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CHAPTER 1 

 

INTRODUCTION 

 

1. Background 

A wide range of chemical species ranging from small molecules to peptides are 

known to function as neurotransmitters and play a role in a variety of biological 

conditions ranging from cognition and arousal to disease and addiction [1].  While the 

synaptic gap between neurons is smaller (~20 nm) than current probes, neurotransmitters 

not bound to receptors, reuptaken or degraded diffuse into the much larger extracellular 

matrix of the brain.  Dynamics in these neurotransmitters in live animals in response to 

external stimulus are usually measured by sampling the extracellular matrix with some 

changes in the subsecond regime.  While several of these species are widely studied, 

neuropeptides are more difficult to study because of their low concentration (<100 pM) 

and lack of electrochemical sensors to detect them [1-4].  The neuropeptides neurotensin, 

the enkephalins, and beta-endorphin have been implicated in a variety of behaviors and 

diseases including feeding, pain, drug abuse, Parkinson’s and schizophrenia [5-7]; 

moreover, current techniques are limited to quantifying these peptides at a temporal 

resolution of ~30 minutes [8]. 
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Figure 1.1. Neurotransmission across a synapse (~600 nm) via chemical transmitters released by an action 

potential from the pre-synaptic neuron is depicted in the scheme.  Chemical neurotransmitters (red) are 

either uptaken by the pre- or post-synaptic neuron via transporters (purple), enzymatically degraded (green) 

or diffuse into the extracellular space (dashed arrow). 

 

Quantitative analytical methods for measuring the dynamics of neuropeptides 

include microelectrodes and imaging techniques such as positron emission tomography.  

These techniques allow high temporal resolution and noninvasiveness, respectively, but 

with a limited range of analytes and insufficient spatial resolution for rodent studies, 

respectively [3, 4, 9].  Microdialysis sampling, where analytes diffuse across a hollow 

fiber membrane into a perfusing stream and are convectively transported to the detection 

system, allows quantification and is easily coupled to traditional analytical techniques 

such as LC-MS, HPLC and radioimmunoassay [3, 10, 11]; however, a major limitation of 

this method is the large sample requirements for these detection techniques. 
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2. Microfluidic Devices 

 Rapid advances in fabrication technology in the semiconductor industry has 

resulted in both the ubiquity of digital electronic devices throughout our lives and results 

in a logarithmic decrease in scale of features fabricated [12].  The application of this 

technology to the miniaturization of chemical instrumentation is known as microfluidics 

[13].  As discussed in numerous reviews, microfluidics offers several advantages over 

conventional analysis including, but not limited to, rapid mixing, small sample and 

reagent use, portability, reduction in analysis cost, and unique phenomena due to the 

physical forces that dominate at scales near 1 micron [14-19].  While a microfluidic 

platform was chosen due to its compatibility with the small sample volumes resultant 

from microdialysis sampling, microfabrication also allows for the integration of several 

of these advantages into our analytical device.  Specifically, the device described herein 

utilizes the small scale for rapid mixing of reagents and the fluid flow is then segmented 

into water-in-oil droplets to preserve temporal resolution by preventing dispersion as the 

sample travels to analysis [19]. 

 

3. Fluorescence Polarization Immunoassay 

Immunoassays are ubiquitous in biochemical analysis.  In a competitive 

immunoassay, the antigen of interest competes with labeled antigen for antibody binding 

sites such that the quantity of an analyte is a function of the ratio of bound to unbound 

labeled antigen [20].  Since a fluorophore will only absorb if its dipole is aligned with the 

electric field of the light, fluorescence is polarization dependant; specifically, if a 
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population of fluorophore is excited with polarized light, the polarization of emitted light 

is determined by the amount of rotation the species undergoes.  If this population of 

excited molecules rotates much more rapidly than the fluorescence lifetime, then the 

fluorescence will be isotropic; conversely, if the fluorophore is bound to another species, 

then its rotation will be encumbered and the fluorescence anisotropy will be larger [20, 

21].   While this method of analysis is limited to analyzing a single species, advantages 

include the commercial availability of antibodies to bind a wide range of analytes and the 

modularity of the system. 

While fluorescence anisotropy immunoassays have been previously demonstrated 

both in our lab and commercially, this technique has not been previously coupled to 

microfluidics.  Several groups have demonstrated advantages to using segmented flow in 

microfluidic devices including limiting diffusion, chaotic mixing, and confined nL 

volumes [19].  The combination of an immunoassay and segmented flow microfluidics 

allows high mass sensitivity and throughput with automation and low sample 

requirements. 

 

4. On-chip Preconcentration 

 Several methods for concentrating peptides on microfluidic devices have been 

demonstrated [22, 23], including solid phase extraction [24], liquid-liquid extraction [25-

29], and electrokinetic stacking or trapping [24, 30-33].  Of reported techniques, only 

electrokinetic trapping at micro-nano-fluidic junctions can repeatedly enrich samples by 

factors at and greater than 106 on a timescale of minutes [34].  Where nanofluidic 

structures are technically difficult to integrate into microfluidic devices due to a greater 



	
  

5	
  

than 104 difference in feature size, a similar enrichment phenomena has been reported by 

using floating electrodes patterned in a microchannel, known as a bipolar electrode [35].  

In this work, we broaden the application of this bipolar electrode to be compatible with 

highly ionic media such as is found in neurotransmitter sampling.  While the Han group 

has reported an integrated preconcentrator and droplet generator to reduce dilution by 

dispersion [36], the continuous generation of droplets at volumes smaller than the 

concentrated band diluted the analytes by splitting them between droplets; moreover, the 

large droplet storage reservoir mixed the water-in-oil droplets such that all temporal 

resolution was lost. 

 

5. Finite Element Method Modeling 

 While direct analytical measurements are preferable, several physical and 

chemical parameters are not measureable at the scale of microfluidic devices.  Where 

direct numerical solutions of the equations governing pressure-driven flow, electrokinetic 

flow, and mass transport cannot be directly solved, a variety of commercially available 

software suites allow the approximation of these equations as solvable ordinary 

differential equations and the discretization of these systems into grids with units 

sequentially solved until the error between boundaries reaches an acceptably low level 

[37, 38].  In this work, electrokinetic and pressure driven flow were governed by the 

following equations (assuming continuity): 

 ρ(∂V/∂t + (V•∇)V) =  -∇p + µ∇2V + εκ2ψ∇φ  

where the electric field was decoupled into the external field and electrostatic field 

resultant from the charged walls: 



	
  

6	
  

 Φ = φ + ψ  

Potentials were considered to be zero when no external potential was applied to the 

system.  Similarly, convection and diffusion were calculated by solving Fick’s Law of 

Diffusion (at constant temperature): 

∂c/∂t + (V•∇)C = D∇2C 

where diffusion coefficients were approximated as their corresponding literature reported 

values. 

 

6. Dissertation Overview 

The overall goal of this dissertation is to create an integrated microfluidic device 

that preconcentrates continuous in vivo microdialysate sampling from rodent central 

nervous system and quantify neuropeptides therein with a fluorescent immunoassay.  

While microdialysis is commonly used in sampling neurotransmitter release, the 

components of the microfluidic device were individually designed and tested in model 

systems. 

First, a fluorescence anisotropy competitive immunoassay for insulin secretion 

from Islets of Langerhans was developed and modified for compatibility with the 

segmented flow system to preserve temporal resolution.  This assay was then used in a 

microfluidic device with both integrated Islet culture and chemical gradient delivery.  

This device was able to measure insulin secretions in a non-destructive manner from 

Islets stimulated by glucose. 

Next, a bipolar electrode preconcentrator was developed to function with the 

highly conductive media used in neurotransmitter sampling.  The device was optimized 
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in scale for the bulk flow and low abundance of neuropeptides expected in microdialysis 

sampling.  To prevent bubble formation prevalent under the high potentials applied in this 

technique, a novel method of using evacuated PDMS was employed.  In a model for 

neuropeptide preconcentration, labeled proteins were stacked into bands and sequestered 

into water-in-oil droplets for analysis downstream. 

Finally, several microfluidic systems were analyzed by finite element method 

modeling to determine both ideal performance limits and non-analytically measurable 

properties (e.g. shear stress and diffusion of species that could not be imaged) of the 

devices.  A microdialysis sample probe was modeled as segments in three-dimensions to 

determine the effects of perfusion flow rate and geometry on sample recovery; these 

results were compared to experimental results.  Both the Islet of Langerhans perfusion 

chamber, used in a variety of microfluidic devices, and an adipocyte cell culture were 

modeled to analyze both geometric and flow rate effects on gradient delivery and shear 

rate.  The FPIA device was modeled to determine the effective performance of the device 

in rapidly changing chemical gradients, mixing of reagents, and the retention of temporal 

resolution; additionally; biochemical secretions from individual Islet of Langerhans were 

modeled. 

 This dissertation describes a non-destructive quantitative measurement technique 

widely applicable to any small biomolecule with an antibody, a preconcentration system 

to enrich trace neuropeptides to quantifiable concentrations, and the numerical modeling 

of these devices.  These devices illustrate that a droplet-based FPIA is a versatile 

analytical technique for application in miniaturized chemical and biochemical 

instrumentation.  
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CHATPER 2 

 

QUANTITATIVE FLUORESCENCE POLARIZATION IMMUNOASSAY 

ANALYSIS OF PEPTIDE SECRETIONS IN MICROFLUIDIC DEVICES 

 

1. Introduction 

Segmented flow, in which aqueous samples are partitioned within a carrier 

phase of immiscible fluid, has emerged as powerful way to manipulate low 

volume samples (10 nL and less) in microfluidic analytical systems.  This 

approach, which may also be considered a miniaturization of “segmented flow 

analysis [1, 2]”, creates several advantages for analytical measurement including 

high surface area per unit volume [3], high throughput [4], multiplexed analysis 

[5], discrete sample storage [6, 7], and mitigation of dispersion in temporal 

sampling [8, 9].  These multiphase systems commonly consist of water-in-oil 

droplets produced in microfluidic devices as a result of hydrodynamic focusing 

[10] or shear-induced droplet breakup at a geometry such as a T-junction [11, 12]. 

Analytes sequestered in water-in-oil droplets have previously been 

analyzed by a variety of methods including: off-line analysis by fluorescence 

microscopy [13], off-line and on-line mass spectrometry [14-17], electrophoresis 

[18, 19], fluorogenic enzyme assay [8], and FRET assay [4].  Fluorescence 
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polarization immunoassay (FPIA) is a homogenous immunoassay method that is 

well-suited for analysis of low volume plugs in multi-phase systems because of 

the relatively simple requirements for reagent addition and optical readout.  

Furthermore, this method can complement enzymatic and FRET methods by 

providing a route for detecting nearly any small molecule that can have an 

antibody or aptamer raised against it.  Indeed, commercially available macroscale 

FPIA kits and systems are routinely used for quantifying drugs and hormones 

(e.g. the Abbott TDx system).  Further, fluorescence polarization is a highly 

valuable method for high-throughput screening.  

 The principle of a FPIA is illustrated in Figure 2.1.  Fluorophores excited 

with polarized light will emit fluorescence with higher anisotropy as molecular 

volume increases due to decreasing molecular rotation [20].  In FPIA, a labeled 

antigen and antibody are added to a sample.  In the absence of unlabeled antigen 

(analyte), most of the labeled antigen is bound to antibody resulting in high 

anisotropy.  As analyte concentration increases, the labeled antigen is displaced 

and anisotropy decreases [21].  
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Figure 2.1. Scheme of competitive heterogeneous fluorescence polarization immunoassay in the 

presence of low (top) and high (bottom) antigen concentrations.  Fluorescent-labeled antigens 

compete with unlabeled antigen from a sample matrix for binding sites on antibodies lowering the 

ensemble rotation of the fluorophores in an inverse relationship to antigen concentration from the 

sample. 

 

In this work, we demonstrate FPIA in droplets using on-line addition of 

reagents to a sample stream.  The system is applied to measurement of insulin 

release from single Islets of Langerhans perfused in culture on a microfluidic 

chip.  Islets are micro-organs within the pancreas that contain several types of 

endocrine cells including insulin producing β-cells [22].  Interest in Islet secretory 

function is driven by the relationship between declines in insulin release and 

development of type-2 diabetes.  Methods for monitoring insulin secretion are 

valuable for determining kinetics of insulin secretion during physiological 

manipulation of Islets and possibly for evaluating Islets to be used for Islet 

transplant.   

Traditional methods of insulin quantification are radioimmunoassay and 

ELISA.  These methods typically have slow feedback and are expensive to use if 

high temporal resolution is required because of the many samples that must 

analyzed.  Our group has developed electrophoretic immunoassay schemes that 

have good temporal resolution at low cost per assay [23]. Fluorescence correlation 

spectroscopy in a plug format [5] has also recently been used to monitor insulin 

secretion from single Islets.  We demonstrate that FPIA in droplets has the 

potential to be a simple method for monitoring insulin release with high temporal 
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resolution.  The use of segmented flow allows maintenance of high temporal 

resolution for the measurement.   

 

2. Experimental 

2.1 Chemicals and Reagents 

KCl, MgCl2, CaCl2, HF, HNO3, H2SO4, H2O2, NH4OH, EDTA, NaCl, 

HCl, NaOH and methanol were obtained at the highest quality from Fisher 

Scientific.  Insulin labeled with fluorescein isothiocyanate (FTC-insulin) and 

insulin antibody used in the immunoassay were purchased from Invitrogen and 

Biodesign International, respectively.  Tricine, electrophoresis grade albumin 

from bovine serum (BSA), insulin from bovine pancreas (insulin), 

trichloro(1H,1H,2H,2H-perfluorooctyl)silane (FTS), anhydrous hexanes, 

anhydrous chloroform, fluorescein, perfluorodecalin (oil) and molecular sieve, 2A 

were all purchased at the highest purity from Sigma. 

 

2.2 Solutions and Buffers 

All aqueous solutions were prepared with 18 M-Ohm water (Millipore, 

Bedford, MA), were pH balanced with addition of 1 M NaOH, and were filtered 

with a 0.40 um filter.  Immunoreagent buffer (IMR) consisted of 50 mM NaCl, 1 

mM EDTA and 20 mM tricine, while balanced salt solution (BSS) was comprised 

of 125 mM NaCl, 5.9 mM KCl, 1.2 mM MgCl2, 2.4 mM CaCl2, 25 mM tricine.  

Both solutions were adjusted to pH 7.4 with dropwise addition of 1 M NaOH and 

0.7 mg/mL of bovine serum albumin (BSA) was added. 
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2.3 Microfluidic Device Fabrication 

An emulsion plot from a computer aided drafting design was printed at 

50400 dpi resolution (Fineline Imaging, Colorado Springs, CO).  This master 

design was transferred to 1.1 mm thick Borofloat® glass substrates (Telic 

Company, Valencia, CA) coated with 120 nm chromium and 530 nm AZ1518 

photoresist (Clariant, Summerville, NJ), respectively, by exposing the substrate to 

2 s of UV light (26 mW/cm2) while spatially filtered by the emulsion plot and 

removal of exposed photoresist and chrome with AZ915 MIF developer (Clariant, 

Summerville, NJ) and CEP-200 chrome etchant (Microchrome Technologies, San 

Jose, CA), respectively.  80 µm deep channels were wet chemically etched in 

48/17/35% HF/HNO3/H2O and verified with a Dektak 4 profilometer (Veeco 

Instruments Inc., Plainview, NY).  Access holes to channels were drilled with 300 

µm diameter diamond tipped drill bits (KYOCERA America, Inc., San Diego, 

CA) on a 10" drill press and substrates were bonded to Borofloat® 1.1 mm thick 

coverslides after sonication and cleaning in 2:1 H2SO4/H2O2 (v/v) for 10 minutes 

and 5:1:1 H2O/NH4OH/H2O2 (v/v) for 20 minutes prior to bonding substrates to 

coverslides between MACOR ceramic plates (Astro Met, Cincinnati, OH) in a 

glass kiln for 6 hours at 610 °C. 

Connections to the device were made with Nanoport reservoirs (IDEX® 

Health & Science, Oak Harbor, WA) and 75/360 µm i.d./o.d. fused silica 

capillary.  Capillaries used for droplet detection (outlet capillaries from the 

devices) were 55 cm in length with the polyimide coating burned from a 2 mm 
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window 50 cm from the end of the capillary that was carefully aligned to fit in the 

outlet access hole. 

 

2.4 Surface Modification 

All channels of devices were modified by silation chemistry [24].  Unless 

otherwise stated all solutions were pumped at 20 µL/min for 30 minutes.  Channel 

and capillary walls were cleaned with 500 mM NaOH, rinsed with 18 MΩ water, 

activated with 1 M HCl and dried with methanol.  While priming the device with 

anhydrous hexane, a 5 mM solution of FTS in 3:1 (v/v) hexane/chloroform was 

prepared.  This silation solution was pumped at 10 µL/min for an hour before 

rinsing with anhydrous hexane and drying with methanol.  Outlet capillaries, 

which transport droplets off-chip, were modified in a similar manner.  

Hydrophobic regions were removed from the perfusion channel, Islet chamber 

and reagent channels by pumping 500 mM NaOH through these channels while 

pumping methanol through the oil and droplet channel/capillaries.  All devices 

were dried with methanol and stored in a desiccator prior to use. 

 

 

2.5 Droplet Generation and Device Operation 

For experiments, the device was mounted over a resistive heater strip that 

covered the cell chamber.  Voltage was applied to the strip to maintain a 

temperature of 37 oC in the cell chamber.  Fluid flow in the device was driven by 

CMA/102 (CMA Microdialysis, Sweeden) and PHD 2000 (Harvard Apparatus, 
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Holliston, MA) syringe pumps fitted with gas-tight syringes (Hamilton, Reno, 

NV).     Flow through the perfusion inlets was driven at a total of 1 mL/min.  

Perfluordecalin was pumped at 1-2 mL/min.  The oil flow rate was adjusted to 

generate plugs at 3-5 Hz.  Chemical gradients in perfusion media over time were 

generated on-chip by variation of flow rates for perfusion inlet channels while 

maintaining a constant total perfusion flow rate of 1 µL/min.  Switching of pump 

rates was controlled remotely by serial cable with in-house written software. 

 

2.6 Fluorescence Anisotropy Detection 

Plugs generated on-chip were pumped on-line into a capillary that was 

mounted in a fluorescence anisotropy detector similar to that described elsewhere 

[25-27]. Briefly, fluorescence was excited in the plugs within the capillary as they 

flowed through a focused 488 nm laser beam (Sapphire 488 30 CDRH, Coherent, 

Santa Clara, CA).  The detection point was 50 cm downstream of the microfluidic 

chip.  Parallel and perpendicular polarized fluorescence signal was collected at 

100 Hz by in-house written LabView 8.5 virtual instrument (National 

Instruments, Austin, TX) with SR570 low noise current preamplifiers (Stanford 

Research Systems, Sunnyvale, CA).  Signals were adjusted for baseline and 

differences in detector sensitivity (i.e., the G-factor) [20].  Droplet data points 

were parsed from trace for each channel and anisotropy (r) calculated by the 

equation:  

€ 

r =
Iparallel −G × Iperpendicular

Iparallel + 2 ×G × Iperpendicular
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Anisotropy values were averaged for every droplet and were plotted as a function 

of time.  For each experiment, parallel and perpendicular signals for fluorescein 

were measured and use to solve for the G-factor to match the literature anisotropy 

(r) value. 

 The fluorescence polarization immunoassay was optimized using a Fusion 

microplate reader (PerkinElmer, Waltham, MA).  Insulin in BSS solution was 

mixed with half volume equivalents of FTC-insulin and antibody in IMR solution 

in microcentrifuge tubes and then transferred to a 384-well microplate for 

measurement assuming a 60 s incubation time.   

 

2.7 Numerical Modeling of Sampling Single Islets with Perfusion 

The performance of the perfusion chamber was numerically modeled in 

three dimensions using commercial finite element software, COMSOL 3.3 

(COMSOL, Inc., Burlington, MA).  Channel shapes were approximated as 

parallelogram with a height of 80 µm and top and bottom widths of 160 and 80 

µm, the perfusion chamber was approximated as a 1100 µm tall cylinder with 360 

µm diameter, and the Islet was approximated as a 150 µm sphere centered 70 µm 

from the bottom of the chamber.  Viscosity and density of water were assumed to 

be 6.90 × 10−4 Pa s and 993 kg m-3, respectively.  The diffusion coefficient at 37 

°C was 7.30 × 10−10 m2 s-1 [28]. 

In all models, boundaries of inlets were defined with laminar flow profiles 

and fluid dynamics were solved at steady state conditions first.  These solutions 
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were then used as parameters to solve convection and diffusion over a course of 1 

min with 0.01 s time steps.  The effect of the perfusion chamber on temporal 

resolution was modeled by defining the concentration at the inlet boundary of the 

mixing channel, located 500 µm upstream of the perfusion chamber, as a step 

change 1 s after the model began.  Step changes were defined as a Heaviside 

function with smoothed first derivative.  Islet sampling performance was modeled 

by integrating concentration across the outlet boundary as a function of time after 

a step change in concentration on the Islet surface. 

 

2.8 Switching and Mixing Performance 

On-chip mixing and the temporal response of the device were analyzed by 

imaging gradients in time of fluorescent dye at various points on the device.  BSS 

and 100 nM fluorescein in BSS were pumped at a combined flow rate of 500 

nL/min in the respective perfusion inlets, IMR was pumped in both 

immunoreagent inlets at 250 nL/min, and perfluorodecalin was pumped in the oil 

inlet at 1000-2000 nL/min.  Mixing was monitored by line-scan analysis of 

images collected at the beginning of the mixing channel, end of the mixing 

channel and just prior to droplet formation using Igor Pro 6.0.3.1 (WaveMetrics, 

Inc., Lake Oswego, OR).  Similarly, the temporal response to changes in pumping 

flow rate was determined by collecting time lapse images at the three regions of 

interest in the mixing experiment at 1 Hz and plotting the sum of the intensity of 

the 5 points centered around the maximum for each line-scan at the end of the 

mixing channel and immediately prior to droplet formation.  Temporal responses 
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to these gradient changes in the capillary were compared between segmented and 

continuous flow, where perfluorodecalin in the oil channel was replaced with 

IMR, by parsing parallel fluorescent signal from droplets and plotting respective 

of time point data.  All experiments were performed in triplicate. 

 

2.9 Fluorescence Anisotropy Immunoassay Calibration 

Prior to measuring insulin released from Islets, devices were calibrated by 

pumping insulin standards at 500 nL/min, 60 nM FTC-insulin at 250 nL/min and 

30 nM antibody at 250 nL/min into the perfusion inlets of the device (see Figure 

2.2).  Oil was pumped at 1500 nL/min to generate plugs that were the passed into 

the detector.   Signal from 50 droplets for each concentration were averaged for 

the calibration.  Fluorescence anisotropy as a function of insulin concentration 

was fit as a one-site, total binding curve in Prism 5 (GraphPad Software, Inc., La 

Jolla, CA) for quantification. 
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Figure 2.2. Scheme of Islet perfusion glass microchip (a) with 80 µm deep and 120 µm half width 

channels:  droplets are formed at the interface of the aqueous (black) and oil (grey) phases and 

transported through hydrophobically modified channels and capillary to a laser induced 

fluorescence photodetection system.  All flow was driven by external syringe pumps as depicted.  

An image of the device inverted to display channels with a cent piece for reference (b) and a 

cartoon of the FPIA for low and high insulin concentrations (c) are shown. 

 

2.10 Biological Samples and Glucose Stimulated Insulin Release 

Islets were isolated from male CD-1 mice as previously described [23].  
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Isolated Islets were incubated in RPMI 16440 media with 10% fetal bovine 

serum, 100 UI/mL penicillin and 100 µg/mL streptomyin for 2-5 days in an 

incubator maintained at 5% CO2 and 37 oC before experimentation.  For on-chip 

experiments single Islets with healthy membranes and diameters of ~150 µm were 

transferred to a cell culture dish with 37 oC BSS with 3 mM glucose added.  The 

single Islet was then gently transferred to the Islet perfusion chamber via pipette 

and observed to settle on the bottom of the chamber as viewed under a 

stereoscope.  After sealing the Islet perfusion chamber, BSS with 3 mM glucose 

was perfused through the Islet chamber and the plug generation was re-

equilibrated.   

 

3. Results and Discussion 

3.1 Fluorescence Polarization Immunoassay Calibration and Figures of Merit 

Initial experiments were directed to developing a FPIA in multiphase flow 

using the chip shown in Figure 2.2.  In this system, a stream of insulin standard or 

Islet superfusate merges with streams of FTC-insulin and antibody before 

reaching a T-structure where aqueous plugs are formed within a carrier of oil.  At 

plug formation rapid mixing of the reagents and sample occurs due to chaotic 

mixing [6] as previously modeled [29] and observed [6, 30].  Samples are then 

transported off the chip and through a capillary tube where they are detected in 

capillary using a laser-induced fluorescence polarization detector [25-27].  

Parallel and perpendicular oriented fluorescence components are detected on each 

droplet as shown in Figure 2.3A.  These signals are then converted to anisotropy 
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as described in the Experimental section.  Increasing the concentration of insulin 

in the sample stream results in decreases in anisotropy as expected (see Figures 

2.1 and 2.3).  Flowing different concentrations through the sample channel allows 

calibration of the assay as shown in Figure 2.3.  The sigmoidal curve response 

was similar to other competitive immunoassays and previously reported 

electrophoretic immunoassays using this antibody and FTC-insulin combination 

[23, 31-35].   

 

Figure 2.3. FPIA in droplet response as a function of insulin concentration with a representative 

calibration curve of average anisotropy from 50 droplets at various insulin concentrations with G-
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factor calculated from fluorescein standards (a).  Parallel (black) and perpendicular (grey) signal 

from plugs in capillary with calculated anisotropy (black bars) at high (1000 nM) and low (10 nM) 

insulin concentrations are shown in (b) and (c), respectively. 

 

Several factors including antibody-antigen affinity, labeled-antigen 

fluorescent intensity and reagent concentrations determine both the limit of 

detection and dynamic range of a FPIA.  Although antibody-antigen affinity (Ka ~ 

1×109 M-1) and fluorescent intensity are fixed for a given experiment, antigen 

(insulin) and immunoreagent concentrations are a function of the relative flow 

rates used in the perfusion system.  These flow rates must be set to balance 

several competing performance requirements.  Sample flow rate must be 

sufficient to rapidly wash out the Islet chamber to ensure both good temporal 

resolution of monitoring and adequate media flux for cell health; however, if the 

flow rate is too high it will overly dilute released insulin and could cause shear 

stress on the Islet.  Additionally, the range of flow rates for sample and reagent 

stream and carrier fluid is constrained to regimes where droplets are reproducibly 

produced with sufficiently high frequency to monitor the sample and reagent 

stream with good temporal resolution.    The flow rate also affects the 

concentration of reagents, which in turn influences the sensitivity range of the 

FPIA.   

Using previous work for plug formation [8, 18], insulin competitive 

immunoassay [23, 31-33], and Islet release as a guide we identified the following 

conditions as appropriate for the monitoring insulin secretion using the FPIA: 
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sample flow rate = 500 nL/min, reagent flow rate = 500 nL/min (combined from 

equal 60 nM FTC-insulin and 30 nM antibody flow rates), and oil carrier fluid 

flow rate = 1000 nL/min.  Using these conditions, detection limits as low as 6 nM 

were achieved for insulin in droplet detection.  Anisotropy scaled negatively with 

the logarithm of insulin concentration into the µM range (see Figure 2.3).  This 

concentration range correlates to a range of insulin secretion of ~15 to 3000 

pg/min of insulin, which is within the expected range for insulin release from 

single Islets [36-38].  While these conditions are insufficient to measure basal 

insulin secretions in many experiments, recalibration at a lower flow rate lowers 

the detection limit and dynamic range; for example, the presence of insulin 

secretions below the detection limit was confirmed in each experiment by 

decreasing the perfusion flow rate to 250 nL/min and both immunoreagent flow 

rates to 125 nL/min before glucose stimulation.  Improvements to the microfluidic 

device such as Islet chamber dead-volume, would allow more sensitive insulin 

measurements.  Anisotropy signals for 5 nM insulin had relative standard 

deviations of 2.1 to 8.3% on a single chip and 13 to 19% between chips when 

binning signals across 2 s periods.  

In the course of experiments we observed more variability in plug size, as 

apparent in the traces in Figure 2.3B and 2.3C, than expected.  This variability 

was partially attributable to unexpected roughness in the surface of wet-etched 

channel walls.  (This rough etching was eventually found to be due to poor quality 

in the lot of glass slides used for this work and is not expected to be a problem in 

future work.)  A second contributor to irregular droplets was that during transfer 
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from the glass chip to through the irregular geometry of the drilled outlet hole-

nanoport assembly minor droplet break-up and coalescence could occur.  (Later 

work has demonstrated methods for avoiding these effects [39].)  Polydispersity 

in droplets did not affect quantification as anisotropy was calculated for each 

droplet and droplets were binned.  Further, droplets were created at higher 

frequency than the expected temporal changes in insulin. 

 

3.2.1 Temporal Resolution  

Using segmented flow allows creation of discrete samples with fixed 

concentrations of reagent that, except for the coalescence mentioned above, 

cannot mix with each other.  For the application of monitoring cellular function 

this feature of segmented flow is advantageous in preserving temporal resolution 

of concentration changes even though the sample must be transported a 

significant distance to a detector and a sufficient incubation time is necessary for 

the assay.  For Islet secretion measurements, temporal resolution is an important 

feature because insulin secretion is known to have rich dynamics including 

oscillations with a period of 2-5 min and possibly faster spikes with periods of 10 

s [40-42].     

 

3.2.2 Temporal Resolution (Numerical) 

It was of interest to determine the temporal distortion of insulin secretion 

measured downstream.  Unfortunately, it was experimentally difficult to make 

step changes of concentration within the Islet chamber, therefore the temporal 
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response achievable for sampling secretions from an Islet was determined by 

numerically modeling the three-dimensional geometry of the channels on the chip 

(see Figure 2.4A).  Simulations showed that an instantaneous pulse of insulin 

released from the Islet surface was rapidly washed away from the Islet and into 

droplet formation channel (see Figure 2.4B).  A step change from the Islet 

produced a 1.8 s rise time before droplet generation and transport (see Figure 

2.4C).  Thus, in principle this system could achieve excellent temporal resolution 

for Islet monitoring.   
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Figure 2.4. Temporal response of step changes in concentration at the perfusion inlet and Islet 

surface from experimental results and numerical models.  The device was geometrically simplified 

to the regions of interest on the chip including the perfusion mixing channel, Islet chamber and 

reagent addition channels prior to T-junction for droplet formation (a).  Time lapse images of a 

simulated concentration profile slice at half channel height for a 1 s pulse of insulin release from 

an Islet show efficient sampling in (b).  Results, normalized for concentration and start frame, 

from the numerical model (c) and experiments with dye (d) are plotted as a function of time.  In 

the numerical model (c), a step change at the Islet surface (solid black line) resulted in 1.8 s rise 

time; however, a step change in concentration at the perfusion inlet yielded a 4.8 s 10 to 90% rise 

time at the end of the mixing channel (dashed black line) that increased to 8.1 s after the Islet 

chamber and reagent addition (dashed grey line).  Experimentally determined rise times from dye 

switching (d) yielded an 8.5 s 10 to 90% rise time at the end of the mixing channel (empty 

squares) that increased to 11 s after the Islet chamber and reagent addition (black circles) and to 20 

s when measured in multiphase flow in capillary (stars) with an expansion in the inset.  For 

comparison, the rise time for non-segmented flow system run under the same flow rates is shown 

(solid black line). 

 

To further evaluate the temporal performance of the device, we considered 

how different steps in the measurement process contributed to temporal distortion 

using both modeling and measurements of dye fronts at different points in the 
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chip created by making step changes in dye at the perfusion inlet.  The total 

temporal resolution can be considered the sum of the variances (τ2) from 

pumping, pre-plug convection and diffusion on chip, and droplet 

formation/transport components [43, 44].  Results from numerical models 

predicted that a step change in concentration made at the perfusion mixing 

channel inlet broadens to 4.8 s (10 to 90% rise time) before reaching the Islet 

chamber (Figure 2.4C, dashed black line).  This rise time increased to 8.1 s after 

the Islet chamber and reagent addition channels (Figure 2.4C, dashed grey line).  

These results suggest a 6.5 s of broadening prior to droplet formation and 

transport into the capillary based on summing the squares of the temporal 

contributions (see Figure 2.4C).   

To confirm the validity of numerically modeled broadening, broadening of 

step changes in fluorophore pumped through the system were measured and 

compared to the model.  In general good agreement was found.  Experimental 

data from imaging showed a 7.0 s contribution (6.5 s from numerical modeling) 

from the increase in rise time after the Islet chamber and reagent addition (see 

Figure 2.4D).  As a sum of squares this 7.0 s increase corresponds to a 2.5 s 

increase from 8.5 to 11 s of the total rise time of the analytical system.  However, 

the system’s response time increases to 20 s when measured in droplets at the 

detection window of the capillary.  The post-plug increase in response time is 

caused by droplet breakup and fusion at the large, rough drilled access hole and 

capillary connection.  Therefore, imperfections in droplet manipulation ultimately 

limited the temporal performance of this device.  
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Nevertheless, it is apparent that plug flow allowed the creation of discrete 

samples with fixed concentrations of reagent that cannot mix with each other; 

specifically, this temporal quantization of plug flow is advantageous in preserving 

temporal resolution for monitoring cellular function via secretory species 

concentration dynamics even though the sample must be transported a significant 

distance to a detector and a sufficient incubation time is necessary for the assay.  

As a demonstration of this effect, if no droplet formation is used, the broadening 

is about 90 s (see Figure 2.4D, solid black line). 

 

3.3 Monitoring Islet Function 

To demonstrate the use of the system for monitoring cellular function, we 

exposed Islets maintained in the sample chamber to step increases in glucose and 

monitored the insulin content of resulting plugs.  Traces from several such 

experiments are illustrated in Figure 2.5.  Islets exhibited a characteristic burst of 

insulin followed by elevated secretions over basal levels when exposed to 

increased glucose [45, 46].  In some experiments, basal concentrations were not 

detectable at the flow rates used.  Therefore, to determine basal concentration we 

slowed the flow rates to half, thus achieving higher concentrations in the sample.  

From these measurements, average peak insulin secretions were 124 ± 19 pg/min 

(n = 7).   Basal insulin levels were near or below the detection limit such that they 

were not quantified; however, the presence of insulin the perfusate was confirmed 

by lowering the flow rate, illustrating the trade off between sensitivity and 

temporal resolution.   The Islets also displayed a variety of insulin secretion 
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dynamics that have been previously observed.  These include an initial burst 

phase of insulin release (Figure 2.5), slow oscillations with period of 2-5 min 

(Figure 2.5D) and more rapid fluctuations with period of ~ 20 s (Figure 2.5C).  

Such rapid fluctuations are expected but have been difficult to measure by other 

methods. 

 

Figure 2.5. Sample traces of insulin secretion measured by FPIA in segmented flow from 4 

individual Islets treated with step changes in glucose concentration (a-d).   

 

The automated perfusion system used here allowed cycling between high 

and low glucose concentrations as well (see Figure 2.5A, B, C).  These results 

show a decreased intensity of peak insulin bursts on the second stimulation.  This 

decreased release is possibly due depletion of insulin secretory granules near beta-

cell membranes by previous stimulated release [46].   

Previously reported microfluidic platforms for Islet monitoring have 

achieved detection limits as low as 0.8 nM [33] or have used segmented flow 
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sampling for temporal resolution limited only by flushing the sample chamber [5].  

These systems all required comparatively expensive imaging systems (microscope 

with camera compared to a single point detector) and were constrained in 

flexibility of glucose (or other chemical) concentration changes.  Easley 

demonstrated a segmented flow system with indirect measurements of insulin 

secretion with dyes [47] (e.g. Fluo-4) that can be realized with a single point 

detector but assume a 2:6 Zn2+:insulin secretion ratio; however, changes the 

chemical gradient supplied to the Islet caused interruptions in quantitative 

measurements.      

 

4. Conclusions 

 Although FPIA has been demonstrated on a continuous flow microfluidic 

device[48], this work demonstrates that FPIA can be performed in a plug-flow 

system by mixing immunoassay reagents on-line with sample prior to plug 

formation and then monitoring the anisotropy of plugs within the tube.  Rapid 

mixing in droplets eliminated the need for complex fabrication of mixing 

channels and preserved temporal resolution from sampling to quantification.  This 

assay adds the types of assays that can be performed in plugs.  The assay was 

applied to monitoring insulin from single Islets at high temporal resolution; 

however, as FPIA and other fluorescence polarization methods are commonly 

used for measuring drugs, hormones, and small molecule-protein interactions, this 

approach may prove useful when low volume and high-throughput is required 

such as clinical assays or high-throughput screening.   
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While several segmented flow devices that improve temporal resolution 

over continuous flow devices have been recently reported, we demonstrate a 

versatile analytical technique for measuring a range of pharmacologically relevant 

compounds with a simple detection method.  This microfluidic device both 

improved temporal resolution by generating gradients near to the biological 

sample and by segmenting flow shortly downstream from the biological sample. 

This method allowed fast pulsatile insulin release from Islets to be measured.  

Numerical and analytical results suggest further improvements in temporal 

resolution are limited by the pumps and chip to capillary connections used in this 

work.  Future experiments with continuous multiphase flow FPIA can also be 

scaled to samples accessible with microfluidics (from single cell to tissue), 

multiplexed with contrasting dyes or multiple channels, or remotely sampled by 

storing water in oil droplets in a cartridge prior to analysis. 
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CHAPTER 3 

 

MICROFLUIDIC BIPOLAR ELECTRODE PRE-CONCENTRATION IN 

HIGHLY CONDUCTIVE MEDIA 

 

1. Introduction 

The quantification of neurotransmitters in vivo enables the direct study of the 

biochemical pathways in both normally functioning and diseased states of the brain [1].  

While numerous neurotransmitters are known to range from small molecules like nitrous 

oxides to large peptides like the endorphins, the low concentration of several of these 

biochemical species in the highly complex matrix of the central nervous system have 

frustrated efforts to directly study these pathways.   To reach levels of mass detection, 

either large a sample must be collected (which limits temporal resolution) or the samples 

concentrated prior to analysis [2, 3].   Several methods for pre-concentration have been 

reported, including solid phase extraction (SPE) [4-6], isoelectric focusing (IEF) [7, 8], 

temperature gradient focusing (TGF) [9, 10] and electric field gradient focusing (EFGF) 

[11-13].  Of preconcentration methods that can be continuously reused in a microfluidic 

device, the highest reported rate of enrichment reported is 108-fold in an hour from an 

EFGF method known as ion concentration polarization (ICP) [14]. 
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ICP, first observed by Rubinstein in desalination experiments with membranes, is 

a phenomenon in which bulk charge is primarily carried by either cations or anions at a 

greater flux than those ions are replaced such that localized region depleted of ions results 

[15-17].  This depleted region will have several implications for the electrochemical 

circuit: first, the electric field will have a larger gradient in the regions of concentrated 

ions that accumulate on either side of the depletion region; and, second, as the depletion 

region lowers the ionic strength of the solution sufficiently, the double layer formed by 

counterions at the charged surfaces of the walls will overlap inducing a permiselective 

region which only facilitates the transport of ions of the same charge as the double layer 

[18-24]. 

Two methods to engender ICP include the junction of a micro- and nano-channel 

under an electrical potential of sufficient strength to cause the double layers to overlap or 

by patterning a conductive material that is free to float in a channel of a microfluidic 

device.  This bipolar electrode (BPE) offers an alternate, lower resistance path for current 

that reduces the electric field near the electrode; additionally, the ends of the electrode 

allow water-splitting and other gas generating reactions to occur which will break the 

electrical circuit once comparable in size to the channel [8, 25-39].  To overcome this 

limitation, buffers are carefully chosen to reduce gas generation or that require lower 

potentials such as low ionic strength sample matrices.  In this chapter we will describe a 

microfluidic device that repeatedly pre-concentrates negatively charged peptides in 

highly ionic solution without bubble formation.   While a variety of quantification 

methods are compatible with this device, water-in-oil droplets were generated to store the 
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pre-concentrated peptides for compatibility with the quantification method described in 

the previous chapter. 

 

Figure 3.1. Scheme of bipolar electrode preconcentrator device where 100 µm channels in PMDS are 

bonded to a glass substrate with a Ti/Au electrode.   Aqueous sample driven by syringe pump into the main 

channel and oil driven (on demand) by pressurized air into two perpendicular channels were connected to 

the inlet reservoirs with 90-degree syringe tips.  Electrical potentials were applied from a DC source to the 

syringe tips at the aqueous inlet and outlet. 

 

2. Materials and Methods 

2.1 Chemicals and Solutions 

Fluorescein, sodium chloride, potassium chloride, magnesium sulfate, calcium 

chloride and phosphoric acid (both potassium and disodium salts) were purchased at the 
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highest purity from Sigma-Aldrich (St. Louis, MO).  Phosphate buffered saline (PBS: 

137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.76 mM KH2PO4, pH 7.4) and artifical 

cerebral spinal fluid (aCSF: 145 mM NaCl, 2.68 mM KCl, 1.01 mM MgSO4, 1.22 mM 

CaCl2, 1.55 mM Na2HPO4, 0.45 Mm NaH2PO4, pH 7.4) solutions were prepared by 

dilution of reagents in 18 MΩ (MilliQ, Millipore, Bedford, MA) and pH adjusted with 

HCl.  Insulin, human recombinant from E Coli, fluorescent conjugate (Invitrogen, 

Carlsbad, CA) was diluted in PBS to 1.633 mM and stored protected from light at -5 C 

until use in experiments. 

 

2.2 Device Fabrication 

Polydimethylsiloxane (PMDS) fluidic layers were produced using normal 

lithographic techniques [40]; specifically, SU-8 2075 (Microchem, Newton, MA) was 

spun to 100 µm on mechanical grade 150 mm Si wafers and patterned by exposure to 

collimated UV light masked through a 56000 dpi transparency film (Fineline Imaging, 

Colorado Springs, CO) prior to development as per the manufacturers instructions.  Well-

mixed and degassed PDMS was poured over molds and cured at 100 °C overnight to 

cure.  After punching reservoirs through the PMDS layer with a biopsy punch, PMDS 

layers were plasma bonded (Electrotechnic, Chicago, IL) to glass slides with liftoff 

patterned 1 mm wide 50/250 Å Ti/Au electrodes. 

 

2.3 Fluidic Control 

Aqueous solutions were driven by syringe pump (CMA Microdialysis, Solna, 

Sweeden) connected via Teflon® tubing connected to 90-degree syringe tips inserted into 
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inlet reservoirs in the PDMS layer of devices; similarly, oil channels were driven by 

computer controlled pulsed air in Teflon® tubing connected to 90-degree syringe tips 

inserted to oil inlet reservoirs in the PDMS layer.  While aqueous solutions were 

continuously delivered at volumetric flow rates from 0.2 to 10 µL/min, oil solutions were 

only driven on-demand as controlled by an in-house written VI (LabView 8.5, National 

Instruments, Austin, TX). 

 

2.4 Electrical Control 

Electrical fields were applied by adjusting M10-S500 power supplies (American 

Power Design, Windham, NH) to desired voltages with an HHM 93 digital multimeter 

(Omega, Stamford, CT) and then clipping the power supply anode and cathode at the 90-

degree syringe tips inserted into the inlet and outlet reservoirs, respectively.  Potentials 

above 600 V were achieved by connecting power supplies in series. 

 

2.5 Experimental and Image Analysis 

Concentration experiments were imaged on a SZH10 stereoscope (Olympus 

America, Center Valley, PA) with 480 nm band-pass filtered BH2-RFL-T3 Hg arc lamp 

(Olympus America, Center Valley, PA) excitation.  Images for quantification were 

collected with a Andor Newton ECCD camera and calibrated by average photon counts 

per pixel as measured with serial dilutions of fluorescein standards (1 mM, 1 µM, 1 nM, 

1 pM, and 1 fM, specifically).  Image analysis was performed in ImageJ (NIH, Bethesda, 

MA). 
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3. Results and Discussion 

3.1 Ion Concentration Polarization via a Floating Bipolar Electrode 

To maintain an open circuit by preventing bubble formation the flux of gas 

diffusing out of the channel must be greater than the formation of gasses in the channel.  

While the flux of gases out of the channel is increased by the use of gas permeable 

substrates such as polydimethylsiloxane (PDMS), vacuuming PDMS increases this flux 

and is known to prevent bubble formation [41].  Specifically, we observed that storing the 

devices in vacuum to evacuate the gasses from the PDMS allowed the application 

potentials as high as 2 kV in media of >150 mM ionic strength in excess of 1 hour 

without observable bubble formation. 
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Figure 3.2. Time-lapse images (a) of ICP effect of 100 nM FITC-insulin in aCSF at 600 V in a 100 µm 

wide PDMS channel.  Plots of enrichment factor of 1 mM and 1 µM (b) and of 1 nM, 1 pM and 1 fM (c) 

FTC-insulin in PBS as a function of time under an electric field of 250 V. 

 

3.2 Media, flow rate, and voltage on enrichment 

Several parameters including media, bulk flow rate, and voltage were considered 

in optimizing devices for concentration of neuropeptides sampled from microdialysis.  

First, while the high ionic strength sample media of aCSF limits the rate of enrichment 

due to the high conductivity in the channel [26, 29, 32], dilution of the sample both 

increased the analysis time and yielded lower final concentrations of dyes for a given 

enrichment period.  For example, a 1 nM FITC-insulin in aCSF was enriched to 1 mM 

with 30 min, where the same sample diluted by a factor of 10 required over 1 hour to 
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reach the same fluorescent intensity.  Similar results were observed with dilutions of 

PBS, such that undiluted samples were used. 

Second, the bulk flow rate of sample introduction was tested with a range of 

microdialysis flow rates used in similar in vivo experiments; specifically, in the range of 

0.2-10 µL/min.  While higher flow rates are known to have lower relative recovery due to 

the shorter exposure to the diffusive region of the probe, the total flux of sampled species 

increases with flow rate as the larger chemical gradient into the probe linearly increases 

the rate of diffusion.  Experimental limitations of syringe pump speeds and tissue damage 

generally limit flow rates to <10 µL/min.  Both the stability of the location of the 

concentrated band generated and rate of enrichment increased linearly with increasing 

flow rate such that 10 µL/min was found to be the optimal bulk flow rate. 

Third, voltages from zero to 1200 V were tested by quantification of enrichment 

of a 10 nM FTC-insulin after 10 minutes of applied voltage (see Figure 3.3).  Where no 

enrichment was observed in the absence of an electric field, the rate of enrichment 

increases linearly with respect to electric potential at values below 400 V.  Rates of 

enrichment did not significantly vary at voltages above 400 V suggesting that enrichment 

was limited either by the rate of redox reactions at the BPE or delivery of sample by bulk 

flow. 
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Figure 3.3. Enrichment factor of 100 nM FITC insulin in PBS as a function of voltage applied after 10 

minutes. 

 

3.3 Rate of Enrichment 

Several factors including but not limited to the ionic strength of the solution, 

choice of buffer, electrical potential applied and initial concentration effect the rate of 

enrichment of charge species in the BPE concentrators studied.  While the application to 

neuropeptide pre-concentration limits the sample matrix to high ionic strength and sub 

nM concentrations of analytes, a 250 V potential was used test the feasibility of multiplex 

pre-concentrator with low power consumption.  As previously reported, highly 

concentration solutions appeared to enrich more slowly than analytes initially present in 

trace amounts (see Figure 3.2); however, as 1 mM fluorescein was near the solubility 
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limit in PBS and was calibrated to within an order of magnitude of maximum signal from 

the detector, saturation occurred within 5 minutes such that the rate could not be 

quantitatively measured. 

Approximation of enrichment as a function of time yielded fits with coefficients 

of determination of 0.995 or greater; specifically, rates were calculated by applying a 

Gaussian linear regression of extrapolated concentrations as a function of time with the 

electrical circuit active.  Under a 250 V potential, devices enriched 1 µM FITC-insulin at 

a rate of 3041 ± 29-fold/s.  This rate increased to 6218 ± 132-fold/s for 1 nM and 

increased to 25039 ± 246-fold/s for 1 pM FITC-insulin.  Following this trend of more 

rapid enrichment at lower initial concentrations, 1 fM FITC-insulin was enriched at a rate 

of 49300 ± 1330-fold/s.   While previous reports have suggested the initial concentration 

of analyte effects enrichment rates due to changes in the ionic strength of the media, the 

low relative (> 1%) contribution to ionic strength of the sample matrix illustrate the initial 

ionic strength is not the main contribution to this phenomena. 

 

3.4 Droplet Generation and Capture of Band 

To optimize the capture of bands in water-in-oil plugs, the location of the band 

after 1 hour of concentration was observed to occur within 1.7 to 2.5 mm (varied between 

devices) upstream of the cathode end of the BPE.  The fluidic layers of devices were 

bonded such that oil channels, perpendicular channels to the concentration channel, 

would be located on either side of this concentration region.  Droplets were generated at a 

variety of sizes as a function of spacing the oil inlet channels during fabrication such that 

5, 10 and 20 nL volume droplet devices were tested.  Droplets were produced as 5.62 ± 
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0.65 nL, 10.32 ± 0.48 nL and 20.57 ± 2.60 nL droplets as approximated as rectangular 

plugs from imaging. 

Sequestration of enriched bands in water-in-oil droplets was manually triggered 

with relative reproducibly in 5 nL and larger droplets (see Figure 3.4).  To ensure the 

highest enrichment the droplet must be large enough to encapsulate the entire band while 

excess volume of the droplet beyond this size will linearly dilute the enriched region.  In 

the case of 5 nL droplets, an efficiency of 58.4 % capture of the concentrated band 

lowered the effective enrichment to 5953-fold.  While 10 nL droplets increased in 

efficiency of droplet capture to 94.7 % and 20 nL droplets retained 98.7 % of the 

enriched band total fluorescence after droplet generation, the 10 nL droplet resulted in a 

5022-fold enrichment over the 3021-fold in the more dilute 20 nL droplet.  Droplet 

volumes with less than twice the length of the enriched band were experimentally 

difficult to manually confine into water-in-oil plugs.  Experimentally, the use of smaller 

droplets resulted in the most concentrated plugs of pre-concentrated sample despite high 

loss (>25%) of enriched ions due to convective flow during droplet generation. 
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Figure 3.4. Time-lapse images with bright-field and fluorescent illumination of enriched band immediately 

before (b) and after droplet generation (c) show compression of the band during droplet generation.  

Contrast enhanced fluorescent images of the initial sample solution (a) and droplet with captured enriched 
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band (d) for 1 nM FITC-insulin in PBS after 30 min enrichment at 250 V illustrates the relative pre-

concentration of samples.  In the bar graph (e), the total fluorescence of the enriched region (dark) before 

and after droplet generation and transport to the exit reservoir (grey) shows the relative efficiency of 

droplet capture as a function of volume. 

 

4. Conclusions 

 In this chapter we present the first microfluidic pre-concentrator with segmented 

flow (water-in-oil droplet) sequestration.  Where this droplet storage is directly 

compatible with the fluorescence polarization immunoassay quantification discussed in 

the previous chapter, this device enables the quantification of any biochemical species 

with commercially available antibodies.   Droplet sequestration of concentrated bands of 

analytes additionally allows storage for further analysis. 

 While improvements in future generations of devices allow room for 

improvements in capture efficiency by changing the geometry, the device reported 

achieved enrichment of a negatively charged protein in highly ionic media on the order of 

50000 in 1 hour with capture efficiency as high as 99%. 
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CHAPTER 4 

 

SUMMARY AND FUTURE DIRECTIONS 

 

1. Summary 

 The research presented in this dissertation focuses on developing quantitative 

analytical instrumentation; specifically, we have developed both novel and improved 

existing analytical instrumentation to quantify small, trace biologically active species 

from in vivo sampling.  A broadly versatile and robust immunoassay technique quantified 

cellular secretions while retaining temporal resolution with segmented flow generated on 

a microfluidic device. 

 

1.1 Quantitative Immunoassay 

 A non-destructive competitive immunoassay was developed to be compatible 

with droplet-based microfluidics.  At the bench scale, FPIA is a robust quantitative 

measure that has been demonstrated to be broadly applicable to a wide variety of analytes 

including commercial available systems such as Abbot’s RDx.  While detection of 

fluorescence anisotropy was previously demonstrated on a microfluidic device, the 

immunoassay was prepared at the bench scale and not applied to a biological system.   As 

reported (see Chapter 2), we optimized an FPIA for use in monitoring insulin secretions 
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from on-chip cultured Islet of Langerhans with a 5 nM detection limit and dynamic range 

up to 1 uM.  Temporal resolution of perfusion sampling was retained by immediate 

segmentation of flow on-chip into water-in-oil droplet; moreover, segmented flow was 

both experimentally and numerically demonstrated to improve the temporal resolution of 

two orders of magnitude such that sub-minute oscillations in glucose stimulate insulin 

release were observed in some experiments.  While the specific antibody-antigen 

complex will affect the detection limit and dynamic range of the FPIA, this system serves 

as a model for neuropeptide quantification. 

 

1.2 On-chip Preconcentration of Analytes 

 Preconcentration of fluorescently labeled insulin in highly ionic media was 

demonstrated via ICP induced by a potential applied across a microfluidic channel with a 

BPE.  While ICP has been previously demonstrated to enrich samples by factors as high 

as one-million-fold, we report a robust BPE preconcentator that is compatible with highly 

ionic media.  This in-line precocentration of insulin resulted in enrichment factors as high 

as 50,000-fold in an hour.  While insulin was larger than many neuropeptides in mass, 

both have similar electrostatic charge and electrophoretic mobility (within an order of 

magnitude) such that it serves as a model system for neuropeptide quantification.  Water-

in-oil droplet segmentation was generated on-demand to prevent dilution by dispersion; 

specifically, droplets generated at or greater than 10 nL captured the concentrated band 

with greater than 90% efficiency.  This preconcentration and droplet sequestration device 

was compatible with the FPIA quantification system discussed above. 
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2. Future Directions 

 The microfluidic devices developed in this dissertation were compatible with 

microdialysis sampling of neuropeptides.  In future work, these preconcentration and 

FPIA detection devices may be integrated together with microdialysis sampling.  While 

microdialysis sampling recovers analytes at low concentrations when operated at high 

flow rates, this lower concentration improves mass sensitivity.  Specifically, both the 

higher flux of analytes through the BPE device and higher rate of enrichment for more 

dilute analytes decrease the time to reach the nM detection limits of the FPIA.   

Concentration with BPE may also be multiplexed such that while a volume of sample is 

preconcentrated, another volume is simultaneously collected. 

 Several neuropeptides, namely opioid peptides, are of interest in the study of 

several disease states such as Parkinson’s disease as well as to function in signaling 

pathways of pain and reward.  The integrated microfluidic device described above offers 

a low cost method of in-line quantification of these and other neurotransmitters in 

microdialysis sampling for rodent models. 

 Optimization of preconcentration and droplet sequestration by modification of the 

location of the oil channels to decrease to final droplet volume additionally offers 

improvements in capture efficiency.  These improvements in capture efficiency increase 

the final concentration in the droplet such that the nM detection limits of the FPIA would 

be achieved in shorter concentration timescales.   Droplet based FPIA quantification 

offers a promising on-chip detection of small biologically relevant species. 
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APPENDIX A 

 

FLOUROGENIC ENZYMATIC QUANTIFICATION OF GLUCOSE AND 

FINITE ELEMENT METHOD MODELING OF MASS TRANSPORT AND 

FLUIDICS OF IN VIVO MICRODIALYSIS SAMPLING 

 

1. Context 

 In an effort to develop a quantitative analysis that would be compatible with 

microdialysis sampling, water-in-oil droplet storage and non-destructive analysis a 

variety of techniques were investigated including enzymatic fluorogenic analysis.  A 

bench-scale quantitative assay was optimized for biologically relevant concentrations of 

glucose prior modifications made for on-chip analysis.  The effect of membrane 

thickness, probe size and flow rate were numerically modeled with the finite element 

method commercially available software suite COMSOL.  Numerical and experimental 

results were compared to determine the relative contributions from the three parameters 

discussed above.  The sections (excerpts) below were previously reported both in M 

Wang’s dissertation and a published manuscript (“Improved Temporal Resolution for in 

Vivo Microdialysis by Using Segmented Flow” by Meng Wang, Gregory T. Roman, 

Kristin Schultz, Colin Jennings, and Robert T. Kennedy in Analytical Chemistry, 80 

(2008) 5607-5615): 
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2. Background 

Microdialysis sampling is widely used for in vivo monitoring of chemicals in 

extracellular space of tissues such as heart, fat, liver, and brain [1-3]. In chemical 

monitoring applications, temporal resolution is a key figure of merit because analyte 

concentrations can change rapidly [4-6]. When using microdialysis sampling, temporal 

resolution is usually limited by mass sensitivity of the analytical method coupled to the 

probe i.e., sample must be collected long enough to obtain a detectable quantity.  When 

techniques such as HPLC are used, the temporal resolution is often 10-30 min [7]; 

however, coupling microdialysis to nanoscale analytical techniques such as capillary 

electrophoresis (CE), microbore liquid chromatography (LC), and electrochemical 

sensors have shortened sampling times to seconds [4, 8-18].  

When using high sensitivity analytical methods, other factors can begin to limit 

temporal resolution achievable with microdialysis sampling.  One inherent limitation is 

broadening of sample zones due to Taylor dispersion as they are transferred from 

sampling probe to analytical system [19]. The effect of Taylor dispersion can be 

ameliorated by using high flow rate through the probe; however, this decreases relative 

recovery thus decreasing the concentration of analytes measured.  Higher flow rates are 

also incompatible with smaller probes and alternative sampling methods such as low flow 

push-pull perfusion [20] or direct sampling [21] that improve spatial resolution.  Taylor 

dispersion can also be decreased by shortening the length of tubing connections; 

however, this approach is impractical for experiments involving freely moving animals.  

Thus, although temporal resolution of 3 s has been described for sampling from an 

anesthetized animal at high dialysis flow rates; temporal resolution is increased to 90 s 
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for low flow rates or work with awake and freely moving animals [16].  In this work, we 

describe coupling microdialysis probes to a microfluidic segmented flow system to avoid 

these limitations.  Segmented flow can eliminate Taylor dispersion by localizing samples 

as aqueous droplets or plugs formed in a stream of water-immiscible carrier fluid [22-25].  

A surge of recent research into segmented flows has shown the potential of this 

approach for chemical measurement.  Droplets or plugs from femtoliter to microliter 

volume can be reproducibly created using a variety of microfluidic geometries including 

tee junctions [26], Y-junctions [23], and nozzles [27].  Furthermore, plugs can be 

manipulated for chemical analysis through reagent addition [28-30], rapid on-chip mixing 

[29-30], and transfer to outside tubing [29-32].  Recent applications of such systems 

include kinetic measurement [26, 33], synthesis [29, 34-35], protein crystallization [32, 

36], DNA analysis [37], PCR [38], cell sorting [39] and cell encapsulation [23, 40].  

Although avoiding dispersion or mixing of discrete samples is often cited as an advantage 

of segmented flow, this approach has not been described for chemical monitoring 

applications such as in vivo microdialysis. 

The goal of this study was to combine in vivo microdialysis sampling with a 

segmented flow microfluidic device to conserve temporal resolution while sample plugs 

were transported from the probe to a downstream detection system.  We determined 

conditions for obtaining dialysate flow segmentation on the scale needed for in vivo 

analysis, tested the effects of flow segmentation on temporal resolution, and 

demonstrated use of the system for analytical measurements by coupling it to an on-line 

enzyme assay for monitoring glucose in the brain of living rats.  We demonstrate that 
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temporal resolution of 15 s is possible and that this resolution is independent of both time 

to transport sample to the analytical system and dialysis flow rate.    

 

3. Materials and Methods 

3.1 Chemicals and Reagents 

All chemicals were used as received. Perfluorodecalin, fluorescein, 

hexamethyldisilazane (HMDS), octadecyltrichlorosilane (OTCS), n-hexadecane, and 

methanol were purchased from Sigma-Aldrich (St. Louis, MO).  Salts for artificial 

cerebral spinal fluid (aCSF) were purchased from Fisher Scientific (Chicago, IL).  A 

glucose assay kit consisting of Amplex® red reagent, dimethylsulfoxide (DMSO), 

horseradish peroxidase (HRP), glucose oxidase (GOX), D-glucose, concentrated reaction 

buffer (0.05 M sodium phosphate, pH 7.4), and H2O2 was purchased from Invitrogen 

(Carlsbad, CA).  All aqueous solutions were prepared with water purified and deionized 

to 18 MΩ resistivity using a Series 1090 E-pure system (Barnstead|Thermolyne 

Cooperation, Dubuque, IA).  

 

3.2 LIF Detection and Data Analysis 

For visual inspection and monitoring of sample plugs, the chip or collection 

capillary was mounted on a Nikon inverted microscope (Eclipse TS100, Melville, NY).  

Photographs were taken through the microscope using a digital camera (FinePix F30, 

Fujifilm, Japan).  When detecting fluorescence, the collection capillary or chip was 

mounted on an epi-illumination inverted microscope (Axiovert 100, Carl Zeiss Inc.).  

Fluorescence was excited using a 488 nm line of an Ar+ laser (Melles Griot, Carlsbad, 
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CA) for fluorescein or the 543.5 nm line of a He-Ne laser (Melles Griot, Carlsbad, CA) 

for Amplex® red.  Fluorescence was collected through a 10x objective through 

appropriate filter sets and detected using a photometer (R3896, Hamamatsu Photonics, 

Bridgewater, NJ) mounted on the microscope.  The photometer was set to low pass filter 

at 250 Hz.  Fluorescence signals were collected via a data acquisition card (PCI-6036E, 

National Instruments, Austin, TX) at 1000 Hz using LabView program written in-house.  

Microsoft Excel 2007 (Microsoft, Redmond, WA), Igor Pro 6.01 (Wavemetrics, Inc., 

Lake Oswego, OR), and Cutter 7.0 [50] were used for data analysis and graphing. 

 

3.3 Computational Modeling of Microdialysis Sampling 

Microdialysis probe sampling dynamics were modeled using COMSOL 

Multiphysics ® 3.3 (Comsol, Inc., Burlington, MA).  1 and 2 mm long probes were 

approximated as 200 µm wide cylinders with a 40 µm i.d. by 100 mm o.d. capillary 

inserted to within 50 µm of the bottom of the probe, a similar capillary outlet at the top of 

the probe and a 10 µm thick membrane.  The boundary layer (i.e., quiescent solution) 

around the probe was approximated to be 50 µm thick for a well stirred solution 

(assuming Re ~ 100) [51].  Diffusion was treated as uniform throughout the boundary 

layer, membrane and probe volume.  All models were solved in three dimensions by 

modeling mass transport from the edge of the boundary layer into the perfusing flow into 

the probe as a function of time for 1 minute.  The net concentration out of the probe was 

fit to a Hill equation by nonlinear regression using Origin® 6.0 (Microcal Software, Inc., 

Northhampton, MA) to generate data traces.  The outlet capillary from the probe was 

modeled as a 3.5 cm long by 40 µm i.d. capillary in two dimensions.   Analyte 
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concentration and response times were determined from the time-dependent 

concentration profile at the end of the capillary model.  Constants used in the model were 

4.25×10-6 cm2/s as diffusion coefficient for fluorescein [52], 993 kg/m3 for density of 

water, and 6.90×10-4 Pa s for viscosity of water (37 oC).  Specifically, fluidic domains 

were solve first by setting outlet pressure to neutral and the inlet at a constant flow rate 

(either 0.2 or 2 µL/min depending on experiment).  Using the values stored from these 

results as constants, convection and diffusion was then modeled for 1 min with 0.01 s 

time steps by setting the inlet concentration at zero and holding the concentration at the 

outside of the boundary layer as 1 unit.  This process was first applied to the bottom 

section (slice) of the probe model and then repeated for each section above but fitting six 

concentric rings with the method described above from the outlets of the previous model.  

Concentration profile as a function of time was plotted in the figure below for both 1 and 

2 mm probes and at both 0.2 and 2 µL/min flow rates. 

 

3.4 In Vitro Glucose Assay 

Glucose assays were performed on-line by mixing reagents and dialysate within a 

chip to form sample plugs that were pumped to a detection zone in a collection capillary 

downstream of the mixing/plug formation point.  Reagents were prepared from stock 

solutions of Amplex® red (10 mM in DMSO), GOX (100 UI/mL in 0.05 M sodium 

phosphate reaction buffer, pH 7.4) and HRP (10 UI/mL in reaction buffer, as described 

above) according to vendor instructions.  Stock solution was stored frozen at -80 oC as 

single-use aliquots.  For each day’s experiment, stock solution aliquots were thawed on 

ice and then diluted with reaction buffer to produce separate enzyme (6 UI/mL GOX and 
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0.6 UI/mL HRP) and indicator (0.3 mM Amplex® red) solutions.  These working 

solutions were kept on ice and shielded from light by aluminum foil at all times.  To 

ensure activity of reagents, solutions were replaced every two hours.  

For on-line glucose assay, the aqueous inlet channel shown in Figure A.1A was 

modified to have 3 channels (one for HRP/GOX solution, one for Amplex® red solution, 

and one for dialysate) that merged to a single channel just before the tee intersection 

(details given in text).  The flow rate for sample stream was 200 nL/min and for each 

reagent stream 50 nL/min.  Oil flow rate was 1000 nL/min. With these flow rates, each 

plug was expected to contain the concentrations recommended by the vendor, i.e. 0.1 

UI/mL HRP, 1 UI/mL GOX and 50 mM Amplex® red.  To test and calibrate the on-line 

assay, glucose solutions with concentrations ranging from 0.1 mM to 5 mM were 

prepared in aCSF and sampled by microdialysis.  Fluorescence of each resulting sample 

plug was detected 40 cm downstream using LIF as described above.     
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Figure A.1.  (A) Illustration of microdialysis/segmented flow system used in this work.  Arrows indicate 

direction of flow.  Micrograph in inset illustrates plug generation at a tee junction.  (Aqueous stream 

contains food dye for visualization.)  Aqueous channels had a width of 125 mm and main channel with 

segmented flow had a width of 250 mm. (B) Dependence of plug volume on oil flow rate at different 

aqueous flow rates (Qw) for structure shown in Figure A.1A.  (C) Dependence of interval time between 

plugs on oil flow rate at Qw for structure shown in Figure A.1A.   
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4. Results and Discussion 

4.1 Effect of Flow Rates on Plug Volume and Time Interval 

In a sampling system with on-line analysis that uses segmented flow, the sample 

plug volume, interval between plugs, and plug generation frequency have a large impact 

on both the temporal information that can be obtained and the analytical methods that 

should be adopted.  The sample plugs must be large enough that the amount of analyte in 

them is higher than the mass detection limits of the analytical method.  Sample plug 

generation frequency sets the upper limit to temporal resolution obtainable, e.g. a system 

that generates one sample plug every 10 s will have a temporal resolution no higher than 

10 s.  If on-line analysis is used, then the interval between plugs that are created must be 

longer than the minimum time required for each analysis (e.g., separation time in LC).  In 

this work we used a microfluidic tee to segment flow from the dialysis probe.  As 

demonstrated previously [54-55], plugs generated in a tee can be controlled by changing 

relative flow rates of the sample and carrier fluid as well as dimensions of the channels.  

Although models have been developed to predict plug generation,54 we found that 

experimentation was required to obtain the desired plug formation dynamics.   

For this work, we sought to generate plugs from sample stream flow rates in the 0.1 

to 1 mL/min range at 1 to 10 s intervals to yield samples with low nanoliter volumes.  

This flow rate is typical for microdialysis and the plug formation frequency represents 

significant improvement in temporal resolution while generating plugs that are easily 

manipulated and analyzed.  As shown in Figure A.1, a tee with 125 × 80 mm inlet 

channel and 250 × 80 mm main channel allowed such plugs to be formed.  For a given 

sample flow rate, increasing the oil flow rate decreased plug volumes and intervals 



	
  

65	
  

(Figure A.1B and A.1C).  Decreasing the sample flow rate generated smaller plugs at 

longer intervals.  The dynamic range of intervals was approximately 0.6 to 10 s.  Plugs 

were reproducible with < 5% RSD in volume and < 8% RSD in interval time.  Chip 

dimensions could also be varied to yield different ranges that might be appropriate for 

different applications.  For example, with 50 × 12 mm channels we generated plugs of 50 

to 200 pL at < 1 s intervals.  In some cases, it may be desirable to independently control 

sample size and interval between plugs; however, this is not possible with the tee 

junction.  An active system where plugs are formed by a trigger would allow such 

independent control but would also necessitate a more complex instrument.    

 

4.2 Conservation of Temporal Resolution with Segmented Flow System 

After demonstrating controlled sample plug formation, we tested the potential to 

preserve temporal resolution in comparison to a continuous flow system during 

microdialysis sampling.  For these experiments, step changes in fluorescein concentration 

were made at the probe surface while recording response curves by LIF detection.  A 

dialysis flow rate of 200 nL/min was used representing a relatively low flow rate that 

generates high relative recovery (approximately 53% for glucose) but is usually not 

associated with good temporal resolution.  For the continuous flow system the oil flow 

was replaced by aCSF.  Recordings were made both near the tee junction and 40 cm 

downstream for both continuous flow and segmented flow (see Figure A.2A and A.2B).  

A comparison between upstream and downstream response curves for both systems 

demonstrates the advantage of segmented flow over continuous flow for conserving 

temporal resolution.  (Temporal resolution and response time in this discussion refer to 
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the time from the initial increase in signal to the steady state signal and does not include 

the delay time associated with flowing from the probe to the detection window.)  With 

segmented flow, on-chip and downstream detection produced response curves that 

exactly overlapped (Figure A.2C), verifying prevention of axial dispersion between plugs 

and conservation of temporal resolution after sampling.  In contrast, severe deterioration 

in temporal resolution, represented as a broadened transition zone, was observed with 

continuous flow (Figure A.2D), due to axial dispersion of sample zones during transport 

at low flow rate through a capillary.  
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Figure A.2.  Illustration of on chip and on capillary detection points for comparing temporal resolution of 

segmented flow (A) and continuous flow (B) systems.  Step change of fluorescein concentration from 50 

nM to 100 nM was made at the probe surface and response curves at the two detection points were recorded 

for segmented flow (C) and continuous flow (D).  For (C), the data points represent the maximal 

fluorescence recorded from each sample plug as it passed through the detector.  The top time axis is for the 

downstream (capillary) detection point and the bottom for the on-chip detection point in both graphs.  
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Sampling flow rate was 200 nL/min and cross-sectional flow rate (perfluorodecalin or aCSF) was 1 

mL/min.  Microfluidic chip conditions were the same as described in Figure A.1. 

 

We next explored the upper limits of temporal resolution with this system.  To do 

this, we repeated the step change experiment but with stirred solutions and probes 

equilibrated to 37 oC.  Stirring is expected to decrease the distance required for analyte to 

diffuse to the probe while the elevated temperature increases diffusion coefficients.  

Using this approach we observed response times of ~ 30 s (time from 10-90% of 

maximal signal) at 200 nL/min dialysis flow rates (see Figure A.3A).  Increasing the 

dialysis flow rate to 1 mL/min did not improve the temporal resolution (Figure A.3B).  

Decreasing the dialysis probe length by half to 1 mm resulted in an approximately 2-fold 

improvement in response time to 15 s at both flow rates (Figure A.3C and A.3D).  Thus, 

response time scaled with membrane length rather than flow rate.  These results suggest 

that mass transport across the membrane, and not Taylor dispersion, limits temporal 

resolution under these conditions.   
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Figure A.3.  Response obtained at both low and high sampling flow rate with microdialysis probes with 

different membrane lengths.  (A) 2 mm probe at 200 nL/min; (B) 2 mm probe at 1 mL/min; (C) 1 mm 

probe at 200 nL/min; (D) 1 mm probe at 1 mL/min.  Fluorescein concentration was changed from 2 mM to 

5 mM at the probe surface.  Cross-sectional flow rates were 1 mL/min for 200 nL/min sampling rate and 

were 4 mL/min for 1 mL/min sampling rate.  Data traces are raw output from LIF detector and show 

detection of individual sample plugs. Temporal resolution, defined as the time during which signals 

increased from 10% to 90% of the maximum intensity, is marked on each graph.  Chip conditions were the 

same as described in Figure A.1.   

 

To further explore this effect, we modeled the response of a dialysis probe to step 

changes in concentration in a stirred solution at 37 oC.  The model was based on the 

geometry of the probe (see Experimental section and Figure A.4A).  The system was 

considered to have a 50 mm boundary layer and diffusion coefficient within the 
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membrane was considered to be the same as solution.  These conservative estimates have 

the effect of making observed responses limited primarily by flow and diffusion within 

the probe and tubing and not transport across the membrane.  As shown in Figure A.4, 

this model predicts response times of 11.9 s for a 2 mm probe at 0.2 mL/min.  Increasing 

the flow rate to 1 mL/min decreased the response time to 3.5 s.   Cutting the probe length 

in half yielded a small decrease in response time to 8.0 and 2.1 s with 0.2 and 1 mL/min 

flow rates, respectively.  Thus, when the transport across the membrane is not limiting, 

the response times are 2 to 8-fold faster than those measured experimentally.  

Furthermore, in contrast to experimental results, the dialysis flow rate has a bigger effect 

on response time than membrane length.  This result further supports the conclusion that 

transport across the membrane is a limiting factor in response time in this system.  Lower 

effective diffusion coefficients within the membrane [19, 56], adsorption to the 

membrane, and flow leakage through the membrane are all factors that can slow transport 

and therefore alter response time.  Accurate knowledge of these processes would be 

required to correctly predict response times.  This work suggests that improved 

membranes or sampling without membranes, such as direct [21] or push-pull sampling 

[20], would be required to further improve the temporal resolution.   
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Figure A.4.   Simulation of response to step change in fluorescein concentration at a microdialysis probe 

using COMSOL.  (A) The geometry of the dialysis probe was the same as those used experimentally i.e., 

200 mm inner diameter, 220 mm outer diameter, side-by-side inlet and outlet capillaries and a 40 mm i.d. 

by 3.5 cm long exit capillary.  Curved arrow indicates direction of dialysis flow.  The steady state 

concentration gradient for unit concentration outside the probe is shown over the geometry in this 

illustration.  (B) The response shown is the concentration change at the outlet of the exit capillary following 

a step change from zero to unit concentration at time zero.  The probe lengths and dialysis flow rates are 

given in the legend.  

 

4.3 On-Chip Glucose Assay with Segmented Flow 

To demonstrate the potential of the microdialysis to segmented flow system for 

chemical analysis, we integrated an on-line glucose enzyme assay.  The sampling chip 

was modified with a triple-branch inlet to enable addition of assay reagents to the sample 



	
  

72	
  

stream 1 mm upstream of the plug formation point.  As illustrated in Figure A.5A, sample 

stream from the microdialysis probe flowed in the middle branch while enzymes (GOX, 

HRP) and dye (Amplex® red) were infused from the two side branches.  Sample stream 

flow rate was 200 nL/min while the reagent stream flows were 50 nL/min each.  This net 

flow rate resulted in sample plugs forming at 4 s intervals.  Mixing and enzymatic 

reaction took place to form a fluorescent product (see Figure A.5B for reaction scheme) 

within plugs as they were transported in a capillary from the microfluidic chip to 

detection window.  Reaction time could be adjusted by varying the length of the capillary 

as well as oil flow rate.  Although the assay kit suggested a 30 min incubation time before 

detection, we found that 17 min was enough to distinguish different glucose 

concentrations.  This reaction time could be achieved by a 40 cm capillary at 1 mL/min 

oil flow rate.  An illustration of the raw fluorescence signal from the plug enzyme assay 

at the detection point during a step change from 0.2 to 1 mM glucose is shown in Figure 

A.5C.  This trace illustrates the uniformity of signal intensities across different plugs for a 

given glucose concentration.  Indeed, the assay yielded 2.3% RSD (n = 56) at 1 mM 

glucose.  The assay also had a linear response up to 2 mM glucose and a detection limit 

of 50 mM glucose (see Figure A.5D). The trace in 5C also illustrates the preservation of 

temporal resolution for this experiment even though the sample plugs required 17 min for 

transport from the sampling to detection points.  This effect represents a substantial 

advantage of the segmented flow system for assays that require long reaction times.  This 

result further illustrates that the segmented flow system can maintain temporal resolution 

regardless of downstream processes.  
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Figure A.5.  Glucose assay with segmented flow system. (A) Micrograph of microchannel network used 

for enzymatic assay within plugs.  Food dye has been added to the Amplex® red and GOX/HRP streams for 

visualization.  (B) Reaction scheme for the enzymatic assay.  (C) LIF response when glucose concentration 

was changed at the probe from 0.2 to 1 mM.  The inset shows an amplified view of the trace.  Data are raw 

traces showing detection of individual plugs.  (D) Calibration curve for glucose sampled by microdialysis 

and assayed using this system.  Glucose concentrations are sampled concentrations.   
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Figure A.6.  (A) Overview of system for in vivo glucose assay.  (B) Time course of extracellular glucose 

concentration in the NAC of rats infused high K+ (100 mM) aCSF through the probe.  Time on axis is time 

since switch was made to high K+.  Black bar indicates application of K+ corrected dead volume of system.  
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Axis on the left is relative fluorescence unit (RFU) for the maximal signal in each plug while right axis 

expresses data as the percentage of basal glucose concentration. 

 

5. Conclusion 

Segmented flows have received significant attention in chemical analysis in recent 

years primarily for their potential in high-throughput analysis.  In this paper, we reduce to 

practice the possibility that microfluidic segmented flows can be used to prevent temporal 

distortion in a sampling and monitoring experiment.  Temporal resolution for 

microdialysis was maintained at 15 s regardless of downstream processes thus allowing 

good temporal resolution to be maintained for experiments requiring long connection 

capillaries (such as freely moving animals) or assays that involve long reaction times.  

The use of segmented flow with sampling represents a significant advance for sampling 

approaches because it decouples analysis time from the temporal resolution that is 

possible.  It also provides a convenient approach for manipulating nanoliter volume 

fractions that are generated with performing high temporal resolution measurements.  Our 

experiments suggest that future research aimed at improving temporal resolution should 

be directed towards improving sampling processes.  Furthermore, coupling to other assay 

systems will be important in allowing this approach to extend beyond enzyme assays.  

Extension of the method to other assays and coupled to different sampling probes will 

likely yield systems with temporal resolution that approaches that of many sensors. 
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APPENDIX B 

 

FINITE ELEMENT METHOD MODELING FLUID DYNAMICS AND MASS 

TRANSPORT IN AN ADIPOCYTE PERFUSION MICROFLUIDIC DEVICE 

 

1. Context 

 Many cells are known to respond to the fluidic environment; specifically, 

adipocytes, or fat cells, undergo low shear stress in natural conditions.  At the scale and 

complex geometry of microfluidic devices, physical parameters such as shear stress are 

analytically difficult to measure; however, these parameters may be calculated with 

commercially available finite element method software suites such as COMSOL.  In the 

work described below, both the stress that cells cultured in this devices and the mass 

transport of gradients to and from the cells were numerically modeled such that they 

provided good agreement with experimental measures.  Specifically, the Reynolds 

number (Re) was calculated for the cell chamber, where the diameter of the tube is 

approximated as DH = 4A/P: 

Re = ρVDH/µ 

such that at an 80 µL/min flow rate the Re was well below turbulent conditions (Re = 

5.93e-6) and flow was approximated as Laminar flow.  First, the fluid dynamics were 

solved by setting the outlet pressure to neutral and inlets at a constant flow rate that 
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summed to 80 µL/min in 3D with a nm mean free path length assuming a rectangular 

channel with dimensions of 400 by 5000 by 40,000 µm (see Figure B.1).  The density and 

viscosity of water were held constant at 1000 kg/m3 and 0.001 Pa s, respectively.  Shear 

stress was calculated throughout the chamber and found to be at a maximum value near 

the walls of the cell channel but with a value of 0.006 N m-2 at a probe location near the 

cells.  Second, using the stored values from the fluidic model, convection and diffusion 

was solved in 3D for a 90 s model with 0.1 s time-steps for the introduction of 

isoproterenol (D = 1e-9 m2/s) such that good agreement was found with analytical 

measures of pumping dyed glycerol into the cell channel.  Third, the sampling of glycerol 

secretions from the cells was modeled.  Assuming 1 nanomole of glycerol was secreted 

for every 10,000 cells and a bed of 50,000 cells per 0.0002 m2 (average from cell counts 

after culture), a flux of 4.17e-8 mol/m2 s was uniformly applied across the bed of the cell 

channel.  Using the literature value for the diffusion of glycerol (D = 7e-10 m2/s) and 

fluidic values calculated from the first model, a 1 s pulse, 30 s pulse and constant 

secretion were modeled for 300 s with 0.1 s time-steps (see Figure B.S1). 
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Figure B.S1. Normalized flux of glycerol secretions from a 1 s pulse (green), 30 s pulse (black) and 

constant release (red) from a packed bed of cells along the bottom of the cell channel. 

Moreover, the fluorogenic quantification describe herein was modified from 

protocol developed for glucose quantification (see Appendix A).  The excerpts below 

were previously published both in Dr A Clark’s dissertation and published manuscript 

(“Continuous-Flow Enzyme Assay on a Microfluidic Chip for Monitoring Glycerol 

Secretion from Cultured Adipocytes” by Anna M. Clark, Kyle M. Sousa, Colin Jennings, 

Ormond A. MacDougald, and Robert T. Kennedy in Analytical Chemistry, 81 (2009) 

2350-2356): 

 

2. Introduction 

Physiological studies frequently require maintaining cells or tissues in a 

controlled environment while detecting their physical, electrical, or chemical properties.  

Microfluidics may greatly facilitate such research by allowing creation of highly 

controlled cell-compatible environments integrated with sophisticated measurement and 

cell manipulation methods.   Examples of using microfluidics for cell physiology include 
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screening for ligand binding and reporter gene expression from immobilized cells using 

fluorescence microscopy [1], determining metabolic flux from electrically stimulated 

cells using amperometry [2], and characterizing drug dose-response using patch clamp 

methods [3]. Another common physiological method that may benefit from microfluidics 

is monitoring secretion of chemicals from perfused cells.  Without microfluidics, such 

studies are typically laborious as they require collection and subsequent chemical 

analysis of large numbers of fractions.  Microfluidics may improve perfusion and 

secretion measurements by reducing costs through reduction of reagent usage, allowing 

automated analysis, reducing cells required, improving throughput, allowing novel 

perfusion patterns, and improving temporal resolution [4-6].  

Several examples of using chips to monitor cellular secretions have been reported 

[7-13].  These include using electrophoretic immunoassay to measure insulin secretion 

from islets of Langerhans [7-8], amperometry to monitor catecholamine release from 

PC12 cells [9], and chemiluminescence to detect glucose and ethanol secretions from S. 

cerevisiae [10]. Enzyme assays have also proven to be a viable approach to monitoring 

cellular secretions on microfluidic devices.  Enzyme assays have been utilized on 

microfluidic devices to study metabolic secretions from preimplantation embryos [11], 

activity of expressed enzymes from E. coli cells [12], and immune response from 

macrophages [13]. 

In this study, we extend such measurements to near real-time monitoring of 

glycerol secretion from an adipocyte cell line (differentiated murine 3T3-L1 cells) [14-

15] using a continuous-flow enzyme assay.  The prevalence of obesity and obesity-

related disorders underscores the necessity to study and to understand adipocyte 
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physiology.  A primary function of adipocytes is to store and release energy.  Adipocytes 

store energy as triacylglycerol and release fatty acids and glycerol by lipolysis to supply 

energy for other tissues and organs.  Measurement of glycerol secretion is often used to 

ascertain the function and physiological state of adipocytes [16-19].  Studying adipocytes 

in microfluidic devices is hampered by several fat cell properties including high 

buoyancy, lengthy culture times (~2 weeks) to differentiate adipocyte cell lines, fragility 

of lipid-laden adipocytes, and secretion of hydrophobic moieties which are difficult to 

transport through PDMS-based devices.   Despite these difficulties, adipocytes have been 

differentiated [20-21], studied for incorporation of toxins [20, 22], and examined for size 

[23] on chips; however, integration of cultured adipocytes with chemical measurement of 

cellular secretions has yet to be performed.   

We have developed a dual-chip microfluidic system for culturing adipocytes, 

perfusing them, and then monitoring glycerol release using a continuous-flow fluorescent 

enzyme assay.  One chip was a cell perfusion chamber.  Cells grown on conventional 

cover slips could be loaded into the reversibly-sealed chip for perfusion experiments.  

These features allowed the chip to be reused and allowed cells to be cultured for long 

periods in conventional incubators prior to use.  The second chip was used for 

continuous-flow enzyme assay.  To achieve sufficient sensitivity, a commercially 

available absorbance-based enzyme assay for glycerol was converted to a fluorescence-

based enzyme assay by the inclusion of the hydrogen peroxide-sensitive dye Amplex 

UltraRed.  For actual measurements, the chips were coupled so that effluent from the 

perfusion chip was transferred to the enzyme assay chip allowing adipocyte secretions to 

be monitored on-line with 90 s temporal resolution.  The system was used to demonstrate 



	
  

87	
  

transient increases in glycerol secretion during exposure of the cells to isoproterenol, a β-

adrenergic agonist.  The ability to modify enzyme assays for fluorescence-based 

detection and analyze cells grown in culture on cover slips demonstrates the potential to 

monitor metabolite secretions in real-time from various cell types utilizing the 

microfluidic system presented. 
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Figure B.1. Schematics of the two microfluidic devices used in this work. (a) A diagram of the perfusion 

cell chip depicts the two separate wafers employed in this work.  The wafers were reversibly sealed with 

the aid of an in-house built compression frame. (b) A side view of the perfusion chip displays the cell 

chamber, which contained 50 000 differentiated adipocytes. Perfusion solution washed over the cells to 

sample secretions released from the cells.  (c) The enzyme assay chip was capable of performing on-line 
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mixing of three solutions and on-line detection of the enzymatic product.  The layout shows the initial 

mixing channel connected to the incubation channel. 

 

3. Materials and Methods 

3.1 Chemicals and Reagents 

Free glycerol reagent, glycerol standard solution, isoproterenol, dimethyl 

sulfoxide (DMSO), cell culture reagents, and 1x Hanks balanced salt solution (HBSS) 

were purchased from Sigma (St. Louis, MO).  Amplex UltraRed was purchased from 

Invitrogen (Carlsbad, CA).  All other chemicals were purchased from Fisher (Pittsburgh, 

PA).  Glycerol standards and the glucose solution perfused over cells were made using 

HBSS as solvent.  All other solutions were made using Milli-Q (Millipore, Bedford, MA) 

18-MΩ deionized water.  Solutions perfused through microfluidic devices were filtered 

using 0.2-µm nylon syringe filters (Fisher). 

 

3.2 Computational Modeling of Perfusion Chip 

The fluid flow dynamics of the perfusion cell chip were modeled using COMSOL 

Multiphysics 3.3 (Comsol, Inc., Burlington, MA). The flow was defined to be laminar 

and with a volumetric flow rate of 80 µL min-1.  Constants used in the model were 1 × 

10−9 m2 s-1 as diffusion coefficient for glycerol, 6.85 x 10-10 m2 s-1 as diffusion coefficient 

for isoproterenol, 993 kg m-3 for density of water, and 6.90 × 10−4 Pa s for viscosity of 

water (37 °C).  The cell chamber volume used was 4 cm long, 0.5 cm wide, and 0.04 cm 

deep (0.01 cm from the top wafer and 0.03 cm from the bottom wafer after accounting for 

the presence of the 0.015 cm thick cover slip).   
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3.3 Enzymatic Assay and On-line Mixing 

A commercially available absorbance-based, enzyme assay (Free Glycerol 

Reagent, Sigma) for glycerol was converted to fluorescence-based detection by the 

inclusion of the hydrogen peroxide sensitive dye Amplex UltraRed resulting in the assay 

scheme shown in Figure B.2A.  Amplex UltraRed was diluted with DMSO to result in a 

100 µM solution upon on-chip mixing.  The glycerol enzyme reagent was reconstituted 

according to manufacturer’s instructors.  The enzyme reagent, which contained all 

necessary enzymes and co-factors, was mixed with dye and sample and allowed to react 

for 5 min prior to detection.   

To perform this assay on the microfluidic enzyme chip (Figure B.1C), sample or 

perfusate from the perfusion chip was transferred via capillary to the enzyme assay chip 

as a continuous flow.  The flow was split so that only 0.31% of the flow from the 

perfusion chip entered the enzyme chip with the rest going to waste.  The flow split was 

achieved using a Valco tee between the chips with the following capillary lengths and 

inner diameters for connection: 20 cm, 150 µm from perfusion chip to flow split; 10 cm, 

50 µm from flow split to enzyme chip; 7 cm, 150 µm from flow split to waste.  All 

capillary outer diameters were 360 µm.  The enzyme reagent and fluorogenic dye were 

each delivered to the enzyme assay chip via capillary (40 cm, 50 µm i.d.) by a syringe 

pump (model 402, CMA Microdialysis, North Chelmsford, MA) fitted with 100 µL 

Hamilton syringes (Reno, NV) resulting in a 1:1:1 ratio of solutions.  The inlet flows 

from each of the 3 channels were 250 nL min-1 each resulting in a total volumetric flow 

rate through the device of 750 nL min-1.  The merged streams flowed into a 7.1 cm long 

mixing channel (90 µm width at half-height), which was kept relatively narrow to 
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facilitate mixing, and then a 3.75 cm long incubation channel (648 µm width at half-

height).  The latter channel was wider to reduce the pressure required for pumping.  All 

enzyme assay chip channels were etched to a depth of 60 µm.  The combined lengths 

allowed a 5 min mixing and incubation time.  

 

4. Results and Discussion 

4.1 On-line Enzyme Assay Characterization 

To characterize the response of the system, glycerol standards were pumped 

through the cell perfusion chip and into the enzyme assay chip where they were mixed 

with reagents for the glycerol assay, while monitoring fluorescence (Figure B.2B).  For 

this experiment, glycerol standards were pumped through the perfusion chip at 80 µL 

min-1.  The LOD of the on-line fluorescence-based enzyme assay, determined by the 

concentration that gave a signal 3 times the standard deviation of the blank, was 4 µM for 

glycerol.  The assay gave a linear response from the detection limit to 50 µM glycerol 

(Figure B.2C).  RSDs were from 1-5% indicative of a stable reaction and efficient mixing 

of the reagents.  The signal generated by the fluorescence-based glycerol assay yielded 

similar RSDs over 3 h for both the blank and a 25 µM glycerol standard, typical basal 

concentration of glycerol detected from mature adipocytes, indicating good stability and 

relatively long term operation.  Day-to-day reproducibility of the calibration was good 

with slope equal to 1105 ± 56 RFU µM-1 and intercept 9329 ± 1658 RFU (n = 6). 
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Figure B.2. Characterization of on-line fluorescence-based enzyme assay. (a) The scheme of the 

fluorescence-based enzyme assay for glycerol employed for on-chip mixing and detection is depicted.  

Glycerol kinase (GK), glycerol phosphate oxidase (GPO), peroxidase (HRP), and Amplex UltraRed were 

mixed on-chip with glycerol (either from standards or cell effluent) to form the fluorescent product 

resorufin.  (b) An example step-change calibration utilizing the dual-chip system is shown.  Glycerol 

concentrations ranging between 0-100 µM were perfused through the system to determine the 

corresponding changes in fluorescence. (c) The overall calibration generated a LOD of 4 µM and was linear 

from 0-50 µM glycerol. 

 
The rise time of the system, as determined by a 10-90% change in signal for a 

step-change in glycerol concentration, was 90 s.  If the cell perfusion chip was by-passed, 

the rise time improved to 80 s.  Little change in rise time was observed at various points 

along the incubation channel of the enzyme chip.  These observations combined indicate 

that the greatest source of dispersion was due to the fluidic connections such as the 

connection volumes and transfer capillaries, not the incubation time or the cell chip.   

 

4.2 Glycerol Secretion from Adipocytes 

To test the system for monitoring dynamic changes in glycerol release from 

adipocytes, we monitored glycerol secretion during treatment of adipocytes with the β-

adrenergic agonist isoproterenol, which is known to elevate cellular cAMP, activate 

protein kinase A and stimulate lipolysis [27].  For these experiments, cells were loaded 

into the cell chamber and perfused with glucose-HBSS while monitoring the enzyme 

reaction as described above for the standards.  The cells remained adherent during 

transfer and perfusion.  Basal measurements were collected for at least 60 min and 

yielded an average concentration of 28 + 5 µM (SEM, n = 5).  Upon switching to a 
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perfusion fluid containing 20 µM isoproterenol, a transient burst of glycerol secretion of 

approximately 3-fold over basal secretion was detected followed by a sustained release 

that was ~40% over basal levels (see Figure 3 for sample individual traces and averaged 

responses).  The burst in glycerol release rose within the first 2 min of exposure to 

isoproterenol and decreased after ~6 min.  The cell system gave stable responses allowing 

glycerol secretion to be monitored for at least 3.5 h, although most experiments were 

completed in 2 h. 
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Figure B.3. Glycerol secretion data from differentiated adipocytes and response to isoproterenol treatment. 

(a, b) Representative traces of glycerol release from differentiated adipocytes and response upon 20 µM 

isoproterenol treatment are shown. (c) Five glycerol secretion traces were averaged and shown with ± 

SEM.  The SEM above and below the average was plotted to enable visualization of the error between 

measurements.  The bars above traces represent exposure to 20 µM isoproterenol.  The traces were 

shortened to depict only the time surrounding the initial exposure to isoproterenol. 
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Figure B.4. Control secretion data. (a) Glycerol secretion data was obtained from 95% confluent 

preadipocytes. The bar indicates perfusion of 20 µM isoproterenol.  The y-axis of the insert is 10x greater 

to enable visualization of the glycerol release measured.  (b) The effect of isoproterenol introduction on the 

on-line enzyme assay was determined to be minimal at both 25 µM and 50 µM glycerol. The light grey line 
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indicates perfusion of 0 µM glycerol standard, medium grey 25 µM, and black 50 µM, respectively.  The 

dashed line represents exposure to 20 µM isoproterenol.  (c) The response of the system without the 

enzyme reagent present and upon inclusion of the enzyme reagent during a cellular secretion experiment 

was tested.  The black and grey lines represent the absence and presence of the enzyme reagent, 

respectively.  The dashed line represents treatment with 20 µM isoproterenol.  The y-axis scale of the insert 

is 8x greater for visualization of the release monitored when isoproterenol was introduced in the absence of 

the enzyme reagent. 

 

In several experiments, fractions were collected from the waste capillary and 

analyzed for glycerol using the standard assay yielded glycerol concentrations.  These 

experiments yielded glycerol concentrations that on average were with 6% of the on-line 

measurement (n = 10 fractions from 4 experiments).  Moreover, Getty-Kaushik and 

colleagues reported an increase in overall glycerol secretion upon perfusion of primary 

rat adipocytes with isoproterenol [17].  These results indicate the reliability of the on-line 

measurements.  

 

4.3 Characterization of Cell Perfusion Chip 

We also characterized the perfusion chip with simulations and experiments to 

determine the shear stress on cells and uniformity of drug application to the cells.  Due to 

the fragility of adipocytes, the perfusion chip was designed to have a recessed cell 

chamber area relative to the inlet and outlet flow stream to reduce shear stress and permit 

laminar flow of fluid over the cells.  This design was inspired by previous work that 

showed that shear force is diminished by placing the fluid inlet above the cells and not 

inline with them [28].  The COMSOL model of our chip estimated the shear stress upon 
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the cells at 0.006 N m-2.  This value is in the same range as reported in other microfluidic 

systems employing cell perfusion [5] despite the high volumetric flow rate employed.  

This low value, plus the observation that the flow did not cause cells to detach or deform, 

suggests that the chip design prevents excessive shear on the cells.  

A potential concern with this design is that drugs are not uniformly applied to the 

cells.  To test for uniformity of flow across the width of the cell chamber, food dye was 

flowed into the perfusion chip to visualize the flow profile.    Pictures of the flow showed 

that fluid flow was dispersed evenly across the width of the chip, an observation 

confirmed by COMSOL modeling.  This study also confirmed that: 1) the solution stays 

confined to the cell chamber, i.e., it does not leak past the moat, 2) the chip washes out 

rapidly, and 3) flow exhibits the characteristic parabolic profile of laminar flow.  To 

determine if drugs applied would uniformly reach the bottom of the chip, we used a 

COMSOL model because of the difficulty of directly imaging the depth of penetration of 

dyes.  The model predicted that fluid flowed throughout the entire depth of the cell 

chamber region and that substances in the perfusion flow, such as isoproterenol, would 

rapidly reach a uniform concentration throughout the depth of the chip due to a 

combination of flow and diffusion.  Washout of the cell chamber using the model was 

predicted to occur in 55 s, which closely matched the observed washout time of 60 s and 

further validated the efficacy of the model.  

The results show that the dual-chip system is a useful approach to adipocyte 

culture and monitoring.  Although an integrated chip would likely result in a better 

temporal response by reducing the connection volume between the cells and assay, the 

dual chip platform allowed both components of the system, cell perfusion and enzyme 
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assay, to be optimized separately.  The two-chip approach also had other practical 

advantages including: 1) ability to operate the perfusion chip while inverted if necessary 

to prevent cells floating in the direct flow stream without affecting detection in the assay 

chip (floating cells being a more likely problem with primary adipocytes), and 2) 

compatibility of a reversibly sealed chip, useful for cell loading, and a bonded chip, 

useful for enzyme assay.   

The perfusion chip was designed to overcome challenges associated with coupling 

adipocytes with microfluidic devices.  Glass was chosen as the material for the 

microfluidic chips as adipocytes secrete hydrophobic moieties that may interact with or 

adhere to polymeric materials.  The inline weir at the inlet and exit of the chip (Fig. 1B), 

created through multi-step etching, confined the cells to the cell chamber area and 

prevented cells from creating clogs in downstream channels as adipocytes may become 

non-adherent and float.  The inlet and outlet locations also minimized shear stress on the 

cells while allowing drugs to be uniformly and quantitatively applied.  To circumvent the 

long culture time, murine 3T3-L1 adipocytes were grown on glass cover slips that could 

be placed into the perfusion chip for experiments.  Growing cells on cover slips had 

numerous advantages including: 1) enabling growth of the cells in Petri dishes according 

to previously optimized culture conditions, 2) increased throughput for secretion 

experiments relative to growing cells directly in the cell chamber, 3) decreased variability 

of measurements as multiple cover slips could be tested from the same Petri dish of cells, 

and 4) potential to return cells to culture following an experiment for re-use.  

Furthermore, testing cultured cells in a resealable chip enabled the same device to be 

used numerous times.  Indeed, the same chips were used for the entirety of the 
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experiments presented in this paper (data collected over the course of 6 months).  The 

robustness of the chip increases the convenience of use and negates the cost disadvantage 

of working with glass as the chip material.  

Coupling the perfusion chip with the on-line enzyme assay proved efficacious for 

monitoring cellular activity.  Transient secretion dynamics from adipocytes were able to 

be observed upon treatment with isoproterenol.  The sharp rise in glycerol release within 

the first two minutes of exposure to isoproterenol likely reflects the fast signaling 

associated with phosphorylation and activation of hormone sensitive lipase and other 

proteins involved in lipolysis.  The decrease in secreted levels after ~6 min may be due to 

internalization of the β-adrenergic receptor and pathway desensitization upon continuous 

perfusion of ligand.  Previous work with primary rat adipocytes also has shown a burst in 

glycerol secretion in response to isoproterenol treatment as well as sustained, elevated 

release [17].  The duration of the pulse was ~3 times longer with primary rat adipocytes 

compared to the pulse detected in this work using immortalized 3T3-L1 adipocytes.  

However, a similar increase in overall glycerol levels upon treatment with isoproterenol 

was reported.  In this work, the secretion data also consistently showed two peaks during 

this initial burst of glycerol release.  This effect needs further study but may reflect 

internal dynamics such as mobilization of triacylglycerol stores. 

While adipocyte secretions have previously been monitored off-line fraction 

collection [16-19], this microfluidic-based platform facilitates automated mixing and 

detection to greatly save on labor and reagent costs.  Compared to the same experiments 

performed using off-line assays, i.e. following the manufacturer’s instructions and using 

an equivalent concentration of fluorogenic dye with readout on a plate reader, the chip 
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system employing the on-line enzyme assay consumed less than 1% Amplex UltraRed 

and less than 0.05% enzyme reagent (i.e., 800 µL per aliquot of enzyme reagent is 

consumed off-line with effluent fractions collected every min compared to 250 nL min-1 

on-line).  Additionally, the on-line format diminished labor by removing numerous 

pipetting steps resulting in shorter analysis time.  This work also complements other 

work, such as use of calorimetry for monitoring adipocyte function on chips [29].  The 

fluorescence assay offers specific chemical detection while the calorimetry method offers 

an overview of cell metabolism.   

 

5. Conclusions 

We developed a microfluidic platform consisting of two separate chips to 

integrate cell perfusion, sample handling, and reagent mixing as well as to enable near 

real-time monitoring of glycerol release from cultured adipocytes.  The microfluidic 

platform was able to detect changes in glycerol levels from ~50,000 adipocytes under 

basal conditions and upon pharmacological treatment with isoproterenol.  The use of a 

microfluidic device for on-line mixing and detection reduced the consumption of costly 

reagents to less than 1% of off-line volumes and decreased labor by automating the 

mixing and detection on-chip.  Culturing adipocytes on cover slips increased the 

throughput of cells available for study as well as decreased biological variability as 

multiple experiments could be tested from cells cultured in the original Petri dish.  This 

device may be applied to studying the oscillatory nature of glycerol release and long-term 

changes in metabolism.  While the device has been employed to monitor glycerol 

secretion from 3T3-L1 adipocytes, it is possible that it can be configured to detect other 
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moieties secreted by adipocytes such as non-esterified fatty acids, to test primary 

adipocytes that have been genetically modified and/or exposed to pharmacological 

treatment, or to monitor secretions from other adherent cell types such as osteoblasts. 
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