CHAPTER VI

CONCLUSION AND FUTURE DIRECTIONS

This chapter begins by comparing the results achieved by the WIMS Cochlear Prosthesis

to other Cochlear Implant platforms found in both commercial and academic implementa-

tions. Next, demonstration vehicles that utilize the WIMS MCU features are presented.

Lastly, significant achievements realized by this work are detailed, and recommendations

for future directions are made. 

6.1 Platform Comparison

Several approaches have been taken to obtain a functioning cochlear implant sys-

tem. Keeping patient safety at the forefront, researchers have been looking for ways to

improve hearing performance, battery life, and implant aesthetics. This section will com-

pare different methods taken to implement the signal processing in both commercial and

academic investigations.

Commercial cochlear implants almost always choose a traditional software pro-

grammable DSP for the processing requirements. Academic researchers have investigated

more application-specific analog and digital signal processors to improve cochlear implant

performance. Table 6.1 compares the work presented here to other work discussed in

Section 2.5. The WIMS DSP is the lowest reported area for any implementation even when

adding the packaging options for WIMS. It also has the lowest power consumption of all

competitors except for Toumazou [34] and Sarpeshkar [35], the two analog signal proces-

sors. While the analog signal processors do have slight advantages in power consumption,

they sorely lack in configurability for patient-specific tuning of CIs. Also, they are not as
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flexible as WIMS with regards to expanding to more channels and updates or improve-

ments to the signal processing algorithms and process scaling [82]. Finally, WIMS has the

added capability of performing other system control and communication functions that

would require extra circuitry if choosing either of the analog signal processing components

for a CI system. They are also less flexible than the WIMS solution with regard to expand-

ing the number of channels and the ability to update the signal processing algorithm.

6.2 System Demonstrations

The WIMS Microcontroller SoC has been used in demonstrations for the WIMS

ERC for the Environmental and Cochlear testbed. Fig. 6.1 shows the board assembled for

the Environmental Testbed demonstration. The MCU is on the lower level board and con-

trols the other system components including the micro gas chromatograph, antenna, and

converters. The demonstration vehicle can successfully interface with a host computer over

the wireless interface. The on-board MCU can process and transmit data to the host com-

puter. Future advances will improve the volume and power consumption of the system.

Fig. 6.2 shows the final assembly of the WIMS Cochlear Prosthesis demonstration

vehicle. The multi-chip package on the right contains the MCU, telemetry chip, RF inter-

Table 6.1: Comparison of Cochlear Implant signal processing platforms.

Processor Technology 
(µm)

Area 
(mm2)

Supply 
(V)

Frequency 
(MHz)

Power 
(mW)

Sleep Power 
(µW)

WIMS 0.18 9.18 1.2 3 1.79 330

5402a 0.18 100b 1.8 100 45 3,600

Champ-LPc 0.35 48 0.85 N/A 7.1 N/A

Sharpd N/A 400b 3.3 100 48.2 106,590

Toumazoue 0.8 21 5 N/A 0.15 1000

Sarpeshkarf 1.5 88 2.8 N/A 0.2 400g

a. Texas Instruments TMS320C5402 [26]
b. Area includes standard QFP footprint
c. [31]
d. Uses Motorola DSP56309 [28] with other off-the-shelf components [29]
e. [32], [33]
f. [34]
g. Power is estimated for 32-channel version not actually implemented
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face, ADC, and voltage regulator with the flexible positioning cable connecting them to the

32-site electrode array on the left side. The electrodes in this system has successfully gen-

erated current pulses when directed by the MCU and electrode driving circuitry. 

Figure 6.1: WIMS Environmental Testbed demo board.

Figure 6.2: Complete assembly of the WIMS Cochlear Prosthesis demonstration.
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Students at the University of Utah have continued work on the demonstration of the

MCU capabilities. The board in Fig. 6.3 contains the telemetry chip and an ADC under the

control of the MCU. LabVIEW software was written in order to load assembly code onto

the MCU and execute it while providing sound samples to the ADC and monitoring the

telemetry chip output. This made the process of writing C-code and compiling, assembling,

loading onto the MCU, and executing that code a push button process. Fig. 6.4 shows logic

analyzer traces of the Serial Peripheral Interfaces (SPIs) between the MCU and the ADC

and between the MCU and the Cochlear Electrode Array. This successful demonstration of

system components communicating with each other is a significant achievement that not

all academic research typically achieves. It is a testament to all of the people who worked

on each individual component and system-level specifications.

The wide variety of applications that can easily integrate the WIMS MCU shows its

flexibility and usefulness. For a fully implantable CI, the integration of several components

into a single package is critical due to size constraints, as shown in Fig. 6.2. The WIMS

MCU developed in this dissertation provides that integration by implementing the control

system, DSP capability, and clock sources necessary for all system functions in a single die,

having a small area and extremely low power dissipation. 

Figure 6.3: University of Utah Cochlear Demonstration Board.
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6.3 Achievements

This section describes the noteworthy achievements from this work. 

• A microcontroller has been specified, implemented, and tested that satisfies the require-

ments of WIMS ERC Environmental Monitor and Cochlear Prosthesis testbeds. The

aggressive integration of sophisticated components into a small area and with low

power consumption is made possible by the storage, processing, and communication

capabilities included in the MCU. The 16-bit MCU implements a custom ISA and

includes on-chip SRAM, a low-power loop cache or scratchpad memory, and several

communication peripherals. The entire WIMS core consumes 16.7mW while operating

at 100MHz.

• The 9.18mm2 WIMS Gen-2 MCU with DSP functionality specifically tuned for the

CIS Cochlear Implant processing algorithm achieves 1.79mW total power consumption

from 1.2V, including clock generation. This is the lowest reported power for a digital

cochlear prosthesis signal processor. Analog signal processors for cochlear implants

Figure 6.4: Logic Analyzer traces of ADC (SPI1) and Electrode Array (SPI0) communicating with
the MCU.
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have achieved slightly less power consumption, but lack the configurability shown here

and are much larger. While in sleep mode, the WIMS MCU power consumption is only

330µW.

• The 16-channel CIS DSP architecture takes advantage of existing MCU components to

optimize the complete system. The parallel processing performed by the DSP allows

for a low-area implementation by reusing the same processing units (filters) among

each of the channels. Dynamic range compression of sound data is done by using the

low-power scratchpad memory as a look-up table. The DSP allows for an easy patient

fitting procedure by having separate stimulation and programming modes that can all

be managed by MCU software. During stimulation mode, processed data is sent to the

electrode array through an SPI interface. As an experimental feature, the MCU can set

the stimulation profile for each channel or send data directly to the electrodes. The DSP

architecture is easily scalable to more channels, higher pulses per second, or other algo-

rithm modifications if required. These features make the WIMS DSP a valuable tool for

research as well as a fully-implantable CI device.

• The synthesizable, glitch-free dynamic frequency scaling (DFS) circuit consumes only

480µW with a switching latency of 11ns to 101ns. The DFS circuit is a significant

piece of the completely monolithic clocking architecture of the MCU. An on-chip

hybrid LCO and ring oscillator provides an accurate 100MHz operating frequency or a

low-power 10MHz operating frequency. Both modes are completely software select-

able for a total operating range of 100MHz to below 1MHz. Total power consumption

is 9.62mW in LCO mode or 0.82mW in low-power mode. All is achieved in 0.25mm2

of silicon area.

• An on-chip scratchpad memory is included as a power-saving feature. The custom

WIMS compiler takes advantage of the scratchpad memory to obtain an average energy

savings of 18% across benchmarks. The custom compiler was also utilized to make

optimizations in the ISA, specifically in the areas of register windowing, memory

access modes, and interrupt support. Application-specific C software for the WIMS

testbeds has been written, compiled, and executed on the MCU.
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• An O(n) energy per instruction (EPI) methodology is presented. It allows detailed anal-

ysis and power optimization of software running on the MCU. The methodology allows

for both pre- and post-fabrication estimations with minimal overhead compared to sim-

ilar methodologies. Results achieve less than 4% error and have been annotated into the

WIMS MCU simulators for easy software analysis and reporting.

• A thorough analysis of mixed signal design methodologies is presented in Chapter IV,

including hardware and software co-design and analysis of existing CAD tool capabili-

ties. A top-down methodology is presented in detail using the WIMS SoC as an exam-

ple design. Modelling concepts and simulation methodologies are presented for all

design domains. 

6.4 Future Research Topics

While this work is a significant advancement in the state of the art for MCUs and

CI signal processing, there is room for further improvement. Several ideas came about

during this work and were not pursued due to a lack of time or resources. They are

described here for possible further development.

Integration of an audible-spectrum 16-bit ADC would increase the capabilities of

the WIMS SoC as a CI component. The additional area taken up on the WIMS SoC would

be minimal compared to the reduction in system area by removing the external ADC from

the board. Combining the ADC with a bone-conduction microphone will be the next step

toward a fully-implantable CI.

Parkinson's Disease and Epilepsy are topics of great current research interest.

Researchers would like to develop systems that can predict the onset of a seizure or control

tremors with the use of feedback. These systems, like CIs, require processing of parallel

channels of data and system control of sensors or medication delivery vehicles [83] - [85].

While it may be difficult to design a single SoC to perform the control and processing

required for all applications, the WIMS platform provides an ideal starting point for adding

a custom DSP for each system. Building upon the flexible, low-power features of the

WIMS MCU, researchers could efficiently add the capabilities needed to address other

embedded medical microsystem applications.
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As optimizations to the WIMS MCU, two features could provide significant addi-

tions to the processing effectiveness. The first would be standard branch prediction. Cur-

rently, taken branches incur a two cycle penalty since they are not resolved until the EX

stage of the pipeline, and all branches are assumed to be not-taken. The extra complexity

of the branch prediction hardware would need to be analyzed to ensure that it does not add

too much area or power to the existing implementation. The power-aware compiler must

also take branches into account when optimizing the software. A second feature to be added

to the MCU would be the Direct Memory Access (DMA) instructions already outlined in

Appendix A. This instruction group would provide a powerful tool for the compiler to opti-

mize data memory location and order.

The final addition to be recommended is to migrate the entire WIMS SoC to a

smaller feature size process or Silicon-on-Insulator (SOI). This will have the obvious ben-

efit of reducing the area and the active power of the system. Care should be taken to ensure

that leakage power does not come to dominate the sleep mode power of the system. System-

level architectural optimizations would most likely be required to further reduce the

standby power below the 330µW currently reported. Detailed analysis of the gains to be

made is not done here, but standard scaling factor gains [86] can be applied to the current

design based on the characteristics of available silicon processes.

6.5 Conclusion

This dissertation has presented an advancement to Cochlear Prostheses moving

towards a fully-implantable Cochlear Implant as part of the WIMS NSF ERC. The results

of this project could help people with profound deafness to more inconspicuously and con-

veniently gain the ability to understand speech, allowing them to lead more active lives.

The Gen-2 WIMS MCU has the lowest power DSP core that has implemented the CIS algo-

rithm. It has been demonstrated as part of the complete Cochlear Prosthesis testbed, push-

ing the limits of low-power and low-volume system integration. Self-contained frequency

generation and dynamic frequency scaling provide key flexibility to the system. A method

of energy estimation was presented to assist in software optimization. A top-down design

methodology was presented using the WIMS SOC as a demonstration vehicle. Research

advancements such as these can only come from the efforts of large groups of people work-
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ing toward a common goal and individual researchers working hard to complete their por-

tion of the system.
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Appendix A. WIMS Microcontroller User Manual

Chapter 1. Processor Organization

Introduction
The WIMS processor is an embedded microcontroller for Wireless Integrated Microsystems (WIMS). It is specifi-
cally designed to be low-power yet maintain adequate performance in embedded sensor applications. It has a 16-bit
integer datapath and 24-bit unified data and instruction address space. This 24-bit address space provides for 224 = 16
MB of addressable memory. The 16-bit datapath allows efficient manipulation of audio data (typically ~12 bits) or
sensor data (12-16 bits) from an analog-to-digital converter. For applications that require greater precision, multi-
word arithmetic and shift instructions are provided to enable fixed-decimal-point emulation in software.

Data Registers (DRs)
There are sixteen 16-bit data registers that are referenced by using the shorthand notation r0, r1,..., r15. These are gen-
erally used for temporary data storage during instruction computation, however, they can also be used for computing
addresses or for loading address registers. Only half of these DRs are accessible by any given instruction. If the Data
Register Window (DRW) bit in the MSR is clear, then r0 through r7 are accessible. If the DRW bit in the MSR is set,
then r8 through r15 are accessible. The exception to this rule is the Copy Data Register (cdr) instruction, which allows
any data register to be copied to any other data register regardless of the DRW bit. This instruction is included to
facilitate data transfers between windows.

Address Registers (ARs)
There are fourteen 24-bit address registers that use the notation SP, FP, AR00, AR01,..., AR05, AR10, AR11,...,
AR15. These are used for indirect addressing modes as the base register. The 24-bit stack pointer (SP) is for stack
operations and compiler support. The 24-bit frame pointer (FP) is used by the compiler to specify the beginning of a
stack frame for the compiler. Like the DRs, ARs are also windowed using the Address Register Window (ARW) bit
so that either AR00-AR05 or AR10-AR15 are accessible by any given instruction, however, the same SP and FP reg-
isters are accessible in both address windows. For example, if the ARW bit is clear then SP, FP, and AR00-AR05 are
accessible. If the ARW bit is set, then SP, FP, and AR10-AR15 are accessible. Notice that for the numerical ARwn
indices, the first digit (w) determines the window and the second digit (n) determines the register number in that win-
dow. There are only twelve ARs, not sixteen. The Copy Address Register (car) instruction allows any address register
to be copied to any other address register regardless of the Address Register Window bit.

Link Register (LR)
There is a 24-bit link register to support subroutine calls. During a subroutine call, the next Program Counter (PC)
address is automatically loaded into the LR. When returning from a procedure, the LR is loaded back into the PC. The
LR is accessible through the non-windowed (NWIN) instructions.

Shift/Divide Auxiliary Register (SDAR)
This register is used to facilitate multi-word shifts, divides, and sign-extension. See instruction examples for how it is
used for each type. This register is memory mapped so that it can be saved for interrupt or subroutine support.

Machine State Register (MSR)
There is a 16-bit Machine State Register (MSR) that records most of the important state in the processor. It contains
information on Arithmetic Logic Unit (ALU) operations, the window bits, external memory, and the interrupt state of
the processor. The MSR is memory mapped so that it is addressable in memory. Besides the PC and interrupt priority
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registers, it is one of the few registers to be reset at startup. The MSR resets to 0x0000 so that the INT_LEVEL has
the lowest interrupt priority and the remaining MSR fields are cleared. Please refer to Fig. 1 for a diagram of the MSR
and see Table 1 for a description of each of the MSR bits.

Table 1: Description of MSR Bits
Bit(s) Mnemonic Description

0 C ALU carry output
1 OVF ALU overflow
2 LT ALU less-than
3 EQ ALU equal-to
4 GT ALU greater-than
5 GIE Global interrupt enable
6 ARW Address Register Window
7 DRW Data Register Window

13:8 INT_LEVEL[5:0] Current interrupt priority level
14 EXT External memory enable
15 UPM Address register update mode

0123456789101112131415

OVFLTEQGTGIE CINT_LEVEL[5:0] DRW

Figure 1: MSR - Machine State Register

UPM EXT ARW
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Chapter 2. Addressing Modes

Register
When the Data Register Window bit in the MSR is clear (DRW=0), a 16-bit register can be addressed by r0 to r7. For
example, 

add r1,r2
loads the sum of r1 and r2 into r1. If the Data Register Window bit is set (DRW=1), then registers r8-r15 can be
addressed in the same manner. For example, 

add r8,r9
loads the sum of r8 and r9 into r8. If you attempt to address a register that is outside of your current window then the
corresponding register in your current window will be used. For example, if you tried the following instruction when
DRW=0

add r8,r9
the instruction will be executed as though it were

add r0,r1
because r8 and r9 are outside of the current window and the corresponding registers are r0 and r1. Please note that the
register windowing scheme does not apply to the non-windowed instructions (NWIN).

Immediate
An immediate value can be used in either decimal or hexadecimal format. For example, 

add r1,-3
loads the sum of r1 and -3 (decimal) into r1. Hexadecimal format is preceded by a “0x”. For example,

add r1,0x2f
loads the sum of r1 and 2f (hexadecimal) into r1. Most instructions that take immediates use signed 8-bit values, how-
ever, some use unsigned values or support different sized immediates. Pay careful attention to the description of each
instruction when determining the size of the immediate field and whether it is signed or unsigned.

Bit
A single bit in memory can be addressed by an unsigned immediate or unsigned register value. Only the lower 4 bits
of the register/immediate are used to select bit[0] through bit[15] of the memory word. The remaining bits of the reg-
ister/immediate are ignored. For example,

seti 0xe,AR00
would set bit 0xe (0xe = 0b1110 = bit[14]) of the memory addressed by the location stored in AR00.

Register Pair
The 16-bit multiply instruction requires a double precision value (32-bit) for the destination and the divide instruction
requires a double precision value for the dividend operand. This is accomplished using a register pair. Only the
address of an even register can be used to specify the register pair and the consecutive odd register is implied. For
example, 

mul r0,r2
multiplies the value in r0 by the value in r2 and stores the two word (32-bit) result in the register pair r0,r1 with r0
holding the most significant word of the result.

Base Register Indirect
Any of the address registers (FP, SP, AR00-AR05, AR10-AR15) can be used as base registers in register indirect
addressing. For example, 

set r0,(AR00)
sets the bit specified by r0 of the memory addressed by the location stored in AR00. From now on, the shorthand
notation memory[AR00] will be used to represent the “memory addressed by the location stored in AR00”.

Base Register Indirect + Immediate Offset
Any of the address registers (FP, SP, AR00-AR05, AR10-AR15) can be used as base registers in register indirect
addressing with a signed immediate offset value. For example, 
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lo r0,-2(AR00)
loads r0 with memory[AR00-2].

Base Register Indirect + Index Register Offset
Any of the address registers (FP, SP, AR00-AR05, AR10-AR15) can be used as base registers in register indirect
addressing with an index register offset. The index register is a 16-bit signed number stored in a DR. For example, 

ld r0,r1(AR00)
loads r0 with memory[AR00+r1].

Base Register Update
The WIMS Microcontroller supports both post-update and pre-update addressing modes to provide AR manipulation.
This minimizes the need for special address manipulating and stack instructions. The update mode is specified by the
address register update mode (UPM) bit in the MSR. If UPM is clear (UPM=0) then post-update will be used. If UPM
is set (UPM=1) then pre-update will be used. Please note that post-update (UPM=0) is the default mode after the
MSR has been reset during microcontroller startup.
During a post-update instruction, the original AR value is used in the current operation and then the AR is updated to
its new value. For example, 

lou r0,-2(AR00)
will first load r0 with memory[AR00] and then update AR00 to AR00-2.
During a pre-update instruction, the new AR value is calculated and used in both the current operation and to update
the AR. For example, 

lou r0,-2(AR00)
will load r0 with memory[AR00-2] while updating AR00 to AR00-2.

Direct Memory Access (DMA) - DMAs were not implemented in Gen-2
The WIMS Microcontroller has special DMA instructions to improve the performance of spilling registers, subrou-
tine calls, and setting up the loop cache (LC). The register spilling DMA instructions utilize Base Register (BR) +
Index Register Offset or Base Register + Immediate Offset addressing modes to determine the address of the spill.
Both offsets are signed values. The BR is selected by the 4-bit value stored in the memory mapped DMA Base Regis-
ter (DBR). The available settings for DBR are shown in the ‘dddd ssss’ column of Table 4. For example, if DBR =
0b0110 (which is SP) then:

dmst 0x01, r2
will store memory[SP+r2] with ARw1, where w=ARW. 

For multiple register DMA accesses, an internal ‘index’ is used with the BR and the offset to cycle through memory.
If set, the 1-bit, memory-mapped DMA Increment (DINC) register selects (BR + offset + index), otherwise (BR +
offset - index) is used. An example of a multiple register DMA with DBR = 0b1000 (which is AR10) and INC = 1 is:

dmldi 0x09, 0x02
which loads r0<-memory[AR10+2+0], r1<-memory[AR10+2+2], r2<-memory[AR10+2+4], r3<-mem-
ory[AR10+2+6], r4<-memory[AR10+2+8], r5<-memory[AR10+2+10], r6<-memory[AR10+2+12], r7<-mem-
ory[AR10+2+14]. If DRW=1, then it loads r8-r15.

The loop cache DMA instructions are designed to make filling the loop cache easier and more power efficient. The
512-byte loop cache is divided into thirty-two, 16-byte data ‘chunks’ that are encoded using a 5-bit value. The mem-
ory-mapped DMA Target Chunk ID (DTCID) register points to the starting chunk for a loop cache DMA access (load
or store). The memory-mapped DMA Number of Chunks (DNC) specifies how many consecutive chunks to access
starting at the DTCID address. Both registers are 5-bits. As shown above, the memory address for the DMA loop
cache access is calculated as (BR + offset +/- index) by looking at the DBR and DINC registers.

dmld 0x0f, r0
will load the loop cache at Chunk DTCID with memory[BR + r0 +/- index], and repeat for the number of chunks in
DNC.
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Chapter 3. Instructions
There are 10 store, 10 load, 3 register initialization, 4 direct memory access, 17 arithmetic, 7 logical, 12 shift/rotate, 5
bit operation, 8 non-windowed, 9 control-of-flow, and 4 miscellaneous instructions. There are 85 instructions total so
we will use a 5-bit primary opcode in conjunction with 8 secondary opcodes (CF, BIT, ARITH, SHIFT, STIDX,
LDIDX, NWIN, and MISC). Each of these instructions is detailed in the section below with a brief description and an
example.

Store/Load Operations
There are four modifiers for the load/store instructions:
1. B specifies whether the instruction accesses a byte (8 bits) or word (16 bits) of memory. 
2. A specifies whether the address mode uses a 24-bit absolute immediate.
3. O specifies whether the address mode uses a signed 5-bit immediate offset (-15:15).
4. U specifies whether the address mode is post/pre-update (UPM=0/1 respectively).
Note that all register offsets are treated as signed values.

STO : Store Word Indirect with Immediate Offset
sto r0,-2(AR00)
[AR00-2] <- r0

STOU : Store Word Indirect with Immediate Offset, Update AR
stou r0,-2(AR00)
[AR00] <- r0 (post-update mode)
[AR00-2] <- r0 (pre-update mode)
AR00 <- AR00-2

STOB : Store Byte Indirect with Immediate Offset
stob r0,2(AR00)
[AR00+2] <- r0
Only the lower 8-bits of the register are written to memory.

STOBU : Store Byte Indirect with Immediate Offset, Update AR
stobu r0,2(AR00)
[AR00] <- r0 (post-update mode)
[AR00+2] <- r0 (pre-update mode)
AR00 <- AR00+2
Only the lower 8-bits of the register are written to memory.

STA : Store Word Absolute
sta r0,0x123456
[0x123456] <- r0

STAB : Store Byte Absolute
stab r0,0x123456
[0x123456] <- r0
Only the lower 8-bits of the register are written to memory.

ST : Store Word Indirect with Register Offset
st r0,r1(AR00)
[AR00+r1] <- r0

STU : Store Word Indirect with Register Offset, Update AR
stu r0,r1(AR00)
[AR00] <- r0 (post-update mode)
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[AR00+r1] <- r0 (pre-update mode)
AR00 <- AR00+r1

STB : Store Byte Indirect with Register Offset
stb r0,r1(AR00)
[AR00+r1] <- r0
Only the lower 8-bits of the register are written to memory.

STBU : Store Byte Indirect with Register Offset, Update AR
stbu r0,r1(AR00)
[AR00] <- r0 (post-update mode)
[AR00+r1] <- r0 (pre-update mode)
AR00 <- AR00+r1
Only the lower 8-bits of the register are written to memory.

LO : Load Word Indirect with Immediate Offset
lo r0,-2(AR00)
r0 <- [AR00-2]

LOU : Load Word Indirect with Immediate Offset, Update AR
lou r0,-2(AR00)
r0 <- [AR00] (post-update mode)
r0 <- [AR00-2] (pre-update mode)
AR00 <- AR00-2

LOB : Load Byte Indirect with Immediate Offset
lob r0,2(AR00)
r0 <- [AR00+2]
The upper 8-bits of the register are loaded with 0x00.

LOBU : Load Byte Indirect with Immediate Offset, Update AR
lobu r0,2(AR00)
r0 <- [AR00] (post-update mode)
r0 <- [AR00+2] (pre-update mode)
AR00 <- AR00+2
The upper 8-bits of the register are loaded with 0x00.

LA : Load Word Absolute
la r0,0x123456
r0 <- [0x123456]

LAB : Load Byte Absolute
lab r0,0x123456
r0 <- [0x123456]
The upper 8-bits of the register are loaded with 0x00.

LD : Load Word Indirect with Register Offset
ld r0,r1(AR00)
r0 <- [AR00+r1]

LDU : Load Word Indirect with Register Offset, Update AR
ldu r0,r1(AR00)
r0 <- [AR00] (post-update mode)
r0 <- [AR00+r1] (pre-update mode)
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AR00 <- AR00+r1

LDB : Load Byte Indirect with Register Offset
ldb r0,r1(AR00)
r0 <- [AR00+r1]
The upper 8-bits of the register are loaded with 0x00.

LDBU : Load Byte Indirect with Register Offset, Update AR
ldbu r0,r1(AR00)
r0 <- [AR00] (post-update mode)
r0 <- [AR00+r1] (pre-update mode)
AR00 <- AR00+r1
The upper 8-bits of the register are loaded with 0x00.

Direct Memory Access Instructions - DMAs were not implemented in Gen-2
These instructions offer an efficient way to fill the loop cache or load/store individual Data or Address Registers or
groups of registers from/to the memory stack. The memory location is determined by adding the signed immediate or
register offset to the base Address Register. The Data and/or Address Registers to be loaded/stored are determined by
the DMT (Direct Memory Access Type) defined in Table 4. BR below is the Base Register determined by the value
in the DBR memory mapped register.

When loading/storing a group of DMT registers, the base Address Register and the offset value are left untouched,
but the address being stored to is internally incremented according to the number of words being loaded/stored. 

DMST : Direct Memory Access Store
dmst DMT,r0
[BR+r0] <- DMT Registers

DMSTI : Direct Memory Access Store Immediate
dmsti DMT,0x04
[BR+0x04] <- DMT Registers
The immediate is sign extended.

DMLD : Direct Memory Access Load
dmld DMT,r0
DMT Registers <- [BR+r0]

DMLDI : Direct Memory Access Load Immediate
dmldi DMT,0x04
DMT Registers <- [BR+0x04]
The immediate is sign extended.

Register Initialization Operations
These instructions load 8-bit immediate values into registers but do not access memory. ldlbi is useful for clearing
data registers because the immediate value is zero extended.

LDLBI : Load Low Byte Immediate
ldlbi r0,0x04
r0 <- 0x0004
The upper 8-bits of the immediate are zero extended.

LDHBI : Load High Byte Immediate
ldhbi r0,0xC6
r0 <- {0xC6, r0[7:0]}
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The lower 8-bits of the register remain unchanged.

LDABI : Load Address Register Upper Byte Immediate
ldabi AR00,0x0C
AR00<- {0x0C, AR00[15:0]}
The lower word of the Address Register remains unchanged.

Arithmetic Operations
For all arithmetic operations (except compare instructions), the resulting data is compared to zero and the correspond-
ing bit of the MSR is set: LT, EQ, GT. All 8-bit immediate values are sign extended to 16-bits, except for muli, mulsi,
divi, and divsi which already take 16-bit signed immediates. 

ADD : Add
add r0,r1
r0 <- r1+r0
C <- carry
OVF <- overflow

ADDC : Add with Carry
addc r0,r1
r0 <- r1+r0+C (Carry bit from MSR)
C <- carry
OVF <- overflow
if (result == 0)

Does not modify flags
else

Set LT, GT accordingly

ADDI : Add Immediate (Negate immediate to perform SUBI)
addi r0,0x04
r0 <- r0+0x0004
C <- carry
OVF <- overflow

SUB : Subtract
sub r0,r1
r0 <- r0-r1
C <- borrow
OVF <- overflow

SUBC : Subtract with Carry
subc r0,r1
r0 <- r0-r1-C (Carry bit from MSR)
C <- borrow
OVF <- overflow
if (result == 0)

Does not modify flags
else

Set LT, GT accordingly

MUL : Multiply
mul r0,r2
(r0,r1) <- r0*r2
C <- 0
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OVF <- 0 (overflow can never occur)

MULS : Multiply Single Word
muls r0,r2
r0 <- r0*r2
C <- 0
OVF <- overflow

MULI : Multiply Immediate
muli r0,0x0004
(r0,r1) <- r0*0x0004
C <- 0
OVF <- 0 (overflow can never occur)

MULSI : Multiply Single Word Immediate
mulsi r0,0x0004
r0 <- r0*0x0004
C <- 0
OVF <- overflow

DIV : Divide
div r0,r2
r0 <- (r0,r1) / r2
C <- 0
OVF <- overflow
SDAR <- remainder

DIVS : Divide Single Word
divs r0,r2
r0 <- r0 / r2
C <- 0
OVF <- overflow (only for 8000/ffff = 8000)
SDAR <- remainder

DIVI : Divide Immediate
divi r0,0x0004
r0 <- (r0,r1) / 0x0004
C <- 0
OVF <- overflow
SDAR <- remainder

DIVSI : Divide Single Word Immediate
divsi r0,0x0004
r0 <- r0 / 0x0004
C <- 0
OVF <- overflow (only for 8000/ffff = 8000)
SDAR <- remainder

SEXTB : Sign Extend Byte
sextb r0, r1
r0 <- {8{r1[7]}, r1[7:0]}
C <- 0
OVF <- 0
SDAR[15:0] <- 16{r1[7]}
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The above {} notation is used by Verilog to denote copying r1’s bit[7] (the sign bit) 8 times into the upper 8 bits.
This SEXTB instruction is useful when loading a signed byte from memory and turning it into a signed 16-bit
word. To perform 32-bit sign extension, do a SEXTB on the original byte, followed by a load absolute on the
SDAR. Load the SDAR into the register(s) to contain the sign-extended upper word(s).

CMP : Compare
cmp r0,r1

if (r0 < r1)
LT <- 1, EQ <- 0, GT <- 0

else if (r0 == r1)
LT <- 0, EQ <- 1, GT <- 0

else
LT <- 0, EQ <- 0, GT <- 1

CMPI : Compare Immediate
cmpi r0,0x04

if (r0 < 0x0004)
LT <- 1, EQ <- 0, GT <- 0

else if (r0 == 0x0004)
LT <- 0, EQ <- 1, GT <- 0

else
LT <- 0, EQ <- 0, GT <- 1

The immediate is sign extended.

CMPM : Compare Multiple Unsigned
cmpm r1, r3

if (EQ == 1)
if (r1 < r3)

LT <- 1, EQ <- 0, GT <- 0
else if (r1 == r3)

LT <- 0, EQ <- 1, GT <- 0
else

LT <- 0, EQ <- 0, GT <- 1
else

Does not modify LT, EQ, GT flags.

The compare multiple instruction has a slightly different semantic than cmp. It acts as a compare unsigned
instruction, but only writes flags if the EQ bit was set by a prior instruction. Its purpose is to allow efficient
multi-word signed comparisons without the need for intermediate branch instructions. A signed multi-word com-
parison is initiated with a signed comparison (cmp) on the most significant word, followed by unsigned cmpm
instructions for the remaining words of the number. The flags will be set correctly when done. The following
instruction sequence shows how two 32-bit signed numbers stored in (r0,r1) and (r2,r3) can be compared:
cmp r0,r2
cmpm r1,r3
br gt, label

Logical Operations
For all logical instructions, the resulting data is compared to zero and the EQ bit is set if all bits of the result are zero.
The GT and LT bits are cleared. The C and OVF flags are unaffected. All 8-bit immediate values are zero extended.
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AND : Bitwise AND
and r0,r1
r0 <- r0 & r1

ANDI : Bitwise AND Immediate
andi r0,0x04
r0 <- r0 & 0x0004

OR : Bitwise OR
or r0,r1
r0 <- r0 | r1

ORI : Bitwise OR Immediate
ori r0,0x04
r0 <- r0 | 0x0004

XOR : Bitwise Exclusive OR
xor r0,r1
r0 <- r0 ^ r1

XORI : Bitwise Exclusive OR Immediate
xori r0,0x04
r0 <- r0 ^ 0x0004

NOT : Bitwise Not
not r0, r1
r0 <- ~r1

Shift/Rotate Operations
The shift/rotate instructions use only bits[3:0] of immediate or register values to determine the shift amount, which
ranges from 0-15 (0x0 - 0xF). All shift instructions set the LT, EQ, and GT flags with the exception of shift with car-
ries, which set only certain flags, and rotates, which don’t set any flags. The OVF flag is modified only by shift left
instructions when the most significant bit (MSB) flips while in the process of being shifted. Refer to the individual
shift instructions to see which flags are set by each instruction. The flag setting behavior is to enable shifts to be used
instead mul/div when the multiplying/dividing by factors of 2. The final bit shifted out by left and right shifts is put in
the Carry bit (C) of the MSR. All bits shifted out for all shift, but not rotate, instructions are saved in the SDAR
(SHIFT/DIV Auxiliary Register) to facilitate multi-word shift operations. The SDAR value written is the logarithmi-
cally encoded shift-out value from the logarithmic shifter and is not easily verified by visual inspection. The shift
with carry operations use the SDAR as the bits shifted in, so using a shift with carry is the easiest way to decode the
SDAR value. Only bits[0-14] of the SDAR are used and bit[15] is set to 0. Multi-word shift operations can be per-
formed with the shift with carry operations. This can be useful for emulating fixed-point multiply and divide. Logical
instructions shift in 0’s while arithmetic shifts preserve the sign bit when shifting. A “rotate left” instruction can be
emulated by subtracting the desired “rotate left” value from 16 and using this amount with rr or rri.

SLL : Shift Left Logical
sll r0,r1
r0 <- r0 << r1
C <- shifted out bit (or 0 in case of shift by 0)
OVF <- set if MSB flips while shifting
SDAR <- {0, encoded shifted out bits}
Shifts in 0’s.

SLLI : Shift Left Logical by Immediate
slli r0,0xC
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r0 <- r0 << 0xC
C <- shifted out bit (or 0 in case of shift by 0)
OVF <- set if MSB flips while shifting
SDAR <- {0, encoded shifted out bits}
Shifts in 0’s.

SLC : Shift Left with Carry
slc r0,r1
r0 <- r0 << r1

if (r0 < 0)
LT <- 1, EQ <- 0, GT <- 0

else if (r0 > 0)
LT <- 0, EQ <- 0, GT <- 1

else
Does not modify LT, EQ, GT flags.

C <- shifted out bit (or 0 in case of shift by 0)
OVF <- set if MSB flips while shifting
SDAR <- {0, encoded shifted out bits}
Shifts in SDAR.

SLIC : Shift Left by Immediate with Carry
slic r0,0xC
r0 <- r0 << 0xC

if (r0 < 0)
LT <- 1, EQ <- 0, GT <- 0

else if (r0 > 0)
LT <- 0, EQ <- 0, GT <- 1

else
Does not modify LT, EQ, GT flags.

C <- shifted out bit (or 0 in case of shift by 0)
OVF <- set if MSB flips while shifting
SDAR <- {0, encoded shifted out bits}
Shifts in SDAR.

SRA : Shift Right Arithmetic
sra r0,r1
r0 <- r0 >> r1
C <- shifted out bit (or 0 in case of shift by 0)
SDAR <- {0, encoded shifted out bits}
Sign bit is preserved. EQ, GT, and LT are set accordingly.

SRAI : Shift Right Arithmetic by Immediate
srai r0,0xC
r0 <- r0 >> 0xC
C <- shifted out bit (or 0 in case of shift by 0)
SDAR <- {0, encoded shifted out bits}
Sign bit is preserved. EQ, GT, and LT are set accordingly.

SRL : Shift Right Logical
srl r0,r1
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r0 <- r0 >> r1
C <- shifted out bit (or 0 in case of shift by 0)
SDAR <- {0, encoded shifted out bits}
Shifts in 0’s.

SRLI : Shift Right Logical by Immediate
srli r0,0xC
r0 <- r0 >> 0xC
C <- shifted out bit (or 0 in case of shift by 0)
SDAR <- {0, encoded shifted out bits}
Shifts in 0’s.

SRC : Shift Right with Carry
src r0,r1
r0 <- r0 >> r1

if (EQ == 1)
if (r0 > 0)
LT <- 0, EQ <- 0, GT <- 1
else
Does not modify LT, EQ, GT flags.

else
Does not modify LT, EQ, GT flags.

C <- shifted out bit (or 0 in case of shift by 0)
SDAR <- {0, encoded shifted out bits}
Shifts in SDAR.

SRIC : Shift Right by Immediate with Carry
sric r0,0xC
r0 <- r0 >> 0xC

if (EQ == 1)
if (r0 > 0)
LT <- 0, EQ <- 0, GT <- 1
else
Does not modify LT, EQ, GT flags.

else
Does not modify LT, EQ, GT flags.

C <- shifted out bit (or 0 in case of shift by 0)
SDAR <- {0, encoded shifted out bits}
Shifts in SDAR.

RR : Rotate Right
rr r0,r1
This rotates r0 by r1 bits and stores it in r0.

RRI : Rotate Right by Immediate
rri r0,0xC
This rotates r0 by 12 bits and stores it in r0.
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Memory Bit Operations
The bit operations modify a single bit in memory at the word location specified using the base register indirect
addressing mode. The base register address must be word aligned and bit[15] - bit[0] of the target word are referenced
using bits[3:0] of either unsigned immediate or unsigned registered values. If any bit operations, except tmsri, are
done on the MSR, the memory write trumps the setting/resetting of the EQ bit. This is to prevent stalling for extra
write cycles to the MSR.

TAS : Test-and-Set Bit
tas r0,AR00
This sets the EQ flag in the MSR equal to the bit of [AR00] specified by r0 and then sets the bit.

TASI : Test-and-Set Immediate Bit
tasi 0xf,AR00
This sets the EQ flag in the MSR equal to bit[0xf] of [AR00] and then sets the bit.

TAR : Test-and-Reset Bit
tar r0,AR00
This sets the EQ flag in the MSR equal to the bit of [AR00] specified by r0 and then resets the bit.

TARI : Test-and-Reset Immediate Bit
tari 0xf,AR00
This sets the EQ flag in the MSR equal to bit[0xf] of [AR00] and then resets the bit.

TMSRI : Toggle Machine State Register (MSR) Immediate Bit
tmsri 0x5
This toggles (inverts) bit[0x5] of the MSR (which happens to be the GIE bit). This instruction can be used to effi-
ciently toggle any of the sixteen MSR bits and was designed specifically for easy toggling of the GIE, DRW,
ARW, EXT, and UPM bits. If the immediate equals 0x10 (bit[17], which is non-existent) both DRW and ARW
bits will be toggled and the lower four bits are ignored. For convenience, this instruction may also be invoked
with many of the MSR bit mnemonics (UPM,EXT,DRW,ARW,GIE,GT,EQ,LT,OVF,C) as these mnemonics are
#defined in the boot_rom.asm file. For example:
tmsri GIE

Non-Windowed Operations
Non-windowed operations have access to registers in both windows, regardless of the Window bit setting in the
MSR.

CAR : Copy Address Register
car SP,AR10
This copies address register AR10 to SP. The Address Register Window bit in the MSR is not used by this oper-
ation so that all ARs may be copied to or from.

CDR : Copy Data Register
cdr r0,r8
This copies data register r8 to r0. The Data Register Window bit in the MSR is not used by this operation so that
all DRs may be copied to or from.

CARW : Copy Address Register and Toggle Address Register Window bit
carw SP,AR01
This copies address register AR01 to SP and toggles the Address Register Window (ARW) bit. The Address
Register Window bit in the MSR is not used by this operation so that all ARs may be copied to or from.

CDRW : Copy Data Register and Toggle Data Register Window bit
cdrw r0,r8
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This copies data register r8 to r0 and toggles the Data Register Window (DRW) bit. The Data Register Window
bit in the MSR is not used by this operation so that all DRs may be copied to or from.

CADR : Copy Address to Data Register
cadr r0,AR00
This copies the lower 16-bits of address register AR00 to data register r0. The Address Register Window and
Data Register Window bits in the MSR are not used by this operation so that all ARs and DRs may be copied to
or from.

CDAR : Copy Data to Address Register
cdar AR00,r8
This copies data register r8 to the lower 16-bits of address register AR00. The upper 8 bits of the AR are left
unchanged. The Data Register Window and Address Register Window bits in the MSR are not used by this oper-
ation so that all ARs and DRs may be copied to or from.

CADRB : Copy Address to Data Register Byte
cadrb r0,AR00
This copies the upper 8-bits of address register AR00 to the lower 8-bits of data register r0. The upper 8 bits of
the DR are cleared. The Address Register Window and Data Register Window bits in the MSR are not used by
this operation so that all ARs and DRs may be copied to or from.

CDARB : Copy Data to Address Register Byte
cdarb AR00,r8
This copies the lower 8-bits of data register r8 to the upper 8-bits of address register AR00. The lower 16-bits of
the AR are left unchanged. The Data Register Window and Address Register Window bits in the MSR are not
used by this operation so that all ARs and DRs may be copied to or from.

Control of Flow Operations
All of the control of flow instructions (with the exception of swi, reti, and ret) support labels as the destination
address.

JR : Jump Relative
jr -8
jr label
The jr instruction can jump forward or backward up to 127 words.

JMP : Jump Absolute
jmp 0x123456
jmp label
The jmp instruction can jump anywhere in memory (however odd addresses will generate an alignment excep-
tion).

BR : Branch Relative
br ne,label
label: br lte,-127
There are six supported branch conditions: less-than (lt), equal-to (eq), not-equal-to (ne), greater-than (gt), less-
than-or-equal-to (lte), and greater-than-or-equal-to (gte). The branch condition is evaluated by checking the LT,
EQ, and GT flags in the MSR. The br instruction can conditionally jump forward or backward up to 127 words
and supports labels for convenience.

Interrupts are supported in the instruction set with the swi and reti instructions:
SWI : Software Interrupt

swi
The swi instruction causes a software interrupt and invokes the corresponding interrupt handler.
98



RETI : Return from Interrupt
reti
The reti instruction loads the IPC into the PC and the IMSR into the MSR.

Subroutine calls are supported in the instruction set with the following four instructions:
JSR : Jump Subroutine

jsr 0x123456
jsr label
The jsr instruction can jump to a subroutine anywhere in memory (however odd addresses will generate an align-
ment exception). The next PC is loaded into the LR.

JSRW : Jump Subroutine and Toggle Window Bits
jsrw 0x123456
jsrw label
The jsrw instruction can jump to a subroutine anywhere in memory (however odd addresses will generate an
alignment exception). The next PC is loaded into the LR. Both Address and Data Window bits (DRW, ARW) in
the MSR are inverted.

JRSR : Jump Relative Subroutine
jrsr -8
jrsr label
The jrsr instruction can jump forward or backward up to 127 words for a subroutine call. The next PC is loaded
into the LR.

RET : Return from Subroutine
ret
The ret instruction loads the LR into the PC.

Miscellaneous/Test Instructions
Test instructions such as sstep, stop and start are normally received over the test interface. Stop is also useful for soft-
ware breakpoints in normal program code.

STOP : Stop Execution
stop
This instruction halts the processor and freezes execution from the PC until a start instruction or an interrupt is
received. It allows execution from the test interface, however.

START : Start Execution
start
This instruction exits stop mode.

SSTEP : Single Step
sstep
When in stop mode, this executes a single instruction and then remains in stop mode. When not in stop mode,
this instruction has no effect.

NOOP : No Operation
noop
This instruction performs no operation.
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Chapter 4. Opcode Formats
Table 2 shows the various opcode formats that used by the WIMS Assembly instructions. Each different format is
assigned a unique format number (left). The physical breakdown of each bit in the instruction is shown in the Word 1
and Word 2 columns with the bit field descriptions given in Table 3. Table 4 provides some additional detail on the
exact bit encodings of some of the bit fields shown in Tables 2 and 3. The branch conditions (ccc) are shown as well
as various windowed and non-windowed register encodings and DMA options. It should be noted that the ‘dddd’ and
‘ssss’ fields can be used to encode either address registers or general purpose registers depending on the instruction.

Table 2: WIMS Instruction Formats
Instruction

Format
Number of Opcodes Word 1 Word 2 UsagePrimary Secondary

1
1

3 ooooo qqq uuuu uuuu Control flow (swi, ret, reti)
2 2 ooooo qqq jjjj jjjj Jump relative (jr, jrsr)
3 3 ooooo qqq iiii iiii iiii iiii iiii iiii Jump absolute (jmp, jsr, jsrw)
4

1
2 ooooo qqq xxx uu sss Reg/bit operations (tas, tar)

5 2 ooooo qqq xxx u iiii Imm/bit operations (tasi, tari)
6 1 ooooo qqq uuu i iiii Toggle bit operations (tmsri)
7 1 4 ooooo qqq uuuu uuuu Misc/test instructions (stop, start, sstep, noop)
8 2 ooooo qqq sss u hhhh DMA reg (dmst, dmld)
9 2 0 ooooo  jjj  jjjj hhhh DMA imm (dmsti, dmldi)
10 1 8 ooooo qqq dddd ssss Non-windowed operations (car, cdr, etc.)
11 1 7 ooooo ddd qqqq u sss Reg/reg shift operations (sll, srl, sra, rri, etc.)
12 7 ooooo ddd qqqq iiii Reg/imm shift operations (slli, srli, srai, rri, etc.)
13 1 15 ooooo ddd qqqqq sss Reg/reg arith operations (add, sub, etc.)
14 4 ooooo ddd qqqqq uuu iiii iiii iiii iiii Reg/imm arith operations (muli, divi, etc.)
15 1 4 ooooo sss  xxx qq ttt Store indirect w/index reg offset (st, stu, etc.)
16 1 4 ooooo ddd xxx qq ttt Load indirect w/index reg offset (ld, ldu, etc.)
17 2 0 ooooo ddd jjjj jjjj Reg/imm arith operations (addi, cmpi)
18 4 0 ooooo ddd kkkk kkkk Reg/imm operations (ldlbi, andi, etc.)
19 2 0 ooooo ddd iiii iiii Reg/imm operations (ldhbi, ldabi)
20 1 0 ooooo ccc jjjj jjjj Branch relative (br)
21 4 0 ooooo sss  xxx jjjjj Store indirect w/imm offset (sto, stou, etc.)
22 4 0 ooooo ddd xxx jjjjj Load indirect w/imm offset (lo, lou, etc.)
23 2 0 ooooo sss  iiii iiii iiii iiii iiii iiii Store absolute (sta, stab)
24 2 0 ooooo ddd iiii iiii iiii iiii iiii iiii Load absolute (la, lab)

Table 3: Opcode Field Interpretations
Opcode Field Windowed Field Description Opcode Field Windowed Field Description

ooooo No Primary opcode ttt Yes Offset register
q...q No Secondary opcode ccc No Branch condition code
dddd No Destination register i...i No Immediate, no extension1

1. See tmsri description in Chapter 3 for details of fifth bit.

ddd Yes Destination register j...j No Immediate, sign extension
ssss No Source register k...k No Immediate, zero extension
sss Yes Source register hhhh Yes Direct Memory Type2

2. See Table 4 for details.

xxx Yes Index register u...u No Unused bits
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Table 4: Important Opcode Field Mappings

ccc Branch
Condition

A
R
W

xxx Address
Register

dddd
ssss

Address
Register

Data 
Register

D
R
W

ddd
sss

Data 
Register hhhh Direct Memory Type (DMT)

000 eq 0 000 AR00 0000 AR00 r0 0 000 r0 0000 ARw01

1. w is the ARW bit in the MSR, either 0 or 1.

001 ne 0 001 AR01 0001 AR01 r1 0 001 r1 0001 ARw11

010 lt 0 010 AR02 0010 AR02 r2 0 010 r2 0010 ARw21

011 gt 0 011 AR03 0011 AR03 r3 0 011 r3 0011 ARw31

100 Unused 0 100 AR04 0100 AR04 r4 0 100 r4 0100 ARw41

101 Unused 0 101 AR05 0101 AR05 r5 0 101 r5 0101 ARw51

110 lte 0 110 SP 0110 SP r6 0 110 r6 0110 SP
111 gte 0 111 FP 0111 FP r7 0 111 r7 0111 FP

1 000 AR10 1000 AR10 r8 1 000 r8 1000 ARw0-51, SP, FP
1 001 AR11 1001 AR11 r9 1 001 r9 1001 r0-r72

2. Saves/restores r0-r7 if DRW = 0, and r8-15 if DRW = 1

1 010 AR12 1010 AR12 r10 1 010 r10 1010 LR
1 011 AR13 1011 AR13 r11 1 011 r11 1011 IMSR, IPC
1 100 AR14 1100 AR14 r12 1 100 r12 1100 ARw0-51, r0-r72, LR, SP, FP
1 101 AR15 1101 AR15 r13 1 101 r13 1101 ARw0-51, r0-r72, LR, SP, FP, IMSR, IPC
1 110 SP 1110 LR r14 1 110 r14 1110 SDAR
1 111 FP 1111 IPC r15 1 111 r15 1111 Loop Cache3

3. This is a block copy to or from the Loop Cache. See Chapter 2 for more information
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Tables 5 and 6 show all of the WIMS Assembly instructions and their associated primary and secondary opcodes.
Any instructions that modify MSR flags or the Shift/Divide Auxiliary Register (SDAR) are denoted on the right,
where X means the flag/register is modified (either set to 1 or reset to 0 depending on the condition) and 0 means the
flag is cleared (set to 0). If the box is empty then the flag/register is left unmodified. The instruction formats (from
Table 4) used by each instruction are also shown. 

Table 5: Primary Opcodes

Primary
Opcode

Primary
Mnemonic Instruction

MSR Flags Modified S
D
A
R

Instruction
Format(s)

D
R
W

A
R
W

U
P
M

G
I
E

G
T

E
Q

L
T

O
V
F C

00000 CF Control Flow Operations See Table 6 1, 2, 3
00001 BIT Bit Operations See Table 6 4, 5, 6
00010 MISC Miscellaneous and Test Operations See Table 6 7, 8
00011 NWIN Non-Windowed Operations See Table 6 10
00100 SHIFT Shift Operations See Table 6 11, 12
00101 ARITH Register/Register Operations See Table 6 13, 14
00110 STIDX Store Indirect with Index Register Offset See Table 6 15
00111 LDIDX Load Indirect with Index Register Offset See Table 6 16
01000 addi Add Immediate X X X X X 17
01001 Unused
01010 andi Bitwise AND Immediate 0 X 0 18
01011 ori Bitwise OR Immediate 0 X 0 18
01100 xori Bitwise Exclusive OR Immediate 0 X 0 18
01101 ldlbi Load Low Byte Immediate 18
01110 ldhbi Load High Byte Immediate 19
01111 ldabi Load Address Register Upper Byte Immediate 19
10000 br Branch Relative 20
10001 cmpi Compare Immediate X X X 17
10010 sto Store Word Indirect with Immediate Offset 21
10011 stou Store Word Indirect with Immediate Offset, Update AR 21
10100 stob Store Byte Indirect with Immediate Offset 21
10101 stobu Store Byte Indirect with Immediate Offset, Update AR 21
10110 sta Store Word Absolute 23
10111 stab Store Byte Absolute 23
11000 dmsti Direct Memory Access Store Immediate 9
11001 dmldi Direct Memory Access Load Immediate 9
11010 lo Load Word Indirect with Immediate Offset 22
11011 lou Load Word Indirect with Immediate Offset, Update AR 22
11100 lob Load Byte Indirect with Immediate Offset 22
11101 lobu Load Byte Indirect with Immediate Offset, Update AR 22
11110 la Load Word Absolute 24
11111 lab Load Byte Absolute 24
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Table 6: Secondary Opcodes

Primary 
Mnemonic

Secondary
Opcode Mnemonic Instruction

MSR Flags Modified S
D
A
R

Instruction
Format

D
R
W

A
R
W

U
P
M

G
I
E

G
T

E
Q

L
T

O
V
F C

CF
(00000)

000 swi Software Interrupt If taken IMSR<=MSR 1
001 ret Return from Subroutine 1
010 reti Return from Interrupt  MSR<=IMSR 1
011 jr Jump Relative 2
100 jrsr Jump Relative Subroutine 2
101 jsr Jump Subroutine 3
110 jmp Jump Absolute 3
111 jsrw Jump Subroutine and Toggle Window Bits X X 3

BIT
(00001)

000 tas Test-and-Set Bit X 4
001 tar Test-and-Reset Bit X 4
010 Unused
011 Unused
100 tasi Test-and-Set Immediate Bit X 5
101 tari Test-and-Reset Immediate Bit X 5
110 Unused
111 tmsri Toggle Machine State Register Immediate Bit X X X X X X X X X 6

MISC
(00010)

000 Unused
001 Unused
010 stop Stop Execution 7
011 start Start Execution 7
100 sstep Single Step 7
101 dmst Direct Memory Access Store 8
110 dmld Direct Memory Access Load 8
111 noop No Operation 7

NWIN
(00011)

000 car Copy Address Register 10
001 cdr Copy Data Register 10
010 carw Copy Address Register and Toggle ARW X 10
011 cdrw Copy Data Register and Toggle DRW X 10
100 cadr Copy Address to Data Register 10
101 cdar Copy Data to Address Register 10
110 cadrb Copy Address to Data Register Byte 10
111 cdarb Copy Data to Address Register Byte 10

SHIFT
(00100)

0000 sll Shift Left Logical X X X X X X 11
0001 sra Shift Right Arithmetic X X X X X 11
0010 srl Shift Right Logical X X X X X 11
0011 rr Rotate Right 11
0100 slli Shift Left Logical by Immediate X X X X X X 12
0101 srai Shift Right Arithmetic by Immediate X X X X X 12
0110 srli Shift Right Logical by Immediate X X X X X 12
0111 rri Rotate Right by Immediate 12
1000 slc Shift Left with Carry1 X X X X X X 11
1001 src Shift Right with Carry1 X X X X X 11
1010 Unused
1011 Unused
1100 slic Shift Left by Immediate with Carry1 X X X X X X 12
1101 sric Shift Right by Immediate with Carry1 X X X X X 12
1110 Unused
1111 Unused
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ARITH
(00101)

00000 add Add X X X X X 13
00001 sub Subtract X X X X X 13
00010 mul Multiply X X X 0 0 13
00011 div Divide X X X X 0 X 13
00100 addc Add w/ Carry1 X X X X 13
00101 subc Subtract w/ Carry1 X X X X 13
00110 muli Multiply Immediate X X X 0 0 14
00111 divi Divide Immediate X X X X 0 X 14
01000 Unused
01001 Unused
01010 muls Multiply Single Word X X X X 0 13
01011 divs Divide Single Word X X X X 0 X 13
01100 Unused
01101 Unused
01110 mulsi Multiply Single Word Immediate X X X X 0 14
01111 divsi Divide Single Word Immediate X X X X 0 X 14
10000 sextb Sign Extend Byte X X X 0 0 X 13
10001 cmp Compare X X X 13
10010 Unused
10011 Unused
10100 Unused
10101 cmpm Compare Multiple Unsigned1 X X X 13
10110 Unused
10111 Unused
11000 Unused
11001 Unused
11010 and Bitwise AND 0 X 0 13
11011 or Bitwise OR 0 X 0 13
11100 xor Bitwise Exclusive OR 0 X 0 13
11101 not Bitwise NOT 0 X 0 13
11110 Unused
11111 Unused

STIDX
(00110)

00 st Store Word Indirect, Reg. Offset 15
01 stu Store Word Indirect, Reg. Offset, Update AR 15
10 stb Store Byte Indirect, Reg. Offset 15
11 stbu Store Byte Indirect, Reg. Offset, Update AR 15

LDIDX
(00111)

00 ld Load Word Indirect, Reg. Offset 16
01 ldu Load Word Indirect, Reg. Offset, Update AR 16
10 ldb Load Byte Indirect, Reg. Offset 16
11 ldbu Load Byte Indirect, Reg. Offset, Update AR 16

1. See the entry for this instruction in Chapter 3 for exact MSR flag setting behavior.

Table 6: Secondary Opcodes
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Chapter 5. Interrupts
The WIMS Microcontroller provides hardware support for one level of interrupts/exceptions. The registers used to
provide interrupt support are detailed below:

Machine Status Register (MSR)
Already described in Chapter 1, refer to Fig. 1 and Table 1 for details. 

Global Interrupt Enable (GIE) - controls whether maskable interrupts are taken or ignored. This bit is automatically
reset to 0 when an interrupt is taken and set back to its previous value when an interrupt handler returns via the ‘reti’
instruction. If desired, GIE can be manually changed in software by toggling the MSR GIE bit with ‘tmsri GIE’ or by
storing to the MSR memory location.

Interrupt Priority Level (INT_LEVEL[5:0]) - The current interrupt priority level is specified in this 6-bit field and is
automatically set when the microcontroller detects and handles an interrupt. INT_LEVEL is set back to its previous
value when an interrupt handler returns via the ‘reti’ instruction. Only the lower 5 bits (INT_LEVEL[4:0]) are needed
to represent the 32 interrupt priority levels supported in hardware. The upper bit (INT_LEVEL[5]), is not set by the
hardware and can be set in software to position the interrupt vector table (IVT) in memory. Table 7 summarizes the
32 possible levels of interrupts/exceptions. Additional details on the peripheral interrupts can be found in the relevant
sections of this manual. If desired, INT_LEVEL can be manually changed in software by storing to the MSR memory
location.

Interrupt Machine State Register (IMSR)
Automatically stores a copy of the 16-bit MSR immediately before an interrupt is handled. The value is copied back
into the MSR when the interrupt returns via a ‘reti’ instruction. The IMSR is memory-mapped.

Interrupt Program Counter (IPC)
Automatically stores a copy of the 24-bit PC immediately before an interrupt is handled. This value is copied back
into the PC and execution continues from this address when the interrupt returns via a ‘reti’ instruction. The IPC is
accessible through the non-windowed (NWIN) copy instructions.

Interrupt Vector Table (IVT) Register
This 16-bit memory mapped register specifies the upper 16-bits of the interrupt vector table location. The lower 8-bits
of the location are obtained by concatenating the 6-bit interrupt priority level (INT_LEVEL[5:0]) from the MSR with
0b00. The interrupt vector table must be created by the software (compiler) and the upper 16-bits of the vector table’s
starting address must be stored into the IVT register. Each entry in the interrupt vector table represents a particular
interrupt priority and is allocated 4 bytes so that an absolute jump instruction (size = 4 bytes) can jump to the location
of the particular interrupt handler routine. The interrupt vector table can hold up to 32 absolute jump instructions (one
for each priority level) at 4 bytes each for a total size of 128 bytes. For this reason, the interrupt vector table must be
aligned on a 128 byte boundary that is specified by {IVT[15:0], INT_LEVEL[5]}. Similarly, each jump instruction
within the IVT that jumps to an interrupt handler must be aligned on a 4 byte boundary so that the bottom 2 address
bits are 0b00. The boot ROM contains its own interrupt vector table and sets the IVT register to point to its vector
table during the boot sequence. When the boot ROM is finished, the application software should create its own vector
table and update the IVT so that it points to the program’s vector table instead of to the boot ROM’s vector table.

Interrupt Priority Registers (IPRs) - IPRs are not implemented in Gen-2
Each peripheral unit has a programmable interrupt priority register to set the peripheral’s priority level. The priority
registers are memory-mapped in Table 11 and can be programmed by software to re-order the priority in which
peripheral interrupts are handled. Each external interrupt has a 5-bit IPR shown in Table 7. Some peripherals have
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two interrupts but only one IPR. In this case, the IPR is 4-bits and the 5th, least significant bit, is appended in hard-
ware by using the default ordering of the peripheral’s interrupts. For example, if the USART’s IPR was set to 0b1000
then the RX interrupt priority would be {4’b1000, 1’b1} and the TX priority would be {4’b1000, 1’b0}. The TX
could never have a higher priority than RX. At boot up, the hardware resets the IPRs with the default priorities shown
in Table 7. In the case that multiple peripherals interrupt at the same time and their IPRs contain the same interrupt
priority level, it is up to the interrupt handler to decide how to handle the interrupts. If an IPR is set to a priority level
in the non-maskable interrupt range, then maskable interrupts using that IPR will be ignored. This behavior can be
used to turn off specific maskable interrupts with more granularity than allowed by the single GIE bit.

Implementation Details
If a maskable interrupt occurs while in the middle of executing a multi-cycle instruction such as mul(s)/div(s)/tas/tar,
etc., the interrupt will be handled after the multi-cycle instruction completes. Non-maskable interrupts are typically
handled right away as they indicate a critical error condition. When the microcontroller decides to handle an inter-
rupt/exception, the current values of the PC and MSR are first copied into the IPC and IMSR registers and then
maskable interrupts are disabled by automatically clearing the GIE bit of the MSR. The microcontroller then prepares
to jump to the interrupt vector table and assembles its 24-bit jump destination address as {IVT register[15:0], MSR
INT_LEVEL[5:0], 00}. This destination is somewhere in the interrupt vector table, and should contain a ‘jmp’
instruction to the appropriate interrupt handler. The last instruction in the interrupt handler should usually call ‘reti’
so that the IPC and IMSR are re-loaded into the PC and MSR and execution resumes from the pre-interrupt PC loca-
tion. 

If the GIE bit is set, then the maskable interrupts (priorities 1-24) are handled, otherwise they are ignored. The excep-
tions/interrupts with priorities 25-31 are non-maskable and thus are always handled, unless an interrupt with a higher
priority is already being handled. In this situation, the machine behavior is unpredictable because there is an unhan-
dled catastrophic exception, however, in most cases the instruction causing the exception will act like a noop and will
not alter machine state. If, for some reason, the programmer wants to ignore a particular exception/interrupt, just use
a ‘reti’ in the corresponding interrupt vector table location and the interrupt will return immediately after it is taken.
Interrupts are always handled according to their priority with INT_LEVEL = 31 having the highest priority and
INT_LEVEL = 0 having the lowest priority. If two interrupts occur at the same time then the higher priority interrupt
will be handled first. If an interrupt (maskable or non-maskable) is already in the process of being handled and a non-
maskable interrupt of higher priority occurs, then the higher priority interrupt will be immediately handled and this
forced interrupt nesting would result in the original IPC and IMSR values being lost. This behavior is acceptable
because all of the non-maskable interrupts (with the exception of ‘swi’, which the programmer controls) represent a
catastrophic error that needs to be handled appropriately (e.g. restart the program or reset the microcontroller). In
contrast, if a maskable interrupt is already in the process of being handled and a maskable interrupt of higher priority
occurs, then the higher priority interrupt will have to wait until the lower priority interrupt finishes and GIE is auto-
matically re-enabled. To avoid this case where high priority maskable interrupts get stuck waiting for low priority
maskable interrupts to exit their handling routines, the programmer should keep the maskable interrupt handling rou-
tines short so that GIE is not disabled for too long. Also, because maskable interrupts are not latched (with the excep-
tion of USART and timer interrupts), it is possible to miss them if they occur while the program is stuck handling
another interrupt and they disappear before the program re-enables the GIE bit.

Nested Interrupts
 If nested interrupts are desired, it is the responsibility of the software to store the IPC and IMSR before manually re-
enabling interrupts/exceptions by setting the GIE bit and adjusting INT_LEVEL.

Table 7: Supported Interrupts/Exceptions
Default 
Priority

Default 
INT_LEVEL

Mask-
able

Priority 
Register Name Description

0 0b00000 N/A Default Normal operational mode (no interrupt)
1 0b00001 Yes Unused
2 0b00010 Yes Unused
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3 0b00011 Yes Unused
4 0b00100 Yes Unused
5 0b00101 Yes Unused

6 0b00110 Yes
IPR10

TI transmit 
(TX) interrupt

The Test Interface transmit FIFO is empty
Interrupt asserted until cleared (See Chapter 10)

7 0b00111 Yes TI receive 
(RX) interrupt

The Test Interface receive FIFO is full
Interrupt asserted until cleared (See Chapter 10)

8 0b01000 Yes
IPR9

USART transmit 
(TX) interrupt

The USART transmit FIFO is empty
Interrupt asserted until cleared (See Chapter 10)

9 0b01001 Yes USART receive 
(RX) interrupt

The USART receive FIFO is full
Interrupt asserted until cleared (See Chapter 10)

10 0b01010 Yes IPR8
SPI2 transmit 
(TX) interrupt The SPI2 has completed the last transmission

11 0b01011 Yes SPI2 NACK interrupt The SPI2 did not receive acknowledge

12 0b01100 Yes IPR7
SPI1 transmit 
(TX) interrupt The SPI1 has completed the last transmission

13 0b01101 Yes SPI1 NACK interrupt The SPI1 did not receive acknowledge

14 0b01110 Yes IPR6
SPI0 transmit 
(TX) interrupt The SPI0 has completed the last transmission

15 0b01111 Yes SPI0 NACK interrupt The SPI0 did not receive acknowledge

16 0b10000 Yes
IPR5

Timer2 CU1 interrupt Timer2 Counting Unit 1 interrupt
Interrupt asserted until cleared (See Chapter 12)

17 0b10001 Yes Timer2 CU0 interrupt Timer2 Counting Unit 0 interrupt
Interrupt asserted until cleared (See Chapter 12)

18 0b10010 Yes
IPR4

Timer1 CU1 interrupt Timer1 Counting Unit 1 interrupt
Interrupt asserted until cleared (See Chapter 12)

19 0b10011 Yes Timer1 CU0 interrupt Timer1 Counting Unit 0 interrupt
Interrupt asserted until cleared (See Chapter 12)

20 0b10100 Yes
IPR3

Timer0 CU1 interrupt Timer0 Counting Unit 1 interrupt
Interrupt asserted until cleared (See Chapter 12)

21 0b10101 Yes Timer0 CU0 interrupt Timer0 Counting Unit 0 interrupt
Interrupt asserted until cleared (See Chapter 12)

22 0b10110 Yes IPR2 External interrupt 2 Active low interrupt for use by external devices 
23 0b10111 Yes IPR1 External interrupt 1 Active low interrupt for use by external devices 
24 0b11000 Yes IPR0 External interrupt 0 Active low interrupt for use by external devices 

25 0b11001 No System call/
software interrupt Software interrupt (swi) instruction

26 0b11010 No Divide by zero 
exception The divisor operand for the div instruction is zero

27 0b11011 No Invalid memory 
exception in IF stage

Instruction fetch (IF) stage is attempting to 
fetch from an invalid (unused) memory location

28 0b11100 No Invalid memory 
exception in EX stage

Load/store instruction in the execute (EX) stage 
is accessing an invalid (unused) memory location

29 0b11101 No Alignment exception Mul/div operand not aligned correctly or a word 
load/store is from/to an odd byte

30 0b11110 No Invalid instruction 
exception Unrecognized instruction

31 0b11111 No Breakpoint exception Break on address, data, or interrupt value

Table 7: Supported Interrupts/Exceptions
Default 
Priority

Default 
INT_LEVEL

Mask-
able

Priority 
Register Name Description
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Chapter 6. Processor Execution States
The WIMS Microcontroller has three modes of operation: normal, stop, and break. Normal mode is the standard
operational mode and is the default mode following system startup/reset. Stop mode can be entered only by using the
stop instruction and normal mode can be re-entered after stop by using a start instruction. Break mode can be entered
only when the hardware breakpoint condition is met (See Chapter 7).
TODO: Clock Control ... be able to stop clocks to unused peripherals.
TODO: Sleep Mode... be able to shut down all clocks. The chip should be woken up by external interrupts or a watch-
dog timer.
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Chapter 7. Test Support

Test Interface
The WIMS Microcontroller contains a serial Test Interface (TI) that is tightly integrated with the USART peripheral.
The TI can be activated by driving a special test_mode pin high. The purpose of the TI is to simplify chip testing
while incurring minimal power and pin count overhead. Because it uses a standard serial protocol, the TI is ideal for
remote, in-the-field testing of WIMS applications. When the TI is active, if the processor is in normal mode and
fetching instructions from memory, then whenever a word of data is received on the USART, it is injected into the
decode stage of the pipeline after the current instruction. If it is a multi-word instruction, then the control logic will
stall the pipeline and wait for the second word. After the complete instruction is received, it is allowed to proceed in
the pipeline as normal. If the processor is in stop mode then instructions are not fetched from program memory.
Instead, only instructions from the test interface are executed in a manner like that described above. When the TI is
selected, the USART’s RX interrupt is automatically disabled and instruction injection occurs automatically. The TX
interrupt is still enabled to facilitate the TI sending data out to the tester.

Using the existing bus architecture, the TI can easily access all DR’s, AR’s, and the memory mapped registers in
Tables 11 and 12 for testing purposes. A variety of important system registers and pipeline registers (PLR’s) have
also been memory mapped so the TI can read and write their contents. All 24-bit registers have been split in order to
accommodate the 16-bit nature of the USART when running in TI mode. The Pipeline Register (PLR) mappings are
shown in Table 8. IF, ID, and EX refer to the Instruction Fetch, Instruction Decode, and Execute stages of the three-
stage pipeline. PLRs were omitted from the Gen-2 chip.

Breakpoints
In addition to the test interface, there is hardware support for three breakpoint conditions shown in Table 9. These
conditions can be: a data match, a memory address, or an interrupt priority level. These breakpoints are to assist the
test interface software in stopping the microcontroller accurately. The additional hardware is a 24-bit breakpoint reg-
ister (BPR), a 2-bit mode select (BPM), and a 24-bit comparator. The four possible breakpoint modes are selected by
changing the 2-bit BPM register in the MSR. Interrupt Level will only match when the interrupt level in the MSR is
set via a taken interrupt (tmsri and stores to the MSR will not trigger a breakpoint on interrupt level). Unlike other

Table 8: Pipeline Register (PLR) Mappings
Address Range Mnemonic DescriptionStart End

0xff0080 Reads 00
0xff0081 0xff0083 PLR0 IF: PC

0xff0084 Reads 00
0xff0085 0xff0087 PLR1 IF/ID: next PC

0xff0088 Reads 00
0xff0089 0xff008b PLR2 ID/EX: memory address
0xff008c 0xff008d PLR3 IF/ID: instruction
0xff008e 0xff008f PLR4 IF/ID: word two

0xff0090 0xff0091 PLR5

IF/ID: {use TI, two word fsm, bit fsm, 2’b11?, 
ext int[2:0], 1’b1?, IF inv mem, stop fsm, sstep 

fsm, brkpt_stall, 
jump/brach taken fsm, 2’b0}

0xff0092 0xff0093 PLR6 ID/EX: operand a
0xff0094 0xff0095 PLR7 ID/EX: operand b
0xff0096 0xff0097 PLR8 ID/EX: bit operand data

0xff0098 0xff0099 PLR9 ID/EX: {cmd[4:0], mem rd, mem wr, byte mem, 
alu/shift update MRF, mem update MRF, 6’b0}

0xff009a 0xff009b PLR10 ID/EX: {BR cond[2:0], branch, cmpm, 1’b0?, 
tas, tar?, tmsri, bit, reti, stall, dest reg[3:0]}

0xff009c 0xff009d PLR11 ID/EX: {MSR wen[7:0], int, int lvl[5:0], 1’b0}
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interrupts, breakpoint exceptions are handled the instruction following the instruction that causes a match because the
match is not detected until after the instruction has completed.

Table 9: Breakpoint Mode (BPM) Encoding

BPM[1:0] Description BPR Bits Used

0b00 Off (default) Unused

0b01 Break on data match BPR[15:0]

0b10 Break on address match BPR[23:0]

0b11 Break on interrupt priority level BPR[4:0]
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Chapter 8. Boot Up Procedure
After powering on, the microcontroller’s SRAM contains junk data that must be initialized if the pipeline is to fetch
instructions from the SRAM. This section describes the different ways to load data into the on-chip memory during
boot-up. The default method used by the boot ROM is to receive data over the USART and store it into memory. This
method is described below in detail. To avoid the rather slow process of loading through the USART, external inter-
rupts can be asserted to enable special features built into the boot ROM. Asserting external interrupt 0 during boot-up
will skip the boot ROM’s USART memory loading process and jump directly to the first on-chip SRAM address
(0x000004). This assumes the program has already been loaded into SRAM and is useful for simulation purposes
because simulated loading of the memory over the USART can take a long time. The Verilog simulator has other
methods to initialize memory. Asserting external interrupt 1 during boot-up jumps directly to the first address in
external memory and starts fetching instructions from that location. This useful feature allows instructions to be
fetched from off-chip memory in the event that problems exist with the on-chip memory or with the boot ROM’s
automatic memory loading processes. Asserting external interrupt 2 during boot-up will load instructions from exter-
nal memory using the second method described below.

Loading SRAM from the USART
The pseudo-coded algorithm below shows how the boot ROM loads the on-chip SRAM by reading from the USART
peripheral running in asynchronous mode. Although slow, this method requires only 1 pad (USART RX) and can be
driven by a standard serial port. The notation USART_DATA[7:0] implies the boot ROM is waiting for the USART
to receive a byte of data and interrupt the core. The USART receive (RX) interrupt handler in the boot ROM then
reads the data from the USART.

num_blocks[15:0] = {USART_DATA[7:0] : USART_DATA[7:0]};
for (i = 0; i < num_blocks; i++) {

chunks_in_block[15:0] = {USART_DATA[7:0] : USART_DATA[7:0]};
address[23:0] = {USART_DATA[7:0] : USART_DATA[7:0] : USART_DATA[7:0]};
for (j = 0; j < chunks_in_block; j++) {

word0 = {USART_DATA[7:0] : USART_DATA[7:0]}; // 1 chunk = 1 word
mem[address] = word0;
address = address + 2;

}
}
jump program_start;

The first word of data received by the USART during boot-up is the number of blocks (num_blocks) to be stored into
on-chip memory. Each block has its own 16-bit size (block_size) and 24-bit starting address (address) that must be
sent prior to sending any data chunks. The block_size is the number of data ‘chunks’ in the block. After loading these
necessary setup values, the data chunks are received and stored into memory. For the USART, data chunks are only
16-bits (1 word) because the having larger chunks does not improve the loading speed. The loading speed is restricted
by the baud rate of the USART which defaults to fclk/4 in the boot ROM where fclk is the core clock frequency. It
should be noted that if the on-chip LC clock source is selected at boot-up, the default core clock frequency should be
50MHz with the possibility of minor variance due to process variation or model mis-match.

Loading SRAM from External Memory
The pseudo-coded algorithm below shows how the boot ROM fills the on-chip SRAM by loading from the 16-bit
external memory read data input bus (EXTMEMRDDATA[15:0]). The EXTMEMRDDATA bus can be driven by an
external memory chip or by a digital tester. This method is much faster than loading over the USART because it loads
16 bits in parallel at the same clock frequency as the pipeline. To enable loading from the external memory bus, exter-
nal interrupt 2 must be asserted during the boot-up process.

num_blocks[15:0] = EXTMEMRDDATA[15:0];
for (i = 0; i < num_blocks; i++) {
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chunks_in_block[15:0] = EXTMEMRDDATA[15:0];
address[23:16] = EXTMEMRDDATA[7:0];
address[15:0] = EXTMEMRDDATA[15:0];
for (j = 0; j < chunks_in_block; j++) {

word0 = EXTMEMRDDATA[15:0]; // 1 chunk = 8 words
mem[address] = word0;
word1 = EXTMEMRDDATA[15:0];
mem[address + 2] = word1;
word2 = EXTMEMRDDATA[15:0];
mem[address + 4] = word2;
word3 = EXTMEMRDDATA[15:0];
mem[address + 6] = word3;
word4 = EXTMEMRDDATA[15:0];
mem[address + 8] = word4;
word5 = EXTMEMRDDATA[15:0];
mem[address + 10] = word5;
word6 = EXTMEMRDDATA[15:0];
mem[address + 12] = word6;
word7 = EXTMEMRDDATA[15:0];
mem[address + 14] = word7;
address = address + 16;

}
}
jump program_start;

Please note that when loading from the external memory bus, the data chunk size is 8 words to reduce loading time.

Non-Default Boot-up Values
The boot ROM provides the option to override the default values for various settings by using the external memory
read data bus. The boot ROM knows to override default values if it reads a 16-bit, non-zero value from address
0x05fffe-f, which resides in external memory. At boot-up, the boot ROM writes 0x0000 to the external memory
address 0x05fffe and subsequently reads a 16-bit data value from the same external memory address. If external
SRAM is hooked up to the WIMS Microcontroller’s external memory read bus, then the boot ROM should read the
0x0000 that it just wrote and will proceed normally. If a flash memory is hooked up, then the write of 0x0000 should
have no effect and the boot ROM will read whatever value was previously programmed at 0x05fffe. Program 0x0000
if you want the boot ROM to proceed normally. If no memory is hooked up, then the user has the option of manually
tying the external memory read data bus’ pins to specific values which the boot ROM then uses to override certain
default settings. The boot ROM uses the following pin mappings to override the settings specified in

TODO: Insert table of registers and startup values (PC, MSR, pipeline regs, etc.). The following modules use reset:
alu, clkgen, ex, id, if, mmrf, mmu, peripherals.

Fig. 2 is a flow chart of possible boot up scenarios. It contains start-up values for several peripheral registers as well 
as well as some instruction groups inserted by the simulation scripts.

Table 10: Pin Mappings for Non-Default Boot-Up Values
extmemrddataPadMMU_BPin bits Mapped to value/setting

[15:12] On-chip clock’s LCCal[7:4]
[11:9] On-chip clock’s CSR[2:0]

[8] Unused
[7:5] USART: FPCR’s PSC bits
[4] USART: UCR’s CLKS bit - off-chip (1)/on-chip (0)
[3] USART: UCR’s ST bits - asynch(0)/synch(1) mode

[2:0] Unused
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Figure 2: Boot Up Flow Chart
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address 0x000004

Start program 
execution

Get num_blocks
(2b)

Get num_chunks
(2b)

Get address (3b)

Get data (16b)

Chunks done?

Blocks done?

Yes

Yes

No

No

Store program 
data at address 

Wait for interrupt

Do non-default 
setup (Table 10)

Store MSR & IPC

Get num_blocks
(2b)

Get num_chunks
(2b)

Get address (3b)

Get data (2b)

Chunks done?

Blocks done?

Yes

Yes

No

No

Store program 
data at address 

Jump to address 
0x000004

Start program 
execution

Store MSR & IPC
;; Store MSR & IPC to 
;; address 0x05fffc
cadr r2, IPC
tmsri EXT
sto r2, 0(AR04)
lo r2, 0(AR03)
sto r2, 0(AR04)
tmsri EXT
ret

extint1 extint2

extint0

TI Mode

USART interrupt
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Chapter 9. Memory
The WIMS Microcontroller supports a 24-bit fully unified address space that is allocated according to mapping in
Table 11. 

SRAM
The on-chip SRAM is subdivided into single-port memory banks that can be accessed (loaded from or stored to) in a
single cycle. Due to the fact that each of the SRAMs have only one port, the programmer should attempt to restrict
data memory accesses and program memory accesses to different RAMs so as to prevent unnecessary pipeline stall-
ing and reduced performance. For example, if a store instruction in the execute stage of the pipeline attempts to store
to address 0x001000 while the program is attempting to fetch the next instruction from address 0x00500 then the
fetch will be stalled while the store proceeds. This is because they are both attempting to access the same memory
bank (BANK_0), and the current executing instruction must be given preference over the fetch. Both the store and the
fetch could have proceeded simultaneously had the programmer stored to a different memory bank.

Boot ROM
The Boot ROM is split into two parts, as shown in Table 11. This was done to avoid wasting BANK_0’s available
address space. When the chip is reset, the PC is set to 0x000000 and it reads from BOOTROM1 (which contains only
a jmp 0xff0200 instruction) which then jumps to BOOTROM2 and the remainder of the Boot ROM code is executed.
By splitting the Boot ROM in such a manner, only 4 bytes of RAM BANK_0 is wasted (unmapped) instead of hun-
dreds of bytes if we had put the entire Boot ROM starting at 0x000000. It was deemed most important that each of the
RAM banks be aligned on 8KB address boundaries. 

External Memory
The BANK_EXT address range maps to the external memory pins which can be used to connect to an external mem-
ory bank. The EXT bit in the MSR must be set in order to use the external memory bus, otherwise load or store
accesses to the external memory address range will throw an invalid memory exception. If the extmemsel input pad is
not set, then the 16 external memory write data output pins will be connected to the general purpose digital output
register that is memory-mapped in Table 12. The general purpose output port (GPOP) can be read or written with any
load or store operation to the appropriate address. As a test feature, if extmemtestsel is set, the external memory write
data will be the execute stage write data and the external memory address and external memory write enable will be a
portion of the current PC value.

Loop Cache
The Loop Cache is not really a typical cache, but a very small bank of memory that consumes much less power than
an access to a regular memory bank. To produce the most power efficient code, the compiler will profile code and put
the most commonly executed instructions or most commonly accessed data in this area of memory. An access to the
loop cache consumes slightly less than 50% of the energy that an access to the SRAM consumes.

Memory Mapped Registers and Peripherals
The remainder of the Table 11 is fairly self-explanatory, with most of the mappings corresponding to the various
memory mapped address registers or control registers. The lower 2-bytes of the 3-byte registers are even aligned so
that word load/stores can be used to read/write these registers without generating an alignment exception. This
resulted in several of the unused odd addresses being mapped to ‘00’ as shown. Stores to these addresses have no
effect and loads read the value ‘00’. Load/stores to the unused portions of memory denoted in Table 11 will result in
an invalid memory exception as indicated. The mappings for the microcontroller’s peripherals are detailed in Table
12.
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The registers that have strike-through were not implemented in Gen-2 and are invalid memory locations.

Table 11: Core Memory Map
Address Range Mnemonic DescriptionStart End

0x000000 0x000003 BOOTROM1 Boot ROM (jump to BOOTROM2)
0x000004 0x001fff BANK_0 7.996KB memory bank 0
0x002000 0x003fff BANK_1 8KB memory bank 1
0x004000 0x005fff BANK_2 8KB memory bank 2
0x006000 0x007fff BANK_3 8KB memory bank 3
0x008000 0x0081ff LOOP 512 Byte Loop Cache - DSP LUT
0x008200 0x0083f3 DSP See Chapter 14
0x0083f4 0x03ffff Unused: Generates invalid memory exception
0x040000 0x05ffff BANK_EXT 128KB external memory
0x060000 0xfeffff Unused: Generates invalid memory exception
0xff0000 0xff0001 MSR[15:0] Machine State Register
0xff0002 0xff0003 IMSR[15:0] Interrupt Machine State Register
0xff0004 0xff0005 IVT[15:0] Interrupt Vector Table

0xff0006 BPM[1:0] Break Point Mode (See Table 9)
0xff0007 0xff0009 BPR[23:0] Breakpoint Register
0xff000a 0xff000b SDAR[15:0] Shift/Divide Auxiliary Register
0xff000c 0xff000d GPOP[15:0] General Purpose Output Port

0xff000e DTCID[4:0] DMA Target Chunk ID #
0xff000f DNC[4:0] DMA Number of Chunks
0xff0010 DBR[3:0] DMA Base Register
0xff0011 DINC[0] DMA Increment/Decrement Index
0xff0012 IPR0[4:0] Interrupt Priority Register 0 (ExtInt0)
0xff0013 IPR1[4:0] Interrupt Priority Register 1 (ExtInt1)
0xff0014 IPR2[4:0] Interrupt Priority Register 2 (ExtInt2)
0xff0015 IPR3[3:0] Interrupt Priority Register 3 (Timer0)
0xff0016 IPR4[3:0] Interrupt Priority Register 4 (Timer1)
0xff0017 IPR5[3:0] Interrupt Priority Register 5 (Timer2)
0xff0018 IPR6[3:0] Interrupt Priority Register 6 (SPI0)
0xff0019 IPR7[3:0] Interrupt Priority Register 7 (SPI1)
0xff001a IPR8[3:0] Interrupt Priority Register 8 (SPI2)
0xff001b IPR9[3:0] Interrupt Priority Register 9 (USART)
0xff001c IPR10[3:0] Interrupt Priority Register 10 (TI)
0xff001d Unused: Reads 00

0xff001e 0xff007f Unused: Generates invalid memory exception
0xff0080 0xff009d PLRs Pipeline Registers memory map (See Table 8)
0xff009e 0xff00ff Unused: Generates invalid memory exception
0xff0100 0xff01ff PER Peripherals’ memory map (See Table 12)
0xff0200 0xff0fff BOOTROM2 Boot ROM
0xff1000 0xffffff Unused: Generates invalid memory exception
115



Table 12: Peripheral Memory Map
Address Range Mnemonic DescriptionStart End

0xff0100 0xff0101 TM0CR[15:0] Timer0 Control Register
0xff0102 0xff0103 TM0I0[15:0] Timer0 Image Register Zero
0xff0104 0xff0105 TM0I1[15:0] Timer0 Image Register One
0xff0106 0xff0107 TM0C0[15:0] Timer0 Counting Register Zero
0xff0108 0xff0109 TM0C1[15:0] Timer0 Counting Register One
0xff010a 0xff010b TM0PS[7:0], TM0SR[7:0] Timer0 Prescale, Status (Read) Register
0xff010c 0xff010d TM1CR[15:0] Timer1 Control Register
0xff010e 0xff010f TM1I0[15:0] Timer1 Image Register Zero
0xff0110 0xff0111 TM1I1[15:0] Timer1 Image Register One
0xff0112 0xff0113 TM1C0[15:0] Timer1 Counting Register Zero
0xff0114 0xff0115 TM1C1[15:0] Timer1 Counting Register One
0xff0116 0xff0117 TM1PS[7:0], TM1SR[7:0] Timer1 Prescale, Status (Read) Register
0xff0118 0xff0119 TM2CR[15:0] Timer2 Control Register
0xff011a 0xff011b TM2I0[15:0] Timer2 Image Register Zero
0xff011c 0xff011d TM2I1[15:0] Timer2 Image Register One
0xff011e 0xff011f TM2C0[15:0] Timer2 Counting Register Zero
0xff0120 0xff0121 TM2C1[15:0] Timer2 Counting Register One
0xff0122 0xff0123 TM2PS[7:0], TM2SR[7:0] Timer2 Prescale, Status (Read) Register
0xff0124 0xff0125 SPI0CR[15:0] SPI0 Control Register
0xff0126 0xff0129 SPI0DO[31:0] SPI0 Dataout Register
0xff012a 0xff012d SPI0DI[31:0] SPI0 Datain Register
0xff012e 0xff012f SPI1CR[15:0] SPI1 Control Register
0xff0130 0xff0133 SPI1DO[31:0] SPI1 Dataout Register
0xff0134 0xff0137 SPI1DI[31:0] SPI1 Datain Register
0xff0138 0xff0139 SPI2CR[15:0] SPI2 Control Register
0xff013a 0xff013d SPI2DO[31:0] SPI2 Dataout Register
0xff013e 0xff0141 SPI2DI[31:0] SPI2 Datain Register

0xff0142 SCR[7:0] USART Synchronous Character Register
0xff0143 UCR[7:0] USART Control Register
0xff0144 TSR[7:0] USART Transmit Status Register
0xff0145 RSR[7:0] USART Receive Status Register
0xff0146 RDFR[7:0] USART Rx Data (Read)/Tx FIFO Register (Write)
0xff0147 TDFR[7:0] USART Tx Data (Write)/Rx FIFO Register (Read)
0xff0148 FPCR[7:0] USART FIFO & Prescale Control Register
0xff0149 TCR[7:0] USART Timer Control Register
0xff014a TSCR[7:0] TI Synchronous Character Register
0xff014b TUCR[7:0] TI Control Register
0xff014c TTSR[7:0] TI Transmit Status Register
0xff014d TRSR[7:0] TI Receive Status Register
0xff014e TRDFR[7:0] TI Rx Data (Read)/Tx FIFO Register (Write)
0xff014f TTDFR[7:0] TI Tx Data (Write)/Rx FIFO Register (Read)
0xff0150 TFPCR[7:0] TI FIFO & Prescale Control Register
0xff0151 TTCR[7:0] TI Timer Control Register

0xff0152 0xff0153 CSR[15:0] Clock Select Register
0xff0154 0xff0155 CUC[15:0] Clock User Control
0xff0156 0xff0157 CDC[15:0] Clock Debug Control
0xff0158 0xff01ff Unused: Generates invalid memory exception
116



Chapter 10. Universal Synchronous/Asynchronous Receiver-Transmitter

Introduction
The WIMS Universal Synchronous Asynchronous Receiver-Transmitter (USART) is a full-duplex serial channel
with double-buffered receiver and transmitter modules. The design is functionally modeled after the Motorola
68HC901 microcontroller USART peripheral, a highly-programmable full-featured USART. There are separate
transmit (Tx) and receive (Rx) clocks, interrupt channels, data bytes, and status registers. There exists a single inter-
rupt channel for each Rx/Tx section, simultaneously indicating both normal and error event conditions. The USART
can also be placed in a 16-bit word mode, where the Rx/Tx buffers expand to allow 16-bit loads and stores of serial
data.

Character Protocols
The USART supports both asynchronous and synchronous character formats. These formats are selected indepen-
dently of the divide-by-one and divide-by-16 clock input modes to each Tx/Rx block, although they are based upon
the RS-232 asynchronous protocol and the synchronous character protocol. This feature allows one to clock databits
into the USART synchronously while using RS-232 start and stop bits to frame transmissions. In such a mode, all the
asynchronous format rules apply.

When divide-by-one clock mode is selected, synchronization must be accomplished externally. The Receiver samples
data on the rising edge of the (receiver) clock. In divide-by-16 mode, the Rx input clock frequency is 16 times greater
than the data clock cycle, allowing mid-databit sampling after eight Rx clock edges. This increases transient noise
rejection.

Asynchronous Format
The asynchronous character format follows the RS-232 protocol in most respects, providing software controllable
character length, one to two stop bits, and multiple parity options. Character lengths of 5, 6, 7, and 8-bits are select-
able by the programmer through the control register. Stop bit lengths of one or two bits help ensure compatibility with
other UARTs and protocols. Additionally, error checking in the form of even or odd parity can be enabled if desired.

While in the asynchronous mode, start bit detection is always enabled. This means that an inactive Rx/Tx line should
be held high, and that no new data will be shifted in until a one-to-zero start bit transition is detected. As of WIMS
tapeout 1, there is no false start bit detection. Later revisions, however, validate a start bit only if it remains zero for
the first half of the shift cycle, or the first 8 receiver clock edges.

Synchronous Format (TODO: Expand on this more)
Once the synchronous character format has been selected, received serial data is constantly compared against a pre-
loaded 8-bit synchronous character register (SCR). Synchronization occurs once the incoming data matches the SCR.
The SCR compares against the full 8-bits, but smaller character lengths will match if the SCR is loaded with the
unused significant bits zeroed out. Upon synchronization, data is clocked into the receiver as character-sized binary
units. All incoming characters are valid data unless the user enables SCR stripping, in which case incoming charac-
ters matching the SCR are removed from the data stream. During an underrun condition, the transmitter continuously
sends the SCR until data becomes available.

All bits of the SCR are read and writable and reset low. The SCR should only be written after the character length is
selected, and any unnecessary significant bits should be cleared beforehand. In contrast, the parity enable can be tog-
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SCR[7:0]

Figure 3: SCR - Synchronous Character Register
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gled at any time, as SCR parity is dynamically calculated. Once parity has been enabled, however, the total character
length increases by one bit, making a synchronous word equal to the character length plus one.

The USART Control Register (UCR)
The UCR provides the central control signals for both the Tx and Rx units. Both the clock division mode, and the
clock source can be selected by writing this register. Character format, length, and error correction are also assigned
through this register. All bits of the UCR are read and writable and reset low.

CLKD - Clock Division Mode (R/W)
• 1 = Data shifted at 1/16th the frequency of the Rx/Tx clock input
• 0 = Data shifted at the frequency of the Rx/Tx clock input

CL1:0 - Character Length (R/W)
This bit pair specifies the number of bits to be added the minimum character length of five.
• 00, 01, 10, 11 = 5, 6, 7, 8-bit words

ST1:0 - Start/Stop Bit Selection (R/W)
ST0 selects asynchronous format when set, synchronous mode when cleared
ST1 selects two stop bits when set, but only when in asynchronous mode

PE - Parity Bit Enable (R/W)
When enabled: Tx inserts/Rx expects an additional “parity bit” after the MSB of a data word.
• 1 = Rx checks parity bit for all received characters, Tx calculates and inserts parity bit for transmission
• 0 = No parity bit insertion or parity checking

E/O - Even or Odd Parity (R/W)
When parity is enabled, setting this bit implies even parity for all data words.
• 1 = Even Parity - all words should have an even number of high bits, including the parity bit
• 0 = Odd Parity - all words should have an odd number of high bits, including the parity bit

CLKS - Clock Select
Selects which clock signal determines the baud rate or synchronous clock edges
• 1 = The off-chip input clock
• 0 = The on-chip generated clock signal

The USART Data Registers (UDR[15:0] = RDFR[7:0] + TDFR[7:0])
These registers provide read access to the data word in the receiver buffer or data word write access to the transmit
buffer. The USART allows the user to define the desired R/W size as either 8- or 16-bits; therefore two bytes of Rx/
Tx data are made to be addressable individually, or simultaneously.

Each data byte register is actually the union of two separate registers, one for writing to the transmitter, the other for
reading from the receiver. The high data byte is referred to as the Receiver Data and Transmitter FIFO Register

Table 13: Format Control - Start/Stop Bit Selection
ST1 ST0 Start Bits Stop Bits Format

0 0 0 0 Synchronous
0 1 1 1 Asynchronous
1 0 0 0 Synchronous
1 1 1 2 Asynchronous
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CLKSE/OPEST[1:0]CL[1:0]CLKD

Figure 4: UCR - USART Control Register 
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(RDFR), where one can read the contents of the receive data buffer or write to the transmitter FIFO. The low data
byte register is referred to as the Transmitter Data and Receiver FIFO Register (TDFR), where one can read the con-
tents of the receive FIFO register or write to the transmitter data buffer register. In the previous explanations, it is
understood that a Rx/Tx data buffer register acts as the primary link to the Rx/Tx shift register, and the FIFO registers
provide an additional byte for either byte-FIFO or 8-to-16-bit word expansion purposes. Both registers reset low.

The RDFR byte register comprises the most significant (address/databus) byte of the two data registers. In 16-bit
word mode, this is significant because the most significant byte is the last byte transmitted, but the first byte received.
This aligns bytes transmitted according to the LSB to MSB transmission convention most USARTs assume. In single
byte mode, which is the mode most USARTs operate in, only RDFR is utilized for buffering incoming data, and only
TDFR can be successfully written to for data transmission. All bits of the RDFR and TDFR reset low.

RD[7:0], RF[7:0] -- Receiver Data (first byte received, last byte received) (R/W)
• 1 = Data bit set
• 0 = Data bit cleared

TF[7:0], TD[7:0] -- Transmit Data (last byte sent, first byte sent) (R/W)
• 1 = Data bit set
• 0 = Data bit cleared

Clock Sources
The USART has two primary clock domains. The host system supplies a clock for control and data interfacing pur-
poses, which is referred to as the control clock domain (sys_clk). The second clock domain determines the serial com-
munication rates of the receiver (Rx) and transmission (Tx) modules, the frequency of which is commonly known as
the baud rate, measured in bits per second (bps). The baud rate is in turn determined by both the clock inputs to the
Rx/Tx modules and the clock multiplier setting for the modules (1x or 16x). The Rx/Tx clock source itself can be an
external clock synchronization pin or internally generated from the system clock via the USARTs prescaler and pro-
grammable 8-bit timer.

To program the transmission rates one must sequentially choose the transmission format, Rx/Tx clock division mode,
and finally program both the prescale (FPCR) and timer (TCR) control registers to appropriate division settings.
Instructions for determining an appropriate clock setting can be found in the following two sections.

FIFO and Prescaler Control Register (FPCR)
The FIFO and Prescale Control Register, FPCR, allows the user to select the data word size for either transmission,
reception, or both. It also provides additional FIFO status signals, not provided by the Rx/Tx status registers, when
the byte-to-word expansion have been enabled. Finally, the lower nibble controls the USART clock generation cir-
cuitry. All bits reset low except RXE and all are read and writable except for RXE and TXF. Resets to 0x80.

RXE -- Receiver word-expansion FIFO Empty (R)

0123456789101112131415

RD[7:0] / TF[7:0] TD[7:0] / RF[7:0]

Figure 5: RDFR and TDFR
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RXE TXF RFEN TFEN TEN PSC[2:0]

Figure 6: FPCR - FIFO and Prescale Control Register
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• 1 = Rx FIFO byte empty
• 0 = Rx FIFO byte not empty (TODO: does RXE reset low? if so, how)

TXF -- Transmitter word-expansion FIFO Full (R)
• 1 = Tx FIFO byte full
• 0 = Tx FIFO byte not full

RFEN -- Receiver word-expansion FIFO Enable (R/W)
When the user enables the receive FIFO, the primary receive data buffer (RDFR) overflows into the TDFR register
when a second data byte has been received. Only once both the Rx data buffer and the RX FIFO are full does the Rx
service request cause an interrupt. If polling is necessary, the software must check FPCR[7] (RXE) instead of the
RSR[7] (BF) bit in order to determine whether a 16-bit word has been assembled.
• 1 = Rx FIFO enabled; RFE used as “buffer full” interrupt source
• 0 = Rx FIFO disabled

TFEN -- Transmitter word-expansion FIFO Enable (R/W)
When the user enables the transmit FIFO, bytes written to the RDFR shift into the transmit buffer (TDFR) before they
are written to the serial transmit shift register. Therefore overwriting TDFR before the Tx Buffer Empty flag asserts
not only jeopardizes the original TDFR data, but the RDFR FIFO data byte as well. Because of this arrangement, the
Transmit Buffer Empty flag source does not change from the TDFR in either byte or 16-bit word mode.
• 1 = Tx FIFO enabled
• 0 = Tx FIFO disabled

TEN -- Clock generation timer enable (R/W)
Setting this bit enables a programmable 8-bit timer that generates the USART internal Rx/Tx clock source. The 8-bit
prescaler output feeds the timer’s input.
• 1 = enable programmable timer
• 0 = disable timer

PSC[2:0] -- Low-power 8-bit prescaler control (R/W)
These three bits can set the prescaler to simply pass the clock, or divide the incoming system clock by 2 to the N
power. N is equal to the PSC setting plus two, not including the case where all bits are cleared. Clearing the prescale
bits to zero disables the prescaler and passes the system clock directly to the 8-bit timer.

Timer Control Register (TCR)
The Timer Control Register, TCR, holds the count length settings. All bits are read and writable and reset low. To
enable the clock generation timer one must set the TEN bit in the FIFO and Prescale Control Register, FPCR[3]. The
count length itself determines the period of the USART internal clock, which always has a 50% duty cycle. In order
to determine the final Rx/Tx input clock frequency, divide the prescale clock output by twice the sum of the count
length plus one. All bits reset low. E.G. The prescaler outputs a 10 MHz clock and the TCR is 0x0f, so the Rx/Tx
clock input is 312.5 kHz

Data[7:0] -- Timer Setting Data (R/W)
See Table 14 equations.
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Data[7:0]

Figure 7: TCR - Timer Control Register 
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The equations for calculating the baud rate can be found in Table 14. One must also divide the expression by the cur-
rently selected clock mode multiplier (UCR[7]), 1x or 16x. Additionally, the Prescaler and Timer expressions should
be multiplied together if both the prescaler and TCR are enabled. However, the factor of 16, if enabled, does get mul-
tiplied into the new clock frequency twice.

Table 15 below illustrates the baud rate ranges achievable for each prescale setting versus sample system clock fre-
quencies, the exact baud depending on the USART timer setting. Note that the baud rate must be below the system
clock frequency divided by four, so that maximum frequencies in the first row are always (sys_clk / 4). 

Receiver (Rx Module)
Data received on the serial input line (Rx) is essentially shifted into an internal 8-bit shift register clocked at a fre-
quency (baud rate) equal to the Rx clock multiplied by the division mode (UCR[7]). Once the programmed bit length
is received, the character will be transferred to the receive data buffer if the last character stored to the receive buffer
has been read (buffer not full). Transferring a character to the receive buffer sets the buffer full bit of the receiver sta-
tus register, and will produce a interrupt service request to the processor if interrupts are enabled.

Reading the receive buffer clears the buffer full bit, satisfies the buffer full condition, and allows new characters to be
transferred to the receive buffer. To read the receive buffer, one accesses the RDFR register. When the Rx word-
expansion FIFO has been enabled, one accesses the Rx FIFO register by reading the TDFR If the word-expansion
FIFOs are enabled, one can still access the only the RDFR to satisfy the buffer full condition, but in this case it is not
always recommended. This is because the buffer full condition implies that both the receive buffer and the receive
FIFO register (TDFR) are full, and so the TDFR contains the oldest (first) character. Therefore it is more common to
either access the RDFR and TDFR together as a word, or to access the TDFR (and optionally the RDFR afterwards,)
so as to mimic a two-deep byte-width FIFO. It is important to understand that setting the RSR buffer full bit only pro-
duces a so-called buffer full condition when the Rx FIFO is not enabled, because a buffer full condition implies that
both the receive buffer and receive FIFO register have been filled. When interrupts are enabled, only a buffer full
condition or a (single character) error condition can trigger the Rx service request interrupt.

Table 14: Baud Rate Equations
Prescaler Only Timer Only

Table 15: Allowable Clock Generation Baud Rate Ranges for all Clock Modes

PSC Sys Clk
Divider

Allowable Baud Rate Ranges in Kbps (MAX/MIN) vs. System Clock Speeds*

1MHz 10MHz 50MHz 100MHz 150MHz 200MHz

0x0 1 0.25e3 0.122 2.5e3 1.221 12.5e3 6.104 25e3 12.207 37.5e3 18.311 50e3 24.414

0x1 8 125 0.015 1.25e3 0.153 6.25e3 0.763 12.5e3 1.526 18.75e3 2.289 25e3 3.052

0x2 16 62.5 0.008 625 0.076 3125 0.381 6250 0.763 9375 1.144 12500 1.526

0x3 32 31.25 0.004 312.5 0.038 1562.5 0.191 3125 0.381 4687.5 0.572 6250 0.763

0x4 64 15.625 0.002 156.25 0.019 781.25 0.095 1562.5 0.191 2343.7 0.286 3125 0.381

0x5 128 7.813 0.001 78.125 0.010 390.63 0.048 781.25 0.095 1171.9 0.143 1562.5 0.191

0x6 256 3.906 0 39.063 0.005 195.31 0.024 390.63 0.048 585.94 0.072 781.25 0.095

0x7 512 1.953 0 19.531 0.002 97.656 0.0123 195.31 0.036 292.97 0.072 390.63 0.048

*Exact BPS depends upon the 8-bit timer setting and the clock mode factor

fclk( ) 8 PSC[2:0]⋅( )⁄ fclk( ) 2 TCR[7:0] 1+( )⋅( )⁄
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Whenever a character is transferred to the receive buffer, status information is stored in the RSR. The RSR is not
updated again until data in the receive buffer has been read, with two exceptions. In asynchronous format the real-
time character in progress (CIP) bit can change at any system clock edge. Secondly, when the Rx FIFO register is
enabled (FPCR[5]), the last character of two to be transferred to the RDFR does not require the current RDFR data to
be read as long as the Rx FIFO register can accept the receive buffer data (Rx FIFO empty condition), and the current
RSR does not indicate an error condition was incurred during the first character’s reception. Finally, note that when
the buffer full condition exists, a programmer should always read the RSR before reading either of the data registers.
Following this rule ensures that the RSR flags will always correspond to the data being read; otherwise there is the
possibility that the RSR flags could change in between reading the data register(s) and subsequently reading the RSR.

The Receiver Status Register (RSR)
As described above, the RSR contains the receiver enable bit, receive buffer full flag, synchronous strip enable, and a
number of status bits indicating the state of the Rx module. With the exception of the M/CIP bit, and the case where
the Rx FIFO has been enabled, the RSR status bits will not change unless the new data word has been read. All bits
reset low and see below for read and writability.

BF -- Buffer Full (R)
Receiver character has been assembled and subsequently loaded into the receive buffer. The receive buffer register
can be read by reading the RDFR data register. Accessing this register clears BF.
• 1 = Character transferred to receive buffer register
• 0 = RDFR has been read

OE -- Overrun Error (R)
Overrun errors occur when the internal shifter has completed shifting an incoming character, but the receive buffer is
full. During the occurrence of an OE, the receive buffer and RSR are not overwritten, so as to provide linear data
integrity. However, the OE bit will be set once the buffer full condition has been satisfied (reading RDFR). The OE
bit is cleared and the error is acknowledged by reading the RSR. New data words are not assembled while the OE bit
is set.
• 1 = Receive buffer full and incoming character received
• 0 = RSR has been read

PE -- Parity Error (R)
Parity is enabled and the incoming character’s parity is incorrect.
• 1 = Parity error detected on character transferred to receive buffer
• 0 = No parity error detected on incoming character

FE -- Frame Error (R)
Frame errors occur in the asynchronous format when a non-zero data character does not have the correct stop bit
alignment.
• 1 = Frame error detected on character transferred to receive buffer
• 0 = No frame error detected on incoming character

F/S or B -- Found / Search condition (synchronous), Break Detected (asynchronous) (FS is R/W, B is R)
The Found / Search conditions are used in the synchronous format, and correspond to whether the initial synchroniza-
tion character has been found. When this bit is cleared, the receiver enters search mode, and does not return to a high
state until an incoming character matches the SCR. Once synchronized, the bit remains high until manually cleared. 
• 1 = An incoming character has matched the SCR (enables the character length counter)
• 0 = Search mode, shifter contents dynamically compared to SCR

01234567
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Figure 8: RSR - Receiver Status Register 
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The Break bit is used to indicate an asynchronous format break condition. A zero-character with no stop-bits is suffi-
cient to trigger a break condition, which will continue until a non-zero data-bit is received.
• 1 = A break has been received and is still waiting service.
• 0 = No break has been received or break has been received and read already.

M or CIP -- Match (sync), Character in Progress (async) (R)
The Match bit indicates a synchronous character has been received while in the synchronous format.
• 1 = Incoming character transferred to receive buffer matched the SCR
• 0 = Incoming character transferred to receive buffer did not match the SCR

The CIP bit indicates that a character is currently being assembled (shifted into Rx) while in asynchronous format.
• 1 = Start bit has been detected, character length counter active
• 0 = Last character’s stop bit(s) have been received, character length counter cleared

SS -- Synchronous Character Strip Enable (synchronous format only) (R/W)
• 1 = Incoming characters matching the SCR will not be loaded to the receive buffer (synchronous format)
• 0 = Incoming characters matching the SCR will be loaded to the receive buffer

RE -- Receiver Enable (R/W)
Do not set this bit until the receiver clock source has been selected and programmed if necessary.
• 1 = Receiver operation is enabled
• 0 = Receiver operations are disabled

Receiver Conditions of Note
According to the above descriptions, the user will find that there are certain circumstances relating to the overrun and
break conditions that merit further specification. The two examples below can occur, and are resolved similarly to the
Motorola MC689HC01:

1. A break can be received during a receive buffer full condition, but does not induce an overrun condition
when the RDFR is next accessed. Instead, only the break detect bit B is set.

2. A new character is received during a buffer full condition, and subsequently a break is also received. As the
break was received before the receive buffer was read, but cannot set the B bit until the buffer full condition
is satisfied, both the OE and B flags will be set once the RDFR has next been accessed.

Transmitter (Tx Module)
Writing the TDFR data register loads the transmission buffer register. The data character in the TDFR will be trans-
ferred to the internal Tx shift register once the last character has finished transmission, and the END flag of the Trans-
mitter Status Register (TSR) has been asserted. This transfer will produce a buffer empty condition if either the Tx
FIFO register has not been enabled, or the Tx FIFO register cannot load the Tx buffer register because it is empty. If
the transmitter completes transmission of the character currently in the shifter before a new character has been written
to the transmit buffer register, an underrun error will occur. In the synchronous format this necessitates that the syn-
chronous character be continuously transmitted until the transmit buffer has been written. The asynchronous protocol
sends a mark (line held high) until the transmit buffer has been written.

When the transmitter has been disabled and a character is being transmitted, the character will continue until assem-
bly is complete. However, while one can load the transmit buffer while the transmitter is disabled, no characters will
begin transmission while the TSR enable bit is cleared. If no characters are in the process of being transmitted, dis-
abling the module will cause operations to cease on the next internal Tx clock edge.

In the asynchronous mode, the transmitter can be programmed to send a break by writing to the Tx status and control
register. Like a normal data character, a break will not be sent until any characters currently being transmitted finish.
Unlike the convoluted implementation of the Motorola MC689HC01 USART, the timing of the break transmission is
fully internally controlled and requires no interrupt services. The transmitter also more strictly adheres to industry
(RS-232) definitions for break timing, meaning that a break minimally consists of 2N + 3 zero data bits, where N is
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the programmed character length. Additionally improved is the fact that the break will complete transmission in its
entirety even if the transmitter is disabled during transmission, preventing serial miscommunications. Resets to 0x90.

BE -- Buffer Empty (R)
Transmit character has been assembled and subsequently loaded into the receive buffer TODO: shouldn’t this read
‘has been loaded into the TX shifter?’. The transmit buffer register can be directly loaded by writing the TDFR data
register, or indirectly loaded by writing the RDFR register while the Tx FIFO is enabled. In the latter case, the TDFR
will be loaded with the RDFR character once the transmit buffer’s (TDFR) contents have been transferred to the Tx
shifter for transmission.
• 1 = Character in transmit buffer transferred to the internal shift register (TODO: default after reset?)
• 0 = Transmit buffer (TDFR) has been reloaded

UE -- Underrun Error (R)
Underrun errors occur when the internal Tx shifter has transmitted an outgoing character but the transmit buffer has
not yet been loaded with a new character. 
• 1 = Transmit buffer empty and outgoing character has completed transmission
• 0 = TSR has been read (will remain high even if TSR disabled, but not read) (TODO: default after reset?)

Res -- Reserved, produces a zero when read (TODO: ‘or written’?)

END -- End of Transmission (R)
This flag asserts whenever a character transmission has been completed, but a new character has not yet been trans-
ferred to the Tx shifter from the transmit buffer so as to continue transmission. Unlike the underrun condition, this is
not an error, as this bit will assert EOT even after the transmitter was disabled while a character was undergoing
transmission. If the transmit buffer is full and a character was just transmitted, END is set on the next positive system
clock edge. The END flag is cleared on the system clock cycle following the beginning of the next character trans-
mission. 
• 1 = The transmitter has completed sending the last character, but has not yet begun a new transmission (TODO: 

default after reset)
• 0 = Character currently being shifted out

B -- Send(ing) Break (Asynchronous format only) (R/W)
When B is set, BE will not be set nor a new character begin transmission until the break condition has ended. A stan-
dard break consists of 2N + 3 zero bits, where N equals the character length (5 + UCR[6:5]). If written while the
transmitter is disabled, the break character will be the first character transmitted if/when the transmitter is later
enabled.
• 1 = Break Condition, break character is next in transmission priority
• 0 = No break condition, normal transmission enabled

H,L -- Tx High/Low Output State (R/W)
The High and Low settings configure the transmitter serial output line (TX) while the transmitter is in a disabled
state. The bits can be set at any time, but new settings will take effect only when the transmitter has been disabled and
not currently transmitting. Loopback mode internally connects the Tx output to the Rx input, and will maintain the
connection once the transmitter is re-enabled. The internal loopback configuration is useful for testing the USART.

01234567
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Figure 9: TSR - Transmission Status Register 
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TE -- Transmitter Enable (R/W)
Once the transmitter is enabled, the output will continue to be driven by the H/L bits until transmission begins.
• 1 = Transmit unit enabled (TODO: default after reset?)
• 0 = Transmit unit disabled (TODO: default after reset?)

USART Interrupt Channels
The USART has two interrupt channels, the minimal number for bypassing the need for software polling. The asser-
tion of a USART interrupt line indicates that either the receiver or transmitter requires service. In the case of the
receiver, a buffer full condition and/or an error condition will trigger an interrupt service request, asserting the first of
the two interrupt lines. The transmitter triggers an interrupt service request if either the BE or UE flag is set while the
transmitter is enabled. Unlike the MC689HC01, the TSR END bit does not (currently) trigger an interrupt, in part
because interrupts are only generated when the Rx or Tx units are enabled. The MC689HC01 utilizes the END bit
only while the transmitter is disabled, as opposed to indicating transmission status while enabled as well. For some
host systems generating an interrupt while a unit is disabled could cause problems, especially if there is not a high
level of selective interrupt control in place.

Table 16: Transmitter Output Settings
H L Format
0 0 High Z
0 1 Low
1 0 High
1 1 Loopback
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Chapter 11. Serial Peripheral Interface (SPI)
The SPI block performs the communication protocols for the Cochlear, Neural, and Environmental Testbeds. Fig. 10
shows the different parts of the control register which are described here. 

BDV -- Baud Division Value (R/W)
The BDV defines how many microcontroller cycles is equal to one cycle on the SPI DCLK. Assuming a 40MHz
microcontroller clock, it is capable of transmitting between 10MHz and 3.2KHz. Table 17 shows the equation for the
DCLK rate.

AWT -- Acknowledge Wait Time (R/W)
The AWT defines the number of SPI DCLK cycles to wait for an acknowledge (NACK) from the slave device before
generating an SPI NACK interrupt. 0x0 implies that you are ignoring the NACK signal and no interrupt will be gen-
erated. This is useful when communicating with the off-chip ADC. 0x1 implies wait one cycle and 0xf implies wait
16 cycles, and if the NACK signal has not arrived by the end of the specified acknowledge wait time then an SPI
NACK interrupt will be generated.

INT -- Interrupt Enable (R/W)
Controls if the SPI unit will send an interrupt to the core when a transmission is complete.
• 1 = Interrupt will be sent
• 0 = Interrupt will not be sent

NB -- Number of Bytes (R/W)
NB defines how many bytes are sent in one transfer (how many bytes of the DOUT register are read and how many
bytes are sent into the DIN register). In Cochlear mode, it selects between 2 or 4 bytes. In Environmental mode it
chooses between 3 or 4 bytes. 
• 1 = Higher of two options
• 0 = Lower of two options

C/E -- Cochlear / Environmental (R/W)
The selection between Cochlear and Environmental protocols is done by the C/E bit. High implies Environmental
mode. 
• 1 = Environmental mode - 3 or 4 bytes
• 0 = Cochlear mode - 2 or 4 bytes

ON -- SPI On (R/W)
The SPI block is activated (a transmission started) by setting the ON bit. This bit is automatically reset by the hard-
ware when the proper number of bytes is sent or when an interrupt occurs.
• 1 = Transmission started, in progress
• 0 = SPI off

Table 17: SPI Clock Rates
DCLK

0123456789101112131415

C/E ONBDV[7:0] AWT[3:0] NBINT

Figure 10: SPICR - SPI Control Register
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When writing the SPICR, it is important to note that you cannot change the C/E bit and the ON bit with the same
write. There is currently no hardware to protect against this. The reason this restriction exists is due to the nature of
the two different specifications this block uses. The differences in signal polarity require that the hardware has one
cycle to set itself up after the C/E bit has been changed before it can start a transmission. Otherwise the device listen-
ing to the SPI block may loose the first transmission. All bits in the SPICR reset low.

Data should be written to the DOUT register before a transmission is started and read from the DIN register, if neces-
sary, after transmission is completed. The DIN register is read only. All other SPI registers are read/write. In the case
of less than four byte transfers, DOUT is sent starting with bit[31]. DIN is received into the least significant bit so the
higher order bits will be unknown. The DIN and DOUT registers are shown in Fig. 11 and Fig. 12. 

Table 18 shows the signal names used in this document, the cochlear interface, environmental interface, and the
AD7705 interface. Each row corresponds to how to hook up one device to the other.

Fig. 13-15 show signal timing diagrams from simulations for all three types of connections. These are taken from
Verilog simulations.

Table 18: SPI Interface Signal Names
SPI Cochlear Environmental ADC

DCLK DCLK CLK SCLK
DIN DOUT N/A DOUT

DOUT DIN Data DIN
NIOE NIOE STB CS_BAR
NACK NACK DV N/A

07815162331

DIN[15:8]

Figure 11: DIN - Data In Register

24

DIN[23:16]DIN[31:24] DIN[7:0]

Figure 12: DOUT - Data Out Register

07815162331

DOUT[15:8]

24

DOUT[23:16]DOUT[31:24] DOUT[7:0]

Figure 13: Cochlear Mode Transmission
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Figure 14: Environmental Mode Transmission

Figure 15: Environmental Mode with AWT = 0x0 (ADC Mode)
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Chapter 12. Multifunction Programmable Timer

Introduction
The Multifunction Timer (MT) contains a programmable pair of two counters/timers, each of which can be controlled
by software or external pin transitions. The counter/timers aid a programmer in counting external events, timing accu-
rate delays, and generating precise interrupts. Each counting unit (CU) is made up of a command register, a counter,
and an image register that facilitates loading and storing timing data. The counting units can be operated individually
as counters/timers, or they can be used together to generate pulse-width modulated waveforms. The maximum resolu-
tion of the MT is the input clock divided by four.

Each counting unit can be controlled by an input pin (external event) or by software loading/storing to control regis-
ters. A single output pin is currently provided for sending a timer output signal off-chip. However, all of the counting
units’ terminal count outputs are available to the processor for enabling interrupt generation and other timing needs.

Modes of Operation
The Multifunction Timer can be programmed to operate in any one of four separate modes: pulse-width modulation,
pulse mode, event counting mode, and time capture mode. Interrupts only occur while in Pulse Mode.

Pulse-Width Modulation (Waveform Mode)
In waveform mode, the timer can produce various pulse-width modulated (PWM) signals. The waveform mode is
realized through the combination of both 16-bit counting units. The waveform period is the sum of the counts
between the counting units, while the duty cycle depends on the length of the high and low counts relative to each
other. The output polarity setting determines which counter will be active high and active low, and therefore which
counter’s pulse duration will be considered as CountHIGH in equation 2. Once enabled, each counter will load its count
duration from the respective image register, and then one CU counts down at a time. Upon finishing the count, a ter-
mination signal from the first unit triggers the second unit to load from its image register and begin counting its pulse
duration. The duty cycle and waveform itself can be altered simply by loading a new value into the corresponding
image register. The image register data will subsequently be loaded into the corresponding counter once a terminal
count has been asserted. 

Period = CountHIGH  + CountLOW  (eqn 1)

Duty = CountHIGH  / (CountHIGH  + CountLOW) (eqn 2)

If enabled, the processor can use the terminal count of either counting unit as an interrupt that will be asserted until
cleared by the core. Performing a write operation to the controlling TMCR clears the interrupt. Please note that sys-
tem writes to the image register can only occur after one has disabled the register via the CU’s command register.
One should re-enable it once the load has been completed.

The contents of an image register are loaded into its corresponding counter under any of the following conditions:

• Terminal Count of CU0 pulses to transfer active status to CU1, and vice versa.
• The input pin pulses (if enabled)
• A command register bit is written to by the processor

Pulse Mode
In Pulse mode, any counting unit is capable of generating a singular pulse. The pulse width is defined by the value
loaded into the associated image register of the counting unit. Once the counting unit is activated, the contents of the
corresponding counter will be overwritten by the data in the image register. If the CU’s output is multiplexed to the
output pin, the pulse itself will be sent to the pin. The terminal count, which has a pulse width of one timer clock
cycle, is not sent to the output pin, but is used for interrupt generation. When the CU reaches its terminal count, the
interrupt will be asserted until cleared by the core. Performing a write operation to the byte of the TMCR that controls
the interrupting timer unit will clear the interrupt.
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A pulse is triggered and the contents of an image register are loaded to the counter in any of the following events:
An external input pin transition (if enabled)
A command register bit is written to by the processor

Event Counter Mode
In this mode, a CU can be used to count a number of events. An event is defined as a transition on the timer input pin,
as defined by the input pin polarity configuration. In this mode, the image register stores the contents of the counter
upon the rising edge of any valid load/store trigger signal. (As opposed to the previous two modes where the counter
was loaded from the image register.)

The only valid load/store signal in this mode is an input pin event. All counter and image registers must be assigned
an initial value. The processor can read the image register value once the image register has been disabled and is
therefore stable. While the image register is disabled, the counter will continue to count events unless it too is dis-
abled.

Time Capture Mode
In Time Capture mode, the counting unit can measure the time between events. This is done by counting clock pulses.
All counters and image registers should be cleared during initialization. The counting unit can be enabled only by
software, after which the CU will continuously count. Each load/store pulse will load the counter’s contents to the
image register. Valid load/store trigger signals include:

The input pin transitions (if enabled)
A command register bit is written to by the processor

When reading the image register data, disable the register first. Note that the two CU’s in time capture mode can be
used to capture the rising and falling edges of a pulse, and thereby measure pulse width. Also note that the time
between consecutive edges of Time Capture must be greater than one timer clock cycle in order to be captured.

Timer Control Register (TMCR)
The TMCR register(s) provide the control signals for each of the two Counter Units. 

TE0 (TE1) – Pin Trigger Enable 0 (1) (R/W)
There are two sources of control trigger events for each of the four modes:

1. Software load/store, Command register bit written
2. Transition at the input pin (if enabled by software)
• 0 – Only software control trigger
• 1 – Enable external pin trigger events 

C0IP (C1IP) – CU0 (CU1) Input Polarity (R/W)
Counter Unit 0 (1) signal input polarity: (TODO: explain this better)
• 0 – active high (input unchanged)
• 1 – active low (input inverted)

OP – Pin Output Polarity (R/W)
Select the polarity of the output pin.
• 0 – output signal unchanged

0123456789101112131415

C1PMCR1IM1DC1OPC1IPTE1 C1MS MS[1:0]CR0IM0DC0OSC0IPTE0

Figure 16: TMCR - Timer Control Register
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• 1 – output inverted

DC0 (DC1) – Pseudo Down-Count 0 (1) (R/W)
Forces Counter 0 (1) to decrement rather than increment its value.
Note: The physical implementation does not have Counter 0 (1) decrement, but rather loads/stores a logically
inverted binary value of the appropriate datum. I.E. Incrementing inverted values can produce an equivalent tim-
ing result as decrementing non-inverted values, all while reducing logic complexity.
• 0 – Increment
• 1 – Decrement via inverted binary values

IM0 (IM1) – Image Register 0 (1) Enable (R/W)
Clearing this bit effectively freezes Image Register 0(1), IMG0 (IMG1), from loading/storing data from/to its
respective counter. This is useful when the software wants to read stable data while in event count or time capture
mode
• 0 – Disable/Freeze Image Register 0 (1) 
• 1 – Enable Image Register 0 (1)

CR0 (CR1) – Counter Register 0 (1) Enable (R/W)
Setting this bit enables Counter 0 (1), CNT0 (CNT1), to begin/resume counting according to the mode selected.

C1PM – CU1 Pulse Mode Enable (R/W)
This bit puts CU1 in Pulse Mode when set.
• 0 – Disable Pulse Mode
• 1 – Enable Pulse Mode

C1MS – CU1 Mode Select (R/W)
This bit determines CU1’s operating mode if PWM or Pulse mode has not been enabled via TMCR[9:8] or
TMCR[6]. TODO: explain this better
• 0 – Event Count
• 1 – Time Capture

OS – Pin Output Select (R/W)
Select which counter unit’s output will be multiplexed to a single timer output pin. This does not prevent the
counters’ terminal count signals from being used for processor interrupt control, or other internal applications.
• 0 – CU0 output
• 1 – CU1 output

MS[1:0] – Mode Select Bits (R/W)
These bits determine what mode CU0 operates in. As CU0 is the master control CU0 (TODO: typo?) when the
timer operates in PWM mode, setting PWM mode in this register causes CU1 to enter PWM mode in default. 
• 00 – Event Count
• 01 – Time Capture
• 10 – Pulse Generation
• 11 – Pulse Width Modulation

Timer Image Registers (TMI0, TMI1)
The key purpose of the 16-bit image registers is to facilitate processor access to and control of a counter without asyn-
chronously interrupting the counting function. An image register executes more specific functions depending on the
mode of operation. In Waveform and Pulse modes, the image register loads the counter with data upon an appropriate
trigger event. In Event Count and Timer Capture modes, the counter value is stored in the image register at the appro-
priate intervals.
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Image Register One follows the same format. Before initializing the command register for Pulse and PWM modes, a
program should first (disable and) initialize the image and counter registers to appropriate values. The Image registers
reset low and are read and writable.

Timer Counter Registers (TMC0, TMC1)
The 16-bit counters form the core of each counting unit (CU), which is made up of an image register and a counter.
Each counter can be initialized, and even loaded in mid operation, although we do not recommend ever doing this
outside of initialization routines. A counter will increment or decrement depending on its command register settings,
while the mode and trigger event selection determines when and how counting is performed.

Counter Register One follows the same format. The Counter registers reset low and are read and writable.

Timer Input Clock Prescaler Register (TMPS)
The WIMS Timer has the ability to scale the input clock frequency before it is distributed to the counting, image, and
control units. Three control bits determine the amount of clock division, and the prescale enable determines if pres-
caling is on or off. The active high signals CU0_EN and CU1_EN enable interrupts for each counting unit. The rest
of the bits are unused (reserved).

Interrupts are available for Pulse-Width Modulation and Pulse modes only. Event Counter and Time Capture do not
have interrupts because they interface with external pins and those pins can be hooked to external interrupt pins if
interrupts for these modes are desired. If the counting unit interrupt is enabled and the counting unit is in either of the
first two modes, interrupts will be asserted on the terminal count of the counting unit and held until cleared by the
core. Clearing the interrupt happens when a write to the proper byte of the TMCR occurs.

This prescaling mechanism is similar to that of the WIMS USART, in that it uses an asynchronous binary toggle
counter to continuously scale an input clock. The difference here is the range of the prescaler, which spans 2x divi-
sion to 256x. Because of the choice of low-activity counter, the divisor is always a power of two between 2-256.
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Image0[15:0]

Figure 17: TMI0 - Timer Image Register 0
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Cnt0[15:0]

Figure 18: TMC0 - Timer Counter Register 0
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Figure 19: TMPS - Timer Prescale Register
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Keep in mind that the system clock is divided by 4 whether or not the prescaler is enabled, which defines the maxi-
mum resolution of the timer. One must multiply 4 by the prescaler setting to determine the system clock divisor.

Timer Status Register (TMSR)
The WIMS Timer has this status register for the core to observe the current state of the timer unit.

CU0A (CU1A) – Counter Unit 0 (1) Active (R)
If this bit is set, it implies that the counting unit is currently counting.

SEM0 (SEM1) – Status Even Miss 0 (1) (R)
If this bit is set, a terminal count or input event occurred that the timer could not handle. The core may need to
reprogram or restart the timer, depending on the situation.

Table 19: Prescale Clock Division Range
Prescale Bits 0XXX 1000 1001 1010 1011 1100 1101 1110 1111
Clock Divisor 4 8 16 32 64 128 256 512 1028

01234567

Res[3:0] CU0ACU1A

Figure 20: TMSR - Timer Status Register
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Chapter 13. Clock Generation and Clock Source Selection
The WIMS Microcontroller has two possible sources for the clock signal: the on-chip, hybrid LC and ring oscillator
clock reference or through the off-chip input pin. The MCU and DSP clock select input pins choose between the off-
chip or on-chip sources. The default (high) selects the off-chip clock source. The next section describes the on-chip
clock reference and frequency selection.

On-Chip Clock Reference and Frequency Division
The on-chip clock reference generates a signal of 2f0, which is given as the input to the circuit in Fig. 21. The 2f0 ref-
erence clock, can be either 200MHz or 20MHz, depending on whether the LC or ring oscillator is selected. The lower
three bits of the CSR (Core_sel in Fig. 22) determine the frequency fMCU for the rest of the microcontroller core. Bits 10:8 in
the CSR determine the DSP clock frequency, fDSP. The delay from the time the CSR is set until the new clock frequency
reaches the core is n/2f0 + the mux delay, or about 11ns when f0 = 100MHz. Refer to Appendix Appendix C. for
details on the on-chip clock reference.

Figure 21: Clock Selection Circuitry
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Figure 22: CSR - Clock Select Register
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Core_sel[2:0] –Core clock frequency select (R/W)
The CSR resets to the value 0x1, or fclk=f0/2=50MHz. The other values for Clock_Sel are shown in Table 20.

DSP_sel[2:0] –DSP clock frequency select (R/W)
The CSR resets to the value 0x5, or fclk=f0/32=3.125MHz. The other values for Clock_Sel are shown in Table 20.

Synch[1:0]– Synchronization select (R/W)
The synch[1:0] determines which synchronization clock is used for the clock synchronizer. The other synchronizer inputs
aren’t shown in the figure and are for testing purposes only. synch[1:0] should be left 0x0.
• 00 – 2f0
• 01 – f0
• 10 – Off chip clk input
• 11 – Off chip clk input - same as 10. 

Pad_sel –Pad clock frequency select (R/W)
Pad_sel selects which clock is sent to the pad.
• 0 – clk1 - core clock
• 1 – clk2 - dsp clock

Fig. 23 and Fig. 24 show the mappings for the Clock user and debug control. The details are given in Appendix C.

Table 20 gives the fclk values for all possible input values of the CSR. The left assumes LCsel = 1 (LC Oscillator) and
the right half assumes LCsel = 0 (Ring Oscillator).

Table 20: CSR Frequency Values
CSR[2:0] fclk (MHz) CSR[2:0] fclk (MHz) CSR[2:0] fclk (MHz) CSR[2:0] fclk (KHz)

0x0 100 0x4 6.25 0x0 10 0x4 625
0x1 50 0x5 3.13 0x1 5 0x5 312
0x2 25 0x6 1.56 0x2 2.5 0x6 156
0x3 12.5 0x7 0.78 0x3 1.25 0x7 78
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Figure 23: CUC - Clock User Control
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Figure 24: CDC - Clock Debug Control
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Chapter 14. Digital Signal Processor
The DSP included with the WIMS Microcontroller is design to perform the Continuous Interleaved Sampling algo-
rithm (CIS) shown in Fig. 25. 

The equations for the IIR Filters are shown in Fig. 26 - Fig. 28.

Figure 25: CIS Algorithm
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Figure 26: Highpass Filter Equation
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Figure 27: Bandpass Filter Equation
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Figure 28: Lowpass Filter Equation
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The implementation is a dedicated hardware datapath with several programmable features. Fig. 29 shows the imple-
mentation chosen. The DSP shares control of the Loop Cache (LUT), SPI0, and SPI1 with the Microcontroller. 

The volume equations are shown in Fig. 30, where the THR is the channel Threshold and MCL is the channel Most
Comfortable Level.

Table 21 shows the memory mapping for the filter coefficients and control registers. Please note that many of the reg-
isters used to setup-up the DSP controls are write-only.

Figure 29: CIS Datapath Block Diagram
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Table 21: DSP Memory Map
Address Range Mnemonic DescriptionStart End

0x008000 0x0081ff LUT[7:0] Look Up Table
0x008200 0x008201 HP_a0[15:0] Highpass coefficient a0
0x008202 0x008205 HP_b0[15:0], HP_b1[15:0] Highpass coefficient b0, b1
0x008206 0x008209 BP0_b00[15:0], BP0_b01[15:0] Channel 0 Bandpass coefficient b00, b01
0x00820a 0x00820e BP0_a00[15:0], BP0_a01[15:0] Channel 0 Bandpass coefficient a00, a01
0x00820e 0x008211 BP0_b10[15:0], BP0_b11[15:0] Channel 0 Bandpass coefficient b10, b11
0x008212 0x008215 BP0_a10[15:0], BP0_a11[15:0] Channel 0 Bandpass coefficient a10, a11
0x008216 0x008219 BP0_b20[15:0], BP0_b21[15:0] Channel 0 Bandpass coefficient b20, b21
0x00821a 0x00821d BP0_a20[15:0], BP0_a21[15:0] Channel 0 Bandpass coefficient a20, a21
0x00821e 0x008221 BP1_b00[15:0], BP1_b01[15:0] Channel 1Bandpass coefficient b00, b01
0x008222 0x008225 BP1_a00[15:0], BP1_a01[15:0] Channel 1 Bandpass coefficient a00, a01
0x008226 0x008229 BP1_b10[15:0], BP1_b11[15:0] Channel 1 Bandpass coefficient b10, b11
0x00822a 0x00822d BP1_a10[15:0], BP1_a11[15:0] Channel 1 Bandpass coefficient a10, a11
0x00822e 0x008231 BP1_b20[15:0], BP1_b21[15:0] Channel 1 Bandpass coefficient b20, b21
0x008232 0x008235 BP1_a20[15:0], BP1_a21[15:0] Channel 1 Bandpass coefficient a20, a21
0x008236 0x008239 BP2_b00[15:0], BP2_b01[15:0] Channel 2 Bandpass coefficient b00, b01
0x00823a 0x00823e BP2_a00[15:0], BP2_a01[15:0] Channel 2 Bandpass coefficient a00, a01
0x00823e 0x008241 BP2_b10[15:0], BP2_b11[15:0] Channel 2 Bandpass coefficient b10, b11
0x008242 0x008245 BP2_a10[15:0], BP2_a11[15:0] Channel 2 Bandpass coefficient a10, a11
0x008246 0x008249 BP2_b20[15:0], BP2_b21[15:0] Channel 2 Bandpass coefficient b20, b21
0x00824a 0x00824d BP2_a20[15:0], BP2_a21[15:0] Channel 2 Bandpass coefficient a20, a21
0x00824e 0x008251 BP3_b00[15:0], BP3_b01[15:0] Channel 3 Bandpass coefficient b00, b01
0x008252 0x008255 BP3_a00[15:0], BP3_a01[15:0] Channel 3 Bandpass coefficient a00, a01
0x008256 0x008259 BP3_b10[15:0], BP3_b11[15:0] Channel 3 Bandpass coefficient b10, b11
0x00825a 0x00825d BP3_a10[15:0], BP3_a11[15:0] Channel 3 Bandpass coefficient a10, a11
0x00825e 0x008261 BP3_b20[15:0], BP3_b21[15:0] Channel 3 Bandpass coefficient b20, b21
0x008262 0x008265 BP3_a20[15:0], BP3_a21[15:0] Channel 3 Bandpass coefficient a20, a21
0x008266 0x008269 BP4_b00[15:0], BP4_b01[15:0] Channel 4 Bandpass coefficient b00, b01
0x00826a 0x00826e BP4_a00[15:0], BP4_a01[15:0] Channel 4 Bandpass coefficient a00, a01
0x00826e 0x008271 BP4_b10[15:0], BP4_b11[15:0] Channel 4 Bandpass coefficient b10, b11
0x008272 0x008275 BP4_a10[15:0], BP4_a11[15:0] Channel 4 Bandpass coefficient a10, a11
0x008276 0x008279 BP4_b20[15:0], BP4_b21[15:0] Channel 4 Bandpass coefficient b20, b21
0x00827a 0x00827d BP4_a20[15:0], BP4_a21[15:0] Channel 4 Bandpass coefficient a20, a21
0x00827e 0x008281 BP5_b00[15:0], BP5_b01[15:0] Channel 5 Bandpass coefficient b00, b01
0x008282 0x008285 BP5_a00[15:0], BP5_a01[15:0] Channel 5 Bandpass coefficient a00, a01
0x008286 0x008289 BP5_b10[15:0], BP5_b11[15:0] Channel 5 Bandpass coefficient b10, b11
0x00828a 0x00828d BP5_a10[15:0], BP5_a11[15:0] Channel 5 Bandpass coefficient a10, a11
0x00828e 0x008291 BP5_b20[15:0], BP5_b21[15:0] Channel 5 Bandpass coefficient b20, b21
0x008292 0x008295 BP5_a20[15:0], BP5_a21[15:0] Channel 5 Bandpass coefficient a20, a21
0x008296 0x008299 BP6_b00[15:0], BP6_b01[15:0] Channel 6 Bandpass coefficient b00, b01
0x00829a 0x00829e BP6_a00[15:0], BP6_a01[15:0] Channel 6 Bandpass coefficient a00, a01
0x00829e 0x0082a1 BP6_b10[15:0], BP6_b11[15:0] Channel 6 Bandpass coefficient b10, b11
0x0082a2 0x0082a5 BP6_a10[15:0], BP6_a11[15:0] Channel 6 Bandpass coefficient a10, a11
0x0082a6 0x0082a9 BP6_b20[15:0], BP6_b21[15:0] Channel 6 Bandpass coefficient b20, b21
0x0082aa 0x0082ad BP6_a20[15:0], BP6_a21[15:0] Channel 6 Bandpass coefficient a20, a21
0x0082ae 0x0082b1 BP7_b00[15:0], BP7_b01[15:0] Channel 7 Bandpass coefficient b00, b01
0x0082b2 0x0082b5 BP7_a00[15:0], BP7_a01[15:0] Channel 7 Bandpass coefficient a00, a01
0x0082b6 0x0082b9 BP7_b10[15:0], BP7_b11[15:0] Channel 7 Bandpass coefficient b10, b11
0x0082ba 0x0082bd BP7_a10[15:0], BP7_a11[15:0] Channel 7 Bandpass coefficient a10, a11
0x0082be 0x0082c1 BP7_b20[15:0], BP7_b21[15:0] Channel 7 Bandpass coefficient b20, b21
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0x0082c2 0x0082c5 BP7_a20[15:0], BP7_a21[15:0] Channel 7 Bandpass coefficient a20, a21
0x0082c6 0x0082c9 BP8_b00[15:0], BP8_b01[15:0] Channel 8 Bandpass coefficient b00, b01
0x0082ca 0x0082ce BP8_a00[15:0], BP8_a01[15:0] Channel 8 Bandpass coefficient a00, a01
0x0082ce 0x0082d1 BP8_b10[15:0], BP8_b11[15:0] Channel 8 Bandpass coefficient b10, b11
0x0082d2 0x0082d5 BP8_a10[15:0], BP8_a11[15:0] Channel 8 Bandpass coefficient a10, a11
0x0082d6 0x0082d9 BP8_b20[15:0], BP8_b21[15:0] Channel 8 Bandpass coefficient b20, b21
0x0082da 0x0082dd BP8_a20[15:0], BP8_a21[15:0] Channel 8 Bandpass coefficient a20, a21
0x0082de 0x0082e1 BP9_b00[15:0], BP9_b01[15:0] Channel 9 Bandpass coefficient b00, b01
0x0082e2 0x0082e5 BP9_a00[15:0], BP9_a01[15:0] Channel 9 Bandpass coefficient a00, a01
0x0082e6 0x0082e9 BP9_b10[15:0], BP9_b11[15:0] Channel 9 Bandpass coefficient b10, b11
0x0082ea 0x0082ed BP9_a10[15:0], BP9_a11[15:0] Channel 9 Bandpass coefficient a10, a11
0x0082ee 0x0082f1 BP9_b20[15:0], BP9_b21[15:0] Channel 9 Bandpass coefficient b20, b21
0x0082f2 0x0082f5 BP9_a20[15:0], BP9_a21[15:0] Channel 9 Bandpass coefficient a20, a21
0x0082f6 0x0082f9 BP10_b00[15:0], BP10_b01[15:0] Channel 10 Bandpass coefficient b00, b01
0x0082fa 0x0082fd BP10_a00[15:0], BP10_a01[15:0] Channel 10 Bandpass coefficient a00, a01
0x0082fe 0x008301 BP10_b10[15:0], BP10_b11[15:0] Channel 10 Bandpass coefficient b10, b11
0x008302 0x008305 BP10_a10[15:0], BP10_a11[15:0] Channel 10 Bandpass coefficient a10, a11
0x008306 0x008309 BP10_b20[15:0], BP10_b21[15:0] Channel 10 Bandpass coefficient b20, b21
0x00830a 0x00830d BP10_a20[15:0], BP10_a21[15:0] Channel 10 Bandpass coefficient a20, a21
0x00830e 0x008311 BP11_b00[15:0], BP11_b01[15:0] Channel 11 Bandpass coefficient b00, b01
0x008312 0x008315 BP11_a00[15:0], BP11_a01[15:0] Channel 11 Bandpass coefficient a00, a01
0x008316 0x008319 BP11_b10[15:0], BP11_b11[15:0] Channel 11 Bandpass coefficient b10, b11
0x00831a 0x00831d BP11_a10[15:0], BP11_a11[15:0] Channel 11 Bandpass coefficient a10, a11
0x00831e 0x008321 BP11_b20[15:0], BP11_b21[15:0] Channel 11 Bandpass coefficient b20, b21
0x008322 0x008325 BP11_a20[15:0], BP11_a21[15:0] Channel 11 Bandpass coefficient a20, a21
0x008326 0x008329 BP12_b00[15:0], BP12_b01[15:0] Channel 12 Bandpass coefficient b00, b01
0x00832a 0x00832e BP12_a00[15:0], BP12_a01[15:0] Channel 12 Bandpass coefficient a00, a01
0x00832e 0x008331 BP12_b10[15:0], BP12_b11[15:0] Channel 12 Bandpass coefficient b10, b11
0x008332 0x008335 BP12_a10[15:0], BP12_a11[15:0] Channel 12 Bandpass coefficient a10, a11
0x008336 0x008339 BP12_b20[15:0], BP12_b21[15:0] Channel 12 Bandpass coefficient b20, b21
0x00833a 0x00833d BP12_a20[15:0], BP12_a21[15:0] Channel 12 Bandpass coefficient a20, a21
0x00833e 0x008341 BP13_b00[15:0], BP13_b01[15:0] Channel 13 Bandpass coefficient b00, b01
0x008342 0x008345 BP13_a00[15:0], BP13_a01[15:0] Channel 13 Bandpass coefficient a00, a01
0x008346 0x008349 BP13_b10[15:0], BP13_b11[15:0] Channel 13 Bandpass coefficient b10, b11
0x00834a 0x00834d BP13_a10[15:0], BP13_a11[15:0] Channel 13 Bandpass coefficient a10, a11
0x00834e 0x008351 BP13_b20[15:0], BP13_b21[15:0] Channel 13 Bandpass coefficient b20, b21
0x008352 0x008355 BP13_a20[15:0], BP13_a21[15:0] Channel 13 Bandpass coefficient a20, a21
0x008356 0x008359 BP14_b00[15:0], BP14_b01[15:0] Channel 14 Bandpass coefficient b00, b01
0x00835a 0x00835e BP14_a00[15:0], BP14_a01[15:0] Channel 14 Bandpass coefficient a00, a01
0x00835e 0x008361 BP14_b10[15:0], BP14_b11[15:0] Channel 14 Bandpass coefficient b10, b11
0x008362 0x008365 BP14_a10[15:0], BP14_a11[15:0] Channel 14 Bandpass coefficient a10, a11
0x008366 0x008369 BP14_b20[15:0], BP14_b21[15:0] Channel 14 Bandpass coefficient b20, b21
0x00836a 0x00836d BP14_a20[15:0], BP14_a21[15:0] Channel 14 Bandpass coefficient a20, a21
0x00836e 0x008371 BP15_b00[15:0], BP15_b01[15:0] Channel 15 Bandpass coefficient b00, b01
0x008372 0x008375 BP15_a00[15:0], BP15_a01[15:0] Channel 15 Bandpass coefficient a00, a01
0x008376 0x008379 BP15_b10[15:0], BP15_b11[15:0] Channel 15 Bandpass coefficient b10, b11
0x00837a 0x00837d BP15_a10[15:0], BP15_a11[15:0] Channel 15 Bandpass coefficient a10, a11
0x00837e 0x008381 BP15_b20[15:0], BP15_b21[15:0] Channel 15 Bandpass coefficient b20, b21
0x008382 0x008385 BP15_a20[15:0], BP15_a21[15:0] Channel 15 Bandpass coefficient a20, a21
0x008386 0x008389 LP_b00[15:0], LP_b01[15:0] Lowpass coefficient b00, b01
0x00838a 0x00838d LP_a00[15:0], LP_a01[15:0] Lowpass coefficient a00, a01
0x00838e 0x008391 LP_b10[15:0], LP_b11[15:0] Lowpass coefficient b10, b11

Table 21: DSP Memory Map
Address Range Mnemonic DescriptionStart End
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0x008392 0x008395 LP_a10[15:0], LP_a11[15:0] Lowpass coefficient a10, a11
0x008396 0x008397 ingain[15:0] LUT gain multiplier
0x008398 0x008399 A0[7:0], B0[7:0] Channel 0 MCL, THR
0x00839a 0x00839b A1[7:0], B1[7:0] Channel 1 MCL, THR
0x00839c 0x00839d A2[7:0], B2[7:0] Channel 2 MCL, THR
0x00839e 0x00839f A3[7:0], B3[7:0] Channel 3 MCL, THR
0x0083a0 0x0083a1 A4[7:0], B4[7:0] Channel 4 MCL, THR
0x0083a2 0x0083a3 A5[7:0], B5[7:0] Channel 5 MCL, THR
0x0083a4 0x0083a5 A6[7:0], B6[7:0] Channel 6 MCL, THR
0x0083a6 0x0083a7 A7[7:0], B7[7:0] Channel 7 MCL, THR
0x0083a8 0x0083a9 A8[7:0], B8[7:0] Channel 8 MCL, THR
0x0083aa 0x0083ab A9[7:0], B9[7:0] Channel 9 MCL, THR
0x0083ac 0x0083ad A10[7:0], B10[7:0] Channel 10 MCL, THR
0x0083ae 0x0083af A11[7:0], B11[7:0] Channel 11 MCL, THR
0x0083b0 0x0083b1 A12[7:0], B12[7:0] Channel 12 MCL, THR
0x0083b2 0x0083b3 A13[7:0], B13[7:0] Channel 13 MCL, THR
0x0083b4 0x0083b5 A14[7:0], B14[7:0] Channel 14 MCL, THR
0x0083b6 0x0083b7 A15[7:0], B15[7:0] Channel 15 MCL, THR
0x0083b8 0x0083b9 volA[7:0], volB[7:0] Volume A, Volume B
0x0083ba 0x0083bb PW0[7:0], PW1[7:0] Channel 0, 1 pulse width
0x0083bc 0x0083bd PW2[7:0], PW3[7:0] Channel 2, 3 pulse width
0x0083be 0x0083bf PW4[7:0], PW5[7:0] Channel 4, 5 pulse width
0x0083c0 0x0083c1 PW6[7:0], PW7[7:0] Channel 6, 7 pulse width
0x0083c2 0x0083c3 PW8[7:0], PW9[7:0] Channel 8, 9 pulse width
0x0083c4 0x0083c5 PW10[7:0], PW11[7:0] Channel 10, 11 pulse width
0x0083c6 0x0083c7 PW12[7:0], PW13[7:0] Channel 12, 13 pulse width
0x0083c8 0x0083c9 PW14[7:0], PW15[7:0] Channel 14, 15 pulse width
0x0083ca 0x0083cb elec0[7:0], elec1[7:0] Channel 0, 1 electrode address
0x0083cc 0x0083cd elec2[7:0], elec3[7:0] Channel 2, 3 electrode address
0x0083ce 0x0083cf elec4[7:0], elec5[7:0] Channel 4, 5 electrode address
0x0083d0 0x0083d1 elec6[7:0], elec7[7:0] Channel 6, 7 electrode address
0x0083d2 0x0083d3 elec8[7:0], elec9[7:0] Channel 8, 9 electrode address
0x0083d4 0x0083d5 elec10[7:0], elec11[7:0] Channel 10, 11 electrode address
0x0083d6 0x0083d7 elec12[7:0], elec13[7:0] Channel 12, 13 electrode address
0x0083d8 0x0083d9 elec14[7:0], elec15[7:0] Channel 14, 15 electrode address
0x0083da 0x0083db num_zeros[15:0] Number of cycles between pulses
0x0083dc 0x0083dd SPI0_CTRL[15:0] SPI0 Control reg
0x0083de 0x0083df SPI1_CTRL[15:0] SPI1 Control reg
0x0083e0 0x0083e1 SPI1_INT[15:0] SPI1 Number of Interrupt Cycles
0x0083e2 0x0083e3 DSP_CTRL[15:0] DSP Control reg
0x0083e4 0x0083e5 dout0[7:0], dout1[7:0] Channel 0, 1 data out - read only
0x0083e6 0x0083e7 dout2[7:0], dout3[7:0] Channel 2, 3 data out - read only
0x0083e8 0x0083e9 dout4[7:0], dout5[7:0] Channel 4, 5 data out - read only
0x0083ea 0x0083eb dout6[7:0], dout7[7:0] Channel 6, 7 data out - read only
0x0083ec 0x0083ed dout8[7:0], dout9[7:0] Channel 8, 9 data out - read only
0x0083ee 0x0083ef dout10[7:0], dout11[7:0] Channel 10, 11 data out - read only
0x0083f0 0x0083f1 dout12[7:0], dout13[7:0] Channel 12, 13 data out - read only
0x0083f2 0x0083f3 dout14[7:0], dout15[7:0] Channel 14, 15 data out - read only

Table 21: DSP Memory Map
Address Range Mnemonic DescriptionStart End
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Fig. 31 shows the bit breakdown for the DSP control register. This register resets to 0x0001.

Sleep –DSP Sleep (R/W)
• 0 - The DSP is enabled and processing data.
• 1 - The DSP is disabled.

SPI0 –SPI0 Control (R/W)
• 0 - The MCU has control over the SPI0 interface.
• 1 - The DSP has control over the SPI0 interface.

SPI1 –SPI1 Control (R/W)
• 0 - The MCU has control over the SPI1 interface.
• 1 - The DSP has control over the SPI1 interface.

Cache –Loop Cache Control (R/W)
• 0 - The MCU has control over the loop cache interface.
• 1 - The DSP has control over the loop cache interface.

Test_addr[2:0] –Test address (R/W)
• 000 - No test.
• 001 - Highpass filter test.
• 010 - Bandpass filter test.
• 011 - Lowpass filter test.
• 100 - LUT test.
• 101 - Volume test.
• 11x - No test.

Pulse –Pulse polarity (R/W)
• 0 - The positive half of the biphasic pulse comes first.
• 1 - The negative half of the biphasic pulse comes first.

ADC_out[7:0] –ADC out(R/W)
This is the first word sent through SPI1 when requesting a new sample from the ADC hooked up to this port.
This is designed to work with the AD7708/7718. This will be written to the ADC control register.

The SPI0 and SPI1 control registers are written to the corresponding SPI port before each transmission. The
SPI1_INT is the number of DSP clock cycles to wait before requesting the next ADC sample.

0123456789101112131415

ADC_out[7:0] Sleep

Figure 31: DSP Control Register

CachePulse Test_addr[2:0] SPI0SPI1
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Appendix B. WIMS Gen-2 Microsystem Physical Specifica-
tions
This section gives the test results, pinout, and physical specifications for the WIMS Gen-2 Microsystem taped out in 
May 2005 through the MOSIS Educational Program in TSMC 0.18µm Mixed Mode/RF process. Fig. 32 is a layout 
shot of the WIMS Microsystem with all the subsystems labelled. The packaged chips are in a 121 pin PGA package. 
The die measures 3.023mm x 3.023mm and is 250µm thick and contains 2.28 million transistors. Further statistics are 
presented in Table 22. The next sections describe the test results, pinout, and other physical specifications.

Table 22: Chip Statistics Breakdown
Pipeline Peripherals DSP CLK Memory Total

Area (µm2) 439,365 366,887 1,274,374 251,940 2,250,148 9,138,529
Transistor Count 102,527 93,048 376,903 634 1,700,126 2,279,617

Decoupling Cap (pF) 1531

1. The Pipeline and Peripherals (I/O) share a power supply, and therefore the 153pF.

1531 418.2 382.5 724.2 -

Figure 32: Gen-2 WIMS Microsystem Layout Shot
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Test Results
Fig. 33 is a table of several different operating modes of the complete microsystem at maximum and minimum volt-
age points. Standby mode consumes 330µW. Maximum power consumption is 46mW. The pads consume about 
30mW from a 3.3V supply.

Fig. 34 shows the different operating points for the core and DSP across voltages and frequency ranges.
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Figure 33: Microsystem measured performance at several operating conditions
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For SPICE parameters and other process parameters, please see the MOSIS web site (http://www.mosis.org) or the 
UofM Course Tools (https://ctools.umich.edu/) group WIMS Micropower. The fabrication run was T55U-BG 
(MM_NON-EPI_THK-MTL) in May 2005.

Power per Instruction
The following tables give results of the energy per instruction for the different instructions in the WIMS ISA. For 
more details on their measurement method, please see Appendix Appendix A..

Figure 34: Power versus VDD scaling across different frequencies for 
the MCU plus memory (top) and DSP (bottom).
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.

Pinout
Fig. 35 shows the bonding diagram for the PGA. For more information on the PGA121M package, see the MOSIS 
web site (http://www.mosis.org) or the UofM Course Tools (https://ctools.umich.edu/) group WIMS Micropower. 
Table 25 gives the pin assignments for all of the pins on the chip. The pin numbers are the ones given in Fig. 35 
(Bonding Diagram), but can also be used for the bare die by noticing that 2 PGA pins are unused on each side of the 
chip.

The naming convention for the signals in Table 25 is (signal)(Source)(Destination)_(W/B)(P/N/A)(in/out) where sig-
nal is the net name, Source and Destination are the source and destination modules, W is wire, B is bus, A is analog, P 
is positive (active high), N is negative (active low), and input or output signal.

The Pin Type lists what input or output pad is used for the signal. The physical specifications (loads, drive currents, 
etc.) are give in the next section.

Table 23: Measured energy for each WIMS instruction group fetched from main memory at 100MHz and 
1.8V.

Instruction 
Group Energy (nJ) Time (ns) Instruction 

Group Energy (nJ) Time (ns)

add-sub 0.43 10 win swap 0.33 10

shift 0.35 10 load imm 0.35 10

boolean 0.38 10 branch-nt 0.31 10

compare 0.37 10 branch-t 1.03 30

multiply 4.99 180 jmp abs 0.97 30

divide 4.89 180 jmp rel 0.72 20

copy 0.38 10 jmp abs sub 1.02 30

bit 1.10 20 jmp rel sub 0.63 20

load abs 0.94 20 return 0.67 20

load rel 0.66 10 swi 1.01 30

store abs 0.80 20

store rel 0.55 10 no-op 0.35 10

Table 24: Memory energy correction factor measured at 100MHz and 1.8V.
Memory Access Ext Mem (nJ)1

1. Excludes memory access energy as this is memory dependent

Loop Cache (nJ) MMR (nJ) Boot ROM (nJ)

instruction fetch -0.11 -0.10 N/A -0.08

mem bit set/rst2

2. Fetch energy counted separately

-0.30 -0.30 -0.34 N/A

load absolute2 -0.18 -0.18 -0.16 N/A

load relative2 -0.19 -0.19 -0.20 N/A

store absolute2 -0.07 -0.08 -0.08 N/A

store relative2 -0.09 -0.11 -0.10 N/A
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Table 25: Pin Assignments
Pin Name Level (V) Pin Type Description

1 - - - No Connection

2 VDD33 3.3 PVDD2DGZ Pad ring power

3 VSS33 0 PVSS2DGZ Pad ring ground

4 VSS_mem 0 PVSS1DGZ Digital memory ground

5 VDD_mem 1.8 PVDD1DGZ Digital memory power

6 rstPadChip_WNin 0-3.3 PDISDGZ Global reset

7 extmemtestselPadMMU_WPin 0-3.3 PDISDGZ External memory test select1

8 gpopenPadMMU_WPin 0-3.3 PDISDGZ GPOP enable2

9 extIntPadId_BNin[2] 0-3.3 PDISDGZ External interrupt - active low

10 extIntPadId_BNin[1] 0-3.3 PDISDGZ External interrupt - active low

11 extIntPadId_BNin[0] 0-3.3 PDISDGZ External interrupt - active low

12 extmemwrdataMMUPad_BPout[0] 0-3.3 PDO08CDG External memory write data1,2

13 extmemwrdataMMUPad_BPout[1] 0-3.3 PDO08CDG External memory write data1,2

14 extmemwrdataMMUPad_BPout[2] 0-3.3 PDO08CDG External memory write data1,2

15 extmemwrdataMMUPad_BPout[3] 0-3.3 PDO08CDG External memory write data1,2

16 extmemwrdataMMUPad_BPout[4] 0-3.3 PDO08CDG External memory write data1,2

17 extmemwrdataMMUPad_BPout[5] 0-3.3 PDO08CDG External memory write data1,2

18 extmemwrdataMMUPad_BPout[6] 0-3.3 PDO08CDG External memory write data1,2

19 extmemwrdataMMUPad_BPout[7] 0-3.3 PDO08CDG External memory write data1,2

20 extmemwrdataMMUPad_BPout[8] 0-3.3 PDO08CDG External memory write data1,2

21 extmemwrdataMMUPad_BPout[9] 0-3.3 PDO08CDG External memory write data1,2

22 extmemwrdataMMUPad_BPout[10] 0-3.3 PDO08CDG External memory write data1,2

23 extmemwrdataMMUPad_BPout[11] 0-3.3 PDO08CDG External memory write data1,2

24 extmemwrdataMMUPad_BPout[12] 0-3.3 PDO08CDG External memory write data1,2

25 extmemwrdataMMUPad_BPout[13] 0-3.3 PDO08CDG External memory write data1,2

26 extmemwrdataMMUPad_BPout[14] 0-3.3 PDO08CDG External memory write data1,2

27 extmemwrdataMMUPad_BPout[15] 0-3.3 PDO08CDG External memory write data1,2

28 extmemceMMUPad_WNout 0-3.3 PDO08CDG External memory chip enable1

29 extmemoeMMUPad_WNout 0-3.3 PDO08CDG External memory output enable1

30 - - - No Connection

31 - - - No Connection

32 VSS_mem 0 PVSS1DGZ Digital memory ground

33 VDD_mem 1.8 PVDD1DGZ Digital memory power

34 extmemweMMUPad_BNout[0] 0-3.3 PDO08CDG External memory write enable1,2

35 extmemweMMUPad_BNout[1] 0-3.3 PDO08CDG External memory write enable1,2

36 extmemaddrMMUPad_BPout[0] 0-3.3 PDO08CDG External memory address1

37 extmemaddrMMUPad_BPout[1] 0-3.3 PDO08CDG External memory address1

38 extmemaddrMMUPad_BPout[2] 0-3.3 PDO08CDG External memory address1

39 extmemaddrMMUPad_BPout[3] 0-3.3 PDO08CDG External memory address1
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40 extmemaddrMMUPad_BPout[4] 0-3.3 PDO08CDG External memory address1

41 extmemaddrMMUPad_BPout[5] 0-3.3 PDO08CDG External memory address1

42 extmemaddrMMUPad_BPout[6] 0-3.3 PDO08CDG External memory address1

43 extmemaddrMMUPad_BPout[7] 0-3.3 PDO08CDG External memory address1

44 extmemaddrMMUPad_BPout[8] 0-3.3 PDO08CDG External memory address1

45 extmemaddrMMUPad_BPout[9] 0-3.3 PDO08CDG External memory address1

46 extmemaddrMMUPad_BPout[10] 0-3.3 PDO08CDG External memory address1

47 extmemaddrMMUPad_BPout[11] 0-3.3 PDO08CDG External memory address1

48 extmemaddrMMUPad_BPout[12] 0-3.3 PDO08CDG External memory address1

49 extmemaddrMMUPad_BPout[13] 0-3.3 PDO08CDG External memory address1

50 extmemaddrMMUPad_BPout[14] 0-3.3 PDO08CDG External memory address1

51 extmemaddrMMUPad_BPout[15] 0-3.3 PDO08CDG External memory address1

52 dspenPadCore_WPin 0-3.3 PDISDGZ DSP enable

53 VDD_dsp 1.8 PVDD1DGZ Digital DSP power

54 VSS_dsp 0 PVSS1DGZ Digital DSP ground

55 VDD_dsp 1.8 PVDD1DGZ Digital DSP power

56 VSS_dsp 0 PVSS1DGZ Digital DSP ground

57 VDD33 3.3 PVDD2DGZ Pad ring power

58 VSS33 0 PVSS2DGZ Pad ring ground

59 VDD33 3.3 PVDD2DGZ Pad ring power

60 - - - No Connection

61 - - - No Connection

62 dclkSPI2Pad_WNout 0-3.3 PDO08CDG Data clock SPI2

63 nioeSPI2Pad_WNout 0-3.3 PDO08CDG I/O enable SPI2

64 doutSPI2Pad_WPout 0-3.3 PDO08CDG Data out SPI2

65 nackPadSPI2_WPin 0-3.3 PDISDGZ Acknowledge SPI2

66 dinPadSPI2_WPin 0-3.3 PDISDGZ Data in SPI2

67 dclkSPI1Pad_WNout 0-3.3 PDO08CDG Data clock SPI1

68 nioeSPI1Pad_WNout 0-3.3 PDO08CDG I/O enable SPI1

69 doutSPI1Pad_WPout 0-3.3 PDO08CDG Data out SPI1

70 nackPadSPI1_WPin 0-3.3 PDISDGZ Acknowledge SPI1

71 dinPadSPI1_WPin 0-3.3 PDISDGZ Data in SPI1

72 dclkSPI0Pad_WNout 0-3.3 PDO08CDG Data clock SPI0

73 nioeSPI0Pad_WNout 0-3.3 PDO08CDG I/O enable SPI0

74 doutSPI0Pad_WPout 0-3.3 PDO08CDG Data out SPI0

75 nackPadSPI0_WPin 0-3.3 PDISDGZ Acknowledge SPI0

76 dinPadSPI0_WPin 0-3.3 PDISDGZ Data in SPI0

77 VDD_core 1.8 PVDD1DGZ Digital core power

78 VSS_core 0 PVSS1DGZ Digital core ground

79 extclkPadCK_WPin 0-3.3 PDISDGZ External clock input

Table 25: Pin Assignments
Pin Name Level (V) Pin Type Description
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80 extclkselPadCK_WPin 0-3.3 PDISDGZ Selects off chip clock source if set

81 clkpadenPad_WPin 0-3.3 PDISDGZ Digital core clock output enable

82 TxTIPad_WPout 0-3.3 PDO08CDG Transmit pin Test Interface

83 RxPadTI_WPin 0-3.3 PDISDGZ Receive pin Test Interface

84 clksyncTIPad_WPout 0-3.3 PDO08CDG Synchronization clock out Test Interface

85 clksyncPadTI_WPin 0-3.3 PDISDGZ Synchronization clock in Test Interface

86 TxUsartPad_WPout 0-3.3 PDO08CDG Transmit pin USART

87 RxPadUsart_WPin 0-3.3 PDISDGZ Receive pin USART

88 clksyncUsartPad_WPout 0-3.3 PDO08CDG Synchronization clock out USART

89 clksyncPadUsart_WPin 0-3.3 PDISDGZ Synchronization clock in USART

90 - - - No Connection

91 - - - No Connection

92 timeroutTimer0Pad_WPout 0-3.3 PDO08CDG Timer out Timer0

93 timeroutTimer1Pad_WPout 0-3.3 PDO08CDG Timer out Timer1

94 timeroutTimer2Pad_WPout 0-3.3 PDO08CDG Timer out Timer2

95 timerinPadTimer0_WPin 0-3.3 PDISDGZ Timer in Timer0

96 timerinPadTimer1_WPin 0-3.3 PDISDGZ Timer in Timer1

97 timerinPadTimer2_WPin 0-3.3 PDISDGZ Timer in Timer2

98 VSS_clk 0 PVSS1DGZ MEMS clock generator ground

99 VDD_clk 1.8 PVDD1DGZ MEMS clock generator power

100 calenPadCK_WPin 0-3.3 PDISDGZ Calibration mode enable

101 clkCKPad_WPout 0-3.3 PDO16CDG Digital core clock output

102 extmemrddataPadMMU_BPin[0] 0-3.3 PDISDGZ External memory read data (serclk)3

103 extmemrddataPadMMU_BPin[1] 0-3.3 PDISDGZ External memory read data (serload)3

104 extmemrddataPadMMU_BPin[2] 0-3.3 PDISDGZ External memory read data (serdata)3

105 VDD_core 1.8 PVDD1DGZ Digital core power

106 VSS_core 0 PVSS1DGZ Digital core ground

107 extmemrddataPadMMU_BPin[3] 0-3.3 PDISDGZ External memory read data

108 extmemrddataPadMMU_BPin[4] 0-3.3 PDISDGZ External memory read data

109 extmemrddataPadMMU_BPin[5] 0-3.3 PDISDGZ External memory read data

110 extmemrddataPadMMU_BPin[6] 0-3.3 PDISDGZ External memory read data

111 extmemrddataPadMMU_BPin[7] 0-3.3 PDISDGZ External memory read data

112 extmemrddataPadMMU_BPin[8] 0-3.3 PDISDGZ External memory read data

113 extmemrddataPadMMU_BPin[9] 0-3.3 PDISDGZ External memory read data

114 extmemrddataPadMMU_BPin[10] 0-3.3 PDISDGZ External memory read data

115 extmemrddataPadMMU_BPin[11] 0-3.3 PDISDGZ External memory read data

116 extmemrddataPadMMU_BPin[12] 0-3.3 PDISDGZ External memory read data

117 extmemrddataPadMMU_BPin[13] 0-3.3 PDISDGZ External memory read data

118 extmemrddataPadMMU_BPin[14] 0-3.3 PDISDGZ External memory read data

119 extmemrddataPadMMU_BPin[15] 0-3.3 PDISDGZ External memory read data

120 - - - No Connection

Table 25: Pin Assignments
Pin Name Level (V) Pin Type Description
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Physical Specifications
There are several types of input and output pads that are used. This section gives a physical specification for each pad 
type. This information comes from TSMC through Artisan Components Inc. Further details can be obtained through 
their web sites.

The bonding pads are 81µm by 71µm with a 86µm center-to-center pitch. 

1. extmemtestsel is used only for test mode. If set high, extmemaddr[15:0] outputs the PC[15:0], extmemwe[1:0] outputs 
PC[17:16], extmemce outputs PC[18], extmemoe outputs PC[19], and extmemwrdata[15:0] outputs EX stage memwr-
data[15:0]. If set low, the external memory output buses operate normally.

2. gpopen controls the GPOP (general purpose output port). If set, extmemwrdata[15:0] outputs the GPOP and extmemwe[1:0] is 
disabled, otherwise extmemwrdata[15:0] operates normally.

3. These signals are also used in calibration mode for the Copernicus clock. See Appendix Appendix C. for more information.

Table 26: Power Pad Characteristics
Cell Max. Current (mA) Pin Load (pF)

PVDD1DGZ 29 5.551

PVDD2DGZ 32 5.059

PVSS1DGZ 29 2.958

PVSS2DGZ 136 5.059

Table 27: I/O Pad Characteristics
Cell Power (µW/MHz) Drive Strength (mA) Pin Load (pF) Rise Delay (ns) Fall Delay (ns)

PDISDGZ 4.33 N/A 3.341 0.628+0.150 Cld
1

1. Cld is in pF

0.852+0.158 Cld
1

PDO08CDG 106.32 8.00 3.219 1.219+0.045 Cld
1 1.186+0.047 Cld

1

PDO16CDG 146.29 16.00 2.796 1.618+0.024 Cld
1 1.493+0.026 Cld

1
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M  bius
             Microsystems
Convergence of Semiconductor Technologies

Copernicus Clock Macro
For UM WIMS Processor
Features
• 200 MHz LC clock with real-time temperature

compensation
• 20 MHz low-power ring clock
• LC clock shutdown for low-power
• Glitch-free switching between LC and ring clock
• 32-bit control interface for calibration of LC/ring

frequencies and temperature compensation

Block Diagram

Signal Descriptions

vdd: Copernicus 1.8V power supply
This will be driven by a dedicated supply pin of the
WIMS processor, allowing for better noise isolation
and a simple means of measuring macro current.

vss: Copernicus ground
This will be driven by a dedicated supply pin of the
WIMS processor, allowing for better noise isolation
and a simple means of measuring macro current.

reset: asynchronous reset
This active low input initializes the arbiter to allow
the LC clock to drive clkout during and upon exiting
reset. In turn, the ring clock is barred from driving
clkout during and upon exiting reset. The integrator
must therefore ensure, via initialization of the
userctl inputs, the LC clock is enabled and selected
upon reset.

userctl[7:0]: LCCal - LC Calibration
This 8-bit value allows for calibration of the LC
clock frequency. Process variations will lead to die-
to-die differences in the center frequency. The
correct value for LCCal is provided by the external
Automatic Frequency Calibration Macro (AFCM).
See the AFCM section for details on interfacing
with this macro.
The Copernicus clock macro is designed to
produce a 200MHz clock output with LCCal = $80,
where “$” is used to signify hex radix. Increasing
values of LCCal will reduce the frequency whereas
decreasing values will result in higher frequencies.
A value of $FF will produce a clock with frequency
0.92X the resulting center frequency out of the fab.
$00 will give a frequency of 1.08X the frequency
out of the fab. LCCal bits are weighted in a binary
manner as shown in Table 2.
For maximum flexibility in calibration, it is
recommended that LCCal be initialized to $FF
upon reset, producing the lowest possible
frequency.

Table 1: Copernicus Signal Descriptions

Name voltage levels Description

vdd 1.8V macro power (input)

vss 0V macro ground (input)

reset VH=1.8V, VL=0V macro reset, active low 
(input)

userctl[15:0] VH=1.8V, VL=0V user control and 
calibration (input)

debugctl[15:0] VH=1.8V, VL=0V miscellaneous debug 
control (input)

clkout VH=1.8V, VL=0V 200MHz/1MHz clock 
(output)

Figure 1. Block diagram of Copernicus Macro
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vss

debugctl

userctl

Copernicus

16
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      Design SpecificationRELEASE 1.2
Appendix C. Copernicus On-chip Clock Generator
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userctl[8]: LCSel - LC Clock Select
This bit selects which clock source drives the
clkout output as described in Table 3. This bit will
be reset to 1.

userctl[9]: LCEn - LC Clock Enable
This bit allows the user to shut down the LC clock
for low-power operation as described in Table 4.
This bit should be reset to 1.

userctl[10]: RingEn - Ring Clock Enable
This bit allows the user to shut down the ring clock
for low-power operation as described in Table 5.
This bit should be reset to 0.

userctl[11]: BiasEn - Bias Enable
This bit allows the user to shut down the bias circuit
for low-power operation as described in Table 6. If
BiasEn is de-asserted, neither LC nor ring clocks
will produce an output. This bit should be reset to
1.

userctl[13:12]: RingCal - Ring Calibration
These two bits allow for coarse control of ring
oscillator frequency. $3 gives the lowest ring clock
frequency while $0 give the highest. Integrator may
determine reset value.

userctl[15:14]: TCRes - Resistor TC Calibration
These two bits allow for calibration of resistor bank
temperature coefficient. This is a process-
dependent value and will typically not change once
the correct value is determined in initial silicon
evaluation. These bits should be reset to 0.

debugctl[15:0]: Miscellaneous Debug Control
These bits are for debug of the initial silicon. These
bits should be reset to $02A8.

clkout: Copernicus Output Clock
This output is driven by either the LC oscillator
output or the ring oscillator output depending on
the state of LCSel. An arbiter is included in the
Copernicus macro to allow for low-latency, glitch-
free switching between the two clock sources.

External AFCM Interface
This section describes the interface to the external
Automatic Frequency Calibration Macro (AFCM).
The AFCM is implemented in an off-chip FPGA
which supports multiples means of interfacing to
chips containing the Copernicus macro.
The external AFCM compares a reference clock to
an output of the Copernicus clock. If the
Copernicus clock is found to be running faster
(slower) than the reference, the AFCM will
generate a new LCCal value for Copernicus to
decrease (increase) the frequency of the LC
oscillator. The AFCM then compares the reference
clock to the new Copernicus clock frequency once

Table 2: LCCal Weighting

bit weight

7 -8%

6 -4%

5 -2%

4 -1%

3 -0.5%

2 -0.25%

1 -0.125%

0 -0.0625

Table 3: LCSel Description

value description

0 clkout = ring oscillator output

1 clkout = LC oscillator output

Table 4: LCEn Description

value description

0 LC clock disabled and producing 
no output

1 LC clock running and producing 
200MHz

Table 5: RingEn Description

value description

0 Ring clock disabled and 
producing no output

1 Ring clock running and 
producing 1MHz output

Table 6: BiasEn Description

value description

0 Bias powered down. Neither 
clock source can operate.

1 Bias powered up allowing either 
clock source to operate (if 

enabled)
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again. This process is repeated until the best value
of LCCal is found.
Figure 2 shows a block diagram of the external
AFCM. Both the reference clock and Copernicus
clock inputs are 50MHz, not 200MHz clocks. Note
that this is a preliminary diagram and can be
changed per requirements.

The external AFCM supports various standard
interfaces but only two will be relied on for the
WIMS processor. The first and most direct method
utilizes the basic serial interface of the external
AFCM. The SPI interface will serve as a backup to
the basic serial interface and will also be used for
demonstration purposes.
In addition to calibration, the AFCM will also serve
as a direct means of controlling all inputs to the
Copernicus macro for the purpose of initial silicon
evaluation. In particular, the registers driving
debugctl[15:0] and userctl[15:0] will be under direct
external control when the basic serial interface is
used.

Basic Serial Interface
This interface requires one dedicated pin,
calenable, and three dual-purpose pins. The three
dual-purpose pins can be any pins that do not
serve a critical purpose when the calibration
routine is running. For example, GPIO pins would
be a good choice here but reset or external clock
signals would not be a good choice. When
calenable is asserted these pins would drive
serdata, serclk and serload to the register logic
driving the Copernicus control inputs. Figure 3
shows a diagram of the registers and associated
logic for driving userctl[15:0] and debugctl[15:0].
When calenable is asserted, the two 16-bit
registers are configured as one 32-bit shift register
with input data coming from serdata and the shift
clock coming from serclk. Note that no serial output
data is required. After the processor boot
completes, a 50MHz clock will be driven to an
external pin. This frequency can be modified (e.g.
to 25MHz) by code running on the core processor.

When calenable is not asserted, the registers are
loaded using the normal, system-mode clock and
databus (called periphdb and system clock in the
diagram).

A latch controlled by !(calenable*serload) is shown
in Figure 3. This latch is included to avoid changing
the macro inputs when shifting new values in
during calibration mode. If latches are to be
avoided, these can be replaced with flip-flops
loading on ffclk with a feedback mux that holds
data steady when calenable and serload are
asserted simultaneously.
Figure 4 shows example waveforms for two 32-bit
transfers during calibration or debug.

Serial Peripheral Interface (SPI)
The WIMS SPI can be used as a backup interface
for calibration. In addition, Mobius will use this
interface as part of a demonstration vehicle for the
external AFCM.
Figure 5 shows the pin correspondence between
external AFCM and WIMS SPI port.

While the external AFCM will perform the actual
frequency calibration, code running in the WIMS
processor will need to be developed to perform the
transfers between the external AFCM and the

Figure 2. Block diagram of external AFCM
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WIMS register driving userctl. Figure 6 shows an
example flow diagram of this code.

The external AFCM itself is under development
and the command syntax is not yet available.

Figure 6. SPI Calibration Flow Diagram
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