
High Performance and Low Power On-Die
Interconnect Fabrics

by

Sudhir Kumar Satpathy

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering)

in The University of Michigan
2012

Doctoral Committee:

Professor David Blaauw, Chair
Professor Trevor N. Mudge
Professor Dennis Michael Sylvester
Associate Professor Kevin Patrick Pipe
Assistant Professor Zhengya Zhang
Senior Principal Engineer Ram K. Krishnamurthy, Intel Corporation

c© Sudhir Kumar Satpathy 2012

All Rights Reserved

To my parents and sister, Kalpana for their love and support

ii

ACKNOWLEDGEMENTS

First and foremost, I offer my sincerest gratitude to my advisor, Prof. David

Blaauw for his guidance and support in all my research endeavours. I would like to

thank him for the extreme degree of freedom that he has given me while conducting

research, that has made my experience at the University of Michigan so pleasurable.

I would also like to thank all the other committee members, Prof. Dennis Sylvester,

Prof. Trevor Mudge, Prof. Zhengya Zhang, Prof. Kevin Pipe and Dr. Ram Krishna-

murthy for providing valuable feedback and support.

I would like to thank all students of Michigan Integrated Cicruits Laboratory for

sharing their time and expertise. Thanks to all students from Trev’s research group

for their help in the projects that contribute to this dissertation. Thanks to ARM Ltd.

for funding my research during all these years. Thanks to Intel’s Circuits Research

Lab (CRL) for giving me the opportunity to spend a wonderful summer in Hillsboro

while working with some of the best VLSI researchers. Thanks to Himanshu and

Mark for their excellent mentorship and guidance during my internship at CRL in

summer of 2011.

I would like to thank my parents, my younger sister Kalpana, friends and relatives

for their support and encouragament. Last but not least, I want to thank Almighty

for blessing me with the mental aptitude and physical ability to achieve my goals.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vii

ABSTRACT . xiii

CHAPTER

I. Introduction . 1

1.1 Technology scaling and the multi-core era 1
1.2 Generic switch fabric . 3
1.3 Challenges for scalability . 6

1.3.1 Design challenges 6
1.3.2 Technology scaling imposed challenges 7

1.4 Dissertation contribution . 8
1.4.1 XRAM: An SRAM inspired swizzle network 10
1.4.2 SWIFT: Swizzle Interconnect Fabric Topology . . . 10
1.4.3 SSN: Swizzle Switch Network with self-updating least

recently granted priority and quality of service arbi-
tration . 10

1.4.4 TABS: Thyristor Assisted Bi-directional Signalling . 11
1.5 Dissertation outline . 11

II. XRAM : An SRAM Inspired Swizzle Network 13

2.1 Introduction . 13
2.2 System overview . 14
2.3 XRAM architecture . 15
2.4 XRAM operation . 17
2.5 XRAM and conventional fabric 18
2.6 SIMD scalability with XRAM 19

iv

2.7 Circuit implementation . 20
2.7.1 Crosspoint bit cell 20
2.7.2 Thyristor based sense amplifier 21

2.8 Test Prototype . 24
2.9 Measurement Results . 33
2.10 Summary . 37

III. SWIFT : Swizzle Interconnect Fabric Topology 40

3.1 Introduction . 40
3.2 SWIFT architecture . 42
3.3 SWIFT operation . 43
3.4 SWIFT vs conventional fabric 48
3.5 Test prototype . 49
3.6 Circuit implementation . 50

3.6.1 Crosspoint circuit 50
3.6.2 SAEL (Sense Amp Enabled Latch) 56
3.6.3 Channel status update circuit 56
3.6.4 Priority vector generation circuit 58

3.7 Measurement results . 59
3.8 System level analysis . 63
3.9 Synthesizable SWIFT . 67
3.10 Summary . 68

IV. SSN : Swizzle Switch Network 71

4.1 Introduction . 71
4.2 Motivation . 73
4.3 SSN architecture . 73
4.4 Circuit implementation . 77

4.4.1 Crosspoint circuit 77
4.4.2 Message based quality of service arbitration 79
4.4.3 Self regenerating bit-line repeater 79

4.5 Design choices for scalability 81
4.6 Test prototype . 86
4.7 Results . 87
4.8 Multiple adaptive priority update schemes 92

4.8.1 Least Recently Granted (LRG) 92
4.8.2 Most recently granted (MRG) or greedy algorithm

scheme . 92
4.8.3 Incremental Round Robin 93
4.8.4 Decremental Round Robin 94
4.8.5 Priority swap . 94
4.8.6 Reverse priority order 95
4.8.7 Selective LRG . 96

v

4.8.8 Selective MRG . 97
4.9 Summary . 98

V. TABS : Thyristor Assisted Bi-directional Signalling 99

5.1 Introduction . 99
5.2 Motivation . 101
5.3 TABS approach . 101
5.4 TABS operation . 103
5.5 Test prototype . 109
5.6 Results . 109

VI. Conclusion and Future Work . 117

6.1 Summary . 117
6.2 Future research directions . 118

BIBLIOGRAPHY . 121

vi

LIST OF FIGURES

Figure

1.1 Increasing chip complexity trend . 2

1.2 Processor frequency trend . 3

1.3 Processor core count trend . 4

1.4 Generic switch fabric topology . 5

1.5 Traffic patterns in a switch fabric 8

2.1 XRAM as a permutation network 14

2.2 XRAM fabric topology . 15

2.3 XRAM enabled SIMD prototype . 16

2.4 Energy comparison of XRAM and conventional fabric 19

2.5 Area and delay comparison of XRAM and conventional fabric . . . 20

2.6 SIMD scalability at iso-throughput with conventional fabric 21

2.7 SIMD scalability at iso-throughput with XRAM 22

2.8 XRAM crosspoint schematic . 23

2.9 XRAM crosspoint layout . 24

2.10 Thyristor based sense amp . 25

2.11 Low gain state . 25

vii

2.12 High gain state . 26

2.13 Thyristor based sense amp layout 26

2.14 XRAM measurement set up . 27

2.15 XRAM enabled SIMD printed circuit board 28

2.16 Conventional SIMD printed circuit board 29

2.17 XRAM enabled SIMD die photograph 29

2.18 Coventional SIMD die photograph 30

2.19 Measured XRAM speed and throughput 31

2.20 Early control launch timing diagram 32

2.21 Measured XRAM power and energy efficiency 33

2.22 Measured XRAM power with and without transition encoding . . . 34

2.23 Measured XRAM power breakdown 35

2.24 Measured power and performnace for 16 and 64 lane SIMD 36

2.25 Comparison of XRAM with a recent switch fabric 37

2.26 XRAM delay variability at nominal supply 38

2.27 XRAM delay variability at reduced supply 38

3.1 SWIFT: Self arbitrating fabric . 41

3.2 SWIFT fabric topology . 43

3.3 Arbitration technique using bit-lines 44

3.4 Arbitration technique using bit-lines 45

3.5 Data routing in SWIFT . 46

3.6 Additional SWIFT arbitration control signals 47

3.7 Simulated delay and area for SWIFT and conventional fabric 49

viii

3.8 Simulated energy efficiency for SWIFT and conventional fabric . . . 50

3.9 SWIFT die photograph with crosspoint layout 51

3.10 PCB hosting SWIFT test prototype 52

3.11 SWIFT crosspoint circuit . 53

3.12 Sense amp enabled latch (SAEL) circuit 55

3.13 SWIFT timing diagram . 57

3.14 Precharge and channel status update circuit 57

3.15 Priority vector generation circuit . 58

3.16 Measured SWIFT performance . 59

3.17 Measured SWIFT power and energy efficiency 60

3.18 Measured SWIFT power with varying number of active channels . . 60

3.19 Measured SWIFT power breakdown at nominal supply 61

3.20 Measured SWIFT power breakdown at reduced supply 62

3.21 Measured SWIFT bandwidth degradation with increasing collision . 62

3.22 Measured power overhead due to arbitration in SWIFT 63

3.23 Simulated response latency for 32-core SWIFT, shared bus and mesh
topologies . 64

3.24 System floorplan of 32-core and 32-caches with SWIFT 65

3.25 Percentage of total SWIFT requests involving collision and multicast 66

3.26 SWIFT crosspoint tiling . 67

3.27 Effective bit-line in sythesizable SWIFT 69

3.28 Comparison of custom SWIFT, synthesized SWIFT and conventional
farbic . 70

ix

3.29 Comparison of SWIFT with some state of the art switch fabrics . . 70

4.1 SSN: Self arbitrating fabric with adaptive priority update 72

4.2 SSN fabric architecture . 74

4.3 LRG update technique . 75

4.4 LRG algorithm . 76

4.5 SSN crosspoint circuit . 77

4.6 Priority storage circuit . 78

4.7 Message based quality of service arbitration technique 80

4.8 QoS arbitration algorithm . 81

4.9 Self regenerating bit-line repeater 82

4.10 SSN timing diagram . 83

4.11 Simulated bit-line delay with conventional and proposed repeater . . 83

4.12 Simulated SSN energy efficiency with increasing radix 84

4.13 Simulated SSN delay with and without proposed repeaters 84

4.14 64-core system floorplan with SSN as the interconnect fabric 85

4.15 Measured SSN performance . 86

4.16 Measured SSN power and energy efficiency 87

4.17 SSN die photograph with crosspoint layout 88

4.18 SSN chip specifications . 89

4.19 PCB hosting SSN test prototype . 89

4.20 Efficiency vs bandwidth plot of recently fabricated high radix switch
fabrics . 90

4.21 Bus width vs radix plot of recently fabricated switch fabrics 90

x

4.22 Maximum cache access latency of LRG, round robin and random
arbitration schemes . 91

4.23 Least recently granted priority update 91

4.24 Most recently granted priority update 93

4.25 Incremental Round Robin priority update 93

4.26 Decremental Round Robin priority update 94

4.27 Priority swap . 95

4.28 Reverse priority order . 95

4.29 Selective least recently granted priority update 96

4.30 Selective most recently granted priority update 97

5.1 TABS: Thyristor assisted bi-directional signalling 100

5.2 TABS repeater schematic . 102

5.3 TABS low gain state . 104

5.4 TABS high gain state . 105

5.5 TABS passive state . 106

5.6 TABS state transition diagram . 107

5.7 TABS based bi-directional latch . 108

5.8 TABS and conventional test structures 109

5.9 TABS prototype die photo . 110

5.10 PCB hosting TABS prototype . 111

5.11 Simulated power delay curves for TABS and conventional repeater . 112

5.12 TABS and conventional repeater layouts 112

5.13 Measured performance and energy for 8mm interconnect with TABS
and conventional repeater . 113

xi

5.14 Measured energy versus delay curve for TABS and conventional re-
peaters . 114

5.15 Measured energy dissipation in TABS and conventional repeaters
with varying percentage of bi-directional traffic 114

5.16 Measured energy dissipation in TABS and conventional repeaters
with varying switching activity . 115

5.17 Measured energy vs. delay curves for TABS inserted every 1mm and
1.5mm, and conventional repeaters optimally inserted every 625μm 116

5.18 Measured performance and energy for TABS at different tempera-
tures at 1.0V . 116

6.1 Ultra high radix switch fabric . 119

6.2 3D fabric topology . 120

xii

ABSTRACT

High Performance and Low Power On-Die Interconnect Fabrics

by

Sudhir Kumar Satpathy

Chair: David Blaauw

Increasing power density with technology scaling has caused stagnation in operating

frequency of modern day microprocessors. This has led designers to prefer multi-

core architectures over complex monolithic processors to keep up with the demand

for rising computing throughput. Although processing units are getting smaller and

simpler, the dramatic rise of their count on a single die has made the fabric that con-

nects these processing units increasingly complex. These interconnect fabrics have

become a bottleneck in improving overall system efficiency. As a result, the design

paradigm for multi-core chips is gradually shifting from a core-centric architecture

towards an interconnect-centric architecture, where system efficiency is limited by

the fabric rather than the processing ability of any individual core. This disserta-

tion introduces three novel and synergistic circuit techniques to improve scalability of

switch fabrics to make on-die integration of hundreds to thousands of cores feasible.

1) A matrix topology is proposed for designing a fully connected switch fabric that re-

uses output buses for programming, and stores shuffle configurations at cross points.

This significantly reduces routing congestion, lowers area/power, and improves per-

formance. Silicon measurements demonstrate 47% energy savings in a 64-lane SIMD

xiii

processor fabricated in 65nm CMOS over a conventional implementation. 2) A novel

approach to handle high radix arbitration along with data routing is proposed. It op-

timally uses existing cross-bar interconnect resources without requiring any additional

overhead. Bandwidth exceeding 2Tb/s is recorded in a test prototype fabricated in

65nm. 3) Building on the later, a new circuit topology to manage and update priority

adaptively within the switch fabric without incurring additional delay or area is then

proposed. Several assist circuit techniques, such as a thyristor based sense amplifier

and self regenerating bi-directional repeaters are proposed for high speed energy ef-

ficient signaling to and from the switch fabric to improve overall routing efficiency.

Using these techniques a 64×64 switch fabric with 128b data bus fabricated in 45nm

achieves a throughput of 4.5Tb/s at single cycle latency while operating at 559MHz.

xiv

CHAPTER I

Introduction

1.1 Technology scaling and the multi-core era

Semiconductor computing technology has advanced by leaps and bounds since its

inception because of ever reducing transistor size as predicted by Moores law [1]. With

on die computing resources doubling every two years and aided by transistors that

switch faster, foundries continually delivered single core processors that were faster,

smaller and more energy efficient over their predecessors. Even though transistor

count continues to grow steadily, rising power density with technology scaling has re-

cently caused core operating frequency to stay stagnant. This is shown in Fig. 1.1 and

Fig. 1.2 which list the transistor count, and operating frequency of some commercial

microprocessors reported in the last two decades.

This has led designers switch over to multi-core architectures from complex mono-

lithic processors to address the demand for higher computing throughput. High end

servers [3][4][5], gigabit Ethernet routers [6], multiprocessor NoCs, and multimedia

processors [7][8] now serve workloads that process terabytes of data flow every second.

Such compute capability is beyond the reach of todays single core chips that operate

only within a small power budget. Even many medium throughput applications now

prefer multi-core architectures over a single core implementation for better energy ef-

ficiency and reliability management [9]. With transistors getting cheaper and faster,

1

Figure 1.1: Increasing chip complexity trend in last two decades [2]

the core count in multi-processor systems has been steadily increasing [2] as shown

in Fig. 1.3. Some notable multi-core chips that have been fabricated in recent years

are intel’s 80 Tile Teraflop compute platform [10], MIT’s 64 Tile RAW Processor

[11], intel’s 48-Core Single-Chip Cloud computer [12], 167-Core AsAP programmable

array processor chip [13], and Tilera’s 64-Core TILEPro64 chip [14].

High radix, high bandwidth, and low latency switch fabrics are key enablers for

manycore computers. These systems invariably need a communication network to

permute data among processing and storage units in the chip. Although processing

units are getting smaller and simpler taking full advantage of technology scaling, the

dramatic rise in their count on a single die has resulted in the growing complexity of

the interconnect fabric. The fabric size usually grows quadratically with the number

of IPs that it links [15][16]. The average latency and energy spent for sending in-

formation across these fabrics increases more than linearly. This partly nullifies the

throughput gains achieved from multi-core computing. It is now the case that switch

fabrics are a bottleneck in improving overall system efficiency. As a result, the design

paradigm for multi-core chips has shifted from a core centric architecture towards an

2

Figure 1.2: Processor frequency trend in last two decades [2]

interconnect centric architecture. In such a design space overall system efficiency is

limited by the bandwidth of the interconnect fabric rather than the processing ability

of any individual core.

1.2 Generic switch fabric

A generic switch fabric comprises of three key modules as shown in Fig. 1.4.

1) A data routing module to transfer information among different IPs connected

to the fabric. This could be a single or a collection of shared buses for systems

where processing units rarely communicate [17][18][19], or could be a fully connected

crossbar for systems where performance is constrained by the fabric’s bandwidth [20].

2) An arbiter that receives requests from processing units and configures the fabric to

ensure that data sent from a source reaches the appropriate destination. 3) A priority

management module that monitors traffic flow pattern within the fabric and assists

the arbiter to ensure fairness in resource allocation.

Traditionally these modules have been looked into in great detail independently

3

Figure 1.3: Processor core count trend in last two decades [2]

[21][22][23][24]. Many variants of the data routing hardware such as a shared bus,

fat tree, banyan network, benes network, clos network, flattened butterfly network,

torus fabric, fully connected crossbar etc. have been proposed in the literature

[25][26][27][28]. Some recent implementations use hierarchical interconnect fabrics

that are made from multiple switch topologies [29][30][31] to take advantage of vary-

ing traffic patterns at different levels of design hierarchy. Similarly, various imple-

mentations of the arbiter and priorty management module are also available in the

literature [32][33][34]. Even though a true least recently granted (LRG) arbitration

policy guarantees fairness and deadlock free network operation, the complexity of its

implementation in high radix networks limits its usage. Hence, designers have often

resorted to simple techniques such as round robin or random selection protocols for

easy implemetation [35][36][37]. Though such protocols work well over a large set of

applications, at times they can lead to starvation in certain parts of the network, and

hence are not recommended for systems that deal with time critical workloads.

4

Figure 1.4: Generic switch fabric topology

5

1.3 Challenges for scalability

1.3.1 Design challenges

As shown in Fig. 1.4, the overall efficiency of the switch fabric relies on how

efficiently each of the independent modules function and how seamlessly they com-

municate among one another. With a growing number of input and output ports,

each module gets physically bigger and hence farther from the others. Beyond a size,

the latency and energy overhead due to communication between these modules starts

limiting overall fabric efficiency. Existing circuit techniques to build high radix switch

fabrics rely on assembling together smaller switches that are usually 5×5 in dimen-

sion [43][44][45][46][47][48]. This approach has certain limitations: 1) The elementary

switches are built using multiplexers that select bits rather than buses. Hence, as

buses get wider, routing at the fabric input ports involves a lot of swizzling among

the wires incurring additional area penalty. 2) A switch with ports far exceeding

5 would require multiple of these switches to be connected in stages. Data has to

traverse through multiple stages to reach its destination thereby increasing latency

and energy dissipation. They would also require additional data storage elements in

the data routing path for higher throughput resulting in futher latency and power

overhead. 3) As shown in Fig. 1.4, each source sends requests to the arbiter before it

could access a destination, and eventually the arbiter sends an acknowledgement back

to the source after setting up the routing path. Configuring all the switches along

the routing path incurs latency. In sytems that have well defined communication

patterns and usually operate on massive sets of data, the latency and energy cost

for configuring the fabric can be amortized by setting up the routing path ahead of

time or by sending multiple chunks of data once the path is established. However,

in generic multiprocessor systems most traffic patterns are not pre-defined. Hence,

the fabric configuration cost becomes a bottleneck. 4) A non-blocking switch sup-

6

ports all possible permutations (1-1 mappings of input to output ports as shown in

Fig. 1.5) and hence can guarantee starvation free communication for all applications.

However many applications particularly in the area of signal processing (like FFT,

LDPC, Color space conversion etc.) can be sped up significantly by incorporating

multicast and broadcast features in the switch fabric [49]. Multicasts are mappings

that allow individual inputs to connect to multiple outputs, however, no output may

be connected to more than 1 input. Broadcast is a special form of multicast where a

single input is connected to all the outputs. A multiplexer based fabric built in mul-

tiple stages does not naturally multicast and would require significantly more logic

to incorporate these features.

Analysis of different arbitration policies in the literature show that arbitration

schemes have a noticeable impact on throughput and fairness of interconnection net-

works [38][39][40][41]. Some arbitration policies like the greedy allocation policy tend

to maximize network throughput at the cost of quality of service. At the other

extreme, some fancy schemes like probabilistic distance [60] based arbitration can

guarantee quality of service at the price of more complex logic and hence additional

arbitration latency and power overhead. Hence, adaptive and hybrid resource alloca-

tion schemes are preferred in general over static schemes because of their ability to

mitigate congestion and hot spot in networks by re-directing traffic flow.

1.3.2 Technology scaling imposed challenges

Apart from the above mentioned design challenges, advancement in process tech-

nologies has posed new challenges for on die switch fabrics. Interconnect pitch has not

been scaling as aggresively as transistor size for sub 65nm process nodes. Traditional

switch fabric topologies are heavily wiring limited with logic utilization as low as 60%

at high radices. The size of the fabric, and hence the latency and energy dissipation

are primarily determined by the wiring pitch. So smaller technology nodes that do not

7

Figure 1.5: Traffic patterns in a switch fabric

offer significant reduction in interconnecr pitch, resistance and capacitance, cannot

be leveraged to their full potential in designs that are fabric limited. Besides, with

logic area shrinking and power density increasing with technology scaling, a higher

percentage of available on die routing resources now need to be devoted towards

power distribution. This leaves fewer tracks available for signal routing. Again, with

coupling and capacitive crosstalk getting worse, designs in smaller technology nodes

require higher spacing to maintain similar signal integrity. This leaves even fewer

usable routing tracks. These problems aggravate the already mentioned limitations

imposed by traditional circuit techniques to build switch fabrics.

1.4 Dissertation contribution

This research proposes architectures and circuit techniques for improving overall

network efficiency and scalability. Prior research contributions in this area pertain

towards improving specific parts/functionalities within the fabric, thereby reducing

their efficacy in addresing challenges poised by the fabric as a whole. By narrowing

down the region of interest, most prior work have been unable to leverage design slack

8

available in one module of the network to optimize other parts. In this dissertation

we introduce and demonstrate in silicon unique fabric architectures aided by novel

circuit techniques that co-optimize data routing, arbitration and resource allocation

simultaneously to improve overall network scalability. Much of the success of our

approaches come from our ability to integrate multiple fabric functionalities onto the

same hardware with negligible reconfiguration overhead, thereby making optimum use

of available on-die silicon real estate and routing tracks. Some key accomplishments

of this research are :

1) The switch fabrics fabricated in this research are some of the densest fabrics

reported in literature.

2) The switch fabrics use unique circuit techniques that make high radix imple-

mentations feasible. In contrast with most state-of-the-art fabrics that are built from

5 × 5 switches, we have built fabrics using single stage switches with dimensions

128× 128 (16b data bus), 32× 32 (64b data bus), and 64× 64 (128b data bus).

3) Contemporary high radix switch fabrics achieve high throughput (in the or-

der of Tb/s) by trading off latency. In contrast, fabrics reported in this thesis have

achieved similar throughput at substantially lower communication latency. The pro-

posed fabrics require one data transfer cycle for swicth configuration and resource

allocation irrespective of their radices.

4) These fabrics can be used as a drop in replacement for other fabrics in multi-

processor chips. We have demonstrated up to 47% energy savings in SIMD (single

instruction multiple data) processors and 1.6× reduction in conflicting memory la-

tency in a 64-core system while using these proposed fabrics in place of conventional

ones.

We demonstrated the circuit techiques proposed in this thesis by buiding some

silicon prototypes as listed below.

9

1.4.1 XRAM: An SRAM inspired swizzle network

XRAM [50][52] is a circuit switched swizzle network. It uses an SRAM-based

approach producing a compact fabric footprint that scales well with network dimen-

sions while supporting all permutations and multicasts. Capable of storing multiple

shuffle configurations and aided by a novel sense-amp for robust bit-line evaluation,

a 128 × 128 XRAM with 16b data bus fabricated in 65nm bulk CMOS achieves a

band-width exceeding 1Tbit/s. It enables a 64-lane SIMD engine operating at 0.72V

to save 46.8% energy over an iso-throughput conventional 16-lane implementation

operating at 1.1V.

1.4.2 SWIFT: Swizzle Interconnect Fabric Topology

SWIFT [51] is a 32×32 (64b data bus) self-arbitrating switch fabric. It achieves a

bandwidth of 2.1Tb/s with single cycle arbitration and data transfer latency in 65nm

bulk CMOS while operating at 1026MHz at 1.2V. SWIFT co-optimizes arbiter and

crossbar logic using a unique fabric architecture that integrates conflict resolution with

data routing to optimally use logic and interconnect resources. It spans 0.35mm2,

achieves an efficiency of 7.39Tbps/W, and operates down to 530mV.

1.4.3 SSN: Swizzle Switch Network with self-updating least recently granted

priority and quality of service arbitration

SSN [42] is a 64×64 (128b data bus) switch fabric with a throughput of 4.5Tb/s at

3.4Tb/s/W energy efficiency. It spans 4.06mm2 in 45nm SOI CMOS and achieves a

peak efficiency of 7.4Tb/s/W at 0.6V. It features a single cycle least recently granted

arbitration technique that re-uses data buses and switching logic. It also integrates 4-

level message based priority arbitration for quality of service and unique bi-directional

bit-line repeaters for improved scalability. The novel single cycle LRG implementation

in SSN reduces worst-case cache access latency by 1.83× and 2.03× on average over

10

round robin and random arbitration schemes for SPLASH 2 multiprocessor bench-

marks in a 64-core 64-cache system.

1.4.4 TABS: Thyristor Assisted Bi-directional Signalling

TABS is a thyristor-assisted standard cell compatible self-timed bi-directional re-

peater with no configuration overhead. It enables 8mm interconnects to achieve 37%

higher speed at 20% lower energy over conventional repeaters in 65nm CMOS at 1.0V.

In TABS absence of configuration logic removes the need for clocking, yielding up to

14× higher energy efficiency at very low data switching activity over conventional

repeaters.

1.5 Dissertation outline

The remainder of this dissertation is organized as follows. In chapter 2, we ad-

dress the limitations of traditional circuit techniques in designing high radix data

permutation networks and propose a novel fabric architecture called XRAM. We also

introduce the technique of caching frequently used shuffle patterns within the permu-

tation network and demonstrate its benefits in a SIMD test prototype. In chapter 3,

we address the challenges involved in designing high radix arbiters by introducing our

second generation fabric called SWIFT. Building on this, in chapter 4 we introduce

the third generation switch fabric called SSN that leverages unique circuit techniques

to guarantee fast deadlock free routing by using the least recently used resource

allocation policy. All the above mentioned architectures heavily rely on reusing in-

terconnect resources to accomplish different fabric functionalities. The wires in these

fabrics run for millimeters and are driven by multiple drivers at different locations. To

optimize bi-directional signaling on such wires, in chapter 5 we propose TABS which

is a standard cell replacement for conventional bi-directional repeaters. TABS uses

a unique circuit tehnique that obviates the need for any direction configuration logic

11

and clock, thereby improving speed as well as energy efficiency. Chapter 6 conludes

this dissertation by presenting directions for future research in this area.

12

CHAPTER II

XRAM : An SRAM Inspired Swizzle Network

2.1 Introduction

The permutation network is one of the key building blocks in the interconnect

fabric. A fully connected matrix type crossbar can accomplish all possible data per-

mutations including multicast and broadcast. However, its control overhead grows

quadratically with the number of inputs and outputs, thereby limiting its scalability.

In this chapter we introduce a new permutation network called XRAM to optimize

this particular aspect of the switch fabric as shown in Fig. 2.1. XRAM is a novel

circuit switched interconnect fabric. Fig. 2.2 shows the top level diagram of XRAM

fabric. It uses an SRAM-based approach that results in a compact silicon footprint

that scales well with network dimensions. It supports all permutations and multicasts.

Capable of storing multiple shuffle configurations and aided by a novel sense-amp for

robust bit-line evaluation, a 128× 128 XRAM with 16b data bus fabricated in 65nm

CMOS achieves a bandwidth exceeding 1Tbit/s, enabling a 64-lane SIMD engine op-

erating at 0.72V to save 46.8% energy over an iso-throughput conventional 16-lane

implementation operating at 1.1V.

13

Figure 2.1: XRAM as the permutation network

2.2 System overview

The test prototype is a 5 stage 64 lane vector processor with a dedicated pipeline

stage to shuffle operands before computation as shown in Fig. 2.3. The shuffle stage

uses a 128× 128 XRAM as a non-blocking fully connected fabric to re-arrange vector

operands read from a 16 entry, 1024 bit (64 chunks of 16 bit) register file before

feeding it into the execution stage. The execution stage consists of a bank of 64

processing units. Each processing unit is comprised of a 16 bit multiplier and an

ALU. Every cycle a pair of 1024 bit operands is shuffled in accordance with a pre-

14

Figure 2.2: XRAM fabric topology

defined pattern configured into the XRAM. A 16 bit scalar pipeline acts as a host

processor to configure the XRAM and manage permutation patterns for the vector

data path.

2.3 XRAM architecture

XRAM is a matrix crossbar that leverages some of the circuit techniques used in

SRAM arrays for improving area and performance. Fig. 2.2 shows a top level diagram

of XRAM. The input buses span the width while the output buses run perpendicular

to them, creating an array of cross points. Each cross point contains a 6T SRAM

bit cell. The state of the SRAM bit cell at a cross point determines whether or not

input data is passed onto the output bus at the cross point. Along a column only

one bit cell is programmed to store logic high and create a connection to an input.

Matrix type crossbars incur a huge area overhead because of quadratically increasing

15

Figure 2.3: Test prototype with XRAM as swizzle network

number of control signals that are required to set the connectivity at the cross points.

To mitigate this, XRAM uses a technique similar to what is employed in SRAM. In

an SRAM array, the same bit-line is used to read as well as write a bit cell. Until

the XRAM is programmed the output buses do not carry any useful data. Hence,

these can be used to configure the SRAM cells at the cross points without affecting

functionality. Along a channel (output bus), each SRAM cell is connected to a unique

bit-line comprising the bus as shown in Fig. 2.2. Cross points along the top row are

programmed by the first bit, those along the second row by the second bit and so

on. This allows programming multiple cross points in a column (as many bit-lines

available in the channel) simultaneously.

Switch fabrics have traditionally been highly interconnect dominated, rendering

a significant amount of logic space under-utilized. In a 128 × 128 fabric with 16 bit

channels synthesized using industrial standard libraries in a state of the art 65nm

technology, the silicon utilization is found to be only 18%. XRAM mitigates this to

16

some extent by re-using output channels for programming resulting in improvement of

silicon utilization to 45%. To further improve silicon utilization, multiple SRAM cells

can be embedded at each cross-point to cache more than one shuffle configuration.

In a 65nm implementation, a 16-bit bus width allows six configurations to be stored

without incurring any area penalty. Any one of these configurations can be selectively

programmed or used to shuffle data. As a result, XRAM can switch configurations

in consecutive cycles without any additional delay. Besides, most signal processing

applications use a small number of permutations over and over again [52][53][54].

By caching some of those (that are most frequently used), XRAM saves power and

latency that would have otherwise been incurred in a conventional network.

2.4 XRAM operation

XRAM operates in 2 modes: programming mode and transmission mode. In

programming mode, the controller sends a one-hot signal onto each output bus. A

global word-line is then raised high to write to the SRAM cells at cross points and

program the XRAM. With 16-bit buses, a 16 × 16 XRAM can be programmed in a

single clock cycle. Larger XRAMs are divided into multiple sections with independent

word-lines and one section is programmed at a time. In the test chip, the 128× 128

XRAM with 16 bit buses is divided into 8 sections with independent word-lines. To

program a channel, in the first cycle all word-lines are raised high while sending an

all zero code(16’b0) on the channel. This writes a logic low in all the bit cells in

that channel. In the next cycle, a one hot signal is sent while selectively raising only

one word-line high to allocate the channel. For instance, to allocate the channel to

input 43, the third word-line is raised high while sending 16b0000100000000000 on the

channel. Because configurations are never read out, the access transistors in SRAM

are upsized to achieve better write robustness.

In transmission mode, the word-line stays low and incoming data is passed onto

17

the output bus at the cross point storing a 1 using a pre-charge followed by conditional

discharge technique. By storing multiple 1s in cross points along a row, input data

can be multicast to multiple outputs. During the positive phase of clock, input data is

launched and the bit-lines are pre-charged to logic high. During the negative phase of

clock, the bit-lines are selectively pulled down if the data is high and the cross-point

stores a 1. A bank of sense amplifiers evaluates the bit-lines to retrieve data. The bit-

lines need not be pulled down all the way to VSS, thereby saving power and improving

performance. Because bit-lines either stay pre-charged or get partially discharged, the

worst case switching scenario is eliminated greatly reducing capacitive cross talk and

enabling lesser spacing between adjacent bit-lines (In the test prototype, input and

output wires are routed at 2× minimum spacing). However, this technique results

in power dissipation even with a non-switching input that stays high because the

bit-lines get pre-charged and discharged every cycle. To mitigate this, incoming data

is transition encoded at the input of XRAM. The original data is retrieved back at

the output using transition decoders.

2.5 XRAM and conventional fabric

The number of wires and hence the dimension of XRAM grows as O(n), where

n is the number of inputs/outputs, compared to O(n(logn)) in conventional switch

fabrics. Simulation results in Fig. 2.4 and Fig. 2.5 compare a conventional fabric that

is optimally designed using standard cells and XRAM with increasing dimensions.

Xbar dimension is defined as the number of input/output ports. XRAM is 3.3×
smaller, 37% faster, and saves 75% energy per bit transfer in comparison with a

conventional fabric for a 128 × 128 network. With increasing dimension (both ports

and width of buses) XRAM benefits become more apparent, making it suitable for

use in systems with high bandwidth and low latency requirements.

XRAM does not require clustering of unique bits from different buses at input,

18

Figure 2.4: Energy comparison of XRAM and conventional fabric with increasing
dimension

thereby avoiding routing congestion. Besides, the absence of additional control-

overhead results in significant area reduction. This reduces interconnect capacitance

and improves performance. Programming power and latency is further reduced by

caching frequently used shuffle patterns in XRAM.

2.6 SIMD scalability with XRAM

Switch fabrics are used in all SIMD processors for operand permutation. Most

signal processing algorithms are parallel in nature and hence can exploit availability

of additional SIMD lanes for higher throughput or energy savings by scaling down

supply voltage. Fig. 2.6 and Fig. 2.7 shows the average energy spent per cycle while

computing a 1024 point FFT in systems with varying number of SIMD lanes at

19

Figure 2.5: Area and delay comparison of XRAM and conventional fabric with in-
creasing dimension

constant throughput. The delay and energy for a conventional mux-based fabric does

not scale well and hence does not provide room for voltage scaling with increasing

SIMD width. In contrast, an XRAM equipped system saves significant energy with

additional lanes because of voltage scaling.

2.7 Circuit implementation

2.7.1 Crosspoint bit cell

Fig. 2.8 shows the cross point circuitry. One of the bits (out0<0>) from the output

bus is used to program the cross point. The one-hot signal Config[0:5] is used to select

a configuration. The output bus is pre-charged concurrently while incoming data

settles on the input bus (during negative phase of Discharge). Thereafter, (during

positive phase of Discharge) the output lines are discharged if the cross point bit

20

Figure 2.6: Convetional SIMD operating voltage and energy dissipation with increas-
ing number of lanes

cell stores a 1 and the incoming data is 1. Widths of 480nm for the top transistor

and 540nm for the bottom transistor were chosen in the discharge stack to optimize

overall XRAM delay. In most cases the 2 operands in SIMD data path undergo

different permutations. Hence, two sets of configuration select signals are routed in

XRAM to provide independent shuffle patterns to either operand. Fig. 2.9 shows the

crosspoint layout.

2.7.2 Thyristor based sense amplifier

Output lines are evaluated by a bank of sense amplifiers. Conventional sense amps

use a differential amplifier topology for bit-line evaluation. They are very prone to

functional failures due to device mismatch. Incorrect evaluation might also result

if they are fired too early before an adequate voltage difference has developed on

the bit-line. Hence, they rely on accurate timing and vastly oversized devices for

21

Figure 2.7: XRAM enabledl SIMD operating voltage and energy dissipation with in-
creasing number of lanes

correct operation across different process corners. Besides, they consume power in

pre-charging internal nodes every cycle, because during evaluation one of the internal

nodes is always discharged irrespective of the bit- line voltage. In SRAM arrays

the area and power penalty for such sense amps gets amortized because of column

multiplexing. However, in XRAM all output buses are evaluated simultaneously.

Because of the large number of sense amps required (2048 for 128 16 bit buses in

the test chip), differential amplifier based topology is not suitable. In addition, to

enable single ended sensing a reference voltage would be required. To mitigate these

shortcomings, a novel single-ended thyristor-based topology is used to design sense

amp as shown in Fig. 2.10. The sense amp is initially pre-charged to a low gain

leakage state as shown in Fig. 2.11. In this stage the thyristor node voltages are

weakly held because of leaking pre-charge devices. During evaluation, internal node

A is coupled to the output line through a PFET access transistor. If the output line

22

Figure 2.8: Crosspoint schematic

stays pre-charged, the thyristor continues to stay in its low gain leakage state. The

pre-charge transistors are sized large enough to compensate for leakage through the

thyristor pair.

On the other hand, if the output line is discharged by a cross point, node A

initially follows the output line voltage. The PFET in the thyristor gradually turns

on which subsequently turns on the NFET producing a regeneration effect that causes

the thyristor to switch into its high gain stable state as shown in Fig. 2.12. The

PFET access transistor is sufficiently weak to prevent the output line from fully

discharging to save power. Because input evaluation does not involve any contention,

this topology is more tolerant towards mismatch induced functional failure.

Input evaluation in the thyristor based topology is slower than a conventional

sense amp. This is amortized by firing the sense amps as soon as bit-lines start

discharging as shown in the timing diagram in Fig. 2.10. This simplifies timing gen-

23

Figure 2.9: Crosspoint layout

eration since SE and Discharge can be generated off the same edge. Given improved

mismatch tolerance, devices can be downsized, resulting in only 3% to 20% increase

in XRAM area in comparison with 12% to 52% for a conventional sense amp across

dimensions ranging from 128×128 to 16×16. The internal nodes switch only if the

input discharges, thus reducing pre-charge power. As can be observed from the cross

point and sense amp circuits, only falling edge transitions are critical. Hence delay is

further improved by skewing devices. Fig. 2.13 shows the sense amplifier layout.

2.8 Test Prototype

The test prototype is fabricated in TSMC 65nm, 9 metal stack bulk CMOS process

using a semi custom design flow. The cross point and sense amp circuits are custom

laid out. As shown in Fig. 2.8, the circuit is similar for all 16,384 cross points except for

24

Figure 2.10: Thyristor based sense amplifier with timing diagram

Figure 2.11: Thyristor based sense amplifier: Low gain state

25

Figure 2.12: Thyristor based sense amplifier: High gain state

Figure 2.13: Thyristor based sense amplifier layout

26

Figure 2.14: Measurement set up

the output line that is used for programming them. A skill script is used that modifies

a generic cross point layout to create all cross points. The cross points are then tiled

together along with input/output drivers as is done in SRAM arrays. The input buses

for XRAM are laid in metal layers 2 and 4, while the output buses are laid in layers

3 and 5 at 2x minimum pitch. Clock, Discharge and SE are distributed through

H-trees in layer 6 to minimize capacitive coupling from signal routes. Transistor

sizing is based on critical path delay (delay for data transfer from top-most to right-

most cross point) optimization at the typical corner and functional verification at all

process corners. Other modules in the chip are synthesized using Synopsys Design

Compiler and auto placed and routed with Cadence SoC Encounter. Timing is met

at 2.5ns with a global clock skew of 180ps.

27

Figure 2.15: PCB hosting XRAM enabled SIMD prototype

Fig. 2.14 shows the test setup. For fairness in comparison, two prototypes are

tested: a 64 lane SIMD with a 128× 128 XRAM and a 16 lane SIMD with a 32× 32

conventional crossbar. Both chips have five core(1.1V) and one IO(2.5V) voltage do-

mains. The switch fabric, execution stage, register files have separate voltage domains

for independent power measurement. Other miscellaneous peripherals and scan are

assigned the fourth core voltage domain. The clock generator is placed on the fifth

power domain to avoid power supply noise because of processor activities affect oper-

ation frequency. Each power grid is designed for 50mV voltage drop under worst case

scenario. For XRAM, most number of adjacent cross points fire during a broadcast

causing maximum supply droop. 66 of the 113 pins in the 64 lane SIMD chip and

36 of the 57 pins in the 16 lane SIMD chip are dedicated for supply. Fig. 2.15 and

Fig. 2.16 show the printed circuit boards with both test prototypes.

Die micrographs of the 16 Lane and 64 Lane SIMD processors are shown in

Fig. 2.17 and Fig. 2.18 respectively. The 16 lane system has a 32 × 32 synthesized

28

Figure 2.16: PCB hosting conventional SIMD prototype

Figure 2.17: XRAM enabled SIMD die photograph

29

Figure 2.18: Conventional SIMD die photograph

switch fabric that spans 0.16mm2, which is 7.5% of the total die area (2.16mm2). The

128× 128 XRAM in the 64 lane system spans 0.85mm2, which is 14.9% of chip area

(5.7mm2). A synthesized fabric of similar dimension would span 2.2mm2 and would

require 3× more energy per bit transfer. Besides, XRAM topology allows source mod-

ules to be placed on either the left or right side and destination modules on either

the top or bottom side of the fabric, making chip floor planning flexible. This allows

splitting the register files on either side of XRAM as shown in the 64 lane SIMD die

photo.

Both chips use a scan based scheme for transferring data in and out of the proces-

sor. The scalar pipeline that acts as the host processor for programming the XRAM

can be run in test mode through scan. A 128 entry FIFO that is used as instruc-

tion cache and the 16 entry register file are directly programmable through the scan

chain. In configuration mode the scalar processor is clocked from an external source

for programming the crossbar and predication registers used by SIMD instructions.

The processor is clocked (externally or internally from clock generator) for a given

30

Figure 2.19: Measured XRAM speed and throughput

number of cycles and data can be read out from the register files to verify for cor-

rectness. The execution stage with 16 bit multipliers is the critical path that sets

the processor frequency. For independently testing the switch fabric at higher speed,

the register files and execution units are augmented with LFSRs and signature an-

alyzers. The LFSRs and signature analyzers are designed for operating as fast as

700MHz since the maximum target frequency for XRAM is 650MHz. The pipeline

registers between the register file and switch fabric are also made scanable to verify

that correct data gets launched into the switch fabric. The Clock, Discharge and SE

signals are generated on chip with programmable delays controlled by the scan chain

and off-chip analog biases to modulate the position and duty-cycle for Discharge and

SE. These high frequency signals are made observable through an on chip voltage

to current (VI) converter that can source a large current so that a voltage pulse is

made available as a current pulse external to the chip. The current pulse when passed

through a resistor of appropriate value recreates the voltage waveform.

31

Figure 2.20: Early control launch timing diagram

32

Figure 2.21: Measured XRAM power and energy efficiency

2.9 Measurement Results

The test chips are verified functionally by running a 64 point FFT that has 6

butterfly stages. The shuffle pattern for each butterfly stage is configured into the

switch fabric so that the processor can consistently process data without halting. The

switch fabrics are tested by streaming data in various permutations and verifying their

signatures. Measurement results for the 128 × 128 XRAM for supply ranging from

600mV to 1.2V are shown in Fig. 2.19 and Fig. 2.21. XRAM functionality is limited

by sense amps that do not operate reliably below 580mV. XRAM has a peak bisection

bandwidth of 1.07Tb/s at 1.1V while consuming 227mW at 20% switching activity.

This translates to an efficiency of 4.71Tb/s/W and 212fJ per bit transfer.

The delay through XRAM can be analyzed in two phases. In the first phase

(defined by Discharge staying low), input data settles and various control signals (that

select configuration, mode of operation etc.) propagate to the cross points. During

33

Figure 2.22: Measured XRAM power with and without transition encoding

the second phase (defined by Discharge staying high), output lines are selectively

discharged and evaluated in the sense amp. At nominal supply (1.1V), the delays

for both phases are balanced. In this case a 12% speed improvement is achieved

when the first phase delay is optimized by launching XRAM control signals early by

exploiting useful skew as shown in Fig. 2.20. At lower supplies, output line discharge

followed by sense amp evaluation slows down significantly making the second phase

delay dominant. Hence optimizing the first phase delay results in no significant overall

speed improvement.

Measurement result showing the impact of transition encoding is shown in Fig. 2.22.

With transition encoding disabled XRAM power increases linearly with increasing

percentage of 1’s in the input data. In contrast,with transition encoding enabled

energy savings of 33% and 44% are observed at 1.1V and 0.7V respectively. The min-

ima at either extreme are due to zero switching activity in the input/output buses.

Transition encoding saves energy by eliminating discharge of output buses when in-

34

Figure 2.23: Measured XRAM power breakdown

put is statically held high. The power breakdown in Fig. 2.23 reveals that output

lines dominate XRAM power at low voltage. This can be accounted for due to the

fact that, energy dissipation in output lines scale differently from other modules with

voltage scaling. The threshold voltage of the PFET in thyristor at the typical corner

is 330mV. So the thyristor triggers into the high gain state when the output line dis-

charges by at least 330mV irrespective of the supply voltage. By reducing supply from

1.1V to 0.7V, expected energy savings from other circuits (clock buffers, cross points,

input/output drivers etc. where energy dissipation is C.Vdd2) is 2.5× (1.12/0.72).

For output lines the energy dissipation is C.Vdd.ΔV. So, expected energy saving is

only 1.6×(1.1/0.7). However, only the output line that is sensed by the latest trigger-

ing sense amp discharges the least. The duration for Discharge and SE remains the

same for all cross points and sense amps. So other output lines continue to discharge

even after the sense amps sampling those trigger. Effectively, expected energy sav-

ings on output lines should be between 1.6× and 2.5× depending on intra-die process

35

Figure 2.24: Measured power and performnace for 16 and 64 lane SIMD

variations. With less variability, energy savings would be close to 1.6× and conversely

with more variability the ratio would move towards 2.5×. This explains the power

trend shown in Fig. 2.22 and justifies transition encoding being more effective with

supply voltage scaling.

Measured results for XRAM equipped 64 lane and conventional 16 lane SIMD

processors are summarized in Fig. 2.24 under two extreme work load conditions. The

16 lane system runs at 400MHz at 1.1V. For similar throughput the 64 lane system is

voltage scaled down to 720mV to operate at 100MHz. In the 64 lane system, energy

savings in register files and execution units because of low voltage operation supersede

the additional energy required to transfer data over a bigger fabric resulting in better

system efficiency. For FFT like light load applications, the 64 lane system consumes

40.32mW which is 29.7% less energy than the 16 lane system. For matrix inversion

like heavy load applications power consumption is 81.36mW and 46.8% energy is

saved (at iso-throughput run time for both processors is same, hence %power saving

is equivalent to %energy saving).

Comparison of XRAM with a prior art [48] that uses flash programmable pass

36

Figure 2.25: Comparison of XRAM with a recent switch fabric

transistors to store permutation pattern at cross point switches is shown in Fig. 2.25.

Although [48] has 8 configurations, it takes longer to program the fabric than XRAM

(write duration for flash cell is a lot higher than SRAM). It requires multiple cycles

for data to traverse across the fabric. Besides, [48] does not use bulk CMOS process

and hence cannot be easily integrated in CMOS designs. Generation and handling of

a higher programming voltage for configuring flash cells also require significant energy

and logic overhead. XRAM fares better in performance (4.2× faster), area as well as

energy efficiency. Fig. 2.26 and Fig. 2.27 show the delay distribution for all XRAM

lanes at nominal and reduced supply voltages respectively.

2.10 Summary

In this chapter, we presented a fast, low power, area efficient circuit technique

called XRAM to design high radix interconnect fabrics for multi-processor systems.

37

Figure 2.26: XRAM variability measurement at 1.1V

Figure 2.27: XRAM variability measurement at 0.6V

38

In contrast with prior switch fabrics that are made from elementary 5 × 5 switches,

we demonstrate in silicon a single stage 128×128 fabric that spans 0.85mm2 in 65nm,

provides a peak bisection bandwidth of 1.07Tbit/s while operating at 530MHz at 1.1V

and dissipates 227mW at 20% switching activity. XRAMs energy efficiency is mea-

sured to be 4.72Tb/s/W with 212fJ energy dissipation per bit transfer. Simulation

results demonstrate that XRAM equipped SIMD systems can scale to much wider

lanes in comparison with conventional SIMD. Silicon results from test prototypes of

XRAM aided and conventional SIMD processors fabricated in 65nm demonstrate 47%

energy savings for compute intensive workloads.

39

CHAPTER III

SWIFT : Swizzle Interconnect Fabric Topology

3.1 Introduction

The arbiter is another integral module of a generic interconnect fabric. The swizzle

network called XRAM (discussed in chapter 2) uses circuit techniques to optimize

routing of data across the fabric. However, it requires a centralized arbiter to program

the switch. At higher radices, programming latency limits the operating frequency

and hence XRAM’s throughput. Besides, communication to and from the arbiter

costs additional delay and energy overhead, that limits XRAM’s efficiency. To address

this, in this chapter we introduce circuit techniques to integrate the arbiter within the

permutation network as shown in Fig. 3.1. This fabric (called SWizzle Interconnect

Fabric Topology) retains all XRAM data permutation capabilities in addition to its

ability to perform high radix arbitration without incurring additional delay. SWIFT is

a 32×32 (with 64b data bus) self-arbitrating switch fabric. It achieves a bandwidth of

2.1Tb/s with single cycle arbitration and data transfer latency in 65nm bulk CMOS

technology while operating at 1026MHz at 1.2V. SWIFT co-optimizes arbiter and

crossbar logic using a unique fabric architecture that integrates conflict resolution with

data routing to optimally use logic and interconnect resources. It spans 0.35mm2,

achieves an efficiency of 7.39Tbps/W, and operates down to 530mV.

40

Figure 3.1: SWIFT: Self arbitrating fabric

41

3.2 SWIFT architecture

High radix, high bandwidth, and low latency switch fabrics are key enablers for

high-end servers, Ethernet routers, multiprocessor NoCs, multimedia accelerators,

and manycore computers in general [56] [57]. Conventional switch fabrics typically

consist of a crossbar to route data and a separate arbiter to configure the crossbar.

This poses two hurdles for scalability: 1) Routing to and from the arbiter incurs

significant overhead as the number of sources and destinations grows. Also, the

rapidly growing complexity of centralized arbitration with increasing crossbar radix

can dominate overall delay. 2) Area utilization is poor since the arbiter is logic

dominated, whereas the crossbar is routing intensive. The high cost of large radix

switches limits fabric scalability [58] [59] by requiring more stages in the data traversal

path. This results in higher latency, reduced energy efficiency due to intermediate

data storage, and complex routing protocols to handle inter-stage communication.

To mitigate this, we introduce an interconnect fabric called SWIFT(SWizzle Inter-

connect Fabric Topology). Fig. 3.2 shows the top level diagram of SWIFT fabric. It

features a novel distributed arbitration scheme that reuses the data transfer bit-lines

as priority lines for conflict resolution and locally stores the connectivity status at

crosspoints. This eliminates additional routing and logic overhead to produce a com-

pact design. A 32×32 router with 64b data buses (2048 wires) requires just 0.35mm2

in 65nm, including single cycle arbitration. This corresponds to the area required to

route its 2048 input/output wires at 2× minimum spacing (and no additional tracks).

SWIFT achieves a bandwidth of 2.1Tb/s at 1.2V with an efficiency of 7.39Tbps/W,

and is fully functional down to 530mV with a peak efficiency of 36.8Tbps/W.

SWIFT reuses concepts from SRAM design to make single cycle arbitration and

data transfer latency possible at high radices. It uses an area efficient thyristor-based

sense amplifier enabled latch (SAEL) for fast robust single-ended bit-line evaluation.

It supports four priorities for fairness during conflict resolution and the ability to

42

Figure 3.2: SWIFT fabric topology

multicast. Hence, SWIFT is 1.9× more energy efficient with 53% more bisection

bandwidth at 80% lower latency over contemporary single stage fabrics.

In SWIFT the input (source IP) and output (destination IP) buses run perpen-

dicularly as shown in Fig. 3.2. This creates a matrix of crosspoints and a connection

between an input and output bus is established by locally storing a logic 1 at their

crosspoint. At most one logic 1 can exist along a column, whereas multiple 1s can be

present along a row to multicast data

3.3 SWIFT operation

Every output channel in SWIFT can independently operate in one of two modes:

Arbitration or data-transmission. A pre-charge followed by conditional discharge

scheme is used for high speed signaling on the channels, eliminating worst-case switch-

43

Figure 3.3: Arbitration technique using bit-lines

44

Figure 3.4: Arbitration technique using bit-lines

ing induced crosstalk. In arbitration mode, each input channel is assigned a unique

bit-line from the output bus as its priority line. As shown in Fig. 3.3. the left-

most bit-line is the priority line for the top most crosspoint corresponding to Req

1. The second bit-line is the priority line for the crosspoint corresponding to Req

x. Similarly, the second right most bitline acts as the priority line for the crosspoint

corresponding to Req y. In the first phase of the arbitration cycle all priority lines

are precharged high. Upon requesting an output channel, a particular input channel

suppresses lower priority channels competing for the same output bus by discharg-

ing their priority lines in the second phase of the arbitration cycle. It concurrently

samples its own priority line with an SAEL which, if high, guarantees that no higher

priority inputs requested the channel. With this technique we can arbitrate among

as many requests simultaneously as the number of bit-lines available in the channel.

In this scenario, the priorities are assigned in an increasing order such that Req

45

Figure 3.5: Data routing in SWIFT

1 < Req x < Req y. Hence when Req 1, Req x, Req y are asserted, Req y kills Req

x, and Req 1 by discharging their priority lines. In this case, a 1 is stored directly

at the crosspoint of Req y, indicating granting of the channel as shown in Fig. 3.4.

Conflict detection and resolution is thus performed in one cycle with the same bit-

lines and pull down devices that are meant for data transfer. This obviates the need

for additional interconnect and results in a very compact and fast implementation.

For data-transmission, bit-lines comprising a channel are discharged at a cross-

point if the SAEL stores a logic 1 and input data is high. This is shown in Fig. 3.5.

As can be seen clearly, the fabric can seamlessly multicast/broadcast data to mul-

tiple destinations by storing multiple 1s in the crosspoints corresponding to those

46

Figure 3.6: Additional SWIFT arbitration control signals

destinations. However, with a static input that stays high, the bit-lines get repeat-

edly pre-charged and discharged at the crosspoint storing a high. To save power in

such a situation, incoming data is transition encoded at the input ports of SWIFT.

The original information is retrieved back at SWIFT output ports using transition

decoding.

Any channel can independently operate either in the arbitration or data transfer

mode of operation. To further optimize interconnect utilization within the fabric a

unique protocol is used to request and release channels. Two additional word-lines

called Req and Rel are laid for every input as shown in Fig. 3.6. A source requests a

channel by raising Req word-line high and a unique bit in the data bus corresponding

47

to that channel high. For example, the first channel is requested by raising the first bit

in the data bus and the Req word-line high. Similarly, to request the second channel

a source raises the second bit in the data bus. This protocol brings two advantages.

Firstly, by making use of the data bus, we avoid the need for additional interconnect.

Hence, the size of the fabric which is dominated by the number of wires remains

small. A source can also request multiple channels simultaneously. Secondly, in a

directory based shared memory system, the home node for data usually maintains

a bit vector with 1s corresponding in position to cores that have a shared copy of

the data. This bit vector can be directly used in SWIFT to invalidate shared copies

of the data. After a channel is used for sending data, the source releases it using a

similar protocol. However, this time the Rel word-line is used in place of the Req

word-line. As evident requesting or releasing a channel in SWIFT using this protocol

makes use of the data bus and it takes one clock cycle. In one variant of SWIFT,

additional dedicated wires can be used for requesting and releasing channels ahead

of time to eliminate this single cycle latency. A release operation in SWIFT can

also be performed using Row Rel and Col Rel signals without using the data bus.

Row Rel is a word-line laid per every row whereas Col Rel is a bit-line available per

every column as shown in Fig. 3.6. A source can release all channels held by it

by asserting Row Rel. Similarly, a destination can release its channel by asserting

Col Rel. Row Rel and Col Rel are asserted in the last cycle of data transfer. Hence,

channels can be released without the expense of a clock cycle.

3.4 SWIFT vs conventional fabric

SWIFT uses a distributed arbitration scheme that allows the fabric to scale seam-

lessly to higher radices. Fig. 3.7 shows how SWIFT’s delay and area scale with in-

creasing dimension (number of input/output ports) in comparison with a conventional

switch fabric that is optimally designed using standard cells. At higher dimensions

48

Figure 3.7: Simulated delay and area for SWIFT and conventional fabric

SWIFT consumes 24% less energy while being 2.1× faster. If we scale down SWIFT’s

operating voltage to match its throughput with conventional fabric operating at nom-

inal supply, energy reduction improves to 69%.

3.5 Test prototype

The test prototype emulates a multi-core system with 32 cores and 32 caches

in 65nm bulk CMOS. The cores and caches communicate over a 32 × 32 SWIFT

as the interconnect fabric. To save die area, the cores and caches are replaced by

traffic generators and signature analyzers respectively. The traffic generators are

digitally tuned to produce traffic pattern mimicking real cores. Fig. 3.9 shows the

die micrograph with SWIFT and crosspoint layout. The PCB hosting SWIFT test

prototype is shown in Fig. 3.10.

Each data bus is 64 bit wide. The 32 × 32 SWIFT has 2048 wires as word-lines

coming in and an equal number of bit-lines leaving it. With all these wires laid at

49

Figure 3.8: Simulated energy efficiency for SWIFT and conventional fabric

2× the minimum allowable spacing, SWIFT spans only 0.35mm2. SWIFT is made

up of 1024 crosspoints. Each crosspoint spans 12.6μm × 20.2μm. The interconnect

to logic utilization ratio within each crosspoint is 1:1.

3.6 Circuit implementation

3.6.1 Crosspoint circuit

SWIFT physical layout is very regular in nature and hence an SRAM like design

technique can be used for it. Fig. 3.11 shows a typical SWIFT crosspoint schematic.

This crosspoint sits at the intersection of the xth column and yth row and is hence

referred to as cell(x,y). In cell(x,y) the xth bit in the data bus (in<x> in figure) is

used as index while requesting or releasing a channel. In addition, the yth bit-line

from the channel (out<y> in figure) is used as the priority line and sampled by the

sense amp during arbitration.

50

Figure 3.9: SWIFT die photograph with crosspoint layout

51

Figure 3.10: PCB hosting SWIFT test prototype

52

Figure 3.11: SWIFT crosspoint circuit

53

When discharge is low the channel is decoupled from the crosspoint and precharged

high. When a Req or Rel is asserted, the crosspoint first checks whether the channel

is available for arbitration. This information is available from the channel free signal.

Depending on whether to transfer data or arbitrate the request, the selection bit

for the multiplexers are set. For doing an arbitration, the bit-lines are discharged

based on the crosspoints priority. The priority is locally stored at each crosspoint

as a bit vector. Each bit in the bit vector uniquely sets the priority of an input in

relation to another input. For example let us assume that the top most crosspoint

uses the least significant bit-line of the channel as its priority line. In such a case,

any other crosspoint with a higher priority (than the top most crosspoint) will have

a 1 at the LSB of its priority vector. This ensures that upon requesting the channel

the crosspoint can suppress a competing request from the top most crosspoint by

discharging its priority line. Similarly, any crosspoint with a lower priority will have

a 0 at the LSB of its priority vector.

In the test prototype the data bus and channels are 64bit wide. The SWIFT

dimension is 32 × 32. Hence, only the lower order 32 bit-lines from the channel are

used for conflict detection and resolution during arbitration.

During an arbitration cycle each crosspoint selectively dischargespriority lines cor-

responding to lower priority inputs as designated in its priority vector. Concurrently,

the SAEL in cell(x,y) samples the yth bit-line from the channel as shown in Fig. 3.11.

The crosspoint then passes on the result of arbitration onto the indexing bit of the

data bus. If the request wins the arbitration, the indexing bit on the data bus stays

high. Otherwise it is pulled low. Thus in a single cycle arbitration is done and

the acknowledgement is made available to the source. This technique of sending ac-

knowledgement out of the fabric eliminates the need for any additional interconnect.

After the crosspoint wins the arbitration it discharges the bit-lines based on the data

available on the input bus.

54

Figure 3.12: Sense amp enabled latch (SAEL) circuit

SWIFT is laid out using a semi custom design flow. A generic crosspoint cell

is laid out as a parameterized cell. A skill script parses the generic crosspoint by

taking in the x coordinate, y coordinate and the priority vector as the arguments and

generates crosspoint specific to each location. These crosspoints are then tiled using

a compiler that appropriately sizes the word-line drivers and precharge transistors to

generate the SWIFT fabric.

55

3.6.2 SAEL (Sense Amp Enabled Latch)

The sense amplifier at each crosspoint uses a thyristor based topology in place of a

conventional differential amplifier topology for smaller area and better robustness in

the face of device mismatch. Fig. 3.12 shows the SAEL circuit. The proposed SAEL

is 5× smaller than a conventional sense amp enabled latch. The sense amp can be

fired concurrently along with bit-line discharge resulting in a more simplified timing

signal generation and distribution. In XRAM, the pre-charge devices in the thyristor

were upsized for leakage compensation, degrading performance for functionality at

low Vdd. In contrast, SWIFT uses a bypass path with a skewed inverter for low Vdd

operation to allow smaller pre-charge devices, improving speed at higher Vdd. The

area penalty is small, since SAEL accounts for only 3% of the 254μm2 crosspoint. The

ability to select between the two sensing paths also provides a knob to compensate

for process variation at lower Vdd.

The timing diagram in Fig. 3.13 explains SWIFT operation in more detail. In the

first clock cycle, during the arbitration phase when the priority line is discharged, the

SAEL samples a 0 indicating that the channel was not granted. In the second clock

cycle, in a similar arbitration phase, the priority line stays high. The SAEL samples

a 1 indicating that the request won the arbitration. In the third clock cycle (after

the channel is granted), the bit-line is discharged based on the data.

Only falling transitions are critical, as seen in the timing diagram of Fig. 3.13.

This can be leveraged to skew devices to reduce delay. This also eliminates worst

case crosstalk because adjacent bit-lines never switch in opposite directions.

3.6.3 Channel status update circuit

Fig. 3.14 shows the precharge and channel status update circuit. Two additional

bit-lines called Toggle status and Channel free are added per every column to keep

track of whether a channel is available for arbitration. After every successful request

56

Figure 3.13: SWIFT timing diagram

Figure 3.14: Precharge and channel status update circuit

57

Figure 3.15: Priority vector generation circuit

or release operation (in Fig. 3.11), the crosspoint discharges the Toggle status bit-line.

In response to this, the Channel free bit-line is toggled. Also as shown in Fig. 3.14,

keepers on the bit-lines can be selectively deactivated to improve performance.

3.6.4 Priority vector generation circuit

For fairness in channel allocation, four sets of priorities are locally generated at

each crosspoint and one of them is selectively used for conflict detection and resolu-

tion. Every crosspoint has a unique set of 32 bit priority vectors, which if stored as

a bit map would require a lot of area. Instead of storing four 32b priority vectors for

each of the 1024 crosspoints, eight logic gates, uniquely selected for each crosspoint,

indicate which priority lines are discharged for each priority as shown in Fig. 3.15.

This approach incurs only 3% area penalty over a single priority implementation. This

feature is incorporated into the SWIFT skill compiler which automatically selects the

58

Figure 3.16: Measured SWIFT performance

logic gates and generates appropriate priority vector for each crosspoint.

3.7 Measurement results

Measurement results for 32×32 SWIFT fabricated in 65nm bulk CMOS are shown

in Fig. 3.16 and Fig. 3.17. At 1.2V, SWIFT operates at a maximum frequency of

1026MHz. This provides a maximum throughput of 2.1Tb/s. This throughput is

measured at single cycle latency. An on chip ring oscillator delay in the same chip

is also plotted to compare the frequency vs supply voltage trends. At lower supply

voltage SWIFT’s bit-line delay degrades faster in comparison with other logic blocks.

Hence, a memory array like delay trend is observed as supply voltage is reduced.

Fig. 3.17 shows SWIFT’s power consumption and energy efficiency (measured as

energy per bit) at different operating frequencies. At 20% switching activity on the

primary inputs and all 32 channels active, SWIFT consumes 284mW while operating

at 1026MHz at 1.2V. This translates to an energy efficiency of 112fJ/bit.

59

Figure 3.17: Measured SWIFT power and efficiency

Figure 3.18: Measured SWIFT power with varying number of active channels

60

Figure 3.19: Measured SWIFT power breakdown at 1.1V

Fig. 3.18 shows measured SWIFTs power consumption at different switching ac-

tivities with varying number of active channels. As expected, power increases linearly

with switching activity and the number of active channels. Fig. 3.19 and Fig. 3.20

show measured power breakdown within SWIFT. Total SWIFT power is divided into

three categories: output line (bit-lines), input lines (word-lines) and control (clock).

At low switching activity total power is dominated by clocking and control blocks.

At higher switching activity, power breakdown gets more uniform.

Fig. 3.21 shows how the bandwidth for a channel in SWIFT degrades with increas-

ing collision. Collision percentages are set statistically in the test chip by digitally

tuning the traffic generators. When requests collide 100% of the time, bandwidth de-

grades by 44.6% in the worst case. However for typical multi-processor applications,

collision rates range from 0% to 10%. At such rates, bandwidth degrades by 2% only.

Such low degradation in bandwidth can be attributed to SWIFTs ability to arbitrate

in a single cycle at such high radix which takes many cycles in other state of the art

61

Figure 3.20: Measured SWIFT power breakdown at 0.6V

Figure 3.21: Measured bandwidth degradation with increasing collision

62

Figure 3.22: Measured power overhead due to arbitration

switch fabrics.

Fig. 3.22 shows measured power overhead with increasing collision. In the worst

case, with maximum collision power overhead is 9.7%. However for typical multi-

processor applications power overhead due to arbitration stays below 1.5%.

3.8 System level analysis

To study SWIFTs system level architectural implications, we analyzed a multi-core

system with three different fabric topologies. Fig. 3.23 shows how SWIFT performs

in comparison with a shared bus and an 8× 4 mesh in a 32-core system. The shared

bus operates at 640MHz in 65nm and has a single cycle latency. The 32× 32 SWIFT

operates at 1GHz and it takes 3 cycles to get from a source to a destination through

the fabric (first cycle is spent in getting to fabric input from source, second cycle

is spent through the fabric, and third cycle is spent in getting from fabric output

to the destination). The mesh operates at 2GHz and communication latency varies

63

Figure 3.23: Simulated response latency for 32-core SWIFT, shared bus and mesh
topologies

from 1 to 11 cycles. As shown, the shared bus saturates with little conflict because

of limited bandwidth. SWIFT scales better than mesh with latency improvements

ranging from 15% to 84% for STAMP-2 multiprocessor benchmarks owing to superior

multicast and conflict resolution ability.

Performance numbers for this comparison were obtained by placing and routing 32

cores and 32 L2-caches with one of the three studied fabrics (bus, mesh, and SWIFT).

The interconnect delay was then extracted and the routing overhead studied. For the

SWIFT based many core system, the availability of ports at either side of the fabric

as datapath-compatible buses (instead of bit interleaved buses) facilitates routing and

resulted in the use of less than 6% of total available tracks for connecting cores and

caches as shown in Fig. 3.24.

Fig. 3.25 shows the percentage of total SWIFT requests that conflict and involve

64

Figure 3.24: System floorplan of 32-core and 32-caches with SWIFT

65

Figure 3.25: Percentage of total SWIFT requests involving collision and multicast

multicast for different benchmarks. As shown, as high as 10% of total requests for

some benchmarks can conflict and as high as 15% of all requests can require multicast.

A shared bus is inherently good at multicast by its structure. However, only one pair

of source and destination can communicate over the shared bus at any instance.

Hence, when requests collide it suffers from severe degradation of bandwidth. At the

other extreme a mesh handles conflicts well because of distributed control and multiple

pairs of sources and destinations can communicate simultaneously. However, because

of its blocking nature multicast is pretty time consuming. In contrast, because of

its unique fabric architecture SWIFT is well suited for handling both multicast and

conflicts.

66

Figure 3.26: SWIFT crosspoint tiling

3.9 Synthesizable SWIFT

An SRAM type semi-custom design approach has been taken to implement the

SWIFT fabric discussed in this chapter as shown in Fig. 3.26. This approach has

some limitations. It is time consuming and takes several iteration cycles for de-

signing the crosspoints for varying SWIFT radix and bus width. Besides, such an

approach is not easily portable to different process technologies. To address this is-

sue, a synthesizable approach is introduced in which the bit-lines in the switch fabrics

are replaced by OR tree structures. This is shown in Fig. 3.27. The switch fabric

designed using this approach still benefits from the unique technique proposed in this

chapter that co-optimizes the arbiter and the permutation network by reusing logic

and interconnect resources. Instead of having multiple OR trees to accomplish fabric

functionalities, this approach uses a single OR tree. This reduces fabric area and

improves performance and energy efficiency.

Simulation studies show that with this synthesizable approach, the arbitration

67

and priority update techniques still bring significant improvement in fabric latency

and power over conventional fabrics. Fig. 3.28 compares 32 × 32 (64 bit data bus)

custom and synthesizable SWIFT fabrics with a conventional farbic that is optimally

designed using standard cells. As shown, the unique arbitration technique allows

synthesizable SWIFT fabric to run 40% faster and 33% higher energy efficiency over

a conventional fabric while spanning 60% less area.

3.10 Summary

In this chapter, we introduced a new fabric topology called SWIFT. SWIFT lever-

ages a novel conflict detection and resolution technique by optimally using already

existing interconnect and logic in the fabric meant for data traversal. Fig. 3.29 com-

pares SWIFT with XRAM and another recently proposed switch fabric. SWIFT is

1.9× times energy efficient owing to its small size. It achieves 53% more throughput

at 80% lower latency over other fabrics.

68

Figure 3.27: Effective bit-line in sythesizable SWIFT

69

Figure 3.28: Comparison of custom SWIFT, synthesized SWIFT and conventional
farbic

Figure 3.29: Comparison of SWIFT with some state of the art switch fabrics

70

CHAPTER IV

SSN : Swizzle Switch Network

4.1 Introduction

Resource management in interconnect fabrics plays an important role in deter-

mining overall system performance of multiprocessor systems. This is accomplished

in a switch fabric by assigning unique priorities to competing input ports and adap-

tively updating these based on network traffic and workload. Conventional circuit

techniques to implement adaptive priority update techniques for high radix switch

fabrics are very expensive in hardware and because of their poor scalability become

a bottleneck in improving fabric efficiency at high radices. Usually switch fabrics

support a limited number of priority update techniques. The most prominent ones

are fixed priority, round robin and least recently granted. However the logic blocks

to accomplish these are exclusive. In this chapter, we propose an architecture to

accomplish the least recently granted arbitration scheme by reusing already existing

logic/interconnect resources in the fabric as shown in Fig. 4.1. Building on that,

we also propose novel schemes to accomplish a variety of other arbitration policies

with very minimal overhead. The arbitration policies that we incorporate are: 1)

Least recently granted (LRG) 2) Most recently granted (MRG) or the greedy algo-

rithm 3) Incremental Round Robin 4) Decremental Round Robin 5) Priority Swap

6) Reverse order 7) Selective LRG 8) Selective MRG. For proof of concept, we have

71

Figure 4.1: SSN: Self arbitrating fabric with adaptive priority update

built a prototype called as the swizzle-switch network (SSN) to demonstrate our pro-

posed technique. SSN is a 64 × 64 (128b data bus) switch fabric with a throughput

of 4.5Tb/s at 3.4Tb/s/W energy efficiency. It spans 4.06mm2 in 45nm SOI CMOS

and achieves a peak efficiency of 7.4Tb/s/W at 0.6V. It features a single cycle least

recently granted arbitration technique that re-uses data buses and switching logic. It

also integrates a 4-level message based priority arbitration for quality of service and

unique bi-directional bit-line repeaters for improved scalability.

72

4.2 Motivation

High speed and low power routers form the basic building blocks of on-die inter-

connect fabrics that are critical to overall throughput and energy efficiency of high

performance systems. Conventional routers use distinct logic blocks for routing data

and handling arbitration [46][58]. At higher radices, connections between these blocks

become a bottleneck, limiting router scalability and degrading performance. XRAM

and XWIFT merged the data routing fabric with arbitration control, avoiding this

bottleneck. However, XRAM relies on centralized control for channel allocation, limit-

ing performance, while SWIFT is restricted to a small set of fixed priorities, rendering

input ports prone to starvation. In addition, ever larger CMPs will require continued

increases in bandwidth over previous designs. To address these issues, we present

a 64 × 64 single stage swizzle-switch network (SSN) with 128b data buses (8192 in-

put/output wires). SSN can connect any input to any output, including multicast.

It has a peak measured throughput of 4.5Tb/s at 1.1V in 45nm SOI CMOS at 25 de-

grees C. SSNs key features are: 1) A novel, single cycle least recently granted (LRG)

priority arbitration technique that re-uses the already present input and output data

buses and their drivers and sense amps. 2) An additional 4-level message-based prior-

ity arbitration for quality of service (QoS) with 2% logic and 3% wiring overhead. 3)

A new bi-directional bit-line repeater that allows the router to scale to >8000 wires.

These features result in a compact fabric (4.06mm2) with throughput gain of 2.1×
over [58] at 3.4Tb/s/W efficiency which improves to 7.4Tb/s/W at 600mV.

4.3 SSN architecture

Conventional LRG implementations use controllable delay elements to resolve con-

flicts [58], which are tuned to change priorities. Large routers require many such delay

elements, incurring overhead and probability of meta-stability failures. In contrast,

73

Figure 4.2: SSN fabric architecture

SSN uses a fully static circuit technique that is completely embedded in the data

routing fabric by re-using the data-routing bit-lines as priority lines for arbitration.

The LRG and QoS priorities and the switch configuration are all stored locally at each

crosspoint using a novel encoding. Since the data routing fabric is routing limited,

this additional logic imposes zero area overhead over a simple switch. Furthermore,

as the arbitration logic re-uses the data bit-lines and peripherals, arbitration has the

same latency as data transfer and the two scale in tandem with the switch radix.

SSN is a matrix-type fabric as shown in Fig. 4.2 with input buses running horizon-

tally and output buses vertically. When data is routed, the input and output buses

transfer data traffic. During arbitration the input bus routes a multi-hot code indicat-

ing which output channel(s) are requested by that input, and the output bus is used

for conflict detection and arbitration. Each crosspoint stores a connectivity status bit

indicating whether the input bus was granted access to the output channel. A 63-bit

74

Figure 4.3: LRG update technique

priority vector is also stored to represent the priority of the input bus with respect

to all other inputs for that output bus. Fig. 4.2 (right) shows the priority vector at

each crosspoint in a blow-up of a single output channel. Each input bus is assigned a

unique bit-line from the channel as its priority line which, if high, indicates it as the

winner in a particular arbitration cycle. Similarly, each bit in the priority vector at a

crosspoint corresponds with a priority line (bit-line) and indicates whether the input

bus at that crosspoint has higher or lower priority than the input bus associated with

the priority line. For instance, in Fig. 4.2 priority line m corresponds to input bus m

while the m-th priority bit of bus n is a 1, indicating that n has higher priority than

m. When input n requests the output channel this high bit results in the discharge

of priority line m, suppressing access by input m. In contrast, input l stores a 0 at

its m-th priority bit and hence does not suppress an access request from input m,

meaning that l has lower priority that input m.

75

Figure 4.4: LRG algorithm

Priority vectors need to be set consistently and indicate the same priority order.

In Fig. 4.3, the 0 at bit m of input l must be mirrored with a 1 at bit l of input

m. Furthermore, the priority bits need to be correctly updated after each arbitration

cycle to implement LRG policy. We propose a new, simple mechanism to accomplish

this. In Fig. 4.3, inputs l and m request the output channel in an arbitration cycle.

Input m wins owing to its higher priority and its connectivity status bit is set to 1.

After data transfer, input m releases its channel during a channel release cycle. In

this cycle, input m first resets all its priority bits. This guarantees that m now has

lowest priority, as required by the LRG algorithm. At the same time, input m also

lowers its priority line m, which is a signal to other crosspoints in the output channel

to set their m-th priority bit. This ensures that all other input buses now have higher

priority than m. Input buses with higher priority than m remain unchanged and only

inputs with lower priority than input m are increased in their priority by exactly one

76

Figure 4.5: SSN crosspoint circuit

level. This simple and fast update mechanism provably guarantees both consistency

of all priority vectors and correct implementation of the LRG arbitration scheme,

which enables efficient and deadlock-free routing [60]. The LRG update for this case

is shown in Fig. 4.4.

4.4 Circuit implementation

4.4.1 Crosspoint circuit

Fig. 4.5 shows the SSN crosspoint circuit and Fig. 4.6 shows the priority storage

latch. Load priority b is an additional bit-line provided per channel that is discharged

during the release cycle. This triggers the priority update mechanism. During a

request/release cycle the channels are indexed using the lower 64 bits from the input

bus. Crosspoints send acknowledgement over the upper 64 bits.

77

Figure 4.6: Priority storage circuit

78

4.4.2 Message based quality of service arbitration

SSN also features a 4-level message-based QoS arbitration technique that allows

only input buses with the highest message priority to arbitrate for the channel. This

is shown in Fig. 4.7. Every input bus is supplemented with two additional word-lines

to carry a priority indicating the preference with which the message is requested to

be routed. The 2-bit message priority is decoded into a 4-bit thermometer code at

the crosspoint, which is used to selectively discharge priority bit-lines comprising the

QoS priority bus. A multiplexer samples one of those priority bit-lines using its own

message priority and the input bus progresses to the LRG arbitration cycle if the mon-

itored priority bit is not discharged. Using separate wires for QoS arbitration incurs

3% area overhead. However, the additional QoS arbitration cycle can be overlapped

with the prior routing operation for the output bus, avoiding a latency penalty. Fig.

4.8 shows the QoS arbitration algorithm. In the first cycle, only requests with the

highest message priority are selected. Following this in the second cycle only these

filtered requets participate in the LRG based arbitration process.

4.4.3 Self regenerating bit-line repeater

The SSN features 8448 word-lines and 8576 bit-lines spread across 4096 cross-

points. The integration of the LRG and QoS control within this fabric with low

overhead greatly improves SSN scalability to realize a fabric of large size. In addi-

tion, new bi-directional repeaters are used for bit-lines that use a regenerative sensing

element to improve delay despite high slew rates on long bit-lines. Fig. 4.9 shows the

repeater schematic.

The proposed repeater uses a thyristor element to detect and amplify a transition

on the bit-line. Once a transition is detected the repeater enters a self regeneration

mode where it decouples itself from the slow transitioning bit-line. This allows the

internal nodes in the thyristor to switch faster and reduces delay. SSN fabric operation

79

Figure 4.7: Message based quality of service arbitration technique

80

Figure 4.8: QoS arbitration algorithm

in different modes is explained in more detail in the timing diagram shown in Fig.

4.10.

4.5 Design choices for scalability

The regeneration and self-decoupling mechanism improves bit-line delay by 32%

and allows for a 50% smaller bit-line driver compared to a conventional repeater

(Fig. 4.11, simulated). Simulated fabric latency with increasing SSN size shows

1.6× performance improvement over an SSN with un-repeated bit-lines due to the

near-linear latency increase with radix size rather than quadratic dependency without

repeaters as shown in Fig. 4.13. Bit-lines are pre-charged within every 16× 16 SSN

macro. This improves pre-charge time by 59% over a similar sized lumped driver and

results in more uniform current drawn from the power grid. Bit-line delay degrades

more rapidly than word-line delay under voltage scaling. Hence, the bit-cell aspect

81

Figure 4.9: Self regenerating bit-line repeater

82

Figure 4.10: SSN timing diagram

Figure 4.11: Simulated bit-line delay with conventional and proposed repeater

83

Figure 4.12: Simulated SSN energy efficiency with increasing radix

Figure 4.13: Simulated SSN delay with and without proposed repeaters

84

Figure 4.14: 64-core system floorplan with SSN as the interconnect fabric

85

Figure 4.15: Measured SSN performance

ratio (1:0.73) is chosen to shorten bit-lines, improving fabric latency at low Vdd. Fine

grain clock gating reduces clock power by 94% at each crosspoint. A crosspoint is

clocked only if its connectivity status is ON, a request is asserted, or an LRG priority

update occurs. These events are registered in the positive clock phase, allowing gating

of the negative (active) phase with 2.3% delay penalty. Adjacent SSN input ports are

driven from opposite directions, reducing routing congestion and local Ldi/dt voltage

drop when repeaters on the 2.5mm long word-lines switch.

4.6 Test prototype

Fig. 4.17 shows die micrograph of the test prototype. SSN and crosspoint layouts

are also shown alongside. System specifications are listed in Fig. 4.18. Fig. 4.19

shows the PCB board hosting SSN test prototype.

86

Figure 4.16: Measured SSN power and energy efficiency

4.7 Results

Measured performance and power for a 64 × 64 SSN in 45nm SOI CMOS are

shown in Fig. 4.15 and Fig. 4.16 respectively. The SSN achieves 4.5Tb/s at 1.1V

with an efficiency of 3.4Tb/s/W at 20% switching activity with random traffic. SSN

is fully functional down to 550mV with a measured peak efficiency of 7.4Tb/s/W at

0.6V.

Comparison results of SSN with some of the state of art switch fabrics (fabricated

recently) are shown in Fig. 4.20 and Fig. 4.21. SSN achieves 10% higher throughput

at 3.7× higher energy efficiency and 3× lower latency, making it very suitable for

networking in large scale multi-processor systems.

87

Figure 4.17: SSN die photograph with crosspoint layout

88

Figure 4.18: SSN chip specifications

Figure 4.19: PCB hosting SSN test prototype

89

Figure 4.20: Efficiency vs bandwidth plot of recently fabricated high radix switch
fabrics

Figure 4.21: Bus width vs radix plot of recently fabricated switch fabrics

90

Figure 4.22: Maximum cache access latency of LRG, round robin and random arbi-
tration schemes

Figure 4.23: LRG based priority update

91

4.8 Multiple adaptive priority update schemes

4.8.1 Least Recently Granted (LRG)

The priority vectors at various crosspoints along an output bus form a priority

matrix. A priority matrix with 6 inputs (arranged top to down numerically from

input1 to input6) is shown in Fig. 4.23. Here, the priority line connections are

denoted as X s. The priority matrix satisfies the following criteria: 1) The total

number of 0s equals the total number of 1s. 2) Each row has a unique number of

1s which represents the corresponding inputs priority. 3) Each column has a unique

number of 1s. 4) At any priority line connection (denoted as X in Fig. 4.23), the

sum of the number of 1s (or 0s) in its corresponding row and column must add to the

total number of inputs.

Though priority lines can be randomly assigned to inputs without limiting the

generality of the priority update schemes, a diagonal assignment as shown in Fig.

4.23 makes the priority matrix skew (or anti) symmetric and easy to understand. As

shown in Fig. 4.23, the input corresponding to second row used the channel most

recently. It is assigned a priority level 3. An LRG priority update is accomplished

by resetting all priority bits along the second row (denoted by R) and by setting

all priority bits (denoted by S) along the second column (which is the priority line

for input2). In the rest of this section, the other priority update schemes will be

explained using the priority matrix notation.

4.8.2 Most recently granted (MRG) or greedy algorithm scheme

For accomplishing an MRG based update, we set all priority bits along the second

row (denoted by S) and reset all priority bits (denoted by R) along the second column

(which is the priority line for the input2) as shown in Fig. 4.24. By setting bits in the

second row, input2 now gets the highest priority. Inputs who previously had higher

92

Figure 4.24: MRG based priority update

Figure 4.25: Incremental Round Robin based update

priority than input2 get downgraded by exactly one level. Inputs who previously had

lower priority than input2 retain their old priorities.

4.8.3 Incremental Round Robin

For accomplishing an incremental Round Robin based update, we pick the row

with the highest priority. This can be identified by a logical AND operation of all the

priority bits. In this case input5 has the highest priority. We reset all priority bits

along the fifth row (denoted by R) and set all priority bits (denoted by S) along the

fifth column (which is the priority line forinput5) as shown in Fig. 4.25. By resetting

93

Figure 4.26: Decremental Round Robin based update

bits in the fifth row, input5 now gets the least priority. All other inputs get upgraded

by exactly one level.

4.8.4 Decremental Round Robin

For accomplishing a decremental Round Robin based update, we pick the row

with the lowest priority. This can be identified by a logical OR operation of all the

priority bits. In this case input4 has the highest priority. We set all priority bits

along the fourth row (denoted by S) and reset all priority bits (denoted by R) along

the fourth column (which is the priority line for input4) as shown in Fig. 4.26. By

setting bits in the fourth row, input4 now gets the highest priority. All other inputs

get downgraded by exactly one level

4.8.5 Priority swap

The priorities of 2 inputs can be swapped (without affecting priorities of other

inputs) by swapping the priority bits in their corresponding rows and those in the

columns corresponding to their priority lines as shown in Fig. 4.27. Here, we intend to

swap the priorities of input3 and input4. In the physical realization of this technique,

already existing word-lines will be used to swap priority bits between columns and

94

Figure 4.27: Priority swap

Figure 4.28: Reverse priority order

bit-lines to swap priority bits between rows. In a single cycle, any two priorities can

be swapped.

4.8.6 Reverse priority order

The unique priority encoding sheme allows reversing the priority of all inputs

instantaneously by flipping all the priority bits as shown in Fig. 4.28. In physical

circuit level implementation, rather than flipping all the bits a multiplexer can be used

to select the inverted priority. Hence, this functionality can be achieved without the

expense of a clock cycle. The consistency of the new priority vectors is guaranteed

95

Figure 4.29: Selective least recently granted priority update

because this transformation ensures that the priority matrix still satisfies all the

criteria mentioned before.

4.8.7 Selective LRG

In this scheme LRG update is applied to a selective section of inputs. In the stan-

dard LRG scheme, the input that used the output bus most recently is downgraded to

have the least priority while all inputs with lower priorities get upgraded by exactly

one level. In this case input6 with a priority level 4 used the channel most recently.

However, in the selective LRG scheme, instead of downgrading input6 all the way

down to 0, we intend to downgrade it to some intermediate priority (say priority level

of input0 which is 1). To accomplish this, before setting/resetting priority bits we

identify certain rows and columns that need to be frozen. In this case, all columns

corresponding to priority bits that are high in the first row are frozen as shown in

Fig. 4.29. Simultaneously, all rows corresponding to priority bits that are low in the

first column (which is the priority line for input0) are also frozen. Following this the

priority bits in the sixth row are reset (except the bits in frozen columns) and those

in the sixth column are set (except the bits in frozen rows). This ensures that the

new priority matrix is consistent and the intended priority update is achieved.

96

Figure 4.30: Selective most recently granted priority update

4.8.8 Selective MRG

In this scheme MRG update is applied to a selective section of inputs. In the

standard MRG scheme, the input that used the output bus most recently is upgraded

to have the highest priority while all inputs with higher priorities get downgraded by

exactly one level. In this case input1 with a priority level 1 used the channel most

recently. However, in the selective MRG scheme, instead of upgrading input1 all the

way up to 5, we intend to upgrade it to some intermediate priority (say priority level

of input6 which is 4). To accomplish this, before setting/resetting priority bits we

identify certain rows and columns that need to be frozen. In this case, all columns

corresponding to priority bits that are low in the sixth row are frozen as shown in

Fig. 4.30. Simultaneously, all rows corresponding to priority bits that are high in the

sixth column (which is the priority line for input6) are also frozen. Following this the

priority bits in the first row are set (except the bits in frozen columns) and those in

the first column are reset (except the bits in frozen rows). This ensures that the new

priority matrix is consistent and the intended priority update is achieved.

97

4.9 Summary

In this chapter, we presented SSN that leverages a novel priority encoding scheme

that re-uses existing logic and interconnect resources in switch fabric to locally store

priorities at router crosspoints resulting in a compact implementation. A 64×64 SSN

with 128b data bus achieves a peak throughput 4.5Tb/s at an energy efficiency of

3.4Tb/s/W while spanning only 4.06mm2 in 45nm SOI CMOS. It features a single cy-

cle least recently granted arbitration technique that re-uses data buses and switching

logic, a 4-level message based priority arbitration for quality of service and unique bi-

directional bit-line repeaters to aid scalability. The unique priority encoding scheme

also allows seamless implementation of many other arbitration policies in addition to

LRG with very minimal overhead.

98

CHAPTER V

TABS : Thyristor Assisted Bi-directional

Signalling

5.1 Introduction

The switch fabrics presented in previous chapters enable single stage high radix im-

plementation of system level interconnect network. Such a network provides uniform

latency making it easy to improve application runtime and guarantee quality of ser-

vice. However, the average routes to and from different IPs through the switch fabric

increases. This results in more energy being spent while communicating to and from

the switch fabric. In this chapter, we address this issue by proposing a novel repeater

called TABS (thyristor assisted bi-directional signaling) as shown in Fig. 5.1. TABS

is a thyristor-assisted standard cell compatible self-timed bi-directional repeater with

no configuration overhead. It enables 8mm interconnects to achieve 37% higher speed

at 20% lower energy over conventional repeaters in 65nm CMOS at 1.0V. In TABS,

absence of configuration logic removes the need for clocking, yielding up to 14× higher

energy efficiency at very low data switching activity.

99

Figure 5.1: TABS: Thyristor assisted bi-directional signalling

100

5.2 Motivation

Bi-directional interconnects are an integral part of global communication networks

in multiprocessor chips. They facilitate high bandwidth with low silicon overhead by

eliminating the need for replicating unidirectional signal wires [51] [61]. Conven-

tional bi-directional links are based on duplication of unidirectional repeaters, one

of which is selectively activated for signal propagation. This implementation incurs

logic and interconnect overhead to configure the repeaters, degrading performance

and energy efficiency. Additionally, a synchronizing signal in the form of a clock is

needed to eliminate contention when reversing signal propagation direction. Further,

a bi-directional link can be driven at multiple locations in many snoop-based signal-

ing schemes, making signal propagation information challenging to obtain a priori

[62]. Recent custom-designed repeater-less signaling techniques have achieved high

speed with low energy dissipation based on reduced voltage swing [63] [64] [65] [66].

However, such techniques typically require careful custom design that is tailored to

each specific interconnect situation and involves precise device matching, additional

supply voltages, and wider wire thickness/pitch. Hence they cannot be easily used

in synthesis-based design flows or re-used in different interconnect situations in the

same design.

5.3 TABS approach

Instead, we target a drop-in replacement for conventional repeaters within a stan-

dard cell based design flow. To this end, we present a thyristor-assisted bi-directional

signaling (TABS) technique with the following key features. 1) The fully static circuit

implementation allows TABS to be used as a standard cell in synthesis-based design

flows; 2) The self-timed bi-directional repeater has no configuration overhead and

enables 8mm interconnects to achieve 37% higher performance at 20% less energy

101

Figure 5.2: TABS repeater with thyristor sensing element and no additional configu-
ration logic

102

per bit compared to conventional repeaters in 65nm CMOS at 1.0V; 3) Absence of

configuration logic obviates the need for clocking, simplifying the design flow and pro-

viding up to 14× better energy efficiency for low data switching activity; 4) Robust

operation across 0.6 to 1.2V supply. Besides improving performance, these features in-

crease the optimal repeater insertion interval for TABS from 625μm to 1mm, yielding

38% fewer repeaters in the signal propagation path. At 1.5mm spacing TABS energy

efficiency is improved by 51% and repeater count reduced by 58% while maintain-

ing iso-performance with conventional optimally spaced repeaters. We also present a

synchronous version of the repeater for use at synchronizing boundaries in place of

conventional bi-directional flip-flops, saving 36% area.

Fig. 5.2 shows a TABS half-repeater with a pair of NMOS and PMOS transistors

arranged in a CMOS thyristor configuration and used as a transition amplifier. The

expanded circuit senses a falling transition on IN L and/or a rising transition on IN R,

thereby causing the thyristor to switch and pull both interconnect nodes to opposite

supply rails. Two such repeaters are used in parallel with their ports connected to

opposite nodes of the link to form a TABS bi-directional repeater.

5.4 TABS operation

Each TABS repeater has 3 operating states: High gain, low gain, and passive. In

the absence of any switching or when reset is asserted, the repeater is in low gain

state with the thyristor nodes pre-charged/pre-discharged to voltage levels where the

sensing transistors have their lowest gain (Vgs = 0). This is shown in Fig. 5.3. The

sensing nodes (S1/S2) are connected to IN L and IN R through transmission gates

(T1/T2) that are turned ON. S1/S2 node voltages are held by keepers placed on IN L

and IN R (not shown). When IN L transitions from high to low, node S1 initially

follows it. The PMOS device in the thyristor gradually turns ON, raising S2 which

causes the NMOS thyristor device to turn ON. This regeneration mechanism causes S1

103

Figure 5.3: TABS low gain state

104

Figure 5.4: TABS high gain state

and S2 to switch rapidly. Inverter d n (d p) is skewed with a stronger NMOS (PMOS)

to provide a faster response to S1/S2 switching and quickly turn OFF transmission

gates T1 (T2). This decouples S1 (S2) from IN L (IN R) and allows for faster

switching. Once the transistors in the thyristor transition, the repeater enters the

high gain state where the sensing transistors have highest gain (Vgs = VDD/VDD),

causing large internal drivers (D L/D R) to rapidly pull IN L and IN R towards

supply rails. This is shown in Fig. 5.4. Once IN L and IN R have both transitioned,

their delayed signals in l d and in r d enable the pre-charge signals cut n and cut p

which reset and hold the thyristor in its precharge state. The repeater is now in

passive state with its thyristor disconnected from IN L and IN R. Finally, when IN L

and IN R transition back, the repeater again enters low gain state.

105

Figure 5.5: TABS passive state

106

Figure 5.6: TABS state transition diagram

While one repeater is in the low gain state, the other half-repeater is in the passive

state. A transition on the interconnect causes the sensing repeater to switch from low

gain to passive state via the high gain state while the other repeater transitions from

passive to low gain and begins sensing the interconnect to detect the next transition.

This is shown in Fig. 5.5. The state transition of both repeaters is shown in Fig. 5.6.

Using the same circuit technique, a bi-directional latch is also designed for data

hand-off at synchronizing boundaries as shown in Fig. 5.7. The direction is configured

into a 6T SRAM based on the state of the interconnect at the falling edge of clock,

which is later used in the positive phase for sensing the appropriate transition.

TABS offers 3 key advantages over inverter-based repeaters: 1) The regeneration

followed by decoupling mechanism makes switching latency less dependent on slow

slew rates on long interconnect as commonly seen in global wires; 2) In a conventional

repeater a transition is performed only by the driver, as opposed to TABS where the

107

Figure 5.7: TABS based bi-directional latch

108

Figure 5.8: TABS and conventional test structures

receiver aids the driver after detection; 3) The internal feedback and state tracking

mechanism eliminates the need for a global synchronizing signal.

5.5 Test prototype

To compare TABS repeater with conventional standard cell based repeaters, we

fabricated a test prototype with varying links driven with both repeater topologies

in 65nm bulk CMOS. Fig. 5.8 shows the schematic for both structures. In both links

data can be driven in either directions. For conventional repeaters, the direction is

locally stored in each repeater in a flip flop, thereby necessitating the need for clock

tree. In TABS repeater, the configuration logic is embedded within thereby obviating

the need for clock. Fig. 5.9 shows the prototype’s die photograph and Fig. 5.10 shows

the printed circuit board hosting TABS test prototype.

5.6 Results

Fig. 5.11 shows simulated power/delay curves for an 8mm link with varying re-

peater sizes. Optimal insertion interval is 1000μm for TABS and 625μm for conven-

109

Figure 5.9: TABS prototype die photo

110

Figure 5.10: PCB hosting TABS prototype

111

Figure 5.11: Simulated power delay curves for TABS and conventional repeater

Figure 5.12: TABS and conventional repeater layouts

112

Figure 5.13: Measured performance and energy for 8mm long interconnect with TABS
(1mm insertion interval) and conventional repeater (625μm insertion
interval) at 50% bi-directional traffic.

tional repeaters. As shown in Fig. 5.12, TABS spans 11% less area than conventional

repeaters when configuration overhead is taken into consideration.

A test prototype was fabricated in 65nm bulk CMOS where TABS was treated as

a standard cell replacement for traditional repeater/buffers in the design flow. Both

links were implemented using M4 and M5 with 100nm wire width (the minumum in

65nm) and 200nm pitch (the minimum in 65nm) and worst-case aggressor switching.

The TABS-enabled link operates at 732MHz, which is 37% faster than the conven-

tional link at 1.0V while dissipating 20% less energy as shown in Fig. 5.13. Due to

the absence of any configuration overhead TABS improves energy efficiency by 27%

to 47% with increasing bi-directional traffic at iso-throughput of 602Mb/s per link as

shown in Fig. 5.14.

The absence of clock facilitates seamless signaling across different frequency do-

mains and improves TABS energy efficiency by up to 14× at a low, 0.005 data switch-

113

Figure 5.14: Measured energy versus delay curve for TABS and conventional re-
peaters. TABS is 43% faster and dissipates 47% lower energy at 1.1V
and 100% bi-directional traffic

Figure 5.15: Measured energy dissipation in TABS and conventional repeaters with
varying percentage of bi-directional traffic at iso-performance at 1.1V.

114

Figure 5.16: Measured energy with varying switching activities at 1.1V. TABS energy
savings improve from 27% to 14× as switching activity reduces.

ing activity over conventionally clocked repeaters as shown in Fig. 5.15 and Fig. 5.16.

TABS improved performance can be exploited for further energy efficiency gains by

increasing repeater insertion interval. Fig. 5.17 shows measured energy vs. delay

curves for TABS at 1.5mm insertion interval along with conventional repeaters with

varying bi-directional traffic rate. At 1.5mm insertion interval TABS energy efficiency

further improves up to 51% over conventional repeaters at iso-performance while us-

ing 58% fewer repeaters. This makes TABS highly suitable for links that run over

caches and other IP blocks that prohibit frequent repeater insertion. TABS is fully

functional across a temperature range of -200C to 900C as shown in Fig. 5.18 at 1.0V.

115

Figure 5.17: Measured energy vs. delay curves for TABS inserted every 1mm and
1.5mm, and conventional repeaters optimally inserted every 625μm.
Energy efficiency improves by 51% over conventional link at iso-
performance at 1.0V with 58% fewer repeaters by increasing TABS in-
sertion interval to 1.5mm

Figure 5.18: Measured performance and energy for TABS at different temperatures
at 1.0V.

116

CHAPTER VI

Conclusion and Future Work

6.1 Summary

With core count scaling up in modern day multiprocessor systems, on-die intercon-

nect fabrics have become one of the limiting factors in improving computing efficiency.

This challenge is compounded by the fact that unlike other modules the complexity

of switch fabrics grows quadratically with their size. In this dissertation, we proposed

many circuit and architectural techniques to improve fabric scalability in the face of

this challenge. In chapter 2, we introduced a new permutation network called XRAM

to optimize data routing across the fabric. XRAM uses an SRAM-based approach

that results in a compact silicon footprint that scales well with network dimensions.

It supports all permutations and multicasts. Capable of storing multiple shuffle con-

figurations and aided by a novel sense-amp for robust bit-line evaluation, a 128× 128

XRAM with 16b data bus fabricated in 65nm CMOS achieves a bandwidth exceeding

1Tbit/s, enabling a 64-lane SIMD engine operating at 0.72V to save 46.8% energy

over an iso-throughput conventional 16-lane implementation operating at 1.1V.

XRAM is very efficient in handling deterministic traffic flow which is a key feature

of digital signal processing applications. However, for random traffic arbitration be-

comes the bottleneck in XRAM. Hence, in chapter 3 we introduced SWIFT that uses

circuit techniques to integrate the arbiter within the permutation network. SWIFT

117

retains all XRAM data permutation capabilities in addition to its ability to perform

high radix arbitration without incurring additional delay. It co-optimizes arbiter and

crossbar logic using a unique fabric architecture that integrates conflict resolution

with data routing to optimally use logic and interconnect resources.

SWIFT uses a fixed set of priority vectors for detecting and resolving conflicts

during arbitration. Although chances are slim, it is prone to starvation and through-

put degradation under pathogenic traffic patterns. We address this issue in chapter

4 by introducing SSN, which is a fabric architecture to accomplish the least recently

granted arbitration scheme by reusing already existing logic/interconnect resources

in the fabric. Building on that, we also propose novel schemes to accomplish a variety

of arbitration policies with very minimal overhead.

With cores getting simpler and fabric complexity getting mitigated using the above

mentioned techniques, communication to and from the interconnect fabric becomes

the next limiting factor. A high radix fabric enables high degree of IP integration.

However, the average routes to and from different IPs through the switch fabric

increases. This results in more energy being spent while communicating to and from

the switch fabric. To address this, in chapter 5 we introduced a novel repeater called

TABS (thyristor assisted bi-directional signaling), which is a standard cell compatible

self-timed bi-directional repeater with no configuration overhead. It enables 8mm

interconnects to achieve 37% higher speed at 20% lower energy over conventional

repeaters in 65nm CMOS at 1.0V. In TABS, absence of configuration logic removes

the need for clocking, yielding up to 14× higher energy efficiency at very low data

switching activity.

6.2 Future research directions

The switch fabrics described in this dissertation open up many new directions

for research. One direction is the design of switch fabrics for ultra high throughput

118

Figure 6.1: Ultra high radix switch fabric topology

exascale computing systems as shown in Fig. 6.1. The high radix switches proposed

here can be used as basic building blocks to build ultra high radix communication

platforms for such systems. Another area of exploration is 3D switch fabrics. The

highly regular and modular architectures of SSN like switch fabrics make them very

amenable for 3D integration. Through silicon vias (TSVs) in modern day 3D pro-

cesses span only tens of micrometers and hence make them excellent candidate to

replace bit-lines in our proposed switch fabrics as shown in Fig. 6.2. By leveraging

3D technology and the circuit techniques proposed in this dissertation, switch fabrics

with bandwidth exceeding tens of Tb/s can be realized at very low latency. This will

not only facilitate high bandwidth inter-core communication but also communica-

tion with stacked DRAM which currently limit the computation capabilities of most

multi-core systems.

119

Figure 6.2: 3D SWIFT topology

120

BIBLIOGRAPHY

121

BIBLIOGRAPHY

[1] “The technical impact of Moores Law”, IEEE Solid-State Circuits Society

Newsletter, Vol. 20, No. 3, Sep 2006.

[2] “ISSCC 2011 trends report”, www.isscc.org/doc/2011/2011 Trends.pdf.

[3] J.Warnock et al., “A 5.2Ghz Microprocessor Chip for the IBM zEnterpriseTM

System”, IEEE International Solid State Circuits Conference, 2011.

[4] S.Sawant et al., “A 32nm Westmere-EX Xeon Enterprise Processor”, IEEE

International Solid State Circuits Conference, 2011.

[5] W.Hu et al., “Godson-3B: A 1Ghz 40w 8-core 128GFlops processor in 65nm

CMOS”, IEEE International Solid State Circuits Conference, 2011.

[6] S.Ruepp et al., “Evaluation of 100 Gigabit Ethernet Switches under Bursty

Traffic”, International Conference on Optical Network Design and Modelling,

pp. 1-6, 2011.

[7] H-E.Kim et al., “A 275mw heterogeneous Multimedia processor for IC-Stacking

on Si-interpose”, IEEE International Solid State Circuits Conference, 2011.

[8] P-K.Tsung et al., “A 216fps 4096×2160p 3dTv Set-Top Box Soc for Free-

viewpoint 3DTV applications”, IEEE International Solid State Circuits Con-

ference, 2011.

122

[9] E.Karl et al., “ElastIC: An Adaptive Self-Healing Architecture for Unpredictable

Silicon”, IEEE Design and Test of Computers , pp. 484-490, 2006.

[10] S.Vangal et al., “An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm CMOS”,

IEEE International Solid State Circuits Conference, pp. 98-99, 2007.

[11] M.Taylor et al., “The Raw Microprocessor: A Computational Fabric for Soft-

ware Circuits and General-Purpose Programs”, IEEE Micro, 2002.

[12] J. Howard et al., “A 48-Core IA-32 Processor in 45nm CMOS using On-Die

Message-Passing and DVFS for Performance and Power scaling”, IEEE Journal

of Solid State Circuits, Vol. 46, No. 1, Jan 2011.

[13] D. Truong et al., “A 167-Processor Computational Platform in 65nm CMOS”,

IEEE Journal of Solid State Circuits, pp. 1130-1144, April 2009.

[14] Y. Hung et al., “Parallel Implementation and Performance Prediction of Object

Detection in videos on the Tilera Many-Core Systems”, International Sympo-

sium on Pervasive Systems, Algorithms, and Networks, pp. 563-567, 2009.

[15] G. Passas et al., “A 28×128×24Gb/s Crossbar Interconnecting 128 Tiles in

a Single Hop and Occupying 6% of their area”, International Symposium on

Networks-on-Chip, pp. 87-95, 2010.

[16] S. Murali et al., “An Application-Specific Design Methodology for STbus Cross-

bar Generation”, Design Automation and Test in Europe, pp. 87-95, 2005.

[17] D.Flynni et al., “AMBA: enabling reusable on-chip designs”, IEEE Micro, pp.

20-27, 1997.

[18] “AMBA AXI Specification”, http://www.arm.com/armtech/AXI.

[19] “AHB CLI Specification”, http://www.arm.com/armtech/ahbcli.

123

[20] P. Kongetira et al., “Niagara: A 32-way multithreaded Sparc processor”, IEEE

Micro, pp. 21-29, 2005.

[21] F. Wang et al., “Fast fair arbiter design in packet switches”, Workshop on High

Performance Switching and Routing, pp. 472-476, 2005.

[22] E. Shin et al., “Round-robin Arbiter Design and Generation”, International

Symposium on System Synthesis, pp. 243-248, 2002.

[23] Z. Yun et al., “RR-LQD: A novel scheduling algorithm for CICQ switching

fabrics”, International Symposium on System Synthesis, pp. 243-248, 2002.

[24] P. Gupta et al., “Design and implementing a fast crossbar scheduler”, IEEE

Micro, pp. 20-28, 1999.

[25] Z. Dong et al., “Non-blocking memory-memory-memory Clos-network packet

switch”, IEEE Sarnoff Symposium, pp. 1-5, 2011.

[26] A. Bouhraoua et al., “A simplified router architecture for the modified FAT Tree

Network-on-Chip Topology”, NORCHIP , pp. 1-4, 2009.

[27] A. Lea et al., “The Load-Sharing Banyan Network”, IEEE Transactions on

Computers, pp. 1025-1034, 2006.

[28] J. Kim et al., “Flattened Butterfly Topology for On-Chip Networks”, IEEE Com-

puter Architecture Letters, pp. 37-40, 2007.

[29] S. Bourduas et al., “A Hybrid Ring/Mesh Interconnect for Network-on-Chip

Using Hierarchical Rings for Global Routing”, International Symposium on

Newtorks-on-Chip, pp. 195-204, 2007.

[30] C. Wang et al., “A 1.1 GOPS/mW FPGA Chip with Hierarchical Interconnect

Fabric”, IEEE International Symposium on VLSI Circuits, pp. 136-137, 2011.

124

[31] T. Krishna et al., “NOCHI: Network-on-Chip with Hybrid Interconnect”, IEEE

Micro, 2009.

[32] J. Frias et al., “A VLSI crossbar switch with wrapped wave front arbitration”,

IEEE Transactions on Circuits and Systems, pp. 135-141, 2003.

[33] J. Calvo et al., “Asynchronous Modular Arbiter”, IEEE Transactions on Com-

puters, pp. 67-70, 1986.

[34] S. Mahmud et al., “A new arbitration circuit for asynchronous multiple bus mul-

tiprocessor systems”, IEEE International Symposium on Circuits and Systems,

pp. 1041-1044, 1991.

[35] S. Zheng et al., “Algorithm-Hardware Codesign of Fast Parallel Round-Robin

Arbiters”, IEEE Transactions on Parallel and Distributed Systems, pp. 84-95,

2007.

[36] Y. Lee et al., “A high-speed decentralized arbiter design for NoC”, IEEE In-

ternational Conference on Computer Systems and Applications, pp. 350-353,

2009.

[37] K. Kim et al., “A 125 GOPS 583 mW Network-on-Chip BasedParallel Proces-

sor With Bio-Inspired Visual Attention Engine”, IEEE Journal of Solid State

Circuits, vol. 44 pp. 133-147, 2009.

[38] V. Shurbanov et al., “The Effect of the Router Arbitration Policy on the Scalabil-

ity of ServerNetTM Topologies”, IEEE Symposium on Parallel and Distributed

Processing, pp. 604-609, 1998.

[39] T. Seceleanu et al., “Starvation-Free Arbitration Policies for the Segmented-Bus

Platform”, IEEE Symposium on Signals, Circuits and Systems, pp. 67-70, 2005.

125

[40] P.J Garcia et al., “Evaluation of Alternative Arbitration Policies for Myrinet

Switches”, .

[41] M. Pirvu et al., “The Impact of Link Arbitration on Switch Performance”,

Proceedings of the 5th International Symposium on High Performance Computer

Architecture, 1999..

[42] S. Satpathy et al., “A 4.5Tb/s 3.4Tb/s/W 64 × 64 switch fabric with self-

updating least recently granted priority and quality of service arbitration in 45nm

CMOS”, International Solid State Circuits Conference, 2012.

[43] K. Chang et al., “A 50Gb/s 32×32 CMOS Crossbar chip using asymmetric

serial links”, , IEEE International Symposium on VLSI Circuits, pp. 19-22,

1999.

[44] K. Goossens et al., “Internet-Router Buffered Crossbars based on Networks on

Chip”, Euromicro Conference on Digital System Design, Architectures, Meth-

ods, and Tools , pp. 365-374, 2009.

[45] B. Neji et al., “Multistage Interconnection Network for MPSoC: Performance

study and prototyping on FPGA”, International Design and Test workshop, pp.

11-16, 2008.

[46] P. Salihundam et al., “A 2Tb/s 6/times4 Mesh Network with DVFS and

2.3Tb/s/W router in 45nm CMOS”, International Symposium on VLSI Cir-

cuits, pp. 79-80, 2010.

[47] S.Bell et al., “Tile64 Processor: A 64-Core SoC with Mesh interconnect”, In-

ternational Solid State Circuits Conference, pp. 88-89, 2008.

[48] M. Borgatti et al., “A multi-context 6.4Gb/s/channel on-chip communication

126

network using 0.18μm Flash-EEPROM switches and elastic interconnects”, In-

ternational Solid State Circuits Conference, pp. 466-467, 2003.

[49] S. Rodrigo et al., “Efficient unicast and multicast support for CMPs”, IEEE

MICRO, pp. 364-375, 2008.

[50] S. Satpathy et al., “A 1.07 Tb/s 128×128 Swizzle network for SIMD Proces-

sors”, International Symposium on VLSI Circuits, pp. 81-82, 2010.

[51] S. Satpathy et al., “SWIFT: A 2.1Tb/s 32 × 32 Self-Arbitrating Manycore In-

terconnect Fabric”, International Symposium on VLSI Circuits, pp. 138-139,

2010.

[52] M. Woh et al., “Low power interconnects for SIMD computers”, Design, Au-

tomation and Test in Europe Conference, pp. 1-6, 2011.

[53] M. Woh et al., “AnySP: Anytime Anywhere Anyway Signal Processing, Inter-

national Symposium on Microacrhitecture”, International Symposium on Mi-

croacrhitecture, pp. 81-91, 2010.

[54] M. Woh et al., “Analyzing the scalability of SIMD for the next generation soft-

ware defined radio”, ICASSP pp. 5388-5391, 2008.

[55] Y. Lin et al., “SODA: A low-power architecture for software radio”, Interna-

tional Symposium on Computer Architecture, pp. 89-101, 2006.

[56] S. Bell et al., “Tile64 Processor: A 64-Core SoC with Mesh Interconnnect”,

ISSCC Dig. Tech. Papers, pp. 88-89, 2008.

[57] S. Tremblay et al., “A Third-Generation 65nm 16-Core 32-Thread Plus 32-

Scout-Thread CMT SPARC Processor”, ISSCC Dig. Tech. Papers, pp. 82-83,

2008.

127

[58] M. Anders et al., “A 4.1Tb/s Bisection-Bandwidth 560Gb/s/W Streaming

Circuit-Switched 8×8 Mesh Network-on-Chip in 45nm CMOS”, ISSCC Dig.

Tech. Papers, pp. 110-111, 2010.

[59] S. Vangal et al., “A 5.1GHz 0.34mm2Router for Network-on-Chip Applications”,

International Symposium on VLSI Circuits, pp. 42-43, 2007.

[60] M. Lee et al., “Probabilistic Distance-based Arbitration: Providing Equality of

Service for Many-core CMPs”, IEEE MICRO43, 2010.

[61] C. Park et al., “A 1.2 TB/s on-chip ring interconnect for 45nm 8-core enterprise

Xeon processor”, ISSCC Dig. Tech. Papers, pp. 180-181, 2010.

[62] B.Stackhouse et al., “A 65nm 2-Billion Transistor Quad-Core Itanium Proces-

sor”, JSSCC pp. 18-31, Vol. 44, No. 1, January 2009.

[63] B.Kim et al., “A 4Gb/s/ch 356fJ/b 10mm Equalized On-chip Interconnect with

Nonlinear Charge-Injecting Transmit Filter and Transimpedance Receiver in

90nm CMOS”, ISSCC Dig. Tech. Papers, pp. 66-67, 2009.

[64] J.Seo et al., “High Bandwidth and Low Energy On-Chip Signaling with Adaptive

Pre-Emphasis in 90nm CMOS”, ISSCC Dig. Tech. Papers, pp. 182-183, 2010.

[65] R. Ho et al., “High-Speed and Low-Energy Capacitively-Driven On-Chip Wires”,

ISSCC Dig. Tech. Papers, pp. 412-413, 2007.

[66] E. Mensink et al., “A 0.28pJ/b 2Gb/s/ch Transceiver in 90nm CMOS for 10mm

On-chip interconnects”, ISSCC Dig. Tech. Papers, pp. 414-415, 2007.

128

