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2.2 Frequency response comparison of F and G†, where the red vertical
lines denote the frequencies Ω̄i. In this example, Ω̄ = Ω. . . . . . . 21

viii
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2.4 Residuals ũ(k) and z(k) show that both the input reconstruction error
and output residual become small. . . . . . . . . . . . . . . . . . . 22

2.5 Frequency response comparison of F and G†, where the dashed ver-
tical lines denote the frequencies Ω̄, and the dotted vertical lines are
the frequencies Ω. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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2.17 Comparison between û(k) and u(k). Note that in this case ũ(k) is
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closely approximates the frequency response of Gcl. . . . . . . . . . 83

4.7 As the amount of data increases, the frequency response of Ĝs more
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system obtained using Ŵ as an estimate of (7.36), where k is the num-
ber of data points used to determine the identified dynamic model.
The RCO controller order is nc = 9 with p = 1 and α = 1 (Example
7.5.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.8 Identified nonlinearity versus true nonlinearity (7.37), wherem = 500
and A0 = 5 (Example 7.5.2). . . . . . . . . . . . . . . . . . . . . . 164

7.9 Frequency response comparison of the true G and the identified LTI
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system obtained using Ŵ as an estimate of (7.40), where k is the num-
ber of data points used to determine the identified dynamic model.
The RCO controller order is nc = 9 with p = 1 and α = 1 (Example
7.6.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.22 Identified nonlinearity versus true nonlinearity (7.41), wherem = 100
and A0 = 5 (Example 7.6.3). . . . . . . . . . . . . . . . . . . . . . 171

7.23 Frequency response comparison of the true G and the identified LTI
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ABSTRACT

Adaptive Input Reconstruction with Application to Adaptive Control, Model
Refinement, and State Estimation

by

Anthony M. D’Amato

Chair: Dennis S. Bernstein

Input reconstruction is the process of using the output of a system to estimate its

input. In some cases, input reconstruction can be accomplished by determining the

output of the inverse of a model of the system whose input is the output of the original

system. Inversion, however, requires an exact and fully known analytical model, and

is limited by instabilities arising from nonminimum-phase zeros.

The main contribution of this work is a novel technique for input reconstruction

that does not require model inversion. This technique is based on a retrospective

cost, which requires a limited number of Markov parameters. Retrospective cost

input reconstruction (RCIR) does not require knowledge of nonminimum-phase zero

locations or an analytical model of the system.

RCIR provides a technique that can be used for model refinement, state estima-

tion, and adaptive control. In the model refinement application, data are used to

refine or improve a model of a system. It is assumed that the difference between the

model output and the data is due to an unmodeled subsystem whose interconnection

with the modeled system is inaccessible, that is, the interconnection signals cannot be
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measured and thus standard system identification techniques cannot be used. Using

input reconstruction, these inaccessible signals can be estimated, and the inaccessible

subsystem can be fitted. We demonstrate input reconstruction in a model refinement

framework by identifying unknown physics in a space weather model and by estimat-

ing an unknown film growth in a lithium ion battery. The same technique can be

used to obtain estimates of states that cannot be directly measured.

Adaptive control can be formulated as a model-refinement problem, where the

unknown subsystem is the idealized controller that minimizes a measured performance

variable. Minimal modeling input reconstruction for adaptive control is useful for

applications where modeling information may be difficult to obtain. We demonstrate

adaptive control of a seeker-guided missile with unknown aerodynamics.
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CHAPTER I

Introduction

1.1 Model Refinement

Identification of linear time-invariant systems is a fundamental problem in sys-

tems theory, and available methods to solve this problem include frequency-domain

techniques [2], time-series methods [3], and state-space algorithms [4, 5]. These tech-

niques assume different model structures, in practice, the choice of model structure

is guided by the intended use of the model.

Regardless of the desired model structure, the amount of available data and the

quality of that data (that is, the level of noise that corrupts the data) directly impact

the fidelity of the identified model. For data corrupted by stationary noise, we expect

a fundamental tradeoff between the amount of available data and the noise level,

where a weakness in quantity or quality can, at least to some extent, be offset by a

strength in the other. In addition to the amount of data, identification methods may

be sensitive to additional issues, such as the type of noise, a priori estimates of the

system order and relative degree, and, in the MIMO case, coupling strength between

the inputs and outputs. All of these issues must be assessed within the context of the

computational burden of the competing algorithms.

A variation of the model identification problem is the case in which an initial

model is available, and data is used to refine the initial model to obtain an improved
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fit to the data, specifically, by identifying poorly modeled dynamics. This problem

has been extensively studied within the context of finite element modeling [6, 7,

8], and has received some attention within the systems and control literature [9,

10, 11]. Figure 1.1 illustrates the model refinement problem. Part of the physical

Figure 1.1: Model refinement architecture. The goal is to update θ based on the
residual between the truth system and the model. The resulting initial
model, in closed loop with θ, better approximates the physical system.
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system is known, but there exists an unknown subsystem which we wish to identify.

Note that traditional system identification techniques are not applicable, since u

is an inaccessible signal within the system. To solve this problem, we propose to

reconstruct u using adaptive feedback input reconstruction techniques, which then

allow an estimate of the unknown subsystem to be identified.

1.2 State Estimation

The classical Kalman filter is the optimal state estimator for linear systems under

process and sensor noise with zero mean and finite second moments. Implementation

of the optimal estimator under these idealized conditions depends on knowledge of

the linear dynamics, noise covariances, and inputs. When these assumptions are not

satisfied, the accuracy of the Kalman filter can be severely degraded. Consequently,

a problem of longstanding interest is to develop estimators that are robust to these

uncertainties [12, 13, 14, 15]. A more proactive approach is to implement an adaptive

state estimator, where the goal is to identify unknown inputs during system operation

and use this information to tune the estimator on-line [13, 14]. Figure 1.2 illustrates

an adaptive state and input estimation architecture. The state and input estimation

problem is really a subset of model refinement, where the states of the known system

have the same physical meaning as the states of the initial model.

1.3 Adaptive Control

Feedback has a long history in control of dynamical systems, from steam engine

governors to automotive cruise controls. The basic principle behind feedback control

is to adjust a control signal based on what the output of the system is doing.

Three areas of interest in feedback control are stabilization, command following,

and disturbance rejection. The goal in stabilization is to bound the state of a system
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Figure 1.2: State estimation architecture. The goal is to update θ based on the resid-
ual between the physical system and the model, a subset of model refine-
ment. If the states of the truth model have the same physical meaning as
the estimator states, then the model refinement architecture results in a
state estimator for systems with unknown harmonic inputs.

and drive its response to zero. In command following, the goal is to force the response

of a system to follow a trajectory determined by the user. In disturbance rejection,

the goal is to drive the response of the plant to a desired trajectory in the presence

of an unknown exogenous signal. Furthermore, these objectives can be combined, for

example, command following in the presence of a disturbance.

In adaptive control, the coefficients of a feedback controller are updated based on
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an update law and a measured performance variable. The robustness of an adaptive

controller is linked to the required modeling information needed by the update law.

Adaptive controllers are intrinsically robust to plant information that is not required

for the adaptation law.

Figure 1.3 illustrates an adaptive control architecture, formulated like a model

refinement problem. The notation is modified to highlight the fact that there is no

simulated system, only a real system. We wish to minimize the residual between the

real system, which we wish to control, and the ideal system, which is a fiction. The

ideal system is simply a copy of the real system, but it is connected in feedback with

an idealized controller, which results in the performance z∗ = 0.

1.4 Input Reconstruction

The common problem in the model refinement, state estimation and adaptive

control architectures presented in the previous sections, is the inaccessibility of an

unknown input. Therefore, the common solution to these problems is estimation or

reconstruction of the unknown input. But what does it mean to reconstruct an input?

Input reconstruction is the process of estimating an unknown input given the

output and modeling information from the system. Although input reconstruction

is gaining interest among researchers [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27],

this topic is generally overshadowed by other areas of control theory, such as system

identification, state estimation and control. We argue however, that these areas

are fundamentally linked. In traditional applications of identification, estimation

and control, the input is generally assumed to be known, therefore input estimation

is not required. But what happens when the input is unknown, as in the model

refinement frameworks? In this case, traditional system identification techniques fail,

state estimation error now reflects the lack of knowledge of the system inputs, and it

is difficult to implement a feedback control without knowledge of disturbance spectra.
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Figure 1.3: Adaptive control architecture. The goal is to update θ based on the
residual between the real system and the ideal system. Adaptive control
differs from model refinement and state estimation in that the ideal system
is a fiction with idealized performance.

But how do we go about estimating an input, and what information about the

system do we need to know? In its simplest form, input reconstruction can be ac-
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complished, given a model, by taking its inverse and using the system output as the

input to the inverse model. Figure 1.4 demonstrates this concept, where we assume

that G is invertible and exactly proper (D 6= 0). However, this does not guarantee

that u− û will becomes small as more data is gathered.

Figure 1.4: Assuming that the model G is invertible and exactly proper, the output
of the system, y, can be used as the input to G−1.

In fact, consider the problem of estimating the input, u(k), and the state, x(k),

for the system

x(k + 1) = Ax(k) +Bu(k), (1.1)

y(k) = Cx(k) +Du(k), (1.2)

u(k) = D−1[y(k)− Cx(k)], (1.3)

where D is nonsingular and (1.3) is obtained by solving (1.2) for u(k). Note that the

state x(k) is unknown, therefore (1.3) cannot to be used to obtain u(k) directly.

Using the inverse system approach, we build the estimator system

x̂(k + 1) = (A− BD−1C)x̂(k) +BD−1y(k), (1.4)

ŷ(k) = Cx̂(k) +Dû(k), (1.5)

û(k) = D−1(y(k)− Cx̂(k)). (1.6)

Subtracting (1.4) from (1.1), and (1.6) from (1.3), yields the state and input estima-
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tion errors

e(k + 1) = (A− BD−1C)e(k), (1.7)

ũ(k) = D−1e(k), (1.8)

where e(k) = x(k)− x̂(k), and ũ(k) = u(k)− û(k).

Immediately, we recognize the eigenvalues of A − BD−1C are the transmission

zeros of (A,B,C,D). Assuming that the initial state x(0) is unknown, the errors

(1.7) and (1.8) get smaller if all the open loop transmission zeros are within the

unit circle. Likewise, if (A,B,C,D) is nonminimum-phase, then the errors become

unbounded.

The estimator (1.4)–(1.6) is an asymptotic input reconstruction technique. This

techqniue differs from other types of input reconstruction techniques, such as those

found in [27, 22, 23, 26], in that the initial conditions, and inputs before the estimator

is started are never recovered, (and no attempt is made to do so). As data is gathered,

we hope to drive the estimated input closer to the true input. As a by-product, the

state of the system will also be recovered.

Beyond the problem associated with nonminimum-phase zeros, most input re-

construction techniques require an exact analytical model of the system, however

many interesting input reconstruction problems do not have analytical representa-

tions. Consider a computational fluid dynamics model used to predict space weather

conditions. The goal is to use data gathered on orbit to estimate solar intensity, which

drives physical process in the thermosphere and ionosphere. In this case, inversion

of an analytical model is impossible; the model we have access to is only capable of

producing an output given an input, much like a black box. In Figure 1.5 an adaptive

feedback architecture for input reconstruction, where the estimated input û is the

output of a model whose parameters are updated based on the residual between the

8



Figure 1.5: Adaptive input reconstruction architecture. The estimated input û is the
output of the model θ, where the parameters of θ are updated by an
adaptive update law using the residual between the data and the model
output.

physical data and the model output.

In this dissertation, the original contribution is the development of an adaptive

asymptotic input reconstruction method for nonminimum-phase systems with har-

monic inputs. The adaptation law is based on a retrospective performance, that is,

the input estimates are updated based on previously measured outputs.

We will demonstrate that for open-loop asymptotically stable plants with nonmin-

imum -phase zeros, or for minimum-phase plants, adaptive asymptotic input recon-
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struction can be accomplished using minimal modeling information. In most cases,

a single Markov parameter is required. This enables us to reconstruct inputs even

when a full analytical model is unavailable.

Finally, we use input reconstruction as a fundamental link between model refine-

ment, (a subset of system identification), state estimation, and adaptive control. We

formulate each of these problems as a special case of asymptotic input reconstruction,

and both linear and nonlinear applications are demonstrated, such as identification of

Wiener and Hammerstein systems, application to identification of unknown physics

in space weather applications, Li-ion battery health monitoring, and adaptive control

of a missile.

1.5 Dissertation Outline

In Chapter II, we introduce input reconstruction as a process where the inputs to

a system are estimated using the measured system output. As described earlier in this

chapter, one way to achieve this goal is to invert the system model and cascade delays

to guarantee that the inverse is proper. The standing issue in input reconstruction lies

in the inversion of nonminimum-phase systems, since the inverse model is unstable.

We consider two methods for achieving input reconstruction despite the presence of

nonminimum-phase zeros. First, we develop an open-loop partial inversion of the

system model using a finite number of frequency points, where the partial inverse

is a finite impulse response model and therefore is guaranteed to be asymptotically

stable. Second, we examine a closed-loop approach that uses an infinite impulse

response model. We demonstrate both methods on several illustrative examples.

In Chapter III, we present a two-step method for identifying SISO Hammerstein

systems. First, using a persistent input with retrospective cost optimization, we es-

timate a parametric model of the linear system. Next, we pass a single harmonic

signal through the system. We use l-delay input reconstruction with the parametric
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model of the linear system to estimate the inaccessible intermediate signal. Using

the estimate of the intermediate signal we estimate a nonparametric model of the

static nonlinearity, which is assumed to be only piecewise continuous. This method

is demonstrated on several numerical and experimental examples of increasing com-

plexity. The algorithms and results presented in this chapter appear in [28].

In Chapter IV, we consider the problem of it data-based model refinement, where

we assume the availability of an initial model, which can incorporate both physical

laws and empirical observations. With this initial model as a starting point, our goal is

to use additional measurements to refine the model. In particular, components of the

model that are poorly modeled can be updated, thereby resulting in a higher fidelity

model. We consider two special cases, namely, system emulation and subsystem

identification. In the former case, the main system is assumed to be uncertain and

we seek an estimate of the unknown subsystem that allows the overall model to

approximate the true system. In this case, there is no expectation that the constructed

subsystem model approximates the unknown subsystem. In the latter case, we assume

that the main system is accurately modeled and we seek an estimate of the unknown

subsystem that approximates the unknown subsystem. The algorithms and results

presented in this chapter appear in [29].

In Chapter V, we apply the method developed in Chapter IV to a large-scale model

based on first-principles physics, specifically, the the Global Ionosphere-Thermosphere

Model (GITM). The goal is to estimate unknown physical processes in the ionosphere

and thermosphere. Using GITM as the truth model, we demonstrate that measure-

ments can be used to identify unknown physics. Specifically, we estimate static ther-

mal conductivity parameters, as well as a dynamic cooling process. The algorithms

and results presented in this chapter appear in [30].

In Chapter VI, we apply the method developed in Chapter IV to health man-

agement of Li-ion batteries. The health of a Li-ion battery depends on knowledge
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of certain battery internal dynamics (e.g., lithium consumption and film growth at

the solid-electrolyte interface) whose inputs and outputs are not directly measurable

with noninvasive methods. This presents a problem of identification of inaccessible

subsystems. To address this problem, we apply the retrospective-cost subsystem iden-

tification (RCSI) method. As a first step, this Chapter presents a simulation-based

study that assumes as the truth model of the battery an electrochemistry-based bat-

tery charge/discharge model of Doyle, Fuller, and Newman, and later augmented

with a battery-health model by Ramadass. First, this truth model is used to gener-

ate the data needed for the identification study. Next, the film-growth component

of the battery-health model is assumed to be unknown, and the identification of this

inaccessible subsystem is performed using RCSI. The results show that the subsystem

identification method can identify the film growth quite accurately when the chemical

reactions leading to film growth are consequential.

In Chapter VII, we present the dual to Chapter III, that is, we present a two-step

method for identifying SISO Wiener systems. First, using a single harmonic input,

we estimate a nonparametric model of the static nonlinearity, which is assumed to be

only piecewise continuous. Second, using the identified nonparametric map, we use

retrospective cost optimization to identify a parametric model of the linear dynamic

system. This method is demonstrated on several examples of increasing complexity.

The algorithms and results presented in this chapter appear in [31].

In Chapter VIII, we develop a method for obtaining state estimates for a possibly

nonminimum-phase system in the presence of an unknown harmonic input. We con-

struct a state estimator based on the system model, and then introduce an estimator

input provided by an adaptive feedback model whose goal is to drive the estimated

output to the measured output despite the presence of the unknown harmonic input.

Using input reconstruction based on a retrospective surrogate cost, we reconstruct the

unknown harmonic input. Using the reconstructed input we update the parameters
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of the adaptive model using recursive least squares identification. We then extend

the method to nonlinear systems. The performance of this method is compared with

the Kalman filter for linear examples, as well as with the extended and unscented

Kalman filters for nonlinear examples. The algorithms and results presented in this

chapter appear in [32].

In Chapter IX, we develop a direct adaptive controller for discrete-time multi-

input, multi-output, possibly nonminimum-phase systems with unknown nonmini-

mum -phase zeros. This controller is based on a retrospective performance objective,

where the controller is updated using either batch or recursive least squares. The

adaptive controller requires limited modeling information about the system, specif-

ically, Markov parameters from the control input to the performance variables. If

the system is either asymptotically stable or minimum phase, then a single Markov

parameter often suffices. If the system is unstable and nonminimum phase, then

additional Markov parameters may be required. Stability of the algorithm is ana-

lyzed using a time-and-frequency-domain approach. Numerical examples are given to

demonstrate disturbance rejection and command following problems, with unknown

disturbance and command spectra. The algorithm and results presented in this chap-

ter are submitted to the AIAA Journal of Guidance and Control.

In Chapter X, we apply extensions of retrospective cost adaptive control (RCAC)

to a 2D missile model considered in prior works [33] as a benchmark test of adaptive

control methods. The dynamics of the missile are highly nonlinear, and instantaneous

linearizations are nonminimum phase due to nose sensing and tail actuation. The

results that we present in this chapter show that the RCAC controller provides results

that are comparable to a highly tuned autopilot based on aerodynamic modeling,

whereas the RCAC controller does not use knowledge of the missile’s aerodynamics.

These results significantly improve the results obtained on the same problem using

an earlier version of RCAC, presented at the 2010 GNC.

13



In Chapter IX, the coefficients of a strictly proper infinite-impulse-response con-

troller are adaptively updated based on a measured performance variable. In Chapter

XI, we restrict the controller to a proportional-integral-derivative (PID) structure,

which we use for setpoint tracking. The adaptive law updates the coefficients of a

PID controller based on the tracking error z(k), reducing the tuning requirement

of a typical PID setup. Unlike traditional PID tuning frameworks, this adaptive

method requires limited modeling information; in most cases, a single Markov pa-

rameter is sufficient. Furthermore, if actuator saturation is present, the effects of

integrator windup are mitigated, eliminating the need for anti-windup schemes. We

demonstrate the method on several example of increasing complexity, including cases

in which windup occurs in traditional PID setups, and for multi-input multi-output

problems.

Finally, in Chapter XII, we discuss conclusions and future work in input recon-

struction, model refinement, state estimation with unknown inputs, and adaptive

control.
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CHAPTER II

Adaptive Forward-Propagating Input

Reconstruction for

Nonminimum Phase Systems

2.1 Introduction

Unlike state estimation, where the goal is to use measured outputs to estimate un-

known internal states, the goal of input reconstruction is to use measured outputs to

estimate unknown inputs. Although not as well known as the state-estimation prob-

lem, input reconstruction has been studied for several decades, and interest continues

up to the present time [27, 22, 26, 23, 20, 34, 21, 24, 25, 16, 17, 18, 19].

Early research focused on the problem of reconstructing the input given knowledge

of the initial state of the system, while more recent techniques have focused on the

problem of input reconstruction when the initial state is unknown. The latter problem

is more challenging when zeros are present in the system since, for a suitable initial

condition and input sequence, the output can be identically zero, thus making it

impossible to unambiguously reconstruct the input.

When the initial condition is unknown and zeros are present in the plant, it is,

however, possible to generically reconstruct the input asymptotically [22, 26, 23]. The

simplest case occurs when the system is minimum phase, that is, all transmission zeros
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are stable. In this case, the input reconstruction error decays with time [27]. The case

of transmission zeros on the unit circle is intractable since the input reconstruction

error is persistent. Finally, the case of nonminimum-phase transmission zeros is the

most interesting, since the error decays as the reverse system propagates forward, that

is, the input-reconstruction estimates are propagated backwards in time [22, 26, 23].

In practice, this means that the ability to reconstruct inputs to a nonminimum-phase

system entails a delay in obtaining the input estimates.

In this chapter we propose a new approach to input reconstruction that is based

entirely on forward propagation of the input estimate. This approach is especially

suitable for harmonic inputs, that is, inputs that consist of sinusoids of different

frequencies, and is applicable to plants with arbitrary zeros. Inversion techniques for

nonminimum-phase systems are used in [35, 36] for tracking and iterative learning

control.

We present two algorithms for forward-propagating input reconstruction. In open-

loop forward-propagating input reconstruction, we construct a finite-impulse-response

(FIR) transfer function that approximates the left inverse of the plant by minimizing

the fit error at the frequencies that are present in the input signal. Although this

method is applicable even for nonminimum-phase systems, the drawback is that the

input spectrum must be known.

For the case in which the input spectrum is uncertain, we consider a closed-

loop forward-propagating input-reconstruction technique, where the error is used to

adapt the FIR approximate inverse based on the output residual. The adaptation

algorithm uses a surrogate performance variable and a retrospective cost function.

This technique is used in retrospective cost adaptive control (RCAC) [37, 38] as well

as retrospective cost model refinement [39, 40, 41]. This chapter thus shows that,

in addition to being of interest for its own sake, the adaptive forward-propagating

input-reconstruction has implications beyond the problem of input reconstruction.
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In this chapter we first provide a problem formulation for the forward-propagating

input reconstruction problem. Next, we develop an open-loop method for input re-

construction in the presence of nonminimum-phase zeros using an asymptotically

stable, partial inverse. We demonstrate the open-loop method on several examples.

In Section 2.5 we introduce an adaptive closed-loop method using residual-based op-

timization to determine a partial inverse of the system. We then demonstrate the

method on several illustrative examples.

2.2 Problem Formulation

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bu(k), (2.1)

y(k) = Cx(k), (2.2)

where A ∈ Rn×n is asymptotically stable, B ∈ Rn×m, and C ∈ Rp×n, x(k) ∈ Rn,

y(k) ∈ Rp, and u(k) ∈ Rm. Next, we define

G(q)
△
= C(qI −A)−1B ∈ R

p×m(q), (2.3)

where q is the forward shift operator and y(k) = G(q)u(k). We assume that G(q)

has full normal column rank, which implies that m = rank B ≤ rank C = p.

We assume that u(k) is a harmonic signal with frequencies in the set Ω
△
=

{Ω1, . . . ,Ωh}, where 0 < Ωi < π rad/sample for all i = 1, . . . , h. Next, let F (q) ∈

Rm×p(q) and define the signals

û(k)
△
= F (q)y(k), (2.4)

ŷ(k)
△
= G(q)û(k), (2.5)
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where û(k) ∈ R
m, ŷ(k) ∈ R

p. Furthermore,

z(k)
△
= ŷ(k)− y(k), (2.6)

ũ(k)
△
= û(k)− u(k). (2.7)

The goal is to determine F (q) such that ũ(k) is small. Note that ũ(k) is unknown,

since u(k) is unknown.

2.3 Open-Loop Forward-Propagating Input Reconstruction

Figure 2.1 shows the open-loop architecture in which F (q) is cascaded with G(q)

to give estimates û(k) of u(k). To determine F (q) we consider the strictly proper

Figure 2.1: Open-loop architecture for input reconstruction. In this setup, the per-
formance z, is not used to improve the estimate û of u.

finite-impulse-response (FIR) system

F (q) =

ℓ
∑

i=1

q−iβi ∈ R
m×p, (2.8)

where βi ∈ R
m×p, for all i = 1, . . . , ℓ. The goal is to determine β1, . . . , βℓ such that

J(Ω)
△
=
√

tr Re[(ε∗(Ω)ε(Ω))], (2.9)
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is minimized where

ε(Ω) =

[

F (eΩ1)−G†(eΩ1) · · · F (eΩh)−G†(eΩh)

]

, (2.10)

(·)∗ denotes the complex conjugate transpose, and

G†(q) = [GT(q)G(q)]−1GT(q), (2.11)

which is improper.

To determine β1, . . . βℓ we choose the frequency set Ω̄ = {Ω̄1, . . . , Ω̄l}. If Ω is

known, then we can set Ω̄ = Ω. If, however, Ω is unknown, then Ω̄ can be chosen to

approximate or cover Ω. We then minimize J(Ω̄) with respect to β1, . . . , βℓ. We thus

have the linear relation

Ψ = ΛΦ, (2.12)

where Ψ ∈ Rm×jp, Λ ∈ Rm×lp, Φ ∈ Rlp×lp,

Ψ
△
=
[

Re[G†(eΩ̄1)] Im[G†(eΩ̄1)] · · · Re[G†(eΩ̄l)] Im[G†(eΩ̄l)]
]

, (2.13)

Λ
△
=

[

β1 · · · βℓ

]

, (2.14)

and

Φ
△
=













Re[e−Ω̄1] Im[e−Ω̄1] · · · Re[e−Ω̄l] Im[e−Ωl]

...
...

...
...

...

Re[e−ℓΩ̄1 ] Im[e−ℓΩ̄1 ] · · · Re[e−ℓΩ̄1] Im[e−ℓΩ̄l]













. (2.15)
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The least-squares solution of (2.12) is given by

Λopt = ΨΦT(ΦΦT)−1, (2.16)

which minimizes J(Ω̄). Note that if G(q) is nonminimum phase, then G†(q) is un-

stable. However, the poles of F (q) are located at the origin, and therefore F (q) is

asymptotically stable.

2.4 Open-loop examples

Consider the asymptotically stable, nonminimum-phase plantG(q) = (q−0.4)(q−1.5)
(q−0.5±0.5)(q−0.7)

.

We demonstrate input reconstruction for an unknown three-tone signal.

In the first example, we assume that the selected fit frequencies Ω̄ coincide with

the input frequencies Ω. In the second example, we assume that Ω is a subset of Ω̄,

and, finally, Ω is not a subset of Ω̄.

In each case the unknown input is u(k) = 0.01 sin(Ω1k)+0.63 sin(Ω2k)+1.3 sin(Ω3k),

where Ω1 = 0.5, Ω2 = 0.7, and Ω3 = 0.9 rad/sample.

Example 2.4.1. (SISO NMP, Ω = Ω̄) Figure 2.2 is the frequency response com-

parison of F and G†, where the red vertical lines denote the frequencies Ω̄i. At the

frequencies Ω̄i the fit error is small, namely, ‖ε(Ω)‖ = 9.66× 10−12. Figure 2.3 com-

pares the input u(k) and the estimated input û(k). The peak of the transient not

shown is ±10. Figure 2.4 shows the residual plots of ũ(k) and z(k).

Example 2.4.2. (SISO NMP, Ω is a subset of Ω̄ ) For this example we choose

Ω̄1 = 0.2, Ω̄2 = 0.5, Ω̄3 = 0.6, Ω̄4 = 0.7, Ω̄5 = 0.9, and Ω̄6 = 1.1. Figure 2.5 is the

frequency response comparison of F and G†, where the red vertical lines denote the

frequencies Ω̄. The fit error is ‖ε(Ω)‖ = 6.57× 10−4. Figure 2.6 compares the input

u(k) and the estimated input û(k). The peak of the transient not shown is ±1× 104.

Figure 2.7 shows the residual plots of ũ(k) and ỹ(k).
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Figure 2.2: Frequency response comparison of F and G†, where the red vertical lines
denote the frequencies Ω̄i. In this example, Ω̄ = Ω.
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Figure 2.3: Comparison between û(k) and u(k). After a transient whose peak excur-
sion is approximately ±10, ũ(k) is small.

Example 2.4.3. (SISO NMP, Ω is not a subset of Ω̄ ) For this example we choose

Ω̄1 = 0.2, Ω̄2 = 0.57, Ω̄3 = 0.6, Ω̄4 = 0.76, Ω̄5 = 0.95, and Ω̄6 = 1.1. Figure 2.8 is the
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Figure 2.4: Residuals ũ(k) and z(k) show that both the input reconstruction error
and output residual become small.

frequency response comparison of F and G†, where the red vertical lines denote the

frequencies Ω̄. The fit error is ‖ε(Ω)‖ = 0.14. Next we choose Ω̄1 = 0.01, Ω̄2 = 0.2,

Ω̄3 = 0.75, Ω̄4 = 0.9, Ω̄5 = 1.5. Figure 2.9 compares the input u(k) and the estimated

input û(k). The peak of the transient not shown is approximately ±5 × 103. Figure

2.10 shows the residual plots of ũ(k) and ỹ(k).

2.5 Closed-Loop Forward-Propagating Input Reconstruction

We now consider the case where the output residual z(k) is used to adaptively

tune the parameters of F (q) as in Figure 2.11. We start by letting û(k) be the output

of the strictly proper adaptive feedback system of order ℓ, given by

û(k) =

ℓ
∑

i=1

Mi(k)û(k − i) +

ℓ
∑

i=1

Ni(k)z(k − i), (2.17)

where, for all i = 1, . . . , ℓ, Mi(k) ∈ R
m×m and Ni(k) ∈ R

m×p. Note that we now

take z(k) to be the input the input to F (q). The goal is to update Mi(k) and Ni(k)
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Figure 2.5: Frequency response comparison of F and G†, where the dashed verti-
cal lines denote the frequencies Ω̄, and the dotted vertical lines are the
frequencies Ω.
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Figure 2.6: Comparison between û(k) and u(k). After a transient whose peak excur-
sion is approximately ±1× 104, ũ(k) is small.

23



0 50 100 150
10

−10

10
−5

10
0

10
5

data (k)

û
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Figure 2.7: Residuals ũ(k) and z(k) show that both the input reconstruction error
and output residual become small.

using the measured output error z(k). Note that the coefficients of F (q) are Mi(k)

and Ni(k).

2.5.1 Input Reconstruction using a Retrospective Cost

For i ≥ 1, define the Markov parameter Hi of (A,B,C) given by

Hi
△
= CAi−1B. (2.18)

For example, H1 = CB and H2 = CAB. Let r be a positive integer. Then, for all

k ≥ r,

x̂(k) = Arx̂(k − r) +

r
∑

i=1

Ai−1Bû(k − i), (2.19)
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Figure 2.8: Frequency response comparison of F and G†, where the dashed verti-
cal lines denote the frequencies Ω̄, and the dotted vertical lines are the
frequencies Ω.
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Figure 2.9: Comparison between û(k) and u(k). After a transient whose peak excur-
sion is approximately ±5× 103, ũ(k) is small.
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Figure 2.10: Residuals ũ(k) and z(k) show that both the input reconstruction error
and output residual become small.

Figure 2.11: Adaptive architecture for input reconstruction.

and thus

z(k) = CArx̂(k − r)− y(k) + H̄ ˆ̄U(k − 1), (2.20)

where

H̄
△
=

[

H1 · · · Hr

]

∈ R
p×rm
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and

ˆ̄U(k − 1)
△
=













û(k − 1)

...

û(k − r)













.

Next, we rearrange the columns of H̄ and the components of ˆ̄U(k−1) and partition

the resulting matrix and vector so that

H̄ ˆ̄U(k − 1) = H′Û ′(k − 1) +HÛ(k − 1), (2.21)

where H′ ∈ Rp×(rm−l
Û
), H ∈ Rp×l

Û , Û ′(k − 1) ∈ Rrm−l
Û , and Û(k − 1) ∈ Rl

Û . Then,

we can rewrite (2.20) as

z(k) = S(k) +HÛ(k − 1), (2.22)

where

S(k)
△
= CArx̂(k − r)− y(k) +H′Û ′(k − 1). (2.23)

For example, H̄ =

[

H1 H2 H3 H4 H5

]

,

H′ =

[

H1 H2 H4

]

, Û ′(k − 1) =













û(k − 1)

û(k − 2)

û(k − 4)













,

27



and

H =

[

H3 H5

]

, Û(k − 1) =







û(k − 3)

û(k − 5)






.

Note that the decomposition of H̄ ˆ̄U(k − 1) in (2.21) is not unique. Let s be a

positive integer. Then for i = 1, . . . , s, we replace H, Û(k − 1), H′, and Û ′(k − 1) in

(2.21) with Hj ∈ R
p×l

Ûj , Ûj(k−1) ∈ R
l
Ûj , H′

j ∈ R
p×(rm−l

Ûj
)
, and Û ′

j(k−1) ∈ R
rm−l

Ûj ,

respectively, such that (2.21) becomes

H̄ ˆ̄U(k − 1) = H′
jÛ

′
j(k − 1) +HjÛj(k − 1). (2.24)

Therefore, for j = 1, . . . , s, we can rewrite (2.22) as

z(k) = Sj(k) +HjÛj(k − 1), (2.25)

where

Sj(k)
△
= CArx̂(k − r) + y(k) +H′

jÛ
′
j(k − 1). (2.26)

Next, let 0 ≤ k1 ≤ k2 ≤ · · · ≤ ks. Replacing k by k − kj in (2.25) yields

z(k − kj) = Sj(k − kj) +HjÛj(k − kj − 1). (2.27)

Now, by stacking z(k − k1), . . . , z(k − ks), we define the extended performance

Z(k)
△
=













z(k − k1)

...

z(k − ks)













∈ R
sp. (2.28)
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Therefore,

Z(k)
△
= S̃(k) + H̃ ˆ̃U(k − 1), (2.29)

where

S̃(k)
△
=













S1(k − k1)

...

Ss(k − ks)













∈ R
sp (2.30)

and ˆ̃U(k − 1) has the form

ˆ̃U(k − 1)
△
=













û(k − q1)

...

û(k − qg)













∈ R
gm, (2.31)

where k1 ≤ q1 < q2 < · · · < qg ≤ ks + r. The vector ˆ̃U(k − 1) is formed by stacking

Û1(k − k1 − 1), . . . , Ûs(k − ks − 1) and removing copies of repeated components, and

H̃ ∈ Rsp×gm is constructed according to the structure of ˆ̃U(k− 1). For example, with

s = 2, k1 = 0, and k2 = 2, stacking Û1(k−1) =







û(k − 1)

û(k − 2)






and Û2(k−3) = û(k−3)

results in

ˆ̃U(k − 1) =













û(k − 1)

û(k − 2)

û(k − 3)













, H̃ =













H1 H2 H3

0 H1 H2

0 0 H3













. (2.32)

Note that H̃ consists of the entries of H1, . . . ,Hs arranged according to the structure

of Ũ(k − 1).
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Next, we define the retrospective performance

ẑ(k − kj)
△
= Sj(k − kj) +HjU

∗
j (k − kj − 1), (2.33)

where the past input estimates Ûj(k − kj − 1) in (2.27) are replaced by the retro-

spectively optimized input estimates U∗
j (k− kj − 1), which are determined below. In

analogy with (2.28), the extended retrospective performance is defined as

Ẑ(k)
△
=













ẑ(k − k1)

...

ẑ(k − ks)













∈ R
sp (2.34)

and thus is given by

Ẑ(k) = S̃(k) + H̃Ũ∗(k − 1), (2.35)

where the components of Ũ∗(k − 1) ∈ R
l ˆ̃
U are the components of U∗

1 (k − k1 −

1), . . . , U∗
s (k − ks − 1) ordered in the same way as the components of ˆ̃U(k − 1).

Subtracting (2.29) from (2.35) yields

Ẑ(k) = Z(k)− H̃ ˆ̃U(k − 1) + H̃Ũ∗(k − 1). (2.36)

Finally, we define the retrospective cost function

J(Ũ∗(k − 1), k)
△
= ẐT(k)R1(k)Ẑ(k) + η(k)Ũ∗T(k − 1)R2(k)Ũ

∗(k − 1), (2.37)

where R1(k) ∈ Rps×ps is a positive-definite performance weighting, R2(k) ∈ Rgm×gm is

a positive-definite input estimate weighting, and η(k) ≥ 0 is a regularization weight-

ing. The goal is to determine retrospective input estimates Ũ∗(k−1) that would have

30



provided better performance than the estimated inputs Û(k − 1) that were applied

to the system. The retrospectively optimized estimated input values Ũ∗(k − 1) are

then used to update the controller. Substituting (2.36) into (2.37) yields

J(Ũ∗(k − 1), k) = Ũ∗T(k − 1)A(k)Ũ∗(k − 1) + Ũ∗T(k − 1)BT(k) + C(k), (2.38)

where

A(k)
△
= H̃TR1(k)H̃ + η(k)R2(k), (2.39)

B(k)
△
= 2H̃TR1(k)[Z(k)− H̃ ˆ̃U(k − 1)], (2.40)

C(k)
△
= ZT(k)R1(k)Z(k)− 2ZT(k)R1(k)H̃

ˆ̃U(k − 1) + ˆ̃UT(k − 1)H̃TR1(k)H̃
ˆ̃U(k − 1).

(2.41)

If either H̃ has full column rank or η(k) > 0, then A(k) is positive definite. In this

case, J(Ũ∗(k − 1), k) has the unique global minimizer

Ũ∗(k − 1) = −
1

2
A−1(k)B(k), (2.42)

which is the retrospectively optimized estimated inputs.

The regularization weighting η(k) can be used to bound the retrospectively op-

timized estimated inputs Ũ∗(k − 1) and thus indirectly bound the estimated inputs

ˆ̃U(k). For example, η(k) may be performance based

η(k) = η0(k)||Z(k)||
2
2 (2.43)

or error based

η(k) = η0(k)||Ũ
∗(k − 2)− ˆ̃U(k − 2)||22, (2.44)
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where η0(k) ≥ 0. Alternatively, the retrospectively optimized inputs can be bounded

directly by using a saturation function, where η(k) ≡ 0 in (2.39) and (2.42) is replaced

by

Ũ∗(k − 1)
△
= sat[a,b][−

1

2
A−1(k)B(k)], (2.45)

where sat[a,b](ζ) is the component-wise saturation function defined for scalar argu-

ments by

sat[a,b](ζ)
△
=























b, if ζ ≥ b,

ζ, if a < ζ < b,

a if ζ ≤ a,

(2.46)

where a < b are the component-wise saturation levels.

2.6 Adaptive Feedback Update

The reconstructed input (2.17) can be expressed as

û(k) = θ(k)φ(k − 1), (2.47)

where

θ(k)
△
= [M1(k) · · · Mℓ(k) N1(k) · · · Nℓ(k)] ∈ R

m×ℓ(m+p) (2.48)
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and

φ(k − 1)
△
=

































û(k − 1)

...

û(k − ℓ)

y(k − 1)

...

y(k − ℓ)

































∈ R
ℓ(m+p). (2.49)

Next, we define the recursive least squares (RLS) cost function

JR(θ(k))
△
=

k
∑

i=qg+1

λk−i‖φT(i− qg − 1)θT(k)− u∗T(i− qg)‖
2

+ λk(θ(k)− θ(0))P−1(0)(θ(k)− θ(0))T, (2.50)

where ‖·‖ is the Euclidean norm and, for some ε ∈ (0, 1), λ(k) ∈ (ε, 1] is the forgetting

factor, and P (0) ∈ Rℓ(m+p)×ℓ(m+p) is positive definite. Minimizing (2.50) yields

θT(k)
△
= θT(k − 1) + β(k)P (k − 1)φ(k − qg − 1)

· [φT(k − qg − 1)P (k − 1)φ(k − qg − 1) + λ(k)]−1

· [θ(k − 1)φ(k − qg − 1)− u∗(k − qg)]
T, (2.51)

where β(k) is either 0 or 1. When β(k) = 1, the controller is allowed to adapt,

whereas, when β(k) = 0, the adaptation is off. P (k) is updated by

P (k)
△
= (1− β(k))P (k − 1) + β(k)λ−1(k)P (k − 1)− β(k)λ−1(k)P (k − 1)φ(k − qg − 1)

· [φT(k − qg − 1)P (k − 1)φ(k − qg − 1) + λ(k)]−1φT(k − qg − 1)P (k − 1).

(2.52)
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We initialize P (0) = γI, where γ > 0. Furthermore, the updates (2.51) and (2.52)

are based on the gth component of Ũ∗(k − 1). However any or all of the components

of Ũ∗(k − 1) may be used in the update of θ(k) and P (k).

2.6.1 H̃ as an Approximation of G(q)

In this section, we give frequency-domain conditions on H̃ and ˆ̃U(k − 1) such

that û − u(k) will become small. Note that this analysis is the input reconstruction

analog to the stability development in Chapter IX. Some of the assumptions used in

Proposition II.1 are motivated by the more complete analysis in Chapter IX.

First we introduce GFIR(q), which is an FIR filter whose numerator coefficients are

the Markov parameters of Gzu(q) that comprise H̃. The structure of GFIR(q) depends

on the components of ˆ̃U(k − 1) that are used to update θ(k) and the structure of H̃.

For example, in the SISO case assume that H̃ = [H3 H2 H1]
T and g = qg = 3, which

results in ˆ̃U(k − 1) = û(k − qg). Then

GFIR(q) =
H1q

2 +H2q+H3

q3
. (2.53)

Note that GFIR(q) is only use an analysis tool, it is not required to implement the

retrospective input reconstruction technique.

Furthermore, let the unknown signal u(k) be a sinusoid whose frequency is Θ. For

this analysis we assume that β(k) = 1, only when the state of the estimator system

reaches a harmonic steady state, and β(k) = 0 otherwise. Specifically, we only update

the controller coefficients and error covariance when the state of the estimator system

reaches harmonic steady state and let

ν = β(0) + · · ·+ β(k), (2.54)

where ν is the number of controller and error covariance updates. Note, in practice,
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we update the controller coefficients at each step k.

Proposition II.1. Let Ũ∗(k−1) be given by (2.42), and let m = p = 1. Next, assume

that the frequency Θ does not coincide with any zeros of GFIR. Furthermore, assume

that (2.5) reaches harmonic steady state for all ν, and assume that û(k)− u∗(k) → 0

as k → ∞ and that η(k) is chosen such that η(k) → 0, as k → ∞, which implies

ẑ(k) → 0, as k → ∞, (see Fact. 9.5.2) then if

∣

∣

∣

∣

1−
G(eΘ)

GFIR(eΘ)

∣

∣

∣

∣

< 1, (2.55)

then z(k) → 0 as k → ∞.

In harmonic steady state we have

zν = −G(eΘ)u+G(eΘ)u∗ν +G(eΘ)gν , (2.56)

where zν , u
∗
ν, gν are phasors, and gν

△
= uν − ûν . In view of the assumption that

û(k)−u∗(k) → 0 as k → ∞, we assume that gν is negligible and omitted for simplicity.

Next, the retrospective cost in harmonic steady state is,

ẑν
△
= zν−1 −GFIR(e

Θ)u∗ν−1 +GFIR(e
Θ)u∗ν , (2.57)

ẑν = −G(eΘ)u+G(eΘ)u∗ν−1 −GFIR(e
Θ)u∗ν−1 +GFIR(e

Θ)u∗ν, (2.58)

ẑν = [G(eΘ)−GFIR(e
Θ)]u∗ν−1 +GFIR(e

Θ)u∗ν −G(eΘ)u. (2.59)

Solving (2.59) for u∗ν yields,

u∗ν = G−1
FIR(e

Θ)
[

ẑν +G(eΘ)u− [G(eΘ)−GFIR(e
Θ)]u∗ν−1

]

. (2.60)
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Substituting (2.60) into (2.56) yields,

zν = [1−G(eΘ)G−1
FIR(e

Θ)][−G(eΘ)u+G(eΘ)u∗ν−1] +G(eΘ)G−1
FIR(e

Θ)ẑν . (2.61)

Using this process we write zν in terms of u∗0 as

zν = [1−G(eΘ)G−1
FIR(e

Θ)]ν [−G(eΘ)u+G(eΘ)u∗0]

+
ν
∑

i=0

[1−G(eΘ)G−1
FIR(e

Θ)]i[G(eΘ)G−1
FIR(e

Θ)]ẑν−i. (2.62)

It follows from (2.62) that

|zν | ≤
∣

∣1−G(eΘ)G−1
FIR(e

Θ)
∣

∣

ν ∣
∣−G(eΘ)u+G(eΘ)u∗0

∣

∣

+

∣

∣

∣

∣

∣

ν
∑

i=0

[1−G(eΘ)G−1
FIR(e

Θ)]i[G(eΘ)G−1
FIR(e

Θ)]ẑν−i

∣

∣

∣

∣

∣

. (2.63)

Therefore, since
∣

∣

∣
1− G(eΘ)

GFIR(eΘ)

∣

∣

∣
< 1, it follows that

∣

∣

∣
1− G(eΘ)

GFIR(eΘ)

∣

∣

∣

ν

→ 0 as ν → ∞,

then |zν | → 0 as ν → ∞.

Condition (2.55) has a simple geometric interpretation, namely, GFIR(e
Θ) must

lie in a half plane that contains G(eΘ) and whose boundary is perpendicular to

|G(eΘ)| and passes through 1
2
|G(eΘ)|. Figure 2.12 illustrates the region of admissible

GFIR(e
Θ) for a given |G(eΘ)| and frequency.

From Proposition II.1, we note that if Θ coincides with a zero of GFIR, then the

system remains at its open-loop performance value. Furthermore, this analysis can

be done for multiple frequencies.

The above analysis is based on the assumption that the state of the system reaches

harmonic steady state after each period of adaptation. This assumption is an approx-

imation invoked to facilitate the analysis. In fact, RCAC adapts at each step, and

thus the state does not reach harmonic steady state. The examples in the next sec-
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Figure 2.12: The dashed region on the complex plane illustrates the region of admis-
sible GFIR(e

Θ) for a given |G(eΘ)| and frequency Θ as determined by
2.55. The admissible region is a half plane.

tion show that this condition is sufficient but not necessary, and thus provides a

conservative estimate of the allowable uncertainty that can be tolerated in the FIR

approximation error.

2.7 Adaptive Examples

We now re-consider the same plant and unknown input as in Section 2.4. We now

apply the adaptive algorithm in place of the open-loop input reconstruction technique.

For all of the following examples we choose the RCAC parameters ℓ = 10, η0 = 0.01,

and P (0) = 1.

Example 2.7.1. (SISO NMP, H̃ = H1 ) In the first example we choose H̃ = H1.

Figure 2.13 compares the frequency response of G(q) and GFIR(q) =
H1

q
. Note from

the phase comparison that the phase error at frequency Ω1 is approaching 90 degrees.

Figure 2.14 compares the effect of the large phase error, where a large transient is

experienced before settling. Figure 2.15 compares the residual û(k)− u(k) and z(k).

We note that the performance does not reach a lower bound as in the open-loop case,

but continues to decrease.

Example 2.7.2. (SISO NMP, H̃ = [H3 H2 H1]
T ) In the first example we choose H̃ =
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Figure 2.13: Frequency response comparison of G and GFIR, where the red vertical
lines denote the frequencies Ωi.
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Figure 2.14: Comparison between û(k) and u(k). After a transient whose peak ex-
cursion is approximately ±4× 105, ũ(k) is small.

[H3 H2 H1]
T. Figure 2.16 compares the frequency response of G(q) and GFIR(q) =

H1q
2+H2q+H3

q3 . Note from the phase comparison that the phase error is smaller than
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Figure 2.15: Residuals û(k)−u(k) and z(k) show that both the input reconstruction
error and the output residual become small.

the previous example.

Figure 2.17 compares the improved transient performance over the previous ex-

ample since GFIR is a better approximation of G at the relevant frequencies.

Figure 2.18 shows the residual û(k)− u(k) and z(k).

2.8 Conclusions

In this chapter we presented two methods for forward-propagating input recon-

struction for nonminimum-phase systems. First we developed an open-loop method,

which uses a finite impulse response (FIR) model to approximate the inverse of the

system at a finite number of frequencies. This FIR model was then used with the mea-
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Figure 2.16: Frequency response comparison of G and GFIR, where the red vertical
lines denote the frequencies Ωi.
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Figure 2.17: Comparison between û(k) and u(k). Note that in this case ũ(k) is small,
with no transient.

sured system output to estimate the system input. Next, we presented a closed-loop

method, which uses the output residual to adaptively tune the coefficients of an infi-
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Figure 2.18: Residuals û(k)−u(k) and z(k) show that both the input reconstruction
error and the output residual become small.

nite impulse response transfer function to estimate the system input. The closed-loop

method is able to minimize the error ũ(k) despite inaccuracy in the system estimate

at the frequencies of the unknown input.

Future research will focus on the effect of sensor noise on the accuracy of the

input reconstruction. Finally, the ability to adaptively estimate the phase shift of the

transfer function at the input frequency as well as the phase of the input may have

applications to the area of phase and frequency estimation.
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CHAPTER III

Application of Input Reconstruction to

Semi-Parametric Identification of Hammerstein

Systems

3.1 Introduction

Nonlinear model structures involving a single linear dynamic block and a single

nonlinear static block comprise a natural first step in nonlinear system identification.

A nonlinear mapping at the input yields a Hammerstein model, while a nonlinear

mapping at the output yields a Wiener model. The literature on system identi-

fication for these models structures is extensive, and shows that nonlinear system

identification for these problems remains a challenging and useful area of research.

Representative references on Hammerstein and Wiener system identification include

[42, 43, 44] and [42, 45, 46, 43, 39], respectively.

The starting point for this Chapter on Hammerstein-system identification is the

semiparametric approach developed in [39] for identifying Wiener systems. This ap-

proach involves two steps and is semiparametric, which, as described in [47], refers to

the fact that the nonlinear block is estimated nonparametrically, whereas the linear

dynamics are identified parametrically. In the first step, a single harmonic is applied

to the system to determine the phase shift of the output of the linear system relative
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the input to the linear system; this information is then used to construct a non-

parametric approximation of the nonlinearity. Next, using knowledge of the output

nonlinearity, which is not assumed to be invertible, retrospective cost optimization

(RCO) is used to estimate the parameters of the linear model. RCO was originally

developed for adaptive control [48, 49, 50], and has subsequently been applied to

various identification problems, including model refinement [39, 11].

In this chapter we develop a two-step semiparametric technique for identifying

single-input, single-output (SISO) Hammerstein systems. In the first step we use a

sufficiently rich signal to estimate the linear dynamics of the system. We then use ret-

rospective cost optimization to estimate the parametric model of the linear dynamics,

although alternative techniques [51] can be used for this step, such as output-error

modeling methods. When an initial model of the linear system is available, retrospec-

tive cost optimization can utilize this information. In this chapter we do not assume

that an initial model is available.

For the second step, we apply a single harmonic input signal, and measure the

output once the trajectory of the system reaches steady state. We then use input re-

construction, which is based on l-delay left invertibility of the linear parametric model

[27]. By using input reconstruction with the identified linear parametric model, we

estimate the inaccessible intermediate signal. We examine the estimate of the inter-

mediate signal (which is not harmonic due to the nonlinearity) relative to the input,

and use the symmetry properties of these signals to estimate the nonharmonic phase

shift. This estimate allows us to infer the phase shift of the unmeasured intermediate

signal (that is, the output of the nonlinearity) and thus reconstruct this signal up to

an arbitrary amplitude. By plotting the reconstructed intermediate signal versus the

input signal, we thus obtain a nonparametric approximation of the nonlinear block

of the system.

The contents of this chapter are as follows. In Section 2 we define the Ham-
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merstein identification problem. A method for parametric identification of the linear

time-invariant dynamics using retrospective cost optimization is reviewed in Section

3, while a method for nonparametric identification of the static nonlinearity using

input reconstruction and single harmonic input is presented in Section 4. These

methods are demonstrated on numerical and experimental examples in sections 5

and 6, respectively. Concluding remarks are presented in Section 7.

3.2 Problem Formulation

Consider the block-structured Hammerstein model shown in Figure 3.1a, with

input u(k) ∈ R and intermediate signal

v(k) = H(u(k)), (3.1)

where H : R 7−→ R is the static nonlinearity, and L is the SISO discrete-time linear

time-invariant dynamic system

x(k + 1) = Ax(k) +Bv(k), (3.2)

y(k) = Cx(k), (3.3)

where y(k) ∈ R is the output, x(k) ∈ Rn is the state vector, and k is the sample

index.

We assume that L is asymptotically stable and H is piecewise continuous. Note

that we do not assume that H is invertible, one-to-one, continuous, or H(0) = 0.

Also, we assume that v(k) is not accessible, and that x(0) is unknown and possibly

nonzero.

Figure 3.1b shows the scaled-domain modification Lλ(ν)
△
= L

(ν

λ

)

of L, where λ

is a nonzero real number. Therefore, Lλ(λv) = L(v). Each value of λ scales both the
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gain of L and the domain of H. However, λ is not identifiable.

(a) (b)

Figure 3.1: (a) Block-structured Hammerstein model, where u is the input, v is the
intermediate signal, y is the output, H is a static nonlinearity, and L
is a discrete-time linear time-invariant dynamic system. (b) An equiva-
lent scaled model, where λ is a scaling factor and Lλ is a scaled-domain
modification of L satisfying Lλ(λv) = L(v). The scaling factor λ is not
identifiable.

3.3 Parametric Identification of the Linear Time-Invariant

Dynamics

Using a sufficiently rich input u and measuring the output y of the Hammer-

stein system, we identify a model of L given by L̂ using retrospective cost optimization

(RCO). The RCO algorithm is presented in [11] together with guidelines for choosing

its tuning parameters, namely, nc, p, and α. We do not assume that the initial state

of L is zero.

Consider the adaptive feedback architecture for L̂ shown in Figure 3.2, where

L̂m denotes the initial model with input w ∈ R and output ŷ ∈ R, and where L̂∆

denotes the feedback delta model with inputs u, ŷ ∈ R and output w. The goal is to

adaptively tune L̂∆ so that the performance variable

z(k)
△
= y(k)− ŷ(k) (3.4)

is minimized in the presence of the identification signal u. For simplicity, we choose
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L̂m to be the one-step delay 1/z. In the case that information is known about the

linear system, an initial model can be used in place of the unit delay.

Figure 3.2: Identification architecture for Hammerstein models using RCO.

When an initial model of the linear system is not available, various system identi-

fication methods can be used to obtain the parametric estimate of L, such as output-

error modeling methods [51]; see Example 6.3. To identify a parametric model L̂ for

the linear system using the signals u and y, we assume that H is approximately linear

for the domain of u used to drive y. In a sense, we ignore the nonlinearity H, the

validity of this assumption is investigated in [52].

3.4 Nonparametric Identification of the Static Nonlinearity

Consider the harmonic input signal

u(k) = A0sin(ω0kTs) = A0sin(Ω0k), (3.5)

where A0 is the amplitude, ω0 is the angular frequency in rad/sec, Ts is the sample

period in sec/sample, and Ω0
△
= ω0Ts is the angular sample frequency in rad/sample.
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The intermediate signal is

v(k) = H(u), (3.6)

and the output signal is

y(k) = G(z)H(u), (3.7)

where G(z) = C(zI − A)−1B is a transfer function representation of L. To obtain

the nonparametric estimate Ĥ of the nonlinearity H, we require an estimate v̂(k) of

the inaccessible intermediate signal v(k). To obtain v̂(k), we use input reconstruction

[26, 27]. Together, L̂ and Ĥ comprise a semiparametric model of the Hammerstein

system.

3.4.1 Input Reconstruction

With an estimate L̂ of the linear system L, we pass (3.5) through (3.1)-(3.3).

Next we wish to obtain an estimate v̂ of the intermediate signal v. To obtain v̂, we

use input reconstruction, which depends on the l-delay invertibility of the estimate

of G(z).

Let l be a nonnegative integer. Then G(z) is l-delay invertible if there ex-

ists a proper transfer function Gl(z) (called an l-delay inverse of G(z)) such that

Gl(z)G(z) = z−l for almost all z ∈ C [27]. For a SISO system, G is l-delay invertible

for all l ≥ d, where d is the relative degree of G(z).

Using input reconstruction we obtain

v̂l(k) = Ĝ−1(z)z−ly(k), (3.8)

where v̂l(k) = v̂(k − l) for k ≥ l. For the case l = d, the estimate v̂(k) is in
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Figure 3.3: Input reconstruction. Using l-delay invertibility of the estimated linear
system, the intermediate signal can be reconstructed.

nonharmonic phase with the true intermediate signal v(k), where nonharmonic phase

is defined in Section 3.4.4. We also consider the case l 6= d, since d is not assumed to be

known. Using the harmonic input u and v̂ we can determine the nonharmonic phase

shift, and then determine an estimate of the nonparametric map of the nonlinearity.

3.4.2 Signal Symmetry

Note that the continuous-time harmonic signal sin(ω0t) is symmetric in the inter-

vals
[

0, 1
2
T0
]

and
[

1
2
T0, T0

]

about the points 1
4
T0 and

3
4
T0, respectively, where T0

△
=

2π

ω0

is the period of the harmonic input. To preserve symmetry for the sampled signal

(3.5) about the points 1
4
T0 and 3

4
T0, we assume that Ω0 =

π

2m
, where m is a positive

integer. Thus N0
△
= 4m =

T0
Ts

is the period of the discrete-time input (3.5). With

this choice of Ω0, the sampled signal u(k) is symmetric in the intervals
[

0, 1
2
N0

]

and
[

1
2
N0, N0

]

about the points 1
4
N0 and 3

4
N0, respectively. Furthermore, q

△
= d− l is

an integer, that is, the estimated intermediate signal v̂(k), which is shifted relative

to u(k) due to d − l, the error in the relative degree between L and L̂, is symmet-

ric about 1
4
N0 + q in the interval

[

q, 1
2
N0 + q

]

and about 3
4
N0 + q in the interval

[

1
2
N0 + q, N0 + q

]

.

Next, we note that the intermediate signal v, which is not generally harmonic,

possesses the same symmetry as u on the same intervals. By exploiting knowledge of

this symmetry, we can identify the nonharmonic phase shift of v̂ relative to u. Since v̂

is not sinusoidal, the nonharmonic phase shift of v̂ relative to u refers to the shifting
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of the symmetric portions of v̂ relative to the symmetric portions of u. Knowledge

of this nonharmonic phase shift allows us to determine v up to a constant multiple,

specifically, v̂ is shifted relative to u by a known number of samples.

To clarify the above discussion, we present two examples using A0 = 1, m =

18 (so that Ω0 = π/36). First, consider the polynomial nonlinearity v = H(u) =

0.6(u + 1)3 − 1, which is neither even nor odd. Figure 3.4a illustrates the resulting

signals u(k), v(k), v̂(k) in harmonic steady state, where the delay q, between v(k)

and v̂(k), is added to simulate modeling inaccuracy. Note that u and v are symmetric

about the discrete-time index δ in the interval
[

δ − 1
4
N0, δ +

1
4
N0

]

and about δ+ 1
2
N0

in the interval
[

δ + 1
4
N0, δ2 +

3
4
N0

]

. Likewise, v̂ is symmetric about the discrete-

time index ε in the interval
[

ε− 1
4
N0, ε+

1
4
N0

]

and about ε + 1
2
N0 in the interval

[

ε+ 1
4
N0, ε+

3
4
N0

]

.

Second, we consider the even polynomial nonlinearity v = H(u) = u2. Figure

3.4b illustrates the resulting signals u(k), v(k), and v̂(k) in harmonic steady state.

The signal u of Figure 3.4b is equal to the signal u shown in Figure 3.4a. However,

in addition to the two points of symmetry shown in Figure 3.4a, note that v and v̂

have two additional points of symmetry, specifically, v is symmetric about δ + 1
4
N0

in the interval
[

δ, δ + 1
2
N0

]

and about δ + 3
4
N0 in the interval

[

δ + 1
2
N0, δ +N0

]

, and

v̂ is symmetric about ε + 1
4
N0 in the interval

[

ε, ε+ 1
2
N0

]

and about ε + 3
4
N0 in the

interval
[

ε+ 1
2
N0, ε+N0

]

.

3.4.3 Symmetry Search Algorithm

We now review from [39] an algorithm for determining ε from v̂. We then use

ε to estimate the nonharmonic phase shift of v̂ relative to u. For convenience, we

assume that the harmonic steady state begins at k = 0. Consider the signal v̂ shown

in Figure 3.5, and let n ≥ 6m denote the width of the data window so that it includes

at least one and a half periods. To encompass a complete signal period, we construct
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Figure 3.4: Illustration of the symmetry properties of the signals u, v, and v̂. For (a)
the non-even polynomial nonlinearity is v = H(u) = 0.6(u+ 1)3 − 1 and
(b) the even polynomial nonlinearity is v = H(u) = u2. For both cases,
u and v are symmetric about δ in the interval

[

δ − 1
4
N0, δ +

1
4
N0

]

and
about δ + 1

2
N0 in the interval

[

δ + 1
4
N0, δ +

3
4
N0

]

, while v̂ is symmetric
about ε in the interval

[

ε− 1
4
N0, ε+

1
4
N0

]

and about ε + 1
2
N0 in the in-

terval
[

ε+ 1
4
N0, ε+

3
4
N0

]

. In addition, for the case of an even polynomial
nonlinearity shown in (b), v and v̂ have two additional points of symme-
try, specifically, v is symmetric about δ+ 1

4
N0 in the interval

[

δ, δ + 1
2
N0

]

and about δ + 3
4
N0 in the interval

[

δ + 1
2
N0, δ +N0

]

, and v̂ is symmet-
ric about ε + 1

4
N0 in the interval

[

ε, ε+ 1
2
N0

]

and about ε + 3
4
N0 in the

interval
[

ε+ 1
2
N0, ε+N0

]

.

a sliding window with N0 + 1 data points. The window is divided into quarters as

shown in Figure 3.5.

Next, for k = 0, . . . , n−N0, define

β1(k)
△
=

2m−1
∑

i=1

|v̂ (k + i− 1)− v̂ (k + 2m− i+ 1) |, (3.9)

which is the sum of the absolute difference in magnitude for each pair of candidate

symmetric points in the first and second quarters about the point k + 1
4
N0 for the

50



−1

0

1

2

3

4

Time Index

v ha
t(k

)

K K+N
0
/4 K+N

0
/2 K+3N

0
/4 K+N

0

Figure 3.5:
Illustration of the symmetry search algorithm. The solid line box com-
prises the sliding window of length N0 + 1 starting at time k, while the
dashed lines indicate the windowed points of symmetry.

sliding window starting at time step k. Likewise, for k = 0, . . . , n−N0, define

β2(k)
△
=

2m−1
∑

i=1

|v̂ (k + 2m+ i− 1)− v̂ (k + 4m− i+ 1)|, (3.10)

for each pair of candidate symmetric points in the third and fourth quarters about the

point k+ 3
4
N0. The values of β1 and β2 quantify the symmetry error about the points

k + 1
4
N0 and k + 3

4
N0, respectively, for each allowable value of k. Thus, using (3.9)

and (3.10), we define the symmetry error index β(k)
△
= β1(k) + β2(k), corresponding

to the sliding window starting at point k, for k = 0, . . . , n−N0.

For k = 0, . . . , n−N0, let k0 < N0 be the minimizer of β(k). We use knowledge of

k0 to determine the location of the points of symmetry ε and ε+ 1
2
N0 for the sliding

window starting at point k0. In particular, since k0 is the starting point of the window

that minimizes β and since ε and ε + 1
2
N0 are, respectively, the quarter point and
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three quarter point of the same window, it follows that

ε = k0 +
1

4
N0, ε+

1

2
N0 = k0 +

3

4
N0. (3.11)

To illustrate the symmetry search algorithm, we reconsider the example considered

in Figures 3.4a and 3.5, where v = H(u) = 0.6(u+ 1)3 − 1. Note that H is not even.

Figure 3.6a shows the values of β calculated for v̂(k) on the interval [k0, k0 + 2N0].

Since, in Figure 3.6a, the data window of v̂(k) is selected to start at k0 = ε − 1
4
N0,

the minimum values of β(k) occur at k0 and k0+N0, where k0+N0 is the start of the

next period and, thus, need not be considered. Thus, using the unique minimizer k0

of β(k), it follows that the locations of the points of symmetry are given by (3.11).

Next, for the even nonlinearity v = H(u) = u2 considered in Figure 3.4b, Figure

3.6b shows the values of β(k) calculated for v(k) on the interval [k0, k0+2N0]. In this

case, the minimum values of β(k) occur at k0, k0 +
1
2
N0, and k0 +N0, where k0 +N0

is the start of the next period and, thus, need not be considered. Thus, using k0, it

follows that the locations of the points of symmetry are given by (3.11). Also, using

k0 +
1
2
N0, we obtain two additional points of symmetry given by

ε+
1

4
N0 = k0 +

1

2
N0, ε+

3

4
N0 = k0 +N0. (3.12)

This ambiguity is due to the fact that ε and ε + 1
2
N0 are the midpoints of two

identical symmetric portions of v̂. Thus, the start of the data window within which

the function has the symmetry properties illustrated in Figure 3.5 can be taken as

either k0 or k0+
1
2
N0. Note that the second minimizer k0+

1
2
N0 appears only for even

nonlinearities.
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Figure 3.6: Illustration of the symmetry error index β(k) given by (3.9). The values
of β(k) are shown for two static nonlinearities, namely, (a) a non-even
polynomial and (b) an even polynomial.

3.4.4 Nonparametric Approximation of the Static Nonlinearity

Using δ, which is assumed to be known from the harmonic input u, and the

estimate of ε obtained from v̂ in Section 3.4.3, we now determine an estimate φ̂ of

the nonharmonic phase shift of v̂ relative to u by φ̂
△
= Ω0(ε− δ), which is an estimate

of d− l. Moreover, define the virtual signal

ṽ(k)
△
= v̂

(

k +
φ̂

Ω0

)

, (3.13)

which is an approximation of the intermediate signal v. Note that the amplitude of

ṽ(k) is irrelevant due to the scaling factor λ shown in Figure 3.1b. Using ṽ and u,

the nonparametric estimate of H is given by

Ĥ
△
= {(u(k0), ṽ(k0)), (u(k0 + 1), ṽ(k0 + 1)), . . . , (u(n), ṽ(n))}, (3.14)

where each pair (u(k), ṽ(k), ), for k = 0, . . . , n, determines a value of the nonpara-
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metric estimate Ĥ of H.

Figure 3.6 shows that, depending on the type of nonlinearity, β(k) has either one

or two minima within each period. For a non-even polynomial nonlinearity, β(k)

has one minimum within each period. Therefore, the estimate of the nonharmonic

phase shift has two candidate values, namely, φ̂ and φ̂+ π. For an even nonlinearity,

β(k) has two minima within each period. Therefore, the estimate of the nonharmonic

phase shift has four candidate values, namely, φ̂, φ̂+ π
2
, φ̂+ π, and φ̂+ 3π

2
. However,

for the even case, φ̂ and φ̂ + π yield the same nonparametric model Ĥ, while φ̂ + π
2

and φ̂+ 3π
2
yield the same Ĥ.

Therefore, in both the non-even and even cases, there are two candidate nonpara-

metric estimates of H, both of which are constructed using (3.13) and (3.14). In

practice q is small compared to N0, therefore, it is reasonable to assume that φ is the

correct nonharmonic phase shift candidate for estimating H.

3.5 Simulated Examples

To demonstrate semiparametric Hammerstein model identification, we con-

sider two static nonlinearities, namely, a non-even case and an even case. For both ex-

amples, we choose G to have poles 0.34±0.87,−0.3141±0.9, 0.05±0.3122,−0.6875

and zeros 0.14± 0.97,−0.12± 0.62,−0.89 with monic numerator and denominator.

Also, u(k) is chosen to be a realization of zero-mean Gaussian white noise with stan-

dard deviation σu = 3.5.

Example 3.5.1. (Non-even Polynomial) Consider H defined by

v = H(u) = u3 + 4u+ 7. (3.15)

The parameters for nonparametric identification ofH arem = 500 andA0 = 5. Figure

3.7a shows the frequency response of the true dynamic model G and the identified
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model using RCO. The RCO parameters used to identify the linear dynamic system

are set as nc = 9, p = 1, and α = 1. Figure 3.7b compares the true nonlinearity with

the identified nonlinearity estimated using input reconstruction.

Example 3.5.2. (Even Polynomial) Consider H defined by

v = H(u) = 7u4 + u2. (3.16)

The parameters for nonparametric identification ofH arem = 500 andA0 = 5. Figure

3.8a shows the frequency response of the true dynamic model G and the identified

model using RCO. The RCO parameters used to identify the linear dynamic system

are set as nc = 9, p = 1, and α = 1. Figure 3.8b compares the true nonlinearity

(blue line) with the identified nonlinearity estimated using input reconstruction (red

crosses).

To illustrate the ambiguity discussed in Section 3.4.4, we select the incorrect

nonharmonic phase shift, specifically, φ̂+ π
2
, which is represented by the black circles

in Figure 3.8b. Note that the incorrect nonharmonic phase shift produces an erroneous

nonparametric model of the nonlinearity.

3.6 Experimental Examples

We now present experimental examples using a resistor-inductor-capacitor (RLC)

circuit. The true parametric model of the RLC circuit is generated from first princi-

ples, where R = 250 Ω. L = 55 mH, C = 23.5 µF, and

ẋ =







0 1

−1
LC

−R
L






x+







0

1
L






v, (3.17)

y =

[

0 R

]

x, (3.18)
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Figure 3.7:
(a) Frequency response comparison of the true G and the identified LTI
system, where k is the number of data points used to determine the iden-
tified model. For k = 5000, the traces for the true and identified mod-
els almost coincide. (b) Identified nonlinearity versus true nonlinearity,
where m = 500 and A0 = 5. The argument of the identified nonlinearity
is scaled by 1

|G(eΩ0 )|
to facilitate comparison with the true nonlinearity

(3.15)
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Figure 3.8:
(a) Frequency response comparison of the true G and the identified LTI
system, where k is the number of data points used to determine the iden-
tified model. (b) Identified nonlinearities versus true nonlinearity, where
m = 500 and A0 = 5. The argument of the identified nonlinearity is scaled
by 1

|G(eΩ0 )|
to facilitate comparison with the true nonlinearity (3.16). The

red crosses represent the identified nonlinearity, the black circles, repre-
sent the identified nonlinearity using the incorrect nonharmonic phase
shift.
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where x ∈ R
2 is the state vector, which is the circuit charge and current. For the

following examples, G is a discrete time transfer function representation of (3.17)–

(3.18), with a sampling rate of Ts = 0.0001. Figure 3.9a shows the RLC circuit,

where the nonlinearity is a saturation in the actuation voltage.

(a)

(b)

Figure 3.9:
(a) Block diagram representation of the series RLC circuit, where the
input voltage is modified by H. For this example, H is a saturation
function. (b)A series RLC circuit in parallel with a diode. The resulting
system is a Hammerstein system where the diode can be represented as
a static nonlinearity and the series RLC circuit is the linear model.
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Example 3.6.1. (Saturation) Consider H defined by

v = H(u) =























u, if −1 < u < 1;

1, if u ≥ 1;

−1, if u ≤ 1.

(3.19)

The parameters for nonparametric identification ofH arem = 500 andA0 = 5. Figure

3.10a shows the frequency response of the true dynamic model G, and the identified

model using RCO. The RCO parameters used to identify the linear dynamic system

are set as nc = 9, p = 1, and α = 1. Figure 3.10b compares the true nonlinearity

with the identified nonlinearity estimated using input reconstruction.

We now reconsider the RLC circuit in Figure 3.9b, where a diode is presented

in parallel with the circuit. The diode modifies the input voltage according to a

nonlinear function H. We first determine H experimentally, using a circuit where the

diode is the sole component. H is approximatively given by

v = H(u) =











u, if u < 0.07;

0.07, if u ≥ 0.07.
(3.20)

We view (3.20) as the truth model of H.

Example 3.6.2. (Diode in Parallel with RLC Circuit) Consider H which is given

by (3.20), which is in parallel with the linear dynamic system given by (3.17) and

(3.18). In this example, the diode is assumed to be inaccesible, namely, it can not be

directly measured. The RCO parameters used to identify the linear dynamic system

are set as nc = 3, p = 1, and α = 1. Figure 3.11a shows the frequency response of

the true dynamic model G, and the identified model using RCO. For nonparametric

identification of H, m = 500 and A0 = 0.919. Figure 3.11b compares with true

nonlinearity and the identified nonlinearity estimated using input reconstruction.
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Example 3.6.3. (Diode in Parallel with RLC Circuit) We now revisit the diode

problem without using RCO, by fitting an output error model (OEM) of the form

y(k) =
B(z)

F (z)
u(k) + e(k), (3.21)

where B(z) and F (z) are polynomials. The coefficients of B(z), and F (z) are deter-

mined by minimizing the error term e(k), using a maximum likelihood method.

Figure 3.12a shows the frequency response of the true dynamic model G and the

identified model using the OEM fit. The identified nonlinearity using input recon-

struction and the actual nonlinearity are shown in Figure 3.12b.

3.7 Conclusion

In this chapter we develop a two-step method to identify semiparametric mod-

els for SISO discrete-time Hammerstein systems. We assume that the linear dynamic

block is asymptotically stable, and the static nonlinearity is piecewise continuous.

First, we identify a parametric model of the linear dynamic system using a suf-

ficiently rich input. We identify the parametric model using retrospective cost opti-

mization and, in one example, using an output error model.

Second, we choose a single harmonic input and measure the system output when

the state trajectory is in harmonic steady state. Using the system output and input

reconstruction we estimate the intermediate signal, which may be shifted compared to

the true intermediate signal, since the relative degree of the linear system is unknown.

We exploit symmetry properties of the estimated intermediate signal compared to

the input, which we use to approximate the nonharmonic phase shift and, therefore,

estimate the delay between the estimate and true intermediate signal. Using the

estimate of the intermediate signal, a nonparametric model of the static nonlinearity

is obtained.
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This method is effectively demonstrated on two simulated examples. Furthermore,

two experimental examples are presented, namely, an RLC circuit with saturation at

the input, and an RLC circuit containing a diode.
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Figure 3.10:
(a) Frequency response comparison of the true G and the identified LTI
system, where k is the number of data points used to determine the
identified model. For k = 5000, the traces for the true and identified
models almost coincide. (b) Identified nonlinearity versus true nonlin-
earity, where m = 500 and A0 = 5. The argument of the identified
nonlinearity is scaled by 1

|G(eΩ0 )|
to facilitate comparison with the true

nonlinearity (3.19).
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Figure 3.11:
(a) Frequency response comparison of the true G and the identified LTI
system the lines for the true and identified models almost coincide. (b)
Identified nonlinearity versus true nonlinearity, wherem = 500 and A0 =
0.919. The argument of the identified nonlinearity is scaled by 1

|G(eΩ0 )|
to facilitate comparison with the true nonlinearity (3.20)
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Figure 3.12:
(a) Frequency response comparison of the true G and the identified LTI
system, where the identified linear system is an output error model
(OEM) fit (b) Identified nonlinearity versus true nonlinearity, where
m = 500 and A0 = 5. The argument of the identified nonlinearity is
scaled by 1

|G(eΩ0 )|
to facilitate comparison with the true nonlinearity

(3.20)
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CHAPTER IV

Model Refinement

4.1 Introduction

In this chapter we consider the problem of data-based model refinement, where we

assume the availability of an initial model, which may incorporate both physical laws

and empirical observations. The components of the initial model may have varying

degrees of fidelity, reflecting knowledge or ignorance of the relevant physics as well

as the availability of data. With this initial model as a starting point, our goal is to

use additional measurements to refine the model. In particular, we wish to update

the components of the model that are poorly modeled, thereby resulting in a higher

fidelity model [11, 53, 54, 55, 56].

System identification is typically concerned with the construction of a model of

the entire system from measured inputs to measured outputs. In contrast, our goal

is to identify only a subsystem of the model, where the remainder of the model is not

modified. One motivation for this objective is to improve understanding of the physics

of the poorly modeled subsystem despite its low accessibility. Here, accessibility

refers to the availability of measurements or estimates of the inputs and outputs of

the unknown subsystem. This lack of accessibility leads to a nonstandard system

identification problem.

This chapter goes beyond [11, 53, 54, 55, 56] in two ways. First, the model refine-
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ment algorithm described in Section II is based on the extension of the retrospective

cost adaptive control (RCAC) algorithm described in [57]. The algorithm in [57] re-

quires knowledge of a limited number of Markov parameters of the plant, and thus

simplifies earlier versions of RCAC described in [50, 58, 59, 60]. Therefore, the al-

gorithm in [57] improves the model refinement technique described in [11, 55, 41].

Furthermore, this chapter encompasses multiple versions of the model refinement

problem, including system emulation and subsystem identification. In the former

case, we seek an estimate of the unknown subsystem that allows the overall model

to approximate the true system. In this case, there is no expectation that the con-

structed subsystem model approximates the unknown subsystem. In contrast, in the

latter case, we seek an estimate of the unknown subsystem that approximates the

unknown subsystem.

4.2 Problem Formulation

Consider the MIMO discrete-time main system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (4.1)

y(k) = Cx(k), (4.2)

y0(k) = E1x(k) + v(k), (4.3)

where x(k) ∈ R
n, y(k) ∈ R

ly , y0(k) ∈ R
ly0 , u(k) ∈ R

lu , w(k) ∈ R
lw , and k ≥ 0. The

main system (4.1)–(4.3) is interconnected with the unknown subsystem modeled by

u(k) = Gs(q)y(k), (4.4)

where q is the forward shift operator. The system (4.1)–(4.4) represents the true sys-

tem. We assume that the excitation signal w(k) is known. v(k) denotes measurement

noise.
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Next, we assume a model of the main system of the form

x̂(k + 1) = Âx̂(k) + B̂û(k) + D̂1w(k), (4.5)

ŷ(k) = Ĉx̂(k), (4.6)

ŷ0(k) = Ê1x̂(k), (4.7)

where x̂(k) ∈ Rn̂, ŷ(k) ∈ Rlŷ , ŷ0(k) ∈ Rly0 , û(k) ∈ Rlû . The model of the main system

is interconnected with the subsystem model

û(k) = Ĝs(q)ŷ(k). (4.8)

The goal is to estimate a subsystem model Ĝs(q) that minimizes a cost function based

on the performance variable

z(k)
△
= ŷ0(k)− y0(k) ∈ R

lz (4.9)

We estimate Ĝs(q) by retrospectively reconstructing the signal û(k) that minimizes

the performance at the current time step. The reconstruction of û(k) uses minimal

modeling information about the true system (4.1)–(4.3), namely, a limited number

of Markov parameters. We then use û(k) and ŷ(k) to construct Ĝs(q). Figure 4.1

illustrates the model-refinement architecture, which includes system emulation and

subsystem identification as special cases. Table 4.2 indicates the switch positions for

various model-refinement architectures.
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Figure 4.1: Model-refinement architectures. The switches s0, s1 and s2 are used to
define different architectures.

Case s0 s1 s2 Remarks

1 0 0 1
System emulation without

subsystem excitation

2 0 1 0

System emulation without

subsystem excitation. If A,

B,C are known, this case

is subsystem identification

3 1 0 1
System emulation with

subsystem excitation

4 1 1 1

System emulation with

subsystem excitation. If A,

B,C are known, this case

is subsystem identification

Table II. Switch positions for various model-refinement architectures. A switch in position 1 indicates
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the switch is closed, whereas a switch in position 0 indicates it is open.

The goal of system emulation is to determine a subsystem model Ĝs(q) such

that the closed-loop frequency response of the true system (from w to y0) matches

the closed-loop frequency response of the system model (from w to ŷ0). Since the

matrices A,B,C are unknown, the matrices Â, B̂, Ĉ in the main system model are

approximations of A,B,C. The accuracy of this approximation determines how well

the constructed subsystem model approximates the unknown subsystem. In the ideal-

ized case of subsystem identification, where A,B,C are known exactly, we set Â = A,

B̂ = B, and Ĉ = C and use architectures 2 and 4 from Table 4.2 to obtain a

subsystem model Ĝs(q) that approximates the unknown subsystem Gs(q). However,

the less stringent objective of system emulation is to obtain a model of the unknown

subsystem such that the closed-loop model approximates the true closed-loop system.

4.3 Retrospective Surrogate-Cost-Based Signal Reconstruc-

tion

We begin by defining Markov parameters of the main system model Ĝ(q). For

i ≥ 1, let

Hi
△
= Ê1Â

i−1B̂. (4.10)

Therefore, H1 = Ê1B̂ and H2 = Ê1ÂB̂. Let r be a positive integer. Then, for all

k ≥ r,

x̂(k) = Ârx̂(k − r) +

r
∑

i=1

Âi−1B̂û(k − i) +

r
∑

i=1

Âi−1D̂1w(k − i), (4.11)
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and thus

z(k) = Ê1Â
rx̂(k − r)− y0(k) +

r
∑

i=1

Ê1Â
i−1D̂1w(k − i) + H̄ ˆ̄U(k − 1), (4.12)

where

H̄
△
=

[

H1 · · · Hr

]

∈ R
lz×rlû

and

ˆ̄U(k − 1)
△
=













û(k − 1)

...

û(k − r)













.

Next, we rearrange the columns of H̄ and the components of ˆ̄U(k−1) and partition

the resulting matrix and vector so that

H̄ ˆ̄U(k − 1) = H′Û ′(k − 1) +HÛ(k − 1), (4.13)

where H′ ∈ Rlz×(rlû−l
Û
), H ∈ Rlz×l

Û , Û ′(k − 1) ∈ Rrlû−l
Û , and Û(k − 1) ∈ Rl

Û . Then,

we can rewrite (4.12) as

z(k) = S(k) +HÛ(k − 1), (4.14)

where

S(k)
△
= Ê1Â

rx̂(k − r)− y0(k) +

r
∑

i=1

Ê1Â
i−1D̂1w(k − i) +H′Û ′(k − 1). (4.15)
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For example, H̄ =

[

H1 H2 H3 H4 H5

]

,

H′ =

[

H1 H2 H4

]

, Û ′(k − 1) =













û(k − 1)

û(k − 2)

û(k − 4)













,

and

H =

[

H3 H5

]

, Û(k − 1) =







û(k − 3)

û(k − 5)






.

Note that the decomposition of H̄ ˆ̄U(k − 1) in (4.13) is not unique. Let s be a

positive integer. Then for i = 1, . . . , s, we replace H, Û(k − 1), H′, and Û ′(k − 1) in

(4.13) withHj ∈ R
lz×l

Ûj , Ûj(k−1) ∈ R
l
Ûj , H′

j ∈ R
lz×(rlû−l

Ûj
)
, and Û ′

j(k−1) ∈ R
rlû−l

Ûj ,

respectively, such that (4.13) becomes

H̄ ˆ̄U(k − 1) = H′
jÛ

′
j(k − 1) +HjÛj(k − 1). (4.16)

Therefore, for j = 1, . . . , s, we can rewrite (4.14) as

z(k) = Sj(k) +HjÛj(k − 1), (4.17)

where

Sj(k)
△
= Ê1Â

rx̂(k − r) + y0(k) +
r
∑

i=1

Ê1Â
i−1D̂1w(k − i) +H′

jÛ
′
j(k − 1). (4.18)

Next, let 0 ≤ k1 ≤ k2 ≤ · · · ≤ ks. Replacing k by k − kj in (4.17) yields

z(k − kj) = Sj(k − kj) +HjÛj(k − kj − 1). (4.19)
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Now, by stacking z(k − k1), . . . , z(k − ks), we define the extended performance

Z(k)
△
=













z(k − k1)

...

z(k − ks)













∈ R
slz . (4.20)

Therefore,

Z(k)
△
= S̃(k) + H̃ ˆ̃U(k − 1), (4.21)

where

S̃(k)
△
=













S1(k − k1)

...

Ss(k − ks)













∈ R
sp (4.22)

and ˆ̃U(k − 1) has the form

ˆ̃U(k − 1)
△
=













û(k − q1)

...

û(k − qg)













∈ R
glû , (4.23)

where k1 ≤ q1 < q2 < · · · < qg ≤ ks + r. The vector ˆ̃U(k − 1) is formed by stacking

Û1(k − k1 − 1), . . . , Ûs(k − ks − 1) and removing copies of repeated components, and

H̃ ∈ Rslz×glû is constructed according to the structure of ˆ̃U(k− 1). For example, with

s = 2, k1 = 0, and k2 = 2, stacking Û1(k−1) =







û(k − 1)

û(k − 2)






and Û2(k−3) = û(k−3)

results in
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ˆ̃U(k − 1) =













û(k − 1)

û(k − 2)

û(k − 3)













, H̃ =













H1 H2 H3

0 H1 H2

0 0 H3













. (4.24)

Note that H̃ consists of the entries of H1, . . . ,Hs arranged according to the structure

of Ũ(k − 1).

Next, we define the retrospective performance

ẑ(k − kj)
△
= Sj(k − kj) +HjU

∗
j (k − kj − 1), (4.25)

where the past input estimates Ûj(k − kj − 1) in (4.19) are replaced by the retro-

spectively optimized input estimates U∗
j (k− kj − 1), which are determined below. In

analogy with (4.20), the extended retrospective performance is defined as

Ẑ(k)
△
=













ẑ(k − k1)

...

ẑ(k − ks)













∈ R
slz (4.26)

and thus is given by

Ẑ(k) = S̃(k) + H̃Ũ∗(k − 1), (4.27)

where the components of Ũ∗(k − 1) ∈ R
l ˆ̃
U are the components of U∗

1 (k − k1 −

1), . . . , U∗
s (k − ks − 1) ordered in the same way as the components of ˆ̃U(k − 1).

Subtracting (4.21) from (4.27) yields

Ẑ(k) = Z(k)− H̃ ˆ̃U(k − 1) + H̃Ũ∗(k − 1). (4.28)
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Finally, we define the retrospective cost function

J(Ũ∗(k − 1), k)
△
= ẐT(k)R1(k)Ẑ(k) + η(k)Ũ∗T(k − 1)R2(k)Ũ

∗(k − 1), (4.29)

where R1(k) ∈ Rlzs×lzs is a positive-definite performance weighting, R2(k) ∈ Rglû×glû

is a positive-definite input estimate weighting, and η(k) ≥ 0 is a regularization weight-

ing. The goal is to determine retrospective subsystem output estimates Ũ∗(k − 1)

that would have provided better performance than the estimated subsystem outputs

Û(k− 1) that were used in the model refinement. The retrospectively optimized sub-

system outputs Ũ∗(k− 1) are then used to update the controller. Substituting (4.28)

into (4.29) yields

J(Ũ∗(k − 1), k) = Ũ∗T(k − 1)A(k)Ũ∗(k − 1) + Ũ∗T(k − 1)BT(k) + C(k), (4.30)

where

A(k)
△
= H̃TR1(k)H̃ + η(k)R2(k), (4.31)

B(k)
△
= 2H̃TR1(k)[Z(k)− H̃ ˆ̃U(k − 1)], (4.32)

C(k)
△
= ZT(k)R1(k)Z(k)− 2ZT(k)R1(k)H̃

ˆ̃U(k − 1) + ˆ̃UT(k − 1)H̃TR1(k)H̃
ˆ̃U(k − 1).

(4.33)

If either H̃ has full column rank or η(k) > 0, then A(k) is positive definite. In this

case, J(Ũ∗(k − 1), k) has the unique global minimizer

Ũ∗(k − 1) = −
1

2
A−1(k)B(k), (4.34)

which is the retrospectively optimized subsystem outputs.

The regularization weighting η(k) can be used to bound the retrospectively opti-
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mized subsystem outputs Ũ∗(k − 1) and thus indirectly bound estimated subsystem

outputs ˆ̃U(k). For example, η(k) may be performance based

η(k) = η0(k)||Z(k)||
2
2 (4.35)

or error based

η(k) = η0(k)||Ũ
∗(k − 2)− ˆ̃U(k − 2)||22, (4.36)

where η0(k) ≥ 0. Alternatively, the retrospectively optimized subsystem outputs can

be bounded directly by using a saturation function, where η(k) ≡ 0 in (4.31) and

(4.34) is replaced by

Ũ∗(k − 1)
△
= sat[a,b][−

1

2
A−1(k)B(k)], (4.37)

where sat[a,b](ζ) is the component-wise saturation function defined for scalar argu-

ments by

sat[a,b](ζ)
△
=























b, if ζ ≥ b,

ζ, if a < ζ < b,

a if ζ ≤ a,

(4.38)

where a < b are the component-wise saturation levels.

4.3.1 Subsystem Modeling

The subsystem output û(k) is given by the exactly proper time-series model of

order nc given by

û(k) =

nc
∑

i=1

Mi(k)û(k − i) +

nc
∑

i=0

Ni(k)ŷ(k − i) +

nc
∑

i=0

Oi(k)w(k − i), (4.39)
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where, for all i = 1, . . . , nc, Mi(k) ∈ R
lû×lû , Ni(k) ∈ R

lû×lŷ and Oi(k) ∈ R
lû×lw .

The subsystem output (4.39) can be expressed as û(k) = θ(k)φ(k − 1), where θ(k) ∈

Rlû×nc(lû+lŷ+lw) is

θ(k)
△
= [M1(k) · · · Mnc

(k) N1(k) · · · Nnc
(k) O1(k) · · · Onc

(k)] , and

φ(k − 1)
△
=





















































û(k − 1)

...

û(k − nc)

ŷ(k − 1)

...

ŷ(k − nc)

w(k − 1)

...

w(k − nc)





















































∈ R
nc(lû+lŷ+lw) (4.40)

Note if s2 = 0 then w(k) and Oi are removed from û(k), θ(k), and φ(k − 1).

4.3.2 Recursive Least Squares Update of θ(k)

We define the cumulative cost function

JR(θ(k))
△
=

k
∑

i=qg+1

λk−i‖φT(i− qg − 1)θT(k)− u∗T(i− qg)‖
2

+ λk(θ(k)− θ(0))P−1(0)(θ(k)− θ(0))T, (4.41)
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where ‖·‖ is the Euclidean norm and, for some ε ∈ (0, 1), λ(k) ∈ (ε, 1] is the forgetting

factor, and P (0) ∈ Rnc(lû+lz)×nc(lû+lz) is positive definite. Minimizing (4.41) yields

θT(k)
△
= θT(k − 1) + β(k)P (k − 1)φ(k − qg − 1)

· [φT(k − qg − 1)P (k − 1)φ(k − qg − 1) + λ(k)]−1

· [θ(k − 1)φ(k − qg − 1)− u∗(k − qg)]
T, (4.42)

where β(k) is either 0 or 1. When β(k) = 1, the controller is allowed to adapt,

whereas, when β(k) = 0, the adaptation is off. P (k) is updated by

P (k)
△
= (1− β(k))P (k − 1) + β(k)λ−1(k)P (k − 1)− β(k)λ−1(k)P (k − 1)φ(k − qg − 1)

· [φT(k − qg − 1)P (k − 1)φ(k − qg − 1) + λ(k)]−1φT(k − qg − 1)P (k − 1).

(4.43)

We initialize P (0) = γI, where γ > 0. Furthermore, the updates (4.42) and (4.43)

are based on the gth component of Ũ∗(k − 1). However any or all of the components

of Ũ∗(k − 1) may be used in the update of θ(k) and P (k).

4.4 Numerical Examples

We now consider numerical examples with various model-refinement architectures

to illustrate the effect of noise and model uncertainty on the emulation of the closed-

loop system and, where applicable, the identification of the unknown subsystem.

For all examples in this section, RCO is turned on after 100 steps. The level of

measurement noise varies for each example, where v = N (µv, σ
2
v) means that the

output noise signal v is Gaussian white noise with mean µv and variance σ2
v . We

define SNR
△
=

σ2
ȳ0

σ2
v
, where σ2

ȳ0
is the variance of the output signal ȳ0. The case number

in each example refers to the positions of the switches in Figure 4.1 as described in
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Table 4.2. For all examples, the subsystem model parameters θ(k) are initialized at

zero. For convenience, let G(q) represent the main system, let Gcl(q) represent the

closed-loop system from w to ȳ0, and let Gs(q) represent the unknown subsystem.

We consider the spring-mass-damper system shown in Figure 4.2. For i = 1, 2, 3,

let qi be the position of ith mass, and let mi be the mass of the ith block. For

i = 1, 2, 3, 4, let ki be the stiffness of the ith spring, and let ci be the damping

coefficient of the ith damper. Finally, let w be the force applied to the second block.

m1 m2

m3

c3 c4

c1 c2

k2k1

k3 k4

q1 q2

q3

w

Unknown Subsystem

Figure 4.2: Spring-mass-damper system with main system and unknown subsystem.

The discretized equations of motion of the main system are

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (4.44)

y(k) = Cx(k), (4.45)

y0(k) = E1x(k) + ν(k), (4.46)
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where x(k) =

[

q1(k) q2(k) q4(k) q5(k)

]T

,

A=



















1 0 Ts 0

0 1 0 Ts

−Ts(k1+k2)
m1

Tsk2
m1

1− Ts(c1+c2)
m1

Tsc2
m1

Tsk2
m2

−Ts(k2+k4)
m2

Tsc2
m2

1− Ts(c2+c4)
m2



















,

D1=



















0

0

0

1



















, B=



















0

0

0

Ts

m2



















, C=



















1

0

0

0



















T

, E1=



















0

Tsk4
m3

0

Tsc4
m3



















T

.

The discretized equations of motion of the unknown subsystem are

xs(k + 1) = Asxs(k) +Bsy(k), (4.47)

u(k) = Csx(k), (4.48)

where

xs(k)=







q3(k)

q6(k)






, As=







1 Ts

−Ts(k3+k4)
m3

1− Ts(c3+c4)
m3






,

Bs=







0

1






, Cs=







Tsk4
m2

Tsc4
m2






.

Furthermore, Ts = 0.25, m1 = 4, m2 = 2, m3 = 10, k1 = 12, k2 = 2, k3 = 4, k4 = 6,

c1 = 4, c2 = 2, c3 = 5, and c4 = 3.
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Example IV.1. (Case 1, A,B,C unknown, SNR = 100). Since A, B, and C are

unknown, we choose Â, B̂, and Ĉ such that Ĝ(q) is stable and minimum phase, but

otherwise arbitrarily. More specifically, we choose

Â =







−0.039 −0.029

0.023 0.0023






, B̂ =







0.003

0.098






,

Ĉ =

[

2.5 −0.78

]

. (4.49)

Moreover, µw = 0 and σ2
w = 5. For this example we take nc = 20, η̄ = 0, β = 0.01, and

H̃ = H1, which is the first Markov parameter of Ĝ(q). The parameters of the model

refinement algorithm are chosen such that z(k) is minimized. Figure 4.3 shows that

the estimated frequency response of the closed-loop system Ĝcl(q) approximates the

closed-loop frequency response of the true system Gcl(q). Next, we run this example

with three different SNR values for 5000 time steps. Figure 4.4 shows that, as the

SNR increases, the frequency response of Ĝcl provides an improved approximation of

the frequency response of Gcl.

Example IV.2. (Case 3, A,B,C unknown, SNR = 100). The architecture for

this example is different from the architecture of Case 1 only in that the unknown

subsystem Gs(q) has the additional input w, and hence

xs(k + 1) = Asxs(k) +Bs [y(k) w(k)]T ,

where,

Bs=







0 0

1 Ts/m3






.
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Figure 4.3: The RCO algorithm is turned on at k = 100 steps. The closed-loop
frequency response of Ĝcl is indistinguishable from the frequency response
of Gcl.

Furthermore, we let µw = 0 and σ2
w = 5. Since A,B,C are unknown, we choose

Â, B̂, Ĉ as in (4.49). For this example we take nc = 20, η̄ = 0, β = 0.01, and H̃ = H1.

Figure 4.5 shows that, as the SNR increases, the accuracy of the frequency response

of Ĝcl improves.

Example IV.3. (Case 2, A, B and C known). First, we investigate the effect of the

amount of data on the identification of Gcl and Gs using Case 2 architecture when

A, B, and C are known. For this example, µw = 0, σ2
w = 10 and there is no noise.

Furthermore, we let nc = 12, η̄ = 0, β = 0.01, and H̃ = H3. Figures 4.6 and 4.7

show that as the amount of data increases, the accuracy of the frequency responses

of Ĝcl and Ĝs improve. Note that the frequency response of Ĝs cannot approximate
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Figure 4.4: As the SNR increases, the accuracy of the frequency response of Ĝcl im-
proves.
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Figure 4.5: As the SNR increases, the frequency response of Ĝcl more closely approx-
imates the frequency response of Gcl.

Gs above 0.75 radians/sample because the transfer function that multiplies Gs in

Gcl rolls off above this frequency. Next, we investigate the effect of SNR on Case 2

architecture when A, B, and C are known. The parameters are the same as in the
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previous example. Figures 4.8 and 4.9 show that as the SNR increases, the accuracy

of the frequency responses of Ĝcl and Ĝs improve.
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Figure 4.6: As the amount of data increases, the frequency response of Ĝcl more
closely approximates the frequency response of Gcl.
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Figure 4.7: As the amount of data increases, the frequency response of Ĝs more closely
approximates the frequency response of Gs.

Example IV.4. (Case 2, A uncertain, B and C known, SNR=100). In this example

we investigate the effect of uncertainty in A. Uncertainty in A is introduced by
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Figure 4.8: As the SNR increases, the frequency response of Ĝcl more closely approx-
imates the frequency response of Gcl.
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Figure 4.9: As the SNR increases, the frequency response of Ĝs more closely approx-
imates the frequency response of Gs.

scaling the damping coefficient c2 by an unknown scale factor α. Thus, Â is obtained

by replacing c2 in A by αc2. For this example, µw = 0 and σ2
w = 5. Furthermore, we

let nc = 12, η̄ = 0, β = 0.01, and H̃ = H3. Figures 4.10 and 4.11 show that as the

uncertainty in A decreases (that is, α approaches 1), the frequency responses of Ĝcl

and Ĝs more closely approximate the frequency responses of Gcl and Gs, respectively.
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Figure 4.10: Estimate of Gcl with uncertain ĉ2 = αc2. As α approaches 1, the fre-
quency response of Ĝcl more closely approximates the frequency response
of Gcl.

4.5 Conclusions

This chapter has focused on the problem of model refinement, where data are used

to improve the accuracy of a subsystem model connected by feedback to a given main

system model. In particular, the objective is system emulation, where the goal is to

estimate a subsystem model in order to provide a combined system model that has

improved accuracy relative to the main system alone. The inputs and outputs of the

unknown subsystem are not assumed to be accessible, and thus standard system iden-

tification techniques are not applicable. We applied retrospective cost optimization,

which reconstructs the input to the main system from the unknown subsystem. The

main system may be well known or uncertain. In the latter case, there is no expec-

tation that the estimated subsystem model approximates the unknown subsystem.

However, if the main system is known exactly, then the estimated subsystem may
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Figure 4.11: Estimate of Gs with uncertain ĉ2 = αc2. As α approaches 1, the fre-
quency response of Ĝs more closely approximates the frequency response
of Gs.

provide a useful estimate of the unknown subsystem. Several numerical examples

were used to illustrate the approach. The performance of the algorithm was assessed

in terms of the closeness of the frequency response plots. The ultimate goal of this

work is to provide a tool that engineers and scientists can use to improve the accuracy

of large-scale models and estimate unknown subsystems that are difficult to model

due to the inaccessibility of their inputs and outputs.
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CHAPTER V

Application of Model Refinement to the

Ionosphere and Thermosphere

5.1 Introduction

Models serve a variety of purposes by capturing different phenomena at varying

levels of resolution. High-resolution models are desirable when the goal is to un-

derstand scientific phenomena or assimilate data, whereas a coarser model may be

preferable when the goal is to capture critical details in an efficient manner, for ex-

ample, for fast prediction or control. Consequently, the fidelity of a model must be

gauged against its intended usage.

Figure 5.1: The goal of this work is to use data to improve the accuracy of an initial model.
In other words, initial model + data = improved model.

Most models are constructed from collections of interconnected subsystem models,

which in turn are based on a combination of physical laws and empirical observations.
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For example, the core of a model might be the Navier-Stokes or magnetohydrody-

namic equations, while source terms, such as chemistry, heating, and friction, may

be modeled using either first-principles submodels or empirical relations that have

different levels of accuracy, self-consistency, and complexity. Physical laws embody

first-principles knowledge, whereas empirical observations may include relations that

are based on the statistical analysis of data, for example, regression. Physics can

provide the backbone of a model, while empirical relations can flesh out details such

as sub-grid-scale phenomena that are beyond the ability of analytical modeling.

When input-output data are available, an empirical model can be constructed by

means of system identification methods. In particular, techniques for constructing

linear dynamic models that relate measured inputs to measured outputs are well

developed [4, 51, 61]. A challenging extension is to develop methods for nonlinear

system identification. Since nonlinear models can have a vast range of structures,

the problem of nonlinear system identification requires the choice of a suitable model

structure as well as an algorithm that uses data to tune the parameters of the model.

Candidate model structures range from unstructured black-box models, such as neural

networks, to gray-box and white-box models, where some or all of the structure of

the model is specified [62, 63, 64, 65]. The chosen model structure is assumed to

be identifiable from the available measurements, which means that its independent

parameters can be unambiguously estimated from sufficiently persistent data.

The ability to identify a component or subsystem of a system depends on accessi-

bility, which refers to the availability of the inputs and outputs of the subsystem. The

highest degree of accessibility arises when both the input and output of the unknown

subsystem are measured. In the case of Hammerstein and Wiener gray-box model

structures, a static nonlinear mapping is cascaded with a dynamic linear subsystem,

but the intermediate signal is assumed to be unavailable for identification [66]. If a

static or dynamic subsystem is completely inaccessible in the sense that neither its in-
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put nor its output is measured, then the identification problem becomes significantly

more challenging.

The uncertain physics of a subsystem may range from the simplest case of an

unknown parameter (such as a diffusion constant), to a multivariable spatially de-

pendent static mapping (such as a conductivity tensor or boundary conditions), to a

fully dynamic relationship among multiple variables (such as reaction kinetics). The

difficulty of identifying these phenomena from empirical data depends on the acces-

sibility of the subsystem, while the ability to use data to update a model despite

limited accessibility is the goal of model refinement.

Model refinement begins with an initial model, which may incorporate both phys-

ical laws and empirical observations. The components of the initial model may have

varying degrees of fidelity, reflecting knowledge or ignorance of the relevant physics as

well as the availability of data. With this initial model as a starting point, the goal is

to use additional measurements to refine the model. Components of the model that

are poorly modeled can be updated, thereby resulting in a higher fidelity model, as

shown in Figure 5.1. This problem is variously known as model correction, empirical

correction, model refinement, model calibration, or model updating, and relevant lit-

erature includes [6, 8, 10, 7] on finite-element modeling, [67, 68, 69] on meteorology,

[9] on feedback control, as well as algorithms [11, 53, 54] with application to health

monitoring [55, 56]. Model refinement is thus a specialized version of identification,

which is typically concerned with the construction of a model of the entire system.

When cast in the form of a block diagram, the model refinement problem has the

form of an adaptive control system [11, 53, 54, 55, 70]. This resemblance suggests that

adaptive control methods may be effective for tackling the model refinement prob-

lem. To do this, we require techniques for adaptive control that are sufficiently general

and computationally tractable to address the features of large-scale physically mean-

ingful applications. We thus apply the retrospective-cost adaptive control (RCAC)
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Figure 5.2: This block diagram illustrates the model refinement problem, where the goal is
to identify the “Unknown Subsystem” of the “Physical System.” By depicting
this problem as a block diagram, it becomes evident that the model refinement
problem is equivalent to a problem of adaptive command following.

technique [48, 50, 49], which differs from standard adaptive control approaches in

several ways. Specifically, RCAC requires minimal modeling information concerning
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the known portion of the system and is applicable to a wide range of adaptive con-

trol problems, including stabilization, command following, disturbance rejection, and

model following. RCAC utilizes a surrogate cost function that entails a closed-form

quadratic (and thus convex) optimization step. The controller update requires infor-

mation about only the zeros of the system; no information about the poles is needed.

Furthermore, the control update requires knowledge of only the nonminimum-phase

zeros of the system. For model refinement, the relevant adaptive control problem is

adaptive disturbance rejection, where the “disturbance” to be rejected is the unknown

external excitation signal. Model refinement based on RCAC is called adaptive model

refinement.

In this chapter we formulate adaptive model refinement for linear systems. We

then demonstrate the method on a linear numerical example as well as on an exper-

imental setup. Next, we apply adaptive model refinement to a first-principles model

of the ionosphere and thermosphere. Specifically, we use the Global Ionosphere Ther-

mosphere Model (GITM) [71] to provide a known initial model. We then use data

from a ”truth model” version of GITM in order to refine the initial model. Although

the techniques developed in [48, 50] apply to linear systems, this chapter shows that

model refinement based on RCAC can be effective for large-scale nonlinear systems

such as GITM. Additional relevant literature on retrospective cost optimization in-

cludes [72, 73, 74, 31, 28, 75, 76, 77].

GITM is a 3-dimensional spherical (global Earth) code that solves the Navier-

Stokes equations for the thermosphere. GITM is different from other models of the

atmosphere [78, 79, 80] in that it solves the full vertical momentum equation instead

of assuming that the atmosphere is in hydrostatic equilibrium, where the pressure

gradient is balanced by gravity. While this assumption is valid for the majority of

the atmosphere, in the auroral zone, where significant energy is dumped into the

thermosphere on short time-scales, vertical accelerations often occur. This heating
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causes strong vertical winds that can significantly lift the atmosphere [81].

The grid structure within GITM is fully parallel and covers the entire surface

of the Earth by using a block-based two-dimensional domain decomposition in the

horizontal coordinates [82]. The number of latitude and longitude blocks can be

specified at run time in order to modify the horizontal resolution. GITM has been

run on up to 256 processors with a resolution as fine as 0.31◦ latitude by 2.5◦ longitude

over the entire globe with 50 vertical levels, covering a vertical domain from 100 km

to roughly 600 km [71]. This flexibility can be used to validate consistency by running

model refinement at various levels of resolution.

First principles models of the atmosphere are strongly influenced by unknowns

such as thermal conductivity coefficients and cooling processes. These effects cannot

be directly measured at each altitude, and thus they are inaccessible. We identify

these subsystems, which are assumed to be unknown or uncertain, using data from

simulated satellites on orbit. We then correct the uncertain model to demonstrate the

feasibility of implementing the adaptive model refinement technique. A preliminary

version of some of the results in this chapter have appeared in the conference papers

[83, 84].

In Section 2, we describe the adaptive model refinement problem for subsystem

identification. In Section 3, a linear problem formulation is cast using transfer func-

tions to represent the initial model and the unknown subsystem. In Section 4, we

present retrospective cost optimization as a method for obtaining an estimate of the

unknown subsystem. In Section 5, the technique is demonstrated on linear numerical

examples, as well as an experimental example. In Section 6, we apply the technique

to a nonlinear example, specifically, parameter estimation and dynamic subsystem

identification in the ionosphere and thermosphere.
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5.2 Adaptive Model Refinement for Subsystem Identifica-

tion

Figure 5.2 shows a block diagram of the model refinement problem. Each block is

labeled to denote its uncertainty status. The blocks labeled “Known Subsystem” and

“Unknown Subsystem” represent the physical system, whose inputs include known

and unknown inputs, known as drivers. These subsystems are connected through

feedback, which captures the fact that each subsystem impacts the other. The ma-

jority of the dynamics of the system are assumed to be included in the “Known

Subsystem”, while the “Unknown Subsystem” includes static or dynamic maps that

are poorly known. Both the input y0 and the output u of the ”Unknown Subsystem”

are assumed to be unavailable, and thus this subsystem is not accessible. The objec-

tive is to use data to better understand the “Unknown Subsystem”. The unknown

drivers v, which are unmeasured excitations to the system, may corrupt the estimated

model of the unknown subsystem, despite the model error signal z tending to zero.

The lower part of the diagram in Figure 5.2 constitutes the “Simulated System.”

The “Physics Model,” which is implemented in computation, captures the dynamics

of the “Known Subsystem” and serves as the initial model. The “Physics Model”

is interconnected by feedback with the block labeled “Identified Physics,” which is

refined by the “Physics Update” procedure, which is denoted by the diagonal arrow.

The “Physics Update” is a tuning procedure that recursively identifies the unknown

physics as data become available to provide a model of the “Unknown Subsystem”.

This tuning procedure is driven by the model-error signal z, which is the difference

between the data y from the “Physical System” and the computed output ŷ of the

“Simulated System.”
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5.3 Linear Problem Formulation

From Figure 5.2, we consider a transfer function representation of the known

subsystem y = f(u, w), which is modeled by







y

y0






=







Gwy Guy

Gwy0 Guy0













w

u






= G







w

u






, (5.1)

where G is the known initial model, y is the output data, w is the measured in-

put signal, y0 is the input to the unknown subsystem h, and u is the output of h.

Furthermore, u = h(y0) is represented by the transfer function

u = G∆







y0

w







=

[

G∆,y0 G∆,w

]







y0

w







= G∆,y0y0 +G∆,ww. (5.2)

We stress that h is not accessible, that is, measurements of the signals u and y0 are

not available, and thus G∆ cannot be identified using standard techniques. From

(5.1) and (5.2), we obtain the closed-loop transfer function from w to y given by

y =
[

Gwy +Guy

(

G∆,y0 [I −Guy0G∆,y0]
−1 [Gwy0 +Guy0G∆,w] +G∆,w

)]

w. (5.3)

The goal is to estimate the unknown subsystem Ĝ∆ such that the simulated system

ŷ =

[

Gwy +Guy

(

Ĝ∆,y0

[

I −Guy0Ĝ∆,y0

]−1

[Gwy0 +Guy0Ĝ∆,w] + Ĝ∆,w

)]

w (5.4)
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matches the physical system, that is, the model error signal

z = y − ŷ (5.5)

is small.

To identify the feedback term G∆ using the given initial model G, we use an

adaptive feedback model structure to identify Ĝ∆ = [Ĝ∆,y0 Ĝ∆,w]. To enforce model

matching, we minimize the model error signal z in the presence of the measured

signal w. In particular, we use RCAC in a disturbance-rejection architecture. The

only signals available to RCAC are the measurement y, the simulated system inputs

and outputs u, ŷ, ŷ0, and the model error signal z.

5.4 Retrospective Cost Optimization

To model the “Identified Physics”, consider a strictly proper time-series model of

order nc, such that (5.2) is given by

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=0

Ni(k)ŷ0(k − i) +

nc
∑

i=0

Li(k)w(k − i), (5.6)

where, for all i = 1, . . . , nc,Mi : N → Rlu×lu , Ni : N → Rlu×ly and Li : N → Rlu×lw are

determined by the adaptive law presented below. Equation (5.6) can be expressed as

u(k) = θ(k)φ(k), (5.7)

where

θ(k)
△
=

[

N1(k) · · · Nnc
(k) L1(k) · · · Lnc

(k) M1(k) · · · Mnc
(k)

]
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and

φ(k)
△
=

[

ŷT0 (k − 1) · · · ŷT0 (k − nc) wT(k − 1) · · · wT(k − nc)

uT(k − 1) · · · uT(k − nc)

]T

∈ R
nc(lu+ly+lw).

Next, we represent (5.5) as the time-series model from u and w to z given by

z(k) = y(k)−

[

n
∑

i=1

−αiy(k − i) +

n
∑

i=d

βiu(k − i) +

n
∑

i=0

γiw(k − i)

]

, (5.8)

where α1, . . . , αn ∈ R, βd, . . . , βn ∈ Rlz×lu , γ0, . . . , γn ∈ Rlz×lw , and the relative degree

d is the smallest non-negative integer i such that the ith Markov parameter of Gyu is

nonzero, where the Markov parameters are the components of the system’s impulse

response [4, 51].

Next, we define the retrospective performance

ẑ(θ̂, k)
△
= y(k)−

[

n
∑

i=1

−αiy(k − i) +

n
∑

i=d

βiθ(k − i)φ(k − i)

+

n
∑

i=0

γiw(k − i) +

ν
∑

i=d

β̄i

[

θ̂ − θ(k − i)
]

φ(k − i)

]

, (5.9)

where ν ≥ d, θ̂ ∈ Rlu×(nc(ly+lu)) is an optimization variable used to derive the adaptive

law, and β̄d, . . . , β̄ν ∈ Rlz×lu . RCAC uses a retrospective performance measure, in

which the performance measurement is modified based on the difference between the

actual past control inputs and the recomputed past control inputs. The parameters

ν and β̄d, . . . , β̄ν must capture the information included in the first nonzero Markov

parameter and the nonminimum-phase zeros from u to z [58]. In this chapter, we let

β̄d, . . . , β̄ν denote Markov parameters of the transfer function from u to z. Alternative

choices of the parameters ν and β̄d, . . . , β̄ν are discussed in [58].
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Next, subtracting (5.8) from (5.9) yields

ẑ(θ̂, k) = z(k) +

n
∑

i=d

βi

[

θ̂ − θ(k − i)
]

φ(k − i). (5.10)

Defining Θ̂
△
= vec θ̂ ∈ Rnclu(ly+lu+lw) and Θ(k)

△
= vec θ(k) ∈ Rnclu(ly+lu+lw), it follows

that

ẑ(Θ̂, k) = z(k) +

n
∑

i=d

ΦT
i (k)

[

Θ̂−Θ(k − i)
]

= z(k)−
n
∑

i=d

ΦT
i (k)Θ(k − i) + ΨT(k)Θ̂, (5.11)

where, for i = d, . . . , n,

Φi(k)
△
= φ(k − i)⊗ βT

i ∈ R
(nclu(ly+lu+lw))×lz ,

where “vec” denotes the column-stacking operator, ⊗ represents the Kronecker prod-

uct [85], and

Ψ(k)
△
=

n
∑

i=d

Φi(k).

We now consider the retrospective cost function

J(Θ̂, k)
△
= ẑT(θ̂, k)R1(k)ẑ(θ̂, k) + tr

[

R2(k)
(

θ̂ − θ(k)
)T

R3(k)
(

θ̂ − θ(k)
)

]

, (5.12)

where R1(k)
△
= Ilz , R2(k)

△
= α(k)Inc(ly+lu+lw), and R3(k)

△
= Ilu×lu . Using Kronecker

algebra, (5.12) can be written as the quadratic form

J(Θ̂, k) = c(k) + bT(k)Θ̂ + Θ̂TA(k)Θ̂,

97



where

A(k)
△
= Φ(k)ΦT(k) + α(k)I,

b(k)
△
= 2Φ(k)

[

n
∑

i=d

ΘT(k − i)Φi(k) + zT(k)

]

− 2α(k)Θ(k),

c(k)
△
=

[

n
∑

i=d

ΦT
i (k)Θ(k − i)

]

R1(k)

[

n
∑

i=d

ΘT(k − i)Φi(k)

]

+ tr
[

R2(k)θ
T(k)R3(k)θ(k)

]

.

Since A(k) is positive definite, J(Θ̂, k) has the strict global minimizer

θ̂ =
1

2
vec−1(A(k)−1b(k)). (5.13)

The gain update law is to set θ(k + 1) to the global minimizer (5.13), that is,

θ(k + 1) = θ̂. (5.14)

The coefficients of the time series (5.6) given by (5.14) contain information about the

unknown subsystem, such as its poles, zeros, time constants, and frequency response.

RCAC requires the selection of several parameters. Specifically, nc is the esti-

mated order of the unknown subsystem, while ν is the number of Markov parameters

obtained from the known model. The adaptive update law (5.14) is based on the

quadratic cost function (5.12), which involves the time-varying weighting parameter

α(k) > 0, referred to as the learning rate since it affects the convergence speed of the

adaptive model refinement algorithm.

The methodology for choosing these parameters is as follows. For dynamic sub-

system identification, the subsystem order nc is typically unknown. In this case, it is

convenient to overestimate the subsystem order. For parameter estimation, choosing

nc = 0 is a natural choice in (5.6), since the resulting G∆ is static. The number ν

of Markov parameters is usually chosen to be 1; however, a larger value is typically
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Figure 5.3: A single-degree-of-freedom mass-spring-damper system connected to an
unknown impedance.

needed if nonminimum-phase zeros are present in the initial model [49].

5.5 Linear Examples

5.5.1 Dynamic Subsystem Estimation

Consider the mass-spring-damper structure shown in Figure 5.3 modeled by

m1q̈ + c1q̇ + k1q = w, (5.15)

where m1, c1, k1 are the known mass, damping, and stiffness, respectively, and w is

a force input. As shown in Figure 5.3, the mass is also connected to an unknown

impedance G∆, which applies force to the mass in response to the velocity of the

mass. We obtain the state space representation of the known subsystem
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





q̇

q̈






= Ac







q

q̇






+Bcu+D1,cw, (5.16)

y = C







q

q̇






, (5.17)

where q and q̇ are the position and velocity, respectively, of the mass, and

Ac =







0 1

− k1
m1

− c1
m1






, Bc = D1,c =







0

1
m1






, C =

[

0 1

]

. (5.18)

Finally, we write the system in transfer function form G(s) = C(sI − Ac)
−1Bc,

where s is the Laplace transform variable and the closed-loop transfer function from

w to y with the unknown impedance u = G∆y is Gcl(s) =
G(s)

1−G(s)G∆(s)
.

To demonstrate adaptive model refinement, we choose m1 = 1 × 10−4, k1 = 1,

c1 = 5.0275× 10−4, and G∆(s) =
(s+30)(s+60)

(s+20)(s+50)(s+10)
. Next, the continuous-time system

(5.17) is converted to discrete time using A = eAcTs and B = A−1
c [A − I]B, where

Ts = 0.1 sec is the sample time. The resulting discrete time transfer function is

Ḡ(z) = C(zI − A)−1B, where z is the Z-transform variable. Furthermore, Ḡ∆(z)

denotes the discretized transfer function of G∆(s).

Next, we choose nc = 5, which is an overestimate of the order of Ḡ∆, α = 1, and

ν = 10, that is, we use 10 Markov parameters of Ḡ(z). Figure 5.4(a) compares the

frequency responses of the initial model and the closed-loop model consisting of the

initial model and the subsystem estimate ˆ̄G∆ of Ḡ∆. The difference between the initial

model and the closed-loop model is reduced by including the estimate ˆ̄G∆ of Ḡ∆; in

fact, the estimated closed-loop model frequency response is almost identical to the

frequency response of the “Physical System”. Figure 5.4(b) compares the frequency

responses of Ḡ∆ and ˆ̄G∆.
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Figure 5.4: (a) compares the frequency response of the initial model Ḡ(z), the closed loop
Ḡcl(z), and the estimated closed loop using the identified unknown feedback
ˆ̄Gcl(z). (b) compares the frequency response of the unknown feedback and the
identified feedback.

5.5.2 Static Parameter Estimation
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Figure 5.5: A series resistor-inductor-capacitor (RLC) circuit, where voltage is mea-
sured across the resistor. The inductance L and the capacitance Cd are
assumed to be uncertain.

To demonstrate adaptive model refinement for parameter estimation, we consider

the series resistor-inductor-capacitor (RLC) circuit shown in Figure 5.5 modeled by

Lẍ+Rẋ+
1

Cd

x = u, (5.19)

where L, Cd, and R are the inductor, capacitor, and resistor values, respectively, and

w is the input voltage. A state space representation of the circuit is given by


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=


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− 1
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
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q
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


+







0

1
L






u, (5.20)

y =

[

0 R

]







q

q̇






, (5.21)

where q and q̇ are the charge and current, respectively, of the circuit. Next, we write

the state space equations for the circuit with an uncertainty ∆Cd in the capacitance
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and ∆L in the inductance as
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w, (5.22)

y =

[

0 R

]


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q

q̇


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
, (5.23)

where u = G∆q
q + G∆q̇

q̇ + G∆w
w. Estimates ∆Ĉd of ∆Cd and ∆L̂ of ∆L can be

obtained from the adaptive model refinement estimates Ĝ∆,q of G∆,q, Ĝ∆,q̇ of G∆,q̇,

and Ĝ∆,w of G∆,w by means of

∆L̂ =
L

Ĝ∆,w

− L =
−RL

−R + Ĝ∆,ẋ

− L, (5.24)

∆Ĉd = −L

(

−1

Cd

+ Ĝ∆,x

)−1

(L+∆L)−1 − Cd. (5.25)

Next, we assemble a circuit with R = 250 Ω, L+∆L = 55 mH, and Cd +∆Cd =

23.5 µF. We assume that we do not have knowledge of either ∆Cd or ∆L, but only the

initial estimates Cd = 1 F and L = 2 µH. The model (5.21) is similarly discretized.

We drive the circuit using zero-mean, Gaussian white noise, and we measure the

voltage across the resistor.

We implement RCAC to obtain estimates of the transfer functions ˆ̄G∆,q,
ˆ̄G∆,q̇,

and ˆ̄G∆,w. Figure 5.6(a) shows the history of the model error signal z. Figure 5.7(a)

compares the frequency responses of the initial model, the actual system, and the

refined model, in discrete time.

Next, we generate and record the driving signal and system output. Figure 5.8(a)

shows the history of the model error signal z for the experimental setup. Figure

5.9(a) compares the discrete-time frequency responses of the initial model, the actual

system, and the refined model, for the experimental setup.
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Figure 5.6: (a) shows the history of the model error signal z = ŷ − y and output û of the
estimated subsystem for the simulated RLC circuit. (b) shows the components
of the subsystem model θ(k) as functions of time. Note that z tends to zero
as k becomes large, which indicates that the output of the simulated model
approaches the output of the experimental circuit.

5.6 Application of Adaptive Model Refinement to Ionospheric

Parameter Estimation

We now apply adaptive model refinement to a nonlinear example. We consider

the problem of using upper atmospheric mass-density measurements, as can be ob-
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Figure 5.7: This plot compares the frequency responses of the initial model Ḡ (blue
dotted line), the closed-loop Ḡcl (black dotted line), and the estimated

closed-loop ˆ̄Gcl (red dotted line) for the simulated RLC circuit.

tained from a satellite, to estimate the thermal conductivity of the thermosphere.

This problem is challenging due to the fact that we do not assume the availability

of measurements that can serve as inputs or outputs to the “Unknown Subsystem,”

which models thermal conductivity. In other words, the objective of the identifica-

tion in this application is a subsystem whose physics are inaccessible relative to the

available measurements.

We use GITM to simulate the chemistry and fluid dynamics in a one-dimensional

(1D) column in the ionosphere-thermosphere. The temperature structure of the ther-

mosphere depends on various factors, such as the Sun’s intensity in extreme ultraviolet

(EUV) wavelengths, eddy diffusion in the lower thermosphere, radiative cooling of the

O2 and NO, frictional heating, and the thermal conductivity.

The structure of the thermal conductivity is λ = AT s, where A and s are the

thermal conductivity and rate coefficients, respectively. The thermal conductivity

may depend on chemical constituents (e.g., N2, O2, and O). Uncertainty concerning
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Figure 5.8: (a) shows the history of the model error signal z = ŷ − y and the output
û of the estimated subsystem for the experimental RLC circuit. (b) shows
the components of the subsystem model θ(k) as functions of time. Note that
z tends to zero as k becomes large, which indicates that the output of the
simulated model approaches the output of the experimental circuit.

the values of A and s [86] can strongly influence the temperature structure. The need

to estimate these coefficients is motivated by Figure 5.11 from [1], where published

values of these coefficients are shown to vary depending on the reference source. For
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Figure 5.9: This plot compares the frequency responses of the initial model Ḡ (blue
dotted line), the closed-loop Ḡcl (black dotted line), and the estimated

closed-loop ˆ̄Gcl (red dotted line) for the experimental RLC circuit.

illustration, we assume that the true value of A is the mean of the range of values,

and we seek estimates of A that are within this range.

To estimate the unknown thermal conductivity coefficient A, we apply adaptive

model refinement to simulated measurements of neutral mass density provided by

1D GITM. We do this by running a “truth model,” from which we extract mass-

density data at 400-km altitude, which is a typical altitude for satellites. The thermal

conductivity coefficient is initialized to be zero, and its value is updated recursively.

Figure 5.12 shows the evolution of the estimate Â of the thermal conductivity A as

more data become available. The estimate Â is seen to converge to a neighborhood

of the true value within about 0.6× 104 data points.

To further illustrate the model refinement method, we now assume that both the

thermal conductivity A and the rate coefficient s are unknown. The parameters A and

s are initialized as zero, and are updated simultaneously and recursively. Figure 5.13

shows the update of the estimates. Both estimates converge to within a neighborhood
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Figure 5.10: This block diagram for adaptive model refinement specializes Figure 5.2 to
a model of the ionosphere-thermosphere. Simulated data are generated by
using the 1D Global Ionosphere-Thermosphere Model (GITM), where the
thermal conductivity is assumed to be unknown. The goal is to estimate
the thermal conductivity by using measurements of the neutral mass density.
This problem is challenging due to the low accessibility of the unknown physics
relative to the available measurements w and y.
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Figure 5.11: Steady-state globally averaged temperature structure using three published
conductivity values [1].

of the true values within 0.6× 105 data points.

The performance gains attributed to the refined parameters are shown in Figure

5.14. The upper figure shows the model error signal z for the GITM “truth”model

and an initial GITM model whose thermal conductivity coefficient is set to zero.

Within the simulated model, this value prevents energy deposited in one layer of the

atmosphere from remaining in that layer. The lower plot of Figure 5.14 illustrates

the reduction in model error obtained by including the identified coefficients, thereby

accounting for the thermal conductivity of this species. The benefits of refining the

GITM model are evident by the improvement in model accuracy as determined by z.
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Figure 5.12: This plot shows the true and estimated thermal conductivity coefficient. The
initial guess for the thermal conductivity is zero, while the actual thermal
conductivity is set to be the mean of the range of uncertainty. The estimate
Â of A converges to a neighborhood of the true value of A within about
0.6 × 105 data points. The lack of final convergence is due to nonlinearities
in the dynamics of the system. However, the oscillations are well within
the uncertainty bounds, which reflect the range of published values for this
coefficient.

5.7 Application of Adaptive Model Refinement to Ionospheric

Dynamics Estimation

To illustrate adaptive model refinement in the case of an unknown dynamic sub-

system, the NO radiative cooling is removed from GITM to provide an initial model,

but is retained in GITM for the truth model. The goal is to reproduce the missing

process. This is nontrivial since the functional form of the cooling is assumed to be

unknown as are the dynamics. We assume only that something is missing from the

energy equation, and that this is most likely a function of temperature. The dynamics

of the cooling are estimated at three different altitudes, connecting the other altitudes
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Figure 5.13: These plots show the true and estimated thermal conductivity coefficient as
well as the true and estimated rate coefficient. The initial guesses for both
coefficients are zero. The estimates converge to a neighborhood of the true
value within about 0.6 × 105 data points. The estimates are also within the
uncertainty limits.

through linear interpolation, which is an approximation, but illustrates the technique.

Nothing else about the energy sink is assumed. The thermospheric density is utilized

as data at 407 km altitude from a simulated GITM truth model, which includes NO

cooling. Applying adaptive model refinement with temperature as the input to the

“Unknown Physics,” Figures 5.15 and 5.16 demonstrate that this technique captures
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Figure 5.14: The upper figure shows the model error signal z for the difference in neutral
mass density output between the GITM truth model and the GITM initial
model. The lower figure shows the difference in neutral mass density output
between the GITM truth model and the refined GITM model. By utilizing
empirically refined estimates of the thermal conductivity and rate coefficient,
the model error is reduced.

the actual dynamics in the system. The height profile of the cooling matches the ac-

tual cooling. Furthermore, the temporal variation of the maximum cooling matches

the cooling simulated by the model.

To reproduce the dynamics of the cooling, three linear dynamic equations are de-
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Figure 5.15: This plot shows the difference between the actual NO cooling included in the
GITM truth model and the cooling in the refined GITM model as a function
of time at a specific altitude (152 km). The vertical dashed lines are the time
instances at which the altitude versus NO cooling plots in Figure 5.16 are
taken.

rived, one for each of the three chosen altitudes. This yields a profile that resembles

the natural logarithm of the NO density [87, 88], indicating that this may be the

source of the cooling, which it actually is. Figure 5.17 compares of the model without

correction versus the model with correction, both of which are baselined against the

truth model. Without data-based model refinement, the estimated density measure-

ments degrade as time increases.

5.8 Conclusions

In this chapter we presented an adaptive model refinement technique for improv-

ing the fidelity of models using empirical data. Model refinement presents challenges

relative to standard input-output system identification, specifically, a lack of acces-
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(a) NO cooling as function of altitude
at 0.5 days.
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(b) NO cooling as function of altitude
at 0.8 days.
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(c) NO cooling as function of altitude
at 1.6 days.
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(d) NO cooling as function of altitude
at 2.7 days.

Figure 5.16: These plots show the difference between the actual NO cooling included in
the truth model and the cooling estimated by the adaptive model refinement
as a function of altitude at a given time. Cooling is along the horizontal axis,
while altitude is along the vertical axis. The blue dashed line is the estimated
value. The measured data are taken at an altitude of 407 km. The vertical
dashed lines in Figure 5.15 are the time instances at which the altitude versus
NO cooling plots (a)–(d) are taken.

sibility to the signals that are used by standard system identification to identify the

unknown subsystem. For model refinement we use retrospective cost optimization to

identify the unknown subsystem. We presented a problem formulation for the linear

case, and demonstrated the method on a numerical example and an experimental

setup. We then demonstrated the feasibility of the method in refining a nonlinear

model of the ionosphere and thermosphere using the Global Ionosphere-Thermosphere

Model (GITM). We demonstrated how uncertain parameters are identified when the

structure of the uncertain model is known. Furthermore, we demonstrated how un-

known dynamics are identified from data when the internal structure of the unknown
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Figure 5.17: This plot shows the difference between the density measurements for the initial
model, where no correction is made, and the model with the refined subsystem
versus the truth model. With adaptive model refinement, the refined model
is able to track the truth model, whereas, if no correction is made, the density
measurements degrade as time increases.

subsystem is unknown. This technique can thus be used to refine and improve an

initial model (or models, if several are hypothesized) that is either uncertain or er-

roneous. In turn, the improved model can provide a more accurate foundation for

data assimilation aimed at wind and density estimates in the presence of solar storm

disturbances.
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CHAPTER VI

Application of Model Refinement to Li Ion

Batteries

6.1 Introduction

Due to their higher energy density compared to their lead-acid and nickel-metal-

hydride counterparts, Lithium-ion (Li-ion) batteries have found a wide range of ap-

plications from handheld electronic devices to electrified vehicles. Understanding and

optimally managing their health is critical for improving their reliability, durability,

and cost.

Li-ion batteries have various degradation mechanisms depending on which com-

bination of anode, cathode, electrolyte, and dopant chemistries are used. Provided

the battery’s minimum and maximum voltages are not exceeded, the predominant

degradation mechanism in Li-ion batteries with lithium-iron-phosphate (LiFePO4)

cathodes is Solid-Electrolyte Interface (SEI) film formation in the anode [89]. This

mechanism affects battery State of Health (SoH) in two ways, namely, the film re-

sists intercalation current, increasing internal resistance, and film creation consumes

Li-ions, decreasing battery capacity. Film formation depends on how the battery is

charged, discharged, and stored.

To control degradation, it is necessary to predict how charging, discharging, and
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storage patterns affect SoH and then modify these patterns subject to operating con-

straints and objectives. Noninvasive methods, such as methods based on equivalent-

circuit models for capacity and power, have been used to correlate static parameters

of SEI film thickness [90, 91, 92]. However, these methods do not model the dynam-

ics of film growth and thus do not allow the battery-management system to modify

charging patterns based on predicted future health. On the other hand, direct mea-

surements of film growth require invasive methods that destroy the battery and are

thus not applicable during the lifetime of the battery. Therefore, the goal of this

chapter is to use system identification to construct an empirical film-growth model

as a noninvasive approach to battery-health diagnostics.

The dynamics of film growth constitute a subsystem of the overall battery model,

and thus the goal is to identify the dynamics of the film-growth subsystem while

taking advantage of a given model of the main battery subsystem. However, iden-

tification of the film-growth subsystem is challenging due to the fact that its inputs

and outputs are not available from noninvasive measurements. In this case, we say

that the subsystem is inaccessible. Figure 6.1 illustrates the subsystem identifica-

tion problem, where the input y0 and output u of the Unknown Subsystem are not

measured.

To address the inaccessible subsystem identification problem, we apply retrospective-

cost subsystem identification (RCSI) developed in [11, 53, 54, 29]. The investigation

of RCSI for noninvasive battery health diagnostics is motivated by the method’s abil-

ity to estimate an inaccessible cooling submodel within an ionosphere-thermosphere

model [41].

Figure 6.1 shows the RCSI framework. In this chapter we adopt a simulation-

based approach and consider as the “Physical” System in Fig. 6.1 the Doyle-Fuller-

Newman (DFN) battery model [93, 94] augmented with the Ramadass battery-health

model [95] (DFN+R). The DFN+R model is considered as the “truth” model, with
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Figure 6.1: Identification of an unknown inaccessible subsystem whose input y0 and
output u are not measured. The only measured data are w and y.
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the DFN model together with the Li consumption component of the battery-health

model as the Main System, and the film-growth component of the battery-health

model as the Unknown Subsystem. This truth model is then used for a simulation-

based demonstration of RCSI where the goal is to identify the film-growth portion of

the battery-health dynamics. To do this, we first simulate the DFN+R battery model

to obtain data for use in subsystem identification. Next, we remove the film-growth

component of the battery-health model, treating it as unknown, and use the DFN

model augmented with the Li consumption component of the battery-health model

as the Main System Model for RCSI. Hence, in this chapter, the Main System and

Main System Model blocks shown in Fig. 6.1 are identical. We then apply RCSI to

identify the film-growth subsystem model. For validation, we compare the output of

the actual battery-health subsystem with the output of the battery-health subsystem

model obtained from RCSI.

The rest of the chapter is organized as follows. Section 6.2 gives an overview

of the battery model used in this study. The RCSI method is reviewed in Section

6.3. Section 6.4 demonstrates the application of RCSI to the film-growth idetification

problem. Conclusions are given in Section 6.5.

6.2 Battery Model

6.2.1 Dynamics of Charging and Discharging

The DFN model is an electrochemical battery model that captures concentration

and potential distributions across the width of the cell as well as concentration profiles

in the porous electrodes of the anode and cathode. The model is described in [93,

94, 95]. This section summarizes the model equations, which constitute a system of

nonlinear partial differential algebraic equations.

Li-ion battery cells consist of an anode, separator, and cathode sandwiched be-
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tween current collectors. Both the anode and cathode are made of porous solid ma-

terial immersed in an electrolyte solution. When the battery is fully charged, most of

the Li-ions occupy interstitial sites on the solid material in the anode. As the battery

discharges, the Li-ions leave these interstitial sites, entering the electrolyte solution.

The Li-ions then migrate through the solution from the anode to the separator and

then to the cathode. Eventually, the Li comes to rest at interstitial sites on the solid

in the cathode. When a Li-ion leaves its interstitial site in the anode, an electron is

freed to flow through the circuit producing useful work. When this electron reaches

the cathode it causes a different Li-ion to bond with a cathode interstitial site. Charg-

ing the battery is the same process in reverse, except that the circuit provides energy

rather than consumes it.

The DFN model captures local Li-ion concentrations and potentials using coupled

partial differential equations (PDEs). The PDEs account for the linear diffusion of

Li-ions in the electrolyte, spherical diffusion of Li-ions in the solid, and the spatially

distributed electrochemical reactions driving them to transfer between the solution

and the solid. The remainder of this section briefly outlines the mathematical equa-

tions behind these phenomena.

The concentration c2(x, t) of Li-ions within the electrolyte is governed by Fick’s law

of linear diffusion combined with an intercalation current density term J transferring

Li-ions between the solution and solid as modeled by

ε2
∂c2
∂t

= ∇(deff2 ∇c2) +
1− t+

F
J (6.1)

The intercalation current density J also acts as an input to the dynamics of Li-ion

diffusion within the solid. This diffusion occurs at every point in the anode and

cathode and can be modeled using a spherical, radially symmetric diffusion law given

120



by

∂c1,j
∂t

=
D1,j

r2
∂

∂r

(

r2
∂c1,j
∂r

)

(6.2)

The total intercalation current density J equals the main intercalation reaction

current density J1 plus any additional intercalation current density Js representing

side reactions in the battery. The main intercalation reaction current density J1 is

driven by potential differences between the solid and electrolyte solution, and gov-

erned by the Butler-Volmer equation

J1 = aji0,j

(

e
αa,jF

RT
ηj − e−

αa,jF

RT
ηj

)

(6.3)

i0,j = kj
(

cmax
1,j − cS1,j

)αa,j
(

cS1,j
)αc,j

(c2)
αa,j (6.4)

The over-potentials in these equations equal the differences between the solid and

solution potentials minus the reference potentials for the main intercalation reaction,

which in turn depend on the local State of Charge (SoC) according to

ηp = φ1 − φ2 − up,ref (6.5)

ηn = φ1 − φ2 − un,ref −
J

an
RSEI (6.6)

Since the potentials and over-potentials can change much faster than the Li-ion

concentrations, they are assumed to respond instantaneously. The solid potential is

governed by Ohm’s law with a term governing the charge transfer due to intercalation

as given by

∇
(

σeff
j ∇φ1,j

)

− J = 0 (6.7)

Similarly, the solution potential is governed by Ohm’s law, the intercalation current
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density, and the charge carried by the ions in solution as modeled by

∇
(

κeff∇φ2

)

+ J +∇ (κD∇ ln(c2)) = 0 (6.8)

This system of equations governs the dynamics of charging and discharging in the

Li-ion cell. When the DFN model is discretized, it becomes a system of Differential

Algebraic Equations (DAEs), where the differential equations govern the diffusion

dynamics and the algebraic equations constrain the potentials and intercalation cur-

rent.

6.2.2 Battery-Health Submodel

The truth model for battery health used later in this chapter is based on a side

reaction that simultaneously increases the anode SEI resistance and consumes cyclable

Li-ions [95]. This side reaction is given by

ηs = φ1 − φ2 − usd,ref −
J

an
Rfilm (6.9)

Js = −isd,0ane
− αF

RT
ηs (6.10)

The side reaction creates a resistive film at a rate proportional to the side reaction

current density, that is,

∂δfilm
∂t

= −
JsMp

anρpF
(6.11)

The resistive film adds to the internal resistance of the anode, thereby negatively

affecting battery performance as modeled by

Rfilm = RSEI +
δfilm
Kp

(6.12)
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Additionally, this model consumes cyclable Li-ions through the intercalation side

current Js and (6.1), resulting in capacity fade.

For subsystem identification, this health model is separated into two components,

namely, film growth and Li-ion consumption. The film growth portion is identified

by RCSI, whereas the Li-ion consumption piece is assumed to be part of the main

model. Specifically, Js is computed from the main model using (6.10), which is taken

as an input to the RCSI algorithm. However, (6.11) and (6.12) are unknown to the

RCSI algorithm; it is RCSI’s task to create a model that represents these equations

based on the simulated data it receives.

6.3 Retrospective-Cost Subsystem Identification

This section describes the RCSI method that is used to identify the inaccessible

film-growth subsystem of the battery.

6.3.1 Retrospective Surrogate Cost-Based Signal Construction

Consider the MIMO discrete-time system

x(k + 1) = f(x(k)) + gu(u(k)) + gw(w(k)), (6.13)

y(k) = h(x(k)), (6.14)

y0(k) = h0(x(k)), (6.15)

where x(k) ∈ Rn, y∗(k) ∈ Rly∗ , y∗0(k) ∈ Rly0 , u(k) ∈ Rlu , w(k) ∈ Rlw , and k ≥ 0.

Next,

u(k) = G(y0(k)), (6.16)
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where G(·) is an unknown subsystem. The system (6.13)–(6.15) and (6.16) represent

the real battery.

Next, we construct a model of the real system from the DFN model

x̂(k + 1) = f(x̂(k)) + gu(û(k)) + gw(w(k)), (6.17)

ŷ(k) = h(x̂(k)), (6.18)

ŷ0(k) = h0(x̂(k)), (6.19)

z(k) = ŷ(k)− y(k), (6.20)

where x̂(k) ∈ Rn, ŷ(k) ∈ Rly , z(k) ∈ Rlz , ŷ0(k) ∈ Rly0 , û(k) ∈ Rlu , and

û(k) = Ĝ(ŷ0(k)), (6.21)

where Ĝ(·) is an estimate of G(·).

Next let A, B, D1, and E1 be the linear counterparts of f , gu, gw, and h and

respectively. For i ≥ 1, define the Markov parameters

Hi
△
= E1A

i−1B. (6.22)

Let r be a positive integer. Then, for all k ≥ r,

x̂(k) = Arx̂(k − r) +

r
∑

i=1

Ai−1Bû(k − i) +

r
∑

i=1

Ai−1D1w(k − i), (6.23)

and thus

z(k) = E1A
rx̂(k − r) +

r
∑

i=1

E1A
i−1D1w(k − i)− y(k) + H̄Ū(k − 1), (6.24)
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where

H̄
△
=

[

H1 · · · Hr

]

∈ R
lz×rlu

and

Ū(k − 1)
△
=
[

ûT(k − 1) · · · ûT(k − r)
]T
.

Next, we rearrange the columns of H̄ and the components of Ū(k − 1) and partition

the resulting matrix and vector so that

H̄Ū(k − 1) = H′U ′(k − 1) +HU(k − 1), (6.25)

where H′ ∈ R
lz×(rlu−lU ), H ∈ R

lz×lU , U ′(k − 1) ∈ R
rlu−lU , and U(k − 1) ∈ R

lU . Then,

we can rewrite (6.24) as

z(k) = S(k) +HU(k − 1), (6.26)

where

S(k)
△
= E1A

rx̂(k − r) +
r
∑

i=1

E1A
i−1D1w(k − i)− y(k) +H′U ′(k − 1). (6.27)

Next, we rewrite (6.26) with a delay of kj time steps, where 0 ≤ k1 ≤ k2 ≤ · · · ≤ ks,

in the form

z(k − kj) = Sj(k − kj) +HjUj(k − kj − 1), (6.28)
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where (6.27) becomes

Sj(k − kj)
△
= E1A

rx̂(k − kj − r) +

r
∑

i=1

E1A
i−1D1w(k − kj − i)

− y(k − kj) +H′
jU

′
j(k − kj − 1)

and (6.25) becomes

H̄Ū(k − kj − 1) = H′
jU

′
j(k − kj − 1)

+HjUj(k − kj − 1), (6.29)

where H′
j ∈ R

lz×(rlu−lUj
), Hj ∈ R

lz×lUj , U ′
j(k−kj −1) ∈ R

rlu−lUj , and Uj(k−kj −1) ∈

R
lUj . Now, by stacking z(k − k1), . . . , z(k − ks), we define the extended performance

Z(k)
△
=
[

zT(k − k1) · · · zT(k − ks)
]T

∈ R
slz . (6.30)

Therefore,

Z(k)
△
= S̃(k) + H̃Ũ(k − 1), (6.31)

where

S̃(k)
△
= [S(k − k1) · · · S(k − ks)]

T ∈ R
slz , (6.32)

H̃ ∈ Rslz×l
Ũ , and Ũ(k − 1) ∈ Rl

Ũ . The vector Ũ(k − 1) is formed by stacking U1(k −

k1 − 1), . . . , Us(k − ks − 1) and removing repetitions of components. The coefficient

matrix H̃ consists of the entries of H1, . . . ,Hs arranged according to the structure of

Ũ(k − 1). Furthermore, we assume that the last entry of Ũ(k − 1) is a component of

û(k − r).
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Next, we define the surrogate performance

z∗(k − kj)
△
= Sj(k − kj) +HjU

∗
j (k − kj − 1), (6.33)

where the actual past subsystem outputs Uj(k− kj − 1) in (6.28) are replaced by the

surrogate subsystem outputs Û∗
j (k− kj − 1). The extended surrogate performance for

(6.33), which is defined as

Z∗(k)
△
=
[

z∗T(k − k1) · · · z∗T(k − ks)
]T

∈ R
slz , (6.34)

is given by

Z∗(k) = S̃(k) + H̃Ũ∗(k − 1), (6.35)

where the components of Ũ∗(k−1) ∈ Rl
Ũ∗ are components of Û∗

1 (k−k1−1), . . . , Û∗
s (k−

ks − 1) ordered in the same way as the components of Ũ∗(k − 1). Subtracting (6.31)

from (6.35) yields

Z∗(k) = Z(k)− H̃Ũ(k − 1) + H̃Ũ∗(k − 1). (6.36)

Finally, we define the retrospective cost function

J̄(Ũ∗(k − 1), k)
△
= Z∗T(k)R(k)Z∗(k) + η(k)Ũ∗T(k − 1)Ũ∗(k − 1), (6.37)

where R(k) ∈ Rlzs×lzs is a positive-definite performance weighting and η(k) ≥ 0. The

goal is to determine refined subsystem outputs ˆ̃U(k − 1) that would have provided

better performance than the subsystem outputs U(k) that were applied to the system.

The refined subsystem output values ˆ̃U(k − 1) are subsequently used to update the
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subsystem estimate.

Substituting (6.36) into (6.37) yields

J̄(Ũ∗(k − 1), k) = Ũ∗(k − 1)TA(k)Ũ∗(k − 1) + Ũ∗T(k − 1)BT(k) + C(k), (6.38)

where

A(k)
△
= H̃TR(k)H̃ + η(k)Il

Ũ
, (6.39)

B(k)
△
= 2H̃TR(k)[Z(k)− H̃Ũ(k − 1)], (6.40)

C(k)
△
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃Ũ(k − 1) + ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1).

(6.41)

If either H̃ has full column rank or η(k) > 0, then A(k) is positive definite. In this

case, J̄(Ũ∗(k − 1), k) has the unique global minimizer

Ũ∗(k − 1) = −
1

2
A−1(k)B(k). (6.42)

6.3.2 Film Resistance Model

The estimated subsystem output û(k) is given by the exactly proper time-series

model of order nc given by

û(k) =
nc
∑

i=1

Mi(k)û(k − i) +
nc−1
∑

i=0

Ni(k)ŷ0(k − i), (6.43)

where, for all i = 1, . . . , nc, Mi(k) ∈ Rlu×lu and Ni(k) ∈ R
lu×lŷ0 . The subsystem

output (6.43) can be expressed as

û(k) = θ(k)φ(k − 1), (6.44)
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where θ(k) ∈ R
lu×nc(lu+ly0 ), is

θ(k)
△
= [M1(k) · · · Mnc

(k) N1(k) · · · Nnc
(k)] (6.45)

and φ(k − 1) ∈ R
nc(lu+lŷ0),

φ(k − 1)
△
=
[

ûT(k − 1) · · · ûT(k − nc) ŷ
T
0 (k − 1) · · · ŷT0 (k − nc)

]T
. (6.46)

Next, let d be a positive integer such that Ũ∗(k−1) contains u∗(k−d). We define

the cumulative cost function

JR(θ(k))
△
=

k
∑

i=d+1

λk−i‖φT(i− d− 1)θT(k)

− u∗T(i− d)‖2 + λk(θ(k)− θ(0))P−1(0)(θ(k)− θ(0))T, (6.47)

where φ(k−d) is given by (6.46) and λ(k) ∈ (0, 1] is the forgetting factor. Minimizing

(6.47) yields

θT(k) = α(k)θT(0) + [1− α(k)][θT(k − 1) + P (k − 1)

· φ(k − d− 1)[φT(k − d− 1)P (k − 1)φ(k − d− 1)

+ λ(k)]−1(û(k − d)− φT(k − d− 1)θT(k − 1))]. (6.48)

The error covariance is updated by

P (k) = α(k)P (0) + [1− α(k)][λ−1(k)P (k − 1)

− λ−1(k)P (k − 1)φ(k − d− 1)

[φT(k − d− 1)P (k − 1)φ(k − d− 1) + λ(k)]−1 (6.49)

· φT(k − d− 1)P (k − 1)], (6.50)
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where α(k) ∈ (0, 1) is an algorithm reset, that is, when α(k) = 1 θ(k) and P (k) are

reset to their initial values. Furthermore we initialize the error covariance matrix as

P (0) = βI, where β > 0.

6.4 Numerical Simulation of the Application of RCSI for

Film-Growth Subsystem Identification

We now present a numerical simulation of the application of RCSI to the film-

growth identification problem. To this end, the DFN model together with the Li

consumption component of the Ramadass battery-health model is considered as the

Main System Model of the RCSI framework shown in Figure 6.1, and the film-growth

component of the battery-health model is considered as the Unknown Subsystem to

be identified. The adoption of this film-growth subsystem identification problem into

the general RCSI framework is illustrated in Fig. 6.2. The Unknown Film-Growth

Subsystem G(·) is connected to the Main Battery System (f(·), gw(·), gu(·), h(·), h0(·))

by feedback, which captures the fact that the film is driven by the intercalation side

current, while the film impacts the local overpotential of the main reaction, restricting

battery current. Note that neither the input u(k) nor the output y0(k) of the film-

growth subsystem is measured.

Although in practice the data, namely, battery terminal voltage and current, would

be obtained from a physical experiment, the results in this section are based on

simulations. To obtain simulated test data, the DFN+R battery model was simulated

under repeated Constant-Current, Constant-Voltage (CCCV) cycling from 2 to 3.6

V at a 2.5 C-rate. The parameters for the DFN model are taken from [96]. For

the Ramadass health model the parameters are assumed to be usd,ref = 0.4, isd,0 =

4 × 10−9, Mp = 7.3 × 104, ρp = 2.1 × 103, and Kp = 1. The film-growth subsystem

was then removed from the truth model in accordance with the assumption that it
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Figure 6.2: Specialization of Figure 6.1 to the film-growth identification problem.

131



is unknown. RCSI was then tasked with identifying the dynamics of the Unknown

Film-Growth Subsystem. The controller and tuning parameters where chosen to be

nc = 7, η(k) = 0, P (0) = 5 × 10−7. In the absence of estimates of A, B, and E1,

we choose H̃ = [Ĥ1], where Ĥ1 = 0.01. Next, ŷ0(k) is the intercalation side current

Js, and y is the system output voltage or current depending on the cycle. Finally,

α(k) = 1 at the start of each cycle, that is, P (k) and θ(k) are re-initialized at the

start of each charging cycle.

Figure 6.3 shows the true (that is, truth-model) film thickness as given by DFN+R

model and the film thickness as estimated by RCSI. The film-thickness estimates

show that the film-thickness subsystem dynamics are not identifiable during intervals

of operation within which the intercalation side current Js is close to zero. However,

when Js is large, RCSI produces a useful estimate of the film thickness that is close

to the true film thickness. Figure 6.3 provides a magnified view of Fig. 6.3, which

shows that the estimates of film thickness provided by RCSI correspond closely to

the true film thickness during intervals in which Js is large. The resulting identified

film-growth model can be used to identify unknown physics, validate hypothesized

physics, or predict the future behavior of the battery.

Figure 6.5 (a) shows the time history of θ, where θ are the coefficients of the

estimated transfer function between the estimated intercalation side current and es-

timated film resistance. We note that θ is reset to zero at the start of each cycle.

6.5 (b) shows the normalized estimated intercalation side current and the normal-

ized estimated film resistance. Since the process between intercalation side current

and the estimated film resistance is modeled using transfer functions, when the input

(intercalation side current) to the transfer function is approximately zero, the film

resistance estimate will tend to zero, which means the estimates when the side current

is small are unreliable.

Figure 6.6 (a) shows the pole-zero plot of the estimated subsystem at t = 470 mins.
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Figure 6.3: True film thickness and the film thickness as estimated by RCSI. Shaded
regions indicate when the intercalation side current Js is close to zero.

The estimated subsystem is approximately a finite impulse response (FIR) system,

note the grouping of poles at the origin. Furthermore, Figure 6.6 (b) shows the

impulse response of the subsystem, which supports the observation that the subsystem

is approximately FIR.

6.5 Conclusions and Future Research

As the first step of a noninvasive solution to battery-health diagnostics, we applied

RCSI to the problem of estimating the SEI film-growth subsystem of a battery model

for which the main system is the DFN model augmented with a Li consumption

model. Assuming that the main system model is accurate and the measurements are

noise free, RCSI was able to reproduce the output of the “truth” film-growth model

when the intercalation side current Js is not close to zero. Future research will focus

on the case in which the DFN model is uncertain (that is, does not match the true
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battery characteristics) and the measurements are noisy. The ultimate goal is to

apply the subsystem identification method to experimental battery data.
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CHAPTER VII

Application of Model Refinement to

Semi-Parametric Identification of Wiener Systems

7.1 Introduction

Block-structured models are widely used for system identification [64, 97, 47].

These models provide useful information concerning the dynamic and static compo-

nents of a system, and thus constitute grey-box models in which the block structure is

ascribed physical meaning. The goal of system identification is to model the internal

structure of each block from available data.

Among the most widely studied block-structured models are the Wiener [42, 46,

45, 98, 99, 100, 101, 43] and Hammerstein [42, 102, 103, 11, 43, 44] models. Each

model structure involves a single linear dynamic block and a single nonlinear static

block. For these two-block structures, the difficulty of the identification problem

typically depends on a priori assumptions made about the components, for exam-

ple, FIR-versus-IIR dynamics, and invertible-versus-noninvertible nonlinearities [99].

Furthermore, identification of Wiener systems is generally considered to be more chal-

lenging than identification of Hammerstein systems due to the fact that the input to

the nonlinear block is available for Hammerstein systems but not for Wiener systems.

In this chapter, we focus on Wiener systems.
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The methods for identifying Wiener systems developed in [42, 45, 98, 101] assume

that the nonlinear block is invertible. To overcome this requirement, nonparamet-

ric probabilistic methods are used in [47]. Alternatively, frequency-domain methods

that apply multiple harmonic inputs are employed in [43, 46]. In [43], the multiple

harmonic inputs are assigned random phase shifts, and a nonparametric model of the

nonlinearity is obtained using the identified linear dynamic model, which is previously

estimated in the frequency domain. In [46], the phase shift between the output of the

linear dynamic block and the output is exploited in the frequency domain, for each

harmonic input.

In this chapter we develop a novel technique for identifying single-input, single-

output (SISO) Wiener systems. The proposed approach is semiparametric, which,

as described in [47], refers to the fact that the nonlinear block is estimated nonpara-

metrically, whereas the linear dynamics are identified parametrically. To do this, we

consider a two-step procedure. In the first step, we apply a single harmonic input

signal, and measure the output once the trajectory of the system reaches harmonic

steady state. We then examine the output of the system (which is not harmonic due

to the nonlinearity) relative to the input, and use the symmetry properties of these

signals to estimate the nonharmonic phase shift. This estimate allows us to infer the

phase shift of the unmeasured intermediate signal (that is, the output of the linear

block) and thus reconstruct this signal up to an arbitrary amplitude. By plotting the

output versus the reconstructed intermediate signal, we thus obtain a nonparametric

approximation of the nonlinear block of the system.

The second step of the algorithm uses a sufficiently rich signal to estimate the

linear dynamics of the system. Since we do not assume that the nonlinear block

is invertible, we do not have an estimate of the output of the linear block. To over-

come this difficulty, we apply retrospective cost optimization, which uses the available

output signal (in this case, the output of the nonlinear block) to recursively update
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the linear dynamics. This technique is inspired by retrospective-cost-based adaptive

control [50, 53, 48], which is used for model updating in [54, 11, 11].

As alluded to above, the two-step identification algorithm described herein does

not require invertibility of the nonlinear block as assumed in [42, 45, 98, 101]. In fact,

we do not require that the nonlinear block be either one-to-one, onto, or continuous,

nor do we assume as in [45] that any specific value of the nonlinearity be known.

The contents of the chapter are as follows. In Section 7.2 we define the Wiener

identification problem. A method for nonparametric identification of the static non-

linearity using a single harmonic input is presented in Section 7.3, while a method

for parametric identification of the linear time-invariant dynamics using retrospective

cost optimization is reviewed in Section 7.4. These methods are demonstrated on

several examples of increasing complexity in sections 7.5, 7.6, and 7.7. Concluding

remarks are presented in Section 7.8. A preliminary version of the results of this

chapter appears as [39].

7.2 Problem Formulation

Consider the block-structured Wiener model shown in Figure 7.1a, where L is

the SISO discrete-time linear time-invariant dynamic system

x(k + 1) = Ax(k) +Bu(k), (7.1)

v(k) = Cx(k), (7.2)

with input u(k) ∈ R and intermediate signal v(k) ∈ R, where k is the sample index,

and y(k) ∈ R is the output given by

y(k) = W(v(k)), (7.3)
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where W : R 7−→ R is the static nonlinearity. We assume that L is asymptotically

stable and W is piecewise continuous. Note that we do not assume that W is invert-

ible, one-to-one, continuous, or (as in [45]) W(0) = 0. Also, we assume that v(k) is

not accessible, and that x(0) is unknown and possibly nonzero.

Moreover, Figure 7.1b shows the scaled-domain modification Wλ(ν)
△
= W

(ν

λ

)

of

W, where λ is a nonzero real number. Therefore, Wλ(λv) = W(v). Each value of λ

scales both the gain of L and the domain of W. However, λ is not identifiable.

(a)

(b)

Figure 7.1: (a) Block-structured Wiener model, where u is the input, v is the inter-
mediate signal, y is the output, L is a discrete-time linear time-invariant
dynamic system, and W is a static nonlinearity. (b) An equivalent scaled
model, where λ is a scaling factor and Wλ is a scaled-domain modification
of W satisfying Wλ(λv) = W(v). The scaling factor λ is not identifiable.

7.3 Nonparametric Identification of the Static Nonlinearity

Consider the harmonic input signal

u(k) = A0sin(ω0kTs) = A0sin(Ω0k), (7.4)

where A0 is the amplitude, ω0 is the angular frequency in rad/sec, Ts is the sample

period in sec/sample, and Ω0
△
= ω0Ts is the angular sample frequency in rad/sample.

Since L is asymptotically stable, it follows that, for large values of k, the intermediate
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signal v is given approximately by the harmonic steady-state signal

v(k) = |G(eΩ0)|A0sin(Ω0k + ∠G(eΩ0)), (7.5)

where |G(eΩ0)| and ∠G(eΩ0) are, respectively, the magnitude and phase shift of the

frequency response of G(z) = C(zI − A)−1B at the angular sample frequency Ω0.

Therefore,

y(k) = W(|G(eΩ0)|A0sin(Ω0k + ∠G(eΩ0)). (7.6)

Next, note that the continuous-time harmonic signal sin(ω0t) is symmetric in the

intervals
[

0, 1
2
T0
]

and
[

1
2
T0, T0

]

about the points 1
4
T0 and 3

4
T0, respectively, where

T0
△
=

2π

ω0
is the period of the harmonic input. To preserve symmetry for the sampled

signal (7.4) about the points 1
4
T0 and 3

4
T0, we assume that

Ω0 =
π

2m
, (7.7)

where m is a positive integer. Thus N0
△
= 4m =

T0
Ts

is the period of the discrete-time

input (7.4). With this choice of Ω0, the sampled signal u(k) is symmetric in the

intervals
[

0, 1
2
N0

]

and
[

1
2
N0, N0

]

about the points 1
4
N0 and 3

4
N0, respectively. Fur-

thermore, assuming that q
△
=

∠G(eΩ0)

Ω0
is an integer, that is,

∠G(eΩ0)

π
is an integer,

the intermediate signal v(k), which is shifted relative to u(k) due to ∠G(eΩ0), is sym-

metric about 1
4
N0 + q in the interval

[

q, 1
2
N0 + q

]

and about 3
4
N0 + q in the interval

[

1
2
N0 + q, N0 + q

]

. If q is not an integer, then v(k) is only approximately symmetric.

Next, we note that the output signal y, which is not generally harmonic, possesses

the same symmetry as v on the same intervals. By exploiting knowledge of this

symmetry, we can identify the nonharmonic phase shift of y relative to u, and thus

the phase shift of v relative to u. Since y is not sinusoidal, the nonharmonic phase
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shift of y relative to u refers to the shifting of the symmetric portions of y relative

to the symmetric portions of u. Knowledge of this nonharmonic phase shift allows us

to determine v up to a constant multiple, specifically, v is a sinusoid that is shifted

relative to u by a known number of samples.

To clarify the above discussion, we present two examples using A0 = 1, m = 18 (so

that Ω0 = π/36), and G(z) =
0.0685

z− 0.9164
. First, consider the polynomial nonlinearity

y = W(v) = 0.6(v + 1)3 − 1, which is neither even nor odd. Figure 7.2a illustrates

the resulting signals u(k), v(k), and y(k) in harmonic steady state. Note that u is

symmetric about the discrete-time index δ in the interval
[

δ − 1
4
N0, δ +

1
4
N0

]

and

about δ + 1
2
N0 in the interval

[

δ + 1
4
N0, δ2 +

3
4
N0

]

. Likewise, v is symmetric about

the discrete-time index ε in the interval
[

ε− 1
4
N0, ε+

1
4
N0

]

and about ε + 1
2
N0 in

the interval
[

ε+ 1
4
N0, ε+

3
4
N0

]

. It thus follows that y is symmetric about ε in the

interval
[

ε− 1
4
N0, ε+

1
4
N0

]

and about ε+ 1
2
N0 in the interval

[

ε+ 1
4
N0, ε+

3
4
N0

]

.

Second, we consider the even polynomial nonlinearity y = W(v) = v2. Figure 7.2b

illustrates the resulting signals u(k), v(k), and y(k) in harmonic steady state. The

signals u and v are equal to the signals shown in Figure 7.2a. However, in addition to

the two points of symmetry shown in Figure 7.2a, note that y has two additional points

of symmetry, specifically, y is symmetric about ε + 1
4
N0 in the interval

[

ε, ε+ 1
2
N0

]

and about ε+ 3
4
N0 in the interval

[

ε+ 1
2
N0, ε+N0

]

.

7.3.1 Symmetry Search Algorithm

We now present an algorithm to determine ε from y. We then use ε to estimate

the nonharmonic phase shift of y relative to u. For convenience, we assume that the

harmonic steady state begins at k = 0.

Consider the signal y shown in Figure 7.3, and let n ≥ 6m denote the width of

the data window so that it includes at least one and a half periods. To encompass a

complete signal period, we construct a sliding window with N0 + 1 data points. The
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window is divided into quarters as shown in Figure 7.3.

Next, for k = 0, . . . , n−N0, define

β1(k)
△
=

2m−1
∑

i=1

|y (k + i− 1)− y (k + 2m− i+ 1) |, (7.8)

which is the sum of the absolute difference in magnitude for each pair of candidate

symmetric points in the first and second quarters about the point k + 1
4
N0 for the

sliding window starting at time step k. Likewise, for k = 0, . . . , n−N0, define

β2(k)
△
=

2m−1
∑

i=1

|y (k + 2m+ i− 1)− y (k + 4m− i+ 1) |, (7.9)

for each pair of candidate symmetric points in the third and fourth quarters about

the point k + 3
4
N0. The values of β1 and β2 quantify the symmetry error about the

points k + 1
4
N0 and k + 3

4
N0, respectively, for each allowable value of k. Thus, using

(7.8) and (7.9), we define the symmetry error index

β(k)
△
= β1(k) + β2(k), (7.10)

corresponding to the sliding window starting at point k, for k = 0, . . . , n−N0.

For k = 0, . . . , n−N0, let k0 < n−N0 be the minimizer of β(k). We use knowledge

of k0 to determine the location of the points of symmetry ε and ε+ 1
2
N0 for the sliding

window starting at point k0. In particular, since k0 is the starting point of the window

that minimizes β and since ε and ε + 1
2
N0 are, respectively, the quarter point and

three quarter point of the same window, it follows that

ε = k0 +
1

4
N0, (7.11)

ε+
1

2
N0 = k0 +

3

4
N0. (7.12)
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Note that, in general, β(k0) 6= 0. However if
∠G(eΩ0)

π
is an integer, then β(k0) = 0,

which indicates exact symmetry about k0 +
1
4
N0 in the interval

[

k0, k0 +
1
2
N0

]

and

about k0 +
3
4
N0 in the interval

[

k0 +
1
2
N0, k0 +N0

]

.

To illustrate the symmetry search algorithm, we reconsider the example considered

in Figures 7.2a and 7.3, where y = W(v) = 0.6(v+1)3− 1. Note that W is not even.

Figure 7.4a shows the values of β calculated for y(k) on the interval [k0, k0 + 2N0].

Since, in Figure 7.4a, the data window of y is selected to start at k0 = ε − 1
4
N0, the

minimum values of β(k) occur at k0 and k0 + N0, where k0 + N0 is the start of the

next period and, thus, need not be considered. Thus, using the unique minimizer k0

of β(k), it follows that the locations of the points of symmetry are given by (7.11)

and (7.12).

Next, for the even nonlinearity y = W(v) = v2 considered in Figure 7.2b, Figure

7.4b shows the values of β(k) calculated for y(k) on the interval [k0, k0+2N0]. In this

case, the minimum values of β(k) occur at k0, k0 +
1
2
N0, and k0 +N0, where k0 +N0

is the start of the next period and, thus, need not be considered. Thus, using k0, it

follows that the locations of the points of symmetry are given by (7.11) and (7.12).

Also, using k0 +
1
2
N0, we obtain two additional points of symmetry given by

ε+
1

4
N0 = k0 +

1

2
N0, (7.13)

ε+
3

4
N0 = k0 +N0. (7.14)

This ambiguity is due to the fact that ε and ε + 1
2
N0 are the midpoints of two

identical symmetric portions of y. Thus, the start of the data window within which

the function has the symmetry properties illustrated in Figure 7.3 can be taken as

either k0 or k0+
1
2
N0. Note that the second minimizer k0+

1
2
N0 appears only for even

nonlinearities.
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7.3.2 Nonparametric Approximation of the Static Nonlinearity

Using δ, which is assumed to be known from the harmonic input u, and the

estimate of ε obtained from y in Section 7.3.1, we now determine an estimate φ̂ of

the nonharmonic phase shift of y relative to u by

φ̂
△
= Ω0(ε− δ), (7.15)

which is an estimate of ∠G(eΩ0). Moreover, define the virtual signal

ṽ(k)
△
= A0sin(Ω0k + φ̂), (7.16)

which is an approximation of the intermediate signal v given by (7.5) divided by the

constant |G(eΩ0)|. Note that, if φ̂ = ∠G(eΩ0), then |G(eΩ0)|ṽ = v. Also, note that

the amplitude of ṽ(k) is irrelevant due to the scaling factor λ shown in Figure 7.1b.

Using ṽ and y, the nonparametric estimate of W is given by

Ŵ
△
= {(ṽ(k0), y(k0)), (ṽ(k0 + 1), y(k0 + 1)), . . . , (ṽ(n), y(n))}, (7.17)

where each pair (ṽ(k), y(k)), for k = k0, . . . , n, determines a value of the nonparamet-

ric estimate Ŵ of W.

Figure 7.4 shows that, depending on the type of nonlinearity, β(k) has either one

or two minima within each period. For a non-even polynomial nonlinearity, β(k)

has one minimum within each period. Therefore, the estimate of the nonharmonic

phase shift has two candidate values, namely, φ̂ and φ̂+ π. For an even nonlinearity,

β(k) has two minima within each period. Therefore, the estimate of the nonharmonic

phase shift has four candidate values, namely, φ̂, φ̂+ π
2
, φ̂+ π, and φ̂+ 3π

2
. However,

for the even case, φ̂ and φ̂ + π yield the same nonparametric model Ŵ, while φ̂ + π
2

and φ̂+ 3π
2
yield the same Ŵ .
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Therefore, for both non-even and even cases, there are two candidate nonparamet-

ric estimates of W, both of which are constructed using (7.16) and (7.17). The correct

nonparametric model will become apparent when identifying the dynamic block of

the Wiener system.

7.4 Parametric Identification of the Linear Time-Invariant

Dynamics

Using the nonparametric model Ŵ ofW, we now identify a model of L given by

L̂ using retrospective cost optimization (RCO) [11]. The RCO algorithm is presented

in [11, 53, 54] together with guidelines for choosing its tuning parameters, namely,

nc, p, and α.

Consider the adaptive feedback architecture for L̂ shown in Figure 7.5, where L̂m

denotes the initial model with input w ∈ R and output v̂ ∈ R, and where L̂∆ denotes

the feedback delta model with inputs u, v̂ ∈ R and output w.

The goal is to adaptively tune L̂∆ so that the performance variable

z(k)
△
= y(k)− ŷ(k) (7.18)

is minimized in the presence of the identification signal u. For simplicity, we choose

L̂m to be the one-step delay 1/z. Together, L̂ and Ŵ comprise a semiparametric

model of the Wiener system.

From Section 7.3.2, recall that there are two candidates for the nonparametric

estimate of W. Thus, we run RCO for each nonparametric estimate of W and obtain

a corresponding parametric model of L. Note that the performance variable z is

calculated for both semiparametric models. We choose the semiparametric model

whose performance variable has a smaller norm.
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7.4.1 Retrospective Cost Optimization

We now review the RCO adaptive control algorithm and show how it is used

to identify linear time-invariant dynamic systems using Ŵ . A detailed discussion

of RCO and as well as the theoretical foundations of the algorithm are found in

[53, 50, 49].

RCO depends on several parameters that are selected a priori. Specifically, nc is

the estimated plant order, p ≥ 1 is the data window size used to estimate L̂∆, and

µ is the number of Markov parameters of L̂∆. The methodology for choosing these

parameters is as follows. nc is overestimated, that is, chosen to be greater than the

expected order of L̂. From Section 7.4, recall that we assume that the controller L̂∆

is placed in feedback with a unit delay. Therefore, there is only one nonzero Markov

parameter, so µ = 1 in all example cases. The adaptive update law is based on a

quadratic cost function, which involves a time-varying weighting parameter α(k) > 0,

referred to as the learning rate since it affects the convergence speed of the adaptive

control algorithm. In [53], RCO is presented for MIMO systems, where lu, lv, lw,

and ly denote the sizes of u, v, w, and y, respectively. However, in this chapter, we

consider only the SISO system (7.1)-(7.3). For convenience, we keep the notation of

[53] and set lu = lv = lw = ly = 1.

Let L̂m ∼







A B

C D






as given by (7.1), (7.2), where x(k) ∈ Rlx , A ∈ Rlx×lx ,

B ∈ Rlx×1, C ∈ R1×lx . Since L̂m is set as unit delay, it follows that A = 0lx×lx ,

B = 1lx×1, and C = 11×lx , yielding

v̂(k) = w(k − 1),

where w(k − 1) is the output of L̂∆, which was obtained using RCO in the previous

iteration. Note that, to compute (7.18), ŷ(k) is assumed to be known. To accomplish
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that, we use the estimated intermediate signal v̂(k) with Ŵ as follows. Note that,

in general, v̂(k) is not in the set defined by (7.17). We thus suggest two methods by

which this issue may be overcome. For simplicity, the first case is to use the closest

value of ṽ(k) in the set (7.17) to v̂(k). Second, interpolation between the closest

bounding values may be used. For convenience, henceforth, we use the first method.

Next, to compute w(k) we use an exactly proper time-series controller of order nc

such that the control w(k) is given by

w(k) =
nc
∑

i=1

Mi(k)w(k − i) +
nc
∑

i=0

Ni(k)







v̂(k − i)

u(k − i)






, (7.19)

where Mi ∈ Rlw×lw , i = 1, . . . , nc, and Ni ∈ Rlw×(lv+lu), i = 0, . . . , nc, are given by

an adaptive update law. Note that the ARX model given in (7.19) is a model of L̂∆.

The control can be expressed as

w(k) = θ(k)ψ(k), (7.20)

where

θ(k)
△
=

[

N0(k) · · · Nnc
(k) M1(k) · · · Mnc

(k)

]

149



is the controller parameter block matrix and the regressor vector ψ(k) is given by

ψ(k)
△
=





















































v̂(k)

...

v̂(k − nc)

u(k)

...

u(k − nc)

w(k − 1)

...

w(k − nc)





















































∈ R
nclw+(nc+1)(lv+lu).

For positive integers p and µ, we define the extended performance vector Z(k) and

the extended control vector W (k) by

Z(k)
△
=













z(k)

...

z(k − p+ 1)













, W (k)
△
=













w(k)

...

w(k − pc + 1)













, (7.21)

where pc
△
= µ+ p.

From (7.20), it follows that the extended control vector W (k) can be written as

W (k)
△
=

pc
∑

i=1

Liθ(k − i+ 1)ψ(k − i+ 1), (7.22)

where

Li
△
=













0(i−1)lw×lw

Ilw

0(pc−i)lw×lw













∈ R
pclw×lw . (7.23)
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We define the surrogate performance vector Ẑ(θ̂(k), k) by

Ẑ(θ̂(k), k)
△
= Z(k)− B̄zw

(

W (k)− Ŵ (k)
)

, (7.24)

where

Ŵ (k)
△
=

pc
∑

i=1

Liθ̂(k)ψ(k − i+ 1), (7.25)

and θ̂(k) ∈ Rlw×[nclw+(nc+1)(lv+lu)] is the surrogate controller parameter block matrix.

The block-Toeplitz surrogate control matrix B̄zw is given by

B̄zw
△
=



















0lz×lw · · · 0lz×lw Hd · · · Hµ 0lz×lw · · · 0lz×lw

0lz×lw

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0lz×lw

0lz×lw · · · 0lz×lw 0lz×lw · · · 0lz×lw Hd · · · Hµ



















.

where the relative degree d is the smallest positive integer i such that the ith Markov

parameter Hi = CAi−1B of L̂m is nonzero. The leading zeros in B̄zw account for the

nonzero relative degree d. The algorithm places no constraints on either the value of

d or the rank of Hd or B̄zw. For the SISO case when L̂m is a unit delay,

B̄zw =

[

0 1 0

]

. (7.26)

Furthermore, we define

D(k)
△
=

nc+µ−1
∑

i=1

ψT(k − i+ 1)⊗ Li, (7.27)

f(k)
△
= Z(k)− B̄zwW (k). (7.28)
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We now consider the cost function

J(θ̂, k)
△
= ẐT(θ̂, k)R1(k)Ẑ(θ̂, k) + tr

[

R2(k)
(

θ̂ − θ(k)
)T

R3(k)
(

θ̂ − θ(k)
)

]

, (7.29)

where R1(k)
△
= Iplz , R2(k)

△
= α(k)Inc(lw+(lv+lu)), and R3(k)

△
= Ilw . Note that the cost

function is quadratic in the retrospective term Ẑ, while the second term penalizes the

difference θ(k+1)− θ(k); therefore, R2 and R3 can be used to control how much the

controller parameters will change in a given step.

Substituting (7.24) and (7.25) into (7.29), J is written as the quadratic form

J(θ̂, k) = c(k) + bTvec θ̂ +
(

vec θ̂
)T

A(k)vec θ̂, (7.30)

where

A(k) = DT(k)D(k) + α(k)I, (7.31)

b(k) = 2DT(k)f(k)− 2α(k)vec θ(k), (7.32)

c(k) = f(k)TR1(k)f(k) + tr
[

R2(k)θ
T(k)R3(k)θ(k)

]

. (7.33)

Since A(k) is positive definite, J(θ̂, k) has the strict global minimizer

θ̂(k) =
1

2
vec−1(A(k)−1b(k)). (7.34)

The controller gain update law is

θ(k + 1) = θ̂(k), (7.35)

such that w(k) is computed using (7.20). The key feature of the adaptive control

algorithm (7.20) is the surrogate performance variable Z(k) based on the difference
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between the actual past control inputs W (k) and the recomputed past control inputs

based on the current control law Ŵ (k). The parameter α is chosen to be as small as

possible while guaranteeing that A(k) is positive definite.

7.5 Numerical Examples: Nominal Case

To demonstrate semiparametric model identification, we consider various static

nonlinearities. For each example, we choose G to have poles 0.34± 0.87,−0.3141±

0.9, 0.05± 0.3122,−0.6875 and zeros 0.14± 0.97,−0.12± 0.62,−0.89 with monic

numerator and denominator. Also, u(k) is chosen to be a realization of zero-mean

Gaussian white noise with standard deviation σu = 3.5.

Note that A0 should, in practice, be chosen to be greater than the expected

operating range of the Wiener system. This guarantees that the inputs to the model

can be interpolated from the nonparametric map. For the following examples we

choose m to be much larger than required. Although we show in Section 7.7.2 that

very little performance gain is attainted from choosing m large, it is visually easier to

compare the identified nonparametric map to the true nonlinearity when using more

data points. Finally, the parameter α(k) discussed in the previous section is chosen as

a constant value for all examples. We choose varying values for α(k) to demonstrate

that the final estimate of the Wiener system is not sensitive to this parameter.

Example 7.5.1. (Non-even Polynomial) Consider W defined by

y = W(v) = v3 + 4v + 7. (7.36)

The parameters for nonparametric identification of W are m = 500 and A0 = 5.

Figure 7.6 compares the true and identified nonlinearities. The RCO parameters used

to identify the linear dynamic system are set as nc = 9, p = 1, and α = 1. Figure 7.7

shows the frequency response of the true dynamic model G and the identified model
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using RCO with the identified nonlinearity shown in Figure 7.6.

Example 7.5.2. (Even Polynomial) Consider W defined by

y(k) = W(v) = 7v4 + v2. (7.37)

The parameters for nonparametric identification of W are m = 500 and A0 = 5.

Figure 7.8 compares the true and identified nonlinearities. The RCO parameters

used to identify the linear dynamic system are set as nc = 9, p = 1, and α = 50.

Figure 7.9 shows the frequency response of G and the identified model using RCO

with the identified nonlinearity shown in Figure 7.8.

Next, to illustrate the ambiguity discussed in Section 7.3.2, we select the incorrect

nonharmonic phase shift, specifically, φ̂ + π
2
. Figure 7.10 shows a comparison of the

true and identified nonlinearities. Note that the incorrect nonharmonic phase shift

produces an erroneous nonparametric model of the nonlinearity. Figure 7.11 shows

a frequency response comparison of G and the model identified using RCO with the

identified nonlinearity shown in Figure 7.10.

To determine the appropriate phase shift φ̂ or φ̂+ π
2
, we examine the performance

variable z given by (7.18), which provides insight into which candidate value yields

the correct semiparametric model. The upper plot of Figure 7.12 shows the RCO

performance variable z for the incorrect nonparametric model of W, while the lower

plot shows the performance variable for the correct nonparametric model of W. The

correct semiparametric model clearly outperforms the incorrect model.

7.6 Numerical Examples: Off-Nominal Cases

We now reconsider the Wiener system (7.1)-(7.3) with noise, as shown in Figure

7.13. The input u(k) is a realization of zero-mean Gaussian white noise with standard

deviation σu = 3.5, while d1(k) ∈ R and d2(k) ∈ R are unknown zero-mean Gaussian
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white disturbances with standard deviations σd1 and σd2 , respectively. The output

y(k) = W(v(k)) + d3(k), (7.38)

has standard deviation σy about its mean, and d3(k) ∈ R is an unknown zero-mean

Gaussian white disturbance with standard deviation σd3 . The disturbance signals

d1(k), d2(k), and d3(k) are process, input, and output noise, respectively.

We now consider additional static nonlinearities, where, for each example, we

choose G as in Section 7.5.

Example 7.6.1. (Deadzone) Consider W defined by

y = W(v) =











0, if |v| ≤ 0.17;

v, if |v| > 0.17.
(7.39)

Furthermore, we consider process and output noise σd1 = 1
15
σu, σd3 = 1

15
σy and

d2 = 0. For this problem, the parameters for nonparametric identification arem = 250

and A0 = 5. In this example we also parameterize the estimated nonlinearity for

comparison with the nonparametric estimate. The parametric model is a 25th order

polynomial. Figure 7.14 compares the true, nonparametric identified and parametric

identified nonlinearities. The RCO parameters used to identify the linear dynamic

system are set as nc = 9, p = 1, and α = 10. Figure 7.15 shows the frequency

response of G and the identified model using RCO with the identified nonparametric

model of the nonlinearity. Figure 7.16 shows the frequency response of G and the

identified model using RCO with the identified parametric model of the nonlinearity.

Figure 7.17 compares the output of the Wiener system y(k) and the output of the

estimated semiparametric Wiener model ŷ(k), in response to a random input. Figure

7.18 compares the output of the Wiener system y(k) and the output of the estimated

parametric Wiener model ŷ(k), in response to a random input.
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Figure 7.19 is the difference between the error in the semiparametric Wiener model

and the parametric Wiener model. Where the graph is negative, the semiparametric

model has superior performance, and where the graph is positive the parametric

model is superior.

Example 7.6.2. (Saturation) Consider W defined by

y = W(v) =























8.64(v + 0.23)− 3.98, if 0.1 < v < 0.4;

1.5, if v ≥ 0.4;

−1.2, if v ≤ 0.1.

(7.40)

Furthermore, we consider input noise σd1 = 1
8
σu and d2 = d3 = 0. The parameters

for nonparametric identification are m = 150 and A0 = 5. Figure 7.20 compares the

true and identified nonlinearities. The RCO parameters used to identify the linear

dynamic system are set as nc = 9, p = 1, and α = 1. Figure 7.21 shows the frequency

response of G and the identified model using RCO with the identified nonlinearity

shown in Figure 7.20.

Example 7.6.3. (Switch function) Consider W defined by

y = W(v) =











0, if |v| = 0;

8.64v + sgn(v)4.5, if 0 < |v| ≤ 1.5.
(7.41)

Furthermore, we consider process, input, and output noise σd1 = 1
15
σu, σd2 = 1

15
σw,

and σd3 = 1
15
σy. The parameters for nonparametric identification are m = 100 and

A0 = 5. Figure 7.22 compares the true and identified nonlinearities. The RCO

parameters used to identify the linear dynamic system are set as nc = 9, p = 1, and

α = 1. Figure 7.23 shows the frequency response of G and the identified model using

RCO with the identified nonlinearity shown in Figure 7.22.
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Example 7.6.4. (Stairs Function) Consider W defined by

y = W(v) =















































0, if |v| = 0;

sgn(v)1, if 0 < |v| ≤ 0.17;

sgn(v)3, if 0.17 < |v| ≤ 0.35;

sgn(v)4.5, if 0.35 < |v| ≤ 0.52;

sgn(v)6, if 0.52 < |v|;

(7.42)

Furthermore, we consider process, input, and output noise σd1 =
1
8
σu, σd2 =

1
8
σw, and

σd3 =
1
8
σy. The parameters for nonparametric identification are m = 75 and A0 = 5.

Figure 7.24 compares the true and identified nonlinearities. The RCO parameters

used to identify the linear dynamic system are set as nc = 9, p = 1, and α = 1.

Figure 7.25 is a frequency response comparison of G and the system identified using

RCO with the identified nonlinearity shown in Figure 7.24. Figure 7.26 compares the

output of the Wiener system y(k) and the output of the estimated semiparametric

Wiener model ŷ(k), in response to a random input.

7.7 Numerical Examples: Error Metrics

We now investigate the effect of systematically decreasing the amount of avail-

able output data that is used to identify the linear block of the Wiener system.

Moreover, we investigate the effect of decreasing m, which determines the number of

points in the nonparametric model, and therefore affects the fidelity of Ŵ.

To quantify the accuracy of the identified semiparametric model, we compute the

root-mean-square error (RMSE) for the first 15 Markov parameters of the true linear

system and the identified linear system. The linear model is the same as in Sections

7.5 and 7.6, while W is given by (7.36).
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7.7.1 Effect of Disturbances

To evaluate the effect of σd1 , σd2 , and σd3 , we decrease the number of available

data points from 4000 to 10. For each case, we perform a 100-run Monte Carlo

simulation with a signal-to-noise ratio of 10. We consider the effect of d1, d2, and d3

individually, as well as the effect of all three noise signals, which may be uncorrelated

or correlated. Furthermore we consider when d1 and d3 are correlated, and d2 and d3

are correlated.

Figure 7.27 demonstrates the increase in error for decreasing amounts of available

data. Furthermore, we see that the cases with correlated disturbances yield similar

results compared to the case with uncorrelated disturbances.

7.7.2 Nonparametric Model Accuracy

We now perform a Monte Carlo simulation to evaluate how m affects the

accuracy of the identified linear system. Specifically, we vary m from 1 to 100. For

each value of m we average the result over 100 simulations. We consider the nominal

case, that is, without noise.

Figure 7.28 shows that RMSE generally decreases as m increases. Note that, for

this example, only a slight decrease in RMSE is observed for m ≥ 20.

7.8 Conclusions

In this chapter we develop a two-step method to identify semiparametric mod-

els for SISO discrete-time Wiener systems. We make only two assumptions about

the system, namely, the linear dynamic block is assumed to be asymptotically sta-

ble, and the static nonlinearity is assumed to be piecewise continuous. Furthermore,

this method requires identification signals with specific properties for each of the two

steps, as discussed as follows.

First, we choose a single harmonic input and measure the system output when
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the state trajectory is in harmonic steady state. By exploiting symmetry proper-

ties of these signals, we approximate the nonharmonic phase shift and, therefore,

estimate the intermediate signal. Using the estimate of the intermediate signal, a

nonparametric model of the static nonlinearity is obtained.

Second, using the identified nonparametric model, we use retrospective cost op-

timization to identify a parametric model of the dynamic system. As commonly

assumed in the system identification literature, the identification signal for this step

is assumed to be sufficiently persistent such that the dynamic linear system can be

identified.

It is important to point out that the method investigated in this work does not

require invertibility of the nonlinearity, which is a common assumption in Wiener

identification. However, the cost of removing this assumption is the need for two

steps, and the requirement that the signal for the first step be a single harmonic.

Furthermore, the user must wait until the system has reached a steady state before

useful data can be obtained. On the other hand, from Section 7.1, recall that there

are methods based on multiple harmonic inputs in the literature. Finally, it should

be noted that, although a nonparametric model of the nonlinearity was used in this

discussion, the data which represents the nonparametric map could be parameterized.

The twos-step method presented in this chapter is effectively demonstrated on

several examples of increasing complexity, including nonlinearities in the form of

both even and non-even polynomials, deadzone, saturation, and discontinuity, and

disturbances on the form of process, input, and output noise.
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Figure 7.2: Illustration of the symmetry properties of the signals u, v, and y given
by (7.4)-(7.6), respectively, for (a) the non-even polynomial nonlinearity
y = W(v) = 0.6(v + 1)3 − 1 and (b) the even polynomial nonlinearity
y = W(v) = v2. The signals u and v are harmonic, whereas y is the
output of the nonlinear block W and thus is not harmonic. Note that,
for both cases, u is symmetric about δ in the interval

[

δ − 1
4
N0, δ +

1
4
N0

]

and about δ + 1
2
N0 in the interval

[

δ + 1
4
N0, δ +

3
4
N0

]

, while v and y
are symmetric about ε in the interval

[

ε− 1
4
N0, ε+

1
4
N0

]

and about ε +
1
2
N0 in the interval

[

ε+ 1
4
N0, ε+

3
4
N0

]

. In addition, for the case of an
even polynomial nonlinearity shown in (b), y is also symmetric about
ε + 1

4
N0 in the interval

[

ε, ε+ 1
2
N0

]

and about ε + 3
4
N0 in the interval

[

ε+ 1
2
N0, ε+N0

]

.
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Figure 7.3: Illustration of the symmetry search algorithm. The solid line box com-
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dashed lines indicate the windowed points of symmetry.
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Figure 7.4: Illustration of the symmetry error index β(k) given by (7.8). The values
of β(k) are shown for two static nonlinearities, namely, (a) a non-even
polynomial and (b) an even polynomial.
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Figure 7.5: Identification architecture for Wiener models using retrospective cost op-
timization.
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Figure 7.6: Identified nonlinearity versus true nonlinearity (7.36), where m = 500
and A0 = 5 (Example 7.5.1). The argument of the identified nonlinearity
is scaled by 1

|G(eΩ0)|
to facilitate comparison with the true nonlinearity.
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Figure 7.7: Frequency response comparison of the true G and the identified LTI sys-
tem obtained using Ŵ as an estimate of (7.36), where k is the number of
data points used to determine the identified dynamic model. The RCO
controller order is nc = 9 with p = 1 and α = 1 (Example 7.5.1).

−0.5 0 0.5
0

500

1000

1500

2000

2500

3000

3500

4000

4500

v(k), v
tilde

/|G(jeΩ)|

y(
k)

 

 

Identified Nonlinearity
True Nonlinearity

Figure 7.8: Identified nonlinearity versus true nonlinearity (7.37), where m = 500
and A0 = 5 (Example 7.5.2).
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Figure 7.9: Frequency response comparison of the true G and the identified LTI sys-
tem obtained using Ŵ as an estimate of (7.37), where k is the number of
data points used to determine the identified dynamic model. The RCO
controller order is nc = 9 with p = 1, and α = 50 (Example 7.5.2).
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Figure 7.11: Frequency response comparison of the true G and the identified LTI
system obtained using Ŵ corresponding to the incorrect phase shift as
an estimate of (7.37), where k is the number of data points used to
determine the identified dynamic model. The RCO controller order is
nc = 9 with p = 1, and α = 50 (Example 7.5.2).
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Figure 7.12: Retrospective optimization performance comparison for Example 7.5.2.
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Figure 7.13: Block-structured Wiener model with process, input, and output noise,
where d1, d2, and d3 are unknown zero-mean Gaussian disturbances.
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Figure 7.14: Identified nonlinearity versus true nonlinearity (7.39), where m = 250
and A0 = 5. In this example, we also parameterize the estimated non-
linearity using a 25th order polynomial. (Example 7.6.1).

167



10
2

10
3−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

10
2

10
3−1000

−500

0
P

ha
se

 (
de

g)

Frequency (rad/s)

 

 

True Model
Identified Model @ k = 5000
Identifed Model @ k = 50

Figure 7.15: Frequency response comparison of the true G and the identified LTI
system obtained using the nonparametric Ŵ as an estimate of (7.39),
where k is the number of data points used to determine the identified
dynamic model. The RCO controller order is nc = 9 with p = 1 and
α = 10. (Example 7.6.1).
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Figure 7.16: Frequency response comparison of the true G and the identified LTI
system obtained using the parametric Ŵ as an estimate of (7.39), where
k is the number of data points used to determine the identified dynamic
model. The RCO controller order is nc = 9 with p = 1 and α = 10
(Example 7.6.1).
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Figure 7.17: Performance comparison for Example 7.6.1 using the nonparametric es-
timate of the nonlinearity. The top plot is the output of the Wiener
system y(k), and the output of the estimated system ŷ(k). The bottom
plot is the performance z(k).

2.495 2.496 2.497 2.498 2.499 2.5
x 10

4

−10

0

10

y,
yh

at

 

 

True Model
Identified Model

2.495 2.496 2.497 2.498 2.499 2.5
x 10

4

−10

0

10

y−
yh

at

Data Step (k)

Figure 7.18: Performance comparison for Example 7.6.1 using the parametric esti-
mate of the nonlinearity. The top plot is the output of the Wiener
system y(k), and the output of the estimated system ŷ(k). The bottom
plot is the performance z(k).
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Figure 7.19: This plot is the difference between the error in the semiparametric
Wiener model and the parametric Wiener model. Where the graph
is negative, the semiparametric model has superior performance, and
where the graph is positive the parametric model is superior.
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Figure 7.20: Identified nonlinearity versus true nonlinearity (7.40), where m = 150
and A0 = 5 (Example 7.6.2).

170



10
2

10
3−20

0

20

M
ag

ni
tu

de
 (

dB
)

10
2

10
3−1000

−500

0

P
ha

se
 (

de
g)

Frequency (rad/s)

 

 

True Model
Identified Model @ k = 5000
Identifed Model @ k = 50

Figure 7.21: Frequency response comparison of the true G and the identified LTI
system obtained using Ŵ as an estimate of (7.40), where k is the number
of data points used to determine the identified dynamic model. The RCO
controller order is nc = 9 with p = 1 and α = 1 (Example 7.6.2).
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Figure 7.22: Identified nonlinearity versus true nonlinearity (7.41), where m = 100
and A0 = 5 (Example 7.6.3).
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Figure 7.23: Frequency response comparison of the true G and the identified LTI
system obtained using Ŵ as an estimate of (7.41), where k is the number
of data points used to determine the identified dynamic model. The RCO
controller order is nc = 9 with p = 1 and α = 1 (Example 7.6.3).
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Figure 7.24: Identified nonlinearity versus true nonlinearity (7.42), where m = 75
and A0 = 5 (Example 7.6.4).
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Figure 7.25: Frequency response comparison of the true G and the identified LTI
system obtained using Ŵ as an estimate of (7.42), where k is the number
of data points used to determine the identified dynamic model. The RCO
controller order is nc = 9 with p = 1 and α = 1 (Example 7.6.4).
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Figure 7.26: Performance comparison for Example 7.6.4 of the output of the Wiener
system y(k), and the output of the estimated system ŷ(k). The bottom
plot is the performance z(k).
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Figure 7.27: RMSE Markov parameter error versus number of data points. For each
number of data points we perform a 100-run Monte Carlo simulation.
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Figure 7.28: RMSE Markov parameter error for an increasing number of points in
the nonparametric model. For each value of m, a 100-run Monte Carlo
simulation is performed.
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CHAPTER VIII

Adaptive State Estimation for Nonminimum-Phase

Systems with Uncertain Harmonic Inputs

8.1 Introduction

The classical Kalman filter is the optimal state estimator for linear systems under

white process and sensor noise with zero mean and finite second moments. Im-

plementation of the optimal estimator under these idealized conditions depends on

knowledge of the linear dynamics and noise covariances. When these assumptions are

not satisfied, the accuracy of the Kalman filter can be degraded [85, 12, 15].

If the transfer function from the process noise to the measurements is minimum

phase, the number of outputs equals the number of disturbances, and there is no

sensor noise, then the minimum achievable estimation error is zero [104]. On the other

hand, the presence of nonminimum-phase zeros increases the minimum achievable

estimation error and thus, for harmonic disturbances, the Kalman filter does not give

perfect state estimates [105, 106].

A more proactive approach is to implement an adaptive state estimator, where

the goal is to identify the dynamics and noise statistics during system operation and

use this information to tune the estimator on-line [14].

In addition to compensating for white process noise, the Kalman filter accommo-
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dates the presence of a known, deterministic input. By injecting this signal into the

estimator, the estimator experiences no loss of estimation accuracy relative to the case

in which no deterministic input is present. This feature is essential when the Kalman

filter is used in conjunction with the linear-quadratic regulator for constructing the

full-order dynamic LQG controller.

In practice, however, the deterministic input may not be known exactly, and this

error can viewed as a component of the process noise. However, this approach may

be conservative and can lead to bias when the unknown input has a nonzero “mean”

value. Consequently, a more direct approach is to extend the estimator to include an

estimate of the unknown input [107, 108, 109, 110, 111]. Yet another approach is to

constrain the gains of the estimator in order to guarantee that the state estimates are

unbiased [112, 113, 114, 115].

In this chapter we consider state estimation for minimum- or nonminimum-phase

systems in the presence of an unknown harmonic input. To address this problem we

consider the estimator structure shown in Figure 8.1 with an auxiliary input û, which

is the output of an adaptive feedback system that is updated on-line. The signal û

is estimated using a retrospective-cost-based input-reconstruction technique. In this

way, the adaptive feedback system uses knowledge of the estimator residual to im-

prove the accuracy of the state estimator by reconstructing the harmonic disturbance,

thereby achieving perfect estimates in the minimum and nonminimum-phase cases.

A related technique is used in [116].

The contents of this chapter are as follows. In Section 8.2 we describe the state

estimation problem and construct a state estimator that uses an auxiliary input from

an adaptive subsystem. In Section 8.3, we describe an input-reconstruction technique

that constructs the auxiliary input by minimizing the residual error, that is, the

difference between the measured output and the output of the estimator system.

Next, we numerically examine the adaptive state estimation error in comparison
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to the optimal state estimator. In Section 8.5 we demonstrate the adaptive state

estimator on linear numerical examples, and compare the results to the Kalman filter.

In Section 8.6 we extend the method to nonlinear state estimation, and in Section 8.7

we demonstrate the method on nonlinear examples with comparisons to the extended

and unscented Kalman filters.

8.2 Problem Formulation

Consider the linear-time-invariant system

x(k + 1) = Ax(k) +Bu(k) +Bw(k), (8.1)

y(k) = Cx(k), (8.2)

where x(k) ∈ Rn is the unknown state, u(k) ∈ Rm is an unknown input, w(k) ∈ Rm

is unknown zero-mean Guassian white noise, and y(k) ∈ R
p is the measured output,

which is assumed to be bounded. The matrices A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n

are known, and (A,C) is observable. Furthermore we assume that u(k) is the output

of a Lyapunov-stable, linear system.

In order to obtain an estimate x̂(k) ∈ Rn of the state x(k), we construct an

adaptive state estimator (ASE) of the form

x̂(k + 1) = Ax̂(k) +Bû(k), (8.3)

ŷ(k) = Cx̂(k), (8.4)

z(k) = y(k)− ŷ(k), (8.5)

where ŷ(k) ∈ Rp is the estimated output, û(k) ∈ Rm is the estimator input, and

z(k) ∈ Rp is the measured output error. Furthermore, û(k) is the output of the
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Figure 8.1: Adaptive State Estimator Architecture

strictly proper adaptive feedback system of order nc, with input z(k), given by

û(k) =

nc
∑

i=1

Mi(k)û(k − i) +

nc
∑

i=0

Ni(k)z(k − i), (8.6)

where Mi(k) ∈ Rm×m, i = 1, . . . , nc, and Ni(k) ∈ Rm×p, i = 0, . . . , nc. The goal is to

update Mi(k) and Ni(k) using the measured output error z(k). Figure 8.1 shows the

adaptive estimator structure.
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8.3 State Estimation Using a Retrospective Surrogate Cost

For i ≥ 1, define the Markov parameter Hi of (A,B,C) given by

Hi
△
= CAi−1B. (8.7)

For example, H1 = CB and H2 = CAB. Let r be a positive integer. Then, for all

k ≥ r,

x̂(k) = Arx̂(k − r) +
r
∑

i=1

Ai−1Bû(k − i), (8.8)

and thus

z(k) = CArx̂(k − r)− y(k) + H̄ ˆ̄U(k − 1), (8.9)

where

H̄
△
=

[

H1 · · · Hr

]

∈ R
p×rm

and

ˆ̄U(k − 1)
△
=













û(k − 1)

...

û(k − r)













.

Next, we rearrange the columns of H̄ and the components of ˆ̄U(k−1) and partition

the resulting matrix and vector so that

H̄ ˆ̄U(k − 1) = H′Û ′(k − 1) +HÛ(k − 1), (8.10)
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where H′ ∈ R
p×(rm−l

Û
), H ∈ R

p×l
Û , Û ′(k − 1) ∈ R

rm−l
Û , and Û(k − 1) ∈ R

l
Û . Then,

we can rewrite (8.9) as

z(k) = S(k) +HÛ(k − 1), (8.11)

where

S(k)
△
= CArx̂(k − r)− y(k) +H′Û ′(k − 1). (8.12)

For example, H̄ =

[

H1 H2 H3 H4 H5

]

,

H′ =

[

H1 H2 H4

]

, Û ′(k − 1) =













û(k − 1)

û(k − 2)

û(k − 4)













,

and

H =

[

H3 H5

]

, Û(k − 1) =







û(k − 3)

û(k − 5)






.

Note that the decomposition of H̄ ˆ̄U(k − 1) in (8.10) is not unique. Let s be a

positive integer. Then for i = 1, . . . , s, we replace H, Û(k − 1), H′, and Û ′(k − 1) in

(8.10) with Hj ∈ R
p×l

Ûj , Ûj(k−1) ∈ R
l
Ûj , H′

j ∈ R
p×(rm−l

Ûj
)
, and Û ′

j(k−1) ∈ R
rm−l

Ûj ,

respectively, such that (8.10) becomes

H̄ ˆ̄U(k − 1) = H′
jÛ

′
j(k − 1) +HjÛj(k − 1). (8.13)
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Therefore, for j = 1, . . . , s, we can rewrite (8.11) as

z(k) = Sj(k) +HjÛj(k − 1), (8.14)

where

Sj(k)
△
= CArx̂(k − r) + y(k) +H′

jÛ
′
j(k − 1). (8.15)

Next, let 0 ≤ k1 ≤ k2 ≤ · · · ≤ ks. Replacing k by k − kj in (8.14) yields

z(k − kj) = Sj(k − kj) +HjÛj(k − kj − 1). (8.16)

Now, by stacking z(k − k1), . . . , z(k − ks), we define the extended performance

Z(k)
△
=













z(k − k1)

...

z(k − ks)













∈ R
sp. (8.17)

Therefore,

Z(k)
△
= S̃(k) + H̃ ˆ̃U(k − 1), (8.18)

where

S̃(k)
△
=













S1(k − k1)

...

Ss(k − ks)













∈ R
sp (8.19)
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and ˆ̃U(k − 1) has the form

ˆ̃U(k − 1)
△
=













û(k − q1)

...

û(k − qg)













∈ R
gm, (8.20)

where k1 ≤ q1 < q2 < · · · < qg ≤ ks + r. The vector ˆ̃U(k − 1) is formed by stacking

Û1(k − k1 − 1), . . . , Ûs(k − ks − 1) and removing copies of repeated components, and

H̃ ∈ Rsp×gm is constructed according to the structure of ˆ̃U(k− 1). For example, with

s = 2, k1 = 0, and k2 = 2, stacking Û1(k−1) =







û(k − 1)

û(k − 2)






and Û2(k−3) = û(k−3)

results in

ˆ̃U(k − 1) =













û(k − 1)

û(k − 2)

û(k − 3)













, H̃ =













H1 H2 H3

0 H1 H2

0 0 H3













. (8.21)

Note that H̃ consists of the entries of H1, . . . ,Hs arranged according to the structure

of Ũ(k − 1).

Next, we define the retrospective performance

ẑ(k − kj)
△
= Sj(k − kj) +HjU

∗
j (k − kj − 1), (8.22)

where the past input estimates Ûj(k − kj − 1) in (8.16) are replaced by the retro-

spectively optimized input estimates U∗
j (k− kj − 1), which are determined below. In
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analogy with (8.17), the extended retrospective performance is defined as

Ẑ(k)
△
=













ẑ(k − k1)

...

ẑ(k − ks)













∈ R
sp (8.23)

and thus is given by

Ẑ(k) = S̃(k) + H̃Ũ∗(k − 1), (8.24)

where the components of Ũ∗(k − 1) ∈ R
l ˆ̃
U are the components of U∗

1 (k − k1 −

1), . . . , U∗
s (k − ks − 1) ordered in the same way as the components of ˆ̃U(k − 1).

Subtracting (8.18) from (8.24) yields

Ẑ(k) = Z(k)− H̃ ˆ̃U(k − 1) + H̃Ũ∗(k − 1). (8.25)

Finally, we define the retrospective cost function

J(Ũ∗(k − 1), k)
△
= ẐT(k)R1(k)Ẑ(k) + η(k)Ũ∗T(k − 1)R2(k)Ũ

∗(k − 1), (8.26)

where R1(k) ∈ Rps×ps is a positive-definite performance weighting, R2(k) ∈ Rgm×gm is

a positive-definite input estimate weighting, and η(k) ≥ 0 is a regularization weight-

ing. The goal is to determine retrospective input estimates Ũ∗(k−1) that would have

provided better performance than the estimated inputs Û(k − 1) that were applied

to the system. The retrospectively optimized estimated input values Ũ∗(k − 1) are

then used to update the controller. Substituting (8.25) into (8.26) yields

J(Ũ∗(k − 1), k) = Ũ∗T(k − 1)A(k)Ũ∗(k − 1) + Ũ∗T(k − 1)BT(k) + C(k), (8.27)
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where

A(k)
△
= H̃TR1(k)H̃ + η(k)R2(k), (8.28)

B(k)
△
= 2H̃TR1(k)[Z(k)− H̃ ˆ̃U(k − 1)], (8.29)

C(k)
△
= ZT(k)R1(k)Z(k)− 2ZT(k)R1(k)H̃

ˆ̃U(k − 1) + ˆ̃UT(k − 1)H̃TR1(k)H̃
ˆ̃U(k − 1).

(8.30)

If either H̃ has full column rank or η(k) > 0, then A(k) is positive definite. In this

case, J(Ũ∗(k − 1), k) has the unique global minimizer

Ũ∗(k − 1) = −
1

2
A−1(k)B(k), (8.31)

which is the retrospectively optimized estimated inputs.

The regularization weighting η(k) can be used to bound the retrospectively op-

timized estimated inputs Ũ∗(k − 1) and thus indirectly bound the estimated inputs

ˆ̃U(k). For example, η(k) may be performance based

η(k) = η0(k)||Z(k)||
2
2 (8.32)

or error based

η(k) = η0(k)||Ũ
∗(k − 2)− ˆ̃U(k − 2)||22, (8.33)

where η0(k) ≥ 0. Alternatively, the retrospectively optimized inputs can be bounded

directly by using a saturation function, where η(k) ≡ 0 in (8.28) and (8.31) is replaced

by

Ũ∗(k − 1)
△
= sat[a,b][−

1

2
A−1(k)B(k)], (8.34)
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where sat[a,b](ζ) is the component-wise saturation function defined for scalar argu-

ments by

sat[a,b](ζ)
△
=























b, if ζ ≥ b,

ζ, if a < ζ < b,

a if ζ ≤ a,

(8.35)

where a < b are the component-wise saturation levels.

8.4 Adaptive Feedback Update

The reconstructed input (8.6) can be expressed as

û(k) = θ(k)φ(k − 1), (8.36)

where

θ(k)
△
= [M1(k) · · · Mnc

(k) N1(k) · · · Nnc
(k)] ∈ R

m×nc(m+p) (8.37)

and

φ(k − 1)
△
=

































û(k − 1)

...

û(k − nc)

y(k − 1)

...

y(k − nc)

































∈ R
nc(m+p). (8.38)
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Next, we define the recursive least squares (RLS) cost function

JR(θ(k))
△
=

k
∑

i=qg+1

λk−i‖φT(i− qg − 1)θT(k)− u∗T(i− qg)‖
2

+ λk(θ(k)− θ(0))P−1(0)(θ(k)− θ(0))T, (8.39)

where ‖·‖ is the Euclidean norm and, for some ε ∈ (0, 1), λ(k) ∈ (ε, 1] is the forgetting

factor, and P (0) ∈ R
nc(m+p)×nc(m+p) is positive definite. Minimizing (8.39) yields

θT(k)
△
= θT(k − 1) + β(k)P (k − 1)φ(k − qg − 1)

· [φT(k − qg − 1)P (k − 1)φ(k − qg − 1) + λ(k)]−1

· [θ(k − 1)φ(k − qg − 1)− u∗(k − qg)]
T, (8.40)

where β(k) is either 0 or 1. When β(k) = 1, the controller is allowed to adapt,

whereas, when β(k) = 0, the adaptation is off. P (k) is updated by

P (k)
△
= (1− β(k))P (k − 1) + β(k)λ−1(k)P (k − 1)− β(k)λ−1(k)P (k − 1)φ(k − qg − 1)

· [φT(k − qg − 1)P (k − 1)φ(k − qg − 1) + λ(k)]−1φT(k − qg − 1)P (k − 1).

(8.41)

We initialize P (0) = γI, where γ > 0. Furthermore, the updates (8.40) and (8.41)

are based on the gth component of Ũ∗(k − 1). However any or all of the components

of Ũ∗(k − 1) may be used in the update of θ(k) and P (k).
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8.5 Linear Examples

In this section, we apply the adaptive state estimator to several linear examples

and compare its performance with the Kalman filter (KF). Define the error metric

εk =
1

ℓ

k+l−1
∑

i=k

||ei||, (8.42)

where ℓ is the window size. For all examples in this section, ℓ = 2000.

8.5.1 Example 1: Dual Spring-Mass-Damper System,

Minimum-Phase

Consider the dual spring-mass-damper system shown in Figure 8.2. For i = 1, 2,

let qi be the position of ith mass, let mi be the mass of the ith block, let ki be the

stiffness of the ith spring, and let ci be the damping coefficient of the ith damper.

Finally, let u be the force applied to the first block.

Figure 8.2: Dual spring-mass-damper system
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The equations of motion of this system are

ẋ = Acx+Bcu,

where

x =



















q1

q̇1

q2

q̇2



















, Ac =



















0 1 0 0

−k1+k2
m1

− c1+c2
m1

k2
m1

c2
m1

0 0 0 1

k2
m2

c2
m2

− k2
m2

− c2
m2



















, Bc =



















0

1
m1

0

0



















. (8.43)

We choose m1 = 5, m2 = 4, k1 = k2 = 0.01, c1 = 0.5, and c2 = 0.05. We discretize

the system using

A = eAcTs , B = A−1
c (A− I)Bc, (8.44)

where Ts = 1 is the sampling time. The output matrix is

C =

[

1 0 0 0

]

, (8.45)

which represents the position of the first mass. The zeros of the discretized system are

−0.9680 and 0.9852±0.0687. For the ASE, let η(k) = 0, nc = 3, P (0) = 1×1015I6×6,

and H̃ = CB. For the Kalman filter, the noise covariance matrix is Q = BBT, and

the initial error covariance is I4×4. Finally, u(k) = 20 sin(k). Figure 8.3 shows that

εk converges to zero for both the KF and ASE.
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8.5.2 Example 2: Dual Spring-Mass-Damper system,

Nonminimum-Phase

For this example, we consider the system defined by (8.44) with the output matrix

C =

[

−10 0 1 0

]

, (8.46)

which represents a difference in the positions of the two masses. The zeros of the dis-

cretized system are −0.9632, 1.1293, and 0.8767, and thus (A,B,C) is nonminimum

phase. For the ASE, let η(k) = 5 × 10−5, nc = 5, P (0) = 10I10×10, and H̃ = CAB.

For the Kalman filter, the noise covariance matrix is Q = BBT, and the initial error

covariance is I4×4. Finally, u(k) = 20 sin(k). Figure 8.4 shows the performance εk of

the ASE and KF.

8.5.3 Example 3: Nonminimum-Phase Linearized Planar Linkage

We consider the planar linkage system shown in Figure 8.5. Let p1 be the point

where the first link is attached to the horizontal plane, and let p2 be the point where

the two links are connected. Furthermore, for i = 1, 2, let qi be the center of mass of

the ith link, let mi be the mass of the ith link, let ci be the damping at the joint pi,

and let ki be the stiffness of the joint pi.

Next, let FA be an inertial frame with the orthogonal unit vectors (̂ıA, ̂A, k̂A),

where ı̂A and ̂A lie in the plane of motion of the planar linkage system. For simplicity,

we assume that the origin of FA is located at p1. In addition, for i = 1, 2, let FBi
be a

body-fixed frame attached to the ith link. More specifically, FBi
is a body-fixed frame

that rotates as the ith link rotates. For i = 1, 2, let FBi
have orthogonal unit vectors

(̂ıBi
, ̂Bi

, k̂Bi
), where ı̂Bi

is in the direction from pi to qi, and ̂Bi
is orthogonal to ı̂Bi

in the plane of motion. Furthermore, u1 is an external torque applied at p1. Finally,

for i = 1, 2, let θi be the angle from ı̂A to ı̂Bi
. All frames are right handed.
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The equations of motion of the planar linkage system [117] are given by

u1 = (
1

3
m1l

2
1 +m2l

2
1)θ̈1 +

1

2
m2l1l2 sin(θ1 − θ2)θ̇

2
2 +

1

2
m2l1l2 cos(θ1 − θ2)θ̈2

+ (k1 + k2)θ1 − k2θ2 + (c1 + c2)θ̇1 − c2θ̇2,

0 = (
1

3
m2l

2
2)θ̈2 −

1

2
m2l1l2 sin(θ1 − θ2)θ̇

2
1 +

1

2
m2l1l2 cos(θ1 − θ2)θ̈1

− k2θ1 + k2θ2 − c2θ̇1 + c2θ̇2, (8.47)

where m1 = 2, m2 = 1, l1 = 3, l2 = 2, k1 = 7, k2 = 5, c1 = 10, and c2 = 1. The

output of the system

y = θ2, (8.48)

is the angle θ2, which represents the angle from ı̂A to ı̂B2
. Linearizing and discretizing

(8.47) with sampling time Ts = 1 yields

x(k + 1) = Ax(k) +Bu(k),

where

x(k) =



















θ1(k)

θ2(k)

θ̇1(k)

θ̇2(k)



















, A =



















0.661 0.174 0.5517 0.1408

1.0993 −0.0223 0.928 0.26

−0.134 −0.065 0.39 0.161

0.009 −0.3 0.744 −0.083



















, B =



















0.024

−0.011

0.028

0.042



















T

.

(8.49)

The zeros of the discretized system are 6.6598, 0.3219, and −0.2619, and thus

(A,B,C) is nonminimum phase. For the ASE, let η(k) = 5 × 10−4, nc = 10,

P (0) = 1 × 106I20×20, and H̃ = CB. For the Kalman filter, the noise covariance

matrix is chosen to be Q = BBT, and the initial error covariance is I4×4. Finally,
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u(k) = 20 sin(k). Figure 8.6 shows the performance εk of the ASE and KF.

Next, consider the linearized planar linkage system in Example 3 with the input

u(k) = 20 sin(k) + 5 sin(0.3k) + 80 sin(0.01k). For the ASE, η(k) = 1× 10−5, nc = 7,

P (0) = 1 × 104I14×14, and H̃ = CAB. For the Kalman filter, the noise covariance

matrix is chosen to be Q = BBT, and the initial error covariance is I4×4. For this

example, Figure 8.7 shows the performance εk of the ASE and KF.

Next, consider the linearized planar linkage system in Example 3 with the input

u(k) = 10. For the ASE, η(k) = 2×10−3, nc = 1, P (0) = 1×103I1×1, and H̃ = CAB.

For the Kalman filter, the noise covariance matrix is chosen to be Q = BBT, and the

initial error covariance is I4×4. For this example, Figure 8.8 shows the performance

εk of the ASE and KF.

8.5.4 Example 5: Linearized Planar Linkage with Process Noise

Consider the system

x(k + 1) = Ax(k) +Bu(k) + αBw(k),

where x(k), A, and B are given by (8.49). The output of this system is given by

(8.48). We test the ASE and KF for α = 0, α = 10−6, α = 10−4, and α = 10−2.

For the ASE, η(k) = 1 × 10−5, nc = 5, P (0) = 1 × 103I10×10, and H̃ = CA2B. For

the KF, the noise covariance matrix is Q = αBBT, and the initial error covariance is

I4×4. Finally, u(k) = 20 sin(k). Figure 8.9 shows the performance εk of the ASE and

KF. For the KF, the effect of α is negligible and thus we show εk of the KF for only

α = 0.
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8.6 Nonlinear State Estimation

Consider the MIMO nonlinear time-invariant system,

x(k + 1) = f(x(k)) + g(u(k), w(k)), (8.50)

y(k) = h(x(k)), (8.51)

where x(k) ∈ Rn is the state, u(k) ∈ Rp is an unknown input, w(k) ∈ Rm is unknown

zero-mean Gaussian white noise, y(k) ∈ Rp is the measured output, which is assumed

to be bounded, f : Rn → Rn, g : Rm → Rn, and h : Rn → Rp are known functions.

Furthermore, we assume that u(k) is the output of a Lyapunov-stable linear system.

In order to obtain estimates x̂(k) ∈ Rn of the state x(k), we construct a state

estimator of the form

x̂(k + 1) = f(x̂(k)) + g(û(k)), (8.52)

ŷ(k) = h(x̂(k)), (8.53)

where the estimated output is ŷ(k) ∈ Rp, and û(k) ∈ Rm is the estimator input given

by (8.6). Mk and Nk are updated as in the linear case, where Hi is redefined as

Hi
△
= HF i−1G, (8.54)

where xeq is an equilibrium point and

F
△
=
∂f

∂x̂

∣

∣

∣

∣

xeq

, H
△
=
∂h

∂x̂

∣

∣

∣

∣

xeq

, G
△
=
∂g

∂x̂

∣

∣

∣

∣

xeq

. (8.55)

Unlike the extended Kalman filter, the adaptive state estimator does not require

a linearization of f, g, h, at each step k, which is used by the extended Kalman filter

to propagate the error covariance.
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8.7 Nonlinear Examples

In this section, we compare the adaptive state estimator (ASE) with the extended

Kalman filter (EKF) and the unscented Kalman filter (UKF). We consider the non-

linear planar linkage system and the Van der Pol oscillator. For all examples, the

error metric is given by (8.42) with ℓ = 2000.

8.7.1 Example 5: Nonlinear Planar Linkage

In this example, we consider the nonlinear planar linkage given by discretizing

(8.47) with Ts = 1, and with the output matrix (8.48). For the ASE, let η(k) =

5 × 10−4, nc = 10, P (0) = 10I20×20, and H̃ = HG, where H and G are obtained by

linearizing and discretizing the system about the origin. For the EKF and UKF, we set

Q = 100BkB
T
k , where Bk is the input vector obtained by linearizing and discretizing

the system about the current state estimate x̂(k). The initial error covariance matrix

for the EKF and UKF is I4×4. Furthermore, for the UKF, we use nine sigma points,

and we set κ = 0, β = 2, and α = 0.1. Finally, u(k) = 20 sin(k). Figure 8.10 shows

the state estimates of the ASE and UKF for the last fifty steps. Figure 8.11 shows

the performance εk of the ASE, UKF, and EKF.

8.7.2 Example 6: Van der Pol Oscillator

We consider the Van der Pol oscillator

q̈ − µ(1− q2)q̇ + q = u,
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where µ = 1. The output of this system is y = q. We discretize this system with

Ts = 0.1 to obtain

x1(k + 1) = Tsx2(k) + x1(k),

x2(k + 1) = Tsµ(1− x1(k)
2)x2(k)− Tsx1(k) + Tsu(k) + x2(k),

where x1 = q and x2 = q̇. For the ASE, let η(k) = 5× 10−4, nc = 2, P (0) = 100I4×4,

and H̃ = HG, whereH andG are obtained by linearizing the discretized system about

the origin. For the EKF and UKF, the noise covariance matrix is Q = [0 10]T[0 10],

and the initial error covariance matrix is I2×2. Furthermore, for the UKF, we use

five sigma points and we set κ = 0, α = 0.01, and β = 1. Finally, u(k) = 10 sin(k).

Figure 8.12 shows the phase portrait for this example. Figure 8.13 shows the state

estimates for the ASE and UKF. Figure 8.14 shows the performance εk of the ASE,

EKF, and UKF.

Next, consider the Van der Pol oscillator in Example 6 with the alternative output

y = q̇. (8.56)

For the ASE, let η(k) = 1 × 10−4, nc = 3, P (0) = 100I6×6, and H̃ = HFG, where

H , F and G are obtained by linearizing the discretized system about the origin. For

the EKF and UKF, the noise covariance matrix is Q = [0 10]T[0 10], and the initial

error covariance matrix is I2×2. Furthermore, for the UKF, we use five sigma points

and we set κ = 0, α = 0.01, and β = 1. Finally, u(k) = 10 sin(k). Figure 8.15 shows

the state estimates for the ASE and UKF. Figure 8.14 shows the performance εk of

the ASE, EKF, and UKF.
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8.7.3 Example 7: Van der Pol Oscillator with Process Noise

Consider the discretized nonlinear Van der Pol oscillator

x1(k + 1) = Tsx2(k) + x1(k),

x2(k + 1) = Tsµ(1− x1(k)
2)x2(k)− Tsx1(k) + x2(k) + Tsu(k) + γTsw(k),

where µ = 1 and Ts = 0.1. The output of this system is y = x1. Furthermore,

u(k) = 20 sin(k) and w(k) is the realization of a zero mean Gaussian white noise

process with unit variance. We test the ASE for γ = 0, γ = 10−2, and γ = 1. We

let η(k) = 5× 10−4, nc = 2, P (0) = 100I4×4, H̃ = HG, where H and G are obtained

by linearizing the discretized system about the origin. For the UKF, we choose the

same parameters as in Example 6. Figure 8.17 shows the performance εk of the ASE

for several values of γ. For the UKF, the effect of γ is negligible and thus we show

εk of the KF only for γ = 0.

8.8 Conclusions

In this chapter we demonstrated a method for obtaining state estimates for minimum-

and nonminimum-phase systems in the presence of harmonic process noise. First we

constructed an estimator based on the known system model. At each step k we recon-

struct the signal u(k), called û∗(k), which minimizes the residual error y(k) − ŷ(k).

We then estimate a feedback system with input z(k) and output û(k). Using the

signal û(k) as the input to the estimator, we obtain estimates x̂ of the system state

x(k).

We demonstrated the method on several linear examples including minimum and

nonminimum-phase systems. In the minimum-phase case, the adaptive input recon-

struction filter and the Kalman filter asymptotically reach zero state-estimation-error.

In the nonminimum-phase case, the Kalman filter reaches a finite lower bound, on
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the state-estimation-error. The adaptive input reconstruction filter outperforms the

Kalman filter in this case.

Finally, we extended the method to nonlinear state estimation. We compare the

adaptive input reconstruction filter to the extended Kalman filter and the unscented

Kalman filter. We note that the adaptive input reconstruction filter does not require

knowledge of the process noise covariance or linearizations of the model about each

state estimate.
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Figure 8.3: Comparison of the performance εk of the ASE and KF for the minimum-
phase spring-mass-damper system.
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Figure 8.4: Comparison of the performance εk of the ASE and KF for the
nonminimum-phase spring-mass-damper system.
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Figure 8.5: Planar linkage system. All motion is in the horizontal plane.
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Figure 8.6: Comparison of the performance εk of the ASE and KF for the
nonminimum-phase linearized planar linkage.
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Figure 8.7: Comparison of the performance εk of the ASE and KF for the
nonminimum-phase linearized planar linkage with a multi-harmonic in-
put.
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Figure 8.8: Comparison of the performance εk of the ASE and KF for the
nonminimum-phase linearized planar linkage with a constant input.
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Figure 8.9: Comparison of the performance εk of the ASE and KF for the
nonminimum-phase linearized planar linkage with process noise.
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Figure 8.10: State estimates for the nonlinear planar linkage.
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Figure 8.11: Comparison of the performance εk of the ASE, EKF, and UKF for the
nonlinear planar linkage.
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Figure 8.12: Phase portrait of the Van der Pol oscillator.
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Figure 8.13: State estimates for the ASE and UKF.
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Figure 8.14: Comparison of the performance εk of the ASE, EKF, and UKF for the
Van der Pol oscillator.
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Figure 8.15: State estimates for the ASE and UKF.
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Figure 8.16: Comparison of the performance εk of the ASE, EKF, and UKF for the
Van der Pol oscillator.
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CHAPTER IX

Adaptive Control

9.1 Introduction

One of the ironies of feedback control is that the underlying motivation for feed-

back is uncertainty, yet uncertain dynamics can degrade performance and render the

closed-loop system unstable. Although robust control can mitigate this difficulty by

trading performance for stability, unpredictable changes that occur during operation

may render prior uncertainty bounds unreliable.

Unlike robust control, an adaptive controller is self-tuned during operation. This

tuning accounts for the actual—and possibly changing—dynamics of the system as

well as the nature of the external signals, such as commands and disturbances. Adap-

tive control may also be required for systems that are difficult to model due to ei-

ther unknown physics or the inability to perform sufficiently accurate identification.

Adaptive control may depend on prior modeling information, such as bounds on the

model order and parameters, or it may entail explicit on-line identification. These

approaches are known, respectively, as direct and indirect adaptive control.

Whether the adaptive controller is direct or indirect, it is desirable to develop al-

gorithms that require the least amount of modeling information. In the most extreme

case, LQG control, which is nonadaptive, requires a complete and exact model of the

plant dynamics as well as a complete and exact model of the disturbance and sensor-
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noise statistics and spectrum. Although robust control techniques increase tolerance

to modeling errors, these methods require a nominal model as well as bounds on all

uncertain parameters. These bounds can be determined by prior analysis or iden-

tification, but may become invalid during operation if changes occur, and, as noted

above, they necessitate tradeoffs between stability and performance.

In adaptive control, the controller is tuned to the actual plant during operation.

However, this ability comes at a cost. Adaptive control algorithms may require re-

strictive assumptions, such as full-state feedback, positive realness, minimum-phase

zeros, matched uncertainty, and matched disturbances, as well as information on the

sign of the high-frequency gain, relative degree, and zero locations [118, 119, 120, 121].

In particular, the starting point for this chapter is retrospective cost adaptive con-

trol (RCAC) [48, 50, 49, 58]. This direct adaptive control approach is applicable to

MIMO (output feedback) plants that are possibly unstable and nonminimum phase

(NMP) with uncertain command and disturbance spectra. The modeling informa-

tion required by RCAC in [48, 50, 49, 58] is the first nonzero Markov parameter and

locations of the NMP zeros, if any. Alternatively, a collection of Markov parameters

can be used as long as a sufficient number is available to capture the locations of the

NMP zeros.

This chapter extends prior RCAC results by developing a modification of RCAC

that does not require knowledge of the locations of the NMP zeros if the system

is either asymptotically stable or minimum phase. Instead, this extension requires

knowledge of a limited number of Markov parameters; typically only one Markov

parameter is sufficient. We analyze the algorithm by viewing it as a virtual input

reconstruction technique [122], where the past control inputs for an idealized system

are retrospectively optimized and subsequently used to update the controller param-

eters of the real system. The error dynamics of the reconstruction process may be

unstable if the open-loop system has NMP zeros; however, if the open-loop system
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is also asymptotically stable, then, by weighting the reconstructed controls, the error

dynamics can be stabilized.

The algorithm developed in this chapter is demonstrated on both SISO and MIMO

examples. In all cases, the number of Markov parameters that are used is not sufficient

to determine the NMP zeros of the system. Consequently, these examples demonstrate

the ability to control open-loop asymptotically stable NMP systems with unknown

NMP zeros.

9.2 Problem Formulation

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (9.1)

y(k) = Cx(k) +D2w(k), (9.2)

z(k) = E1x(k) + E0w(k), (9.3)

where x(k) ∈ Rn, y(k) ∈ Rly , z(k) ∈ Rlz , u(k) ∈ Rlu , w(k) ∈ Rlw , k ≥ 0, (A,B)

is controllable, and (A,C) and (A,E) are observable. Although the state x(k) is

used for analysis, the algorithm described in this chapter does not rely on a state

space representation. The goal is to develop an adaptive output feedback controller

that minimizes the performance variable z in the presence of the exogenous signal w

with minimal modeling information about the dynamics and w. A block diagram for

(9.1)-(9.3) is shown in Figure 9.1, where

G(q) = [Gzw(q) Gzu(q)], (9.4)

Gzw(q)
△
= E1(qI − A)−1D1 + E0, (9.5)

Gzu(q)
△
= E1(qI − A)−1B, (9.6)
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and

z(k) = Gzw(q)w(k) +Gzu(q)u(k), (9.7)

where q is the forward-shift operator. The system (9.1)–(9.3) can represent a sampled-

data application arising from a continuous-time system.

Figure 9.1: Disturbance-rejection and command-following architecture.

Note that w can represent either a command signal to be followed, an external

disturbance to be rejected, or both. In particular, if D1 = 0 and E0 6= 0, then the

objective is to have the output E1x follow the command signal −E0w. On the other

hand, if D1 6= 0 and E0 = 0, then the objective is to reject the disturbance w from

the performance measurement E1x. Furthermore, if D1 = [D̂1 0], E0 = [0 Ê0], and

w(k) = [w1(k)
T w2(k)

T]T, then the objective is to have E1x follow the command

−Ê0w2 while rejecting the disturbance w1. Finally, if D1 and E0 are empty matrices,

then the objective is output stabilization, that is, convergence of z to zero.
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9.3 Retrospective Cost

For i ≥ 1, define the Markov parameter of Gzu given by

Hi
△
= E1A

i−1B. (9.8)

For example, H1 = E1B and H2 = E1AB. Let r be a positive integer. Then, for all

k ≥ r,

x(k) = Arx(k − r) +
r
∑

i=1

Ai−1Bu(k − i) +
r
∑

i=1

Ai−1D1w(k − i), (9.9)

and thus

z(k) = E1A
rx(k − r) +

r
∑

i=1

E1A
i−1D1w(k − i) + E0w(k) + H̄Ū(k − 1), (9.10)

where

H̄
△
=

[

H1 · · · Hr

]

∈ R
lz×rlu

and

Ū(k − 1)
△
=













u(k − 1)

...

u(k − r)













.

Next, we partition the columns of H̄ and the components of Ū(k − 1) such that

H̄Ū(k − 1) = H′U ′(k − 1) +HU(k − 1), (9.11)

where H′ ∈ Rlz×(rlu−lU ), H ∈ Rlz×lU , U ′(k − 1) ∈ Rrlu−lU , and U(k − 1) ∈ RlU . As
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shown below, only the Markov parameters in H are needed for the update law.

Then, we can rewrite (9.10) as

z(k) = S(k) +HU(k − 1), (9.12)

where

S(k)
△
= E1A

rx(k − r) +
r
∑

i=1

E1A
i−1D1w(k − i) + E0w(k) +H′U ′(k − 1). (9.13)

For example, H̄ =

[

H1 H2 H3 H4 H5

]

,

H′ =

[

H1 H2 H4

]

, U ′(k − 1) =













u(k − 1)

u(k − 2)

u(k − 4)













,

and

H =

[

H3 H5

]

, U(k − 1) =







u(k − 3)

u(k − 5)






.

Note that the decomposition of H̄Ū(k − 1) in (9.11) is not unique. Let s be a

positive integer. Then, for j = 1, . . . , s, we replace H, U(k − 1), H′, and U ′(k− 1) in

(9.11) withHj ∈ R
lz×lUj , Uj(k−1) ∈ R

lUj , H′
j ∈ R

lz×(rlu−lUj
), and U ′

j(k−1) ∈ R
rlu−lUj ,

respectively, such that (9.11) becomes

H̄Ū(k − 1) = H′
jU

′
j(k − 1) +HjUj(k − 1). (9.14)
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Therefore, for j = 1, . . . , s, we can rewrite (9.12) as

z(k) = Sj(k) +HjUj(k − 1), (9.15)

where

Sj(k)
△
= E1A

rx(k − r) +

r
∑

i=1

E1A
i−1D1w(k − i) + E0w(k) +H′

jU
′
j(k − 1). (9.16)

Next, let 0 ≤ k1 ≤ k2 ≤ · · · ≤ ks. Replacing k by k − kj in (9.15) yields

z(k − kj) = Sj(k − kj) +HjUj(k − kj − 1). (9.17)

Now, by stacking z(k − k1), . . . , z(k − ks), we define the extended performance

Z(k)
△
=













z(k − k1)

...

z(k − ks)













∈ R
slz . (9.18)

Therefore,

Z(k)
△
= S̃(k) + H̃Ũ(k − 1), (9.19)

where

S̃(k)
△
=













S1(k − k1)

...

Ss(k − ks)













∈ R
slz (9.20)
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and Ũ(k − 1) has the form

Ũ(k − 1)
△
=













u(k − q1)

...

u(k − qg)













∈ R
glu , (9.21)

where k1 ≤ q1 < q2 < · · · < qg ≤ ks + r. The vector Ũ(k − 1) is formed by stacking

U1(k − k1 − 1), . . . , Us(k − ks − 1) and removing copies of repeated components, and

H̃ ∈ Rslz×glu is constructed according to the structure of Ũ(k − 1).

For example, with s = 2, k1 = 0, and k2 = 2, stacking U1(k − 1) =







u(k − 1)

u(k − 2)







and U2(k − 3) = u(k − 3) results in

Ũ(k − 1) =













u(k − 1)

u(k − 2)

u(k − 3)













, H̃ =













H1 H2 H3

0 H1 H2

0 0 H3













. (9.22)

Note that H̃ consists of the entries of H1, . . . ,Hs arranged according to the structure

of Ũ(k − 1).

Next, we define the retrospective performance

ẑ(k − kj)
△
= Sj(k − kj) +HjÛj(k − kj − 1), (9.23)

where the past controls Uj(k − kj − 1) in (9.17) are replaced by the retrospective

controls Ûj(k − kj − 1), which are determined below. In analogy with (9.18), the
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extended retrospective performance is defined as

Ẑ(k)
△
=













ẑ(k − k1)

...

ẑ(k − ks)













∈ R
slz (9.24)

and thus is given by

Ẑ(k) = S̃(k) + H̃ ˆ̃U(k − 1), (9.25)

where the components of ˆ̃U(k−1) ∈ R
l
Ũ are the components of Û1(k−k1−1), . . . , Ûs(k−

ks−1) ordered in the same way as the components of Ũ(k−1) in (9.19). Subtracting

(9.19) from (9.25) yields

Ẑ(k) = Z(k)− H̃Ũ(k − 1) + H̃ ˆ̃U(k − 1). (9.26)

Finally, we define the retrospective cost function

J( ˆ̃U(k − 1), k)
△
= ẐT(k)R1(k)Ẑ(k) +

ˆ̃UT(k − 1)R2(k)
ˆ̃U(k − 1), (9.27)

where R1(k) ∈ Rlzs×lzs is the positive-definite performance weighting and R2(k) ∈

Rglu×glu is the positive-semidefinite control weighting. The goal is to determine ret-

rospective controls ˆ̃U(k − 1) that would have provided better performance than the

controls U(k) that were applied to the system. The retrospectively optimized controls

ˆ̃U(k−1) are then used to update the controller. Substituting (9.26) into (9.27) yields

J( ˆ̃U(k − 1), k) = ˆ̃U(k − 1)TA(k) ˆ̃U(k − 1) + ˆ̃UT(k − 1)BT(k) + C(k), (9.28)
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where

A(k)
△
= H̃TR1(k)H̃ +R2(k), (9.29)

B(k)
△
= 2H̃TR1(k)[Z(k)− H̃Ũ(k − 1)], (9.30)

C(k)
△
= ZT(k)R1(k)Z(k)− 2ZT(k)R1(k)H̃Ũ(k − 1) + ŨT(k − 1)H̃TR1(k)H̃Ũ(k − 1).

(9.31)

If either H̃ has full column rank or R2(k) is positive definite, then A(k) is positive

definite. In this case, J( ˆ̃U(k − 1), k) has the unique global minimizer

ˆ̃U(k − 1) = −
1

2
A−1(k)B(k), (9.32)

which are the retrospectively optimized controls. In Section 9.5 we show that (9.32)

is the solution to a virtual input reconstruction problem.

For convenience we write R2(k) = η(k)R20, where R20 is positive definite and

η(k) ≥ 0. The scaling η(k) can be used to bound the retrospectively optimized

controls ˆ̃U(k − 1) and thus indirectly bound the magnitude of the next control u(k).

We choose η(k) to have the property that η(k) → 0 as k → ∞. For example, η(k)

may depend on k such as

η(k) =
η0
ka
, (9.33)

where η0 ≥ 0, and a ≥ 1 is an integer. Furthermore, η(k) may be performance based

[122, 38]

η(k) = η0(k)||Z(k)||
2
2 (9.34)
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or control-error based

η(k) = η0(k)||
ˆ̃U(k − 2)− Ũ(k − 2)||22. (9.35)

Alternatively, ˆ̃U(k − 1) can be bounded directly by setting R2(k) = 0 in (9.29) and

replacing (9.32) by

ˆ̃U(k − 1)
△
= sat[a,b][−

1

2
A−1(k)B(k)], (9.36)

where sat[a,b](ζ) is the component-wise saturation function defined for scalar argu-

ments by

sat[a,b](ζ)
△
=























b, if ζ ≥ b,

ζ, if a < ζ < b,

a if ζ ≤ a,

(9.37)

where a < b are the component-wise saturation levels.

9.4 Controller Construction

The control u(k) is given by the strictly proper time-series controller of order nc

given by

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=1

Ni(k)y(k − i), (9.38)

where, for all i = 1, . . . , nc, Mi(k) ∈ Rlu×lu and Ni(k) ∈ Rlu×ly . The control (9.38)

can be expressed as

u(k) = θ(k)φ(k − 1), (9.39)
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where

θ(k)
△
= [M1(k) · · · Mnc

(k) N1(k) · · · Nnc
(k)] ∈ R

lu×nc(lu+ly) (9.40)

and

φ(k − 1)
△
=

































u(k − 1)

...

u(k − nc)

y(k − 1)

...

y(k − nc)

































∈ R
nc(lu+ly). (9.41)

9.4.1 Batch Least Squares Update of θ(k)

Define the regressor matrix

Φp(k − qg − 1)
△
=

[

Lu,p(k − qg − 1) Ly,p(k − qg − 1)

]

∈ R
p×nc(lu+ly), (9.42)

where p ≥ 1 is the data window size,

Ly,p(k − qg − 1)
△
=













y(k − qg − 1) · · · y(k − nc − qg)

...
. . .

...

y(k − qg − p− 1) · · · y(k − nc − qg − p)













(9.43)

and

Lu,p(k − qg − 1)
△
=













u(k − qg − 1) · · · u(k − nc − qg)

...
. . .

...

u(k − qg − p− 1) · · · u(k − nc − qg − p)













. (9.44)
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Next, consider the quadratic cost

JB(θ(k))
△
= ‖Φp(k−qg − 1)θT(k)−Ψp(k − qg)‖

2 + α(k)tr[θ(k)θT(k)], (9.45)

where α(k) > 0, and

Ψp(k − qg)
△
=













ûT(k − qg)

...

ûT(k − qg + 1− p)













∈ R
p×lu. (9.46)

Minimizing (9.45) yields the controller update

θT(k) =[ΦT
p (k − qg − 1)Φp(k − qg − 1) + α(k)I]−1ΦT

p (k − qg − 1)Ψp(k − qg). (9.47)

Note that, since Ψp(k − qg) contains û(k − qg), the update (9.47) is based on the gth

component of ˆ̃U(k − 1). However any or all of the components of ˆ̃U(k − 1) can be

used to update θ(k).

9.4.2 Recursive Least Squares Update of θ(k)

Using Ψ1(k − d) = ûT(k − qg), we define the cumulative cost function

JR(θ(k))
△
=

k
∑

i=qg+1

λk−i‖φT(i− qg − 1)θT(k)− ûT(i− qg)‖
2

+ λk(θ(k)− θ(0))P−1(0)(θ(k)− θ(0))T, (9.48)
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where ‖ · ‖ is the Euclidean norm, for some ε ∈ (0, 1), λ(k) ∈ (ε, 1] is the forgetting

factor, and P (0) ∈ Rnc(lu+ly)×nc(lu+ly) is positive definite. Minimizing (9.48) yields

θT(k)
△
= θT(k − 1) + β(k)P (k − 1)φ(k − qg − 1)

· [φT(k − qg − 1)P (k − 1)φ(k − qg − 1) + λ(k)]−1

· [θ(k − 1)φ(k − qg − 1)− û(k − qg)]
T, (9.49)

where β(k) is either 0 or 1. When β(k) = 1, the controller is allowed to adapt,

whereas, when β(k) = 0, the adaptation is off. P (k) is updated by

P (k)
△
= (1− β(k))P (k − 1) + β(k)λ−1(k)P (k − 1)− β(k)λ−1(k)P (k − 1)

· φ(k − qg − 1)[φT(k − qg − 1)P (k − 1)φ(k − qg − 1) + λ(k)]−1

· φT(k − qg − 1)P (k − 1). (9.50)

We initialize P (0) = γI, where γ > 0.

9.5 Convergence Analysis

In this section we consider three systems, namely, the real system, with perfor-

mance z(k) and state x(k); the retrospective system, with performance ẑ(k) and state

x̂(k); and, finally, the ideal system, with performance z∗(k) and state x∗(k). The goal

is to determine conditions under which the state of the real system tends to the state

of the retrospective system. We also provide conditions under which the state of the

retrospective system tends to the state of the ideal system. Under these conditions,

the performance z(k) tends to zero and the state x(k) of the real system is bounded.

218



9.5.1 Sufficient Conditions for z(k)− ẑ(k) → 0 as k → ∞

Consider the retrospective system

x̂(k) = Arx(k − r) +
r
∑

i=1

Ai−1D1w(k − i) +K′U ′(k − 1) +KÛ(k − 1), (9.51)

ẑ(k) = E1x̂(k) + E0w(k),

= E1A
rx(k − r) +

r
∑

i=1

E1A
i−1D1w(k − i) + E0w(k)

+H′U ′(k − 1) +HÛ(k − 1), (9.52)

where

U ′(k − 1)
△
=













u(k − σ′
1)

...

u(k − σ′
rlu−lU

)













, Û(k − 1)
△
=













û(k − σ1)

...

û(k − σlU )













,

where the sets {σ′
1, . . . , σ

′
rlu−lU

} and {σ1, . . . , σlU} are a partition of {1, . . . , r}, and

K ∈ Rn×lU and K′ ∈ Rn×(rlu−lU ) satisfy H = E1K and H′ = E1K′, respectively.

Next, consider the extended retrospective system

X̂(k + 1) = ÃX(k) + B̃ ˆ̃U(k) + B̃′Ũ ′(k) + D̃1W (k), (9.53)

Ẑ(k) = Ẽ1X̂(k) + Ẽ0W (k), (9.54)
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where the state X(k) is an input to the extended retrospective system,

X̂(k)
△
=













x̂(k)

...

x̂(k − ks − r + 1)













∈ R
n(ks+r), X(k)

△
=













x(k)

...

x(k − ks − r + 1)













∈ R
n(ks+r),

W (k)
△
=













w(k)

...

w(k − ks − r + 1)













∈ R
lw(ks+r), Ũ ′(k)

△
=













u(k − q′1 + 1)

...

u(k − q′ks+r−g + 1)













∈ R
lu(ks+r−g),

(9.55)

Ã
△
= I(ks+r)⊗A ∈ Rn(ks+r)×n(ks+r), D̃1

△
= I(ks+r)⊗D1 ∈ Rn(ks+r)×lw(ks+r), and ⊗ is the

Kronecker product. Ẽ0 ∈ Rslz×lw(ks+r) is the matrix with block entries E0 and 0lz×lw

that satisfies













w(k − k1)

...

w(k − ks)













= Ẽ0













w(k)

...

w(k − ks − r + 1)













. (9.56)

Ẽ1 ∈ Rslz×n(ks+r) is the matrix with block entries E1 and 0lz×n that satisfies













x(k − k1)

...

x(k − ks)













= Ẽ1













x(k)

...

x(k − ks − r + 1)













. (9.57)

B̃ ∈ Rn(ks+r)×glu and B̃′ ∈ Rn(ks+r)×(ks+r−g)lu are the matrices with block entries B

and 0n×lu that satisfy

B̃Ũ(k − 1) + B̃′Ũ ′(k − 1) =













Bu(k − 1)

...

Bu(k − ks − r)













∈ R
n(ks+r). (9.58)
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Note that the sets {q1, . . . , qg} and {q′1, . . . , q
′
ks+r−g} are a partition of {1, . . . , ks+r}.

Assumption 9.5.1. Assume that θ(k−1)φ(k−qg−1)− û(k−qg) → 0 as k → ∞.

Assumption 9.5.1 allows us to assume that the fit between u(k) and û(k) is successful,

and allows to focus on the subsequent behavior of the retrospective system.

The next result provides a sufficient condition under which x(k) − x̂(k) → 0 as

k → ∞.

Fact 9.5.1. Let ˆ̃U(k − 1) be given by (9.32) and let x̂(k) be given by (9.51),

and let θ(k) be updated by (9.49) and (9.50). If Assumption 9.5.1 is satisfied, then

x(k)− x̂(k) → 0 as k → ∞, and thus z(k)− ẑ(k) → 0 as k → ∞.

Proof. First, we write (9.9) as

x(k) = Arx(k − r) +

r
∑

i=1

Ai−1D1w(k − i) +K′U ′(k − 1) +KU(k − 1). (9.59)

Subtracting (9.51) from (9.59) yields

x(k)−x̂(k) = K[U(k − 1)− Û(k − 1)]. (9.60)

Furthermore, using (9.39) we rewrite the components of U(k − 1) as

U(k − 1) =













θ(k − σ1)φ(k − σ1 − 1)

...

θ(k − σlU )φ(k − σlU − 1)













. (9.61)

Therefore, (9.60) becomes

x(k)− x̂(k) = K













θ(k − σ1 − 1)φ(k − σ1 − 1)− û(k − σ1)

...

θ(k − σlU − 1)φ(k − σlU − 1)− û(k − σlU )













+O(k), (9.62)
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where

O(k)
△
= K













θ(k − σ1)− θ(k − σ1 − 1)φ(k − σ1 − 1)

...

θ(k − σlU )− θ(k − σ1 − 1)φ(k − σlU − 1)













. (9.63)

Since θ(k − 1)φ(k − qg − 1) − û(k − qg) → 0 as k → ∞, it follows from (9.49) that

θ(k)− θ(k − 1) → 0 as k → ∞, which implies that O(k) → 0 as k → ∞. Therefore,

x(k) − x̂(k) → 0 as k → ∞, which implies z(k) − ẑ(k) = E1[x(k) − x̂(k)] → 0 as

k → ∞. �

The following result gives conditions under which Ẑ(k) ≡ 0.

Fact 9.5.2. Assume that H̃ is nonsingular, R1(k) ≡ I, R2(k) ≡ 0, and define

ˆ̃U(k − 1) by (9.32). Then Ẑ(k) ≡ 0.

Proof. Since Z(k) is in the range of H̃, there exists Q(k) ∈ Rslũ such that

Z(k) = H̃Q(k). Substituting (9.32) into (9.26) yields

Ẑ(k) = Z(k) + H̃(H̃TH̃)−1H̃T(−Z(k) + H̃Ũ(k − 1))− H̃Ũ(k − 1)

= Z(k)− H̃(H̃TH̃)−1H̃TZ(k)

= H̃Q(k)− H̃(H̃TH̃)−1H̃TH̃Q(k) = 0. �

Fact 9.5.3. Assume that H̃ is nonsingular, R1(k) ≡ I, and R2 ≡ 0. Furthermore,

assume that Assumption 9.5.1 is satisfied, let x̂(k) be given by (9.51), let θ(k) be

updated by (9.49) and (9.50), and let ˆ̃U(k − 1) be given by (9.32). Then Z(k) → 0

as k → ∞.

Proof. It follows from Fact 9.5.1 that z(k) − ẑ(k) → 0 as k → ∞, and thus

Z(k)−Ẑ(k) → 0 as k → ∞. It follows from Fact 9.5.2 that Ẑ(k) ≡ 0. Hence Z(k) → 0,

as k → ∞. �
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In view of Fact 9.5.1, we assume henceforth that k is sufficiently large that the

difference between x̂(k), û(k), ŷ(k), and ẑ(k) and x(k), u(k), y(k), and z(k), respec-

tively, is negligible. The following analysis focuses on the subsequent behavior of

x̂(k), û(k), and ẑ(k) in the case where η(k) ≡ 0 and R1(k) ≡ I.

9.5.2 Boundedness of the State

The ideal system is defined by

x∗(k) = Arx∗(k − r) +

r
∑

i=1

Ai−1D1w(k − i) +K′U ′(k − 1) +KU∗(k − 1), (9.64)

z∗(k) = E1A
rx∗(k − r) +

r
∑

i=1

E1A
i−1D1w(k − i) + E0w(k)

+H′U ′(k − 1) +HU∗(k − 1), (9.65)

where x∗(k) is the state of the ideal system and U∗(k − 1) is defined analogously to

U(k − 1), with u(k) replaced by u∗(k), where

u∗(k) = θ∗φ∗(k − 1), (9.66)

φ∗(k − 1)
△
=

































u∗(k − 1)

...

u∗(k − nc)

y∗(k − 1)

...

y∗(k − nc)

































. (9.67)
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The ideal controller θ∗ is assumed to yield the ideal performance

z∗(k) ≡ 0. (9.68)

Adding and subtracting E1A
rx̂(k − r) to and from (9.65) yields

z∗(k) = S(k) + E1A
re(k − r) +HU∗(k − 1), (9.69)

where S(k) is defined by (9.13) with x(k) replaced by x̂(k), and e(k)
△
= x∗(k)− x̂(k).

The extended ideal system is given by

X∗(k + 1) = ÃX∗(k) + B̃Ũ∗(k) + B̃′Ũ ′(k) + D̃1W (k), (9.70)

Z∗(k) = S̃(k) + Ẽ1Ã
rE(k − 1) + H̃Ũ∗(k − 1) = 0, (9.71)

where X∗(k + 1) and Z∗(k) are defined in the same way as X(k + 1) and Z(k),

E(k)
△
= X∗(k)− X̂(k), and

Ũ∗(k)
△
= [Il

Ũ
⊗ θ∗]φ̃∗(k − 1), (9.72)

φ̃∗(k)
△
=













φ∗(k − q1)

...

φ∗(k − ql
Ũ
)













. (9.73)

Fact 9.5.4. Assume H̃ is nonsingular, R1(k) ≡ I, and R2(k) ≡ 0. Furthermore,

assume that Assumption 9.5.1 is satisfied, let x̂(k) be given by (9.51), let θ(k) be

updated by (9.49) and (9.50), and let ˆ̃U(k − 1) be given by (9.32). If Ã− B̃H̃†Ẽ1Ã
r

is asymptotically stable, then x(k) − x∗(k) → 0 as k → ∞, and thus, z(k) = z(k) −

z∗(k) → 0 as k → ∞.
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Proof. Subtracting (9.25) from (9.71) and solving for ˆ̃U(k − 1) yields

ˆ̃U(k − 1) = H̃†[Ẽ1Ã
rE(k − 1) + H̃Ũ∗(k − 1) + Ẑ(k)], (9.74)

where H̃†H̃ = Il
Ũ
. By Fact 9.5.2, Ẑ(k) ≡ 0 and therefore (9.74) implies

ˆ̃U(k − 1) = H̃†Ẽ1Ã
rE(k − 1) + Ũ∗(k − 1). (9.75)

Subtracting (9.53) from (9.70), and using (9.75) yields the error dynamics

E(k) = (Ã− B̃H̃†Ẽ1Ã
r)E(k − 1). �

The relationship between the poles of Ã − B̃H̃†Ẽ1Ã
r and the transmission zeros

of the real open-loop system is discussed in Fact 9.5.6.

9.5.3 Analysis of the case r = s = 1

Consider the case η(k) ≡ 0, r = s = 1, so that, H̃′ = 0lz×lu , and H̃ = H1 = E1B.

Furthermore, assume that H1 is square and invertible. Substituting (9.10) in (9.32)

yields

û(k − 1) = −H−1
1 [E1Ax(k − 1) + E1D1w(k − 1)], (9.76)

which yields the closed-loop retrospective system

x̂(k) = (A− BH−1
1 E1A)x(k − 1) + (D1 − BH−1

1 E1D1)w(k − 1), (9.77)

ẑ(k) = E1x̂(k). (9.78)
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Furthermore, substituting (9.77) into (9.78) yields ẑ(k) ≡ 0, while the error dynamics

are

E(k + 1) = (A− BH−1
1 E1A)E(k). (9.79)

The following result shows that the stability of (9.79) depends on the transmission

zeros of (A,B,E1).

Fact 9.5.5. Assume that lz = lu and H1 is nonsingular. Then A− BH−1
1 E1A is

asymptotically stable if and only if (A,B,E1) is minimum phase.

Proof. It follows from (9.6) that

qGzu(q) = E1A(qI −A)−1B +H1 (9.80)

=
1

α(q)
β(q), (9.81)

where α(q) ∈ R[q] and β(q) ∈ Rlz×lz [q] are defined by

α(q)
△
= det(qI − A)

= qn + α1q
n−1 + · · ·+ αn−1q + αn, (9.82)

β(q)
△
= E1Aadj(qI − A) + α(q)H1

= qnβ0 + qn−1β1 + · · ·+ q2βn−2 + qβn−1. (9.83)

Furthermore, note that

det qGzu(q) =
det β(q)

αlz(q)
. (9.84)

Since H1 is nonsingular, it follows that qGzu(q) has full normal rank, det β(q) is not

the zero polynomial, and the transmission zeros of qGzu(q) are the roots of det β(q).
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Hence (9.81) implies that

q−1G−1
zu (q) =

α(q)

det β(q)
adj β(q). (9.85)

From (9.77), it follows that det β(q) = det (qI − A + BH−1
1 E1A). Therefore, the

eigenvalues of A − BH−1
1 E1A are the roots of det β(q). Consequently, (A,B,E1) is

minimum phase if and only if q−1G−1
zu (q) is asymptotically stable. �

Fact 9.5.6. Assume that lz = lu < n andH1 is nonsingular. If (A−BH
−1
1 E1A,E1)

is detectable, then (A,B,E1) is minimum phase.

Proof. To prove necessity, define

O
△
=



















E1

E1(A− BH−1
1 E1A)

...

E1(A− BH−1
1 E1A)

n−1



















, (9.86)

which is the observability matrix of (A−BH−1
1 E1A,BH

−1
1 , E1). Since H1 = E1B, it

follows that E1(A− BH−1
1 E1A) = 0. Therefore,

O
△
=



















E1

0lz×n

...

0lz×n



















, (9.87)

and thus, rank O = lz. Since (A,B,E1) is minimum phase it follows from Fact

9.5.5 that A − BH−1
1 E1A is asymptotically stable, and thus (A − BH−1

1 E1A,E1) is

detectable. �
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9.6 Convergence Analysis with Control Weighting

Unlike Section 9.5.9.5.2, where η(k) ≡ 0, we now assume that η(k) ≥ 0. In this

case, with ˆ̃U(k − 1) given by (9.32), it follows that Ẑ(k) is given by

Ẑ(k) = Z(k)− H̃Ũ(k − 1) + H̃[H̃TR1(k)H̃ + η(k)R20]
−1H̃TR1(k)[−Z(k) + H̃Ũ(k − 1)]. (9.88)

Furthermore in view of Fact 9.5.1, we assume henceforth that k is sufficiently large

that the difference between x̂(k), û(k), ŷ(k), and ẑ(k) and x(k), u(k), y(k), and z(k),

respectively, is negligible. The following analysis focuses on the subsequent behavior

of x̂(k) and ẑ(k) under the assumption that η(k) ≥ 0.

Substituting (9.32) into (9.53) and replacing X(k − 1) in (9.53) with X̂(k − 1)

yields

X̂(k) = ÃX̂(k − 1) + B̃[H̃TR1(k − 1)H̃

+ η(k − 1)R20(k − 1)]−1H̃TR1(k − 1)[−Ẑ(k) + H̃ ˆ̃U(k − 1)]

+ B̃′ ˆ̃U ′(k − 1) + D̃1W (k − 1), (9.89)

Ẑ(k) = Ẽ1X̂(k) + Ẽ0W (k). (9.90)

Next, we write the extended retrospective performance as

Ẑ(k) = Ẽ1Ã
rX̂(k − 1) + H̃ ˆ̃U(k − 1) + H̃′ ˆ̃U ′(k − 1) + D̃ÃrW (k − 1). (9.91)

Substituting (9.91) into (9.89) yields

X̂(k) = ÃVIR(k − 1)X̂(k − 1)

+ [D̃1 − B̃[H̃TR1(k − 1)H̃ + η(k − 1)R20(k − 1)]−1H̃TR1(k − 1)D̃Ãr]W (k − 1)

+ [B̃ − B̃[H̃TR1(k − 1)H̃ + η(k − 1)R20(k − 1)]−1H̃TR1(k − 1)H̃′] ˆ̃U ′(k − 1),

(9.92)
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where

ÃVIR(k)
△
= Ã− B̃[H̃TR1(k)H̃ + η(k)R20(k)]

−1H̃TR1(k)Ẽ1Ã
r. (9.93)

Proposition IX.1. Assume that Ã is asymptotically stable. Then there exists η̄(k)

such that, for all η(k) ≥ η̄(k), the matrix ÃVIR(k) is asymptotically stable.

Proof. Since Ã is asymptotically stable it follows that ε
△
= 1 − ρ(Ã) ∈ (0, 1),

where ρ denotes spectral radius. Next, since lim
η(k)→∞

ÃVIR(k) = Ã, it follows that

lim
η(k)→∞

ρ(ÃVIR(k)) = ρ(Ã). Hence there exists η̄(k) such that, for all η(k) > η̄(k),
∣

∣

∣
ρ(ÃVIR(k))− ρ(Ã)

∣

∣

∣
< ε, and thus ρ(ÃVIR(k)) < ε+ ρ(Ã) = ε+ 1− ε = 1. �

Next, we set η(k) = 0 in (9.93) and define

¯̃AVIR(k)
△
= Ã− B̃[H̃TR1(k)H̃]−1H̃TR1(k)Ẽ1Ã

r. (9.94)

Proposition IX.2. Assume that H̃ has full row rank and ¯̃AVIR(k) is asymptotically

stable. Then there exists η̄(k) such that, for all η(k) ∈ (0, η̄(k)), the matrix ÃVIR(k)

is asymptotically stable.

Proof. Since ¯̃AVIR(k) is asymptotically stable, it follows that ε
△
= 1−ρ( ¯̃AVIR(k)) ∈

(0, 1).Next, since lim
η(k)→0

ÃVIR(k) =
¯̃AVIR(k) it follows that lim

η(k)→0
ρ(ÃVIR(k)) = ρ( ¯̃AVIR(k)).

Hence there exists η̄(k) such that, for all η(k) ∈ (0, η̄(k)),
∣

∣

∣
ρ(ÃVIR(k))− ρ( ¯̃AVIR(k))

∣

∣

∣
<

ε, and thus ρ(ÃVIR(k)) < ε+ ρ( ¯̃AVIR(k)) = ε+ 1− ε = 1. �

It follows from Fact 9.5.5 that, if (A,B,E1) is minimum phase, R1 = I, and

H̃ = H1 is nonsingular, then ¯̃AVIR(k) is asymptotically stable. Note that if η(k) is

nonzero, then the asymptotic stability of ÃVIR(k) for all k does not imply that the

state X̂(k) in (9.92) is bounded. This motivates the frequency-domain analysis in

Section 9.7.
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9.6.1 Augmented Retrospectively Optimized Controls

If (A,B,E1) is square and NMP, then ÃVIR(k) with H̃ = H1, may be unstable

for all η(k). However, we can use knowledge of the NMP zero locations to filter the

retrospectively optimized controls, ˆ̃U(k − 1) given by (9.32).

Consider the filter

f(q) =
1

ql
d(q), (9.95)

where d(q) ∈ R[q]lu×lu and

d(q)
△
= qld0 + ql−1d1 + . . .+ qdl−1, (9.96)

where d(q) and l are chosen such that the transmission zeros of f(q) contain the

unstable eigenvalues of Ã − B̃H̃†Ẽ1Ã
r, for example, the coefficients of d(q) may be

Markov parameters.

Next we filter the retrospectively optimized controls ˆ̃U(k − 1), which yields

ˆ̃UF(k − 1) = [Ig×g ⊗ f(q)] ˆ̃U(k − 1). (9.97)

The filtered retrospectively optimized controls ˆ̃UF(k−1) are used in place of ˆ̃U(k−1).

9.7 Frequency-Domain Conditions for Convergence

Propositions IX.1 and IX.2 gave sufficient conditions on η(k) for when (9.93) is

asymptotically stable. However, if η(k) is nonzero, then guaranteeing that ÃVIR(k) is

stable for all k does not guarantee that z(k) tends to zero.

In this section, we give frequency-domain conditions on H̃ and ˆ̃U(k − 1) such

that assuming (9.93) is stable for some η(k), then z(k) will tend to zero. First
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we introduce GFIR(q), which is an FIR filter whose numerator coefficients are the

Markov parameters of Gzu(q) that comprise H̃. The structure of GFIR(q) depends

on the components of ˆ̃U(k − 1) that are used to update θ(k) and the structure of H̃.

For example, in the SISO case assume that H̃ = [H3 H2 H1]
T and g = qg = 3, which

results in ˆ̃U(k − 1) = û(k − qg). Then

GFIR(q) =
H1q

2 +H2q+H3

q3
. (9.98)

Note that GFIR(q) is only used an analysis too, GFIR(q) is not used in the actual

implementation of the algorithm.

Furthermore, let the external signal w(k) be a sinusoid whose frequency is Θ. For

this analysis we assume that β(k) = 1, only when the state of the system reaches

harmonic steady state, and β(k) = 0 otherwise. Specifically, we update the controller

coefficients only when the state of the system reaches harmonic steady state and let

ν = β(0) + · · ·+ β(k), (9.99)

where ν is the number of controller updates. In practice, however, we update the

controller coefficients at every step k.

Proposition IX.3. Let ˆ̃U(k − 1) be given by (9.32). Assume that Assumption 9.5.1

is satisfied, and that R2(k) is chosen such that R2(k) → 0, as ν → ∞, which from

Fact 9.5.2 implies that ẑ(k) → 0, as ν → ∞ and let lu = lz = 1. Next, assume that

the frequency Θ does not coincide with any zeros of GFIR. Furthermore, assume that

(9.92) reaches harmonic steady state for all ν, that then if

∣

∣

∣

∣

1−
Gzu(e

Θ)

GFIR(eΘ)

∣

∣

∣

∣

< 1, (9.100)

then z(k) → 0 as k → ∞.
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In harmonic steady state we have

zν = Gzw(e
Θ)w +Gzu(e

Θ)ûν +Gzu(e
Θ)gν , (9.101)

where zν ,w, gν are phasors, and gν
△
= uν − ûν . In view of the assumption that

u(k)− û(k) → 0 as k → ∞, we assume that gν is negligible and omitted for simplicity.

Next, the retrospective cost in harmonic steady state is,

ẑν
△
= zν−1 −GFIR(e

Θ)ûν−1 +GFIR(e
Θ)ûν , (9.102)

ẑν = Gzw(e
Θ)w +Gzu(e

Θ)ûν−1 −GFIR(e
Θ)ûν−1 +GFIR(e

Θ)ûν , (9.103)

ẑν = Gzw(e
Θ)w + [Gzu(e

Θ)−GFIR(e
Θ)]ûν−1 +GFIR(e

Θ)ûν. (9.104)

Solving (9.104) for ûν yields,

ûν = G−1
FIR(e

Θ)
[

ẑν −Gzw(e
Θ)w − [Gzu(e

Θ)−GFIR(e
Θ)]ûν−1

]

. (9.105)

Substituting (9.105) into (9.101) yields,

zν = [1−Gzu(e
Θ)G−1

FIR(e
Θ)][Gzw(e

Θ)w +Gzu(e
Θ)ûν−1] +Gzu(e

Θ)G−1
FIR(e

Θ)ẑν .

(9.106)

Using this process we write zν in terms of û0 as

zν = [1−Gzu(e
Θ)G−1

FIR(e
Θ)]ν [Gzw(e

Θ)w +Gzu(e
Θ)û0]

+

ν
∑

i=0

[1−Gzu(e
Θ)G−1

FIR(e
Θ)]i[Gzu(e

Θ)G−1
FIR(e

Θ)]ẑν−i. (9.107)
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It follows from (9.107) that

|zν | ≤
∣

∣1−Gzu(e
Θ)G−1

FIR(e
Θ)
∣

∣

ν ∣
∣Gzw(e

Θ)w +Gzu(e
Θ)û0

∣

∣

+

∣

∣

∣

∣

∣

ν
∑

i=0

[1−Gzu(e
Θ)G−1

FIR(e
Θ)]i[Gzu(e

Θ)G−1
FIR(e

Θ)]ẑν−i

∣

∣

∣

∣

∣

. (9.108)

Therefore, since
∣

∣

∣
1− Gzu(eΘ)

GFIR(eΘ)

∣

∣

∣
< 1, it follows that

∣

∣

∣
1− Gzu(eΘ)

GFIR(eΘ)

∣

∣

∣

ν

→ 0 as ν → ∞,

then |zν | → 0 as ν → ∞.

Condition (9.100) has a simple geometric interpretation, namely, GFIR(e
Θ) must

lie in a half plane that contains Gzu(e
Θ) and whose boundary is perpendicular to

|Gzu(e
Θ)| and passes through 1

2
|Gzu(e

Θ)|. Figure 9.2 illustrates the region of admis-

sible GFIR(e
Θ) for a given |Gzu(e

Θ)| and frequency.

Figure 9.2: The shaded region on the complex plane illustrates the region of admis-
sible GFIR(e

Θ) for a given |Gzu(e
Θ)| and frequency Θ as determined by

(9.100). The admissible region is a half plane.

From Proposition IX.3, we note that if Θ coincides with a zero of GFIR, then the

system remains at its open-loop performance value. Furthermore, this analysis can

be done for multiple frequencies.
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9.8 Numerical Examples

For all numerical examples in this chapter we use the recursive least squares update

(9.49) and (9.50). Furthermore, we consider only the disturbance rejection problem,

where D1 6= 0, D2 = 0, and E0 = 0. For the examples in this chapter we choose

η(k) = η0
k
, where η0 is a nonnegative number.

9.8.1 SISO Examples

Example 9.8.1. (SISO MP) Consider the system

A =













1.7 −1.2 0.7

1 0 0

0 0.5 0













, B =













2

0

0













, (9.109)

D1 =













0.9794

−0.2656

−0.5484













, C = E1 =













0.5

−0.65

0.4













T

, (9.110)

which is minimum-phase and stable. The goal is to reject the disturbance w(k) =

sin(π
5
k). We choose H̃ = H1, nc = 5, γ = 1 and η0 = 0. Figure 9.3 shows the

adaptive controller in closed-loop with the plant. The performance is reduced to zero

with knowledge of just one Markov parameter. Furthermore, we are able to choose

η0 = 0, since the plant is minimum phase.

Example 9.8.2. (SISO NMP) Consider the system (9.109) and (9.110), where C

and E1 are replaced by

C = E1 =

[

0.5 −1.25 1

]

, (9.111)
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Figure 9.3: For this example, the plant is SISO and minimum phase. We choose
H̃ = H1 and η0 = 0. (a) shows the performance z(k), (b) shows the
controller parameters θ(k), (c) shows the control signal u(k), and (d)
shows the disturbance w(k).
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Figure 9.4: For this example, the plant is SISO and nonminimum phase. We choose
H̃ = H1 = 1, and η0 = 75. (a) shows the performance z(k), (b) shows
the controller parameters θ(k), (c) shows the control signal u(k), and (d)
shows the disturbance w(k).

which makes the system nonminimum phase, with a zero at 2. The goal is to reject

the disturbance w(k) = sin(π
5
k). We choose H̃ = H1 = 1, nc = 5, η0 = 75, and

γ = 1. Figure 9.4 shows the adaptive filter in closed loop with the nonminimum-phase

system. Note that the controller does not have any knowledge of the nonminimum-

phase zero.

Example 9.8.3. (SISO NMP) Next, we consider the same plant and disturbance as

Example 9.8.2. Furthermore we choose the controller parameters as in 9.8.2. However,

in this case we assume that we have knowledge of only the 4th Markov parameter,

so that H̃ = H4 = −1.3420. Figure 9.5 shows the closed-loop performance using

knowledge of just the 4th Markov parameter. There is no discernible performance

gain or degradation when using H4 as opposed to H1.
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Figure 9.5: For this example, the plant is SISO and nonminimum phase. We choose
H̃ = −1.3420 and η0 = 75. (a) shows the performance z(k), (b) shows
the controller parameters θ(k), (c) shows the control signal u(k), and (d)
shows the disturbance w(k).

237



9.8.2 MIMO Examples

Example 9.8.4. (2× 2 NMP) Consider the asymptotically stable system

A =

































−0.3 0.3 0.56 0 0 0

1 0 0 0 0 0

0 0.5 0 0 0 0

0 0 0 −0.6 −0.1 0.4

0 0 0 1 0 0

0 0 0 0 0.5 0

































, (9.112)

B =

































2 0

0 0

0 0

0 4

0 0

0 0

































, D1 =

































0.9794

−0.2656

−0.5484

0.0963

−1.3807

−0.7284

































, (9.113)

C = E1 =







0 0.5 0 0.25 −0.25 −1

0 0 1 0 0.25 −1






, (9.114)

which has a nonminimum-phase transmission zero at 2. The goal is to reject the

disturbance w(k) = sin(π
5
k). We choose H̃ = [HT

3 HT
2 HT

1 ]
T, nc = 5, η0 = 75, and

γ = 1.

Figure 9.6 shows closed-loop performance with knowledge of the 2nd Markov pa-

rameter. Note in this case that the first nonzero Markov parameter E1B =







0 1

0 0






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Figure 9.6: For this example, the plant is 2×2 MIMO, and is nonminimum phase. We
choose H̃ = [HT

3 HT
2 HT

1 ]
T and η0 = 75. (a) shows the performance

z(k), (b) shows the controller parameters θ(k), (c) shows the control signal
u(k), and (d) shows the disturbance w(k).
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is not left invertible, and thus another Markov parameter must be used in H̃, specif-

ically, we used H2 = E1AB.

Example 9.8.5. (1× 2 NMP) Consider the asymptotically stable system

A =



















0 0.4 0 0

0.5 0 0 0

0 00 −0.1 0.4

0 0 0.5 0



















, B =



















2 0

0 0

0 2

0 0



















, (9.115)

D1 =



















0.9794

−0.2656

−0.5484

0.0963



















, C = E1 =



















0.5

−1.5

0.5

−1.5



















T

, (9.116)

which has a nonminimum-phase transmission zero at 1.5. The goal is to reject the

disturbance w(k) = sin(π
5
k). We choose H̃ = [HT

2 HT
1 ]

T =







−1.5 −1.6

1 1






, nc = 5,

γ = 1, and η0 = 0. Figure 9.7 shows the closed-loop performance with knowledge of

the 1st and 2nd Markov parameters. In this case, we note that any single Markov pa-

rameter is not left invertible. Therefore, wide systems require more than one Markov

parameter to ensure that H̃ is invertible.

9.9 Conclusions

In this chapter we extended the RCAC adaptive control algorithm and investigated

its ability to adaptively control systems without knowledge of the nonminimum-phase

zeros, if any. Conditions for the stability of the error system were examined in the

unregularized and regularized versions of the algorithm. Furthermore, the algorithm

was demonstrated on SISO and MIMO examples, starting with a minimum-phase
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Figure 9.7: For this example, the plant is nonminimum phase 1x2 MIMO. We choose
H̃ = [HT

2 HT
1 ]

T and η0 = 0. (a) shows the performance z(k), (b) shows
the controller parameters θ(k), (c) shows the control signal u(k), and (d)
shows the disturbance w(k).
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system, and working up to the nonminimum-phase case, including non-square sys-

tems. Furthermore, we demonstrated that the algorithm can utilize various com-

binations of Markov parameters, for example, the 2nd and 6th, Markov parameters.

In all cases, the number of Markov parameters that are used is not sufficient to de-

termine the nonminimum-phase zeros of the system. Consequently, these examples

demonstrate the ability to control MIMO nonminimum-phase systems with unknown

nonminimum-phase zeros. In this chapter we assumed that the Markov parameters

that are used in RCAC are exactly known. However, in practice, these parameters

are uncertain due to modeling errors.
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CHAPTER X

Application of Adaptive Control to a

Seeker-Guided 2D Missile with Unmodeled

Aerodynamics

10.1 Introduction

Many difficulties are encountered when applying adaptive control to a tail-controlled

missile system. One of the issues encountered is nonminimum-phase zeros in the lin-

earizations about trim setpoints; these zeros are are due to tail actuation and sensor

suites located ahead of the center of gravity. Nonminimum-phase zeros might also ap-

pear in the digitized system once the continuous-time plant is sampled during flight.

Therefore, standard techniques for minimum-phase systems [123, 124] are not well-

suited for missile control. Additionally, actuator delays, aerodynamic effects, and

structural flexibility introduce significant complexity to the problem. Furthermore,

as described in [33], tail-controlled missiles require fast response times in order to

achieve acceleration commands generated by guidance control laws.

In previous work [33], cumulative retrospective cost adaptive control (RCAC)

[58, 59], was implemented on a 2D missile as an outer-loop with the three-loop-

autopilot, found in [125], as the inner loop. The cumulative retrospective cost adap-

tive control algorithm requires knowledge of nonminimum-phase zero locations. Since
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the linearized missile dynamics in closed loop with the three-loop autopilot has a

nonminimum-phase zero, this information was scheduled in order to implement the

adaptive controller.

The present work differs from the work in [33] in several ways. First, the inner-loop

is eliminated, specifically, the missile is controlled only by the retrospective cost adap-

tive control (RCAC) algorithm. Secondly, we do not schedule the nonminimum-phase

zero location. Recent extensions to the RCAC algorithm eliminate the requirement

for knowledge of the nonminumum-phase zero locations, as described in [122, 37],

specifically, the algorithm development requires a limited number of Markov param-

eters. Furthermore, in the SISO case, the algorithm has been shown to be robust to

the magnitude of the Markov parameter, meaning that sign information usually suf-

fices. Therefore, we do not schedule the estimate of the required Markov parameter;

a single value is used for all trim conditions. It should be noted that this parameter

does not depend on any aerodynamic modeling information specific to the 2D missile.

Details about the required modeling information are discussed in [37]. Furthermore,

to reduce oscillation of the missile body during the flight, we include rate saturation

in the retrospective cost function.

In the present work, we design a set of scenarios and compare the performance

of the retrospective cost adaptive controller to the three-loop-autopilot performance.

We examine the nominal scenario, in which, the autopilot has exact knowledge of

the missile’s aerodynamic coefficients and dynamics. The adaptive controller tuning

parameters are tuned to yield the best performance under the nominal scenario. Next,

we perturb the aerodynamic coefficients using an affine linear transformation (shift

and scale factor). In these scenarios, the autopilot remains tuned for the nominal

scenario; the adaptive controller tuning parameters are also unchanged. Finally, we

examine the effect of noisy sensors on the performance of both controllers, specifically,

noise is added to the body angle sensor. In each scenario presented, a Monte Carlo
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simulation is used to determine the median miss distance, where the variation in

simulations is due to the changing initial conditions of the target.

This Chapter is organized as follows. In Section 10.2, we give a general problem

formulation and define the tactical objective. In Section 10.3, we present the nonlinear

missile dynamics and actuator dynamics. In Section 10.4, a brief construction of the

RCAC algorithm applied to the 2D missile problem is outlined. The generalized

algorithm setup is given in Chapter IX. In Sections 10.5 to Section 10.8, we present

the simulation setups and results of the Monte Carlo simulations. Finally, in Section

10.9 we provide conclusions.
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Nomenclature

m = Missile mass

I yy = Missile Inertia

g = Acceleration due to gravity

X,Z = Inertial position in the X,Z plane

CG = center of gravity

U = Inertial velocity component along the body frame x-axis of the (CG)

W = Inertial velocity component along the body frame z-axis of the CG

Vm = Magnitude of missile velocity

M = Mach number

α = Angle of attack

θ = Pitch angle

q = Body angle

ρ = Air density

S ref = Reference area

d ref = Reference length

C x = Aerodynamic force coefficient along the body frame x-axis

C z = Aerodynamic force coefficient along the body frame z-axis

Cm = Aerodynamic moment coefficient along the body y-axis at the CG

q̄ = Dynamic pressure

δp = Tail fin angle

T = Thrust along the body frame x-axis
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10.2 Problem Formulation

Consider the target dynamics

v̇(t) = ft(v(t)), (10.1)

vp(t) = [I2 02×2]v(t), (10.2)

where v(t) ∈ R4 is the inertial position and velocity of the target at time t, and

vp(t) ∈ R2 is the inertial position of the target. The boundary conditions are

v(0) 6= 0, (10.3)

v(Tt) 6= 0, (10.4)

where Tt is the final time of the target flight.

Next consider the missile dynamics

ẋ(t) = fm(x(t)) + g(u(t)), (10.5)

xp(t) = [I2 02×2]x(t), (10.6)

where x(t) ∈ R4 is the inertial position and velocity of the missile at time t and

xp(t) ∈ R2 is the inertial position of the missile. The goal is to determine the control

u(t), that minimizes |vp(t)− xp(t)| at some time t ≤ Tt.
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10.3 Nonlinear Missile Model

Consider the nonlinear three-degree-of-freedom model

Ẋ = U cos θ +W sin θ, (10.7)

Ż = −U sin θ +W cos θ, (10.8)

θ̇ = q, (10.9)

U̇ =
1

m
T +

q̄Sref

m
Cx(α,M)− qW − g sin θ, (10.10)

Ẇ =
q̄Sref

m
Cz(α,M, δp) + qU + g cos θ, (10.11)

q̇ =
q̄Srefdref
Iyy

Cm(α,M, δp, q), (10.12)

where the dynamic pressure is given by q̄ = 1
2
ρV 2

m and angle of attack is defined as

α = atan(W/U). Measurements of the body rate q̇ and lateral missile acceleration are

assumed to take place at the inertial measurement unit (IMU) location. The lateral

acceleration at the IMU is related to that measured at the center of gravity through

the equation

Az,IMU = Az,CG − q̇xIMU, (10.13)

where xIMU is the distance from the CG to IMU. Here we assume that the missile

IMU is forward of the CG location. The nonlinear model in equations (5)-(11) is

linearized about trim points in the region of operation for the purpose of autopilot

controller design. Additionally, the second-order fin actuator model

δp(s) =
ω2
a

s2 + 2λaωas + ω2
a

u(s), (10.14)

is used, where u(s) is the fin actuator command, ωa and λa represent the natural

frequency and damping ratio, respectively, of the actuator dynamics.
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10.3.1 Three-Loop Autopilot

We compare the adaptive controller with the three-loop auto-pilot [125], which is

given by

u(s) = Kqq(s) +
1

s
(Kθq(s) +KI [KssAz,cmd −Az,IMU]), (10.15)

where Kq, Kθ, KI , Kss are control gains, and Az,cmd is the lateral acceleration com-

mand for the IMU location provided by the missile’s guidance system. A proportional

navigation guidance law generates the acceleration. The control gains Kq, Kθ, KI ,

and Kss are determined by modeling and analysis, and scheduled based on angle

of attack and Mach number, therefore the autopilot is actually many separate con-

trols, which are switched depending on trim condition. Note that in practice this

continuous-time controller is digitized using sample and hold operations.

10.4 Overview of Application of Retrospective Cost to the

2D Missile Problem

In this Section we given a brief overview of the retrospective cost adaptive con-

troller for the 2D nonlinear missile model. Note that RCAC does not require digiti-

zation since, it is developed in discrete time.

10.4.1 Controller Construction

The control u(k) is given by the strictly proper time-series controller of order nc

given by

u(k) =

nc
∑

i=1

Mi(k)u(k − i) +

nc
∑

i=1

Ni(k)y(k − i), (10.16)
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where, for all i = 1, . . . , nc, Mi(k) ∈ R
lu×lu and Ni(k) ∈ R

lu×ly . The control (10.16)

can be expressed as

u(k) = θ(k)φ(k − 1), (10.17)

where

θ(k)
△
= [M1(k) · · · Mnc

(k) N1(k) · · · Nnc
(k)] ∈ R

lu×nc(lu+ly) (10.18)

and

φ(k − 1)
△
=

































u(k − 1)

...

u(k − nc)

y(k − 1)

...

y(k − nc)

































∈ R
nc(lu+ly), (10.19)

where y(k) = z(k), for all k.

10.4.2 Recursive Least Squares Update of θ(k)

We define the cumulative cost function

JR(θ(k))
△
=

k
∑

i=qg+1

λk−i‖φT(i− qg − 1)θT(k)− ûT(i− qg)‖
2

+ λk(θ(k)− θ(0))P−1(0)(θ(k)− θ(0))T, (10.20)

where ‖·‖ is the Euclidean norm and, for some ε ∈ (0, 1), λ(k) ∈ (ε, 1] is the forgetting

factor and û(k) are the retrospectively optimized controls discussed in Section 10.4.3.
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Minimizing (10.20) yields

θT(k)
△
= θT(k − 1) + β(k)P (k − 1)φ(k − qg − 1)

· [φT(k − qg − 1)P (k − 1)φ(k − qg − 1) + λ(k)]−1

· [θ(k − 1)φ(k − qg − 1)− û(k − qg)]
T, (10.21)

where β(k) is either 0 or 1. When β(k) = 1, the controller is allowed to adapt,

whereas, when β(k) = 0, the adaptation is off. The error covariance is updated by

P (k)
△
= (1− β(k))P (k − 1) + β(k)λ−1(k)P (k − 1)− β(k)λ−1(k)P (k − 1)

· φ(k − qg − 1)[φT(k − qg − 1)P (k − 1)φ(k − qg − 1) + λ(k)]−1

· φT(k − qg − 1)P (k − 1). (10.22)

We initialize the error covariance matrix as P (0) = γI, where γ > 0.

10.4.3 Retrospectively Optimized Controls

We solve for ˆ̃U(k), which has û(k − qg) as a component, by minimizing the retro-

spective cost function

J( ˆ̃U(k − 1), k)
△
= ẐT(k)R1(k)Ẑ(k) + η(k) ˆ̃UT(k − 1)R2(k)

ˆ̃U(k − 1)

+ µ(k)[ ˆ̃U(k − 1) + ˆ̃U(k − 2)]T[ ˆ̃U(k − 1) + ˆ̃U(k − 2)], (10.23)

where R1(k) ∈ Rlzs×lzs is a positive-definite performance weighting, R2(k) ∈ Rglu×glu

is a positive-definite control weighting, η(k) ≥ 0 is a regularization weighting, and

µ(k) ≥ 0 is a control rate penalty. The goal is to determine retrospective controls

ˆ̃U(k − 1) that would have provided better performance than the controls U(k) that

were applied to the system. The retrospectively optimized control values ˆ̃U(k−1) are
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then used to update the controller. Note that Ẑ(k), Z(k), H̃, Ũ(k− 1), and ˆ̃U(k− 1)

are developed in Chapter IX.

Furthermore, Z(k) is formed by stacking past performance variables z(k), which

for the 2D missile problem is defined as

z(k)
△
=M [Az,cmd −Az,IMU]. (10.24)

Next, substituting (9.26) into (10.23) yields

J( ˆ̃U(k − 1), k) = ˆ̃U(k − 1)TA(k) ˆ̃U(k − 1) + ˆ̃UT(k − 1)BT(k) + C(k), (10.25)

where

A(k)
△
= H̃TR1(k)H̃ + η(k)R2(k) + µI, (10.26)

B(k)
△
= 2H̃TR1(k)[Z(k)− H̃Ũ(k − 1)] + 2µ ˆ̃U(k − 2), (10.27)

C(k)
△
= ZT(k)R1(k)Z(k)− 2ZT(k)R1(k)H̃Ũ(k − 1) + ŨT(k − 1)H̃TR1(k)H̃Ũ(k − 1)

+ ˆ̃UT(k − 2) ˆ̃U(k − 2). (10.28)

If either H̃ has full column rank or η(k) > 0, then A(k) is positive definite. In this

case, J( ˆ̃U(k − 1), k) has the unique global minimizer

ˆ̃U(k − 1) = −
1

2
A−1(k)B(k), (10.29)

which is the optimized retrospective control.

10.5 Case 1 - Nominal Conditions

For each scenario, a Monte Carlo simulation of 50 samples is run. The initial

conditions of the target are varied for each of the runs. Table 10.4 gives the mean,
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Variable Mean Distribution Standard Deviation
X - position 4500 [m] Normal 500 [m]
Z - position 3248 [m] Normal 100 [m]

Magnitude of target velocity 328 [m/s] Normal 50 [m/s]
Body angle of target π [rad] Normal 0.1 [rad]

Table 10.1: For each scenario the Monte Carlo simulation uses the initial conditions
and distributions given in this table.

Scenario Autopilot Median Miss [m] Adaptive Control Median Miss [m]
Nominal 0.12 0.19

Table 10.2: Nominal median miss distance for the autopilot and adaptively controlled
missile.

distribution function, and standard deviation for each of the initial condition vari-

ables.

For all scenarios, the retrospective cost adaptive controller parameters are chosen

as nc = 5, H = Ĥ1 = 1, θ(0) = 0, η(k) = 0.01z2(k), µ = 500, γ = 1 × 10−5, R1 = 1,

and R2 = 1. Note that Ĥ1 is an estimate of the first nonzero Markov parameter H1 of

the 2D missile. Although H1 is a function of the trim condition, we choose Ĥ1 = 1,

for all trim conditions. Furthermore, the adaptive controller is initialized at zero for

every run of the Monte Carlo simulation. No baseline controller is used in conjunction

with the adaptive controller.

For the nominal scenario the Monte Carlo simulation yields a median miss distance

for the autopilot of 0.12 meters, and for the adaptive control the median miss distance

is 0.19 meters.

10.5.1 Mitigation of Oscillatory Trajectories for Nominal Aerodynamics

For the nominal scenario we examine a single run of the Monte Carlo simulation

to evaluate the presence of oscillatory trajectories, which are undesirable. Figure

10.1 shows the trajectory of the missile and target for a single run. The normal

acceleration and fin control are smooth, and the resulting miss distance is less than

1 meter.
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Figure 10.1: Autopilot controlled missile with nominal aerodynamic coefficients.

Next, for this single example, apply RCAC with µ(k) = 0 for all k ≥ 0. Figure

10.2 shows the trajectory of the missile and target for a single run. In this case, the

normal acceleration and fin control contain high frequency content, which causes the

missile to oscillate about its center of gravity resulting in a miss distance greater than

10 meters. Figure 10.3 shows the adaptive controller gains θ(k). Note the sharp jump

in the control gains at approximately 0.8 seconds, approximately the time at which
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Figure 10.2: RCAC controlled missile with nominal aerodynamic coefficients. In this
scenario, the oscillation penalty is removed from the adaptive control
cost function.

the seeker locks onto the target.

To eliminate the high frequency content in the missile trajectory, we now choose

µ(k) = 500. Figure 10.4 shows the trajectory of the missile and target for same run

as Figure 10.2. Note that the normal acceleration and fin control no longer contain

high frequency content, this results in a smoother flight path, and a miss distance of
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Figure 10.3: Adaptive control gains θ(k), where the missile has nominal aerodynamic
coefficients. In this simulation, the RCAC cost function does not include
an oscillation penalty term.

less than 1 meter. Furthermore, as shown in Figure 10.5, the oscillation in the control

gains is greatly reduced.

10.6 Case 2 - Aerodynamic Force Coefficient

In this set of scenarios we compare the median miss distance of the autopilot and

the adaptively controlled missile when the aerodynamic force coefficient Cz(α,M, δp),

is modified by an affine linear function. Table 10.4 lists the scenarios and affine

functions used to modify Cz(α,M, δp). For this set of scenarios, the autopilot has

a median miss distance ranging from 0.1 meters to 11.29 meters. The adaptively

controlled missile has a median distance ranging from 0.17 meters to 35.77 meters.

Note that the adaptive controller parameters and gains are not scheduled as in the

autopilot setup.
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Figure 10.4: RCAC controlled missile with nominal aerodynamic coefficients. Fur-
thermore, a penalty is added to the adaptive control cost function to
penalize oscillatory trajectories.

10.6.1 Mitigation of Oscillatory Trajectories for Off-Nominal Aerody-

namics

For Scenario 3, we examine a single run of the Monte Carlo simulation to evaluate

the presence of oscillatory trajectories. Figure 10.6 shows the autopilot controlled
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Figure 10.5: Adaptive control gains θ(k), where the missile has nominal aerodynamic
coefficients. Furthermore, a penalty is added to the adaptive control cost
function to penalize oscillatory trajectories.

missile trajectory and the target for a single run. Note that in this scenario the

normal acceleration and fin control oscillate at high frequency. This behavior creates

a miss distance of 8.9 meters.

Choosing µ = 500, the trajectory of the adaptively controlled missile is smoothed

out over the portion of the flight before the seeker locks onto the target, as shown in

Figure 10.7. Furthermore, the adaptive control gains shown in Figure 10.8 converge

to constant values. The resulting miss distance is 1.1 meters.

Scenario Autopilot Adaptive Control Aerodynamic
Median Miss [m] Median Miss [m] Transformation

1 0.1 0.17 3Cz(α,M, δp)
2 2.74 0.89 3Cz(α,M, δp) + 3
3 8.9 1.1 5Cz(α,M, δp) +5
4 0.35 4.67 0.75Cz(α,M, δp)
5 0.65 5.2 0.75Cz(α,M, δp) - 0.75
6 11.29 35.77 0.5Cz(α,M, δp) -1

Table 10.3: Scenario and results for off-nominal aerodynamic force coefficients, specif-
ically, the force coefficient Cz(α,M, δp).
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Figure 10.6: Autopilot controlled missile with off-nominal aerodynamic coefficients.
In this case Cz(α,M, δp) is perturbed by an affine linear transformation.

10.7 Case 3 - Off-Nominal Aerodynamic Moment Coefficient

In this set of scenarios we compare the median miss distance of the autopi-

lot and the adaptively controlled missile when the aerodynamic moment coefficient

Cz(α,M, δp) is modified by an affine linear function. Table 10.4 lists the scenarios

and affine functions used to modify Cm(α,M, δp). For this set of scenarios, we demon-
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Figure 10.7: RCAC controlled missile with off-nominal aerodynamic coefficients. In
this case Cz(α,M, δp) is perturbed by an affine linear transformation.
Furthermore, a penalty is added to the RCAC cost function to penalize
oscillatory trajectories.

strate that both the autopilot and adaptive controller are robust to changes in the

aerodynamic moment coefficient, the median miss distances are all under 1 meter.
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Figure 10.8: Adaptive control gains θ(k), where Cz(α,M, δp) is perturbed by an affine
linear transformation. In this scenario, the cost function includes an
oscillation penalty.

10.8 Case 4 - Noisy Body Angle Sensor

We now evaluate the autopilot and adaptive controller performance when noise is

added to the body angle sensor q. Note that the autopilot uses the body angle directly

for control. However, RCAC uses only the acceleration command-following error

for feedback, although the seeker uses the body angle to generate the acceleration.

Therefore, the adaptive controller is corrupted indirectly by sensor noise. Figure

Scenario Autopilot Adaptive Control Aerodynamic
Median Miss [m] Median Miss [m] Transformation

1 0.08 0.31 0.5Cm(α,M, δp, q)
2 0.08 0.61 0.5Cm(α,M, δp, q) -0.5
3 0.07 0.24 0.5Cm(α,M, δp, q) +0.5
4 0.09 0.2 0.25Cm(α,M, δp, q)
5 0.07 0.44 0.25Cm(α,M, δp, q)+1
6 0.06 0.16 0.25Cm(α,M, δp, q) -1

Table 10.4: Scenario and results for off-nominal aerodynamic coefficients, specifically,
in the moment coefficient Cm(α,M, δp, q)
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Figure 10.9: Comparison between RCAC controlled missile and autopilot controlled
missile under nominal flight conditions. In this scenario we consider
noise on the sensing of q. For each point, a Monte Carlo run of 50 is
used to determine the median miss distance.

10.9 shows the median miss distance in meters, for the both the autopilot and the

adaptive controller for varying signal to noise ratios. Note that the performance

of both controllers degrades as the noise increases, however, the adaptive controller

degrades more slowly than the autopilot. The adaptive controller yields a smaller

median miss distance at a signal to noise ratio of 400.

10.9 Conclusions

In this Chapter we extended the results presented in [33] by using recent develop-

ments in retrospective cost adaptive control [122, 37]. In previous work, the adaptive

controller was used in an outer loop around the autopilot, since RCAC alone failed

to stabilize the missile for most tactical trajectories. The extensions in RCAC, which

eliminate the need for knowledge of nonminimum-phase zero locations, allow us to

eliminate the autopilot in the the inner loop. We demonstrated that the adaptive
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controller yields performance that is comparable to the gain scheduled three-loop

autopilot for the nominal case. Furthermore, we demonstrated that in certain off-

nominal scenarios, the adaptive controller outperforms the three-loop autopilot. In

all cases, the tuning of both the autopilot and adaptive controller is fixed, that is, the

tuning parameters are not modified for each scenario.
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CHAPTER XI

Application of Adaptive Control to Proportional

Integral Derivative Problems

11.1 Introduction

Because of the ease of tuning and implementation, PID control remains one of the

most popular and widely used methods in control engineering [126, 127, 128, 129]. In

applications involving multiple PID loops operating on MIMO systems with uncertain

dynamics, there remains a need for methods that can reliably tune multiple PID loops

online based on identified models. Self-tuning and adaptive PID control methods

provide a viable approach to this problem [130, 131, 132].

In this chapter we develop a novel approach to digital adaptive MIMO PID control

for sampled-data systems. The approach that we adopt is based on retrospective-cost

adaptive control (RCAC) developed in [50, 49, 58, 59, 60, 37, 57]. This approach

applies to stabilization, command-following, and disturbance-rejection problems for

SISO and MIMO plants that are possibly nonminimum phase. From an identification

point of view, RCAC requires knowledge of Markov parameters of the plant. The

number of required Markov parameters and their accuracy is plant dependent, but

typically only a single Markov parameter is needed for SISO systems. Identification

of Markov parameters is discussed in [133], while robustness of RCAC to uncertainty
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in the Markov parameters is discussed in [38].

For the case of PID control for MIMO systems that are possibly open-loop unstable

and nonminimum phase, we develop a variation of RCAC that enforces a digital

PID controller structure. This structure assumes direct feedthrough for proportional

control, nonrepeated poles at z = 1 for integral control, and backward differences for

derivative control.

In practice, actuator saturation gives rise to integrator windup, and various tech-

niques have been developed to address this phenomenon [134, 135, 136]. Within the

context of RCAC, actuator saturation is addressed by using the actual control input

in the regressor step used to reconstruct the past input that optimizes a surrogate

cost function, which is the basis of retrospective cost optimization [137].

The contents of this chapter are as follows in Section 11.2 we outline a problem

formulation for the adaptive PID controller architecture. In Section 11.3 we present

the retrospective cost adaptive control algorithm, with a model structure constrained

to yield the coefficients of a PID controller. Finally, in Section 11.4 we demonstrate

the method on several of examples of increasing complexity, with saturation, with

constant disturbances, and multi-input, multi-output plants.

11.2 Problem Formulation

Consider the MIMO discrete-time system

x(k + 1) = Ax(k) +Bsat[a,b][u(k)] +D1w(k), (11.1)

y(k) = Cx(k) +D2w(k), (11.2)

z(k) = E1x(k)− r(k), (11.3)
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Figure 11.1: Adaptive PID controller architecture

where x(k) ∈ R
n, u(k) ∈ R

lu , y(k) ∈ R
ly , z(k) ∈ R

lz , w(k) ∈ R
lw , r(k) ∈ R

lw , a ∈ R
lu ,

b ∈ Rlu , and k ≥ 0. Furthermore, sat[i,j][η] : R
lu → Rlu is the saturation function

sat[k,j][η]
△
=























ji, if ηi ≥ ji, for i = 1, · · · , lu,

ui
−(k), if ki < ηi < ji, for i = 1, · · · , lu,

ki if ηi ≤ ki for i = 1, · · · , lu,

(11.4)

and the subscript i denotes the ith entry of a vector.

The goal is to develop an adaptive output feedback controller that minimizes the

performance variable z in the presence of the disturbance signal w and command

r with minimal modeling information about the plant dynamics and w. The block

diagram for (11.1)-(11.3) is shown in Figure 11.1. Furthermore, the controller is

constrained to have the structure,

u(k) = sat[c,d]

[(

KP(k) +KI(k)
q

q− 1
+KD(k)

q− 1

q

)

z(k)

]

, (11.5)

where c ∈ Rlu and d ∈ Rlu are user specified control authority limitations, where

ai ≤ ci and bi ≤ di, for i = 1, . . . , lu, and the gains KP(k) ∈ Rlu×lz , KI(k) ∈ Rlu×lz ,

and KD(k) ∈ Rlu×lz are updated by the adaptive algorithm in the next section.
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11.3 Retrospective Surrogate Cost

For i ≥ 1, define the Markov parameters of (A,B,E1) as

Hi
△
= E1A

i−1B. (11.6)

For example, H1 = E1B and H2 = E1AB. Let r be a positive integer. Then, for all

k ≥ r,

x(k) = Arx(k − r) +
r
∑

i=1

Ai−1Bsat[a,b][u(k − i)] +
r
∑

i=1

Ai−1D1w(k − i), (11.7)

and thus

z(k) = E1A
rx(k − r) +

r
∑

i=1

E1A
i−1D1w(k − i) + E0w(k) + H̄Ū(k − 1), (11.8)

where

H̄
△
=

[

H1 · · · Hr

]

∈ R
lz×rlu

and

Ū(k − 1)
△
=













sat[a,b][u(k − 1)]

...

sat[a,b][u(k − r)]













.

Next, we rearrange the columns of H̄ and the components of Ū(k − 1) and partition

the resulting matrix and vector so that

H̄Ū(k − 1) = H′U ′(k − 1) +HU(k − 1), (11.9)
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where H′ ∈ R
lz×(rlu−lU ), H ∈ R

lz×lU , U ′(k − 1) ∈ R
rlu−lU , and U(k − 1) ∈ R

lU . Then,

we can rewrite (11.8) as

z(k) = S(k) +HU(k − 1), (11.10)

where

S(k)
△
= E1A

rx(k − r) +
r
∑

i=1

E1A
i−1D1w(k − i) + E0w(k) +H′U ′(k − 1). (11.11)

Next, for j = 1, . . . , s, we rewrite (11.10) with a delay of kj time steps, where

0 ≤ k1 ≤ k2 ≤ · · · ≤ ks, in the form

z(k − kj) = Sj(k − kj) +HjUj(k − kj − 1), (11.12)

where (11.11) becomes

Sj(k − kj)
△
= E1A

rx(k − kj − r) +
r
∑

i=1

E1A
i−1D1w(k − kj − i) + E0w(k − kj) +H′

jU
′
j(k − kj − 1)

and (11.9) becomes

H̄Ū(k − kj − 1) = H′
jU

′
j(k − kj − 1) +HjUj(k − kj − 1), (11.13)

where H′
j ∈ R

lz×(rlu−lUj
), Hj ∈ R

lz×lUj , U ′
j(k−kj −1) ∈ R

rlu−lUj , and Uj(k−kj −1) ∈

R
lUj . Now, by stacking z(k − k1), . . . , z(k − ks), we define the extended performance

Z(k)
△
=

[

zT(k − k1) · · · zT(k − ks)

]T

∈ R
slz . (11.14)
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Therefore,

Z(k)
△
= S̃(k) + H̃Ũ(k − 1), (11.15)

where

S̃(k)
△
=

[

S1
T(k − k1) · · · Ss

T(k − ks)

]T

∈ R
slz , (11.16)

Ũ(k − 1) has the form

Ũ(k − 1)
△
=

[

uT(k − q1) · · · uT(k − ql
Ũ
)

]T

∈ R
l
Ũ , (11.17)

where, for i = 1, . . . , lŨ , k1 ≤ qi ≤ ks + r, and H̃ ∈ Rslz×l
Ũ is constructed according

to the structure of Ũ(k − 1). The vector Ũ(k − 1) is formed by stacking U1(k − k1 −

1), . . . , Us(k − ks − 1) and removing copies of repeated components.

Next, we define the surrogate performance

ẑ(k − kj)
△
= Sj(k − kj) +HjÛj(k − kj − 1), (11.18)

where the past controls Uj(k−kj−1) in (11.12) are replaced by the surrogate controls

Ûj(k−kj−1). In analogy with (11.14), the extended surrogate performance for (11.18)

is defined as

Ẑ(k)
△
=

[

ẑT(k − k1) · · · ẑT(k − ks)

]T

∈ R
slz (11.19)

and thus is given by

Ẑ(k) = S̃(k) + H̃ ˆ̃U(k − 1), (11.20)
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where the components of ˆ̃U(k−1) ∈ R
l
Ũ are the components of Û1(k−k1−1), . . . , Ûs(k−

ks − 1) ordered in the same way as the components of Ũ(k − 1). Subtracting (11.15)

from (11.20) yields

Ẑ(k) = Z(k)− H̃Ũ(k − 1) + H̃ ˆ̃U(k − 1). (11.21)

Finally, we define the regularized retrospective cost function

J̄( ˆ̃U(k − 1), k)
△
= ẐT(k)R(k)Ẑ(k) + η(k) ˆ̃UT(k − 1) ˆ̃U(k − 1), (11.22)

where R(k) ∈ R
lzs×lzs is a positive-definite performance weighting and η(k) ≥ 0.

The goal is to determine refined controls ˆ̃U(k − 1) that would have provided better

performance than the controls U(k) that were applied to the system. The refined

control values ˆ̃U(k − 1) are subsequently used to update the controller.

Substituting (11.21) into (11.22) yields

J̄( ˆ̃U(k − 1), k) = ˆ̃U(k − 1)TA(k) ˆ̃U(k − 1) + ˆ̃UT(k − 1)BT(k) + C(k), (11.23)

where

A(k)
△
= H̃TR(k)H̃ + η(k)Il

Ũ
, (11.24)

B(k)
△
= 2H̃TR(k)[Z(k)− H̃Ũ(k − 1)], (11.25)

C(k)
△
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃Ũ(k − 1)

+ ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1). (11.26)

If either H̃ has full column rank or η(k) > 0, then A(k) is positive definite. In this
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case, J̄( ˆ̃U(k − 1), k) has the unique global minimizer

ˆ̃U(k − 1) = −
1

2
A−1(k)B(k). (11.27)

11.3.1 Controller Construction

Rearranging (11.5), the control u(k) is given by the exactly proper time-series

controller of order 3 given by

u(k) =sat[c,d][sat[a,b][u(k − 1)] +N1(k)z(k) +N2(k)z(k − 1) +N3(k)z(k − 2)],

(11.28)

where, for all i = 1, . . . , 3, Ni(k) ∈ Rlu×lz . Note that the gains in (11.5) and (11.28)

are related by

N1 = KP +KI +KD, (11.29)

N2 = −KP − 2KD, (11.30)

N3 = KD. (11.31)

The control (11.28) can be expressed as

u(k) = sat[c,d] [θ(k)φ(k − 1)] , (11.32)

where

θ(k)
△
= [N1(k) · · · N3(k)] ∈ R

lu×3lz (11.33)
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and

φ(k − 1)
△
=

[

zT(k) · · · zT(k − 2)

]T

∈ R
3lz . (11.34)

Next let d be a positive integer such that Ũ(k − 1) contains u(k − d). We define

the cumulative cost function

JR(θ(k))
△
=

k
∑

i=d+1

λk−i‖φT(i− d− 1)θT(k)− ûT(i− d) + sat[a,b][u
T(i− d)]‖2

+ λk(θ(k)− θ(0))P−1(0)(θ(k)− θ(0))T, (11.35)

where ‖·‖ is the Euclidean norm, and λ(k) ∈ (0, 1] is the forgetting factor. Minimizing

(11.35) yields

θT(k)
△
= θT(k − 1) + β(k)P (k − 1)φ(k − d− 1)

· [φT(k − d− 1)P (k − 1)φ(k − d− 1) + λ(k)]−1

· [φT(k − d− 1)θT(k − 1)− ûT(k − d)

+ sat[a,b][u
T(k − d)]], (11.36)

where β(k) is either 0 or 1. When β(k) is 1, the controller is allowed to adapt, whereas,

when β(k) is 0, the controller adaptation is off. The error covariance is updated by

P (k)
△
= (1− β(k))P (k − 1) + β(k)λ−1(k)P (k − 1)

− β(k)λ−1(k)P (k − 1)φ(k − d− 1)

· [φT(k − d− 1)P (k − 1)φ(k − d− 1) + λ(k)]−1

· φT(k − d− 1)P (k − 1). (11.37)

We initialize the error covariance matrix as P (0) = γI, where γ > 0.
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11.4 Examples

For illustration, we compare the performance of RCAC with a static PID controller

with gains KP = −1, KI = −1, KD = −1. In examples where these gains cause the

closed loop to be unstable, we omit the comparison. We set η(k) = 0 for all of the

following examples.

11.4.1 Integrator

Let G(q) = 1

1−q
, where the goal is to track a pulse with amplitude 5 and mean 5.

For this example there are no actuator constraints, therefore, a = −∞ and b = ∞.

Furthermore, there are no disturbances, that is, w(k) = 0.

We choose the RCAC tuning parameters as P (0) = 1, H̃ = H1, c = −0.5, and

d = 0.5. Despite no actuator limitations we limit the control authority to improve the

transient response.

Figure 11.2(a) compares the reference signal r(k) with the system output y(k),

11.2(b) is the unsaturated control signal θ(k)φ(k − 1), 11.2(c) shows the saturated

control signal sat[a,b][u(k)], 11.2(d) are the control gains θ(k). In this example, the

adaptive PID controller is able to track the setpoints. Note that after the first setpoint

the controller gains converge to constant values for the remainder of the pulse train.

11.4.2 Integrator with windup

Let G(q) = 1

1−q
, where the goal is to track a pulse with amplitude 5 and mean 5.

in the presence of actuator limitations a = −0.1 and b = 0.1. Furthermore, there are

no disturbances, that is, w(k) = 0.

We choose the RCAC tuning parameters as P (0) = 1, H̃ = H1, c = −0.1, and

d = 0.1.

Figure 11.3(a) compares the reference signal r(k) with the system output y(k),

11.2(b) is the unsaturated control signal θ(k)φ(k − 1), 11.3(c) shows the saturated
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Figure 11.2: Example 1: (a) compares the reference signal r(k) with the system out-
put y(k), (b) is the unsaturated control signal θ(k)φ(k − 1), (c) shows
the saturated control signal sat[a,b][u(k)], and (d) shows the control gains
θ(k).
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Figure 11.3: Example 2: (a) compares the reference signal r(k) with the system out-
put y(k), (b) is the unsaturated control signal θ(k)φ(k − 1), (c) shows
the saturated control signal sat[a,b][u(k)], and (d) shows the control gains
θ(k).
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Figure 11.4: Example 3: (a) compares the reference signal r(k) with the system out-
put y(k), (b) is the unsaturated control signal θ(k)φ(k − 1), (c) shows
the saturated control signal sat[a,b][u(k)], and (d) shows the control gains
θ(k).

control signal sat[a,b][u(k)], and 11.3(d) shows the control gains θ(k). In this example,

the adaptive PID controller is able to track the pulse despite the actuator saturation.

The static PID controller with unity gains exhibits integrator windup, resulting in

large control demands (on the order of 103). We note that the adaptive controller

gains converge after the first pulse.

11.4.3 Integrator with constant disturbance

Let G(q) = 1

1−q
, where the goal is to track a pulse with amplitude 5 and mean 5.

Furthermore, let w(k) = −10, that is, the goal is to track the setpoint in the presence

of a constant disturbance. We assume that there are no actuator limitations in this

case. The static PID controller with unity gains is unstable and therefore is omitted.

We choose the RCAC tuning parameters as P (0) = 0.01, H̃ = H1, c = −∞, and

d = ∞.
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Figure 11.5: Example 4: (a) compares the reference signal r(k) with the system out-
put y(k), (b) is the unsaturated control signal θ(k)φ(k − 1), (c) shows
the saturated control signal sat[a,b][u(k)], and (d) shows the control gains
θ(k).

Figure 11.4(a) compares the reference signal r(k) with the system output y(k),

11.4 (b)is the unsaturated control signal θ(k)φ(k − 1), 11.4(c) shows the saturated

control signal sat[a,b][u(k)], and 11.4(d) shows the control gains θ(k). In this example,

the adaptive PID controller is able to track the pulse despite the presence of a constant

disturbance.

11.4.4 Nonminimum-phase system with constant disturbance

Let G(q) = (q−1.1)(q−1.3)
(q−0.1)(q−0.5)(q−0.9)

, where the goal is to track a pulse with amplitude

10 and mean 0. Furthermore, let w(k) = −5, that is, the goal is to track the setpoint

in the presence of a constant disturbance. Furthermore, the actuator saturates at

a = −10 and b = 10.

We choose the RCAC tuning parameters as P (0) = 1, H̃ = H1, c = −10, and

d = 10. Figure 11.5(a) compares the reference signal r(k) with the system output y(k),

11.5 (b)is the unsaturated control signal θ(k)φ(k − 1), 11.5(c) shows the saturated

control signal sat[a,b][u(k)], and 11.5(d) shows the control gains θ(k). In this example,
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Figure 11.6: Example 5:(a) compares the first channel reference signal r1(k) with the
first system output y1(k), (b) is the unsaturated channel one control
signal θ(k)φ(k − 1)1, and (c) shows the saturated channel one control
signal sat[a,b][u(k)]1.

the adaptive PID controller is able to track the pulse despite the disturbance, control

authority limitations and nonminimum phase zeros. The static PID controller exhibits

integrator windup, resulting in large control demands (on the order of 500).

11.4.5 MIMO integrator with windup

Let G(q) = 1

1−q
I2, where the goal is to track a pulse on each output channel. The

reference signal for the first channel has amplitude 10 and mean 0. The second channel

reference has amplitude 15 and mean 0. We do not consider any disturbances, that is,

w(k) = 0. Furthermore, the actuator saturates at a = [−0.5 − 0.5] and b = [0.5 0.5].

We choose the RCAC tuning parameters as P (0) = 1, H̃ = H1, c = [−0.5 − 0.5],

and d = [0.5 0.5]. Figure 11.6(a) compares the reference signal for the first chan-

nel r1(k) with the first channel system output y1(k), 11.6 (b) is the unsaturated

control signal from the first channel θ(k)φ(k − 1)1, and 11.3(c) shows the saturated
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Figure 11.7: Example 5: (a) compares the second channel reference signal r2(k) with
the second system output y2(k), (b) is the unsaturated channel two con-
trol signal θ(k)φ(k−1)2, and (c) shows the saturated channel two control
signal sat[a,b][u(k)]2.

first channel control signal sat[a,b][u(k)]1. In this example, the adaptive PID con-

troller is able to track the setpoints despite the actuator limitations. The static PID

controller exhibits windup, which results in large control demands (on the order of

104). Figure 11.7(a) compares the reference signal for the second channel r2(k) with

the second channel system output y2(k), 11.7 (b) is the unsaturated first channel

control signal θ(k)φ(k − 1)2, and 11.7(c) shows the saturated first channel control

signal sat[a,b][u(k)]2. In this example, the adaptive PID controller is able to track the

pulse despite the actuator limitations. The static PID controller exhibits windup,

which results in large control demands (on the order of 104). Figure 11.8 shows

the adaptive PID controller gains. Note that the adaptive PID controller is a two-

input two-output PID controller, note that the off diagonal elements of the adaptive

controller are nonzero.
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Figure 11.8: Example 5: the coefficients of the multi-input-multi-output PID con-
troller.

11.4.6 MIMO coupled channels

Let

G(q) =







(q−0.1)(q−0.3)
d

(q−0.5)(q+0.2)
d

(q−0.7)
d

(q−0.2±0.3)
d






, (11.38)

where d = (q − 0.5)(q + 0.5 ± 0.5). The goal is to track a pulse on each output

channel. The reference signal on for the first channel has amplitude 10 and mean 0,

and the second channel has amplitude 7.5 and mean 2.5, and actuator constraints

a = [−30 − 30] and b = [30 30]. Furthermore, let w1(k) = 1, and w2(k) = 3, that is,

each channel has a constant disturbance. The static PID controller with unity gains

is unstable and is omitted.

We choose the RCAC tuning parameters as P (0) = 1, H̃ = H1, c = [−30 − 30],

and d = [30 30]. Figure 11.9(a) compares the reference signal for the first channel,

r1(k), with the first channel system output y1(k), 11.9 (b) is the unsaturated first

channel control signal, θ(k)φ(k − 1)1, and 11.9(c) shows the saturated first channel
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Figure 11.9: Example 6: (a) compares the first channel reference signal r1(k) with
the first system output y1(k), (b) is the unsaturated channel one control
signal θ(k)φ(k − 1)1, and (c) shows the saturated channel one control
signal sat[a,b][u(k)]1

control signal sat[a,b][u(k)]1. In this example, the adaptive PID controller is able to

track the pulse despite the actuator limitations and constant disturbance. Figure

11.10(a) compares the reference signal for the second channel, r2(k) with the sec-

ond channel system output, y2(k), 11.10 (b) is the unsaturated first channel control

signal, θ(k)φ(k − 1)2, and 11.10(c) shows the saturated first channel control signal

sat[a,b][u(k)]2. In this example, the adaptive PID controller is able to track the pulse

despite the actuator limitations and in the presence of the constant disturbance.

Figure 11.11 shows the adaptive PID controller gains. In this case, the adaptive

PID controller is a two-input-two-output PID controller, note that the off diagonal

elements of the adaptive controller are nonzero.
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Figure 11.10: Example 6: (a) compares the second channel reference signal r2(k)
with the second system output y2(k), (b) is the unsaturated channel
two control signal θ(k)φ(k − 1)2, and (c) shows the saturated channel
two control signal sat[a,b][u(k)]2.
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Figure 11.11: Example 6: the coefficients of the multi-input-multi-output PID con-
troller.
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11.5 Conclusions

We presented a framework for an adaptive proportional-integrator-derivative (PID)

controller, which is applicable to problems that require setpoint tracking and distur-

bance rejection. The method presented accounts for actuator saturation, constant

disturbances, and is applicable to MIMO plants. We update the coefficients of the

PID controller using the retrospective cost adaptive control update law, which is re-

formulated to enforce a PID controller structure. We demonstrated the method on

several examples, including cases conducive to integrator windup, constant distur-

bances, and MIMO plants.
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CHAPTER XII

Conclusions and Future Work

12.1 Conclusions

In this dissertation we propose a technique for asymptotic input reconstruction.

In Chapter I, we outlined the difficulties encountered in asymptotic input reconstruc-

tion. These include the requirement for analytical modeling information, and the

possible instability of the input reconstruction error dynamics due to nonminimum-

phase zeros. Furthermore, we use input reconstruction as a link between problems in

system identification, state estimation and adaptive control.

In Chapter II, we proposed a frequency based technique for asymptotic input

reconstruction in the presence of nonminimum-phase zeros under the assumption

that the plant is known and the input is harmonic. To summarize, we invert the

plant at specific frequencies, and fit a finite-impulse-response (FIR) model through

the data at those frequencies. The resulting FIR plant is then used in place of the

actual plant inverse, which is unstable if the open-loop plant is nonminimum-phase.

A drawback of this method is the need for complete modeling information of the

plant. Another drawback is the requirement for knowledge of the input frequencies.

The input frequency information can be detected in a finite fourier transform of the

output, but this requires additional computation and logic. Finally, errors due to

the difference between the FIR plant and the plant inverse at the input frequencies
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add to the input reconstruction error; since there is no feedback mechanism, this

error is persistent. In the second part of Chapter II, we introduce an adaptive input

reconstruction technique. This technique does not require knowledge of the input

frequencies, or an analytical model, provided criteria on the required Markov param-

eters are met. The adaptive input reconstruction technique introduced in Chapter

II, provides the foundation for the remaining chapters addressing model refinement,

state estimation, and adaptive control, all formulated as input reconstruction prob-

lems. Furthermore, an error analysis and frequency domain argument for successful

input reconstruction using the adaptive method are presented in Chapter IX.

In Chapter III, we discuss and demonstrate semiparametric identification of Ham-

merstein systems. We take advantage of the fact that the linear component of Ham-

merstein systems can be semi-consistently identified using the input and output sig-

nals. Using this model, we utilize the input reconstruction technique discussed in

Chapter I to reconstruct the intermediate signal between the static nonlinearity and

the linear system. Finally, a nonparametric model of the nonlinearity is constructed

using the input and estimated intermediate signal.

In Chapter IV, we discuss model refinement, and in doing so we show the difference

between system emulation and subsystem identification. The main difference is that

in subsystem identification, the estimated subsystem is an estimate of the unknown

subsystem in the physical system. In system emulation, the estimated subsystem

simply corrects the closed loop model such that it behaves like the physical system

in an input-output sense. In the latter case, the identified subsystem has no physical

meaning. Furthermore, we argue that model refinement, in any form, is the estimation

of an inaccessible signal; in this case we wish to do system identification, but cannot

since we do not know the input to the system. We then reformulate the adaptive

input reconstruction technique to use an initial model to reconstruct the inaccessible

signal. We apply the method to several linear examples to illustrate the technique.
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In Chapters V and VI we apply the methods developed in Chapter IV to nonlinear

model refinement. In Chapter V, we identify static parameters and dynamic physical

processes in the atmosphere using the space weather model, GITM (Global Ionosphere

Thermosphere Model), as the initial model with simulated data gathered on orbit. In

Chapter VI, we simulate the process of nondestructively estimating the health of a Li

ion battery using a DFN (Doyle Fuller Newman) battery model as the initial model

with simulated battery output data to reconstruct the internal film growth.

In Chapter VII, we discuss and demonstrate semiparametric identification of

Wiener systems. We take of advantage of the fact that harmonic signals passed

through a static nonlinearity maintain their signal symmetry in the time-domain.

This allows us to identify a nonparametric model of the nonlinearity, assuming we

can pass a signal with a single harmonic through the system. Using the nonparamet-

ric model, we then estimate the intermediate signal between the static nonlinearity

and the linear system using input reconstruction.

In Chapter IX and XI, we demonstrate the connection between asymptotic input

reconstruction and adaptive control. We analyze the stability of the adaptive input

reconstruction method formulated as an adaptive control problem. Furthermore, we

provide frequency domain criteria on the Markov parameters used to implement the

adaptive input reconstruction technique. The technique developed in this dissertation

uses an infinite-impulse-response (IIR) model structure. In Chapter XI, we restrict

the model structure to a proportional, integral, derivative (PID) model structure to

demonstrate, the flexibility of the algorithm, as well as how a PID controller might

be tuned automatically in applications where a typical PID controller would have to

be tuned manually.
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12.2 Proposed Future Work

This dissertation brings together a number of techniques under the common frame-

work of asymptotic input reconstruction. We propose a short summary of possible

future directions in each of the following areas.

Throughout the dissertation, we highlight one of the main issues in asymptotic

input reconstruction: nonminimum-phase zeros. However, in practice this is only true

in the square case, that is, the system has the same number of inputs as outputs.

We demonstrate in the dissertation that in the square case, the poles of the input

reconstruction error dynamics contain the transmission zeros of the open loop sys-

tem. However, in the non-square cases, it is not obvious what the poles of the input

reconstruction error dynamics are. Future research might focus on gaining insight

into the physical meaning of these numbers.

Many of the applications presented in this dissertation involve nonlinear systems.

However, we do not provide motivation for why a technique developed for linear

systems can be successfully applied to nonlinear systems. From the stability analysis

we can justify scaling the required modeling information without destabilizing the

input reconstruction algorithm. This results in robustness of the algorithm; as long

as the Markov parameters do not change sign, the frequency domain criteria and

error dynamics stability will not be violated. Some work has been done to verify

this in simulation. Suppose we were to linearize a nonlinear system and compute the

Markov parameters at each time-step, we would speculate that as long as the sign of

the Markov parameter does not change, a static value may be used in the algorithm.

If the sign of the Markov parameter changes, then the Markov parameter used in the

algorithm may need to be scheduled. Much work remains to be done to guarantee

successful application of the adaptive input reconstruction algorithm on nonlinear

systems.

The work on identification of Hammerstein systems uses a standard model inverse
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as the input reconstruction technique. This work was completed prior to the devel-

opment of the adaptive input reconstruction method. Therefore, error in the linear

system identification and nonparametric identification of the static nonlinearity does

not improve as more data is given to the algorithm. Revisiting this problem with the

updated techniques may yield improved results.

In model refinement, the results presented are based on a 1D GITM simulation.

Specifically, we estimate parameters and physical process in a 1D, 400 km high column

of the atmosphere above the Earth’s surface. This work is currently being extended

to 3D GITM.

Recently, the adaptive input reconstruction technique was used to estimate F10.7,

which is a measurement of solar intensity, and the primary driver of the GITM model.

The performance of the adaptive method should be compared to that of other estima-

tion algorithms, specifically, DART (Data Assimilation Research Testbed). While the

adaptive method uses a single ensemble, methods such as DART use many ensembles

to estimate parameters such as F10.7. A study study comparison may demonstrate

possible drawbacks, if any, of using multiple ensembles, which is a computational

expensive process.

The work carried out regarding health monitoring of Li ion batteries is a demon-

stration of concept. To estimate the unknown film growth we used input reconstruc-

tion through a nonlinear model. Validation of our predictions using experimental

results in collaboration with the Department of Mechanical Engineering, is feasible.

This application is especially challenging since the observation map, or C matrix in

the linear sense, changes with time. Depending on the cycle, the output was either

voltage or current. Additionally, the film growth was unidentifiable during certain

phases of the cycle. Our results reflect the unidentifiability of the film resistance, since

the estimates drop off to zero during these intervals. This required us to reset the

input reconstruction at each cycle. This application introduces a number of compli-
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cating factors, which require investigation, such as, asymptotic input reconstruction

for time-varying systems, and identifiability of inaccessible signals in general.

In the state estimation application, we do not consider the effect of sensor noise on

the state estimates. Work by others on input reconstruction based state estimators

involves formulating algorithms based on a Kalman filter, which allows knowledge of

noise covariances to be used to improve state estimates. While these state estimators

are limited by nonminimum-phase zeros, we may be able to reformulate the adap-

tive input reconstruction in a similar fashion to also take advantage of known noise

covariances.

Finally, in the adaptive control application, we provide guidelines for stability of

the algorithm. However, as with most adaptive methods, these guidelines only provide

asymptotic properties. While we develop “rules of thumb” for transient behavior by

tuning specific parameters, there are no guarantees on the magnitude of transients.

Adaptive control is unique in this sense; model refitment and state estimation are

unaffected by large transients since they are software based. Control, on the other

hand, involves putting real signals into physical systems, in this case, the presence of

large transients may result in severe consequences. Thus, more research needs to be

conducted regarding the stability of the proposed algorithm.
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