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Introduction

In this dissertation we study a notion of local volume for Cartier divisors on arbi-

trary blow–ups of normal complex algebraic varieties of dimension greater than one,

with a distinguished point. Although not directly related, this theory bears many

similarities to the well–studied case of volumes of Cartier divisors on projective va-

rieties. We use this notion to define and study local invariants of normal isolated

singularities, generalizing work on surfaces done by Wahl in [Wah90]. We also com-

pare this volume of isolated singularities to a different generalization by Boucksom,

de Fernex, and Favre from [BdFF11].

Plurigenera of smooth complex projective varieties have been the subject of much

research ([Iit77], [KM98], [Siu98], etc.). The rate of growth of the plurigenera leads

to the the notion of the volume of a variety, which has played and important role in

birational geometry in recent decades 1 (cf. [KM98], [BCHM07], [Tsu04], [HM05],

[HMX10], etc.). One would hope for local analogues that could be used in the study

of singularities. Indeed, local plurigenera have been studied in [Wat80], [Yau77],

[Ish90], and in [Mor87] as invariants of isolated singularities appearing on normal

complex algebraic varieties.

The geometric genus of a normal complex algebraic isolated singularity (X, x) of

dimension n at least two is defined as

pg(X, x) =def dimC(R
n−1π∗OX̃)x

1For instance, the fact that the volume need not be an integer gave the first proof that varieties do not in general
have smooth minimal models
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for π : X̃ → X an arbitrary resolution of singularities. Work of S.S.T. Yau in [Yau77]

shows that this invariant of the singularity can be computed analytically on X as

pg(X, x) = dim
H0(U \ {x},Oan

X (KX))

L2(U \ {x})
,

where U is a sufficiently small Stein neighborhood of x in X, and L2(U \ {x}) is the

set of all square integrable forms on U \{x}. Motivated by this alternate description,

Kimio Watanabe introduced the plurigenera of (X, x) in [Wat80] as:

δm(X, x) =def dim
H0(U \ {x},Oan

X (mKX))

L2/m(U \ {x})
,

with L2/m(U \ {x}) denoting the set of holomorphic m−canonical forms ω on the

sufficiently small U \ {x} that satisfy
∫
U\{x}(ω ∧ ω̄)1/m < ∞. In the case of surfaces,

these invariants can be used to classify some log–canonical singularities (see [Ish90],

[Oku98], [Oku00], [Wad03], [Wat80]). For example, by [Oku98], a normal surface

singularity (X, x) is a quotient singularity if, and only if, δ4(X, x) = δ6(X, x) = 0.

The proofs of [Sak77, Thm.1.1, Thm.2.1], and remarks in [Ish90] provide an

algebro–geometric approach to plurigenera at the expense of working again on reso-

lutions. Let π : X̃ → X be a log–resolution of (X, x), with E the reduced fiber over

x, let U be an arbitrary affine neighborhood of x, and let Ũ be the preimage of U in

X̃ via π. In the algebraic category,

δm(X, x) = dim
H0(Ũ \ E,OX̃(mKX̃))

H0(Ũ ,OX̃(mKX̃ + (m− 1)E))
= dim

OX(mKX)

π∗OX̃(mKX̃ + (m− 1)E)
,

with the last equality holding because U is affine, for choices of Weil canonical divisors

on X and X̃ such that π∗KX̃ = KX̃ .

The growth rate of δm(X, x), as m varies, is studied in [Ish90] and [Wat80]. It is

shown that δm(X, x) grows at most like mn. Generalizing work in [Wah90] for the

case of surfaces, we define the volume of the normal isolated singularity (X, x) of
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dimension n by

vol(X, x) =def lim sup
m→∞

δm(X, x)

mn/n!
.

A different notion of plurigenera, which we find more convenient to work with, was

introduced by Morales ([Mor87]) as:

λm(X, x) =def dim
OX(mKX)

π∗OX̃(mKX̃ +mE)
,

where π : (X̃, E) → (X, x) is an arbitrary log–resolution. One sees that λm(X, x)

vanishes if x is a smooth point of X or, more generally, if X is Q−Gorenstein with

log–canonical singularities. The Morales plurigenera are independent of the log–

resolution, and are local invariants around x. Results of Ishii in [Ish90] show that

the Morales plurigenera and the Watanabe plurigenera have the same asymptotic

behavior. In particular,

vol(X, x) = lim sup
m→∞

λm(X, x)

mn/n!
.

For surfaces, vol(X, x) has been studied by Wahl in [Wah90], and shown to be a

characteristic number of the link of the singularity. In particular, its behavior under

pull–backs by ramified maps was analyzed. The vanishing of vol(X, x) in the two

dimensional case is also well understood. We review Wahl’s work in Chapter II,

where we also study our generalizations of his results to higher dimension.

Apart from normal surface singularities, which are automatically isolated, another

important class of examples is that of cone singularities. Let (V,H) be a polarized

complex projective manifold of dimension n, with H sufficiently positive, and let X

be the cone Spec
⊕

m≥0 H
0(V,O(mH)) whose vertex 0 is an isolated singularity. By

explicit computation, or by [Wat80, Thm.1.7],

λm(X, 0) =
∑
k≥1

dimH0(V,O(mKV − kH)).
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We will see that this leads to the formula:

vol(X, 0) = (n+ 1) ·
∫ ∞

0

volV (KV − tH)dt.

The volume under the integral is the volume of line bundles on projective varieties in

the sense of [Laz04, Ch.2.2.C]. All isolated surface singularities have rational volume,

but cone singularities provide examples of isolated singularities with irrational volume

vol(X, x) already in dimension three.

In Chapter I, we introduce a local invariant that includes the volume of isolated

singularities as a special case. Let X be a normal complex algebraic variety of

dimension n ≥ 2, and let x be a point on X. Fix a projective birational morphism

π : X ′ → X. For an arbitrary Cartier divisor D on X ′, define the local volume of D

at x by

volx(D) =def lim sup
m→∞

h1
x(mD)

mn/n!
,

where

h1
x(D) =def dimH1

{x}(X, π∗OX′(D)).

We do not assume that X ′ is also normal. We show that volx(D) is finite. When

π : (X̃, E) → (X, x) is a log–resolution of a normal complex isolated singularity of

dimension n, we will see that

vol(X, x) = volx(KX̃ + E).

The inspiration for the asymptotic construction of volx(D) comes from its global

counterpart. Given D a Cartier divisor on a complex projective variety X of di-

mension n, write h0(mD) =def dimH0(X,OX(mD)). The Riemann–Roch problem

motivates the construction of the finite asymptotic invariant

vol(D) =def lim sup
m→∞

h0(mD)

mn/n!
.
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For example, when D is ample, vol(D) = (Dn). Volumes of Cartier divisors have

been well studied for their importance in birational geometry (see [Laz04, Ch.2.2.C]).

Analogues for higher cohomologies, the asymptotic cohomology functions, have been

studied more recently by Küronya in [Kur06]. These functions and the local volumes

have many similar properties. In the local setting we prove:

Theorem. With notation as above, volx is well defined, n−homogeneous and con-

tinuous on N1(X ′/X)R.

Here, N1(X ′/X)R denotes the additive group of R−Cartier divisors on X ′ modulo

numerical equivalence on the fibers of π. A difference between volx and the volume

of divisors on projective varieties is that whereas the latter increases in all effective

directions, volx decreases in effective directions that contract to x and increases in

effective directions without components contracting to x. This behavior proves quite

useful. Following ideas in [LM09], we present a convex–geometric approach to local

volumes that allows us to prove the following:

Proposition. For any Cartier divisor D on X ′, we can replace lim sup in the defi-

nition of volx(D) by lim:

volx(D) = lim
m→∞

h1
x(mD)

mn/n!
.

In the style of [LM09, Thm.3.8], we obtain a Fujita–type approximation result. If I

is a fractional ideal sheaf on X, following [CHST05] or [Cut10], we define its local

multiplicity, also known as ϵ−multiplicity, at x by the formula:

ĥ1
x(I) =def lim sup

m→∞

dimH1
{x}(Im)

mn/n!
.

This generalizes the concept of Hilbert–Samuel multiplicity, as we see in Chapter I.

Theorem. Let D be a Cartier divisor on X ′, such that ap =def π∗OX′(pD) coincides

with bp on X \ {x}, for some coherent fractional ideal sheaf b on X \ {x}, and for
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all p ≥ 1. Then

volx(D) = lim
p→∞

ĥ1
x(π∗OX′(pD))

pn
.

Two other problems that are well understood in the projective case are the vanishing

and log–concavity for volumes of Cartier divisors (see [Laz04, Ch.2.2.C]). We know

that volumes vanish outside the big cone, and that vol1/n is a concave function on

the same big cone, i.e.,

vol(D +D′)1/n ≥ vol(D)1/n + vol(D′)1/n,

for all big Cartier divisors D and D′ on X. In the local setting we find analogous

results when working with divisors supported on the fiber over x. Denote by Excx(π)

the real vector space spanned by all such divisors.

Proposition. On X ′, let D be a Cartier divisor supported on the fiber over x. Then

volx(D) = 0 if, and only if, D is an effective divisor. When D is an arbitrary Cartier

divisor, then volx(D) = 0 if, and only if, h1
x(mD̃) = 0 for all m ≥ 0, where D̃ is the

pullback of D to the normalization of X ′.

Proposition. The function vol1/nx is convex on Excx(π), i.e.,

volx(D +D′)1/n ≤ volx(D)1/n + volx(D
′)1/n,

for all big R−Cartier divisors D and D′ on X ′ that are supported over x, but it may

fail to be so on N1(X ′/X)R.

Returning to the setting of normal complex isolated singularities, we generalize

to higher dimension some of the properties established by Wahl in [Wah90] for local

volumes of isolated surface singularities.

Proposition. Let f : (X, x) → (Y, y) be a finite map of complex normal isolated

singularities of dimension n, with f−1{y} = x. Then

vol(X, x) ≥ (deg f) · vol(Y, y).
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Equality holds if f is unramified outside y.

Corollary.

(i) If f : (X, x) → (Y, y) is a finite map of normal isolated singularities as above,

and vol(X, x) vanishes, then vol(Y, y) = 0.

(ii) If (X, x) admits an endomorphism of degree at least two, then vol(X, x) = 0.

Unlike the two dimensional case, we show in Example II.29 that vol(X, x) is not

a topological invariant of the link of the singularity in dimension at least three. For

surfaces, the vanishing of vol(X, x) is equivalent to (X, x) being log–canonical in the

sense of [Wah90, Rem.2.4]. In arbitrary dimension, as a corollary to [Ish90, Thm.4.2],

we show:

Proposition. If (X, x) is a normal isolated singularity of dimension n, then vol(X, x)

vanishes if, and only if, λm(X, x) = 0 for all m ≥ 0.

In the Q−Gorenstein case, the conclusion of the previous result is the same as saying

that (X, x) has log–canonical singularities, but by [BdFF11] this is not the case in

general. We also construct another notion of volume that is useful for the study of

canonical singularities in the sense of [dFH09]:

volγ(X, x) =def volx(KX̃),

where π : X̃ → X is a resolution of a normal isolated singularity (X, x). We will see

that volγ(X, x) is also independent of the resolution.

Proposition. The volume volγ(X, x) vanishes if, and only if, (X, x) has canonical

singularities in the sense of [dFH09].

On surfaces, by [Wah90], the volume vol(X, x) can be computed as −P ·P , where

P is the nef part of the relative Zariski decomposition of KX̃ + E, for any good
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resolution

π : (X̃, E) → (X, x).

Building on the theory of b−divisors, this definition is generalized by Boucksom, de

Fernex, and Favre to higher dimension in [BdFF11] to produce another notion of

volume for a normal isolated singularity, denoted volBdFF(X, x). This new volume is

studied in Chapter III. We are able to show that

volBdFF(X, x) ≥ vol(X, x).

By the same [BdFF11], the two notions of volume differ in general, but coincide in the

Q−Gorenstein case, and we are able to extend this to the numerically Gorenstein

case (cf. [BdFF11]). All normal surface singularities are numerically Gorenstein.

The volume volBdFF(X, x) enjoys similar properties to those of vol(X, x) concerning

the behavior with respect to finite covers, and is better suited for the study of log–

canonical singularities. On the other hand, volBdFF(X, x) is usually hard to compute

because all birational models of X may influence it, as opposed to vol(X, x), which

is computed on any log-resolution of (X, x). As we will see, combining techniques

in [BdFF11] with results in our study of volx, the volume volBdFF(X, x) can also be

computed for some cone singularities. It can also achieve irrational values.

The thesis is organized as follows. Chapter I develops the theory of local volumes,

motivated by generalizing Hilbert–Samuel multiplicities. We compute several exam-

ples, before presenting a convex–geometric approach to local volumes and proving

our version of the Fujita approximation theorem. We next investigate the vanishing

and the convexity for vol1/nx . Chapter II is dedicated to the volume of isolated sin-

gularities associated to the plurigenera in the sense of Watanabe or Morales, and to

volγ(X, x), an asymptotic invariant associated to Knöller’s plurigenera. We general-

ize to higher dimension results for surfaces in [Wah90] that we briefly review in the
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first section, translate to volumes some of the results of Ishii ([Ish90]), and give ex-

amples. In Chapter III, we compare our notion of volume with the one appearing in

[BdFF11]. By studying the impact that the theory of volx has on volBdFF(X, x), we

are able to give a nontrivial computation for volBdFF(X, x) that yields an irrational

result.

This dissertation expands on results of the author in [F1]. In previous work, in

[F2], we have studied numerical pseudoeffective cycles on projective bundles over

curves, describing the pseudoeffective cones in terms of the numerical data of the

Harder–Narasimhan filtration of a defining locally free sheaf.



Background and conventions

Unless otherwise stated, we work over the field of complex numbers C, and we

use the notation of [Laz04].

Asymptotic cohomology

For a Cartier divisor D on a projective variety X of dimension n, we consider the

asymptotic cohomology functions studied by Küronya in [Kur06]:

ĥi(D) =def lim sup
m→∞

hi(X,O(mD))

mn/n!
.

When i = 0, we recover the volume function vol(D) from [Laz04, Ch.2.2.C]. The

results of [Kur06] that we will call upon are summarized in the following:

Proposition. For any i, the functions ĥi depend only on the numerical equivalence

classes of divisors on X, and they are n−homogeneous:

ĥi(a ·D) = an · ĥi(D),

for any a ≥ 0. Thus they descend to N1(X)Q where they are continuous and satisfy

a Lipschitz–type estimate that allows us to extend them continuously to functions

ĥi : N1(X)R → R≥0.

10
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The relative setting

Let π : Y → X be a projective (or just proper) morphism of algebraic varieties.

A Cartier divisor D on Y is called:

• π−trivial if D = π∗L for some Cartier divisor L on X. Two Cartier divisors

D and D′ are π−linearly equivalent if D is linearly equivalent to D′ + π∗L for

some Cartier divisor L on X.

• π−numerically trivial if its restriction to any fiber of π is numerically trivial, i.e.,

if D ·C = 0 for any curve C such that π(C) is a point. The set of π−numerical

equivalence classes is an abelian group of finite rank denoted N1(Y/X).

• π−ample (nef) if the restriction to each fiber of π is ample (nef).

• π−movable if its class in N1(Y/X)R lies in the closed convex cone generated by

divisors whose π−base locus have codimension at least two in Y . The π−base

locus of D is the vanishing locus of the ideal sheaf on Y arising as the image of

the canonical evaluation morphism:

π∗π∗OY (D)⊗OY (−D) → OY .

Cohomology with supports

We point to [Gro62] for a detailed study of cohomology with supports, or [Har77,

Exer.III.2.3] for a quick introduction that is sufficient for our purposes. We will

mostly use the following three properties when Y is a closed point.

Proposition (Long exact sequence). If Y ⊂ X is a closed subset, and

0 → F → G → H → 0
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is a short exact sequence of sheaves of abelian groups on X, then we have a long

exact sequence

0 → H0
Y (X,F) → H0

Y (X,G) → H0
Y (X,H) → H1

Y (X,F) → . . .

Proposition (Excision). If Y ⊂ X is a closed subset and U ⊂ X is an open subset

such that Y ⊂ U , then

H i
Y (X,F) ≃ H i

Y (U,F|U)

for any sheaf F of abelian groups on X.

Proposition (Restriction sequence). With notation as above, there is a long exact

sequence

0 → H0
Y (X,F) → H0(X,F) → H0(X \ Y,F) → H1

Y (X,F) → . . .

Resolutions of singularities

Let X be a normal complex variety, and let Y be a subscheme. A log–resolution

π : (X̃, E) → (X, Y ) is a birational morphism from a nonsingular variety X̃ to X,

with E = π−1{Y } a reduced divisor supporting the vanishing locus of the invertible

ideal sheaf I(Y ) · OX̃ , such that E ∪ Exc(π) is a simple normal crossings divisor on

X̃. Note that a log–resolution of (X,Y ) factors through BlYX. When Y = {x} is

an isolated singularity, we say that the log–resolution π is a good resolution if it is

an isomorphism outside x. The existence of such resolutions follows in the complex

setting from Hironaka’s ([Hir64]) celebrated results.

Coherent fractional ideal sheaves

A coherent subsheaf I of the constant fraction field sheaf of a quasiprojective

varietyX is called a coherent fractional ideal sheaf. Typical examples are constructed
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by pushing forward invertible sheaves via projective birational morphisms. For I a

coherent fractional ideal sheaf, there exists a (sufficiently negative) Cartier divisor

D on X such that

J := I · OX(D)

is an actual ideal sheaf. Using this, the blow–up BlIX of X along I is defined as

BlJX. If π denotes the blow–down map BlJX → X with its relative Serre invert-

ible sheaf OJ (1) (see [Har77, II.7]), then BlIX is naturally endowed, via [Har77,

Lem.II.7.9], with the relative Serre invertible sheaf

OI(1) := OJ (1)⊗ π∗OX(−D).



CHAPTER I

Local volumes

This chapter is devoted to building the theory of local volumes for Cartier di-

visors on a relatively projective birational modification of a normal complex quasi-

projective variety of dimension at least two with a distinguished point. We compare

many properties of these volumes to their counterparts in the theory of volumes

of Cartier divisors on projective varieties as presented in [Laz04, Ch.2.2.C]. In the

first section we describe the algebraic motivation behind this theory, coming from

(generalizations of) the Hilbert–Samuel multiplicity of m−primary ideals in normal

noetherian domains. Next, we define the local volumes, study them variationally,

discus their behavior under finite maps and give examples. In the third section

we adapt some of the methods of [LM09] to present a convex–geometric approach

to local volumes. We obtain a Fujita–type approximation result. We also discuss

convexity and vanishing properties for local volumes.

I.1 Multiplicities

Although what motivated the author in constructing local volumes was the at-

tempt to extend constructions of Wahl on surfaces to higher dimension in order to

study normal isolated singularities, in this expository section we will see that one

can develop this theory naturally starting from the Hilbert–Samuel multiplicity.

14
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I.1.1 The Hilbert–Samuel multiplicity

We review the Hilbert–Samuel multiplicity for m−primary ideal sheaves.

Definition I.1. Let (R,m,C) be a local noetherian ring of dimension n, and let

a ⊂ R be an m−primary ideal. Recall that the Hilbert–Samuel multiplicity of a is

defined as the limit:

e(a) =def lim
r→∞

length(R/ar)

rn/n!
.

That the limit exists and it is finite is a consequence of the polynomial behavior of

the lengths. The local nature of the definition allows us to define the Hilbert–Samuel

multiplicity when m is the maximal ideal sheaf corresponding to a closed point x on

some scheme X, and when a is some m−primary, coherent (fractional) ideal sheaf.

In this setting, one obtains an intersection theoretic interpretation of multiplicity.

Remark I.2. With notation as above, assume that X is integral, and let

π : BlaX → X

be the blow–up with relative O(1) = O(−E) for some Cartier divisor E that is

supported over x. Then

e(a) = −(−E)n.

We assume henceforth that X is normal and of dimension n ≥ 2. Then the long

exact sequence for cohomology with supports contains

(I.1.1) H0
{x}(X,OX) → H0

{x}(X,OX/a) → H1
{x}(X, a) → H1

{x}(X,OX).

The first term is zero because X is integral of positive dimension, hence a function

vanishing outside x also vanishes at x. Because a is m−primary, it is then co–

supported at x, therefore

H0
{x}(X,OX/a) = H0(X,OX/a),
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and its dimension over k is length(OX/a). For the last term, by excision one can

replace X by some suitable affine neighborhood of x and then consider the restriction

sequence

0 → H0(X,OX) → H0(X \ {x},OX) → H1
{x}(X,OX) → H1(X,OX) → . . .

The first map is an isomorphism because X is normal of dimension n ≥ 2. The last

term is zero because we have assumed that X is affine. It follows that the last term

in (I.1.1) is zero, hence

H1
{x}(X, a) = H0

{x}(X,OX/a) = H0(X,OX/a),

and their dimension is the colength of a. Denote

h1
x(a) = dimk H

1
{x}(X, a).

The associated asymptotic cohomology function

ĥ1
x(a) =def lim sup

r→∞

h1
x(a

r)

rn/n!

clearly equals e(a). We know that the lim sup is a true limit in this case.

I.1.2 The ϵ−multiplicity

In this subsection we present a generalization of the notion of Hilbert–Samuel

multiplicity for coherent fractional ideal sheaves that are not necessarily m−primary.

When working with such ideal sheaves, the notion of colength does not readily make

sense. Fortunately, h1
x(a) still does. Under the assumption that X is normal of

dimension n at least two, choosing a point x on X, and reasoning as in the previous

subsection, we find that

H1
{x}(X, a) =

ı∗ı
∗a

a
,
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where ı : X \ {x} → X is the canonical embedding. For convenience, we write

ã =def ı∗ı
∗a.

Algebraically, ã is obtained from a by removing all the m−primary components.

ã = (a : m∞) =def

∪
p≥0

(a : mp).

Here, m denotes the maximal ideal sheaf on X corresponding to x. Note that h1
x(a) =

dimH1(X, a) is a finite number. When a is an ideal sheaf, this follows because a and

ã coincide outside x, and because a is quasi–coherent ([Har77, Prop.II.5.8]), and an

ideal sheaf itself by the conditions on X, therefore it is coherent. By the local nature

of our invariants, we can assume that X is projective. For H sufficiently ample,

a⊗OX(−H) is an ideal sheaf, and

˜a⊗O(−H) = ã⊗OX(−H)

by the projection formula. Thus we can reduce to the case when a is an ideal sheaf.

The asymptotic invariant

ĥ1
x(a) = lim sup

r→∞

h1
x(a

r)

rn/n!
,

also known as the ϵ−multiplicity of a, has been previously studied in [CHST05] and

[Cut10]. In [CHST05], it is shown that the numbers h1
x(a

r) no longer necessarily have

polynomial behavior, and one can construct ideals with irrational ϵ−multiplicity. It

is therefore no longer clear that the lim sup in the definition is a true limit, but the

result holds true non–trivially by [Cut10]. We will also obtain this as a consequence

of our Fujita–type approximation result, Theorem I.36. The finiteness of ϵ(a) is also

proved in [CHST05]. We will see this as a special case of finiteness for local volumes.

Example I.3 (Monomial ideals). Let I be a monomial ideal in C[X1, . . . , Xn], and

let m = (X1, . . . , Xn) be the irrelevant ideal corresponding to the origin 0 of Cn.
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Then

Ĩk = (Ik : m∞) =
n∩

i=1

(Ik : X∞
i ).

For an arbitrary monomial ideal J , the ideal (J : X∞
i ) can be computed as φ−1

i φi(J),

where

φi : C[X1, . . . , Xn] → C[X1, . . . , X̂i, . . . , Xn]

is the evaluation map determined by φi(Xj) = Xj for j ̸= i and φi(Xi) = 1. Ge-

ometrically, J is determined by the set A(J) of n−tuples of nonnegative numbers

(a1, . . . , an) such that Xa1
1 · . . . ·Xan

n belongs to J . Then A(J : X∞
i ) is obtained by

taking the integer coordinate points in the preimage of the image of A(J) via the

projection onto the coordinate hyperplane that does not contain the i−th coordinate

axis. Subsequently, A(J : m∞) =
∩n

i=1A(J : X∞
i ) and

dimH1
{0}(J) = #(A(J : m∞) \ A(J)).

Let P (J) denote the convex span of A(J) in Rn, and let P̃ (J) be the polyhedron

obtained by intersecting the preimages of the images of the projection of P (J) onto

each of the coordinate hyperplanes. Then one checks that

ĥ1
{0}(I) = n! · vol(P̃ (I) \ P (I)),

where the volume used in the right–hand side is the Euclidean one.

In Figure I.1 we see the example of the ideal I = (X3, XY 3) ⊂ C[X, Y ]. The

polyhedron P (I) is the convex span of the set of all lattice points in the set

{(a, b) : a ≥ 1, b ≥ 3} ∪ {(a, b) : a ≥ 3, b ≥ 0}, i.e.,

P (I) = {(x, y) ∈ R2 : x ≥ 1, y ≥ 0, 3x+ 2y ≥ 9}.

The projection of P (I) onto the x axis is the halfline x ≥ 1, and the projection onto

the y axis is y ≥ 0. These give

P̃ (I) = {(x, y) ∈ R2 : x ≥ 1, y ≥ 0}.
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The ϵ−multiplicity of I is then ĥ1
{0}(I) = 2! · 3·2

2
= 6.

P(I)\P(I)
~

(1,3)

(1,0)(0,0)

P(I)

y

x(3,0)

Figure I.1: I = (X3, XY 3) ⊂ C[X,Y ]

We obtain a translation of the classical picture for the computation of the Hilbert–

Samuel multiplicity of the ideal (X2, Y 3), i.e., P̃ (I) is a translation of the first quad-

rant. This happens for any ideal I of C[X,Y ], because I can be written as u · a for

some monomial u and for some m−primary ideal a, and then Ĩ = (u) is a principal

ideal. In the higher dimensional case, the picture is generally more complicated.

Example I.4 (Toric ideals). Let I be a monomial ideal inside the toric algebra C[Sσ],

where Sσ is the semigroup of integral points of a pointed (it contains no lines through

the origin) rational convex cone σ of dimension n. Let τ1, . . . , τr be the minimal ray

generators for σ. For a subset V of σ and 0 ≤ i ≤ r, let Vi = σ ∩
∪

k≥0(V − k · τi).

Geometrically, this is the trace left by V inside σ by sliding it in the direction of −τi.

If P (I) is the convex hull of the set A(I) defined as in the monomial case, and if
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P̃ (I) is the intersection of all P (I)i, then

ĥ1
xσ
(I) = n! · vol(P̃ (I) \ P (I)),

where xσ is the torus fixed point of SpecC[Sσ].

I.1.3 Multiplicities for graded sequences of ideal sheaves

In this subsection we extend multiplicities to graded sequences of coherent frac-

tional ideal sheaves.

Definition I.5. Let X be a normal algebraic variety of dimension n ≥ 2, with a

fixed point x. On X, consider a graded sequence of fractional ideal sheaves a• (i.e.

a0 = OX and ak · al ⊆ ak+l), and define its generalized Hilbert–Samuel multiplicity

at x as

ĥ1
x(a•) =def lim sup

r→∞

dimH1
{x}(ar)

rn/n!
.

When ar = Ir for all r and for some fixed fractional ideal sheaf I, we recover the

epsilon multiplicity of I. When a• is a graded sequence of m−primary ideals in OX ,

then ĥ1
x(a•) coincides with the multiplicity defined in [LM09, Sec.3.2]. If I is an

m−primary ideal, then ĥ1
x(I) is the Hilbert–Samuel multiplicity of I at m.

The local volumes, as we will see in the next section, are multiplicities in the

above sense of graded sequences of fractional ideals arising from a geometric setting

as pushforwards of tensor powers of a line bundle.

I.2 The definition and basic properties of local volumes

In this section we define local volumes, compute examples, and prove several

properties paralleling the theory of volumes of Cartier divisors on projective varieties.
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Assume henceforth that X is a normal complex quasiprojective variety of dimen-

sion n at least two, and fix a point x ∈ X. Let π : X ′ → X be a projective birational

morphism, and let D be a Cartier divisor on X ′. Using cohomology with supports

at x, define

(I.2.1) h1
x(D) =def dimH1

{x}(X, π∗OX′(D)).

We will see in the course of the proof of Proposition I.16 that this is a finite number.

Remark I.6. (i) If U is an open subset of X containing x, let F be the set theoretic

fiber of π over x, let V be the preimage of U and denote by i : U \{x} → U and

j : V \ F → V the natural open embeddings. By abuse, we denote π|VU again

by π. An inspection of the restriction sequence for cohomology with supports,

together with flat base change, reveal

h1
x(D) = dim

i∗i
∗(π∗OX′(D)|U)
π∗OX′(D)|U

= dim
π∗j∗j

∗(OX′(D)|V )
π∗OX′(D)|U

.

When U is affine, the last term is equal to H0(V \F,OV (D))
H0(V,OV (D))

.

(ii) If U is affine, X ′ is normal and E is the divisorial component of F , then

h1
x(D) = dim

∪
k≥0 H

0(π−1U,OX′(D + kE))

H0(π−1U,OX′(D))

as a study of local sections shows.

I.2.1 The definition of local volumes

Definition I.7. The local volume of D at x is the asymptotic limit:

volx(D) =def lim sup
m→∞

h1
x(mD)

mn/n!
.

We will prove that this quantity is finite in Proposition I.16. We will also see in

Corollary I.34 that the lim sup in the definition of volx(D) can be replaced by lim.
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The excision property of cohomology with supports shows that volx is local around x.

The term volume is justified by the resemblance of the definition to that of volumes

of divisors on projective varieties. We shall see that the two notions share many

similar properties.

I.2.2 Examples

Example I.8 (Toric varieties). We use the notation of [Ful97]. Let σ be pointed

rational cone of maximal dimension in NR, where N is a lattice isomorphic to Zn.

Denote

M = Hom(N,Z)

and let Sσ be the semigroup σ∨∩M . Let X(σ) be the affine toric variety SpecC[Sσ].

The unique torus invariant point of X(σ) is denoted xσ.

Let Σ be a rational fan obtained by refining σ. It determines a proper birational

toric modification π : X(Σ) → X(σ). Let v1, . . . , vr be the first nonzero integer

coordinate points on the rays that span σ. Let vr+1, . . . , vr+s be the first non-zero

points of N on the rays in Σ that lie in the relative interior of faces of σ of dimension

2 ≤ d ≤ n−1 and denote by vr+s+1, . . . , vr+s+t the first non-zero points from N on the

rays of Σ in the interior of σ. Denote by Di the Weil divisor on X(Σ) associated to

the ray containing vi. A divisor Di lies over xσ exactly when its support is a complete

variety, which is equivalent to vi lying in the interior of σ, i.e., when i > r + s.

To D =
∑r+s+t

i=1 aiDi, a T−invariant Cartier divisor on X(Σ), we associate the

rational convex polyhedra in MR defined by

PD = {u ∈ MR : ⟨u, vi⟩ ≥ −ai for all i}.

P ′
D = {u ∈ MR : ⟨u, vi⟩ ≥ −ai for all i ≤ r + s}.
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By [Ful97, Lemma on p.66], global sections of OX(Σ)(mD) correspond to points of

(mPD)∩M and sections defined outside the fiber over xσ correspond to (mP ′
D)∩M .

By Remark I.6,

h1
xσ
(mD) = #((mP ′

D \mPD) ∩M).

Taking asymptotic limits,

volxσ(D) = n! · vol(P ′
D \ PD).

On the right hand side we have the Euclidean volume inMR. Note that this volume is

rational and finite, even though PD and P ′
D may be infinite polyhedra. See Example

I.49 and Figure I.2 for an explicit computation.

The surface case, which was studied in [Wah90] and served as the inspiration for

our work, gives another set of computable examples.

Example I.9 (Surface case). Let (X, x) be a normal (isolated) surface singularity,

and let π : (X̃, E) → (X, x) be a good resolution. Any divisor D on X̃ admits a

relative Zariski decompositionD = P+N , where P is a relatively nef and exceptional

Q−divisor. From [Wah90, Thm.1.6], we have

volx(D) = −P · P

and this can be computed algorithmically from the data of the intersection numbers of

D with the components of E, and from the intersection numbers between components

of E (cf. [Wah90, Prop.1.2], see also Proposition II.1).

As hinted to in the previous section, local volumes generalize the ϵ−multiplicity of

ideals.

Example I.10. When a is a fractional ideal sheaf on X, and O(1) denotes the rela-

tive Serre bundle on the blow–up π : BlaX → X, then using [Laz04, Lemma.5.4.24],
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π∗O(m) = am for sufficiently large m, and consequently

ĥ1
x(a) = volx(O(1)).

I.2.3 Basic properties of local volumes I

In this subsection we prove that local volumes are finite, n−homogeneous, and

we study their behavior under pullbacks. Recall that X denotes a normal complex

quasiprojective variety of dimension n at least two. We fix a point x ∈ X, and a

projective birational morphism π : X ′ → X, where we do not assume that X ′ is also

normal.

Lemma I.11. With notation as above, let D be a Cartier divisor on X ′. Then there

exist projective completions X and X ′ of X and X ′ respectively, together with a map

π : X ′ → X extending π and a Cartier divisor D on X ′, such that D|X′ = D.

Proof. Choose arbitrary projective completions X and Y of X and X ′ respectively.

The rational map Y // X induced by π can be extended, by resolving its in-

determinacies in Y , to π′ : Y ′ → X, such that π′|X′ = π. The Cartier divisor D

determines an invertible sheaf OX′(D), which by [Har77, Ex.II.5.15] extends to a

coherent fractional ideal sheaf I on Y ′. We denote by X ′ the blow–up of Y ′ along

I, by π : X ′ → X the induced map and by OY (D) the relative Serre bundle of the

blow–up, then D|X′ = D.

The previous result can be used to reduce questions about the local volume of one

divisor D (or of finitely many) to the case when X and X ′ are projective. We will see

that we can reduce the study of the function volx to X ′ normal, or even nonsingular.
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Lemma I.12. With notation as above, let F be a torsion free coherent sheaf on X ′

of rank r. Then

volx(D) = lim sup
m→∞

dimH1
{x}(X, π∗(F(mD)))

r ·mn/n!
.

Proof. By Lemma I.11, since we can extend coherent torsion free sheaves to coherent

sheaves with the same property, we can assume that X and X ′ are projective. Let

H be sufficiently ample on X so that there exist short exact sequences

0 → Or
X′(−π∗H) → F → Q → 0

0 → F → Or
X′(π∗H) → R → 0

with torsion quotients Q and R. Such H exists because π∗H is a big Cartier divisor.

If Qm denotes the image of π∗(F(mD)) in π∗(Q(mD)), and Rm is the image of

π∗Or
X′(π∗H +mD) in π∗(R(mD)), then

(I.2.2)

dimH1
{x}(X, π∗(F(mD))) ≤ r ·dimH1

{x}(X, π∗OX′(π∗H+mD)))+dimH0
{x}(X,Rm),

r·dimH1
{x}(X, π∗OX′(−π∗H+mD))) ≤ dimH1

{x}(X, π∗(F(mD)))+dimH0
{x}(X,Qm).

Since the cohomology of twists of torsion sheaves grows submaximally by [Laz04,

Ex.1.2.33], from the inequality

dimH0
{x}(X,Qm) ≤ dimH0(X,Qm) ≤ dimH0(X, π∗(Q(mD))) = dimH0(X ′, Q(mD))

together with the corresponding one for R and (I.2.2), we conclude by the next easy

lemma.

Lemma I.13. (i) If L is a Cartier divisor on X, then h1
x(D + π∗L) = h1

x(D).

(ii) In particular, if D and D′ are linearly equivalent on X ′, then h1
x(D) = h1

x(D
′).
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Proof. Cohomology with supports at x is a local invariant by excision. Choosing an

affine neighborhood where OX(L) is trivial yields the result.

Corollary I.14. If f : Y → X ′ is projective and birational, then

volx(D) = volx(f
∗D).

Proof. This is an immediate consequence of applying Lemma I.12 for the torsion–free

sheaf of rank one F = f∗OY .

We also deduce a useful result concerning pullbacks by finite maps.

Proposition I.15. Let π : X ′ → X and ρ : Y ′ → Y be projective birational mor-

phisms onto normal quasiprojective varieties of dimension n at least two. Let y be a

point on Y . Assume f : X → Y is a finite morphism that has a lift to a generically

finite morphism f ′ : X ′ → Y ′, and let D be a Cartier divisor on Y ′. Then

(deg f) · voly(D) =
∑

x∈f−1{y}

volx(f
′∗D).

Note that the index family for the sum is understood from the set theoretic perspective,

not from the scheme theoretic one.

Proof. Let i : Y \ {y} → Y and j : X \ f−1{y} be the natural open embeddings. As

a consequence of Remark I.6,

dim
j∗j

∗π∗OX′(f ′∗D)

π∗OX′(f ′∗D)
=

∑
x∈f−1{y}

h1
x(f

′∗D).

Looking at global sections, and by the finiteness of f ,

dim
j∗j

∗π∗OX′(f ′∗D)

π∗OX′(f ′∗D)
= dim f∗

(
j∗j

∗π∗OX′(f ′∗D)

π∗OX′(f ′∗D)

)
= dim

f∗j∗j
∗π∗OX′(f ′∗D)

f∗π∗OX′(f ′∗D)
.
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Chasing through the diagram

X ′ f ′
//

π

��

Y ′

ρ

��

X ′′
+ �

j′
88rrrrrrrrrrr f ′′

//

π′

��

Y ′′
, �

i′
::uuuuuuuuu

ρ′

��

X
f // Y

X \ f−1{y}
+ �

j

99sssssssssss
f ′

// Y \ {y}
, � i

;;vvvvvvvvv

obtained by restricting outside y and its preimages, and applying flat base change

([Har77, Prop. III.9.3]) for the flat open embedding i, one finds that

dim
f∗j∗j

∗π∗OX′(f ′∗D)

f∗π∗OX′(f ′∗D)
= dim

i∗i
∗ρ∗F(D)

ρ∗F(D)
,

with F denoting the torsion–free sheaf f ′
∗OX′ of rank deg(f) on Y ′. The result is

now a consequence of Lemma I.12 and of Corollary I.34.

We start drawing parallels with the theory of volumes of Cartier divisors on pro-

jective varieties.

Proposition I.16 (Finiteness). With notation as before, let D be a Cartier divisor

on X ′. Then volx(D) is finite.

Proof. We can assume thatX andX ′ are projective. ChooseH ample onX such that

π∗H −D is effective. From the restriction sequence for cohomology with supports,

h1
x(mD) ≤ h0(X \ {x}, π∗OX′(mD)) + h1(X, π∗OX′(mD)).

By the choice of H, we have

h0(X \ {x}, π∗OX′(mD)) ≤ h0(X \ {x},OX(mH)) = h0(X,OX(mH)).

The last equality holds because X is normal of dimension n ≥ 2. For any m ≥ 0, we

have a short exact sequence

0 → OX′(mD) → OX′(m · π∗H) → Qm → 0
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that defines Qm. Pushing forward and taking cohomology, one finds

h1(X, π∗OX′(mD)) ≤ h0(X ′, Qm) + h1(X,OX(mH)) ≤

≤ h0(X,OX(mH)) + h1(X ′,OX′(mD)) + h1(X,OX(mH)).

We conclude that

volx(D) ≤ 2 · vol(H) + ĥ1(D) + ĥ1(H).

The right–hand side is finite by [Kur06, Rem.2.2].

Remark I.17. Note the when x is a point on a nonsingular curve, even dimH1
{x}(OX)

is infinite. Therefore the assumption that dimX ≥ 2 is crucial.

Proposition I.18 (Homogeneity). With the same hypotheses as before,

volx(mD) = mn · volx(D)

for any integer m ≥ 0.

Proof. Following ideas in [Laz04, Lemma.2.2.38] or [Kur06, Prop.2.7], consider

ai =def lim sup
k→∞

h1
x((mk + i)D)

kn/n!
.

It is easy to see that

volx(D) = max
i∈{0,...,m−1}

{ ai
mn

}.

On the other hand, Lemma I.12 implies that a0 = . . . = am−1 = volx(mD).

I.2.4 Cones over polarized projective manifolds

Our prototype example, when we can compute local volumes and see an explicit

connection to the theory of volumes of divisors on projective varieties, is the case of

cones over polarized projective manifolds.
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Example I.19 (Cone singularities). Let (V,H) be a nonsingular projective polarized

variety of dimension n−1. When H is sufficiently positive, the vertex 0 is the isolated

singularity of the normal variety

X = Spec
⊕
m≥0

H0(V,O(mH)).

Blowing–up {0} yields a resolution of singularities for X that we denote Y . The

induced map π : Y → X is isomorphic to the contraction of the zero section E of

the geometric vector bundle

f : SpecOV
Sym•OV (H) → V.

We have f∗OY = Sym•OV (H). Being the zero section, E is isomorphic to V . Con-

cerning divisors on Y , we mention some well known results:

Pic(Y ) = f ∗Pic(V ),

and divisors on Y are determined, up to linear equivalence, by their restriction to E:

OY (D) = f ∗OV (D|E).

The conormal bundle of E in Y is:

OE(−E) ≃ OV (H).

Let L be a divisor on V and D = f ∗L. Since X is affine, Remark I.6 implies

h1
{0}(mD) = dim

∪
k≥0H

0(Y,OY (mD + kE))

H0(Y,OY (mD))
=
∑
k≥1

h0(OV (mL− kH)).

We aim to show that

vol{0}(D) = n ·
∫ ∞

0

vol(L− tH)dt,

the volume on the right hand side being the volume of Cartier divisors on the pro-

jective variety V . Note that the integral is actually definite, because H is ample. By
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homogeneity and a change of variables, we can assume we are computing the integral

over the interval [0, 1]. Since H is ample, the function t → vol(L− tH) is decreasing,

hence for all k > 0,

1

k
·

k∑
i=1

vol(L− i

k
H) ≤

∫ 1

0

vol(L− tH)dt ≤ 1

k
·
k−1∑
i=0

vol(L− i

k
H).

For any ε > 0, there exists s0 depending on ε and k such that for s > s0,

n

k
·
k−1∑
i=0

vol(L− i

k
H) ≤ n!

knsn−1
·
k−1∑
i=0

h0(skL− siH) + ε =

n!

knsn−1
·

k∑
i=1

h0(skL− siH) + ε+
h0(skL)− h0(skL− skH)

(sk)n−1 · k/n!
≤

≤
h1
{0}(skD)

(sk)n/n!
+ ε+

h0(skL)− h0(skL− skH)

(sk)n−1 · k/n!
.

Letting s tend to infinity,

n

k
·
k−1∑
i=0

vol(L− i

k
H) ≤

vol{0}(kD)

kn
+ ε+

vol(kL)− vol(kL− kH)

kn−1 · k/n
=

= vol{0}(D) + ε+
vol(L)− vol(L−H)

k/n
,

the equality taking place by the n and n− 1 homogeneity properties of vol0 and vol

respectively. Taking limits with k and ε, we obtain

n ·
∫ ∞

0

vol(L− tH)dt ≤ vol{0}(D).

The reverse inequality follows in similar fashion.

I.2.5 Basic properties of local volumes II

In this subsection we study the variational behavior of local volumes on relative

Neron–Severi spaces. As before, X is a normal complex quasiprojective variety of

dimension n at least two. We fix a point x ∈ X, and a projective birational morphism

π : X ′ → X. Unless otherwise stated, we do not assume that X ′ is also normal. We
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say that the Weil divisor D on X ′ lies over x if D = 0, or if π(D) = {x} set

theoretically. We know that the volume of Cartier divisors on projective varieties

increases in effective directions and variations can be controlled by a result of Siu

(see [Laz04, Thm.2.2.15] and [Laz04, Ex.2.2.23]). As we shall soon see, volx behaves

quite differently depending on whether the effective divisor lies over x or if it has

no components with this property. Controlling the variation of volumes in effective

directions is our key to proving continuity properties.

Lemma I.20. On X ′, let E be an effective Cartier divisor lying over x. Then for

any Cartier divisor D on X ′,

(i) h1
x(D) ≥ h1

x(D + E), and hence volx(D) ≥ volx(D + E).

(ii) h1
x(D)− h1

x(D + E) ≤ h0((D + E)|E).

(iii) If E = A−B, with A and B two π−ample divisors on X ′, then

volx(D)− volx(D + E) ≤ n · vol((D + A)|E),

with the volume in the right–hand side being the volume of divisors on the pro-

jective n− 1 dimensional sub-scheme E of X ′.

Proof. Denote by i the natural embedding X \ {x} ↩→ X and consider the diagram

π∗OX′(D)� _

��

� � // π∗OX′(D + E)� _

��
i∗i

∗π∗OX′(D) i∗i
∗π∗OX′(D + E)

We get an induced surjection between the cokernels of the vertical maps and part (i)

follows by Remark I.6. The same remark, together with the inclusion map

π∗OX′(D + E)

π∗OX′(D)
↩→ π∗OE(D + E)
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lead to part (ii). A repeated application of (ii) yields

h1
x(mD)− h1

x(mD +mE) ≤
m∑
k=1

h0((mD + kE)|E) ≤ m · h0(m(D + A)|E),

with the last inequality following from the assumptions on A and B that imply

the effectiveness of A|E and of (A − E)|E. Part (iii) follows by taking asymptotic

limits.

Quite opposite behavior is observed for effective divisors without components over

x. We can control variations in such directions only in the nonsingular case, but we

do have the tools to reduce our general questions to this case.

Lemma I.21. Assume X ′ is nonsingular, and let F be an effective divisor without

components lying over x. There exists a π−ample divisor −∆1−∆2 with ∆1 effective

lying over x and ∆2 effective without components over x, such that −∆1 −∆2 − F

is π−very ample. Write ∆1 = M −N , with M and N two π−ample divisors. Then

for any divisor D,

(i) h1
x(D + F ) ≥ h1

x(D) and volx(D + F ) ≥ volx(D).

(ii) h1
x(D + F )− h1

x(D) ≤ h0(D|∆1).

(iii) volx(D + F )− volx(D) ≤ n · vol((D +N)|∆1).

Proof. To justify the existence of ∆1 and ∆2, it is enough to show that there exists

an antieffective π−ample divisor. By [Har77, Thm.II.7.17], since π is projective and

birational, X ′ is the blow–up of some ideal sheaf on X. The relative Serre bundle of

the blow–up is both negative and π−ample.

Let i be the natural open embedding X \ {x} ↩→ X. Examining the diagram

π∗OX′(D)� _

��

� � // π∗OX′(D + F )� _

��
i∗i

∗π∗OX′(D) � � // i∗i
∗π∗OX′(D + F )



33

we get an induced injective morphism between the cokernels of the vertical maps if

we show that

π∗OX′(D) = π∗OX′(D + F ) ∩ i∗i
∗π∗OX′(D),

the intersection taking place in i∗i
∗π∗OX′(D + F ). It is enough to show this on the

level of sections over open neighborhoods of x. Let U be such an open set on X and

let V be its inverse image in X ′. Let E be the divisorial support of the set theoretic

fiber π−1(x). Since X ′ is in particular normal, we have to show

H0(V,OX′(D)) = H0(V,OX′(D + F )) ∩H0(V \ {E},OX′(D))

inside H0(V \ {E},OX′(D+F )) which is easily checked. Part (i) follows by Remark

I.6. Let A be a divisor without components over x that is π−linearly equivalent to

−∆1 −∆2 − F . By part (i) and Lemmas I.13 and I.20,

h1
x(D+F )−h1

x(D) ≤ h1
x(D+F+A+∆2)−h1

x(D) = h1
x(D−∆1)−h1

x(D) ≤ h0(D|∆1).

Consider the telescopic sum as in Lemma I.20 and the previous estimate:

h1
x(m(D + F ))− h1

x(mD) ≤
m∑
k=1

h0((mD − (k − 1)∆1)|∆1) ≤ m · h0(m(D +N)|∆1),

because (mN + (k − 1)∆1)|∆1 = ((m − k + 1)N + (k − 1)M)|∆1 is effective for any

1 ≤ k ≤ m. Part (iii) follows by taking asymptotic limits.

We aim to prove that volx(D) depends only on the π−relative numerical class of D

in N1(X ′/X).

Lemma I.22. Let T be a π−nef divisor on X ′. Then for any Cartier divisor D on

X ′, we have

volx(D + T ) ≥ volx(D).

Proof. By Lemma I.12, we can assume that X ′ is nonsingular. Let then F be a

π−ample divisor on X ′. For any m ≥ 1, there exists km > 0 such that km(mT + F )
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is π−linearly equivalent to an effective divisor without components lying over x. By

Lemmas I.13 and I.21, and by Proposition I.18, we have

(I.2.3)
volx(m(D + T ) + F )

mn
≥ volx(D).

By part (iii) of Lemma I.21, with the notation there,

volx(m(D + T ) + F )− volx(m(D + T )) ≤ n · vol((m(D + T )−∆1 +M)|∆1).

Since the support of ∆1 is of dimension n− 1, dividing by mn, and applying Propo-

sition I.18 and the inequality (I.2.3),

volx(D + T ) = lim
m→∞

volx(m(D + T ) + F )

mn
≥ volx(D).

Corollary I.23 (Relative numerical invariance). Let T be a π−numerically trivial

divisor on X ′. Then for any Cartier divisor D on X ′, we have

volx(D + T ) = volx(D).

Proof. Both T and −T are π−nef, hence

volx(D) ≤ volx(D + T ) ≤ volx((D + T ) + (−T )) = volx(D).

By Corollary I.23, the local volume volx is a well defined function on N1(X ′/X).

From the homogeneity result in Proposition I.18, it also has a natural extension to

N1(X ′/X)Q. By proving a Lipschitz–type estimate on this space, we are able to

extend to real coefficients.

Proposition I.24 (Continuity). With notation as before, the relative numerical real

space N1(X ′/X)R is finite dimensional. Fix a norm |·| on it. Then there exists a pos-

itive constant C such that for any A and B in the rational vector space N1(X ′/X)Q
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we have the Lipschitz–type estimate:

|volx(B)− volx(A)| ≤ C · (max(|A|, |B|))n−1 · |A−B|.

Proof. We show that we can assume that X ′ is nonsingular. Let f : Y → X ′ be a

resolution of singularities. Then f ∗ induces an injective morphism

N1(X ′/X) ↩→ N1(Y/X),

which does not change the values of volx by Corollary I.13. Hence it is sufficient to

prove our estimate for X ′ nonsingular.

We choose λ1, . . . , λk a basis for N1(X ′/X)R composed of integral π−very ample

divisors without components over x. Relative to this basis, we can assume that

|(a1, . . . , ak)| = max
1≤i≤k

|ai|.

With notation as in Lemma I.21, choose ∆1 and ∆2 two effective integral divisors

with the first lying over x whereas the second has no components over x such that for

all i ∈ {1, . . . , k}, the divisor −∆1 −∆2 − λi is π−linearly equivalent to one without

components lying over x. Write ∆1 = M −N with M and N two π−ample divisors.

Let

A = (a1, . . . , ak), B = (a1 + b1, . . . , ak + bk), N = (α1, . . . , αk)

with all entries being rationals. Since our estimate to prove and volx are both

n−homogeneous, we can further assume that all the entries are integers. Note that

the αi are fixed.

If we denote Bi = (a1, . . . , ai, ai+1 + bi+1, . . . , ak + bk) and set

Ai =

 Bi−1 + biN, if bi ≥ 0

Bi − biN, if bi ≤ 0

,
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then

|volx(B)− volx(A)| ≤
k∑

i=1

|volx(Bi−1)− volx(Bi)| ≤ n ·
k∑

i=1

vol(Ai||bi|∆1)

by Lemma I.21. Let

α = max
1≤i≤k

(|αi|).

Since λi||bi|∆1 is ample for all i, and vol(D|∆1) = Dn−1 ·∆1 if D is π−ample,

n ·
k∑

i=1

vol(Ai||bi|∆1) ≤ n(1 + α)n−1 · max
1≤i≤k

(|ai|+ |bi|)n−1 · ((
k∑

i=1

λi)
n−1 ·∆1) ·

k∑
i=1

|bi|.

Setting

C = nk · 2n−1(1 + α)n−1 · ((
k∑

i=1

λi)
n−1 ·∆1)

concludes the proof.

Putting together Propositions I.18 and I.24 with Corollary I.23, we have proved:

Theorem I.25. Notation being as above, volx is a well defined, n−homogeneous,

and locally Lipschitz continuous function on N1(X ′/X)R.

I.3 Further extensions

We say a few words about extending the results in the previous section to proper

generically–finite morphisms, and to algebraically closed fields of arbitrary charac-

teristic.

Remark I.26. By working in an affine neighborhood of x ∈ X, we can remove the

assumption that X is quasi-projective.

Remark I.27 (Proper morphisms). Using Chow’s lemma ([Har77, Ex.II.4.10]), and

adjusting the proof of Lemma I.12, we can extend our results to proper birational

morphisms π : X ′ → X.
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Remark I.28 (Generically finite morphisms). Let π : X ′ → X be a generically finite

proper morphism with X normal of dimension n ≥ 2. Let D be a Cartier divisor on

X ′, and let x be a point on X. Denote by X̃ the normalization of X ′, by D̃ the lift

of D, and by Ỹ the normalization of the Stein factorization ([Har77, Cor.III.11.5])

of π. Note that Ỹ is the Stein factorization of the induced map X̃ → X and that

the map X̃ → Ỹ is birational. Let {y1, . . . , yk} be the set theoretic preimage of x in

Ỹ . Then one can define

volx(D) =def
1

deg π

k∑
i=1

volyi(D̃).

Proposition I.15 and Lemma I.12 make this definition compatible with the birational

case, i.e.,

volx(D) = lim sup
m→∞

dimH1
{x}(X, π∗OX′(mD))

deg(π) ·mn/n!
.

Remark I.29 (Positive characteristic). We have used characteristic 0 in studying the

variational behavior of local volumes in Lemma I.21 where we reduced to X ′ being

nonsingular, which we could do upon replacing X ′ by a resolution of singularities.

In arbitrary characteristic, over an algebraically closed field, to extend the results of

this subsection, one first replaces X ′ by a regular alteration (see [dJ96]), and applies

the discussion above for generically finite proper morphisms to reduce to the case

where π is birational and X ′ is regular. The price to pay is that x is replaced by a

finite collection of points, but this is afforded by Proposition I.15 via Corollary I.34,

which extends in characteristic p under the assumption that X ′ is regular.

I.4 A convex–geometric approach to local volumes

Given a projective birational morphism π : X ′ → X onto the complex normal

algebraic variety X of dimension n ≥ 2, and given x ∈ X, and a Cartier divisor

D on X ′, in this section we realize volx(D) as a volume of a not necessarily convex
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body arising naturally as the bounded difference of two possibly unbounded convex

nested polyhedra. This approach has proven effective in [LM09], in particular for

proving that volumes of Cartier divisors are actual limits, and for developing Fujita–

type approximation results. It is plausible that one can use this point of view to

provide new proofs for the results in the second section of this chapter. By employing

techniques similar to [LM09], we extend these results to the local setting.

Assume, unless otherwise stated, that π : (X ′, E) → (X, x) is a log–resolution of

the normal affine (X, x), with x not necessarily an isolated singularity, and let

E = E1 + . . .+ Ek

be the irreducible decomposition of the reduced fiber over x. Since X is assumed to

be affine, for any divisor D on X ′, we have by Remark I.6 that

H1
{x}(X, π∗OX′(D)) =

H0(X ′ \ E,OX′(D))

H0(X ′,OX′(D))
.

The dimension of the above vector space is by definition h1
x(D). Spaces of sections

of multiples of line bundles on X ′ are studied in [LM09] via valuation–like functions

defined with respect to a choice of a complete flag. It is important to work with line

bundles on X ′ and not X ′ \ E. In this regard, the following lemma helps us handle

H0(X ′ \ E,OX′(mD)) for all m ≥ 0.

Lemma I.30. In the above setting, for any divisor D on nonsingular X ′ there exists

r > 0 such that for all m ≥ 0 there is a natural identification

H0(X ′ \ E,OX′(mD)) ≃ H0(X ′,OX′(m(D + rE))).

Proof. For any divisor L on X ′, identify

(I.4.1) H0(X ′,OX′(L)) = {f ∈ K(X) : div(f) + L ≥ 0}.
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With this identification, recall that

H0(X ′ \ E,OX′(mD)) =
∪
i≥0

H0(X ′,OX′(mD + iE)).

There exists an inclusion OX′(D) ⊆ π∗OX(H) for some effective Cartier (sufficiently

ample) divisor H on X. Since X is normal, rational functions defined outside subsets

of codimension two or more extend, and so

H0(X ′ \ E, π∗OX(mH)) = H0(X \ {x},OX(mH)) =

= H0(X,OX(mH)) = H0(X ′, π∗OX(mH)).

For all non-negative i and m, the following natural inclusions are then equalities:

H0(X ′,OX′(π∗mH)) ⊆ H0(X ′,OX′(π∗mH + iE)) ⊆ H0(X ′ \ E,OX′(π∗mH)).

Choose r so that the order of D + rE along any irreducible component of E is

strictly greater than the order of π∗H along the same component. For s > r, that

div(f) +m(D + sE) is effective implies that

f ∈ H0(X ′,OX′(m(D+sE))) ⊆ H0(X ′,OX′(m(π∗H+sE))) = H0(X ′,OX′(π∗mH)),

therefore div(f)+π∗mH is also effective. Looking at the orders along the components

of E, because of our choice of r, we actually get f ∈ H0(X ′,OX′(m(D + rE))).

Consider a complete flag of subvarieties of X ′, i.e., each is a divisor in the previous

subvariety:

Y• : X ′ = Y0 ⊃ E1 = Y1 ⊃ . . . ⊃ Yn = {y}

such that each Yi is nonsingular at y. Recall that E1 is a component of E, the reduced

fiber of π over x. Following [LM09, 1.1], for any divisor D on X ′, we construct a

valuation like function

ν = νD = (ν1, . . . , νn) : H
0(X ′,OX′(D)) → Zn ∪ {∞}
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having the following properties:

(i). ν(s) = ∞ if, and only if, s = 0.

(ii). ν(s+ s′) ≥ min{ν(s), ν(s′)} for any s, s′ ∈ H0(X ′,OX′(D)).

(iii). νD1+D2(s1 ⊗ s2) = νD1(s1) + νD2(s2) for any divisors Di on X ′, and any

si ∈ H0(OX′(Di)).

Each νi is constructed by studying orders of vanishing along the terms of the flag Y•.

For s ∈ H0(X ′,OX′(D)), define first ν1(s) as the order of vanishing of s along E1. If

f is the rational function corresponding to s via the identification (I.4.1), then ν1(s)

is the coefficient of E1 in div(f) +D. A non–unique local equation for Y1 in Y0 then

determines a section

s ∈ H0(Y1,OY0(D − ν1(s)Y1)|Y1)

having a uniquely defined order of vanishing along Y2 that we denote ν2(s), and the

construction continues inductively. More details can be found in [LM09, 1.1]. Note

that the νi assume only nonnegative values.

For any divisor D on X ′ and for m ≥ 0, with r given by Lemma I.30, let

I ′m = νm(D+rE)(H
0(X ′,OX′(m(D + rE)))),(I.4.2)

Im = νm(D+rE)(H
0(X ′,OX′(mD))),(I.4.3)

Bm = I ′m \ Im.(I.4.4)

By construction, I ′• =
∪

m≥0(I
′
m,m) and I• =

∪
m≥0(Im,m) are semigroups of

Nn+1. We abuse notation in identifying the sets Im and (Im,m). We will soon prove

(Lemma I.32) that

#Bm = dim
H0(X ′,OX′(m(D + rE)))

H0(X ′,OX′(mD))
= h1

x(mD).
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Assuming this result, we aim to show that volx(D) is the normalized volume of the

not necessarily convex body B obtained as the difference of two nested polytopes

arising as Okounkov bodies of some sub–semigroups of I ′• and I• respectively, each

satisfying the conditions [LM09, (2.3)-(2.5)]. For a semigroup Γ• ⊆ Nn+1 with Γm =

Γ• ∩ (Nn × {m}), these conditions are as follows:

(Strictness): Γ0 = {0}.

(Boundedness): Γ• ⊆ Θ•, for some semigroup Θ• ⊆ Nn+1 generated by the finite set Θ1.

(Denseness): Γ• generates Zn+1 as a group.

A semigroup Γ• satisfying the above conditions generates the closed convex cone

Σ(Γ) ⊂ Rn+1
≥0 .

This determines the convex polytope (the associated Okounkov body)

∆(Γ) = Σ(Γ) ∩ (Rn × {1}).

By [LM09, Prop.2.1], with the volume on Rn normalized so that the volume of the

unit cube is one,

volRn(∆(Γ)) = lim
m→∞

#Γm

mn
.

Our first challenge is to show that Bm (see I.4.4) is linearly bounded with m. With

Lemma I.32 still to prove, we show the following apparently stronger independent

result:

Lemma I.31. For a divisor D on the nonsingular X ′, with r as in Lemma I.30,

there exists N > 0 such that for all i and m, with valuation–like functions on

H0(X ′,OX′(m(D + rE)))
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as above, we have νi(s) ≤ mN for any

s ∈ H0(X ′,OX′(m(D + rE))) \H0(X ′,OX′(mD)),

e.g., νm(D+rE)(s) ∈ Bm.

Proof. Let H be a relatively ample integral divisor on X ′ and assume we have shown

that there exists such a linear bound N1 for ν1. Since Y1 is projective, as in [LM09,

Lemma.1.10], there exists N2 such such that for all real number 0 ≤ a < N1

((D + rE − aY1)|Y1 −N2Y2) ·Hn−2 < 0.

This provides the linear bound for ν2, and one iterates this construction for all i > 1.

Letting N be the maximum of all Ni completes the proof. We still have to construct

N1. The idea here is to apply a theorem of Izumi that shows that a regular function

with a high order of vanishing along E1 also vanishes to high order along the other

Ei. The technical part is to see how to apply this to rational functions giving sections

of OX′(m(D+ rE)). Since X is assumed to be affine, there exists a rational function

g such that

G =def div(g)−D − rE

is effective on X ′. With the identification in (I.4.1), for any

f ∈ H0(X ′,OX′(m(D + rE))),

the a priori rational function f · gm is regular on X ′. Let

div(f · gm) = C +
k∑

i=1

ciEi

with Ei the components of the reduced fiber E over x, with ci ≥ 0 for all i and C an

effective divisor without components over x. There exists R > 1 such that if c1 > 0,

then

R >
ci
cj

>
1

R
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for all i, j. This is an analytic result of Izumi ([Izu85]), extended to arbitrary char-

acteristic by Rees ([Ree89]). It follows that even when c1 = 0,

div(f · gm) = C +
k∑

i=1

ciEi ≥ C +
c1
R

· E.

If s is the regular section associated to f , i.e., its zero locus is

Z(s) = div(f) +m(D + rE),

then the above inequality can be rewritten as

Z(s) = C −mG+
k∑

i=1

ciEi ≥ C −mG+
c1
R

· E.

If ρ is the maximal coefficient of any Ei in G, and g1 is the coefficient of E1, we set

N1 = R(r + ρ− g1) and see that when ν1(s) = c1 −mg1 > mN1, then Z(s) ≥ mrE

showing that

s ∈ H0(X ′,OX′(mD)) ⊆ H0(X ′,OX′(m(D + rE))).

We now prove that Bm has the expected cardinality.

Lemma I.32. With notation as above, for all m ≥ 0, we have #Bm = h1
x(mD).

Proof. Without loss of generality, we can assume that m = 1. By Lemma I.31, the

set B1 is a bounded subset of a lattice, therefore it is finite. The idea is to reduce

the problem to the projective setting, where we apply [LM09, Lemma.1.3].

Recall that X is assumed to be affine. Let π : X ′ → X be a compactification of π

such that X \X is the support of an ample divisor H. By abuse of notation, we use

the same symbol for H and its pullback, and we use the same notation for D and its

closure in X ′. Note that the pullback of H is big and semiample. For all m ≥ 0, the

natural inclusion

H0(X ′,OX′(m(tH +D + rE))) ⊂ H0(X ′,OX′(m(D + rE)))
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is compatible with the valuation like functions νm(tH+D+rE) and νm(D+rE) that we

construct when working over X ′ and X ′ respectively with the flag Y• and the obvi-

ous compactification that replaces Y0 = X ′ by X ′ and leaves the remaining terms

unchanged. We have the same compatibility for νm(tH+D) and νmD. Note also that

H0(X ′,OX′(D + rE)) =
∪
t≥0

H0(X ′,OX′(tH +D + rE))

and a similar statement holds for D. When t is sufficiently large so that

(I.4.5) H1(X, π∗OX′(D)⊗OX(tH)) = 0,

excision and the natural cohomology sequence on X show that

(I.4.6) H1
{x}(X, π∗OX′(D)) ≃ H0(X ′,OX′(tH +D + rE))

H0(X ′,OX′(tH +D))
.

Note that the r provided by Lemma I.30 also works to prove

H0(X ′,OX′(tH +D + rE)) = H0(X ′ \ E,OX′(tH +D)).

Denote

W ′
t = H0(X ′,OX′(tH +D + rE))

Wt = H0(X ′,OX′(tH +D))

W ′ =
∪
t≥0

W ′
t = H0(X ′,OX′(D + rE))

W =
∪
t≥0

Wt = H0(X ′,OX′(D)).

With the intersection taking place in W ′, note that

Wt = W ′
t ∩W.

Let t be large enough so that the vanishing (I.4.5) takes place, such that ν(W ′
t)

contains the set N of all elements in ν(W ′) satisfying the bound in Lemma I.31, and

such that ν(Wt) contains all elements in ν(W ) ∩N . We show that

ν(W ′
t) \ ν(Wt) = ν(W ′) \ ν(W ) = B1.
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Since B1 ⊂ N by Lemma I.31, all its elements are in ν(W ′
t ) by the choice of t, and

are not in ν(Wt) ⊂ ν(W ). Therefore B1 ⊆ ν(W ′
t) \ ν(Wt). Again by the choice of t,

any element in ν(W ′
t) \ ν(Wt) that is not in B1 is also not in N . Let σ ∈ W ′

t , such

that ν(σ) ∈ (ν(W ′
t) \ ν(Wt)) \B1. Then ν(σ) ∈ ν(W ′

t) \N , and again by Lemma I.31

we obtain σ ∈ W , hence σ ∈ W ∩W ′
t = Wt, and ν(σ) ∈ ν(Wt), which is impossible.

Now #B1 = #(ν(W ′
t) \ ν(Wt)) = #ν(W ′

t) − #ν(Wt) = h1
x(D) by (I.4.6) and by

[LM09, Lemma.1.3], a result that shows #ν(W ′
t) = dimW ′

t , and the analogous result

for Wt.

We next construct subsemigroups Γ′
• ⊂ I ′• and Γ• ⊂ I•, each satisfying the prop-

erties [LM09, (2.3)-(2.5)] mentioned above on page 40, and such that Bm = Γ′
m \Γm

for all m. With notation as in the proof of Lemma I.32, and with t sufficiently large

so that tH +D is big, let

Sm = νm(tH+D+rE)(H
0(X ′,OX′(m(tH +D)))).

If we pick the flag Y• so that Yn = {y} is not contained in any Ei for i > 1 1, then

Sm = translation of νm(tH+D)(H
0(X ′,OX′(m(tH+D)))) by (mr, 0, 0 . . . , 0,m) ∈ Nn+1.

It follows from [LM09, Lemma 2.2] that S• satisfies the conditions [LM09, (2.3)-

(2.5)]. By [LM09, Lemma 1.10], there exists a linear bound for S• in the sense of

Lemma I.31. Let N be the greatest of the two linear bounds provided by Lemmas

I.31 and [LM09, Lemma 1.10]. If xi denotes the i-th coordinate on Nn, let

Γm = {(x1, . . . , xn) ∈ Im : xi ≤ mN for all 1 ≤ i ≤ n}

and construct Γ′
• similarly. These semigroups satisfy the strictness ([LM09, (2.3)])

and boundedness ([LM09, (2.4)]) conditions. They also each generate Zn as a group

1We thank Tommaso de Fernex for suggesting this choice
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because they contain S• which does. By Lemma I.31, we have Bm = Γ′
m\Γm. Letting

B = ∆(Γ′) \∆(Γ), we prove:

Proposition I.33. With notation as above, we have

volx(D) = n! · volRn(B),

where volRn(•) is the usual Euclidean volume on Rn (normalized so that the volume

of the unit cube is 1).

Proof.

volx(D) = lim sup
m→∞

h1
x(mD)

mn/n!
= n! · lim sup

m→∞

#Bm

mn
= n! · lim sup

m→∞

#Γ′
m −#Γm

mn
.

By [LM09, Prop.2.1], the lim sup is lim, and

lim
m→∞

#Γ′
m −#Γm

mn
= volRn(∆(Γ′) \∆(Γ)) = volRn(B).

Corollary I.34. Let π : X ′ → X be a projective birational morphism onto the

complex normal algebraic X of dimension n at least two, and let x be a point on X.

Then for any Cartier divisor D on X ′, we have

volx(D) = lim
m→∞

h1
x(mD)

mn/n!
.

Proof. Let f : X̃ → X ′ be a projective birational morphism such that ρ = π◦f : X̃ →

X is a log–resolution of (X, x). Since volx(D) is local around x, we can also assume

that X is affine. By the proof of Lemma I.12, the sequences h1
x(mD) and h1

x(mf ∗D)

have the same asymptotic behavior. Therefore we have reduced to the setting of

Proposition I.33 where we saw that lim replaces lim sup via [LM09, Prop.2.1].

Remark I.35. The natural approach to the problem of expressing volx(D) as a volume

of a polytope and replacing lim sup by lim is to write Bm = Γ′
m \ Γm, with Γ′

• and
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Γ• semigroups constructed on compacfications of π, in the same style as we did for

S•, and then apply [LM09, Thm.2.13]. This approach is successful when we have an

analogue of [LM09, Lemma.3.9], i.e., when we can show that, at least asymptotically,

the groups H1(X, π∗OX′(mD) ⊗ OX(mH)) vanish for some ample divisor H on a

projective compactification π of π. We do not know if such a result holds for any

Cartier divisor D on X ′, but we will see it when the graded family am = π∗OX′(mD)

is of the form bm outside x, for all m ≥ 0, for some coherent fractional ideal sheaf b

on X \ {x}. This happens for example when D lies over x, or when D = KX̃ + aE

with a ∈ Z on a log–resolution π : (X̃, E) → (X, x) of a normal isolated singularity.

I.5 A Fujita–type approximation result

The content of the classical Fujita approximation statement is that the volume of

a Cartier divisor D on a projective variety X of dimension n can be approximated

arbitrarily closely by volumes vol(A) where A is a nef Cartier Q−divisor on some

blow–up π : X ′ → X, such that π∗D−A is effective. The Fujita–type approximation

result in [LM09, Thm.3.8] states that for any graded sequence a• ofm−primary ideals,

ĥ1
x(a•) = lim

p→∞

e(ap)

pn
.

We remove the m−primary restriction in a particular case.

Theorem I.36. Let π : X ′ → X be a projective birational morphism onto a normal

quasiprojective variety X of dimension n ≥ 2. Fix x ∈ X, and let D be a Cartier

divisor on X ′. Assume that there exists a coherent fractional ideal sheaf b on X \{x}

such that π∗OX′(pD)|X\{x} = bp for all p ≥ 0. Then

volx(D) = lim
p→∞

ĥ1
x(π∗OX′(pD))

pn
.
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Proof. Since our invariants are local, we can assume that X is projective, and choose

an ample divisor A. Up to replacing D by D − mπ∗A for some large m, we can

assume that D is antieffective. Denote

ap = π∗OX′(pD).

The negativity assumption on D shows that these are actually ideal sheaves. Inspired

by [LM09, Lemma.3.9], we claim that there exists an ample divisor H on X such

that for every p, k > 0,

(I.5.1) H1(X,OX(pkH)⊗ (π∗OX′(pD))k) = 0,

and the subspaces H0(X,OX(pH) ⊗ π∗OX′(pD)) ⊆ H0(X,OX(pH)) determine ra-

tional maps

ϕp : X // PH0(X,OX(pD))

that are birational onto their image for all p > 0.

Let σ : Y → X be the blow–up of a1, and let E be the exceptional divisor. In

particular, OY (−E) is σ−ample. Upon replacing A by a sufficiently high multiple, we

can assume that σ∗A−E is ample on Y . By [Laz04, Lemma.5.4.24], σ∗OY (−rE) = ar1

for r ≫ 0. From Serre vanishing on Y , from the σ−ampleness of −E, using the Leray

spectral sequence, we obtain

H1(X, ap1 ⊗OX(pA)) = 0

for sufficiently large p. This holds for all p ≥ 1, if we again replace A by a multiple.

The hypothesis on D implies that
akp

apk1
is supported at x. From the short exact

sequences

0 → apk1 ⊗OX(pkA) → akp ⊗OX(pkA) →
akp

apk1
⊗OX(pkA) → 0,
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we then deduce (I.5.1) with H = A. The birationality of ϕp is implied by the case

p = 1 via the inclusion H0(X, ap1⊗OX(pH)) ↩→ H0(X, ap⊗OX(pH)). We can insure

that ϕ1 is birational, if we replace H by a multiple.

We now follow the ideas of the proof of [LM09, Thm.3.8]. Denote

Wp = H0(X, ap ⊗OX(pH)),

W ′
p = H0(X, ãp ⊗OX(pH)),

where ãp = ı∗ı
∗ap, and ı : X \ {x} is the open embedding. Setting cp = ı∗(b

p), note

that

ãkp = ãpk = cpk

for all p, k > 0. Write wp = dimWp, and w′
p = dimW ′

p. Following [LM09], define

vol(W•) = lim sup
p→∞

wp

pn/n!
.

Thanks to [LM09, Rem.2.14], the lim sup can be replaced by lim. Because ãp/ap is

supported at x, from the vanishing (I.5.1), one finds

h1
x(ap) = w′

p − wp

for all p > 0. Taking limits,

(I.5.2) volx(D) = ĥ1
x(a•) = vol(W ′

•)− vol(W•).

In particular, with the hypothesis on D, the lim sup in the definition of volx(D) can

be replaced by lim. The surjection cpk/a
k
p → cpk/apk then implies

(I.5.3) ĥ1
x(a•) ≤

ĥ1
x(ap)

pn

for all p > 0. Let

Vp,k =def Im(SymkH0(X, ap ⊗OX(pH)) → H0(X, apk ⊗OX(pkH))).
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Note that Vp,k ⊂ H0(X, akp ⊗OX(pkH)). Then

(I.5.4) vp,k =def dimVp,k =≤ h0(akp ⊗OX(pkH)) = w′
pk − h1

x(a
k
p),

with the equality holding by (I.5.1). By the Fujita approximation theorem for graded

linear series ([LM09, Thm.3.5]), for any ε > 0, there exists p0 such that if p ≥ p0,

then

lim
k→∞

vk,p
pnkn/n!

≥ vol(W•)− ε.

Together with (I.5.1), and with the remark that every lim sup in our case is lim, we

obtain

vol(W•)− ε ≤ vol(W ′
•)−

ĥ1
x(ap)

pn

for all p ≥ p0. From (I.5.2) and (I.5.3), the conclusion follows by taking limits.

Corollary I.37. Let I be a coherent fractional ideal sheaf on X, and consider the

graded family ap = Ip. By the the proof of the theorem, the lim sup in the definition

of ĥ1
x(I) can be replaced by lim, and this limit is finite by Proposition I.16 (compare

[CHST05, Thm.1.3] and [Cut10, Thm.1.3]).

Remark I.38. Using Lemma I.13 and Lemma I.10, Theorem I.36 implies that volx(D)

is the limit of local volumes of Q−Cartier divisors that are nef over X on blow–ups

of X ′, thus realizing the analogy with the global version of the Fujita approximation

theorem.

Remark I.39. The highly restrictive condition on D in our Fujita approximation

result is automatic when π is an isomorphism outside x, which is the case for good

resolutions of normal isolated singularities π : (X̃, E) → (X, x). Even when π is only

a log–resolution of a normal isolated singularity, the divisor KX̃ + E satisfies the

condition of Theorem I.36 since X \ {x} is nonsingular. We do not know if Theorem

I.36 holds for arbitrary D.
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I.6 Vanishing and convexity

Our first objective in this section is to study the vanishing of local volumes. We

begin by recalling a few general facts about exceptional Cartier divisors. If π : X ′ →

X is a projective birational morphism of quasiprojective complex varieties with x a

point on the normal variety X of dimension n at least two, the relative numerical

space N1(X ′/X)R contains two interesting subspaces. The first and largest of the two

is the space of π−exceptional divisors that we denote Exc(π). Any exceptional divisor

is uniquely determined by its relative numerical class (cf. [BdFF11, Lemma.1.9]):

Lemma I.40. With notation as above, let α ∈ N1(X ′/X)R. Then there exists at

most one exceptional R−Cartier divisor D on X ′ whose relative numerical class over

X is α. In particular, when X ′ is normal and Q−factorial, the numerical classes of

the irreducible π−exceptional divisors form a basis of Exc(π).

Proposition I.41. Assume that X and X ′ are both normal and Q−factorial. Then

N1(X ′/X)R = Exc(π).

Proof. We observe that any Cartier divisor D on X ′ is π−linearly equivalent, over

Q, to an exceptional divisor via

D = π∗(π∗D) + (D − π∗π∗D).

The pullback by π is well defined since the Weil divisor π∗D is Q−Cartier by as-

sumption, and D − π∗π∗D is clearly exceptional.

A subspace of Exc(π) that we have seen is relevant to the study of local volumes is

formed by the divisors lying over x. We denote it by Excx(π). Studying the behavior

of the local volume function on this space will prove important in connecting our work

to the study of volumes for some b−divisors as developed in [BdFF11]. A particularly

useful result, drawing on [KMM87, Lemma.1-3-2], is [dFH09, Lemma.4.5]:
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Lemma I.42. Assume that X ′ is nonsingular. Let P and N be effective divisors on

X ′ without common components and assume that P is π−exceptional. Then

π∗OX′(P −N) = π∗OX′(−N).

It is natural to ask which divisors in N1(X ′/X)R have zero local volume over x.

The answer to this question is well understood for volumes of Cartier divisors on

projective varieties; we know that vol(D) > 0 is equivalent to D being in the interior

of the cone of pseudoeffective divisors (see [Laz04, Ch.2.2.C]). In the local setting,

we start by looking at the fiber over x.

Proposition I.43. For D ∈ Excx(π), the vanishing volx(D) = 0 is equivalent to D

being effective.

Proof. We can assume that X is projective, that π is a log–resolution, and that D is

a divisor with integral coefficients. If D is effective, then π∗OX′(mD) = OX for all

m ≥ 0 and so volx(D) = 0. Using Lemma I.42, to complete the proof, it is enough

to show that if −D is effective, then volx(D) > 0.

Let m denote the maximal ideal sheaf on X corresponding to x, and let e(I)

denote the Hilbert–Samuel multiplicity at x of an m−primary ideal sheaf I. The

idea is to show that there exists r > 0 such that for all m ≥ 1 we have inclusions

π∗OX′(mD) ⊆ m[m/r],

because then e(π∗OX′(mD)) ≥ e(m[m/r]), leading to volx(D) ≥ e(m)/rn > 0. This is

a consequence of a result of Izumi (see [Izu85, Cor.3.5], or the presentation of Rees

in [Ree89]).

For arbitrary Cartier divisors on X ′ we can also give a precise answer to the

question of the vanishing of volx, but one that does not provide satisfying geometric

intuition.
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Proposition I.44. With the usual notation, if D is a Cartier divisor on X ′, then

volx(D) = 0 if, and only if, h1
x(mD̃) = 0 for all m ≥ 0, where D̃ is the pullback of

D to the normalization of X ′.

Proof. Since volx(D) = volx(D̃), and since h1
x(mD̃) is invariant under pullbacks from

the normalization of X ′ to another birational model of X, we can assume that X ′

is nonsingular and D̃ = D. One implication is clear. Since volx is n−homogeneous,

we can assume without loss of generality that h1
x(D) ̸= 0. This means that D is

linearly equivalent to a divisor F + G, with F effective (at least in a neighborhood

of E) without components over x, and with G a non–effective divisor lying over x.

By Lemmas I.13, I.21, and by Proposition I.43, we then have

volx(D) = volx(F +G) ≥ volx(G) > 0.

Remark I.45. It is a consequence of Lemmas I.13, I.21, and I.42 that if D is an

exceptional divisor (not necessarily effective) without components lying over x on

the nonsingular X ′, then volx(D) = 0.

The conclusion of Proposition I.44 is not sufficient for understanding the vanishing

of the local volume function on N1(X ′/X)R. We can prove the following partial

result:

Proposition I.46. With the usual notation, let Cx denote the open cone in Excx(π)

spanned by effective classes whose support is the entire divisorial component of the

set theoretic fiber π−1{x}. Then there exists an open convex cone C in N1(X ′/X)R

such that C ∩ Excx(π) = Cx, and volx(D) = 0 for any D ∈ C.

Proof. We can assume that X ′ is nonsingular. Fix E ∈ Cx. We first show that

for any Cartier divisor D on X ′ it holds that volx(D + tE) = 0 for t ≫ 0. By
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the monotonicity properties in Lemmas I.20 and I.21, we can further assume D is

effective without components over x. With the notation in Lemma I.21 and by the

approximation result there,

volx(D + t∆1) = volx(D + t∆1)− volx(t∆1) ≤ vol((t(∆1 +∆2) +N)|∆1) = 0

for t ≫ 0 since (−∆1 −∆2)|∆1 is ample and ∆2|∆1 is effective. There exists positive

r such that rE > ∆1. Then volx(D + trE) ≤ volx(D + t∆1) by Lemma I.20 and we

conclude that volx(D + tE) = 0 for t ≫ 0.

Working as in the proof of Proposition I.24, the result follows.

We have seen in Theorem I.25 that volx is a continuous and n−homogeneous

function on N1(X ′/X)R. These properties are shared by volumes of Cartier divisors

on projective varieties (see [Laz04, Ch.2.2.C] or [LM09]). In the projective setting,

it is known that vol1/n is concave on the big cone ([LM09, Cor.4.12]), meaning that

vol(ξ + ξ′)1/n ≥ vol(ξ)1/n + vol(ξ′)1/n

for any classes ξ and ξ′ with nonzero volume. In our local setting, it is easy to

construct examples of divisors E − E ′ lying over x such that volx(E − E ′) and

volx(E
′ −E) are both nonzero. Therefore we cannot expect concavity. Generalizing

[BdFF11, Rem.4.17] and [BdFF11, Thm.4.15], results developed in the setting of

isolated singularities, we show that vol1/nx is convex when we restrict to divisors lying

over x.

Proposition I.47. With notation as above, vol1/nx : Excx(π) → R≥0 is convex.

Proof. The idea is that by the Fujita approximation result in [LM09, Thm.3.8], when

D lies over x, we can understand volx(D) as an asymptotic Hilbert–Samuel multi-

plicity. Then we apply Teissier’s inequality ([Laz04, Ex.1.6.9]). Let m denote the
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maximal ideal corresponding to x ∈ X. For an m−primary ideal sheaf I on X,

denote by e(I) its Hilbert–Samuel multiplicity.

By the continuity and homogeneity of volx, we can reduce to working with Cartier

Z−divisors lying over x. LetD andD′ be two such, and construct the graded families

of m−primary ideals am = π∗OX′(mD) and a′m = π∗OX′(mD′). By [LM09, Thm.3.8],

volx(D) = lim
m→∞

e(am)

mn

and a similar equality holds for volx(D
′). Denoting bm = π∗OX′(m(D + D′)), one

has

am · a′m ⊆ bm,

therefore e(bm) ≤ e(am · a′m). Teissier’s inequality in [Laz04, Ex.1.6.9] then implies

e(bm)
1/n ≤ e(am · a′m)1/n ≤ e(am)

1/n + e(a′m)
1/n.

The conclusion follows again by [LM09, Thm.3.8].

Remark I.48. Note that we did not restrict ourselves to working with classes having

positive volume as was necessary in the projective setting.

When π is an isomorphism outside x and X is Q−factorial, Propositions I.47

and I.41 show that vol1/nx is convex on N1(X ′/X)R. We construct a toric example

showing that this does not hold for general π.

Example I.49. Let σ ⊂ R3 be the cone spanned by the vectors (0, 1, 0), (0, 0, 1) and

(1, 0,−2). Let Σ be a refinement obtained by adding the rays spanned by (1, 1, 1) and

(1, 0, 0), such that X(Σ) is Q−factorial. These determine a proper birational toric

morphism π : X(Σ) → X(σ) that is not an isomorphism outside xσ. Let x = xσ be

the torus fixed point of X(σ). On X(Σ), let D and E be the torus invariant divisors

associated to the rays (1, 0,−2) and (1, 1, 1) respectively. We show that

volx(2D − 1

2
E)1/3 + volx(2D − 3

2
E)1/3 < volx(4D − 2E)1/3 = 2 · volx(2D − E)1/3.
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The idea is to study the function volx(2D − tE). By Example I.8, the volume

volx(2D − tE) is computed as the normalized volume of the body

B(t) = {(x, y, z) ∈ R3 : x ≥ 0, y ≥ 0, z ≥ 0, x− 2z ≥ −2, x+ y + z ≤ t}.

Let S(t) be the simplex generated by (0, 0, 0), (t, 0, 0), (0, t, 0) and (0, 0, t). We have

B(t) = S(t) for 0 ≤ t ≤ 1 and B(t) ( S(t) for t > 1. Figure I.2 shows the polyhedron

B(3/2) corresponding to 2D − 3
2
E. The desired inequality follows easily from the

linearity of vol(S(t))1/3.

(0,3/2,0)

(3/2,0,0)

(0,0,0)

(1/3,0,7/6)

(0,0,1)

(0,1/2,1)

Figure I.2: B(3/2)



CHAPTER II

Plurigenera and volumes for normal isolated singularities

In this chapter we introduce a notion of volume for complex normal isolated

singularities of dimension at least two. This volume, which we will denote vol(X, x),

is obtained in the second section as an asymptotic invariant associated to the growth

rate of the plurigenera in the sense of Morales or Watanabe. We generalize to higher

dimension several results of Wahl ([Wah90]) who introduced this volume on surfaces,

and translate to our setting several results of Ishii ([Ish90]). The first section is

devoted to a brief review of Wahl’s work. The third section studies the Knöller

plurigenera and the associated volume volγ(X, x) that, using results or Ishii ([Ish90]),

and of de Fernex and Hacon ([dFH09]), relates to the study of canonical singularities.

We end with a series of examples. The results of this chapter are the motivation for

our work.

II.1 Wahl’s volume for normal surface singularities

In this expository section we review Wahl’s work on normal surface singularities.

Recall that normal surface singularities are automatically isolated, because normality

implies smoothness in codimension one. In [Wah90], whose notation we use through-

out this section, Wahl introduced a volume for normal isolated surface singularities

as a characteristic number of the link of the singularity. What this means, in our

57
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setting, is that this invariant of the singularity is a topological invariant of the link,

and it satisfies a certain monotonicity property for finite maps. Before defining this

volume, we recall the basics of relative Zariski decompositions for divisors on good

resolutions of normal surface singularities.

II.1.1 Relative Zariski decompositions

We review Sakai’s work on relative Zariski decompositions. The reference is

[Wah90]. Given a good resolution π : (X̃, E) → (X, x) of a normal surface sin-

gularity1, denote by E1, . . . , Es the components of E. These meet transversally, no

more than two at a point. The intersection form (Ei · Ej) is known to be negative

definite. Given a line bundle L on X̃, by the nondegeneracy of the intersection form,

there exists a unique

(a1, . . . , as) ∈ Qs

such that

L · Ei = (
∑
i

aiEi) · Ej.

The intersection on the left makes sense as deg(L|Ei
), because the Ei are all complete

smooth curves. This defines an adjoint homomorphism

PicX̃ →
⊕
i

Q · Ei =def EQ.

We denote the image of L by L.

Proposition II.1. [Sakai] Let L ∈ EQ be the image of a Q−Cartier divisor. There

exists a unique relative Zariski decomposition L = P +N in EQ such that:

(i) P is π−nef, i.e., P · Ei ≥ 0 for all i.

(ii) N is effective, i.e., a nonnegative combination of the Ei.

1This means that π is a resolution of singularities restricting to an isomorphism away from x, the scheme theoretic
image of x is a Cartier divisor whose reduced support, E, has simple normal crossings
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(iii) P ·N = 0. This is equivalent to P ·Ei = 0 whenever Ei is in the support of N .

Proof. We only prove the existence of such a decomposition. If L is π−nef, we set

P = L and N = 0. Otherwise, let P0 = L, and denote A1 =def {j : P0 · Ej < 0}.

Using the negativity of the intersection form, define N1 =
∑

j∈A1
bjEj by N1 · Ej =

P0 ·Ej < 0 for all j ∈ A1. Let P1 = P0 −N1. Note that P1 ·N1 = 0 by construction.

Also, N1 is effective: If N1 = A−B, with A and B nonnegative combinations of the

Ej with j ∈ A1, sharing no components, then 0 < A · B − B · B = N1 · B < 0. If

P1 is π−nef, we are done. Otherwise, let A2 = {j : P1 · Ej < 0} ∪ A1, and define

N2 =
∑

j∈A2
bjEj by N2 ·Ej = P1 ·Ej < 0 for j ∈ A2. As before, N2 is effective, and

P2 =def P1 − N2 is orthogonal to all curves corresponding to the index set A2. If it

is not π−nef, then continue this procedure.

We refer to P as the π−nef part of L.

Remark II.2. Relative Zariski decompositions are functorial under pullbacks in the

following sense: Given f : (Y, y) → (X, x) a finite map of normal complex isolated

surface singularities, i.e., f−1{x} = {y} as sets, and f̃ : (Ỹ , F ) → (X̃, E) a generically

finite lifting of f between good resolutions, f̃ ∗ induces a morphism EQ → FQ that

preserves the effective and the nef properties for divisors. If L = P + N is the

relative Zariski decomposition of L on X̃, then f̃ ∗L = f̃ ∗P + f̃ ∗N is the relative

Zariski decomposition of f̃ ∗L on Ỹ .

II.1.2 The definition and properties of the volume of an isolated normal
surface singularity

Definition II.3. Given π : (X̃, E) → (X, x) a good resolution of a normal complex

isolated surface singularity, define

vol(X, x) =def −P · P,
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where P = PX̃ is the π−nef part of KX̃ + E.

We collect Wahl’s main results (whose generalizations we investigate in the next

section) from [Wah90] in the following:

Theorem II.4 (Wahl). Let (X, x) be a a normal complex isolated surface singularity.

Then

(i) −P · P is independent of the chosen good resolution, i.e., the volume of (X, x)

is well defined.

(ii) −P · P = 0 if, and only if, (X, x) is log–canonical, which by definition means

that P = 0.

The next two properties describe what it means for −P · P to be a characteristic

number of the link of the singularity.

(iii) −P · P is a topological invariant of the link of (X, x).

(iv) Given (Y, y) → (X, x) a degree d, finite surjective map of isolated surface sin-

gularities,

vol(Y, y) ≥ d · vol(X, x).

We have equality when the map is unramified off y.

The next property expresses vol(X, x) as a local volume.

(v) Given π : (X̃, E) → (X, x) a good resolution,

dim
H0(X̃ \ E,O(n(KX̃ + E)))

H0(X̃,O(n(KX̃ + E)))
=

n2

2
(−P · P ) +O(n).

Proof. Given π : (X̃, E) → (X, x) and π′ : (X ′, F ) → (X, x) two good resolutions, we

can dominate both by a third, and because rational maps between smooth surfaces

can be resolved by a sequence of blow–ups and blow–downs of points, we can assume
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that ρ : (X ′, F ) → (X̃, E) is the blow–up of a point p that we can choose on

E, because good resolutions are isomorphic away from x. The point p is either a

smooth point of E, or an intersection of exactly two of its components. Let F1 be

the ρ−exceptional component of F over p. Then

KX′ + F = ρ∗(KX̃ + E) + δ · F1,

with δ ∈ {0, 1} according to the case above that p falls into. By the projection

formula,

ρ∗PX̃ · F1 = 0,

and it follows that PX′ = ρ∗PX̃ . Independence of the resolution is then a consequence

of the projection formula. Part (ii) is clear from the negativity of the intersection

form on EQ. This result does not fully generalize to arbitrary dimension. We do

not reproduce the proof of part (iii) here, because it is not a result that generalizes

to higher dimension. We prove (iv) in the next section in arbitrary dimension as

Theorem II.10. Part (v) says that vol(X, x) = volx(KX̃ + E). This is actually the

way that we define vol(X, x) in the next section. The original proof for (v) in the

surface case uses a Riemann–Roch–type argument that is very specific to dimension

two. A result from [BdFF11], together with work we do in the last chapter, will give

a more general proof.

Corollary II.5.

(i) If f : (Y, y) → (X, x) is a finite morphism of normal complex isolated surface

singularities, such that (Y, y) is log–canonical, then so is (X, x).

(ii) If (X, x) admits an endomorphism of degree at least two, then it is log–canonical.

Remark II.6. The surface case has its computational advantages. [Wah90, Prop. 2.3]

gives an algorithm for computing −P · P from the resolution dual graph, which by
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the conventions of [Wah90] contains the information of the intersection form on EQ.

II.2 The Morales and the Watanabe plurigenera and vol(X, x)

The geometric genus of a normal complex quasiprojective isolated singularity

(X, x) of dimension n at least two, is defined as

pg(X, x) =def dimC(R
n−1π∗OX̃)x,

for π : X̃ → X an arbitrary resolution of singularities. Work of S.S.T. Yau in [Yau77]

shows that this invariant of the singularity can be computed analytically on X as

pg(X, x) = dim
H0(U \ {x},Oan

X (KX))

L2(U \ {x})
,

where U is a sufficiently small Stein neighborhood of x in X, and L2(U \ {x}) is the

set of all square integrable canonical forms on U \ {x}. Motivated by this alternate

description, in [Wat80] the plurigenera of (X, x) were introduced as

δm(X, x) =def dim
H0(U \ {x},Oan

X (mKX))

L2/m(U \ {x})
,

with L2/m(U \ {x}) now denoting the set of holomorphic m−canonical forms ω on

the sufficiently small U \ {x} that satisfy
∫
U\{x}(ω ∧ ω̄)1/m < ∞.

The proofs of [Sak77, Thm.2.1], [Sak77, Thm.1.1], and remarks in [Ish90] provide

an algebro–geometric approach to plurigenera at the expense of working again on

resolutions. Let π : X̃ → X be a log–resolution of (X, x) with E the reduced fiber

over x, let U be an arbitrary affine neighborhood of x and let Ũ be the preimage of

U in X̃ via π. Then working in the algebraic category,

δm(X, x) = dim
H0(Ũ \ E,OX̃(mKX̃))

H0(Ũ ,OX̃(mKX̃ + (m− 1)E))
= dim

OX(mKX)

π∗OX̃(mKX̃ + (m− 1)E)
,

with the last equality holding since U is affine, for choices of Weil canonical divisors

on X and X̃ such that π∗KX̃ = KX̃ as Weil divisors.
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Definition II.7. Generalizing work in [Wah90] for the case of surfaces, the volume

of the normal isolated singularity (X, x) of dimension n is defined as

vol(X, x) =def lim sup
m→∞

δm(X, x)

mn/n!
.

We would like to understand this volume as a local volume of some Cartier divisor on

a log–resolution of (X, x). For this, it turns out that a more convenient plurigenus

is the one introduced by Morales in [Mor87]:

λm(X, x) =def dim
H0(Ũ \ E,OX̃(mKX̃))

H0(Ũ ,OX̃(m(KX̃ + E)))
,

for π : X̃ → X a log–resolution with E the reduced fiber over x and Ũ the inverse

image in X̃ via π of an affine neighborhood of x. By Remark I.6,

λm(X, x) = h1
x(m(KX̃ + E)).

By [Ish90, Thm.5.2],

vol(X, x) = lim sup
m→∞

λm(X, x)

mn/n!

and we see that

vol(X, x) = volx(KX̃ + E)

on any log–resolution.

Remark II.8. The classical literature usually requires that we work with good resolu-

tions, i.e., that π : X̃ → X is a log–resolution that is an isomorphism outside x. To

prove that the plurigenera are independent of the log–resolution, one applies the log-

arithmic ramification formula in [Iit77, Thm.11.5], using that any two log–resolutions

can be dominated by a third, and that X \ {x} is nonsingular.

Remark II.9. If follows from Corollary I.34 that the lim sup in the definition of

vol(X, x) is an actual limit.
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Generalizing a result for the volume of surface singularities (see [Wah90, Thm.2.8]),

we show that volumes of normal isolated singularities satisfy the following monotonic-

ity property:

Theorem II.10. Let f : (X, x) → (Y, y) be a finite morphism of normal isolated

singularities, i.e., f is finite and set theoretically f−1{y} = {x}. Then

vol(X, x) ≥ (deg f) · vol(Y, y).

If f is unramified away from x, then the previous inequality is an equality.

Proof. Let ρ : (Ỹ , F ) → (Y, y) be a log–resolution of (Y, y). Let Z be the normaliza-

tion of Ỹ in the fraction field of X and let u : (X̃, E) → (X, x) be a log–resolution

factoring through a log–resolution of Z. We have a diagram:

X̃

π

��+
++

++
++

++
++

++
++

++
++

++ f̃

))SSSSSSSSSSSSSSSSSSSSS

u

��>
>>

>>
>>

>

Z

τ

��

v // Ỹ

ρ

��
X

f // Y

We can assume that X̃ has simple normal crossings for both the branching and for

the ramification locus of f̃ . We write the reduced branching locus as F + R, where

R has no components lying over y. Similarly, write the reduced ramification locus

as E + S with S having no components lying over x.

A local study of forms with log–poles at the generic points of each component of

E + S shows that

KX̃ + E + S = f̃ ∗(KỸ + F +R) + T,

where T is an effective divisor that is exceptional for f̃ , hence also exceptional for u.

Note that f̃ ∗R− S is effective, and write it as P +Q, with P being supported on S
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and with Q being u−exceptional. Then

KX̃ + E = f̃ ∗(KỸ + F ) + P + (Q+ T ).

Since P is supported on S, it has no components over x, so

vol(X, x) = volx(KX̃ + E) ≥ volx(f̃
∗(KỸ + F ) + (Q+ T )),

by Lemma I.21. SinceQ+T is effective and u−exceptional and since volx is computed

by pushing forward to X,

π∗OX̃(f̃
∗(KỸ + F ) + (Q+ T )) = τ∗v

∗OỸ (KỸ + F ),

and hence

volx(f̃
∗(KỸ + F ) + (Q+ T )) = volx(v

∗(KỸ + F )).

By Proposition I.15,

volx(v
∗(KỸ + F )) = deg(f) · voly(KỸ + F ) = deg(f) · vol(Y, y).

When f is unramified outside x, the divisorsR, S are zero. Since T is u−exceptional,

we obtain the required equality.

Corollary II.11.

(i) If f : (X, x) → (Y, y) is a finite map of normal isolated singularities and

vol(X, x) vanishes, then vol(Y, y) = 0.

(ii) If (X, x) admits an endomorphism of degree at least two, then vol(X, x) = 0.

In the surface case, [Wah90, Thm.2.8] shows that vol(X, x) = 0 is equivalent to

saying that X has log–canonical singularities in the sense of [Wah90, Rem.2.4]. In

the Q−Gorenstein case, this coincides with the usual definition of log–canonical. In

higher dimension, as an immediate consequence of Proposition I.44, or by [Ish90,

Thm.4.2] it follows:
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Proposition II.12. Let (X, x) be a normal complex quasiprojective normal isolated

singularity of dimension n at least two. Then vol(X, x) = 0 if, and only if, for all

(any) log–resolutions π : X̃ → X with E the reduced fiber over x, one has that

π∗OX̃(m(KX̃ + E)) = OX(mKX),

for all non-negative m, i.e., λm(X, x) = 0 for all non–negative m.

In the previous result, we understand OX(mKX) as the sheaf of sections associated

to a Weil canonical divisor KX chosen together with a canonical divisor on X̃ such

that π∗KX̃ = KX as Weil divisors.

Remark II.13. In the Q-Gorenstein case, the conclusion of Proposition II.12, as in

the case of surfaces, is the same as saying that X is log–canonical. This result also

appears in [TW90]. In general, following [dFH09], we say X is log–canonical if there

exists an effective Q−boundary ∆ such that the pair (X,∆) is log–canonical. With

this definition, an inspection of [BdFF11, Ex.4.20] and [BdFF11, Ex.5.4] shows that

there exist non Q−Gorenstein isolated singularities (X, x) that are not log–canonical,

but vol(X, x) = 0.

Another result of Ishii ([Ish90, Thm.5.6]) that we translate to volumes studies

hyperplane sections of normal isolated singularities.

Proposition II.14. Let (X, x) be an complex normal quasiprojective isolated singu-

larity of dimension n at least three. Let (H, x) be a hyperplane section of (X, x) that

is again a normal isolated singularity. If vol(X, x) > 0, then vol(H, x) > 0.

II.3 The Knöller plurigenera

Another notion of plurigenera for a normal isolated singularity (X, x), different

from δm(X, x) and λm(X, x), was introduced by Knöller in [Kno73] and can be defined
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as

γm(X, x) = dim
OX(mKX)

π∗OX̃(mKX̃)

for π : X̃ → X an arbitrary resolution of singularities. This is again an invariant

of the singularity (X, x), independent of the chosen resolution. The asymptotic

behavior of γm(X, x) = h1
x(mKX̃) is studied in [Ish90]. Denoting

volγ(X, x) =def volx(KX̃),

the result in [Ish90, Thm.2.1], or Proposition I.44 can be rephrased as:

Proposition II.15. For a normal algebraic complex isolated singularity (X, x) of

dimension at least two, the following are equivalent:

(i) volγ(X, x) = 0

(ii) γm(X, x) = 0 for all non-negative m.

The following remark was kindly suggested by T. de Fernex.

Remark II.16. In [dFH09], the authors generalize the notion of canonical singularities

to normal varieties that are not necessarily Q−Gorenstein and it is a consequence of

[dFH09, Prop.8.2] that a normal variety X has canonical singularities if, and only if,

for all sufficiently divisible m ≥ 1 and all (any) resolution π : X̃ → X, it holds that

π∗OX̃(mKX̃) = OX(mKX),

with KX and KX̃ chosen such that π∗KX̃ = KX as Weil divisors.

When (X, x) is an isolated singularity, since the lim sup in the definition of

volγ(X, x) is replaceable by lim, by similar arguments as in the case of vol(X, x),

the vanishing volγ(X, x) = 0 is equivalent to (X, x) being canonical in the sense of

[dFH09].

Since in any case volγ(X, x) ≥ vol(X, x), we see that vol(X, x) = 0 for canonical

singularities.
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We show that volγ does not exhibit the same monotonicity properties as vol(X, x)

with respect to finite maps of normal isolated singularities by constructing a Q-

Gorenstein non–canonical isolated singularity carrying endomorphisms of arbitrarily

high degree.

Example II.17. Let (X, x) be the cone over V = Pn−1 corresponding to the polar-

ization H = OPn−1(n+ 1). By Examples I.19 and II.27,

volγ(X, x) = n ·
∫ ∞

0

vol(KV +H − tH)dt = n ·
∫ ∞

0

(1− t(n+ 1))n−1dt =
1

n+ 1
> 0,

therefore (X, x) is not canonical, and the other requirements are met.

However, we can prove the opposite to the inequality of Theorem II.10 in the

unramified case.

Proposition II.18. Let f : (X, x) → (Y, y) be a finite morphism of complex normal

isolated singularities of dimension n at least two. Assume that f is unramified away

from x. Then

volγ(X, x) ≤ (deg f) · volγ(Y, y).

Proof. Construct good resolutions π : (X̃, E) → (X, x) and ρ : (Ỹ , F ) → (Y, y) and

a lift f̃ : X̃ → Ỹ for f . Then the ramification divisor KX̃ − f̃ ∗KỸ is effective. It is

also exceptional for π by assumption. We conclude by Proposition I.15 and Lemma

I.20.

Corollary II.19. Under the assumptions of the previous proposition, if (Y, y) has

canonical singularities, then (X, x) also has canonical singularities.

Proof. The result is an immediate consequence of the proposition and Remark II.16.
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Remark II.20. In this paper we refer to vol(X, x) and not to volγ(X, x) as the volume

of the isolated singularity (X, x). It would be interesting to study all volumes of the

form volx(KX̃ + aE).

II.4 Examples

We begin with a series of examples of normal isolated singularities (X, x) where

the volume is zero. We can usually show this by explicit computation of plurigenera,

or by exhibiting endomorphisms of degree bigger than one.

Example II.21 (Q−Gorenstein log–canonical case). Let (X, x) be a Q−Gorenstein

log–canonical normal isolated singularity of dimension n. It is a consequence of

Proposition II.12 that vol(X, x) = 0, but we can also compute explicitly that

λm(X, x) = 0

for all nonnegative, sufficiently divisible m. Pick π : X̃ → X a log–resolution with

E the reduced fiber over x. Since π∗KX is defined as a Q−divisor, by Lemma I.13,

λm(X, x) = h1
x(m(KX̃ + E)) = h1

x(m(KX̃ + E − π∗KX))

for m divisible enough so that mKX is Cartier. But KX̃+E−π∗KX is π−exceptional

and effective by the log-canonical condition, so h1
x(m(KX̃ + E − π∗KX)) = 0 for all

sufficiently divisible m. By homogeneity, it follows that vol(X, x) = 0.

Example II.22 (Finite quotient isolated singularities). Let G be a finite group act-

ing algebraically on a complex algebraic affine manifoldM . LetX = Spec(C[M ]G) be

the quotient and assume it has a normal isolated singularity x. Then by Proposition

I.15 and by the previous example, following ideas in Theorem II.10, we obtain

vol(X, x) = 0.
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Example II.23 (Toric isolated singularities). We use the notation in Example I.8.

Let σ be an n−dimensional pointed rational cone. The condition that (X(σ), xσ)

be an isolated singularity is the same as saying that all the faces of non-maximal

dimension of σ are spanned as cones by a set of elements of N that can be extended

to a basis. Affine toric varieties carry Frobenius non–invertible endomorphisms and

one checks that they are actually endomorphisms of the singularity (X(σ), xσ) i.e.

totally ramified at the isolated singularity, so vol(X(σ), xσ) = 0 by Corollary II.11.

It can be checked that, for a toric resolution π : (X(Σ), E) → (X(σ), xσ), the

divisor KX(Σ) + E is antieffective, without components lying over xσ. Then

vol(X, x) = 0

by Lemma I.21.

Example II.24 (Cusp singularities). Tsuchihashi’s cusp singularities provide yet

another example of isolated singularities (X, x) with vol(X, x) = 0. See [BdFF11, 6.3]

or [Wat80, Thm.1.16] for explanations and [Tsu83] for more on cusp singularities.

One of the simplest classes of isolated singularities that may have nonzero volume

are quasi–homogeneous singularities.

Example II.25 (Quasi–homogeneous singularities). We follow [Wat80, Def.1.10].

Let r0, . . . , rn be positive rational numbers. Call a polynomial f(x0, . . . , xn) quasi-

homogeneous of type (r0, . . . , rn), if it is a linear combination of monomials xa0
0 ·. . .·xan

n

with
∑n

i=0 airi = 1. When such a polynomial is sufficiently general, its vanishing

locus in Cn+1 has an isolated singularity at the origin. We denote this singularity by

(X(f), 0). Let r(f) = r0 + . . .+ rn. By [Wat80, Exap.1.15],

vol(X(f), 0) =

 0, if r(f) ≥ 1

(1−r(f))n

r0·...·rn , if r(f) ≤ 1

.
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Example II.26 (Surface case). By Example I.9, the volume of a normal isolated

surface singularity (X, x) can be computed as

vol(X, x) = −P · P,

where KX̃ + E = P + N is the relative Zariski decomposition on a good resolution

π : X̃ → X. In [Wah90, Prop.2.3], an algorithm for computing P is described in

terms of the combinatorial data of the dual graph of a good resolution.

Although the quasi-homogeneous and surface cases provide nonzero examples,

they always provide rational values for the volume of the singularity. We will see

that cone singularities provide irrational volumes already in dimension three.

Example II.27 (Cone singularities). If (X, 0) is a cone singularity constructed as

Spec
⊕
m≥0

H0(V,OV (mH))

for (V,H) a polarized nonsingular projective variety of dimension n − 1, then by

Example I.19, using that KY + E restricts to KV on E by adjunction,

vol(X, 0) = n ·
∫ ∞

0

vol(KV − tH)dt.

We see right away that vol(X, 0) > 0 if, and only if, V is of general type.

In similar flavor to an example of Urbinati in [Urb10], following a suggestion of

Lazarsfeld, we show that there exist cone singularities of irrational volume.

Example II.28 (Irrational volume). Choose two general integral classes D and L in

the ample cone of E×E, where E is a general elliptic curve. Then, by the Lefschetz

Theorem ([Deb05, Thm.6.8]), 2D is globally generated and we can construct V , the

cyclic double cover (see [Laz04, Prop.4.1.6]) of E × E over a general section of 2D.
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Let g : V → E×E be the cover map. Note that KV = g∗D. The volume of the cone

singularity (X, 0) associated to (V, g∗L) is then

3 ·
∫ ∞

0

vol(g∗(D − tL))dt.

On abelian varieties, pseudoeffective and nef are equivalent notions for divisors and

the volumes of such are computed as self–intersections. Let

m =def max{t : D − tL is nef}.

It is also characterized as the smallest solution to the equation

(D − tL)2 = 0.

One can compute,

vol(X, 0) =
4D2L2 − 4(DL)2

L2
·m+

2(DL)D2

L2
.

The study in [Laz04, Sec.1.5.B] shows that the nef cone of E×E is a round quadratic

cone for general E. Hence general choices for D and L produce a quadratic irrational

m. Upon replacing L by a large multiple, we can insure that (X, 0) is normal.

In [Wah90] it is proved that vol(X, x) is a topological invariant of the link of the

surface singularity (X, x). We give an example showing that this may fail already

in dimension three. The idea for the construction comes from [BdFF11, p.36] and

[BdFF11, Ex.4.23] where, using the Ehresmann–Feldbau theorem, it is shown that if

f : (V,A) → T is a smooth polarized family of nonsingular projective varieties, then

the links of the cone singularities associated to (Vt, At) have the same diffeomorphism

type as t varies in T . This is used to show that if V is the family of blow–ups of P2

at ten or more points, and if (Ct, 0t) denotes the three dimensional cone singularity

over (Vt, At), for some appropriate polarization A, then the volume volBdFF(Ct, 0t)
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(that we discuss in the next section) is positive for very general t, but it does vanish

for special values of t. Since the Vt’s are all rational surfaces, vol(Ct, 0t) = 0 for any

t, but we can construct an example where vol(Ct, 0t) is nonconstant by passing to

double covers of the family of blow–ups of P2 at three distinct points.

Example II.29. Let g : S → T be the smooth family of blow–ups of P2 at three

distinct points. There are line bundles H and E on S such that for each t ∈ T , the

divisor Ht is the pullback of the hyperplane bundle via the blow–down to P2 and

Et = Et,1 + Et,2 + Et,3 is the exceptional divisor of the blow–up. The geometry of

St differs according to whether t consists of three collinear or non–collinear points,

with the latter being the generic case. In both cases, 3Ht − Et = −KSt is big and

globally generated and 4Ht−Et is ample and globally generated. It follows by [Laz04,

Ex.1.8.23] that 4(4Ht − Et) is very ample. By Kodaira vanishing,

H1(St,O(4(4Ht − Et))) = H1(St,O(KSt + (4(4Ht − Et)−KSt))) = 0.

By Grauert ([Har77, Cor.III.12.9]), R1g∗OS(4(4H − E)) = 0.

Let t0 be a set of collinear points, and choose a smooth divisor in the linear

system |4(4Ht0 − Et0)| corresponding to a section st0 . Because R1g∗OS(4(4H − E))

and H1(St,O(4(4Ht−Et))) both vanish, cohomology and base change ([Har77, Thm.

III.12.11.(b)]) show that the section st0 extends in a neighborhood of t0 to a section

s of 4(4H − E). By further restricting T , we can assume that st vanishes along a

smooth divisor for all t (see [Har77, Ex.III.10.2]). Let h : V → S be the double

cover corresponding to s. By [Laz04, Prop.4.1.6], the composition f : V → T

is again a smooth family. We endow it with the fiberwise polarization given by

A = h∗(40H − 3E). By above mentioned results on [BdFF11, p.36], the links of the

cone singularities (Ct, 0t) associated to (Vt, At) are all diffeomorphic. We compute

vol(Ct, 0t) and show that we get different answers when the tree points to be blown–
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up are collinear than when they are non–collinear. Note that

Kt =def KVt = h∗
t (KSt + 2(4Ht − Et)) = h∗

t (5Ht − Et).

By Example II.27,

vol(Ct, 0t) = 3 ·
∫ ∞

0

vol(h∗(5Ht − Et − s(40Ht − 3Et)))ds =

= 6 ·
∫ ∞

0

vol((5− 40s)Ht − (1− 3s)Et)ds.

We are reduced to working with volumes on P2 blown–up at three distinct points.

For this we can use Zariski decompositions (see [Laz04, Thm.2.3.19, Cor.2.3.22]) that

can be explicitly computed for aHt+ bEt with a, b ∈ Z to show that vol(Ct, 0t) yields

different values when t corresponds to collinear points than when it corresponds to

non–collinear points.

Assume first that t consists of three collinear points, e.g., t = t0. Using that

|Ht − Et| contains only the −2 curve obtained as the strict transform of the line

containing the points on t, one can show that if Pm denotes the nef part of the

Zariski decomposition of mHt − Et, then

Pm =


mHt − Et , if m ≥ 3

m−1
2

(3Ht − Et) , if 3 ≥ m ≥ 1

0 , if 1 ≥ m

The volume of mHt − Et is computed as P 2
m by [Laz04, Cor.2.3.22], therefore

vol(Ct, 0t) = 6 ·

(∫ 2/31

0

((5− 40s)2 − 3(1− 3s)2)ds+

∫ 4/37

2/31

6 ·
(
4− 37s

2

)2

ds

)
.

Assume now that t is generic, i.e., it corresponds to non–collinear points. Then

|3Ht − 2Et| contains only a sum of three disjoint −1 curves obtained as the strict
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transforms of the lines joining any two of the three points in t. In this case,

Pm =


mHt − Et , if m ≥ 2

(2m− 3)(2Ht − Et) , if 2 ≥ m ≥ 3/2

0 , if 3/2 ≥ m

Using these, we compute as before

vol(Ct, 0t) = 6 ·

(∫ 3/34

0

((5− 40s)2 − 3(1− 3s)2)ds+

∫ 7/71

3/34

(7− 71s)2ds

)
.

The two integrals produce rational answers that have different classes modulo 11.

To make sure that the isolated cone singularities (Ct, 0t) are normal, one may

replace the polarization A by uA for u sufficiently large. This rescales the vol(Ct, 0t)

by 1
u
, with no other effect on our computations.

Remark II.30. We do not know if vol(X, x) is a topological invariant of the links of

Q−Gorenstein normal isolated singularities in arbitrary dimension. By Siu’s theorem

on the invariance of plurigenera, and because the cone over (V,H) is Q−Gorenstein

if, and only if, H is a rational multiple of KV , no example can arise as above, by

coning over a smooth projective polarized family.



CHAPTER III

An alternative notion of volume due to Boucksom, de
Fernex, and Favre

In this chapter we prove an inequality between our definition of volume for normal

isolated singularities and one other volume, recently introduced by Boucksom, de

Fernex, and Favre in [BdFF11], also as a generalization of Wahl’s work. We also

describe a case when their volume and ours coincide, and compute an example where

they do not. The first section is devoted to a brief overview of the constructions and

of some results in [BdFF11]. The second section compares the two volumes.

III.1 b−divisors and volBdFF(X, x)

In this expository section we review the basics of Shokurov’s theory of b−divisors.

We also review the construction and some properties of another notion of volume for

normal isolated complex singularities. The reference is [BdFF11].

Let X be a complex normal algebraic variety of dimension n. A Weil canonical

divisor KX on X induces canonical divisors KXπ on all resolutions π : Xπ → X, such

that if f : Xπ → Xδ is a proper birational morphism over X between resolutions of

X, we have

f∗KXπ = KXδ
.

The pushforward above is to be understood in the sense of Weil divisors. Via resolu-

76
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tions of singularities and pushforwards, we obtain a Weil divisor KXπ for any proper

birational cover π : Xπ → X, with Xπ potentially singular. Such an association of

an R−Weil divisor to any birational cover of X, an association that is compatible

with pushforwards of Weil divisors is called a b−divisor (over X). Given a b−divisor

D, and a birational cover π of X, the R−Weil divisor Dπ is called the incarnation

of D in π, or in Xπ. Denote the b−divisor described above by KX. Other natural

examples can be obtained as follows: Given an R−Cartier divisor Dπ on a birational

model π : Xπ → X, one constructs the b−divisor D by pulling Dπ back to higher

models (which is possible under the Cartier assumption), and pushing forward to

lower models. We call such D a Cartier b−divisor, and we say that it is determined

on π, or on Xπ. A particular case are the Cartier b−divisors Z(a) that are deter-

mined, for a a coherent fractional ideal sheaf on X, by O(1) on BlaX. We will see

that b−divisors provide a convenient language for defining pullbacks of Weil divisors

and Zariski decompositions in dimension greater than two.

III.1.1 X−nef b−divisors

A Cartier b−divisor is called X−nef (or just nef) if any of (or all) its determina-

tions are nef over X. A Weil b−divisor D is called nef if it is a limit (not componen-

twise), of nef Cartier b−divisors. We prefer the following equivalent definition (see

[BdFF11, Lemma.2.9]):

Definition III.1. A b−divisor D is X−nef if all incarnations Dπ with Xπ nonsin-

gular (or just Q−factorial) are π−movable, i.e., the class of Dπ in N1(Xπ/X)R is a

limit of classes of divisors whose π−base locus has codimension at least two.

Example III.2. The Cartier b−divisors Z(a) are clearly X−nef. More generally,

consider a• a graded sequence of coherent fractional ideal sheaves onX having linearly
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bounded denominators, i.e., there exists a Weil divisorD onX such that am ·OX(mD)

is an ideal sheaf for all m ≥ 0. Then by [BdFF11, Prop.2.1], the sequence 1
m
Z(am)

converges coefficient–wise to a b−divisor Z(a•). This divisor is X−nef by [BdFF11,

Prop.2.10].

III.1.2 Nef envelopes

We will see that nef envelopes play the role of the nef parts of relative Zariski

decompositions. They can also be used to define pullbacks of Weil divisors.

Definition III.3. Let Dπ be a Weil divisor on a birational cover Xπ → X. The

graded sequence

am =def π∗OXπ(mDπ)

has denominators linearly bounded by the Weil divisor −π∗Dπ, and one defines the

nef envelope

Envπ(Dπ) =def Z(a•).

With the conventions of [dFH09], when D is a Weil divisor on X, the incarnation

−EnvX(−D)π plays the role of the pullback of D by π. It coincides with f ∗D when

the divisor is Cartier. We collect [BdFF11, Prop.2.5, Prop.2.7, Prop.2.11, Cor.2.12]

into the following:

Proposition III.4.

(i) Envπ(Dπ +D′
π) ≥ Envπ(Dπ) + Envπ(D

′
π) for Dπ and D′

π Weil divisors on Xπ.

We say that Envπ is a concave function.

(ii) Envπ(t ·Dπ) = t · Envπ(Dπ) for all t > 0. This homogeneity does not extend to

linearity. It may well happen that Envπ(Dπ) ̸= −Envπ(−Dπ).

The previous two properties allow us to define envelopes for R−Weil divisors.
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(iii) For D an R−Weil divisor on X, the incarnation EnvX(D)X is D.

(iv) If D is an X−nef b−divisor, then

D ≤ Envπ(Dπ)

for all birational covers π : Xπ → X. This result is also called the Negativity

Lemma.

(v) Envπ(Dπ) is the largest X−nef b−divisor W such that Wπ ≤ Dπ.

(vi) Envπ(Dπ) = Dπ, when Dπ is R−Cartier and π−nef.

(vii) Envπ(Dπ) is R−Cartier if, and only if, one of its incarnations on some resolu-

tion of Xπ is X−nef, in which case, it is determined there.

Via [BdFF11, Prop.2.14, Cor.2.15], we define nef envelopes for b−divisors.

Definition III.5. Given a b−divisor D, define the nef envelope of D as the compo-

nentwise infimum

EnvX(D) =def inf
π
Envπ(Dπ).

If this exists, it is also the largest nef b−divisor W such that W ≤ D.

III.1.3 Surfaces

In this subsection we explain how one can use nef envelopes to recover rela-

tive Zariski decompositions on surfaces. The following result appears as [BdFF11,

Thm.2.20]:

Theorem III.6. Let X be a normal surface, and let π : Xπ → X be a log–resolution

of (X, Sing(X)).
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(i) If Dπ is R−Cartier on Xπ, then Envπ(Dπ) is R−Cartier, determined on Xπ,

and the following is a π−relative Zariski decomposition:

Dπ = Envπ(Dπ) + (D − Envπ(Dπ)).

(ii) If D is a Weil divisor on X, then EnvX(D) is a Cartier b−divisor, determined

on any Xπ by the Mumford numerical pullback, π∗D. 1

Proof. Since Envπ(Dπ) is a nef b−divisor, all incarnations are π−movable. On

smooth surfaces, this is the same as π−nef. From Proposition III.4.(vii), it follows

that Envπ(Dπ) is R−Cartier. By Proposition III.4.(vi), Envπ(Dπ)π is the largest

π−nef R−Cartier divisor W on Xπ such that D −W is effective. This is one of the

characterizations of the π−nef component of the relative Zariski decomposition ofDπ.

For part (ii), note that as before, setting W := EnvX(D)π, one has EnvX(D) = W .

Moreover, EnvX(D)X = D by Proposition III.4.(iii), It remains to show that W is

π−numerically trivial. In any case, W is π−nef. Assume W · E > 0 for some com-

ponent E of the exceptional locus of π. Then W + ε ·E is still π−nef for sufficiently

small ε > 0. Its incarnation in X is D. By Proposition III.4.(v − vi),

W + ε · E ≤ EnvX(D).

This is impossible at the level of π−incarnations.

Remark III.7. Since the numerical pullback is linear, it follows that EnvX is linear

on Weil divisors on the normal surface X.

III.1.4 The definition of volBdFF(X, x)

We present the definition of [BdFF11] for volumes of normal isolated singularities.

Let (X, x) be a normal isolated singularity of dimension n at least two. Throughout,

m denotes the maximal ideal sheaf corresponding to x.
1Recall that π∗D is the unique Weil divisor W on Xπ , such that π∗W = D and W is π−numerically trivial.
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Definition III.8. We form the π−exceptional log–discrepancy divisor

(AX/X)π =def KXπ + EnvX(−KX)π + 1Xπ/X ,

where 1Xπ/X is the reduced divisorial component of the full exceptional locus of π.

These glue to form the b−divisor AX/X .

Intuitively, −EnvX(−KX)π computes the pull-back π∗KX , which should serve as

justification for calling (AX/X)π a log–discrepancy divisor. We denote by A0
X/X the

divisorial component lying over x of the b−divisor AX/X . A consequence of the

smoothness of X \ {x} is:

Remark III.9. The b−divisor AX/X −A0
X/X is effective and exceptional.

Definition III.10. Let (X, x) be a complex normal quasiprojective isolated singu-

larity of dimension n at least two. The volume of (X, x) in the sense of [BdFF11]

is

volBdFF(X, x) =def −(EnvX(A0
X/X))

n.

Intersections of nef b−divisors lying over x are defined in [BdFF11, Def.4.13]. Follow-

ing [BdFF11], say that D is a Cartier b−divisor over x, if D admits a determination

Dπ with π a good resolution of (X, x), such that Dπ lies over x. It is important that

π is an isomorphism away from x. Given D1, . . . , Dn a set of Cartier b−divisors over

x, not necessarily X−nef, let π be a common determination that is a good resolution

of (X, x), and define

D1 · . . . ·Dn = (D1)π · . . . · (Dn)π.

The intersection makes sense because the (Di)π have compact support, and it does

not depend on π. Note that when Di = Z(ai), with ai an m−primary ideal sheaf for

all i ∈ {1, . . . , n}, we recover the mixed multiplicity ([Laz04, p.91]):

−Z(a1) · . . . · Z(an) = e(a1, . . . , an).
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Definition III.11. LetD1, . . . , Dn be arbitrary nef R−Weil b−divisors over x. Then

D1 · . . . ·Dn =def inf
Ci≥Di

(C1 · . . . · Cn),

where the index set are all nef R−Cartier b−divisors over x, such that Ci ≥ Di for

all i.

This quantity is finite when each Di is bounded below, i.e., Di ≥ ε · Z(m) for some

ε > 0 and all i. Boundedness from below makes sense for any R−Weil b−divisor over

x, not necessarily nef. Examples include Cartier b−divisors over x (cf. [BdFF11,

Lemma 4.7]), and A0
X/X (cf. [BdFF11, Prop.4.6]). Some important properties of

these intersection numbers are collected in [BdFF11, Thm.4.14]:

Proposition III.12. The intersection product (D1, . . . , Dn) → D1 · . . . · Dn of nef

R−Weil b−divisors over x is symmetric, upper semicontinuous, and continuous along

monotonic families (for the topology of coefficient–wise convergence). It is also ho-

mogeneous, additive, and non–decreasing in each variable. Moreover, D1 · . . . ·Dn < 0

if all Di are nonzero.

We will review some of the properties of volBdFF(X, x) in the next section.

III.2 volBdFF(X, x) vs. vol(X, x)

We compare the two notions of volume for normal isolated singularities in di-

mension n at least two. We also study a case when they are equal, and compute

an example where they are not. A nontrivial result that relates intersections of nef

b−divisors with multiplicities for graded sequences of m−primary ideal sheaves is

[BdFF11, Rem.4.17]:

Lemma III.13. For every graded sequence a• of m−primary ideals, we have

−Z(a•)
n = ĥ1

x(a•).
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Theorem III.14. Let (X, x) be a complex normal quasiprojective isolated singularity

of dimension n at least two. Then

volBdFF(X, x) ≥ vol(X, x).

Proof. By the definition of the nef envelopes of b−divisors, for any resolution π :

Xπ → X, we have

EnvX(A0
X/X) ≤ Envπ((A0

X/X)π).

The monotonicity property of intersection numbers in Proposition III.12 shows

volBdFF(X, x) ≥ −(Envπ((A0
X/X)π))

n.

By Lemma III.13, the latter is equal to volx((A0
X/X)π), since volx and envelopes are

both computed from pushforward sheaves. Remark III.9 and Lemma I.42 yield

volx((A0
X/X)π) = volx((AX/X)π) = volx(KXπ + EnvX(−KX)π + E),

where now π : (Xπ, E) → (X, x) is a log–resolution. Since vol(X, x) = volx(KXπ+E),

it suffices to prove that

volx((KXπ + E) + EnvX(−KX)π) ≥ volx(KXπ + E).

Since EnvX(−KX)π is π−movable, there exists a sequence of effective divisors Dm

on Xπ without components over x, a sequence that converges to EnvX(−KX)π in

N1(Xπ/X). We conclude by the continuity of volx and Lemma I.21.

Remark III.15. When X is Q−Gorenstein, [BdFF11, Prop.5.3] shows that

volBdFF(X, x) = vol(X, x).

Aiming to extend this result to the numerically Gorenstein case (see [BdFF11,

Def.2.24]), we start with a lemma inspired by the proof of [BdFF11, Prop.5.3] that

allows us to compute volBdFF(X, x) on a fixed resolution in a particular case:
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Lemma III.16. Let π : (Xπ, E) → (X, x) be a log–resolution of a normal isolated

singularity of dimension n, and assume EnvX(−KX)π is π−nef. Then

volBdFF(X, x) = volx(KXπ + EnvX(−KX)π + E).

Proof. Proposition III.4.(vii) proves that EnvX(−KX) is Cartier, determined on Xπ.

Using [BdFF11, Lemma.3.2],

AX/X − (AX/X)π

is effective and exceptional over X. The conclusion follows from Lemma I.42, Propo-

sition III.4.(v)− (vi), Remark III.9, and Lemma III.13.

Proposition III.17. If X is a numerically Gorenstein, i.e.,

EnvX(KX) + EnvX(−KX) = 0,

then

volBdFF(X, x) = vol(X, x).

Proof. The hypothesis implies that EnvX(±KX)π is π−numerically trivial on any

nonsingular model Xπ. We conclude using the numerical invariance of local volumes

and Lemma III.16.

Remark III.18. The result above and Remark III.7 prove that the two volumes are

equal on surfaces (see also [BdFF11, Prop.5.1]). However, they may differ in general.

[BdFF11, Exap.5.4] provides an example of a cone singularity where volBdFF(X, x) >

vol(X, x) = 0.

As [BdFF11, Thm.4.21] proves, the volume volBdFF(X, x) satisfies the same mono-

tonicity property with respect to finite covers that vol(X, x) does:

Remark III.19. Let f : (X, x) → (Y, y) be a finite morphism of isolated singularities.

Then

volBdFF(X, x) ≥ (deg f) · volBdFF(Y, y).
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Remark III.20. Example II.29 and [BdFF11, Ex.4.23] show that the volumes vol(X, x)

and volBdFF(X, x) are not in general topological invariants of the link of the singular-

ity in dimension 3 or higher. We do not know if vol(X, x) also has this property in the

Q−Gorenstein case (see Remark II.30). [BdFF11, Ex.4.23] shows that volBdFF(X, x)

is not a topological invariant of the link also in the Q−Gorenstein case.

One advantage of vol(X, x) is that, being determined on any log–resolution, it

is usually easy to compute. On the other hand, since every resolution may bring

new information to the b−divisors that are involved, volBdFF(X, x) is usually hard to

compute when it is nonzero. Lemma III.16 provides examples when we can realize

volBdFF(X, x) as a local volume on a fixed birational model. Applying this to cone

singularities, we give an example of an irrational volBdFF(X, x).

Lemma III.21. Let (V,H) be a polarized projective nonsingular variety of dimension

n− 1, let (X, 0) be the associated cone singularity, which we assume is normal, and

let π : (Y,E) → (X, 0) be the contraction of the zero section of SpecOV
Sym•OV (H).

Let f : Y → V be the vector bundle map. Then

EnvX(−KX)π = f ∗(−KV +M ·H),

with M minimal such that −KV +M ·H is pseudoeffective.

Proof. Note that π is a good resolution, hence

OX(−mKX) =
∪
t≥0

π∗OY (−mKY + tE).

By coherence, there exists minimal tm such that

OX(−mKX) = π∗OY (−mKY + tmE).

We get an induced inclusion that is actually an equality outside E:

OX(−mKX) · OY → OY (−mKY + tmE).
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Using the defining minimality property of tm, and that E is irreducible, one finds

Z(−mKX)π =def (OX(−mKX) · OY )
∨∨ = OY (−mKY + tmE).

Observe that X is affine, therefore the sheaves π∗OY (−mKY +tE) are determined by

their global sections. But by the relations in Example I.19, and sinceKY +E = f ∗KV

by adjunction,

H0(Y,OY (−mKY + tE)) =
⊕
k≥0

H0(V,OV (−mKV + (−t−m+ k)H))

and it follows that tm is the maximal t such that OV (−mKV + (−t − m)H) has

sections. Recall that EnvX(−KX) = limm(Z(−mKX)/m), and set l = limm(tm/m).

One finds that

EnvX(−KX)π = −KY + lE = f ∗(−KV − (l + 1)H)

with l maximal such that −(KV + (l + 1)H) is pseudoeffective. Manifestly

M = −1− l.

Corollary III.22. With the same notation as before, assume that EnvX(−KX)π is

also π−nef. Then

volBdFF(X, 0) =

 Mn ·Hn−1 , if M ≥ 0

0 , if M < 0

.

Proof. Since the negative case follows similarly, we assumeM > 0. By Lemma III.16,

Example I.19, the preceding result and from the ampleness of H,

volBdFF(X, 0) = vol{0}(KY + E + f ∗(−KV +M ·H)) = vol{0}(f
∗(M ·H)) =

= n ·
∫ ∞

0

vol(M ·H − tH)dt = Mnvol(H) = Mn ·Hn−1.
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Example III.23. As in Example II.27, with notation as in the preceding lemma,

let E be a general elliptic curve. Let D and L be integral ample divisors on E × E ,

let g : V → E × E be the double cover over a general section of OE×E(2D), and

denote H = g∗L. Note that KV = g∗D. Then EnvX(−KX)π is π−nef because its

restriction to E, the only positive dimensional fiber, is isomorphic to −KV +M ·H,

which is pseudoeffective; and on V , nef and pseudoeffective are equivalent notions

for pullbacks of divisors from E × E , e.g., from [Laz04, Rem.4.1.7]. By the previous

corollary, noting that M is positive since −KV +M ·H = g∗(−D +M · L),

volBdFF(X, 0) = M3H2.

We find that volBdFF(X, 0) can be irrational by producing an example of D and L

where M3 is irrational. The same construction as in Example II.28 works.
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