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ABSTRACT

Towards understanding the self-assembly of complicated particles via computation

by

Eric Jankowski

Chair: Sharon C. Glotzer

We develop advanced Monte Carlo sampling schemes and new methods of calculat-

ing thermodynamic partition functions that are used to study the self-assembly of

complicated “patchy ” particles. Patchy particles are characterized by their strong

anisotropic interactions, which can cause critical slowing down in Monte Carlo sim-

ulations of their self-assembly. We prove that detailed balance is maintained for our

implementation of Monte Carlo cluster moves that ameliorate critical slowing down

and use these simulations to predict the structures self-assembled by patchy tetromi-

noes. We compare structures predicted from our simulations with those generated by

an alternative learning-augmented Monte Carlo approach and show that the learning-

augmented approach fails to sample thermodynamic ensembles. We prove one way to

maintain detailed balance when parallelizing Monte Carlo using the checkerboard do-

main decomposition scheme by enumerating the state-to-state transitions for a simple

model with general applicability. Our implementation of checkerboard Monte Carlo

on graphics processing units enables accelerated sampling of thermodynamic prop-

erties and we use it to confirm the fluid-hexatic transition observed at high packing

fractions of hard disks. We develop a new method, bottom-up building block as-

xvii



sembly, which generates partition functions hierarchically. Bottom-up building block

assembly provides a means to answer the question of which structures are favored at

a given temperature and allows accelerated prediction of potential energy minimizing

structures, which are difficult to determine with Monte Carlo methods. We show how

the sequences of clusters generated by bottom-up building block assembly can be

used to inform “assembly pathway engineering”, the design of patchy particles whose

assembly propensity is optimized for a target structure. The utility of bottom-up

building block assembly is demonstrated for systems of CdTe/CdS tetrahedra, DNA-

tethered nanospheres, colloidal analogues of patchy tetrominoes and shape-shifting

particles.
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CHAPTER I

Introduction

1.1 Motivation

The paper that this thesis is printed upon or the screen on which it is being viewed

are both materials whose physical properties are determined by the arrangement and

interactions of their constituent building blocks. In the case of paper, the particular

network of cellulose fibers in a given sheet determines how easy it is to tear, how

quickly it will soak up water, or how smooth it is to the touch. The arrangement of

aluminum, silicon, and oxygen in the glass of a liquid crystal display determine its

scratch-resistance and clarity, and the ordering of rod-like molecules determines the

color of each pixel. Technologies such as paper and computer screens are enabled

by our ability to create materials whose physical properties match the specifications

imposed by a particular application. Improving our ability to design and control

the structure of materials will enable new technologies with potential for impact in

medicine, sustainability, and consumer products.

Controlling the structure of a material can be difficult when it is made up of

trillions of particles, each of which might be one-onethousandth the diameter of a

human hair. If 100-nanometer square particles are used to make a 1m×1m sheet,

one hundred trillion (1 × 1014) particles would need to be precisely placed. Placing

these particles sequentially, the same way bricks are laid down to make a wall, is an
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infeasible manufacturing technique. Even if one million particles could be placed each

second, it would take over three years to assemble the aforementioned sheet.

Instead of sequentially placing building blocks by hand, a more practical solution

is to have the particles assemble themselves. A collection of particles suspended in a

solution may spontaneously form ordered structures as the particles attract, collide

and rearrange[1–3]. In thermally equilibrated systems, this process is known as free

energy minimization, and results from simultaneous potential energy minimization

and entropy maximization. In principle, self-assembly allows arbitrarily large mate-

rials with customized structures to be synthesized from a “soup” of building blocks,

so long as the building block interactions are chosen properly.

The particles that can now be used as the building blocks for self-assembly have

enormous variety, as do the structures that arise from them. Polymers composed

of chemically distinct monomer blocks, such as polystyrene and poly-butadiene, have

been used to assemble micelles, cylinders, sheets, and bicontinuous diamond networks[4].

Rods, cubes, tetrahedra, prisms, and branched particles can be made from gold, silver,

platinum, and cadmium alloys, which can self-assemble into wires, sheets, and helices

[5–14]. Recent work has shown that polydisperse metallic nanoparticles can self-

assemble to form larger, more monodisperse aggregates[15]. Lithographic techniques

have demonstrated success in synthesizing large amounts of monodisperse micron-

sized particles [16, 17]. The interactions of these particles can be modified by coat-

ing them with silica[18], polyethylene glycol [19], small ligands such as trizma and

serinol [20], or by chemical addition of single-stranded DNA[21]. Colloidal building

blocks composed of spheres[22–29], ellipses[30], or aggregates of surfactant-stabilized

polymers[31] are another set of particles whose interactions can be tuned with sol-

vent mixture, salts, and small polymer additives[32–34]. The assembly of structures

composed from DNA or DNA-functionalized particles is an active area of research,

demonstrating control over metallic nanoparticles, proteins, colloids, and assemblies
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of DNA with carefully designed sequences of nucleotides[2, 35–40]. Nanoparticles

that have non-spherical shapes and directional interactions are examples of complex

patchy particles, and are the focus of this work.

Creating new materials from patchy particles has potential for transformative tech-

nologies now and for developing even more advanced materials in the future. Particles

containing magnetite nanoparticles are attractive candidates for MRI contrast agents

[41, 42], cancer therapeutics [43], as vehicles for controlled drug delivery [44], and as

components of electrorheological clutches[45]. Self-assembled platinum coated carbon

nanotubes can be used to improve the performance of proton exchange membranes

in fuel cells[46], and agglomeration of spherical nanoparticles can strengthen body

armor[47]. The same rules that govern the self-assembly of the particles participating

in the aforementioned applications also govern the dynamics of biological self assem-

bly. The spontaneous formation of virus capsids [48–50], the growth and destruction

of microtubules within the cell cytoplasm [51], and the assembly of ribosomes which

synthesize protein chains in every cell [52] are all results of self-assembly. Understand-

ing the link between building block interactions and the structures that emerge from

them is not only useful for creating new materials, but is central to our understanding

of life.

1.2 Background

Our ability to study self-assembly today was largely enabled by advances in sta-

tistical mechanics theory in the late 1800’s. Work by Clausius[53], Maxwell[54],

Boltzmann[55], and Gibbs[56] defined the concepts of entropy and thermodynamic en-

sembles, and provided mathematical connection between the macroscopic properties

of materials and the microscopic details of the building blocks that comprise them.

The microscopic details for a collection of N classical particles are their positions

{ ~x1, ~x2, ..., ~xN} = ~x1
N and momenta {~p1, ~p2, ..., ~pN} = ~pN , which define a microstate.
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A system at equilibrium is defined by an ensemble of microstates that are consistent

with some fixed thermodynamic variables. For example, a set of microstates with the

same number of particles N confined to volume V with energy E defines a micro-

canonical ensemble. Other ensembles, including the canonical (N,V,T) ensemble and

grand canonical (µ,V,T) ensemble allow energy and the number of particles to vary.

For a given ensemble, the likelihood of observing a particular microstate γ depends

upon its weight. In the microcanonical ensemble a microstate’s weight is

wN,V,E(γ) = Ωγ (1.1)

where Ωγ is the number of ways of selecting ~xN and ~pN that give energy E. For the

canonical ensemble, the weight of a microstate is

wN,V,T (γ) = Ωγ exp

(−(U(~xN) +K(~pN))

kBT

)
(1.2)

where kBT is Boltzmann’s constant, U(~xN) is the potential energy and K(~pN) is the

kinetic energy. The sum over all microstate weights for an ensemble is known as the

partition function, and for the canonical ensemble the partition function is

Q(N, V, T ) =

∫
exp

(−(U(~xN) +K(~pN))

kBT

)
d~xNd~pN (1.3)

and the probability of observing a particular microstate is

P (γ) =
w(γ)

Q
. (1.4)

Evaluating or approximating a system’s partition function is a central challenge of

statistical mechanics, as it can be used to derive all of the system’s physical properties,

including heat capacity, compressibility, and structure. The contributions to Q from
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~pN can be calculated analytically by

K(~pN) =
N∑
i=1

p2i
2mi

(1.5)

where i represents the index of a particle. Determining contributions from the con-

figurational portion of the partition function

Z(N, V, T ) =

∫
exp

(−U(~xN)

kBT

)
d~xN (1.6)

which is also expressed as a sum over microstates

Z(N, V, T ) =
∑
γ

Ωγ exp

(−Uγ
kBT

)
(1.7)

is much more challenging than calculating K because changing the position of one

particle xi might also change the potential energies of every other particle in the

system. This renders Z(N, V, T ) analytically intractable for all but the simplest

systems.

Computer simulations provide a convenient way to approach analytically intractable

problems and advances in computational hardware and algorithms have enabled stud-

ies of systems ranging from catalyst kinetics [57] and oil-water mixtures[58], to adap-

tive cognitive systems [59, 60]. Simulations that numerically integrate (1.6) have

played an important role in the study of self-assembly since their use in 1953 to

calculate the hard disk equation of state [61]. Other early Monte Carlo simula-

tions predicted flocs in colloidal systems[62] and configurations of polymer chains[63].

Early molecular dynamics simulations considered hard spheres [64] and configura-

tions of model protein molecules[65]. Recent simulations that apply statistical me-

chanics to problems in self-assembly have elucidated control over tethered nanopar-

ticle structure[66–70], quasicrystal formation[71, 72], and how interaction anisotropy
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can be used to control structure[3, 73, 74]. Exploiting new computational hardware

such as graphics processing units (GPUs)[75] and implementing new techniques on

them[76, 77] will advance our ability to engineer new materials using self-assembly.

1.3 Overview

In this work we present new theoretical developments and computational tools

that are used to study the self-assembly of complicated particles. In Chapter II we

review Monte Carlo methods that are used to perform self-assembly simulations in

subsequent chapters and present new work detailing Monte Carlo parallelization for

GPUs. In Chapter III we compare techniques for studying anisotropic tetromino

self-assembly and develop a new tool, bottom-up building block assembly (BUBBA),

for studying sequences of clusters. In Chapter IV we extend BUBBA to systems of

building blocks with continuous degrees of freedom and nonzero temperatures and

use it to predict free energy minimizing structures for a set of patchy particles. In

Chapter V we demonstrate how BUBBA is useful for designing patchy particles that

have a good chance of assembling a target structure by using it to inform the engi-

neering of assembly pathways. In Chapter VI we summarize systems of particles for

which BUBBA has been used successfully. In Chapter VII we conclude and present

future avenues of research.
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CHAPTER II

Methods

In this chapter we discuss the details of the computational tools used throughout

this work. This chapter is organized as follows. In Section 2.1 we detail the Metropolis

Monte Carlo simulation scheme. In Section 2.2 we explain the implementation of

cluster moves used extensively in our Monte Carlo simulations. In Section 2.3 we

prove constraints for checkerboard domain decomposition schemes used to perform

Monte Carlo simulations on GPUs.

2.1 Monte Carlo Simulations

The näıve way of numerically integrating (1.6) is to generate configurations ran-

domly, calculating their weights according to Ωγ exp(−Uγ/kBT ), and summing them.

Unfortunately, this method is impractical, as for even a collection of 100 indistinguish-

able particles occupying sites on a 50× 50 lattice there are over 6.67× 10181 possible

configurations to check. It is important to note that many configurations might not

be physically realizable, such as those where two particles share a site, and that oth-

ers might be substantially more energetically favorable than others. The Metropolis

sampling scheme [61] avoids unnecessarily checking thermodynamically irrelevant con-

figurations by generating a sequence of configurations that asymptotically approaches

the underlying equilibrium distribution to be sampled. This is accomplished through
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the careful generation and acceptance of trial moves which adhere to the following

constraints:

1. The trial moves are Markovian

2. The system is ergodic

3. Detailed balance is maintained

Here we denote the initial configuration for a system as γ0 and the configuration

after t trial moves have been attempted as γt. The Markovian constraint for a Monte

Carlo simulation is satisfied when γt+1 depends only upon γt. Another way of stating

this is that the system has no memory; the next configuration depends only upon the

current configuration. The ergodicity constraint is satisfied if every possible configu-

ration can be reached from any other configuration by a finite number of trial moves.

The ergodicity constraint ensures that only one distribution of states is asymptotically

approached as the simulation progresses. The constraint of detailed balance ensures

that at equilibrium, each elementary process is balanced by its reverse process. That

is, the probability of observing state α and transitioning to state β is equal to the

probability of observing state β and transitioning to state α:

P (α)π(α→ β) = P (β)π(β → α) (2.1)

where π(o → n) is the probability of generating a trial move from old state o to

new state n. As we shall see in Section 2.3 and Chapter III, violating any of these

conditions can introduce sampling artifacts.

Simulations that adhere to the above constraints can be elegantly concise when

implemented in computer code and have low memory footprint. Coupled with the

fact that for many systems, equilibrium distributions can be sampled in minutes on

modern processors, the Metropolis Monte Carlo scheme is an attractive candidate for
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many materials simulations[78–80]. However, it can be the case that for complex ma-

terials systems, especially patchy particles, additional enhanced sampling techniques

may be required to ensure ergodic sampling over the time scales we are willing to

wait.

2.2 Detailed Balance-Obeying Cluster Moves

One problem that arises is the critical slowing down that occurs in the vicinity of

a phase transition. Simulations become effectively nonergodic near phase transitions

because of the diminishing probability of accepting local moves. This problem has

been resolved in the Ising model using simultaneous flipping of spin domains[81] and

an extension that works on a single block of spins[82]. The rejection-free method was

extended to continuous sysems[83, 84], which employs the mirroring of clusters about

a central pivot point and enables enhanced sampling of dense systems. Non-rejection-

free cluster moves have also been developed which aim to mimic physical dynamics[85],

and which are particularly useful for systems of patchy particles which can experience

long agglomeration times in the absence of cluster moves. In this section we detail our

implementation of cluster moves used throughout this work. Many of the variables

used in this section are chosen specifically for the lattice models used in later sections,

but the general expressions remain the same for continuous systems.

We begin by expanding (2.1) with P (γ) = e−βUγ

Z

e−βUo

Z
Rgen(o→ n)Racc(o→ n) =

e−βUn

Z
Rgen(n→ o)Racc(n→ o) (2.2)

where β = 1
kbT

, Rgen(α→ β) is the rate of generation of a trial move, and Racc(α→ β)

is the probability of accepting that trial move. Rearranging:

Racc(o→ n)

Racc(n→ o)
= e−β(Un−Uo)

Rgen(n→ o)

Rgen(o→ n)
(2.3)
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Generating a trial move involves selecting a particle at random for use as a cluster seed,

generating (growing) a cluster from the seed, and selecting a trial displacement or

rotation at random. In every state, the probability of any particle being chosen as the

seed particle is simply 1
N

and the probability of choosing a particular move (translating

in one of the four cardinal directions or rotating clockwise or anticlockwise) is 1
6
. As

these two factors do not depend upon the state, (2.3) reduces to:

Racc(o→ n)

Racc(n→ o)
= e−β(Un−Uo)

P n
gen(C|s)
P o
gen(C|s) (2.4)

where P γ
gen(C|s) is the probability of generating cluster C in state γ given the seed

particle s. Cluster generation begins by defining a cluster C based upon seed particle

s and calling a function we name NextInCluster that is defined in Algorithm 1.

Algorithm 1 Function NextInCluster(seed s, Cluster C) adds particles to a cluster
in a depth-first search tree

Require: seed s, Cluster C
for all particles l that shares an edge with particle s do

if l has not been added to a cluster then
Add l to cluster C with probability ps,l
if l is added to C and the size of C < Smax then

NextInCluster(l,C)

Here, the probability ps,l is the probability that particles s and l are part of the

same cluster. This is also known as the bond probability. We define ps,l = 0.5

if particles s and l share at least one edge and 0 otherwise. Recursively adding

neighboring particles to a cluster in this way can generate very large clusters in dense

areas. This, combined with the fact that cluster moves can be initiated from any

particle means that large clusters are more likely to be selected in dense systems. To

account for this, we terminate the growth of a cluster once it has reached a maximum

size Smax = 1
rand

, where rand is a random number chosen uniformly between 0 and 1.

By sequentially growing clusters using the method mentioned above, the probability
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of creating a cluster C given seed particle s and the path chosen over its neighbors

is the product of the pk,l over the path selected times the product of (1 − pk,l) over

the cluster’s interface. However, there are many paths over which cluster C can be

grown. Therefore, the probability of generating a cluster becomes:

Pgen(C|s) =

(∑
i

∏
k,l∈C

pk,l

)∏
k∈C
l/∈C

(1− pk,l) (2.5)

where the sum over i is the sum of all paths that result in formation of cluster C.

Note that this sum is the same for cluster C regardless of state, so (2.4) reduces to:

Racc(o→ n)

Racc(n→ o)
= e−β(Un−Uo)

∏
k∈C
l/∈C

(1− pnk,l)∏
k∈C
l/∈C

(1− pok,l)
(2.6)

where pαk,l is the probability that particles k and l are in the same cluster in state

α. We take the minimum of (2.6) and unity to be the acceptance probability for a

Monte Carlo move:

acc(o→ n) = min

1, e−β(Un−Uo)

∏
k∈C
l/∈C

(1− pnk,l)∏
k∈C
l/∈C

(1− pok,l)

 . (2.7)

For our on-lattice simulations where it is computationally inexpensive to deter-

mine particle nearest neighbors and hence grow clusters efficiently, this results in very

efficient software. In an optimized version of the code used in Chapters III-V, our

simulations achieve 1×105 cluster moves per second and the number of cluster moves

per second is independent of the system size until the program memory exceed the

CPU cache size (32 KB for one core of the Intel Core 2 Duo chips used here). Em-

pirically we find optimal performance with fewer than 2000 particles in a 200 × 200

simulation box.
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2.3 Monte Carlo on Graphics Hardware

Taking advantage of the high performance computing capabilities of graphics pro-

cessing units has enabled dramatic improvements in performance for molecular dy-

namics simulations[75, 76, 86]. Achieving similar speedups for Monte Carlo simula-

tions is attractive for the larger system sizes and expanded problem sets it could be

applied to. Perhaps the central challenges in implementing a massively multithreaded

Monte Carlo algorithm is implementing a domain decomposition scheme that obeys

detailed balance. Implementations exist for asynchronous algorithms[87, 88], but

these are not applicable to the simultaneous instruction multiple data (SIMD) ar-

chitectures we target. Previous work on lattice models have demonstrated elements

of domain decomposition, but do not obey detailed balance[89, 90]. Other work

has claimed that detailed balance cannot be obeyed in parallel Monte Carlo[91],

and demonstrate domain decomposition schemes[92, 93] that are alternatives to the

checkerboard[87] approach. The checkerboard scheme is attractive for SIMD hard-

ware because it optimally parallelizes trial moves and maps naturally to the GPU

architecture. In this section we describe and implement a checkerboard domain de-

composition scheme for NVIDIA graphics processing units and prove it adheres to

detailed balance.1

We demonstrate and prove our algorithm using the 2×2 lattice model depicted in

Figure 2.1. While the clarity of our proof is facilitated through the use of this lattice

model, it applies to both continuous and lattice Monte Carlo models. The crux of the

proof is showing that transitions from state-to-state are equally sampled in general,

and that when certain transitions are occasionally blocked, their reverse moves are

identically blocked. In our 2 × 2 lattice model we consider four sites arranged in

a square with indexes 0 (lower left), 1 (lower right), 2 (upper left) and 3 (upper

1This section is adapted from Reference [94] J. Anderson, E. Jankowski, T. Grubb, M. Engel,
and S.C Glotzer, Calculation of the hard sphere equation of state on graphics hardware. in prep.
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2

Figure 2.1: 2×2 square lattice model with periodic boundary conditions. Circles rep-
resent occupied lattice sites. With three occupied sites there are four pos-
sible microstates for indistinguishable particles, which are distinguished
by the location of the vacancy. The microstate pictured shows the vacancy
in site 0. Reproduced from Reference [94].

right) with periodic boundaries. Three of the lattice sites are filled with “particles”,

represented by circles in Figure 2.1, which have no interaction with other particles

or the lattice, but which can move between neighboring sites. In this model, no

site is more likely to be vacant than any other site, and we would expect a Monte

Carlo simulation, whether serial or parallel, to show the probability of observing the

vacancy in a given site to be 1
4
.

The commonly used “checkerboard” domain decomposition scheme used in paral-

lel Monte Carlo implementations [87, 89] will be used here as well. In this scheme, the

simulation volume is divided into square (or in three dimensions, cubic) cells, each

of which can contain zero to np particles, where np depends upon the model and the

size of the cell. In one Monte Carlo sweep (MCS) a Metropolis Monte Carlo move is

attempted in each cell. In our 2D checkerboard scheme we decompose our simulation

box into four cells, which results in one site being assigned to each cell. We assign

each cell to a checkerboard set with an identifier cid ∈ {a, b, c, d} based upon the x
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and y coordinates of the cell:

cid = a : (x ∈ even) and (y ∈ even)

cid = b : (x ∈ odd) and (y ∈ even)

cid = c : (x ∈ even) and (y ∈ odd)

cid = d : (x ∈ odd) and (y ∈ odd)

(2.8)

. One Monte Carlo sweep consists of four sub-sweeps; one sub-sweep for each of

the four checkerboard sets. In a sub-sweep over one checkerboard set, trial moves

are attempted for a randomly selected particle in each cell of the checkerboard in

parallel. The spatial decomposition of our model depicted in Figure 2.2 is the simplest

instantiation of the checkerboard scheme, with each checkerboard set containing one

site.

The checkerboard domain decomposition scheme ensures that the parallel moves

occurring simultaneously for the cells in one checkerboard set obey detailed balance.

That is, so long as the interaction range and maximum trial displacement of a particle

is less than half of the cell side length, each parallel trial move maintains local detailed

balance within the sub-sweep. Complications arise, however, when a particle moves

out of one cell and into a cell in which a trial move is being attempted on a subsequent

sub-sweep within the same Monte Carlo sweep. As an example, consider the transition

from state 4 to state 1 Figure 2.2. In state 4, the particle in site 0 will have a trial

move applied to it by checkerboard a. Because the lattice site to the North and South

(site 2) is occupied, there is a 1
2

probability that a trial move will be generated and

accepted that moves the particle into site 1. After moving to site 1, checkerboard b

could move the particle. Note that here, “state” refers to the state of the model being

implemented on the GPU at the onset of a Metropolis move kernel call, defined by

particle positions and which checkerboard is attempting to perform moves in parallel.

On the subsequent sub-sweep (state 1 in Figure 2.2) we must decide whether to allow
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State : (checkerboard, empty site)
0:(a,0)

4:(a,1)

8:(a,2)

12:(a,3)

1:(b,0)

5:(b,1)

9:(b,2)

13:(b,3)

2:(c,0)

6:(c,1)

10:(c,2)

14:(c,3)

3:(d,0)

7:(d,1)

11:(d,2)

15:(d,3)

Figure 2.2: The checkerboard domain decomposition for the lattice model in Fig-
ure 2.1 has one checkerboard handling trial moves out of each of the four
sites. The sixteen possible states that can occur during a MC sweep are
enumerated above, with the active checkerboard {a, b, c, d} indicated by
a shaded square. Reproduced from Reference [94].

the particle that has just entered the cell to be eligible for a trial move, or not. In

our off-lattice simulations we find that we must not allow particles that have entered

during the current MCS to be eligible for trial moves, otherwise particles develop

a systematic bias to be located near cell corners and edges, where they experience

higher mobility. However, preventing newly-entered particles from participating in a

trial move appears to violate the Markov condition: that only the current state of

a system and not its history should determine its subsequent state. We shall show

later that symmetric violation of the Markov condition can be used to ensure detailed

balance for pairs of MCSs.

Given the four checkerboard indices and four possible locations of the vacant site,

there are sixteen possible states that can be encountered during a sub-sweep in our

model (Figure 2.2). Here we show that sequential iteration over the four checkerboards

(a→ b→ c→ d→ a) during a MCS breaks detailed balance. Transitions from state
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to state occur via trial moves of particles out of the “active” checkerboard. The full

set of possible transitions when checkerboards are updated sequentially (a → b →

c→ d→ a) can be specified as a matrix

A =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 h 0 0 0 h 0 0 0 0 0 0 0 0 0

0 0 0 h 0 0 0 0 0 0 0 h 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 h 0 0 0 h 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 h 0 0 0 0 0 0 0 h 0 0 0

0 h 0 0 0 0 0 0 0 h 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 h 0 0 0 h 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 h 0 0 0 0 0 0 0 h 0

0 0 0 0 0 0 0 0 0 0 0 h 0 0 0 h

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0



(2.9)

where the elements Ai,j indicate the probability of transitioning from state i to state

j and h = 0.5. Here, i and j refer to the row and column indices of A, respectively,

and are zero-indexed beginning in the upper left. For example, the “1” located at

i = 3 and j = 0 indicates that sub-sweep state 0 will follow sub-sweep state 3 every

time. Note that the sum of each row sums to 1 and that for this transition matrix

we do not prevent reverse moves.

Given any initial condition vector v, the expected probability of observing state i
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after n sub-sweeps can be calculated by

p = vAn. (2.10)

For sequential updates we calculate p numerically using

p∗ = v(An + An+1 + An+2 + An+3)/4 (2.11)

to average over the four checkerboards. To determine the probability of cell 0 con-

taining the empty site P (0) we calculate p∗ with n = 1024 using MATLAB. Summing

P (0) = p∗0 + p∗1 + p∗2 + p∗3 we find that P (0) = 2
15

. Analogously, we find P (1) = 11
30

,

P (2) = 2
15

and P (3) = 11
30

for any legal v. These P show substantial bias for the vacant

site to be located in cells 1 and 3, inconsistent with the expected 1
4

probability. If we

prevent reverse moves (the transition chains 4 → 1 → 6 and 14 → 11 → 12 are no

longer legal) we find P (0) = P (2) = 0.1739 and P (1) = P (3) = 0.3261. This shows

that sequentially performing checkerboard sub-sweeps fails to sample the expected

probability distribution regardless of whether or not reverse moves are allowed.

Parallel checkerboard sub-sweeps can maintain detailed balance if, for each MCS,

the order of checkerboard sub-sweeps are randomized and reverse moves are prevented.

During a shuffled MCS, each checkerboard attempts a sub-sweep once, but the order

in which the four checkerboards do so is determined each time using a Fischer-Yates

shuffle[95]. By randomly shuffling checkerboard order for each MCS, the transition
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matrix A is expanded to

B =



0 t t t 0 0 0 0 0 0 0 0 0 0 0 0

s 0 s s s 0 s s 0 0 0 0 0 0 0 0

s s 0 s 0 0 0 0 s s 0 s 0 0 0 0

t t t 0 0 0 0 0 0 0 0 0 0 0 0 0

0 s s s 0 s s s 0 0 0 0 0 0 0 0

0 0 0 0 t 0 t t 0 0 0 0 0 0 0 0

0 0 0 0 t t 0 t 0 0 0 0 0 0 0 0

0 0 0 0 s s s 0 0 0 0 0 s s s 0

0 s s s 0 0 0 0 0 s s s 0 0 0 0

0 0 0 0 0 0 0 0 t 0 t t 0 0 0 0

0 0 0 0 0 0 0 0 t t 0 t 0 0 0 0

0 0 0 0 0 0 0 0 s s s 0 s s s 0

0 0 0 0 0 0 0 0 0 0 0 0 0 t t t

0 0 0 0 s 0 s s 0 0 0 0 s 0 s s

0 0 0 0 0 0 0 0 s s 0 s s s 0 s

0 0 0 0 0 0 0 0 0 0 0 0 t t t 0



(2.12)

where t = 1
3

and s = 1
6
. For example, state 4 from Figure 2.2 can now transition

to states 1, 2, 3, 5, 6, or 7 with probability 1
6
, to account for the three possible

checkerboards to update next, times the two possible locations of the vacant site.

Using transition matrix B in place of A in (2.11) we find P (0) = P (1) = P (2) =

P (3) = 1
4

as expected for this model when we prevent reverse moves.

Here, preventing reverse moves is essential for correct sampling. As mentioned

above, failing to prevent reverse moves (moves where a particle moved from one

checkerboard is moved by a subsequent checkerboard within one MCS) alters the

structure of the system sampled, with particles having an unphysical spatial bias for
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the corners of the checkerboards in our 2D hard disk simulations. Preventing reverse

moves is also essential for maintaining detailed balance for this scheme, as symmetric

reverse move preventions cancel each other out. The sequences of states that are

prevented during one MCS are

4→ 1→ any

1→ 4→ any

2→ 8→ any

8→ 2→ any

13→ 7→ any

7→ 13→ any

14→ 11→ any

11→ 14→ any

(2.13)

with each prevented chain a → b → x cancelling the chain b → a → x. The first

line of (2.13) for our model can be read “if state 1 follows state 4, no trial move

from state 1 will be accepted by the current sub-sweep”. The symmetry of these

prevented moves is precisely the condition of detailed balance, showing that the rates

of forward and reverse moves from any one state to any other are identical. However,

because one reverse move might be prevented during a MCS, detailed balance is

only strictly upheld over pairs of MCS. This proof contradicts the idea in [92] that

domain decomposition Monte Carlo cannot be validated with traditional Markov

chain theory. That is to say, by preventing reverse moves and shuffling the order

over which checkerboards are updated, detailed balance is upheld over pairs of MC

sweeps.

We validate our domain decomposition scheme by using it to simulate hard disks

in two dimensions and comparing the pressure vs. density equation of state with that
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Figure 2.3: One million hard disk simulation snapshot run on an NVIDIA gpu using
the domain decomposition described in this section. Blue areas indicate
particles with hexatic ordering [96] and red indicates fluid. The packing
fraction is 0.712. Reproduced from Reference [94].

calculated in Refernece [96]. The hard disk model is similar to the model described

in Figure 2.1, but here disks have continuous degrees of freedom in the plane and one

simulation cell can accommodate up to four disks. In our simulations, which take 23

days to run, we observe the same first order liquid-hexatic transition as observed in

Refernece [96], but whose simulations take 9 months to run. A simulation snapshot

of a one-million particle hard disk run is given in Figure 2.3.
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2.4 Summary and Conclusions

In this chapter we describe the importance of detailed balance in providing a the-

oretical footing for equilibrium simulations. We prove two schemes that use advanced

Monte Carlo moves do obey detailed balance, ensuring that the ensembles sampled

by these methods are thermodynamic. The cluster moves used to speed up patchy

particle self-assembly simulations are used extensively throughout this work and the

GPU-enabled checkerboard scheme is being continuously improved and extended at

the time of publication for this thesis.
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CHAPTER III

BUBBA at Zero Temperature

In this chapter, we consider how increasingly complex particles are pushing the

limits of traditional simulation techniques used to study self-assembly. We test the

use of a learning-augmented Monte Carlo method for predicting low energy configura-

tions of patchy particles shaped like “Tetris R©” pieces (tetrominoes). We extend this

method to compare it against Monte Carlo simulations with cluster moves and intro-

duce a new algorithm - bottom-up building block assembly - for quickly generating

ordered configurations of particles with a hierarchy of interaction energies.1

3.1 Introduction

Patchy particles, including those possessing intricate geometries and hierarchies of

interaction energies, hold promise as the building blocks for next-generation materials

and devices [3]. However, the complicated interactions between particles makes the

prediction of their energy minimizing ordered arrangements challenging when using

essentially all particle-based simulation methods rooted in statistical thermodynam-

ics. This is particularly true of stochastic methods such as Monte Carlo (MC). Despite

optimizations [98] that obey detailed balance such as cluster moves [84, 85], hybrid

1This chapter is adapted from Reference [97] E. Jankowski and S.C. Glotzer, A comparison of new
methods for generating energy-minimizing configurations of patchy particles. Journal of Chemical
Physics, 131(10):104104, 2009.
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MC [99], and configurational bias methods [100, 101], MC simulations can become

intractably long when used to predict energy minimizing configurations of patchy

particles with disparate interaction energies because trial move acceptance probabil-

ities become so low that the simulation becomes stuck in a sub-optimally organized,

kinetically arrested state. Consequently, there is renewed interest in the development

of simulation methods for strongly-interacting, complex molecular and particle-based

systems [85, 102].

A new method proposed by Troisi et al. is an important step in this direction. The

authors introduce an adaptive, learning-augmented Monte Carlo (LAMC) approach

intended to prevent the formation of sub-optimal local arrangements of model complex

building blocks shaped like“Tetris R©” pieces (Figure 3.1) [103]. On a 2D lattice, these

building blocks are examples of lattice animals [104]. They record the energies of the

best (i.e. lowest energy) clusters up to a maximum size, updating these values any time

a new, lower energy cluster is found. Any cluster of particles selected for a trial move

that does not have an energy consistent with the optimal value for its size is forced to

split apart. Biasing the formation of low-energy clusters in this way, the simulation

learns about successively better clusters as it proceeds. By moving a best-energy (i.e.

lowest energy) cluster of a given size as a single unit, Troisi et al.’s LAMC benefits

from two performance improvements over traditional MC. The first improvement is

that trial moves breaking apart the best-energy clusters are never attempted until

a better energy cluster is discovered. Second, the simultaneous translations and

rotations of best-energy clusters help overcome the long agglomeration times that

occur in MC simulations without cluster moves. As a result, their method generates

very low temperature ordered structures faster than traditional Monte Carlo [103].

However, by not allowing cluster moves for sub-optimal clusters, the LAMC al-

gorithm loses some efficiency in exploring phase space. It is tempting to think that

a Monte Carlo simulation that includes cluster moves for all clusters in addition to
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Troisi et al.’s learning-augmented cluster bias will find energy-minimizing configura-

tions faster than either LAMC or cluster Monte Carlo (cMC). In cMC, the random

translation that would normally be applied to a single particle during a trial move

is applied to a group of particles (cluster) that are defined based upon their relative

positions. Rotations of a cluster can also be included. Therefore, a simulation that

combines cluster moves and Troisi et al.’s learning augmentation would be expected

to overcome long agglomeration times better than LAMC and would utilize fewer

trial moves that attempt to break optimal configurations than cMC. Thus, such a

method could potentially be more efficient than cMC for generating low temperature

states.

This chapter is divided into three main sections. In the first section we develop a

new learning-augmented cluster Monte Carlo (LAcMC) method following the above

line of reasoning and compare it against cMC. In the second section, we are inspired by

Troisi et al.’s bottom-up cluster bias approach to develop a new algorithm - bottom

up building block assembly (BUBBA) - for quickly generating energy-minimizing

configurations of complex building blocks. In the final section we provide an analysis

of each method’s ability to find low energy structures and their relative efficiencies,

and discuss the theoretical and practical limitations of each method. In all sections,

we utilize the same model system, which is described in the next section.

3.2 Model System

To facilitate comparison with previous work, we consider systems of particles iden-

tical to those invented by Troisi et al. [103]. Each rigid tetromino particle is made up

of four subunits and is shaped like a Tetris R©piece. Each subunit is defined to be pos-

itive, negative, or neutral. All nearest neighbor subunits interact with a weak van der

Waals-like attraction that has a potential energy value of U = −ε. Additionally, the

interaction of nearest-neighbor charged subunits is U = ±10ε, depending upon their
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Figure 3.1: The 25 primitive particles studied in this work and in Troisi et al. [103].
Grey represents neutral subunits, red are positive, and blue are negative.
Reproduced from Reference [97].

respective charges. As such, the energy associated with a neutral subunit interacting

with any other subunit type is −ε, that of oppositely charged subunits is U = −11ε,

and the energy between like charges is U = +9ε. The 25 different primitive particle

types studied here and by Troisi et et al. are shown in Figure 3.1. These building

blocks can translate and rotate on a two-dimensional square lattice, but particle over-

laps, inversions, deletions, substitutions, and additions are prohibited. Extensions of

the methods investigated here to 3D lattices, other lattice geometries, and off-lattice

are possible but beyond the scope of this paper.
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3.3 Learning Augmentation and Cluster Monte Carlo

The cMC simulation we develop for the particles in Figure 3.1 utilizes cluster

moves similar to those used by Whitelam et al. [85] At a given time step i, particles

k and l are considered part of the same cluster with probability pik,l = 0.5 if particles

k and l share an edge in time step i and pik,l = 0 otherwise. To ensure the trial move

for the cluster C selected in each time step maintains detailed balance, the trial move

acceptance probability is

acc(o→ n) = min

1, e−β(Un−Uo)

∏
k∈C
l/∈C

(1− pnk,l)∏
k∈C
l/∈C

(1− pok,l)

 (3.1)

where β is the inverse temperature 1/kBT , kB is Boltzmann’s constant, Un is the

potential energy of the new configuration, and Uo is the potential energy of the old

configuration. A detailed derivation of (3.1) is included in Chapter II. The choice of

bond probability pk,l for a simulation is arbitrary, but can have a significant impact on

equilibration times [83, 85, 105]. Bond-probabilies based on interaction energies are

employed in rejection-free cluster moves for spin glasses [81] and can be generalized to

fluid systems [83], but are prone to unphysical kinetic traps when particle interactions

are stronger than a few kBT [85]. We choose a constant bond probability specifically

because it avoids the unphysical kinetic traps associated with rejection-free cluster

moves in the same way as Whitelam and Geissler’s cleaving algorithm [85] and for

its computational efficiency. Empirically, we find pk,l = 0.5 strikes a balance between

the growth of clusters (high pk,l) and the rate at which their trial moves are accepted

(low pk,l). The details of our depth-first cluster generation algorithm are included

in Chapter II. We find Monte Carlo simulations that include this implementation of

cluster moves to be more efficient than those without, as expected. Figure 3.2 shows

the trajectories of a cMC and standard MC simulation with identical parameters

and initial conditions. For all 25 building blocks, the simulations with cluster moves

26



0 2e+06 4e+06 6e+06 8e+06 1e+07
t

-20

-15

-10

-5

0

U
cMC
MC

Figure 3.2: Per-particle potential energy profiles for cMC and MC simulations of
patchy particle 10, with 40 particles in a 32× 32 lattice at kBT/ε = 1.4.
Reproduced from Reference [97].

sample lower energy configurations, again as expected.

Our LAcMC code is identical to cMC except we do not allow the best clusters in

time step t to split apart in time step t+ 1. In LAcMC, we define clusters every time

step as in cMC and compare the potential energy of each cluster with the optimal

energy recorded for clusters of that size. If a cluster’s potential energy is equal to the

optimum for its size, we set pt+1
k,l = 1 for all pairs of particles in the cluster. If the

potential energy of a cluster is lower than the recorded optimum, we update the new

optimum value. With this algorithm, our LAcMC model is identical to Troisi et al.’s

LAMC method except that here clusters with less-than-optimal potential energies

are allowed to move as whole units. Thus, LAcMC combines the energy-minimizing

cluster bias of LAMC and the agglomeration-optimizing cluster moves of cMC.

For each of the 25 patchy particles in Figure 3.1 we perform 500 cMC simulations

and 500 LAcMC simulations of 5× 105 time steps, each with a unique random num-

27



0 1e+05 2e+05 3e+05 4e+05 5e+05
t

-4

-3

-2

-1

0

<U
>

cMC
LAcMC

a

0 1e+05 2e+05 3e+05 4e+05 5e+05
t

-20

-15

-10

-5

0

<U
>

cMC
LAcMC

b

Figure 3.3: Per-particle potential energy histories of (a) patchy particle 4 simulations
and (b) patchy particle 3 for cMC and LAcMC. Standard error bars are
on the order of the line thickness. Reproduced from Reference [97].

ber generator seed. The simulations are performed on a 32× 32 lattice with periodic

boundary conditions initialized randomly with N = 40 identical particles. The tem-

perature is set to kBT/ε = 0.06 for the patchy particles 1, 4, 11, 16, and 21. For

patchy particles 6, 10, 15, 17, and 20, the temperature is set to kBT/ε = 1.4. The

reduced temperature for all other patchy particles is set to kBT/ε = 2.2. These tem-

peratures are chosen to be low enough to facilitate agglomeration, but high enough to

prevent the system from becoming trapped in an arrested state, and were determined

by trial and error.

To compare the rates at which cMC and LAcMC converge upon potential energy

minima we average the per-particle potential energy histories of the 500 trials for

each method. Figure 3.3a presents the histories for patchy particle 4, where LAcMC

finds lower energy configurations on average. For patchy particle 3, however, the

opposite result is obtained with cMC outperforming LAcMC (Figure 3.3b). Table 3.1

tabulates whether LAcMC performs on average better than (-), worse than (+), or the

same as (o) cMC for each patchy particle. In general we find no obvious correlation

between particle shape or patterning and whether or not LAcMC will tend to find

better-optimized configurations than cMC without learning.

Because LAcMC is an extension of cMC, it is natural to ask how the addition
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Table 3.1: Impact of learning augmentation on average final potential energy after
500,000 time steps of cMC. A “+” indicates LAcMC finds higher (worse)
U configurations than cMC, “- ” indicates lower (better), and “o” indicates
no difference.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

- - + - - + + + - o + + - + + - - - o - - - - + -

of an adaptive element alters the ensemble sampled. Figure 3.4a presents a com-

parison of the cluster size distributions for patchy particle 23 when simulated with

learning-augmented and non learning-augmented cluster Monte Carlo. This distribu-

tion is representative of those found for all 25 patchy particles. The shift in LAcMC

towards larger clusters demonstrates that it is not sampling the same distribution of

microstates as cMC, since the cluster size distributions must be a property of the state

point. This discrepancy is expected, since the algorithm is designed to bias towards

low-energy (that is, large) clusters, but highlights the fact that LAcMC cannot be

used to sample a thermodynamic ensemble away from zero temperature.

Furthermore, any algorithm similar to LAMC or LAcMC in which the system

“learns” can never be tuned to sample a thermodynamic ensemble. The non-Markovian

nature of this type of algorithm, where the transition made from time step t to t+1 de-

pends not only on the state at t, but on a history of states, precludes the condition of

balance necessary for ergodic sampling [106]. There is no variant of Eqn 3.1 that can

rectify the state sampling differences caused by learning augmentation. However, the

fact that LAcMC cannot be used at finite temperature is an acceptable shortcoming

so long as it outperforms standard methods in the low temperature energy-minimizing

case, where standard methods typically fail.

In Table 3.2 we compare the lowest-energy configuration found by LAcMC with

those found by cMC, averaged over 500 runs for each method. LAcMC does not

reproducibly find lower energy structures than cMC, nor does it find them in fewer
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Figure 3.4: Learning augmentation changes the distribution of cluster sizes during a
simulation, as well as the distribution of energies sampled. a. Cluster
size distribution for patchy particle 23 from simulations with N = 40,
kBT/ε = 0.1 on a 32 × 32 lattice. b. Distributions of the best energy
configuration found for patchy particle 21. c. Distributions of the best
energy configuration found for patchy particle 9. d. Distributions of the
best energy configuration found for patchy particle 3. Reproduced from
Reference [97].
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timesteps (Table 3.3). Table 3.1 and Table 3.2 are in close agreement, as we would

expect: if the average configurations generated by LAcMC for a given patchy particle

have lower energies than those generated by cMC, then the lowest-energy configu-

rations generated by LAcMC are also lower than the best structures generated by

cMC. However, the averages and standard errors presented in Table 3.2 fail to paint

the full picture of how LAcMC changes the distribution of configurations sampled.

Figure 3.4b demonstrates that LAcMC samples a much narrower distribution of en-

ergies with a lower average for patchy particle 21. In this case, the fact that learning

augmentation improves the sampling of lower energy configurations is lost in the av-

erages of Table 3.2, but clearly appears in the side-by-side comparison of the energy

distributions sampled by each method.

For some particles (e.g., patchy particle 9), the distribution of best-energy config-

urations is shifted lower than that for cMC, indicating that the cluster biasing facil-

itates finding lower energy structures (Figure 3.4c). For other patchy particles (e.g,

patchy particle 3), the distribution of best-energy configurations found by LAcMC is

worse than that found by cMC (Figure 3.4d). However, regardless of learning aug-

mentation’s ability to find lower energy configurations, the cluster size distribution

is shifted as in Figure 3.4a for all patchy particles. No general improvement is found

for LAcMC over cMC.

While LAcMC and cMC take statistically similar amounts of time steps to find

best-energy configurations (Table 4.1), LAcMC offers a small amount of real-time

performance improvement. Because energy-minimizing clusters in time step t are

maintained in time step t + 1, the number of clusters that need to be generated in

later time steps are substantially decreased. Because of this, a cMC simulation of

5× 105 time steps takes on average 52.4 seconds on a 2.8Ghz iMac, and an identical

LAcMC simulation takes an average of 39.3 seconds.
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Patchy Particle 〈UcMC〉/ε 〈ULAcMC〉/ε ∆U

1 −3.27± 0.04 −3.29± 0.03 −0.02± 0.05
2 −18.79± 0.72 −18.93± 0.68 −0.13± 0.99
3 −17.13± 0.84 −16.10± 0.79 1.03± 1.15
4 −3.86± 0.13 −4.12± 0.08 −0.26± 0.15
5 −17.75± 0.56 −17.83± 0.52 −0.08± 0.76
6 −10.51± 0.32 −10.13± 0.31 0.38± 0.45
7 −20.16± 0.63 −19.87± 0.59 0.30± 0.86
8 −18.82± 0.83 −18.61± 0.77 0.20± 1.13
9 −17.34± 0.63 −17.90± 0.60 −0.56± 0.87
10 −11.90± 0.36 −11.93± 0.35 −0.03± 0.50
11 −3.83± 0.12 −3.74± 0.12 0.09± 0.17
12 −19.83± 0.56 −19.09± 0.60 0.74± 0.82
13 −14.35± 0.81 −14.19± 0.68 0.16± 1.05
14 −16.88± 0.62 −15.95± 0.66 0.93± 0.91
15 −11.44± 0.32 −11.31± 0.32 0.13± 0.45
16 −3.84± 0.13 −3.74± 0.12 0.10± 0.18
17 −11.06± 0.46 −11.34± 0.48 −0.27± 0.67
18 −13.58± 0.78 −14.08± 0.54 −0.50± 0.95
19 −18.36± 0.73 −18.42± 0.75 −0.06± 1.05
20 −10.34± 0.44 −10.54± 0.40 −0.20± 0.60
21 −4.19± 0.09 −4.28± 0.04 −0.09± 0.10
22 −16.93± 0.61 −17.30± 0.58 −0.37± 0.84
23 −17.72± 0.66 −18.06± 0.69 −0.34± 0.96
24 −21.25± 1.02 −20.57± 0.91 0.68± 1.37
25 −17.90± 0.72 −18.37± 0.77 −0.46± 1.05

Table 3.2: Average lowest-energy configurations for different patchy particles for cMC
and LAcMC. ∆U = 〈ULAcMC〉/ε− 〈UcMC〉/ε.
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Patchy Particle 〈tscMC〉 〈tsLAcMC〉 ∆ts

1 255± 130 265± 113 10.2± 172.2
2 378± 97 379± 98 1.2± 138.0
3 380± 97 298± 117 −82.6± 152.1
4 360± 103 398± 76 38.3± 128.3
5 382± 105 374± 101 −8.4± 145.4
6 380± 103 254± 126 −125.8± 162.7
7 407± 85 391± 90 −16.4± 123.4
8 416± 75 419± 72 2.7± 104.4
9 414± 85 428± 65 14.0± 106.9
10 391± 95 400± 94 8.0± 134.0
11 336± 112 324± 120 −11.9± 164.8
12 404± 86 347± 111 −57.5± 140.9
13 412± 88 401± 77 −11.8± 116.5
14 396± 94 348± 127 −47.7± 158.4
15 399± 90 380± 103 −19.7± 137.1
16 359± 109 355± 113 −4.3± 157.5
17 432± 66 437± 64 5.4± 91.7
18 425± 76 423± 65 −1.9± 99.6
19 413± 77 427± 69 13.4± 103.4
20 403± 93 417± 74 14.4± 119.4
21 338± 106 354± 94 16.1± 141.6
22 410± 84 408± 74 −2.6± 112.0
23 393± 91 384± 88 −8.5± 126.3
24 400± 92 372± 103 −28.1± 138.7
25 416± 74 416± 70 −0.3± 101.6

Table 3.3: Average number of time steps (in thousands) to find the lowest-energy
structures in cMC and LAcMC simulations. ∆ts = 〈tsLAcMC〉 − 〈tscMC〉
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3.4 Bottom-Up Building Block Assembly

In both the LAMC method developed by Troisi et al. and our LAcMC method,

the expectation is that energy minimizing configurations of particles can be found

more effectively by biasing the formation of low-energy clusters. However, we observe

that adding a learning-augmented cluster bias component does not offer a significant

performance increase over traditional methods. This does not imply that learning-

augmented methods can not be used or that they should be avoided. In BUBBA,

we take this idea of learning and cluster biasing one step further and build energy

minimizing clusters from pairs of smaller clusters from the bottom up. To generate

an energy minimizing cluster of size N from smaller best-energy clusters, BUBBA

employs Algorithm 2. This algorithm generates the lowest energy clusters of size N

by checking all configurations for every pair of clusters whose sizes sum to N . Here,

we consider a simplification of BUBBA where only pairs of lowest energy clusters

are used to build larger clusters. This implementation of BUBBA is efficient but will

miss energy-minimizing clusters made from sub-optimal clusters and we return to this

point in the Section 3.5.

Table 3.4 presents the per-particle potential energies of the size N = 40 clusters

generated by BUBBA for each of the 25 tetrominoes alongside the lowest values

obtained from cMC and LAcMC. For all patchy particles except 1 and 21, BUBBA

finds the lowest energy configurations of 40 particles. For patchy particles 1 and

21, the best-energy configurations of all three methods are identical. BUBBA also

offers a substantial performance improvement in terms of computational time. It

takes 4 seconds to generate the patchy paticle 8 energy-minimizing cluster of size

40 in BUBBA on a 2.8Ghz iMac. The times for cMC and LAcMC simulations of

5 × 105 time steps are 39.3 and 52.4 seconds, respectively. Additionally, while a

single BUBBA run is an order of magnitude faster than a cMC or LAcMC trial run,

hundreds of simulations must be run for the Monte Carlo methods in order to reduce
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Algorithm 2 Generate clusters of size N

Require: generation of clusters from size 1 through N − 1
for all s such that N

2
≤ s ≤ N − 1 do

for all clusters y ∈ clustersOfSize[s] do
for all clusters m ∈ clustersOfSize[N − s] do
B ← 0
calculate perimeter of y
for all cells cy in perimeter of y do

for all cells cm in cluster m do
move m such that cm = cy
for all orientations do
E ← energy(m, y)
if E < B then
B ← E
replace bestClustersOfSize[N ] with cluster(m, y)

if E = B and cluster(m, y) /∈ bestClustersOfSize[N ] then
add cluster(m, y) to bestClustersOfSize[N ]

return bestClustersOfSize[N ]

their standard error. This makes BUBBA computationally much more attractive

than either Monte Carlo method for finding potential energy minima, provided that

only best-energy, or second-best energy clusters are required to build the best energy

structure. This point is discussed in more detail in the next section.

3.5 Discussion

The fundamental differences between Monte Carlo methods and BUBBA account

for the large performance gap we have demonstrated. Finding a configuration of par-

ticles that minimizes a system’s potential energy is an optimization problem. Monte

Carlo methods are ill-suited for optimization problems for two reasons. First, at low

temperatures the trial move transition probabilities become diminishingly low. Sec-

ond, the number of energy-minimizing configurations for a given system can be as low

as one. For the systems we consider here, the number of energy minimizing configu-

rations depends upon the shape and patterning of the building blocks. For example,

there are two ways to put two copies of patchy particle 11 together to create a cluster
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Patchy Particle UcMC/ε ULAcMC/ε UBUBBA/ε

1 −3.35 −3.35 −3.35
2 −21.18 −20.80 −22.40
3 −19.80 −18.98 −20.10
4 −4.20 −4.30 −4.35
5 −19.40 −19.40 −21.15
6 −11.38 −11.15 −11.85
7 −22.58 −21.53 −24.70
8 −21.33 −20.78 −23.40
9 −19.50 −19.95 −22.15
10 −12.95 −12.95 −14.13
11 −4.13 −4.08 −4.25
12 −21.73 −21.03 −23.35
13 −16.68 −16.05 −18.05
14 −19.03 −18.53 −20.88
15 −12.43 −12.40 −13.33
16 −4.23 −4.10 −4.35
17 −12.30 −12.63 −14.10
18 −16.10 −15.98 −18.03
19 −20.20 −20.60 −25.68
20 −11.80 −12.15 −12.83
21 −4.33 −4.35 −4.35
22 −18.43 −18.80 −22.38
23 −19.60 −19.95 −22.83
24 −24.95 −23.33 −29.80
25 −20.13 −20.73 −23.40

Table 3.4: Lowest energy configurations generated with cMC, LAcMC and BUBBA
for 40 identical copies of each particle in Figure 3.1.
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Figure 3.5: a. Best energy clusters of size 2 for patchy particle 11. b. Best energy
cluster of size 2 for patchy particle 12. Reproduced from Reference [97].

with the minimum energy (Figure 3.5a). Patchy particle 12, however, only has one

energy-minimizing configuration of two particles (Figure 3.5b). As the clusters grow

larger, the degeneracy of configurations increases for the homogenous particles (1, 6,

11, 16, and 21), but may remain flat for certain other particles (e.g. patchy particle

8 only has one energy minimizing configuration for every cluster of size s < 48).

Optimization problems, such as the one we consider here, can be classified as

“easy” or “difficult” depending on the optimal solution degeneracy. Mertens proves

that the number of solutions depends upon the complexity of the building blocks [107].

Mertens’ proof uses a mapping of the number partitioning problem (NPP) onto an

Ising model. Using this mapping, it has been shown that the NPP has two regions: a

so-called “easy” region where an instance of the problem has many optimal solutions

and a “difficult” region in which there is only one solution [107, 108]. The goal of the

NPP is to separate a list of integers into two lists with the smallest difference in sum.

If all of the numbers in the list are equal, the problem is trivial: two lists of closest

size will have the smallest difference. A list of numbers with widely-varying values,

however, is much harder to solve. The transition between “easy” and “difficult”

regions depends upon the ratio m/n where m is the number of bits needed to encode

a number in the list and n is the size of the list. When m/n < 1 there are many

optimal solutions to the problem, otherwise there is only one in the limit of large n.

While our systems cannot be mapped easily onto the NPP, we may expect similar

trends in optimization problem complexity. That is, we should expect the patchy

particles requiring the fewest bits to encode (particles 1, 4, 11, 16, and 21) to fall
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into an “easy” regime relative to the other more complex building blocks. We would

therefore expect the Monte Carlo methods to find energies closest to those found by

BUBBA for shapes 1, 4, 11, 16 and 21 while performing relatively worse for all other

shapes. Table 3.4 shows that the relative energy differences between the Monte Carlo

methods and BUBBA are indeed closest for shapes 1, 4, 11, 16, and 21, which is

consistent with the “easy”-“difficult” heuristic of Mertens.

BUBBA is effective relative to Monte Carlo methods because it checks a smaller

number of configurations. In d dimensions, a cluster made up of n subunits has at

most 2dn perimeter cells. Therefore, when a cluster of n1 subunits is combined with

a cluster of n2 subunits to form the best energy cluster with N = n1 + n2 subunits,

the number C of configurations checked is

C = 2dn1n2 (3.2)

= 2d(N − n2)(N − n1) (3.3)

= 2d(N2 −Nn1 −Nn2 + n1n2) (3.4)

giving

O(C) = O(N2) (3.5)

There are at most N/2 pairs of clusters that must be checked to find the best-

energy cluster of size N . Also, all of the clusters up to size N − 1 must be generated

before the best-energy cluster of size N can be found. There are N − 2 such clusters,

with sizes 2 through N − 1. Performing the O(N2) cluster pairing N(N − 2)/2 times

results in the total number of configurations on the order O(N4) regardless of volume

or the number of spatial dimensions. While a cMC simulation does not attempt to

sample all of the O(V dN) possible system configurations (N particles in volume V

with d spatial dimensions), the fact that BUBBA generates an energy-minimizing

38



cluster after only O(N4) potential energy calculations shows how tiny a portion of

configuration space it samples. By not checking every possible configuration, however,

BUBBA is not guaranteed to find the global energy minimum for a set of particles.

BUBBA becomes computationally inefficient when generating clusters larger than

N ∼= 150 on a single-processor machine, but we find the unit cells comprising the

energy-minimizing infinite structure can be found when N < 50 for the family of

particles studied here.

For the implementation of BUBBA we present here, it is guaranteed to fail if the

best cluster of size s is formed by two clusters whose energies are not minima for

their sizes. At the expense of computational cost, clusters with sub-optimal energies

can easily be included in the search for energy minimizing clusters. We find that in

most cases, BUBBA performs well when including only energy-minimizing clusters:

generating optimal clusters for 24 of the 25 patchy particles in Figure 3.1. Only patchy

particle 6 is improved by including second-best clusters. In this case, the best energy

N = 4 cluster is made from two copies of the second-best energy N = 2 cluster

(Figure 3.6). By including the second-best clusters for patchy particle 6, BUBBA

generates a configuration with U/ε = −13.3, lower than that found when only the

best-energy clusters are included (Figure 3.6).

Given a system of particles at constant temperature, the stronger the interaction

energies between two building blocks, the more likely there are to be trial moves with

near-zero acceptance probabilities in any Monte Carlo simulation. For example, in

a simulation of shape 12 with kBT/ε = 1.0, the probability of breaking apart the

cluster in Figure 3.5a is exp(−22/1.0) = 2.9 × 10−10. If such a trial move were re-

quired to rearrange a non-optimal cluster it would be highly unlikely over the course

of a one-billion time step simulation. Furthermore, this low acceptance probability

is approaching the precision of the random number generator, 2−b, where b = 31 in

our simulations [109]. We find that the stronger the interaction energy between two
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Figure 3.6: The best energy N = 4 cluster for patchy particle 6 can be generated
from sub optimal clusters of size 2 or 3. Reproduced from Reference [97].

building blocks of a given shape relative to the weakest interaction between them, the

more likely they are to become trapped. Here, we quantify a system’s susceptibility

of becoming trapped by comparing the average minimum potential energies found

with cMC in Table 3.2 to those found by BUBBA. Figure 3.7 shows that larger r

corresponds to larger performance gaps between BUBBA and cMC. This suggests

that another factor contributing to BUBBA’s efficacy is the fact that Monte Carlo

simulations of patchy particles can easily become trapped in metastable configura-

tions. Further, the ease with which a MC simulation of patchy particles can become

trapped as measured by ∆ = UBUBBA−〈UcMC〉
UBUBBA

appears to increase as r increases.

3.6 Conclusions

Systems of patchy particles that have a hierarchy of interaction energies are com-

plicated, limiting the extent to which traditional simulation methods can be used

to predict ordered configurations arising via self-assembly. In this chapter we have
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demonstrated that cluster Monte Carlo and learning-augmented cluster Monte Carlo

methods are relatively poor methods for finding potential energy minima formed from

patchy particles with disparate interaction energies due to their tendency to become

trapped in metastable configurations as well as the low degeneracy of potential energy

minimizing configurations. We have shown that learning-augmented cluster Monte

Carlo offers insignificant performance improvements over cluster Monte Carlo, but

stress that this does not invalidate the potential usefulness of such methods. We

have developed a new method - BUBBA - that effectively searches a subset of con-

figuration space for energy-minimizing configurations. While BUBBA, as well as any

other heuristic method, is not guaranteed to find optimal solutions, we demonstrate

its efficacy relative to cMC and LAcMC. Due to BUBBA’s ability to quickly generate

energy-minimizing configurations of particles, we expect it to prove useful when many

different particles must be evaluated for self-assembly “propensity” [110].
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CHAPTER IV

BUBBA at Nonzero Temperature

4.1 Introduction

Self-assembly holds promise as a manufacturing technique for materials with

customizable physical properties and for devices with precisely placed nanoscale

elements[1, 111]. Building blocks with complicated shapes and finely-tuned direc-

tional interactions can now be synthesized from polymers, metals, biomolecules, and

combinations of these nanoparticles that have been chemically bound together to

create highly anisotropic “patchy” particles[2–4, 13, 38, 111]. The specific interac-

tions and complex shapes of patchy particles can be exploited during self-assembly

with particles organizing into complicated patterns as a consequence of free energy

minimization[112]. Choosing a building block to assemble a target pattern or assessing

if a system of building blocks might assemble any pattern - the two basic problems of

self-assembly - are difficult because of the enormous parameter space that is accessible

when particle shape, interaction number, interaction strengths, temperature, density,

and stoichiometry can each be varied independently. Methods that can predict what

new particles might form and why they do or do not reach their thermodynamically

preferred structures are therefore important and useful.1

1This chapter is adapted from Reference [113] E. Jankowski and S.C. Glotzer, Calculation
of partition functions for the self-assembly of patchy particles. Journal of Chemical Physics B,
115(48):14321-14326, 2011.
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Selecting a building block for which a desired structure is thermodynamically

stable would be straightforward if, at experimentally realizable conditions, its par-

tition function could be generated[114, 115]. The partition function Z encodes all

the system’s thermodynamics, allowing for the calculation of macroscopic properties

such as pressure, heat capacity, and packing fraction as a function of thermodynamic

variables[116]. Unfortunately, the number of microstates that comprise a particular

partition function scales by V N where V is the volume accessible to each particle and

N is the number of particles. This scaling makes exact enumeration of all but the

smallest partition functions numerically intractable, and the complicated interactions

between real particles renders analytical partition function calculations useless except

for Baxter type tricks in special cases[117, 118].

For equilibrium statistical mechanical systems macroscopic properties can be cal-

culated without explicit knowledge of the partition function. This fact follows from

the sharp peak in the probability distribution of microstates consistent with equi-

librium observables and therefore saddle point approximations, mean field theory,

or numerical techniques such as molecular dynamics and Monte Carlo methods can

be efficiently used to calculate equilibrium properties[98, 116, 119]. These methods

have recently provided integral explanatory and exploratory capabilities for studying

self-assembly. Molecular dynamics simulations have been instrumental in explain-

ing the thermodynamics of water[120], predicting ordered arrangements of diblock

copolymers[121], tethered nanoparticles[66, 69], and anisotropic virus capsomers[122,

123]. Monte Carlo simulations have elucidated quasicrystalline structure in systems

of hard tetrahedra[72], solubility of tetromino mixtures[124], higher-order virial coef-

ficients and clustering in water[125] and explained the dipole-induced structure ob-

served in solutions of stabilized CdTe tetrahedra[80], among many other examples

too numerous to list.

When used as an exploratory tool the utility of MC and MD simulations are
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hindered by a circular problem of time scales: to determine the relaxation time for

a slowly evolving system, simulations much longer than the relaxation time must be

run[114, 126, 127]. That is, in order to know if a simulation has been run long enough,

one must run it longer. This is a particularly troublesome problem when attempting

to find the optimal conditions at which a system of particles self-assembles a target

structure because the time scale problem is now compounded by each additional state

point that must be sampled.

In this work we develop a hierarchical method for calculating partition functions

for complex building blocks to arbitrary precision by extending bottom-up building

block assembly (BUBBA) to all temperatures[97]. Our method exploits the sharply

peaked equilibrium distribution of microstates for Z at low N to hierarchically gen-

erate Z at successively larger values of N . We accomplish this through three steps at

each value of N . First, microstates are enumerated through a cluster pairing proce-

dure. Second, distinguishable microstates are identified. Third, negligible microstates

are neglected. We demonstrate the method on a system of model patchy particles in

the canonical (N, V, T ) ensemble.

4.2 Experimental Methods

As a model system, we consider the set of 25 particles introduced by Troisi et

al. [128] whose shapes resemble Tetris R© pieces (tetrominoes, 4.1 [124, 129]). For

computational expediency and without loss of generality, we confine the rigid, three-

dimensional particles to a two-dimensional surface and describe the surface as a square

grid in which the subunits that comprise the particles may each occupy a single

grid cell. This dimension reduction is general because the method requires only a

discrete search space of configurations, which is independent of dimension. In this

model [128], all nearest-neighbor subunits share an attraction (e.g., van der Waals,

depletion, solvophobic, etc.) of strength U = ε, and the four subunits that comprise

45



Figure 4.1: Model patchy particles. Reproduced from Reference [113].

each particle can be positively charged, negatively charged, or neutral. When two like-

charged subunits share an edge, their resulting potential energy U = 9ε, for opposite

charges U = −11ε, and for a neutral subunit sharing a face with any other subunit

type U = −ε. The particles can translate and rotate on the grid, but particle overlaps

and inversions are prohibited. Since colloids with these geometries and interactions

can now be synthesized [31, 34, 130], determining which, if any, of the particles in this

family can be used to generate useful structures has immediate applications beyond

serving as a proof-of-concept for the methodology presented here.

4.2.1 BUBBA at Finite Temperature

Exact enumeration of a partition function is computationally intractable for large

(N > 5) clusters because of how rapidly the number of microstates scales with N . We
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can pare down the number of relevant configurations in the case of attractive particles,

considering only the configurations wherein particles are interacting. Taking patchy

particle 2 from 4.1 as a concrete example, we enumerate all of the clusters that

can be created with two through four copies of the particle. There are 30 different

N = 2 clusters, 736 different N = 3 clusters, and 25234 clusters when N = 4.

Given any particular N = 4 cluster, its potential energy might range anywhere from

U = −68ε to U = 26ε, and at any of these energy levels there may be as many as

3000 distinct clusters with that energy. In this case, because we can calculate each

cluster’s degeneracy and energy exactly we can calculate the partition function

Z =
∑
i

Ωi exp(−Ui/kBT ) (4.1)

exactly, where Ωi and Ui are the ith cluster’s degeneracy and energy, respectively[131,

132]. In 4.2 we show the probability of observing a given cluster (red) and the number

of configurations with a particular energy (black). Note that only two energy levels

contribute non-negligibly to the partition function at this temperature. This fact may

be striking to the uninitiated: less than a thousandth of a percent of the possible

configurations for this system matter at this temperature.

To perform BUBBA at a given temperature we rely on the fact that a small frac-

tion of possible microstates comprises the majority of the partition function. This

assumption breaks down at high temperatures where all microstates contribute sim-

ilarly to the partition function, but is valid for the condensed soft-matter systems

of interest for self-assembly. We also assume that the microstates that contribute to

Z(N = n, V, T ) must be generated by pairings of configurations from Z(N < n, V, T ),

and is independent of V (i.e., the system is relatively dilute). This allows rapid gener-

ation of partition functions hierarchically because the number of configurations that

must be checked scales as a polynomial in N rather than to the power of N . In prac-
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Figure 4.2: Frequencies (black) and relative probabilities (red) of N = 4 clusters
of patchy particle 2 at kBT/ε = 1.0 as a function of potential energy.
Reproduced from Reference [113].

tice, we utilize a “cluster library” to keep track of each cluster generated by BUBBA.

Each entry in the cluster library specifies the number, potential energy, relative de-

generacy, particle positions, and combinations of smaller clusters that can create a

particular cluster. In this framework, using BUBBA to calculate Z(N, V, T ) consists

simply of pairing clusters in the library, keeping only the unique microstates, and

discarding the negligible microstates.

4.2.2 Cluster Pairing

Given a discretization of configuration space for the clusters of interest, BUBBA

combines pairs of clusters to generate larger clusters. When generating size N clusters

there are bN/2c combinations of cluster sizes that must be paired. For example, only
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Figure 4.3: Examples of cluster pairing for N = 2 (a) N = 3 (b) and N = 4 (c).
Note that for each pairing, not all possible resulting clusters are included.
Reproduced from Reference [113].

N = 1 clusters need be combined to generate N = 2 clusters, but for N = 4 clusters

we must pair N = 1 with N = 3 clusters as well as N = 2 with N = 2 clusters

(4.3). Each time a new candidate cluster is created from a cluster pairing we check

the cluster library to see if it has already been generated. If the cluster is new, it

is added to the cluster library. If it already exists in the library, we update the

existing cluster’s relative degeneracy as well as the list of cluster combinations that

can generate it.

Choosing an appropriate discretization of configuration space for a particular sys-

tem is crucial and it has important implications for BUBBA’s performance. The

chosen discretization of search space should depend on the metric by which clusters

are distinguished. The clusters depicted in Figure 4.4a and b are two examples of

clusters made from five copies of a sphere with a continuous chain of states linking the

two structures. Are they the same, or are they different? If they are different, which

states count towards the degeneracy of one cluster but not the other? It is conceivable

that the statistical mechanics of one system might not need to distinguish between

these configurations, but that another might rely upon their difference. Whichever

specific metric is chosen, be it Fourier descriptors [133], sum of squared errors[134],
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a b

Figure 4.4: a. Example of a cluster of five spheres in a pyramid structure. b. Bipyra-
mid structure made from the same number of spheres as in (a). The
partition function generated by BUBBA depends upon the chosen dis-
cretization of configuration space. Different discretizations would differ
in whether (a) and (b) are distinguishable or not. Reproduced from Ref-
erence [113].

contact network analysis[135], or some combination of methods, BUBBA requires

that for any pair of clusters they can be classified as being the same or different, and

that a finite set of allowed pairings of the two clusters can be generated.

4.2.3 Distinguishing Clusters

To distinguish between configurations we define a graph for each cluster and com-

pare traversals of each graph[136]. Here, each cell in a tetromino defines a node and

edges (connections) between nodes are defined by cell adjacencies (4.5). If any one

traversal of one graph matches a particular traversal of the second graph, the two

configurations are considered identical, otherwise they are different. A traversal is a

tree of nodes where each node is visited exactly once. When comparing two traversals,

they are equal if the node types and connectivities are identical for both traversals.

Here, two nodes are identical if they have the same type (red, blue, or grey), and
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if they have the same number of connections. Two optimizations that reduce the

number of graph traversals that we implement are comparing cluster energies, length,

and width before beginning a graph traversal.

4.2.4 Discarding Negligible Clusters

Once a partition function has been generated we discard all the smallest-weighted

clusters whose summed weights are less than a chosen cutoff c. Typically, we choose c

in the range 0 ≤ c ≤ 0.01 because c is the error in the N = 2 partition function, and

this error will compound roughly as cN . Next, we sort the clusters by their normalized

Boltzmann weights

wi = Ωi exp(−Ui/kBT )/Z (4.2)

where Z is the partition function from 4.1[115]. By summing the Boltzmann weights

in order, beginning with the largest, we find the clusters for which their sum of

weights is less than c, which we then discard. To optimize the calculation of cluster

probabilities we sort the clusters by ri = −Ui + kbT ln(Ωi). Using ri we calculate wi

with the formula wi = exp(ri − r0)/
∑

j exp(rj − r0) where r0 is for the cluster with

the largest Boltzmann weight.

Calculating the degeneracies Ωi for lattice model clusters can be performed exactly

and must be approximated for clusters with continuous degrees of freedom. For a

lattice cluster that can be made from p pairings where each pairing is defined by

clusters a and b,

Ωi =
∑
p

ΩaΩbnp (4.3)

where np is the number of distinct ways of combining a and b to make cluster i.

For systems with continuous degrees of freedom it is not straightforward to sum

over the same set of cluster combinations because of constraints placed on a cluster’s

51



2 3

4 5

1

1

2

3 4

5
12345

1 2

3 4 5

1

2

3

4

5

3

4

1 5

2
12435 34152

a b

c ed

Figure 4.5: a. An example cluster, with numbered node labels. b. Reference cluster
with numbered node labels. c. One possible graph traversal of (a) that
does not match the particular graph traversal of (b) The sequence of nodes
visited during a traversal are shown below the graphs and are generated
by first visiting the root (top) node and following branches depth-first,
left-to-right, not counting backtraces, until each node has been visited.
d. Graph traversal of (a) that matches the particular graph traversal of
(b). e. Particular graph traversal of (b) that is used as the reference
structure. When traversing a graph, the number of nearest neighbors for
the cell and the cell type are compared at each node. Reproduced from
Reference [113].
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degrees of freedom when the two clusters are combined. The relative degeneracies

Ωi = qi,rotqi,vib (4.4)

for such off-lattice clusters should be calculated with the rotational (qi,rot) and vibra-

tional (qi,vib) partition functions[115, 137, 138]. The rotational partition function for

a general rigid body

qrot =
π1/2

σ

(
8π2IxkBT

h2

)1/2(
8π2IykBT

h2

)1/2(
8π2IzkBT

h2

)1/2

(4.5)

where Ix, Iy, and Ix are the diagonal elements of the rigid body’s diagonalized inertial

tensor I, σ is the body’s symmetry number and h is Planck’s constant[115]. The

calculation of I can be performed using

I =
∑
k

Ik +mk [(rk · rk)E3 − rk ⊗ rk] (4.6)

where the sum is over all particles in the cluster, Ik is the inertial tensor of the kth

particle about its center of mass, mk is the kth particle’s mass, rk is a displacement

vector from the cluster’s center of mass to the kth particle’s center of mass, E3 is the

3 × 3 identity matrix, and ⊗ is the dyadic product. For clusters of the same size at

a particular temperature 4.5 simplifies to

qrot =
(IxIyIz)

1/2

σ
(4.7)

because only the relative magnitudes of the rotational partition functions for clusters

of the same size matter for their probabilities. To determine the symmetry number

σ we count all linearly independent combinations of rotation operations that map a

cluster onto itself. For a cluster defined by the types and positions of its particles we
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try all rotation operations that map one particle i onto all other particles of the same

type. For each of these, we attempt a second rotation about an axis passing through

i until a second particle j is aligned with a reference particle of the same type. After

this alignment we calculate the sum of squared errors

δ =
∑
k

|~rk − ~r0|2 (4.8)

where ~rk is the position of the kth particle and ~r0 is the position of the reference

particle of the same type closest to ~rk. If this trial orientation has not been previously

generated and if δ < 0.001 we increment σ.

Calculations of the vibrational partition function can also be performed numer-

ically for off-lattice clusters using Einstein oscillators or any analogous method for

determining the free volumes accessible to each component of a cluster[115, 137].

Generally

qvib =
∏
k

Vk (4.9)

for clusters with no collective vibrational modes, where VK is the volume accessible to

the kth particle in the cluster. For example, the vibrational degrees of freedom matter

substantially for clusters in 4.4 if they are made up of five hard spheres that can move

on the surface of a hidden sphere. In this case an Einstein oscillator approximation

of qvib would over-predict the entropic contribution from the sphere at the apex of

the pyramid in 4.4, but may under-predict the contributions from the “base” spheres.

Here, we integrate the accessible volume to each sphere as a fraction of the total

center sphere surface area with Monte Carlo integration. This approach generalizes

to arbitrary cluster types and interaction types between the subunits of the cluster.

54



c = 0.01 c = 0.001 c = 0.0001

kBT/ε=0.1 3 3 4
kBT/ε=1.0 4 35 847
kBT/ε=3.0 4 513 1320

Table 4.1: Minutes required to generate partition functions for all 25 building blocks
in 4.1 up to N = 10 using BUBBA.

4.3 Results/Discussion

In using BUBBA to generate partition functions of a given size N , the cutoff value

c can be chosen to strike a balance between efficiency and accuracy. Small values of

c ensure the partition functions built at each N are more complete, at the cost of

including more cluster configurations. Of course, as kBT/ε increases, more clusters

contribute to the partition function so choosing c too large will cause BUBBA to miss

important configurations. 4.1 summarizes the relationship between BUBBA runtime,

c, and kBT/ε for the 25 model particles in 4.1. Note that partition functions up to

N = 4 can be easily generated when c = 0, and an extrapolation of the resulting

trend suggests that generating an N = 10 partition function for c = 0 would require

O(108) years with the current implementation.

To quantify the accuracy of the partition functions generated by BUBBA we

compare the N = 4 clusters generated at c > 0 with the clusters generated when

c = 0. The error

e(c) =
∑
i

(wc=0,i − wc,i)2 (4.10)

where wc,i is the Boltzmann weight of the ith cluster generated by BUBBA with cutoff

c. We find that for any given building block, the required c to generate accurate

partition functions will depend strongly on temperature. For example, at kBT/ε =

0.1, we find e(0.00001) = 0 for all 25 particles in 4.1, indicating no clusters were

discarded at this value of c. For 0.0001 ≤ c ≤ 0.01 and kBT/ε = 0.1, e(c) = 0 for

all particles except for particle 6, for which e(c) = 2.0 because the lowest energy
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e(0.01) e(0.001) e(0.0001)

kBT/ε=0.1 0.000 0.000 0.000
kBT/ε=1.0 0.007 0.007 0.004
kBT/ε=3.0 0.025 0.016 0.004

Table 4.2: Average partition function error (4.10) for all patchy particles in 4.1, ex-
cluding particle 6.

cluster is missed. Considering only the patchy particles in 4.1, we find that e(c)

roughly scales with c (4.2) and kBT/ε. We exclude the non-patchy particles from this

analysis because the characteristic temperature ranges differ substantially from those

for the patchy particles, making comparisons less useful.

BUBBA’s efficiency at low temperatures allows for clusters larger than N = 10 to

be generated easily. As a case study we consider the partition functions for patchy

particle 6 at kBT/ε = 0.1, c = 0.00001 and N ≤ 50. 4.6 displays the elapsed

runtime for these conditions on a 2.6 GHz Intel processor. For N > 25 this data

fits a weak exponential with the number of minutes t = 0.2 exp(0.12N). At large

cluster sizes it is apparent that periodic tilings of the patchy particle are the most

thermodynamically stable arrangements (4.7). At these conditions, the more porous

tiling in 4.7a is only 5.8 times more likely than the tiling in 4.7b, and this difference

in entirely entropic in origin. The two tilings have the same number of building

blocks, and identical energies, however there are exactly 9,389,090,429,393,174,528

more ways to make the more porous tiling than the 1,972,576,636,788,277,248 ways

of generating the tiling in 4.7b, as calculated by BUBBA with c = 0.00001. The

existence of these two competing tilings has negative implications for this building

block’s propensity for self-assembly of either pattern at this temperature. Systems of

building blocks for which two or more structurally distinct tilings are commensurate in

probability will fail to assemble any tiling or pattern robustly because of the enormous

energetic penalty to rearrange one competing structure into the other. We confirm

that patchy particle 6 does not self-assemble porous arrays robustly via Monte Carlo
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Figure 4.6: Minutes of runtime to generate the Nth partition function for patchy
particle 6 at kBT/ε = 0.1 and c = 0.00001 using BUBBA. Reproduced
from Reference [113].

simulations, and expand upon the identification of robust assembly candidates in

another manuscript[110].

We determine thermodynamically stable motifs for all of the 25 particles in 4.1

at kBT/ε = 0.1 in the same way as described above for patchy particle 6. Tilings

of the unit cells identified in the most probable 40 ≤ N ≤ 50 clusters are presented

in 4.8. Although the family of model particles considered here was chosen primarily

to provide a proof-of-concept demonstration of our approach, it is easy to envision

possible applications of some of the motifs in 4.8a-l. For example, some of these

patterns (e.g. 4.8c-i) could be used as nanoscale circuit elements [139, 140]. If the

red and blue cells are made of an insulating material while the gray are conductive,

these building blocks can be used to assemble arrays of wires separated by insulating
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a b

Figure 4.7: a. Most likely N = 48 configuration at kBT/ε = 0.1 for patchy particle 6.
There are 11,361,667,066,181,451,776 ways to generate this cluster from
combinations of distinguishable patchy particles. b. 20th most likely
N = 48 configuration at kBT/ε = 0.1 for patchy particle 6. This cluster
is less likely than (a) despite their identical energies because there are
only 1,972,576,636,788,277,248 ways to generate it. Reproduced from
Reference [113].

barriers. Patchy particle 19 could also be used to generate a structure with potentially

interesting electronic applications: its continuous gray domains (4.8k) could be used

in a service that requires a redundant conducting path through an otherwise insulating

matrix. The porous arrays of 4.8j-l have potential applications in nanoscale filtration

[141] and fuel cells.

4.4 Conclusions

We have demonstrated that the generation of partition functions hierarchically to

arbitrary precision is efficient and straightforward, and that it can aid in assessing

self-assembly propensity. In the cases where small numbers of distinguishable configu-

rations comprise a majority of a partition function’s weight, as is the case for systems

at low temperatures and for many anisotropic building blocks with disparate inter-

actions, BUBBA is a particularly effective method for generating partition functions

that have been heretofore inaccessible. For the first time, this allows the question of

“What structures are thermodynamically favored for this building block at any tem-
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Figure 4.8: Energy minimizing motifs stabilized at kBT/ε = 0.1 for the 25 particles
in 4.1, from patterns in N = 50 clusters generated with BUBBA. Repro-
duced from Reference [113].
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perature?” to be answered independent of assembly kinetics. Finally, for the family

of model patchy particles studied here we discover a diverse set of thermodynamically

stable structures that may have practical applications at the nanoscale.

The current implementation of BUBBA is effective and demonstrative, but there

are many opportunities for improvement and application. Many elements of the

algorithms used stand to benefit substantially from parallelization of inner loops. For

example, there is no reason the shape matching of one cluster against thousands of

clusters in the cluster library must execute serially, and a GPU implementation of

this aspect alone would enable partition functions larger by an order of magnitude

to be generated. BUBBA also has promise as an efficient screening tool that would

allow for the identification of the parts of a partition function that are consistent or

inconsistent with the assembly of target structures. Using BUBBA as a screening

tool, implementing kernels on GPU architectures, and extending to other ensembles

are the subjects of ongoing work.
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CHAPTER V

Assembly Pathway Engineering

5.1 Introduction

Given a system of interacting particles, complex structures on macroscopic length

scales can be synthesized via self-assembly when thermodynamics and kinetics favor-

ably conspire[1, 142–145]. As one example, the wires, sheets, helices, and colloidal

crystals of supra-particles assembled from CdTe/CdS nano-tetrahedra [12, 14, 80]

demonstrate the rich structural diversity accessible for a single type of building block.

These nanoparticles hold promise for the assembly of materials with unique pho-

tonic, electronic, and mechanical properties[146], as do colloids, DNA, and DNA-

functionalized particles[34, 38, 111]. Finding the experimental conditions at which a

set of building blocks robustly assembles any one ordered structure can require consid-

erable effort and some amount of luck, and there is no guarantee that the assembled

structure will find application. Finding a building block that will self-assemble a pre-

scribed target structure with narrowly specified macroscopic properties is even more

difficult because each specification can constrain the building block materials that can

be used, possibly precluding self-assembly in any region of experimentally realizable

state space. 1

1This chapter is adapted from Reference [110] E. Jankowski and S.C. Glotzer, Screening and
designing patchy particles for optimized self-assembly propensity through assembly pathway engi-
neering. Soft Matter, 8(10):2852–2859, 2012.
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In the case where candidate building blocks for self-assembly have already been

identified it is in principle possible to create “phase diagrams” that map out ther-

modynamically stable equilibrium structures as a function of parameter space. In

practice this is not a trivial task and much theoretical work has been devoted to

the development of sophisticated computational techniques that allow for the equi-

librium simulation of complex building blocks. Standard Monte Carlo (MC) sim-

ulation schemes have been extended in numerous ways to include special moves

that allow for faster equilibration times of complex building blocks. Volume bias

moves, coordinated cluster moves, and convex polyhedra overlap calculations have

enabled the efficient simulation of patchy colloids, lattice tetrominoes, and hard

tetrahedra[72, 85, 97, 128, 147]. Molecular dynamics (MD) simulations have also

played an integral role in the prediction of self-assembled structures, and recent de-

velopments in GPU hardware architectures and algorithms have enabled the simula-

tion of block copolymers, tethered nanoparticles, and arbitrary rigid bodies at longer

time scales than ever before[70, 75, 76]. Unfortunately, when an equilibrium solu-

tion or simulation of patchy particles fails to generate an ordered pattern it is not

always obvious whether the culprit is thermodynamics or kinetics. Recently there

have been studies that attempt to quantify kinetic trapping through fluctuation-

dissipation ratios[148, 149], and through the interplay between specific and nonspecific

interactions[143, 145, 150], but these methods do not provide predictive capabilities

for thermodynamically stable structures.

The fact that both thermodynamics and kinetics can prevent a system of parti-

cles from self-assembling is particularly troublesome for experimentalists that search

parameter space via trial-and-error because experiments that fail to assemble do not

provide information about how assembly might be improved. In this chapter we pro-

pose a methodology (Fig. 5.1) for the rational design of building blocks optimized for

self-assembly that focuses on assembly pathway engineering : identifying the traps that
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occur as a system assembles so they may be circumvented. As systems self-assemble

we hypothesize that the thermodynamically stable intermediate clusters that arise

hold information about their ability to order. These sequences of intermediate clus-

ters are assembly pathways and we propose a methodical analysis of them to predict

the degree to which a system of building blocks will assemble a target pattern, which

we refer to as the building block’s assembly propensity for the pattern. We foresee

assembly pathway engineering proceeding as a collaboration among structural iden-

tification, kinetic measurements, and the assembly pathway analysis described here.

These components are indicated by the red diamonds in Fig. 5.1.

Our approach begins with the physical properties and structure of a product that

we aim to create via self-assembly. The prospective building blocks that could be used

are constrained both by the synthesis capabilities of a particular lab and the properties

of the target product, e.g., metallic nanoparticles should be avoided if an insulating

material is desired. These building blocks are then screened using a thermodynamic

method to generate stable structures. From the building blocks whose equilibrium

structures are consistent with the target pattern we identify, via assembly pathway

analysis, the traps that hinder self-assembly. We then modify the building blocks

or the conditions under which they are assembled to optimize assembly, and finally

perform experiments to test assembly rates. In principle any of a number of methods

including MC or MD simulations could be employed to find thermodynamically stable

structures or the intermediates that arise during assembly. In this chapter we use

bottom-up building block assembly (BUBBA) for both[97, 113]. Briefly, BUBBA is

a computational tool that begins with a single building block and builds successively

larger equilibrium structures hierarchically. To make a cluster of size N , BUBBA

enumerates all possible combinations of pairs of clusters whose sizes sum to N , where

each cluster in the pairing contributes non-negligibly to the ensemble of clusters for

its size. In this way, BUBBA efficiently generates free-energy minimizing structures
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and the stable intermediates that lead to it, which we hypothesize govern assembly

propensity.

The structure of this paper is as follows. First, we define and describe the com-

putational methods and measurements we employ for assembly pathway engineering.

Second, we consider model systems of patchy colloids and CdTe/CdS tetrahedra for

which we test elements of our methodology. Third, we motivate the need for efficient

structural screening tools by comparing the assembly propensities of seven model

patchy colloids for a target structure. We find that assembly propensity can vary

substantially from building block to building block, and show that assembly path-

ways provide predictive capabilities for assembly propensity. Fourth, we validate our

pathway-based approach for a real system of CdTe/CdS tetrahedra. Fifth, we show

the utility of BUBBA-informed pathway engineering by demonstrating ways thermo-

dynamic traps can be avoided and by identifying the experimental conditions that

maximize assembly. Finally, we discuss the limitations of our approach, highlight-

ing the distinction between steric kinetic traps and interaction-based thermodynamic

traps, and conclude with suggestions for further study.

5.2 Methods

The decision points represented by red diamonds in Fig. 5.1 can be, in principle,

informed by any of a number of methods including, but not limited to, wet lab synthe-

sis, Monte Carlo, molecular dynamics, simulated annealing, or mean field simulations.

In this work we use Monte Carlo computer experiments to determine whether a target

structure is kinetically accessible by a system of building blocks and we use BUBBA

both for the screening of stable structures and for generating assembly pathways. The

intermediate clusters generated with BUBBA are analyzed with shape-matching al-

gorithms for consistency with target motifs, and assembly pathways are compressed

into pathway fingerprints for clarity. Shape matching is also used to measure the
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Figure 5.1: Assembly pathway engineering algorithm. In this work we use BUBBA
with shape matching to identify stable structures and thermodynamic
barriers to assembly, and MC simulations as assembly experiments[113].
Perturbation-response methods[148, 149], molecular dynamics, and new
shape matching techniques[135] will all play integral roles in assembly
pathway engineering. Reproduced from Reference [110]. Reproduced
from Reference [110].
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degree to which a target structure has been assembled in Monte Carlo simulations.

5.2.1 Assembly Pathways

For building blocks that undergo thermodynamically driven self-organization, an

assembly pathway is a sequence of states that leads them from an initially disordered

configuration to states that minimize free energy for the system as a whole[150–

152]. These pathways can easily be generated for patchy particles with BUBBA,

and we demonstrated the tradeoffs between efficiency, accuracy, and temperature

in previous work[113]. In this work we consider pathways terminating at N = 10

building blocks and use a cutoff c = 0.00001 from Ref. [113], ensuring enough clusters

are included at each size to represent at least 99.999% of each partition function.

The partition functions indicate which clusters are thermodynamically stable and

the connectivities between partition functions indicate specific thermodynamically

stable assembly pathways. An example assembly pathway generated with BUBBA

for one of the patchy particles we study here is shown in Fig. 5.2a. Each blue box

and red octagon in Fig. 5.2a is a node representing a cluster configuration, which

is drawn near each node. The three numbers in each node represent the cluster’s

size, energy level (1 for lowest energy, 2 for second-lowest, etc), and proportion of

the partition function (out of 1.0) represented by that node at that size. The arrows

connecting nodes indicate the cluster at the head can be created by combining the

cluster at the tail with another cluster in the network, and the size of the arrowhead is

proportional to the number of ways this pairing can be made. The color and shape of

each node denotes whether or not the cluster is consistent (blue box) or inconsistent

(red octagon) with a chosen target pattern, in this case the wide stripe motif in

Fig. 5.3h.
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1 2 3 4 5 6 7 8 9 10

a.

b.

Figure 5.2: a. The self-assembly pathways for patchy particle a from Fig. 5.3 at
kBT/ε = 0.6, from N = 1 to N = 10. Nodes indicate the size of a
cluster, its energy level (1 for lowest, 2 for second-lowest, etc), and its
probability compared to clusters of the same size. Clusters are depicted
near the nodes that represent them. Arrows connecting nodes indicate an
assembly pathway, and the size of the arrowhead indicates the degeneracy
of the pathway. Red nodes indicate clusters inconsistent with the wide
stripe motif (5.3h). b. Assembly fingerprint created from the same data
as in a. Each rectangle in a column represents a cluster and its height
corresponds to its contribution to an N, V, T partition function. The pro-
portion of red in a column indicates the probability of finding a cluster
that is inconsistent with the target motif in an equilibrated N, V, T en-
semble. With 100% red columns at N = 3, 5, 7, 9 we expect poor assembly
of the wide stripe motif because all of these clusters are inconsistent with
it. Reproduced from Reference [110].
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Figure 5.3: a-g. Seven patchy particles from Troisi et al.[128], h. Wide stripe motif
that can be made by tiling a-g, predicted by BUBBA[113], i. Interaction
energies (units of ε) defined for neighboring subunits. Reproduced from
Reference [110].

5.2.2 Pathway Fingerprints

In general, the assembly pathways for a building block at an arbitrary temper-

ature are not as concise as Fig. 5.2a. The number of clusters that make up the

partition function for a given N can grow up to many thousands for even small N ,

which makes pathway visualization in the style of Fig. 5.2a unwieldy. To visual-

ize complicated assembly pathways in a way that makes them comparable to simple

pathways we create assembly pathway “fingerprints” from the pathway data. The

pathway fingerprint in Fig. 5.2b is an alternative and compact method of visualizing

the cluster weight data from Fig. 5.2a at the cost of losing detailed path information.

In a pathway fingerprint, each column represents an approximation of the partition

function for clusters of a given size, increasing from one on the left to an arbitrary

size on the right. Each cluster from a pathway becomes a rectangle in the finger-

print, whose height is proportional to the cluster’s probability. As in the assembly

pathways, target-motif-inconsistent clusters are indicated in red, and target-motif-

consistent clusters are indicated in blue. To aid in visualization we omit the black
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border around a rectangle if the corresponding cluster’s probability is less than 0.02.

5.2.3 Monte Carlo

We perform canonical ensemble (constant N, V, T) Monte Carlo (MC) simula-

tions of patchy particles in order to assess the degree to which they self-assemble.

Here, N = 200, V = 2500 (50 × 50 periodic lattice), and we consider instantaneous

quenches to temperatures that are easily accessible in colloidal experiments[153]. All

simulation runs are initialized with a random configuration of patchy particles, and

we subsequently attempt 2 × 107 trial moves, requiring approximately two minutes

of real time on a 2.8GHz Intel Core 2 Duo R© processor. We quantify the degree to

which a simulation snapshot assembles the wide stripe motif using a 2D Gaussian

box filter, a standard technique in image shape matching[135] . We define the “motif

match,” for the ith subunit in a simulation snapshot as

mi =
1

A

w∑
j=−w

w∑
k=−w

δ(xi + j, yi + k)e−
j2+k2

2σ (5.1)

where w is the box filter width, xi and yi are the coordinates of the ith subunit, and

σ controls the width of the Gaussian kernel. We normalize mi on [0, 1] with

A =
w∑

j=−w

w∑
k=−w

e−
j2+k2

2σ (5.2)

. The delta function δ(xi + j, yi + k) = 1 if the subunit located at (xi + j, yi + k)

in the simulation snapshot is the same type as the subunit in the wide stripe motif

shifted (j, k) away from a reference cell, and δ(xi+j, yi+k) = 0 otherwise, and will of

course depend upon the orientation of the reference motif relative to the simulation

snapshot. The reference cells of a motif are defined by their types, positions, and

connectivity to other reference cells of the motif. The motif match for a simulation
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snapshot is defined as

M =
1

n

n−1∑
i=0

max(mi∀o) (5.3)

where n is the number of particle subunits, and only orientations o that maximize

mi are included in the sum. Here we use σ = 2 and w = 2 which results in M -values

greater than 0.7 having a strong visual similarity to the reference motif, and M < 0.6

indicating a poor match.

5.3 Models

We demonstrate the generation and analysis of assembly pathways for a 2D system

of patchy tetrominoes[128] and a 3D system of CdTe/CdS tetrahedra[14]. The assem-

bly pathway analysis we present below is general for on-lattice and off-lattice systems

in 2D and 3D as detailed in Ref. [113]. The seven patchy tetrominoes (Fig. 5.3a-

g) we consider first are composed of two neutral (gray) subunits, one positive (red)

subunit, and one negative (blue) subunit, and can rotate and translate on a 2D

lattice. These seven tetrominoes are a subset of patchy tetrominoes studied pre-

viously, and share a common free energy minimizing motif (Fig. 5.3h) which was

determined at kBT/ε = 0.1 with BUBBA[113]. Inter-particle interaction energies are

defined to model attractions and repulsions with relative magnitudes reminiscent of

van der Waals, depletion, solvophobic, and/or charge-charge interactions. When two

like-charged subunits share an edge, their resulting potential energy is U = 9ε, for

opposite charges U = −11ε, and for a neutral subunit sharing a face with any other

subunit type U = −ε.

We next validate the accuracy and utility of assembly pathway analysis on a

system of CdTe/CdS tetrahedra with truncated tips whose surfaces are coated with

thioglycolic acid stabilizers. Previously synthesized by Tang and Kotov [12], and

studied by Zhang et al. [80], Srivastava et al. [14], and Xia et al.[15] CdTe, CdSe, and
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CdS tetrahedra coated with DMAET or TGA stabilizers have been shown to have

a rich phase space of self-assembled morphologies including wires, sheets, ribbons,

helices, and colloidal crystals of spherical supra-particles. This richness arises from

the complicated interactions between building blocks, including their shapes, van

der Waals and hydrophobic attractions, hydrogen bonding, and electrostatics. This

system admits straightforward analysis with BUBBA because the particle geometry

and strong face-face interactions allow for a discretization of configuration space that

enables iteration over all possible cluster pairings.

We consider CdTe tetrahedra whose intrinsic dipole moment is normal to one

face as in Ref. [14]. We model long-range screened charge-charge interactions as

well as charge-dipole and dipole-dipole interactions between tetrahedra using linear

Debye-Huckel theory as in Phillies[154], and add a constant surface potential for

each pair of tetrahedral faces that are aligned as in Zhang et. al.[80]. The cluster

degeneracies calculated by BUBBA for continuous systems require vibrational and

rotational partition functions to be generated[113]. We assume the contribution of

the vibrational partition function is identical for clusters of the same size, a valid

assumption for these strongly-interacting particles that have been observed to fuse

after assembly. This leaves the rotational partition function Qrot = B
√
I/s as the

relevant contributor to entropy where B is a temperature-dependent constant that

is identical for all clusters, I is the determinant of the inertial tensor, and s is the

cluster’s symmetry number [113, 116, 138].

5.4 Assembly Propensity

A system’s ability to self-assemble a thermodynamically stable target pattern

depends upon its path through phase space [151, 155]. Experimental conditions such

as density, temperature, solvent screening effects, quench rate, etc. all play a crucial

role. A primary goal in self-assembly is the maximization of the assembly yield, the
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Figure 5.4: Average match to the wide stripe motif (Fig. 5.3h) as a function of tem-
perature for the seven patchy tetrominoes from Fig. 5.3a-g. Error bars are
one standard deviations of M averaged over 100 independent simulations
for each data point. 〈M〉 > 0.7 corresponds to a strong visual match and
〈M〉 < 0.6 to very poor. Reproduced from Reference [110].

amount of desired product per unit of raw materials. It is therefore useful to define

the “assembly propensity” as the degree to which the target pattern is achieved under

the most optimal conditions. Given the seven patchy particles a-g in Fig. 5.3 which

has the highest assembly propensity for the wide stripe motif (Fig. 5.3h)? Just by

looking at these particles it is not obvious that they share the same structure at

low temperatures, nor is it obvious this structure minimizes free energy at higher

temperatures. Further, it is not clear why any one of these particles should self-

assemble the target motif in Fig. 5.3h more robustly than any other, or which one, if

any, is the optimal candidate.
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The average motif matches 〈M〉 for patchy particles a-g are generated using MC

simulations and are shown as a function of temperature in Fig. 5.4. Each data point

is the motif match averaged over the last 5×106 trial moves of 100 independent simu-

lations, at 10,000 trial-move increments, with error bars denoting one standard devia-

tion of the resulting distribution of M values. We define the self-assembly propensity

P as the average value of 〈M〉 at the experimental conditions with the largest 〈M〉. It

is clear from Fig. 5.4 that the seven particles from Fig. 5.3 have substantially different

propensities, ranging from 0.48 for particle c up to 0.78 for particle b. We discern no

obvious link between the shape of a particle’s motif match profile and the particle’s

geometry or interaction anisotropy.

To explain the variance in assembly propensity and the difference in 〈M〉 vs kBT/ε

for the seven patchy particles (Fig. 5.3a-g) studied here we consider assembly path-

ways which we generate with BUBBA[113]. At each stage in the assembly pathway

we use shape matching[135] to identify clusters that are inconsistent with the wide

stripe motif. Stages in the assembly pathway that are dominated by clusters inconsis-

tent with a target motif are thermodynamic traps and a warning sign that a building

block will not assemble robustly. As a case study we consider the assembly pathway

fingerprints for patchy particles a and b, shown in Fig. 5.5 and 5.6, respectively. By

visual inspection of the pathway fingerprints for these two building blocks, we expect

lower assembly propensity for patchy particle a due to the prevalence of thermody-

namic traps in its assembly pathways. Further, we see that for patchy particle a at

kBT/ε = 3.0 there are more traps than at kBT/ε = 0.8, which is consistent with the

lower average motif match measured at this state point (Fig. 5.5).

5.5 CdTe Tetrahedra

We generate assembly fingerprints for CdTe/CdS tetrahedra to validate the util-

ity of pathway analysis for an experimentally realized system. Keeping temperature
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Figure 5.5: Average wide stripe motif match for patchy particle a. Assembly path-
way fingerprints and representative simulation snapshots are shown for
kBT/ε = 0.8 and kBT/ε = 3.0. Decreased assembly propensity is corre-
lated to increased proportion of red in an assembly fingerprint. Repro-
duced from Reference [110].
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Figure 5.6: Average wide stripe motif match for patchy particle b. Assembly path-
way fingerprints and representative simulation snapshots are shown for
kBT/ε = 0.8 and kBT/ε = 3.0. While the lower temperature assembly fin-
gerprint appears superior, the shorter relaxation times and predominance
of motif-consistent clusters at kBT/ε = 3.0 allow for better assembly.
Reproduced from Reference [110].
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constant, we use BUBBA to generate assembly pathways for the tetrahedra as func-

tions of charge number q, dipole moment magnitude d (in units of Debye), and surface

attraction. Here we constrain the search space to consider only combinations of neigh-

boring tetrahedra whose faces are aligned (Figure 5.7), but allow the dipoles of each

tetrahedra to point out any of the four faces. For particle charge of +1e and dipole

strength 100 we confirm the stability of single bilayer sheets found in Ref. [12] and the

double bilayer sheets found in Ref. [14] (Fig. 5.8b) at q = +3e and d = 100. Exploring

the case of double-bilayer ribbons in more detail, we generate the assembly pathway

fingerprint in Fig. 5.8d in three cpu-hours. For the double bilayer (Fig. 5.8a), we

consider motif-inconsistent clusters to be all clusters that have tetrahedra on three or

more layers, e.g., Fig. 5.8c.

A full exploration of pathway sensitivity to charge strength, dipole strength, and

surface charge is beyond the scope of the present work, but it is worth noting the

complexity of the assembly pathways for these building blocks. At N = 5, over

6,000 clusters contribute to the partition function, with no single cluster having a

weight greater than 2%. For N = 6 there is a handful of clusters that comprise a

substantial proportion of the partition function, with many thousands of assembly

pathways converging to these highest-weighted clusters. It is clear from the pathway

fingerprint that not only are there many ways to combine clusters into a double bilayer

(96% of the 104,396 clusters of size N = 10 are consistent with double bilayers), but

also the proportion of out-of motif clusters at all calculated cluster sizes is low. This

is expected from the ease with which the double bilayer ribbons are attained in

experiments.

5.6 Screening and Designing

The computational efficiency of assembly pathway generation coupled with struc-

ture identification is well suited for the screening of patchy particles. It can be used
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Figure 5.7: Periodic grid used to map an alternating hexagonal lattice onto a 3D
square array. Each tetrahedron can have up to four neighbors, whose
legal spatial positions are determined by its four faces. There are four
types of lattice sites in the hexagonal array, denoted by A, B, C, and D.
Each type has a unique nearest-neighborhood. For example, every A has
a B-neighbor to the left, right, and out of the page, and a C-neighbor
above. Every B has A-neighbors to the left, right, and into the page,
and a D-neighbor below. This mapping allows the grid-based shape-
matching code from Chapter IV to be used for distinguishing clusters of
CdTe/CdS tetrahedra. The grid imposes hexagonal layered structure, but
does not prevent multilayers (inconsistent with the double-bilayer) from
being assembled.
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Figure 5.8: a. TEM image of double bilayer ribbons that twist into helices from
Ref. [14]. Inset shows a high-resolution image of a section of a ribbon with
dots indicating approximate centers of co-planar tetrahedra. b. Dou-
ble bilayer motif, N = 100 cluster predicted by BUBBA. c. Example
out-of-motif N = 10 cluster, arrow indicates motif-breaking particle. d.
Assembly pathway fingerprint for double bilayer-forming tetrahedra from
Ref.[14] with a charge of +3 and dipole moment of 100. Out-of-motif
clusters have particles on more than two bilayers. Reproduced from Ref-
erence [110].
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to identify the thermodynamically stable structures for a set of building blocks, as

in Ref. [113]. After candidate building blocks for a motif are identified, such as the

patchy tetrominoes and wide stripe motif studied here, assembly pathways can be gen-

erated at a range of experimental conditions to identify those with the greatest chance

for robust assembly. Patchy particle 17 from Troisi et al. (shown inset in Fig. 5.9b)

exemplifies the utility of screening temperatures for a building block that assembles

a checkerboard motif. For reduced temperatures greater than kBT/ε = 1.0, it is clear

in Fig. 5.9a that the majority of clusters generated with BUBBA for N = 3 − 7 are

inconsistent with the energy-minimizing checkerboard motif, implying that optimal

self-assembly should occur for 0.1 ≤ kBT/ε ≤ 1.0. The motif match profile gener-

ated with MC simulations in Fig. 5.9b confirms this hypothesis. The motif match

jumps from 〈M〉 = 0.41 at kBT/ε = 0.8, to 0.57 at kBT/ε = 0.7, is a maximum with

〈M〉 = 0.70 at kBT/ε = 0.6, and then drops to 〈M〉 = 0.60 for kBT/ε = 0.5. Thus,

the quick generation (90 minutes for the 30 temperatures generated serially here,

compared to 6000 cpu-hours for the MC simulations optimized with cluster moves)

of pathway fingerprints with BUBBA permits the identification of state space where

self-assembly is optimized. Efficient screening in this way is essential, as a näıve ex-

trapolation of the data with kBT/ε > 1.0 to low temperature would miss conditions

with acceptable assembly.

Using shape-matching to identify motif-inconsistent clusters in assembly pathways

we can determine patterns of traps that inform our pathway engineering strategies.

One common pattern of trap shared across many of the patchy tetrominoes is the pres-

ence of motif-inconsistent clusters with odd-numbered sizes (e.g., N = 3, 5, 7, 9, ...).

Patchy particle a exemplifies this pattern of traps (Fig. 5.5). These traps are caused

by a single particle attaching to and breaking the symmetry of a desired cluster. In

the case of patchy particle a, single-particle “caps” prevent further addition of parti-

cles to obtain wide stripes (Fig. 5.3h). This suggests that the N = 2 cluster may be
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Figure 5.9: a. Pathway fingerprints for patchy particle 17 for 0.1 ≤ kBT/ε ≤ 3.0.
b. Motif match profile for patchy particle 17 with target motif and best-
assembled snapshot inset. The motif match for this patchy particle is
measured against a checkerboard reference structure that can be seen in
the ordered central regions of the two large clusters in the inset snapshot.
Reproduced from Reference [110].
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kBT/ε = 0.6
P = 0.80m2

Figure 5.10: Representative MC simulation snapshot for the N = 2 mesoblock made
from patchy particle a at kBT/ε = 0.6, the temperature with the max-
imum motif match as determined by MC simulations. The assembly
pathway fingerprint at this temperature is inset, showing no thermody-
namic traps for clusters with 10 or fewer building blocks. Reproduced
from Reference [110].

a more effective building block candidate for self-assembly than the original particle

because the same symmetry-breaking traps will be impossible to form. We perform

this computer experiment by conducting Monte Carlo simulations at the same con-

ditions as in Fig. 5.5, but where the 200 copies of particle a have been replaced by

100 copies of the N = 2 “mesoblock” which we denote m2. At the same temperature

where patchy particle a assembles best with 〈M〉 = 0.66, the mesoblock achieves

〈M〉 = 0.80.
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5.7 Discussion

We have performed assembly pathway fingerprint analysis for systems of patchy

tetrominoes and truncated tetrahedra and demonstrated that there is a strong corre-

lation between in-motif clusters in the assembly pathways of these fingerprints with

favorable assembly propensity. There are three related ways in which comparisons

between fingerprints presented here have not been perfectly correlated with assembly

propensity measured by MC simulations at the same conditions. The first instance is

the higher assembly propensity for patchy particle b at higher temperatures (Fig. 5.6),

despite the presence of more motif-inconsistent clusters. The second is the drop in

assembly propensity for particle 17 of Ref. [113] when kBT/ε < 0.6 (Fig. 5.9) de-

spite the favorable-looking fingerprints. The third case is the imperfect assembly in

Fig. 5.10 despite the perfect assembly fingerprint. All three cases are explained by

assembly kinetics. For patchy particles b and 17, the thermodynamically preferred

clusters generated by BUBBA show that larger proportions of the partition function

are represented by in-motif clusters at low temperatures. At these low temperatures,

however, the relaxation timescales are too long for robust assembly to occur. As

BUBBA is a thermodynamic method, it does not predict regions of kinetic trapping,

which highlights the important complementary contribution of the methods devel-

oped by Jack, Klotsa, Hagan, and Chandler[148, 149]. The imperfect assembly of the

mesoblock in Fig. 5.10 is also due to assembly kinetics. In this case the timescale of

motif-consistent clusters agglomerating end-on rather than perpendicular diverges as

clusters grow in length. While this is unfortunate for this particular building block,

it also provides a path forward for improved assembly, as it suggests that increasing

the attraction between grey subunits might facilitate the wide stripe formation.
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5.8 Conclusion

Through the use of assembly pathways, we have demonstrated that both model

and real patchy particles can be efficiently screened for assembly propensity. We

showed how building blocks designed to avoid particular barriers might assemble

target patterns with higher propensity. We also showed how successive steps re-

vealed in the assembly pathways could provide a blueprint for directed bottom-up

assembly. Further, we showed that the fingerprint visualization of pathways is a

useful tool in identifying thermodynamic conditions (such as temperature) that max-

imize self-assembly propensity. The computational efficiency of generating pathway

fingerprints compared to experiments with unknown relaxation timescales makes it

ideal for screening candidate building blocks and experimental conditions. Combin-

ing pathway-based screening techniques with assembly kinetics analysis we proposed

a methodology for assembly pathway engineering which proceeds as in Fig. 5.1. We

expect this method, its extensions, and alternative implementations to play a central

role in the focused development of assembly engineering strategies.
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CHAPTER VI

Applications of BUBBA

6.1 Introduction

In this chapter we provide an overview of additional systems where implemen-

tations of BUBBA have been used to successfully predict structure and screen for

assembly candidates. This chapter is organized as follows. In Section 6.2 we de-

tail the calculation of vibrational partition functions for DNA-tethered spheres and

demonstrate the accurate prediction of small terminal clusters over a wide range of

experimental conditions. In Section 6.3 we describe the off-lattice implementation

of BUBBA for 2D disks used to study continuous patchy tetromino analogues and a

model system of shape-shifting colloids. The work in this chapter is adapted from

Reference [156] D. Ortiz, E. Jankowski, and S.C. Glotzer, Self-assembly of colloidal

tetrominoes, in prep, Reference [157] T.D. Nguyen, E. Jankowski, and S.C. Glotzer,

Self-assembly and reconfigurability of shape-shifting particles ACS Nano, 5, 11, 2011,

and Reference [158] C.L. Phillips, E. Jankowski, M. Marval, and S.C. Glotzer, Self-

assembling clusters inspired by mathematical extremal points on the surface of a

sphere. arxiv:1201.5131 2012.
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6.2 Spherical Codes

Anisotropic particles are compelling building blocks for self-assembled materials

because their directional interactions can be exploited to create complicated and

useful patterns, which has been the focus of this and previous work[3, 113, 147, 159–

162]. One way to create anisotropic building blocks is to self-assemble them from

simpler particles, where the building block represents a free-energy minimizing struc-

ture. Recently a number of papers have been published synthesizing and simulating

compound building blocks that are clusters of spheres[22–27, 73, 74, 147, 163–165].

Colloidal spheres are attractive candidates for assembly because they can be made

from a wide variety of polymers and metals, and their interaction potentials can be

tuned with organic ligands, solvents, and salts. 1

Two of the most ubiquitous nano-scale building blocks available today are colloidal

spheres and DNA[166, 166–172], both of which can be synthesized in bulk quantities

and with a high degree of homogeneity. Colloids are attractive candidates for assem-

bly because they can be made from a wide variety of polymers and metals, whose

interaction potentials can be tuned with polymer surfactants, solvents, and salts.

Combined with DNA, whose specific interactions can be tuned to different length

scales and energy scales, there exists much potential for the assembly of colloidal

clusters that can be used at the building blocks for more complex structures.

Consider a colloidal sphere that is uniformly coated with single-stranded DNA

and exposed to a bath of larger colloidal spheres grafted with complementary strands

of DNA. Given sufficient assembly time and no other attractions between particles,

the larger “halo” spheres will bind to the smaller “central” sphere until no more

halo spheres can fit. The self-limiting “terminal” cluster that results can be used

as an anisotropic building block [80, 173, 174], as a template for creating different

1This section is adapted from Reference [158] C.L. Phillips, E. Jankowski, M. Marval, and
S.C. Glotzer Self-assembling clusters inspired by mathematical extremal points on the surface of
a sphere. arxiv:1201.5131 2012.
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anisotropic building blocks, or as a container for the central particle cargo inside

(Fig. 6.1). Using terminal clusters as anisotropic building blocks requires that the

clusters are themselves uniform in size and shape.

anisotropic

building

block

patchy 

particles

nanoparticle

cages

HPHP

HP

HP
HP

HP

CP

terminal cluster

Figure 6.1: A terminal N -cluster with an octahedral structure (N = 6) is self-
assembled from a bath of halo particle (pink) and a central particle (grey).
This cluster has applications as an anisotropic building block, could be
used to manufacture a “patchy particle” by imparting patches on the
CP at the contact points, or could be locked into a nanocolloidal cage
structure. Reproduced from Reference [158].

Arrangements of halo particles (HPs) on the surface of a central particle (CP)

have been studied extensively by mathematicians in the context of optimal arrange-

ments of points on a sphere[175–177]. The solutions provide a library of anisotropic

clusters that can in principle be created with properly designed interactions among

the constituent particles. In this work we study hard sphere HPs that are attractive

only to dilute CPs and not to other HPs, thereby producing clusters of HPs around

a single CP. The arrangements of these HPs bear comparison to a particular set of

solutions, the spherical codes, for certain ratios of particle diameters (Figure 6.2). In

this work we detail the free energy calculations used with BUBBA to predict terminal

clusters of HPs around a CP as a function of temperature and diameter ratio. We
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show that the energetic and vibrational portions of the partition function provide

leading order predictive capabilities.
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Figure 6.2: The arrangement of points (pink) that correspond to each spherical code
solution for 1 ≤ N ≤ 12. The point group of each arrangement is shown
to the upper right of each arrangement, and the densest packing diameter
ratio Dc/Dh = ΛN is shown to the lower right. For N = 5, the triangular
bipyramid configuration is shown. Reproduced from Reference [158].

Fig. 6.2 depicts the spherical code solutions for 1 ≤ N ≤ 12. The arrangement

of points for N = 4 corresponds to the vertices of a regular tetrahedron, N = 6 an

octahedron, N = 8 a square anti-prism, and N = 12 an icosahedron. The point

arrangement of N = 11 is equal to the N = 12 solution minus a single point, or an

icosahedron with one truncated pentagonal face. For each N , the point group – the

group of isometries that keeps one point fixed – of the arrangement[176] is shown in
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the upper right corner. Each optimal arrangement of N points on the surface of the

sphere is unique except for N = 5 which has a continuum of solutions ranging from a

triangular bipyramid (point group D3h, shown in Fig. 6.2, to a square pyramid (point

group C4v)). All solutions in the N = 5 continuum have two points at opposite poles

of the central sphere and differ by the positions of the three remaining points on the

equator. The square pyramid arrangement is equal to the N = 6 solution minus a

single point.

If the N points represent sphere centers, the spherical code solution corresponds

to the densest packing of N hard halo spheres that all “kiss” a central sphere. For

any packing of spheres around a central sphere, we define Λ to be the ratio of the

central sphere diameter, Dc = 1, to the halo sphere diameter, Dh. We denote the

minimal possible diameter ratio for N spheres, which corresponds to the spherical

code solution, as ΛN . In Fig. 6.2, ΛN of each arrangement is shown to four significant

digits in the bottom right corner. Notably, ΛN=5 = ΛN=6 and ΛN=11 = ΛN=12.

6.2.1 Free Energy Calculations

We predict the probability of observing a cluster of N HPs around a CP by

calculating the grand canonical (µ,Λ, T ) partition function for all allowable HP-CP

clusters. The grand canonical partition function is

Z(µ,Λ, T ) =
∑
γ

Ωγe
−β(Uγ−µN) (6.1)

where µ is the chemical potential of an HP, Uγ is the potential energy of cluster γ, Ωγ

is the entropy of cluster γ, and β = 1/kBT . Here, we define a hard sphere interaction

between HPs

UHP−HP (r) =

 ∞ r < Dh

0 r ≥ Dh

(6.2)
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which prevents HPs from overlapping and gives all clusters the same potential energy

U = 0. We define µ = ε0 and express our dimensionless temperatures T ∗ = kBT/ε0

in units of ε0. The Boltzmann weight of a single cluster γ is therefore

w(γ) = Ωγe
βµN (6.3)

and the probability of observing cluster γ is

P (γ) = w(γ)/Z. (6.4)

For a particular Λ ≤ ΛN clusters with up to N HPs can be assembled and the

likelihood of one cluster over any other depends upon the balance between chemical

potential obtained with larger N and the vibrational freedom obtained for smaller N .

To calculate the vibrational partition functions for an N -cluster, we first assume an

equilibrium configuration defined by N HPs in a spherical code configuration. The

cluster’s entropy here is determined by the product of the vibrational degrees of its

HPs. The vibrational freedom of each HP can be measured as the fractional area

of the surface of the CP it has access to, subject to the restrictions imposed by its

neighboring spheres (Figure 6.3). We approximate the vibrational area available to

a given HP in a particular configuration by using a Monte Carlo numerical approach

whereby new positions for the HP are randomly generated and accepted if the HP

does not overlap another HP. The accessible vibrational area is proportional to the

total number of accepted positions that are part of a contiguous area that includes

the HP’s original position divided by the total number of random trials.

6.2.2 Results

We calculate Z(µ,Λ, T ∗) as the sum over spherical code clusters with 1 ≤ N ≤ 12

for 0.1 ≤ Λ ≤ 1.4 and 0.02 ≤ T ∗ ≤ 0.2. In the “phase diagram” shown in the lower

89



a b c

Figure 6.3: Monte Carlo integration of vibrational degrees of freedom. a. Given a
configuration of particles, here 2D discs, but equivalently 3D HPs on the
surface of a CP, we aim to calculate the volume accessible by the blue disk,
which is constrained by the yellow disks. b. We generate random vectors
specifying the center of the blue disk and check to see if they overlap with
any yellow disks. c. The total accessible volume is approximated by the
ratio of randomly drawn points that fall within the small blue area over
the total number of vectors generated.

left of Figure 6.4 we indicate the regions in (T ∗,Λ) space in which one spherical code

cluster is more likely than all others. Colored lines in the phase diagram are coexis-

tence curves that indicate the clusters on either side of the curve are equally likely.

We compare our predicted cluster probabilities against cluster likelihood observations

from Brownian dynamics simulations performed in [158]. The plots in the upper left

and lower right of Figure 6.4 compare our predictions with the Brownian dynamics

experiments at T ∗ = 0.1 and T ∗ = 0.02, respectively. Here, Λm refers to the diameter

ratio specified in the Brownian dynamics simulations and Λf refers to the diameter

ratio from our free energy calculations.

The qualitative agreement between the free energy calculations and Brownian dy-

namics simulations is striking and indicates that the competition between chemical

potential and single-HP vibrational degrees of freedom is the primary factor in de-

termining cluster likelihood. The two notable discrepancies between our free energy

calculations and the Brownian dynamics observations are 1) that it appears the clus-

ter probability curves are shifted to higher Λ in the free energy calculations, and 2) the
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Figure 6.4: The distributions of cluster sizes as a function of temperature and Λ as
given by the free energy calculation and the BD simulations are com-
pared. Bottom left corner: phase diagram of the free energy prediction
of the most probable cluster size. Lower right and upper left corners:
in-page slices of the probability of finding each cluster size PN as pre-
dicted by the free energy calculation and BD simulation at the high and
low temperature. Upper right corner: the three most common clusters
found in the BD simulation at the high temperature and Λm = 0.46. .
Reproduced from Reference [158].
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peaks in the Brownian dynamics experiments are slightly sharper (less broad) than

for the free energy calculations. The diameter discrepancy is due to the difficulty in

precisely modeling hard spheres using integrable potentials. The shape discrepancy

is due to collective modes of particle motion contributing to the vibrational degrees

of freedom, and are characterized in detail in [158].

6.3 Off-Lattice BUBBA

In this section we describe our spatial decomposition scheme used to study off-

lattice analogues of the tetrominoes studied in previous chapters and report on energy-

minimizing tilings generated using BUBBA. Extending BUBBA to off-lattice systems,

as previously discussed in Chapter IV, depends upon how accurately a system with

continuous degrees of freedom can be discretized to allow cluster pairing and shape-

matching algorithms to be used in the hierarchical generation of clusters.

The off-lattice discretization scheme used here is described in Figure 6.5. For

each disk that comprises a patchy particle we generate a set of neighbor points (pink

circles in Figure 6.5b) at regular intervals around a circle centered at the disk center

(diameter σ), with radius σ. The example shown in Figure 6.5b is for 12 points at

intervals of π/6 radians, but in practice we use 72 points at intervals of π/36 radians

to ensure both hexagonal and cubic tilings (and their π/36 rotations) are considered.

When two patchy particles are paired, BUBBA selects one subunit (here, the orange

disk in Figure 6.5c) to be placed nearby a subunit (here, the green disk in Figure 6.5c)

of the stationary (blue) cluster. For each proposed pairing, BUBBA places the center

of the orange disk at the center of a neighbor point of the green disk and checks all

72 orientations as it generates new clusters. Once two clusters have been combined

into a larger cluster, the neighbor points for the larger cluster is the union of the

neighbor points of its subunits that do not overlap with any subunits (pink circles in

Figure 6.5d).
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a

dc

b

Figure 6.5: Patchy tetromino spatial discretization. a. Example building block com-
posed of four disks. b. Neighbor sites are indicated with pink circles
and are determined by uniformly dividing the unit circle. Here, 12 neigh-
bor sites are shown. For systems of particles with long-range potentials,
minima in the interaction potential would determine the radial distance
of neighbor sites, otherwise neighbor areas/volumes must be defined. c.
Example cluster pairing performed by BUBBA. Here, the red subunit of
the yellow cluster is placed on a neighbor site of the blue cluster’s green
subunit. d. The neighbor set for a composite cluster is determined by
the union of the neighbor points of its constituent subunits that are not
contained in any subunit (pink).

6.3.1 Assembly of Shape-Shifting Particles

We use BUBBA to study a system of anisotropic particles from [157] that are

composed of 2D disks and which can shift shape from one geometry to another. In

this work each building blocks is composed of four or five Lennard-Jones (LJ) disks.

We use BUBBA to predict the energy-minimizing configurations of these building

blocks, which are inset in Figures 6.6-6.8. In companion Brownian dynamics simula-
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Figure 6.6: Final Brownian dynamics snapshot of zigzag particles composed of four LJ
disks that shape-shift from self-assembled rods. The energy-minimizing
structure for the zigzags is inset and predicted by BUBBA. Reproduced
from Reference [157].

tions where particles switch shape, it is demonstrated that easy-to-assemble shapes

such as rods and disks can be used to template structures which can are then trans-

formed. Slowly shifting particle shape from the rods and disks into more complicated

structures, such as zigzags (Figures 6.6, 6.7) or “Y”-shapes allows the complicated

energy-minimizing structures to be achieved where direct assembly could not.2

2This subsection is adapted from Reference [157] T.D. Nguyen, E. Jankowski, and S.C. Glotzer.
Self-assembly and reconfigurability of shape-shifting particles. ACS Nano, 5, 11, 2011.
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Figure 6.7: Final Brownian dynamics snapshot of zigzags composed of five LJ disks
that shape-shift from self-assembled rods. The energy-minimizing struc-
ture for the zigzags is predicted by BUBBA and inset. Reproduced from
Reference [157].
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Figure 6.8: Final Brownian dynamics snapshot of “Y”-particles composed of four LJ
disks that shape-shift from self-assembled disks. The energy-minimizing
structure is predicted by BUBBA and inset. Reproduced from Refer-
ence [157].
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6.3.2 Patchy Tetromino Results

In this work we consider a set of twenty patchy particles that could in principle

be synthesized from colloidal spheres (Figure 6.9)[31]. These particles are the off-

lattice analogues of the patchy tetrominoes studied in Chapters III-V. For exploratory

purposes, we consider only energy-minimizing clusters with BUBBA and generate

clusters up to N = 55 for the building blocks in Figure 6.9. Similar to the on-lattice

case we find that there exist energy-minimizing motifs that are preferred by multiple

building blocks (e.g. Figures 6.10 and 6.11). We also see packings that are generated

for only a single building block (Figures 6.12). The additional rotational degrees

of freedom and the ability for particle subunit disks to “interdigitate” expand the

complexity of the periodic structures stabilized by these particles relative to their

on-lattice analogues. All of the packings generated are included in Appendix B for

completion.3

The off-lattice analogue of the wide stripe packing observed in Chapter IV has

parallel rows of neutral and charged species, but the neutral subunits are able to

interdigitate to achieve lower energy. Like its on-lattice counterpart, this wide stripe

motif structure is favored by more building blocks than any other.

The big hexagonal rings in Figure 6.11 are stabilized by building blocks 18 and 15.

Hexagonal packings such as this are not possible on the square lattice. The case of

particle 19 is particularly interesting because the large hexagonal rings in Figure 6.12

are composed of 108 building blocks. The tiling in Figure 6.12 was not generated by

BUBBA, but was constructed from the cluster of 54 building blocks (Figure 6.13).

Six copies of particle 19 make a small cluster, three copies of which make the small

three-fold symmetric ring. Six of the small rings comprise the large ring observed

in the Figure 6.12 tiling. Of course we cannot say that this tiling minimizes energy,

3This subsection is adapted from Reference [156] D. Ortiz, E. Jankowski, and S.C. Glotzer Self-
assembly of colloidal tetrominoes, in prep.
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Figure 6.9: Twenty patchy tetrominoes, each comprised of two grey “neutral” disks,
one red “positive” disk and one blue “negative” disk. Interaction energies
describe the depth of the square-well potential in units of kBT when two
disks centers are σ + 0.05σ apart or closer.
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Figure 6.10: Interdigitated wide stripes

as surely particles can be added within the gaps to lower potential energy, but this

example serves to highlight the richness in structure that can arise from a simple

building block. Whether this tiling minimizes energy at this packing fraction is an

open question that is the subject of future work.

6.4 Conclusions

The partition function calculations and cluster pairing routines which enable

BUBBA’s success for on-lattice patchy particles show promise for extension to more

complicated systems. We show that self-assembly is a feasible fabrication technique

for making anisotropic building blocks from easier-to-fabricate isotropic particles.

This expands our ability to select particle properties which could give rise to more

complicated self-assembled structures. We demonstrate the prediction of energy-

minimizing patterns using off-lattice implementations of BUBBA and quickly screen

the intricate packings and periodic motifs that are stabilized by composite colloids
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Figure 6.11: Hexagonal rings

in 2D. The thermodynamic stability of zigzags and “Y” particles are confirmed by

Brownian dynamics simulations and we find a wide variety of stable structures can

be created from collections of disk-based patchy tetrominoes.
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19

Figure 6.12: Hexagonal packing of particle 19 into a pattern with 108 particles making
up one ring.

1
6

18

108
54

Figure 6.13: Hierarchical assembly of particle 19 into a cluster of size 6, 18, and 108.
The cluster of size 54 generated with BUBBA was used to identify the
hexagonal cluster of 108 particles which tiles the lattice in Figure 6.12.
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CHAPTER VII

Conclusions

7.1 Summary

In this thesis we have developed new computational tools and theory for studying

the self-assembly of patchy particles. Our goal was to understand how to choose

building blocks that self-assemble into useful structures. Broadly speaking this prob-

lem remains unsolved as we still lack a prescription that states, for a given material,

whether it can be fabricated via self-assembly and if so what building blocks to use.

We have, however, made substantial progress towards this aim. The tools we have de-

veloped enable increasingly complex building blocks to be studied more efficiency and

demonstrate how experimental costs and design time can be reduced by connecting

theory to fabrication through computation.

The patchy tetrominoes we consider in Chapter III exemplify how complex be-

haviors can arise for seemingly simple agents. It was not possible a priori to know

the diversity of energy-minimizing structures that were stabilized for these particles,

or that the difficulty in assembling them varied nonmonatonically with temperature.

The problem of determining their energy-minimizing configurations falls under the

umbrella of NP-complete problems, the class of problems for which it is famously

unknown if there are efficient computational solutions. From this perspective, the

challenge of understanding self-assembly in general may seem overwhelming, because
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if we cannot prove solutions for simplified models of particles, how can we expect

to understand the behavior of real molecules? The varying degrees of success with

which Monte Carlo and heuristic approaches have predicted patchy particle proper-

ties underscores the need for improved tools in this arena. Our cluster Monte Carlo

code was one such advancement that enabled assembly simulations to be performed

more quickly, but is still kinetically limited from providing predictive capabilities at

low temperatures.

Our work developing bottom-up building block assembly (BUBBA) is informed

and inspired by the barriers to property prediction we encountered with Monte Carlo

methods. By divorcing the kinetic problem from the thermodynamic problem, we

show that easily calculated partition functions for small clusters can be used effec-

tively to understand the thermodynamics of larger clusters. The philosophy behind

BUBBA is a consistent thread throughout our study of self-assembly: solve the solv-

able problems first and build towards larger solutions. The predictive capabilities

of BUBBA for patchy tetrominoes shows that developing new heuristics for tackling

NP-complete problems is not a challenge that should be avoided out of fiat, and can

result in useful tools that complement materials design.

In addition to providing predictive capabilities for collections of patchy particles,

we develop the idea of assembly pathway engineering that is enabled by BUBBA. The

ability to identify thermodynamic traps which prevent robust self-assembly is a new

capability that informs the rational design of particles used to fabricate new materi-

als. The assembly pathway fingerprints generated by BUBBA provide a convenient

way to visualize the pathways and their proportion of traps. We demonstrated this

utility for CdTe/CdS tetrahedra whose rich morphology arises from complicated long

range interactions and local packing constraints. Our work extending BUBBA to sys-

tems with continuous degrees of freedom has shown promise for predicting assembly

propensity of more complicated building blocks, including systems of DNA-tethered
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spheres and patchy colloids.

7.2 Outlook

Moving forward there exist many exciting challenges and opportunities for ex-

tending the work presented here, application of these techniques to real-life engineer-

ing problems, and the development of complementary tools and theory. Much of

this thesis focused on using statistical mechanics to lay the foundation for BUBBA

and parallelized Monte Carlo simulations, but future work combining these capabil-

ities should allow screening of systems that are orders of magnitude larger in size or

complexity. Many of the kernels, including potential energy evaluation, cluster com-

binatorics, and entropy calculation would benefit from the massively multithreaded

parallelism of GPU platforms. Other elements of BUBBA, such as the pruning of

cluster libraries, are inherently serial. Developing new software that benchmarks the

predictive capabilities of BUBBA on GPUs and on asynchronous frameworks such

as Google’s MapReduce will inform the next generation of thermodynamic screening

tools.

Another BUBBA-specific challenge is its formulation for general systems with

continuous degrees of freedom in three dimensions. Current implementations have

benefitted from system-specific information that have enabled on-lattice approxima-

tions that facilitate shape matching and cluster combinations. It is not yet clear all

the challenges and bottlenecks that exist in the general case, where the challenge of

distinguishing between “different” clusters is not necessarily well defined. Prelimi-

nary advances towards this goal in our spherical codes work are promising, but stop

short of the complicated cluster combination routines that were used extensively in

our on-lattice work. Continued developments in this area hold promise for the study

of particles with non-rigid degrees of freedom and that have long-range interactions.

Partnerships between experimentalists synthesizing and assembling nanoparticles
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with computational scientists using BUBBA, MC, and MD should be emphasized

for solving next-generation manufacturing problems. Currently the ecosystem of

industrial-computational interaction is limited and there are few example successes

to show the utility of computation in materials manufacturing. New emphasis on

specific product development will help focus the computational capabilities on the

relevant physics, and help guide experimentalists towards more efficient use of their

resources. It seems as though we are on the verge of designing particles and agglom-

erates that could be used as advanced MRI image contrasts or gene delivery vectors.

Focusing on improving these technologies is at least as important as developing the

computational tools which enable it.

Other interesting questions that were opened during this work revolve around

system complexity. It seems intuitive that a particle composed of many subunits is

more complicated than a particle composed of few. Similarly, a particle with multiple

subunit types seems more complex that a geometrically identical particle composed of

one subunit. Do there exist measures for these characteristics that provide guidance

for how easy or difficult it is for them to self-assemble? Can mixtures of building

blocks be used to enhance the assembly of complicated patterns? It seems that there

is no lack of work for the computational chemical engineer and the advances that

should be enabled by improved computing power, chemical synthesis, and numerical

tools will be exciting to follow into the future.
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APPENDIX A

Tetromino pathway fingerprints
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Figure A.1: Patchy particle 2: (a) Motif match profile with building block, motif, and
best-match snapshot inset. (b) fingerprint landscape
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Figure A.2: Patchy particle 3: (a) Motif match profile with building block, motif, and
best-match snapshot inset. (b) fingerprint landscape
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Figure A.3: Patchy particle 5: (a) Motif match profile with building block, motif, and
best-match snapshot inset. (b) fingerprint landscape
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Figure A.4: Patchy particle 6: (a) Motif match profile with building block, motif, and
best-match snapshot inset. (b) fingerprint landscape
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Figure A.5: Patchy particle 7: (a) Motif match profile with building block, motif, and
best-match snapshot inset. (b) fingerprint landscape

112



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

〈M
〉

kBT/ε

0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9 1.0

1.1 1.2 1.3 1.4 1.5

1.6 1.7 1.8 1.9 2.0

2.1 2.2 2.3 2.4 2.5

2.6 2.7 2.8 2.9 3.0

Figure A.6: Patchy particle 8: (a) Motif match profile with building block, motif, and
best-match snapshot inset. (b) fingerprint landscape
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Figure A.7: Patchy particle 9: (a) Motif match profile with building block, motif, and
best-match snapshot inset. (b) fingerprint landscape
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Figure A.8: Patchy particle 10: (a) Motif match profile with building block, motif,
and best-match snapshot inset. (b) fingerprint landscape
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Figure A.9: Patchy particle 12: (a) Motif match profile with building block, motif,
and best-match snapshot inset. (b) fingerprint landscape
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Figure A.10: Patchy particle 13: (a) Motif match profile with building block, motif,
and best-match snapshot inset. (b) fingerprint landscape
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Figure A.11: Patchy particle 14: (a) Motif match profile with building block, motif,
and best-match snapshot inset. (b) fingerprint landscape
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Figure A.12: Patchy particle 15: (a) Motif match profile with building block, motif,
and best-match snapshot inset. (b) fingerprint landscape
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Figure A.13: Patchy particle 17: (a) Motif match profile with building block, motif,
and best-match snapshot inset. (b) fingerprint landscape
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Figure A.14: Patchy particle 18: (a) Motif match profile with building block, motif,
and best-match snapshot inset. (b) fingerprint landscape
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Figure A.15: Patchy particle 19: (a) Motif match profile with building block, motif,
and best-match snapshot inset. (b) fingerprint landscape
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Figure A.16: Patchy particle 20: (a) Motif match profile with building block, motif,
and best-match snapshot inset. (b) fingerprint landscape
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Figure A.17: Patchy particle 22: (a) Motif match profile with building block, motif,
and best-match snapshot inset. (b) fingerprint landscape
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Figure A.18: Patchy particle 23: (a) Motif match profile with building block, motif,
and best-match snapshot inset. (b) fingerprint landscape
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Figure A.19: Patchy particle 24: (a) Motif match profile with building block, motif,
and best-match snapshot inset. (b) fingerprint landscape
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Figure A.20: Patchy particle 25: (a) Motif match profile with building block, motif,
and best-match snapshot inset. (b) fingerprint landscape
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APPENDIX B

Off-lattice BUBBA clusters
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Figure B.1: Slanted stripes

128



22

Figure B.2: Wide stripes
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Figure B.3: Slanted interdigitated stripes
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Figure B.4: Interdigitated checkerboard

23

Figure B.5: Close-packed stripes
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Figure B.6: Two copies of building block 5 make up the unit cell of the shifted stripes
in this packing, though the best energy cluster of two building blocks is
not the unit cell.
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Figure B.7: Two copies of building block 9 make up the unit cell of this twofold
symmetric packing.

7

Figure B.8: Two copies of building block 7 make up the unit cell of this twofold
symmetric packing.
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Figure B.9: This twofold symmetric packing of building block 17 has four building
blocks in its unit cell.

14

Figure B.10: Six copies of building block 14 make up one ring, which tiles space
hexagonally.
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Figure B.11: Fourfold symmetric packing with eight building blocks in the unit cell.
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Figure B.12: The complicated unit cell of this packing is composed of ten building
blocks.
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Robert Schlögl, and Markus Niederberger. Ligand functionality as a versatile
tool to control the assembly behavior of preformed titania nanocrystals. Chem-
istry, 11(12):3541–51, Jun 2005.

[21] Chad A. Mirkin, Robert L. Letsinger, Robert C. Mucic, and James J. Storhoff.
A dna-based method for rationally assembling nanoparticles into macroscopic
materials. Nature, 382(6592):607–609, 1996.

[22] Vinothan N. Manoharan, Mark T. Elsesser, and David J. Pine. Dense packing
and symmetry in small clusters of microspheres. Science, 301(5632):483–487,
2003.

138



[23] Eric Lauga and Michael P. Brenner. Evaporation-driven assembly of colloidal
particles. Phys. Rev. Lett., 93:238301, Dec 2004.

[24] Young-Sang Cho, Gi-Ra Yi, Shin-Hyun Kim, David J. Pine, and Seung-Man
Yang. Colloidal clusters of microspheres from water-in-oil emulsions. Chemistry
of Materials, 17(20):5006–5013, 2005.

[25] Young-Sang Cho, Gi-Ra Yi, Jong-Min Lim, Shin-Hyun Kim, Vinothan N.
Manoharan, David J. Pine, and Seung-Man Yang. Self-organization of bidis-
perse colloids in water droplets. Journal of the American Chemical Society,
127(45):15968–15975, 2005.

[26] Young-Sang Cho, Gi-Ra Yi, Shin-Hyun Kim, Mark T. Elsesser, Dana R. Breed,
and Seung-Man Yang. Homogeneous and heterogeneous binary colloidal clusters
formed by evaporation-induced self-assembly inside droplets. Journal of Colloid
and Interface Science, 318(1):124 – 133, 2008.

[27] Liang Hong, Shan Jiang, and Steve Granick. Simple method to produce janus
colloidal particles in large quantity. Langmuir, 22(23):9495–9499, 2006.

[28] K.M Keville, E.I Franses, and J.M Caruthers. Preparation and characteriza-
tion of monodisperse polymer microspheroids. Journal of Colloid and Interface
Science, 144(1):103 – 126, 1991.

[29] Qian Chen, Jonathan K. Whitmer, Shan Jiang, Sung Chul Bae, Erik Luijten,
and Steve Granick. Supracolloidal reaction kinetics of janus spheres. Science,
331(6014):199–202, 2011.

[30] Ali Mohraz and Michael J. Solomon. Gelation and internal dynamics of colloidal
rod aggregates. Journal of Colloid and Interface Science, 300(1):155–162, 2006.

[31] Kyung Eun Sung, Siva A. Vanapalli, Deshpremy Mukhija, Hugh A. McKay,
Joanna Mirecki Millunchick, Mark A. Burns, and Michael J. Solomon. Pro-
grammable fluidic production of microparticles with configurable anisotropy.
Journal of the American Chemical Society, 130(4):1335–1340, 2008.

[32] Sho Asakura and Fumio Oosawa. Interaction between particles suspended in
solutions of macromolecules. Journal of Polymer Science, 33(126):183–192,
1958.

[33] Marie Adams, Zvonimir Dogic, Sarah L. Keller, and Seth Fraden. Entropically
driven microphase transitions in mixtures of colloidal rods and spheres. Nature,
393(6683):349–352, 05 1998.

[34] Fan Li, David P Josephson, and Andreas Stein. Colloidal assembly: the road
from particles to colloidal molecules and crystals. Angew Chem Int Ed Engl,
50(2):360–388, Jan 2011.

139



[35] Colin J. Loweth, W. Brett Caldwell, Xiaogang Peng, and A. Paul Alivisatos.
Dna-based assembly of gold nanocrystals. Angewandte Chemie International
Edition, 38(12):1808–1812, 1999.

[36] SG Zhang. Fabrication of novel biomaterials through molecular self-assembly.
Nat Biotechnol, 21(10):1171–1178, 2003.

[37] Hao Yan, Sung Ha Park, Gleb Finkelstein, John H. Reif, and Thomas H.
LaBean. DNA-Templated Self-Assembly of Protein Arrays and Highly Con-
ductive Nanowires. Science, 301(5641):1882–1884, 2003.

[38] Paul W. K. Rothemund. Folding dna to create nanoscale shapes and patterns.
Nature, 440(7082):297–302, 03 2006.

[39] Dmytro Nykypanchuk, Mathew M. Maye, Daniel van der Lelie, and Oleg Gang.
Dna-guided crystallization of colloidal nanoparticles. Nature, 451(31):549–552,
January 2008.

[40] Sung Yong Park, Abigail K. R. Lytton-Jean, Byeongdu Lee, Steven Weigand,
George C. Schatz, and Chad A. Mirkin. Dna-programmable nanoparticle crys-
tallization. Nature, 451(7178):553–556, 2008.

[41] Gary Zabow, Stephen Dodd, John Moreland, and Alan Koretsky. Micro-
engineered local field control for high-sensitivity multispectral mri. Nature,
453(19):1058–1063, 2008.

[42] Armen R. Kherlopian, Ting Song, Qi Duan, Mathew A Neimark, Ming J Po,
John K Gohagan, and Andrew F Laine. A review of imaging techniques for
systems biology. BMC Systems Biology, 2(74), 2008.

[43] Dong-Hyun Kim, Elena A. Rozhkova, Ilya V. Ulasov, Samuel D. Bader, Tijana
Ragh, Maciej S. Lesniak, and Valentyn Novosad. Biofunctionalized magnetic-
vortex microdiscs for targeted cancer-cell destruction. Nature Materials, 9:165–
171, 2009.

[44] Angela K. Pannier and Lonnie D. Shea. Controlled release systems for dna
delivery. Mol Ther, 10(1):19–26, 07 2004.

[45] Liyu Liu, Xixiang Huang, Cai Shen, Zhengyou Liu, Jing Shi, Weijia Wen, and
Ping Sheng. Parallel-field electrorheological clutch: Enhanced high shear rate
performance. Applied Physics Letters, 87(10):104106, 2005.

[46] Wenzhen Li, Xin Wang, Zhongwei Chen, Mahesh Waje, and Yan. Carbon
nanotube film by filtration as cathode catalyst support for proton-exchange
membrane fuel cell. Langmuir, 21(21):9386–9389, 2005.

[47] M.J. Decker, C.J. Halbach, C.H. Nam, N.J. Wagner, and E.D. Wetzel. Stab
resistance of shear thickening fluid (stf)-treated fabrics. Composites Science
and Technology, 67(3–4):565 – 578, 2007.

140



[48] Xi Jiang, Min Wang, David Y. Graham, and Mary K. Estes. Expression, self-
assembly, and antigenicity of the norwalk virus capsid protein. Journal of Vi-
rology, 66(11), 1992.

[49] W. W. Newcomb, F. L. Homa, D. R. Thomsen, F. P. Booy, B. L. Trus, A. C.
Steven, J. V. Spencer, and J. C. Brown. Assembly of the herpes simplex virus
capsid: Characterization of intermediates observed during cell-free capsid for-
mation. Journal Of Molecular Biology, 263(3):432–446, Nov 1996.

[50] Daniel Luque, Irene Saugar, J.F. Rodriguez, N. Verdaguer, D. Garriga,
C. San Martin, J.A. Velazquez-Muriel, B.L. Trus, J.L. Carrascosa, and J.R.
Caston. Infectious bursal disease virus capsid assembly and maturation by
structural rearrangements of a transient molecular switch. Journal of Virology,
81(13), 2007.

[51] Marc Kirschner and Tim Mitchison. Beyond self-assembly: from microtubules
to morphogenesis. Cell, 45:392–342, 1986.

[52] Nenad Ban, Poul Nissen, Jeffrey Hansen, Peter B. Moore, and Thomas A.
Steitz. The complete atomic structure of the large ribosomal subunit at 2.4 å
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