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ABSTRACT

Constrained Task Assignment and Scheduling On Networks of Arbitrary Topology

by

Justin Jackson

Chair: Anouck Girard

This dissertation develops a framework to address centralized and distributed

constrained task assignment and task scheduling problems. This framework is used

to prove properties of these problems that can be exploited, develop effective solution

algorithms, and to prove important properties such as correctness, completeness and

optimality.

The centralized task assignment and task scheduling problem treated here is ex-

pressed as a vehicle routing problem with the goal of optimizing mission time subject

to mission constraints on task precedence and agent capability. The algorithm de-

veloped to solve this problem is able to coordinate vehicle (agent) timing for task

completion. This class of problems is NP-hard and analytical guarantees on solution

quality are often unavailable. This dissertation develops a technique for determining

solution quality that can be used on a large class of problems and does not rely on

traditional analytical guarantees.

For distributed problems several agents must communicate to collectively solve

a distributed task assignment and task scheduling problem. The distributed task

xi



assignment and task scheduling algorithms developed here allow for the optimiza-

tion of constrained military missions in situations where the communication network

may be incomplete and only locally known. Two problems are developed. The dis-

tributed task assignment problem incorporates communication constraints that must

be satisfied; this is the Communication-Constrained Distributed Assignment Prob-

lem. A novel distributed assignment algorithm, the Stochastic Bidding Algorithm,

solves this problem. The algorithm is correct, probabilistically complete, and has

linear average-case time complexity.

The distributed task scheduling problem addressed here is to minimize mission

time subject to arbitrary predicate mission constraints; this is the Minimum-time

Arbitrarily-constrained Distributed Scheduling Problem. The Optimal Distributed

Non-sequential Backtracking Algorithm solves this problem. The algorithm is correct,

complete, outputs time optimal schedules, and has low average-case time complexity.

Separation of the task assignment and task scheduling problems is exploited here

to ameliorate the effects of an incomplete communication network. The mission-

modeling conditions that allow this and the benefits gained are discussed in detail.

It is shown that the distributed task assignment and task scheduling algorithms de-

veloped here can operate concurrently and maintain their correctness, completeness,

and optimality properties.

xii



CHAPTER I

Introduction

This dissertation addresses problems of centralized and distributed task assign-

ment and task scheduling. Task assignment is deciding which of several agents will

perform which of several tasks. Task scheduling is the act of deciding at what time a

task is performed. Task assignment and task scheduling can be done in three ways:

first, the needed data can be collected by the agents and aggregated by a central com-

puter which then designs the task assignment and task schedule and distributes orders

to the agents. Second, the needed data can be aggregated by each of the agents; the

same task assignment and task schedule is designed by each agent. Third, the needed

data can be collected by the agents, but is used by the agents to each compose a part

of the task assignment and task schedule and is never aggregated. This dissertation

addresses the first and third of these. The first is referred to as centralized task

assignment and task scheduling, and the third as distributed task assignment and

task scheduling. The remainder of this chapter discusses these concepts in further

detail, presents a preliminary problem statement, and discusses the contributions of

this dissertation to the fields of centralized and distributed task assignment and task

scheduling.
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1.1 Motivation and Importance of Task Assignment and Task

Scheduling

Task assignment and task scheduling are essential in applications such as truck

and car dispatching, load balancing for the efficient management of computational

resources, and recently in the management and optimization of military missions in-

volving unmanned aircraft. Task assignment and task scheduling are often considered

together and the solution is computed in a centralized way, that is, by a central com-

puter, and then communicated to the agents. In applications where all agents can

communicate with each other and with the central computer, this approach may be

acceptable. In applications where this is not the case or where the agents have sig-

nificant computational abilities that can be leveraged, improvements in robustness,

system response to changes in data, and computation time can be gained by dis-

tributing the problem. This dissertation considers both centralized and distributed

task assignment and task scheduling.

One of the aims of this dissertation is to provide tools that help advance the

operational vision of the U.S. Air Force as detailed in [24]. This vision includes

the ability to integrate unmanned vehicles into Air Force operations. These vehicles

should be able to utilize their computational capabilities to function independently of

and concurrently with their human counterparts. This vision represents an ongoing

research effort at the Air Force Research Laboratories and complementary organiza-

tions. Several features are commonly incorporated in problems within the research

effort. Mobile agents are considered that are kinematically constrained and typically

travel within a two dimensional environment. Mission constraints are used to restrict

how a mission can be executed by the agents. These constraints must be obeyed

when deciding the task assignment and the task schedule. In these applications, task

assignment and task schedules are sought that minimize an objective function related

2



to mission performance. The Air Force’s vision is one of autonomy; the agents should

be able to utilize their computational and communication abilities to design task as-

signments and task schedules that obey these constraints and provide good mission

performance. The reality of field operations includes constraints on the capabilities of

the agents and limited or unreliable communications. The need to assign and sched-

ule mission-related tasks to agents in an optimized way under these conditions is a

primary motivation of this dissertation.

The need for unmanned air and ground vehicles to function independently and

effectively with their human counterparts necessitates local intelligence on-board the

vehicles. The vehicles must be able to gather and process information and perform

tasks without the intervention of human operators. For certain missions, the human

may need to remain more abreast of the situation and have a finer level of control on

the individual tasks (e.g., remote piloting). For other missions, the vehicles may be

able to assume more control over the individual tasks (e.g., cooperative area mapping).

This thesis addresses the part of this problem that deals with assigning and

scheduling tasks after the tasks themselves have been decided upon. This work

stops before the execution of the tasks takes place; it does not consider execution

inter-woven with the task assignment and task scheduling process. The reduction

of man-power requirements for supporting autonomous vehicles, improved mission

optimization, and the certifiability of autonomous systems operating with provably

correct algorithms are among the reasons for the widespread development of mis-

sion optimization algorithms. Mission aspects such as vehicle failure, communication

jamming, communication blackouts, and the use of heterogeneous communication

protocols challenge the ability of the vehicles to assign and schedule tasks indepen-

dently. Distributed task assignment and task scheduling offers the ability to achieve

these mission optimization goals when effectiveness of communications and the agents

themselves is reduced.

3



An important objective considered in both the centralized and distributed work

here is the minimization of mission time (also know as makespan). This objective

represents the time needed for the agents to complete all of the tasks given. This

objective function is important when considering urgency, applied to the mission

as a whole. It is not an a priori weighted sum of the start or finish times of the

tasks. It may be desired that individual tasks be completed quickly; a portion of

this dissertation addresses this, but the minimization of mission time is the primary

objective.

Task assignment and task scheduling fit into the broader class of work on multi-

agent systems [118]. Task assignment and task scheduling are important when multi-

ple agents must complete a common goal that is composed of several sub-goals; these

sub-goals are tasks. In practical situations where task assignment and task schedul-

ing are required such as military missions or disaster relief, the relative (or absolute)

timing between tasks, the decision to complete tasks, and which tasks agents are

permitted to perform, may be relatively constrained. The effect of these types of

constraints is to limit the allowable task assignments and task schedules. Task as-

signments and task schedules that obey the relevant constraints are said to be feasible.

In addition to obeying these practical restrictions it is often of interest to minimize

the use of valuable resources such as fuel or time. Feasible task assignments and task

schedules that also achieve this minimization are said to be optimal.

1.2 Problem Statement

In this section, we introduce the formal concepts used for task assignment and task

scheduling throughout. We capture the various notions of feasibility, optimality, and

communication using set theory and graph theory; we use tools from combinatorial

optimization to describe tasks, agents, the ways in which they interact with each

other, and to develop solution tools. This rigor aids in the presentation of the problem

4



and development of the proofs.

There are Nt tasks and Na agents. The tasks and agents are elements of the sets

T = {t1, . . . , tNt}, (1.1)

A = {a1, . . . , aNa}. (1.2)

A task assignment can take the form of a mapping,

TA : T → A, (1.3)

or a relation

TA ⊆ T ×A. (1.4)

A mapping task assignment implies that each task is performed by one and only one

agent while a relational task assignment implies that several agents can cooperate to

perform a single task.

A task schedule takes the form of a mapping,

TS : T → Ts, (1.5)

where the set Ts is the set of schedule times. Generally, these times can represent

the time when a task starts or finishes execution.

The timing of performing tasks is restricted logically and temporally. This is

described using constraints of the form p : TTs → {false, true}. These constraints

are general to allow for the use of numerous constraint description languages. The

tasks involved in these constraints belong to clusters. These clusters are the sets

Tm ⊆ T , m = 1, . . . , Nc.

The ability of the agents to complete the tasks is described using a relation

Capability ⊆ T ×A where (t, a) ∈ Capability if task t can be performed by agent a.

5



It is important that task assignments obey (t, TA(t)) ∈ Capability for all tasks and

that task schedules obey pm(TS) = true for all constraints.

Much of this dissertation is concerned with optimization of mission time. The

objective function is

J(TS) = max
t∈T

TS(t). (1.6)

The task assignment literature offers tools to optimize task assignments with respect

to linear and quasi-linear objective functions [80, 7, 116, 100]. These objective func-

tions often represent distance, monetary value, or time. We minimize the time to

complete all tasks by solving

min
TS∈TTs

J(TS) (1.7)

s.t. pm(TS). (1.8)

The approach taken here to solving the optimal task assignment and task schedul-

ing problem is to develop a heuristic approach that optimizes task assignments and

task schedules simultaneously. This approach is novel in that it incorporates mul-

tiple agents and precedence constraints with the minimization of mission time, and

can find feasible solutions quickly and low cost solutions in minutes. This type of

optimization is important to military and other time-critical applications.

1.3 Distributed Task Assignment and Task Scheduling

A distributed system is a collection of agents in which resources, information,

knowledge, capability, expertise, or authority are distributed. In the context of

distributed task assignment and task scheduling we consider as distributed: com-

putational resources; information and knowledge of the tasks, agent capabilities,

constraints, and the communication network topology; and authority of agents to

determine the task assignment and task schedule.
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It can be beneficial to exploit parallelism and distribute the computational burden.

Additionally, this is beneficial because the solution must be distributed (in some

form) prior to execution. Communication between certain pairs of agents (including

a possible central planner) may be sporadic, non-existent, unsecured, or delayed. For

these reasons we consider distributed task assignment and task scheduling.

For multi-agent systems, which agents can communicate with each other is im-

portant. Communication can be used to distribute the effort of determining the task

assignment and task schedule across several agents. Candidate algorithms for task

assignment and scheduling are impacted differently as a result of different assump-

tions on the topology of the underlying communication network. This dissertation

considers some of these issues and provides algorithms to address the problem of a

connected arbitrary network topology.

To describe the communication abilities of the agents, we use an undirected com-

munication graph (A, Ec), where the edges, Ec, represent acknowledgement-based

communication links. Messages are received in the order they are sent and when

the communication link is established, the messages are guaranteed to be delivered.

If messages are broadcast or relayed across the network, they are done so without

acknowledgement between the source and the recipient. The effect of this is that

messages can be relayed reliably, but are relayed without guaranteeing the delivery

order. This model of communication is common in distributed consensus applications

[93]. This model allows us to incorporate the fact that in field or ad-hoc situations,

acknowledgement-based communication may not be guaranteed between all pairs of

agents. This can occur in situations where mobile robots may operate in applications

of disaster relief, aircraft and ground vehicles may operate in canyons or mountainous

terrain, or communication may be subject to black-out or jamming.

It is important for us to do the task assignment and task scheduling in the presence

of various types of constraints. Existing work has addressed distributed assignment to

7



optimize various objectives. Formulations and algorithms exist for addressing capabil-

ity constrained task assignment problems, and temporally constrained task schedul-

ing problems [33, 58, 34]. Our concern is for temporally and logically constrained

distributed task assignment and task scheduling. The agents in the following formu-

lations cooperate and seek to optimize a global objective. The notion of local benefit

is used only as a means to achieve the global goal. To ensure that all agents assigned

tasks that share a constraint can communicate, we solve the problem of finding a task

assignment, TA, that, for all Tm ⊆ T , satisfies

(A, Ec)|TA(Tm) is complete. (1.9)

That is, agents can communicate with all agents assigned tasks that share clusters

with their own tasks. The Stochastic Bidding Algorithm used to satisfy the clustering

constraints is designed to minimize an objective function, J : AT → N, with the

following properties. The value of J goes to zero as more of the constraints in (1.9)

become satisfied, and J(TA) = 0 if and only if all constraints in (1.9) are satisfied.

This objective function is nonlinear, has a global minimum at zero, and is discussed

in further detail in Section 4.1.2.

The satisfaction of (1.9) is used to solve the above scheduling problem in a dis-

tributed setting. The Optimal Distributed Non-Sequential Backtracking Algorithm

is developed here to ensure minimization of the mission time objective function while

guaranteeing constraint satisfaction. This algorithm is proven correct, complete, and

optimal, and complexity results are given in Section 4.2.5.
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1.4 Task Assignment and Task Schedule Coupling and Con-

sequences

We are interested in finding task assignments and task schedules that obey con-

straints and are optimal with respect to mission time. As such, we must consider

task assignments and task schedules together. The constraints that describe the sets

of allowable task assignments and task schedules can couple the two. This disser-

tation describes, for the distributed case, a relationship between the expressiveness

of the problem constraints and the communication links required to solve the prob-

lem (Section 4.1.7). This relationship is exploited here to solve the distributed task

assignment and task scheduling problem.

The following consequences are incurred if existing distributed constraint satis-

faction and optimization tools are directly applied to this problem: the number of

acknowledgement-base communication links required is increased; the complexity of

solving the problem can increase; and in some cases, minimization of mission time

subject to the constraints cannot be guaranteed. This is proven in Chapter II. This

dissertation presents a formulation to express the above constrained, distributed, task

assignment and task scheduling problem and develops distributed tools to solve it.

The algorithms developed here exploit the following aspects of the problem struc-

ture. The communication structure is exploited to find areas of the network where

the communication topology is suitable for distributed scheduling algorithms. The

constraint structure is exploited to separate task assignment and task scheduling con-

straints and solve the assignment and scheduling problems concurrently. The struc-

ture of the scheduling constraints is exploited to solve independent scheduling sub-

problems concurrently. The structure of the cost function J(TS) = maxt∈T TS(t) ∈

Ts is used to guarantee that the constraints are satisfied while J is minimized.
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1.5 Modeling the Distributed System

In modeling the distributed capabilities of the agents, we use the notion of pro-

cesses [75]. Several areas of the multi-agent literature use the notion of agent to denote

a computational entity that executes a distributed algorithm [118]. The formulation

of [75] is used here to explicitly differentiate between agents and their capabilities to

perform tasks. Using processes allows us to easily distinguish between the agent that

is involved in the assignment and the “agent” (i.e., the process) that is logical and

performs the computation of the distributed algorithm.

We introduce several standard notions from graph theory to allow us to reason

about the communication abilities and restrictions of the agents. An undirected graph

is a pair (V , E) of vertices and edges such that each edge is a couple of vertices. The

edges have unit distance. A graph is called complete if every couple of vertices is

an edge. For the graph (V , E), if V ′ ⊆ V , the subgraph induced by restriction to V ′,

denoted (V , E) |V ′ , is the graph (V ′, E ′), where

E ′ = {{v1, v2} ∈ E | v1 ∈ V ′ and v2 ∈ V ′}. (1.10)

In other words, the induced subgraph is obtained by retaining only vertices in V ′ and

the edges connecting them. The distance between two vertices v, w ∈ V is d(v, w) and

represents the number of edges that must be traversed to move from v to w across

the graph. The diameter of a graph G = (V , E) is,

diam(G) = max
v,w∈V

d(v, w). (1.11)

The neighborhood of a vertex v ∈ V is the set Nv = {w ∈ V | e = {v, w} ∈ E}.

Consider a distributed system of N > 0 processes. Define a process as a 4-tuple,

[pi] = {Statesi, Starti, transi,msgsi}, (1.12)
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where the set Statesi is a possibly infinite set of states of process [pi] and describes

the configuration and memory of [pi], and the set Starti ⊆ Statesi is the subset of

states at which process [pi] may begin operation. Processes send messages M ∈ M

to each other. The set of messages M is closed under union. Hence, without loss of

generality (M is closed under union), processes send one message to each neighboring

process at a time. The functions transi and msgsi are defined as

transi : Statesi ×M→ Statesi, (1.13)

msgsi : M× Statesi →M. (1.14)

The set of processes is Processes. Define the process graph,

Gp = (Processes, Ep), (1.15)

The set Ep is the set of couples of processes such that {[pi], [pj]} ∈ Ep if and only if

there is a communication link between [pi] and [pj]. Three fundamental classes of

distributed systems are synchronous, asynchronous, and partially synchronous.

Define a unit of time called a round, by the execution of the functions transi and

msgsi for all [pi] ∈ Processes. For a synchronous distributed system [75], at each

round all processes [pi] ∈ Processes execute the function transi and then all processes

[pi] ∈ Processes execute the function msgsi. This lock-step type of operation is an

idealization of actual distributed systems that can be imposed in practice. However,

this sacrifice does not allow for the system to take advantage of differences in the

relative speed of operation of processes. Induction-style proofs are made easier by

this assumption.

An asynchronous model of a distributed system [37] makes no assumptions at all

concerning the relative timing of process operation, or the delivery order (or timing)
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of messages. That is, a process [pi] ∈ Processes may compute results and send

messages without consideration for the operation of other processes. An asynchronous

distributed system can be restricted to behave as a synchronous distributed system.

This is done by imposing the requirement that each [pi] ∈ Processes execute transi

at round r only after all round r − 1 messages are received from all neighboring

processes.

Synchronous and asynchronous models are at the two extremes of timing assump-

tions on the operation of a distributed system. Partially synchronous models assume

that bounds on relative timing and operation exist; these bounds may or may not be

known to the processes. That is, imprecise knowledge of upper and lower bounds of

process execution is available. In practice, processes will often have access to a (im-

perfect) clock or counter that can be used to infer timing information with regards

to the execution and message transmission of other processes.

The distributed system model used here gives us the formalism that is leveraged

to design the distributed algorithms used in this dissertation. Several assumptions

are used in the overall modeling of the problems in this dissertation, centralized

and distributed. The next section discusses these assumptions, the features of these

assumptions, and the related consequences.

1.6 Assumptions of this Work

This section discusses the assumptions of this work and how these assumptions

affect the expressiveness of the algorithms developed in this dissertation. The focuses

of this dissertation are centralized and distributed task assignment and task schedul-

ing. The assumptions that apply to both the centralized and distributed work are as

follows.

• The mission is modeled in the form of tasks to be completed and agents to
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complete the tasks

• A task’s duration is not a function of the agent assigned to complete it

• The capabilities of the agents are binary; for a given task an agent is able to

complete it or it is not

• The agents are assumed to perform every task to which they are assigned suc-

cessfully, incomplete and probabilistic completion are not modeled

• The primary objective is the minimization of mission time. The Tabu/2-opt

heuristic is used for this purpose in Chapter III. While this algorithm is imple-

mented for the minimization of mission time here, it is general enough to incor-

porate other objectives (e.g., total distance, fuel consumed). The distributed

scheduling algorithm in Chapter IV is used for mission time minimization; this

algorithm is specific to mission time minimization

The centralized part of the work is discussed in the context of vehicle routing.

The framework of vehicle routing is primarily concerned with task visitation. The

assumptions that apply to the centralized work are as follows.

• Tasks are modeled with zero duration

• The vehicles are assumed to obey unicycle kinematics with no turn-rate restric-

tions

• Vehicles have a minimum velocity of zero (i.e., are able to loiter)

• Vehicles have a non-zero maximum velocity

• Vehicles are assumed to be unconstrained by capacity or fuel constraints

• Logical (or choice) constraints are not considered; all tasks must be completed
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The kinematic and loitering constraints become more realistic as the distance between

tasks increases compared to the vehicle turn radius. The effect of the unlimited fuel

and capacity assumptions are reduced by 1) our choice of mission time as an objective

which inherently minimizes the farthest distance traveled and 2) our choice of the

Tabu/2-opt algorithm which, as a secondary objective, minimizes the length of each

vehicle’s route individually. Precedence constraints are used to describe a class of

VRP that is relevant to mission operations.

The distributed work in this dissertation considers agents communicating over a

communication network to assign and schedule tasks. The assumptions that apply to

the distributed work are as follows.

• The communication network is considered to have a connected topology

• The agents are assumed to use acknowledgement-based communication (e.g.,

TCP)

• Time is considered as discrete time slots

• Separation of the task assignment and task scheduling problem is used for com-

munication benefit, but may sacrifice optimality.

• When task assignment and task scheduling separation is used the constraints on

the task assignment are capability constraints and communication constraints

only.

These assumptions are used to incorporate practical features into the task assign-

ment and task scheduling problem. While some of these assumptions simplify the

problem, the problems remain difficult to solve and require special tools to overcome

this difficulty. The next section discusses this difficulty and common tools used to

over come it.
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1.7 Challenges and Typical Remedies

Finding an optimal or even feasible task assignment or task schedule is provably

difficult. Specifically, for practically useful problems, optimal and constrained task

assignment and task scheduling is NP-hard. NP-hardness means that an exhaus-

tive search may be required to find a solution. This search may incur exponential

time complexity and the verification of a candidate solution may also incur the same

complexity [59]. NP-completeness refers to the possible exponential time complexity

of search, but where verification of a candidate solution can be done in polynomial

time. The algorithms used to solve problems of this type can be centralized [87, 54]

or distributed [83, 19].

We refer to an optimal algorithm as one that is guaranteed to find an optimal

solution in finite time. A heuristic does not provide such guarantees, but nonetheless

may perform well in practice. Heuristics are often based on intuition about a par-

ticular problem. The effectiveness of heuristics can be judged either qualitatively or

quantitatively. Heuristics generally come in two types, construction and repair. An

algorithm based on a construction heuristic is initialized with a problem instance and

builds a solution to that problem instance according to the particular heuristic rule

(e.g., expand the nodes of a search tree in a beneficial order). An algorithm based on

a repair heuristic is initialized with a problem instance and one or multiple candidate

solutions to the problem instance. The repair heuristic then modifies the candidate

solution(s) using the heuristic rule until the termination condition of the algorithm is

satisfied, at which point the algorithm outputs the best solution found (e.g., vehicle

route improvement).

The time-complexity of an algorithm refers to the functional dependence of the

time needed to produce an output on the size of the input to that algorithm. If the

time needed to produce an output can be upper-bounded by a polynomial function of

the input size for all inputs, the algorithm is said to be of polynomial time-complexity.
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If the time needed to produce an output can only be bounded above by an exponential

function of the input size, the algorithm is said to be of exponential time-complexity.

Exponential time-complexity is related to NP-completeness (or NP-hardness) in that

the solution of NP-complete (or NP-hard) problems may incur exponential time-

complexity in the worst-case.

Optimal task assignment and task scheduling algorithms can be vulnerable to

NP-Hardness. For a task assignment and task scheduling problem, the time-scale on

which the solution given by an algorithm is executed can be considered. If the time

required to produce a solution is larger than the duration of execution, the algorithm

may not be suitable for applications where solutions are needed quickly (i.e., online

operation). This simple reason often makes optimal algorithms impractical because

optimal solutions can simply take too long to produce.

Approximate task assignment and task scheduling algorithms are often designed

to have polynomial time-complexity. The requirement to compute a solution faster

than its execution places a practical limit on the available algorithms for solving

task assignment and task scheduling problems. A heuristic may not reliably give

optimal solutions, but in practice the purpose of heuristics is to defeat complexity.

Heuristics may be designed to solve entire problems (e.g., vehicle routing heuristics)

or to augment existing methods and improve their time-complexity characteristics

(e.g., tree search node expansion).

All candidate solutions can be represented by a search-tree [95]. Tree-search tech-

niques such as Backtracking or Branch and Bound [54, 95] can then be used to find

a solution that is optimal. When a task assignment and task scheduling problem is

solved using a tree-search method, heuristics can offer substantial gains in efficiency.

If the number of possible task assignments and the number of possible schedules is

finite strong completeness of the tree-search can be guaranteed. That is, the tree-

search will return non-existence of feasible solutions. While most heuristics build
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or repair solutions to a problem, tree-search heuristics take, as input, a node in a

search-tree and output an ordering of that node’s children. Tree-search heuristics are

able to intelligently expand nodes in a search-tree, thus reducing the time taken to

search the tree for a desired solution.

Meta-heuristics such as Genetic Algorithms [53, 88], Simulated Annealing [61],

and Tabu Search [40, 38, 82, 65] have also been applied to task assignment and task

scheduling problems. These heuristics are similar in the following ways: they are all

based on physical principles (i.e., evolution, metallurgy, and hill-climbing); and they

are all general in the sense that their original design does not incorporate the specifics

of any one optimization problem. These metaheuristics are most useful in a task

assignment and task scheduling context when searching in the presence of constraints

that restrict the allowable order of task completion and when evaluating solutions

with complicated, nonlinear cost functions. These heuristics have the advantage of

treating a large class of problems, but provide no guarantee on the solution quality.

The challenges are common to task assignment and task scheduling problems. The

problems developed and solved in this work present similar difficulties. The original

contributions of this dissertation are in the development and solution of particular

problems that address current needs in unmanned air and ground vehicle operations

[24]. These problems and the algorithms used to solve them are presented using the

modeling framework of this chapter.

1.8 Original Contributions of this Dissertation

The original contributions of this dissertation are as follows:

1. The Tabu/2-opt Heuristic is developed that solves an important Vehicle Rout-

ing Problem. The algorithm minimizes mission time subject to precedence

constraints. The algorithm finds feasible solutions in fractions of a second and
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high-quality solutions to moderate-size problem instances in seconds.

2. A measure of solution quality is developed that uses a stochastic characterization

of a problem domain. This quality measure is used to quantitatively compare

solutions of combinatorial problem to the space of possible solutions. This gives

a relative measure of solution quality for problems where no other meaningful

quality measure exists that is feasible to use.

3. The Communication-Constrained Distributed Assignment Problem (CDAP) is

developed. The CDAP is important when assigning distributed agents to tasks

where direct communication must be guaranteed between agents assigned to

constrained tasks.

4. The Stochastic Bidding Algorithm (SBA) that solves the CDAP is developed.

The correctness of the SBA is proven. The completeness of the SBA is analyzed,

indicating that the SBA finds a solution if one exists. The complexity analysis

presents conservative average-case polynomial complexity.

5. The dependence of the number of required communication links on the number

of constraints coupling task assignment and task scheduling is quantified. This

can be exploited to relax important assumptions regarding the communication

topology.

6. The Minimum-time, Arbitrarily-constrained, Distributed Scheduling Problem

(MADSP) is formulated. The solution of this problem guarantees the simul-

taneous satisfaction of all mission constraints and the minimization of mission

time.

7. The Optimal Distributed Non-Sequential Backtracking Algorithm (OptDNSB)

that solves the MADSP is developed. The OptDNSB Algorithm exploits the

structure of the MADSP to guarantee constraint satisfaction and optimality.
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The OptDNSB Algorithm is proven correct, complete, and optimal. The com-

plexity of the OptDNSB Algorithm is analyzed; the analysis indicates near-

linear average-case complexity for a class of constrained scheduling problems.

8. Conditions are given for which the CDAP and the MADSP can be solved concur-

rently. The correctness and completeness of the OptDNSB Algorithm running

together with an appropriate distributed assignment algorithm are proven. It

is shown that the SBA and the OptDNSB satisfy these conditions.

The Tabu/2-opt Heuristic solves the following vehicle routing problem: minimize

mission time for several agents to visit a number of waypoints (tasks) subject to

precedence constraints relating waypoints and assignment constraints. This heuristic

is used to defeat complexity where other methods fail to quickly compute solutions to

large problem instances. The Tabu/2-opt heuristic effectively fuses two heuristics; the

Tabu Search Heuristic optimizes task assignments; while the 2-opt heuristic optimizes

task schedules to minimize mission time. The method is able to produce feasible

solutions in fractions of a second and high-quality solutions quickly enough to be

practically useful.

The analysis method developed here gives the probability of finding a solution that

is better than a candidate solution. The analysis method can be used to compare the

cost of a given solution relative to the space of possible solutions. The analysis is based

on sampling the space of possible solutions to quantify the statistical distribution of

the cost values. Often, no useful analytical lower bound on the optimal solution is

available. This method can be used to provide solution quality comparisons when

analytical bounds are not available.

The Stochastic Bidding Algorithm is used to solve the Communication-Constrained

Distributed Assignment Problem. The CDAP is important in distributed task as-

signment problems when communication requirements relate agents assigned to con-

strained pairs of tasks. We consider a network of arbitrary topology. This can limit
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the available communication links. The dependence of the number of required com-

munication links on the generality of the problem description allows us to sacrifice

problem expressiveness to operate on a network with a reduced number of communi-

cation links. This reduced generality is presented as a separation of task assignments

and task schedules. The SBA produces a task assignment where the communication

requirements needed for distributed task scheduling are satisfied.

The Optimal Distributed Non-Sequential Backtracking Algorithm (OptDNSB)

solves the Minimum-time Arbitrarily-constrained Distributed Scheduling Problem

(MADSP). The MADSP is the problem of finding a task schedule that satisfies a

number of mission constraints while minimizing mission time; knowledge of the tasks,

constraints, and the capabilities of the agents are distributed. The OptDNSB Algo-

rithm is correct, complete, and optimal. It is shown here that these properties are

maintained while running the OptDNSB Algorithm concurrently with the SBA.

1.9 Dissertation Overview

The rest of the dissertation is organized as follows. Chapter II gives a review of

existing literature in the areas of vehicle routing, task assignment and task scheduling,

multi-agent systems, and distributed systems. A summary of limitations present in

the existing literature is also presented. A brief comparison of the methods developed

in the dissertation with existing methods is also given. Chapter III formulates the

Vehicle Routing Problem solved in this dissertation. The Tabu/2-opt Algorithm is

developed and an analysis of the algorithm’s performance is given. Chapter IV for-

mulates the Communication-Constrained Distributed Assignment Problem and the

Minimum-time Arbitrarily-constrained Distributed Scheduling Problem. The dis-

tributed algorithms used to solve these problems are developed and analyzed. Chap-

ter V gives summarizes conclusions resulting from this work and recalls the original

contributions. Appendix ?? presents a list of relevant publications associated with
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this work.
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CHAPTER II

Literature Review

Consider several vehicles (agents) that move in a two dimensional geographic area,

under kinematic constraints, and starting from at least one depot. The mission that

the vehicles are to accomplish consists of several tasks. In general the vehicles need

not end the mission where they start. The tasks have physical locations within the

geographical area and require a certain amount of time to complete. Depending on

the problem formulation, the tasks may be referred to as cities or locations; tasks

must be “performed” or “visited” by the vehicles.

The mission is specified using constraints that can restrict the order of task com-

pletion, the choice of task completion, or both. These constraints are represented

generally as predicates that must be satisfied (i.e., evaluate true). Given this de-

scription of the mission, the agents must find (1) a task assignment specifying which

agents do each task and (2) a task schedule specifying the order and choice of task

completion such that an objective function is minimized. This objective function

typically represents the total distance traveled by the agents or the total time taken

to complete the mission.

This problem of task assignment and task scheduling is often considered in a cen-

tralized context where the communication between agents is not considered. When

the problem formulation incorporates the idea that problem data and the authority to
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make decisions are distributed among the agents, the problem is termed distributed.

Several bodies of literature including Vehicle Routing, Task Assignment and Task

Scheduling, and Multi-Agent and Distributed Systems have addressed aspects of cen-

tralized and distributed task assignment and task scheduling problems.

The centralized task assignment and task scheduling work in this dissertation con-

siders kinematically constrained vehicles operating in a two dimensional environment.

Precedence constraints are incorporated in the problem description. The objective

in this problem is to minimize the mission time. The distributed task assignment

and task scheduling work in this dissertation incorporates notions of communication

between agents in the form of a communication graph, and distributed authority over

the task assignment and task schedule. Constraints on communication, task prece-

dence, and task choice are incorporated. The objective is also to minimize mission

time.

This chapter presents a review of related problems and solution techniques. These

are relevant to the work of this dissertation in several ways. The Vehicle Routing

Problem (VRP) is to dispatch several vehicles to a number of geographically dispersed

locations. VRPs often incorporate the following ideas. Only one agent should visit

each location, minimization of time required, constraints on which vehicles should

visit each location, and precedence constraints restricting the order of visitation.

The algorithms that have been developed to solve VRPs have focused on exact and

heuristic methods [41]. Several of these ideas are interesting from the perspective

of this dissertation and the work on centralized task assignment and task scheduling

contributed to this literature.

The Task Assignment and Task Scheduling communities have produced efficient

polynomial-time algorithms for task assignment problems involving linear and nonlin-

ear objective functions. These algorithms often have guarantees on the solution qual-

ity relative to optimality. That is, they may yield optimality or guarantee solutions
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of a certain quality. Scheduling has received much attention from the areas of manu-

facturing and operations. The scheduling literature addresses problems of scheduling

jobs to be performed, where jobs are composed of operations that have precedence

relationships between them. Scheduling is provably hard [110]. The requirement that

tasks be completed as quickly as possible combined with the constraints on order of

completion have motivated efficient algorithms to solve large-scale scheduling prob-

lems. The Task Assignment and Task Scheduling literature provide direct motivation

and insight for the work of this dissertation.

The Multi-Agent Community has developed frameworks for cooperative multi-

agent groups to collectively solve problems. This community has addressed such

fundamental issues as quantifying the coupling inherent in a system of agents whose

actions can affect each other. Various general formulations for multi-agent planning

such as Distributed Constraint Satisfaction and Distributed Optimization have come

from this community. This community gives insight to the nature of distributed

problem solving, which has helped in the design of the formulations and algorithms

explored in this dissertation.

The Distributed Systems Community has traditionally addressed problems of dis-

tributed computing. Fundamental notions concerning distributed agreement, fault

detection, and definitions of time for distributed systems have originated in this field.

The ideas of synchronous and asynchronous timing assumptions and the associated

consequences for distributed computing began in the distributed systems community

[37, 67]. Algorithms for leader election, distributed agreement, distributed optimal

network construction, and failure detectors have been designed by this community

[75, 16, 69]. This work is referenced to provide overall context to the discussion of

distributed task assignment and task scheduling. Some of the models developed for

distributed systems are used herein.
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2.1 The Vehicle Routing Problem

The Vehicle Routing Problem (VRP) originated in truck dispatching [25]. The

problem is: given several vehicles and several locations for them to visit; find routes

for all of the vehicles such that the total length of all routes is minimal. This problem

plays a critical role across several applications including truck dispatching, supply

chain management, and organizational optimization [43, 41]. Several variants of this

problem consider constraints on vehicle carrying capacity, precedence constraints,

and different objective functions. The discussion of this section considers agents as

vehicles.

It is common to use a graph-theoretic representation for the VRP; however, a task

assignment and task scheduling framework is used here for its ability to incorporate

explicit notions of time. For instance, in Chapter III precedence constraints are used

to restrict the order of task completion; therein it is not important that the same agent

perform constrained tasks, only that the timing constraints be obeyed. The VRP can

be stated generally within the task assignment and task scheduling framework as

min
TA,TS

J(TA, TS), (2.1)

s.t. p(TA, TS). (2.2)

That is, given an objective and constraints that are functions of the assignment of

vehicles to tasks and the order of task visitation, find a task assignment and task

schedule that minimizes the objective J(TA, TS) while satisfying the constraints

p(TA, TS).

The objective functions used here are discussed in terms of the length of vehicle

routes. For VRPs of the following sections, this can be expressed as time or distance.

The time an agent ai ∈ A spends to visit the tasks assigned to it is a function of the

task schedule and task assignment and is Tei(TA, TS). For several of the problems
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discussed below decision variables can be chosen for the problem such that Tei is a

linear function of the decision variables; for the problem of Chapter III, it is not.

This section presents a review of the Vehicle Routing Problem literature including a

number of prominent variants of the problem.

2.1.1 The Classic Traveling Salesman Problem

The Traveling Salesman Problem (TSP) can be stated as follows,

min
TS

Te1(TS), s.t. (2.3)

d(ti, tj)

v(1)
≤ |TS(ti)− TS(tj)| , (2.4)

where for the TSP, TA(ti) = TA(tj), ti ∈ T , tj ∈ T . Equation 2.4 reflects the

minimum travel time between two tasks, where d(ti, tj) is the distance between tasks

ti and tj, and v(1) is the unit velocity. The objective is to minimize the time to visit

all tasks. This model assumes vehicles with unit velocity and first order unicycle

kinematics.

The TSP is the canonical VRP. The search for better solution methods has been

the source of much advancement in combinatorial optimization. When solved to

optimality, the problem size can scale exponentially with the number of locations to

be visited. There are heuristics available to solve the TSP approximately. A survey

of these is given in [1].

Construction heuristics given in [1] for the TSP include the Nearest Neighbor,

Greedy, Clarke-Wright, and Christofides heuristics. The Nearest Neighbor heuristic

builds a TSP tour by iteratively adding unvisited cities to the tour. The salesman

begins at a starting city and then visits the next closest unvisited city. The Greedy

method is based on a graph theoretic interpretation. Consider a graph with the cities

as vertices and an edge between each pair of vertices with length equal to the distance
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between the two vertices. The Greedy heuristic begins by selecting the edge with the

smallest distance. The available edge with the shortest length is added to the tour;

this is repeated to form a complete tour. The edges added must never cause a vertex

in the tour to have degree more than two.

The Clarke-Wright Heuristic begins by choosing a single city as a hub. The tour

is iteratively built by replacing edges to the hub by edges between cities that shorten

the tour. The Christofides Heuristic [21] provides the best quality of any existing TSP

construction heuristic, giving tours within 3
2

of optimal for any instance. This heuristic

first constructs a minimum spanning tree and then a minimum-length matching is

built using the odd vertices of the spanning tree. The matching is combined with the

spanning tree to yield a new graph. An Euler cycle [21] is then extracted from this

graph.

The version of the 2-opt move used here, and its higher order variants, are the

basis for many TSP heuristics including the use of Tabu Search heuristics [62], Sim-

ulated Annealing [9], and Genetic Algorithms [91]. The most successful heuristic is

a variation of the original Lin-Kernigan (LK) TSP Heuristic [73]. The LK Heuristic

is a repair heuristic that accepts as input an initial solution to the TSP and modifies

the solution by changing the order in which cities are visited. The most effective

implementation of the LK Heuristic is that of [44, 45], the LKH Heuristic. The

LKH Heuristic is able to find optimal solutions for all standard test instances of the

TSP, holds the record for the largest TSP solved to-date, and has an average-case

time complexity of O(n2.2), where n is the number of cities. This implementation

of the Lin-Kernighan heuristic holds the record on solution cost for all TSP problem

instances in the TSPLIB, a collection of standard test instances for the TSP.
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2.1.2 The Precedence Constrained Traveling Salesman Problem

For the Precedence Constrained Traveling Salesman Problem (PCTSP), we define

a set Pi (possibly empty) for each task ti ∈ T as the set of tasks that must precede

ti in the schedule. The PCTSP can be stated as follows,

min
TS

Te1(TS), s.t. (2.5)

d(ti, tj)

v(1)
≤ |TS(ti)− TS(tj)| , (2.6)

TS(ti) > TS(tj),∀tj ∈ Pi, (2.7)

where for the PCTSP, TA(ti) = TA(tj), ti ∈ T , tj ∈ T .

The PCTSP is treated in [3] and is concerned with satisfying precedence con-

straints dictating the ordering of certain tasks. Here, the objective is to find a feasible

tour, satisfying all precedence constraints, with minimal cost. The method of [3] uses

a cutting plane algorithm to exclude portions of the search space that violate prece-

dence constraints. The procedure is an iterated linear programming scheme. When

a precedence constraint violation is detected, the linear program is augmented with

a new constraint, or cutting plane, and continues. The method can suffer from a

possible exponential increase in the number of additional constraints, but in practice

can solve instances of several hundred cities.

The work of [102] provided a Branch and Cut formulation that results in an

improvement in the worst-case number of constraints to polynomial. This work ad-

dresses symmetric and asymmetric TSP formulations. More recently much work has

been done to consider precedence constraints in the context of pick-up and delivery

problems [30, 23, 22] (Section 2.1.4).
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2.1.3 The Multiple Traveling Salesman Problem

The Multiple Traveling Salesman Problem (mTSP) can be stated as follows,

min
TA,TS

∑
ai∈A

Tei(TA, TS), s.t. (2.8)

d(ti, tj)

v(1)
≤ |TS(ti)− TS(tj)| , TA(ti) = TA(tj), (2.9)

where ti ∈ T , tj ∈ T .

The problem is: given several vehicles and several locations for them to visit;

find routes for all of the vehicles such that the total length of all routes is minimal.

This problem is been addressed in the literature through integer linear programming

formulations [55, 5] and through the use of transformations to the single TSP [42].

A survey of the mTSP and various formulations is given in [5]. This work presents

variations on the problem including time windows, fixed costs for including additional

vehicles, and lower and upper limits on locations visited by a vehicle. Applications

include scheduling of personnel, routing of school buses, scheduling of manufacturing

operations, and mission planning.

The integer linear programming formulation of the mTSP given in [55] presents

improved subtour elimination constraints, the constraints restricting a single vehi-

cle to one and only one tour. The primary innovation of this work is to include a

minimum and maximum number of locations to be visited by each vehicle. This is

a generalization that can be used in practice to require specific distribution of effort

among the vehicles. The formulation of [55] is able to provide computational speed-up

for problems of moderate size.
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2.1.4 Pick-up and Delivery

The Pickup and Delivery problem is a variant of the VRP where the vehicles must

pick-up packages and are constrained to deliver them after pick-up. This variant

includes elements from the PCVRP and the mTSP. A basic variant of the Pick-up

and Delivery problem is stated as follows,

min
TA,TS

∑
ai∈A

Tei(TA, TS), s.t. (2.10)

d(ti, tj)

v(1)
≤ |TS(ti)− TS(tj)| , TA(ti) = TA(tj), (2.11)

TS(ti) > TS(tj), ∀tj ∈ Pi, (2.12)

TA(ti) = TA(tj),∀tj ∈ Pi, (2.13)

where the constraint of (2.13) physically means that the same vehicle must pick-up

and deliver a package.

In [30] an analysis for the single TSP with pick-up and delivery is given. This

formulation is based on integer linear programming and an analysis is given of the

polyhedral structure of the problem. The proposed Branch and Cut algorithm is able

to solve problems with an improved number of precedence constraints over previous

methods.

In [23] a similar pick-up and delivery problem is addressed. Here, the additional

constraint is included to ensure that deliveries are done following a last-in first-out

policy. Inequalities are proposed that allow the formulation of this problem as an

integer linear program. The problem is solved by a Branch-and-Cut Algorithm. The

first-in first-out version of this problem is treated in [22]. The problem of pick-up and

delivery, without the LIFO or FIFO restrictions, with time windows is formulated

and solved in [94]. This work introduced the Branch and Cut and Price algorithm
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that uses improved lower bounds for increased efficiency over previously used Branch

and Cut algorithms.

The work of [84] treated a version of this problem. This work provided a Tabu

Search-based heuristic for this problem. The features of the problem formulation

include multiple vehicles, a single vehicle depot, vehicle capacity limits, limits on

vehicle travel distance, pick-up and delivery constraints, and a linear (i.e., sum of

distances) objective function. This work shows that a Tabu Search-based heuristic

can be used to find high-quality solutions to VRPs with a variety of constraints.

In [12] the Fleet Size and Mix Vehicle Routing Problem is formulated and solved

using a Tabu Search Algorithm. This formulation includes vehicles of different ca-

pabilities, capacity constraints, a fixed cost for using vehicles of different types, and

a variable travel cost. The objective is to minimize the sum-total cost of servicing

customer demands. This heuristic first constructs routes using a nearest neighbor

heuristic. The Tabu Search moves customers between agents’ routes to improve cost.

Another Tabu Search Algorithm is applied to the VRP with simultaneous pick-up

and delivery in [114]. This algorithm overcomes the scalability problems of [85]. The

work of [85] is based on an Integer Linear Programming formulation and is only able

to handle small problem instances.

2.1.5 Unmanned Air Vehicle Mission Planning

Modern mission planning is taking advantage of constrained task assignment and

task scheduling formulations. A survey of cooperative decision and control methods

applied to unmanned air vehicles (UAVs) is given in [104]. This work motivates the use

and coordination of several vehicles to accomplish a military mission. The motivation

includes the ability to collect and share information using distributed agents, effective

management of resources, and robustness to failures. Further motivation for these

abilities are provided directly from the U.S. Air Force in their annual Technology
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Report, [24]. This report details the Air Force’s vision for the development of their

operational capabilities over the next twenty years.

A Capacitated Transshipment Assignment Problem (CTAP) formulation is used

for Unmanned Air Vehicle (UAV) task assignment in [104]. These methods are not

computationally intensive and are scalable, but involve very little scheduling of the

agent routes. This formulation is designed to model the real-time assignment of tasks

to agents. Agents are iteratively assigned one task each; tasks are assigned as agents

complete them. This process is repeated until all tasks have been assigned.

Mixed Integer Linear Programming (MILP) formulations are presented in [104]

that describe missions with precedence constraints (between distinct routes, fuel con-

straints, and minimization of mission time. Tree Search formulations have also been

used to the same effect. However, in practice the solution time for both methods

scales exponentially with the number of tasks and agents. In practice, these tools are

only viable for small problem instances.

The tools of distributed consensus (see Section 2.3.4) are used in [104] to develop

distributed estimation algorithms. This work develops a distributed information filter

used to estimate the positions of distributed targets and agents. This is a means by

which each agent could estimate a global picture of the environment using corrupted

and latent local information from the other agents.

The modeling of adversarial missions is done in [33]. In this work, the adversaries

have the ability to cooperate and improve their attacking capabilities to achieve better

results. With this knowledge, the UAVs must formulate a mission plan to capture a

high-value asset from adversarial agents. This work allows the explicit trade-off of risk

and reward in mission design. The authors detail UAV adversarial missions further

in [32]. This work includes UAVs with heterogeneous capabilities and Linear/Metric

Temporal Logic mission specifications.

The work of [56] develops Linear Temporal Logic (LTL) tools that can express
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a wide variety of UAV missions. These tools are used to generate a set of MILP

constraints. The resulting optimization problem is solved in the MILP framework

using standard optimization tools. The novelty of this approach is the application of

LTL mission specifications to UAV mission planning and the constraint generation

algorithms. Along the same thread of research, including Metric Temporal Logic

constraints in a VRP is done in [57]. This problem formulation allowed for time-

windows in the pick-up and delivery problem. This is in addition to the mix of

temporal and logical constraints.

Decentralized perimeter surveillance is studied in [60]. The problem of having

multiple agents guarantee coverage of a possibly changing perimeter is addressed.

The goal here is to gather and relay information from the perimeter to a central

location. The agents must ensure convergence in the presence of communication

range limitations. The algorithm guarantees that the agents converge to a patrol

pattern that assigns equally portions of the perimeter to the agents. The paper

presents solutions for agents with and without kinematic constraints.

Cooperative search scenarios like that of [123] are important when a group of

autonomous agents are tasked with the pursuit and capture of a moving target. The

work of [123] assumes a target with probabilistic behavior with known distribution.

The goal is for the autonomous agents to use knowledge of the target’s likely motions

to cooperatively capture the target. This problem considers urban terrain where the

presence of buildings can occlude vision. The agents also have different capabilities,

i.e., the unmanned ground vehicles are slow, but can capture the target and the

unmanned air vehicles are fast, but cannot capture the target. An auction method is

used to solve the problem.

Near-optimal coalition formation for the purpose of cooperative target prosecution

can allow unmanned aircraft to pool limited resources in an attack [77]. In [77], the

problem is: given a set of UAVs, find an optimal subset of UAVs to be assigned
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to prosecute a target in minimum time. A Particle Swarm Optimization technique

is used to overcome computational complexity. Their method gives near optimal

solutions to this problem.

The work of [51] and [50] developed a novel heuristic for a precedence constrained

mission planning problem. The problem formulation incorporates vehicle velocity

(lower and upper) bounds, precedence constraints, multiple vehicle depots, distinct

vehicle dispatch and recovery locations, and minimization of mission time.

The centralized work of this dissertation is presented using a vehicle routing frame-

work. The problem formulation expresses precedence constraints that require agent

timing coordination, agent coordination for cooperative task completion, capability

constraints, and minimization of mission time. This VRP framework is able to ex-

press multi-vehicle operations where the vehicles must be routed between locations

in the Euclidean plane. The Tabu/2-opt heuristic used to solve this problem is able

to satisfy these constraints and minimize mission time. Task assignment and task

scheduling are used to frame the mathematics through out this dissertation, central-

ized and distributed. Additionally, task assignment and task scheduling tools are used

prominently in the development of the distributed work. As such the task assignment

and task scheduling literature is reviewed here.

2.2 Task Assignment and Task Scheduling

Task assignment and task scheduling are used by agents to determine who will do

which tasks and when those tasks will be performed. This section presents a review

of the task assignment and task scheduling literature. This section also discusses

distributed task assignment and distributed task scheduling.
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2.2.1 The Task Assignment Problem

The assignment problem is to assign Nt tasks (or objects) to Na agents such that

some utility (or objective) function is maximized (or minimized). The utility function

couples the assignments of the agents. Maximizing the utility of a task assignment

can be done in a centralized or distributed way.

A detailed survey of task assignment formulations is given by [39]. This survey

discusses task assignment formulations and algorithms in the context of objective

function minimization. The classic auction algorithm which minimizes a linear ob-

jective function subject to capability constraints is discussed. This work formalized

the notion of agents that have the capability to perform several tasks, the notion of

tasks that require several agents to be performed, and the notion of instantaneous

versus time-extended assignments. The latter notions deal with the ability to make

task assignments that consider the future state of the world. The complexity and

optimality of various methods is investigated within this context.

The Hungarian Algorithm for the assignment problem solves a linear uncon-

strained assignment problem [64]. The Hungarian Algorithm is the first polynomial-

time algorithm used to solve the assignment problem and find an optimal solution.

Prior to [64], the Hungarian Algorithm is used to assign workers to jobs consider-

ing only whether they were qualified or not. This binary measure of suitability is

extended in [64] to a real measure of benefit. The Hungarian Algorithm for the

assignment problem has complexity O(NaN
2
t ).

A modern application for assignment algorithms is that of robot soccer [108, 115,

112]. Robot soccer is a dynamic, multi-agent environment where the information

needed by the robots to assign tasks changes dynamically. This assignment problem

contains single-agent tasks (i.e., task requiring only one agent) and single-task agents

(i.e., agents capable of performing only one task). In this setting, the task assignment

must be computed on the order of milliseconds. These algorithms must also address
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the problem of partially-synchronous communication of required information. For

this real-time application, greedy assignment algorithms perform well.

The assignment of multiple agents to a task can be done using coalition formation

techniques [100]. This work addresses the problem of combinatorial optimization by

self-interested distributed agents. The agents are solely interested in maximizing their

own benefit. However, several of the tasks are better achieved through cooperation.

This work explicitly incorporates computational limits into the problem formulation.

This model allows agents to cooperate to overcome high computation costs. It also

explicitly excludes the possibility of computing optimal solutions for large problem

instances. The coalition formation methods of [100] are applicable across many prob-

lems, but are mentioned here for the applicability to task assignment.

In [28] a leader-based approach to task assignment is used. This approach is a

market mechanism where agents bid for tasks selfishly, but may propose solutions

involving other agents. If these local solutions provide more benefit than selfish

assignments, the solution is adopted by the agents. Because the assignment problem

is combinatorial, there is an upper limit on what a single agent can compute. However,

evaluating a group of assignments rather than individual assignments can improve the

quality of the assignments.

Negotiation is a paradigm that is used to frame task assignment problems. Ne-

gotiation can be used by agents to determine a task assignment. Auction algorithms

are tools that agents can use for effective negotiation. The following section discusses

negotiation and auctions in this context.

2.2.2 Negotiation and Auctions

Negotiation is a process by which a joint decision is reached by two or more agents,

each trying to reach an individual goal or objective [118]. An auction is a market

institution with an explicit set of rules determining resource allocation and prices on
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the basis of bids from market participants [80].

Negotiations and auctions span the topics of economic interactions, multi-agent

planning, scheduling of resource usage, assignment problems, and vehicle routing.

The work of [80] examined auctions as a device for the exchange of information

between buyers and sellers. This work studied price equilibria and the equivalence

of the English, Dutch,First-Price Sealed-Bid, and Vickery Auctions. The work of

[80] studied the effects of asymmetric information, incentives for bidders, and bid

correlation on the optimality of these four types of auctions.

The classic auction algorithm of [7] is used for distributed resource allocation

problems with linear objective functions. This algorithm solves the problem of as-

signing Nt tasks to Na agents where Nt = Na. The agents bid in a greedy way, that

is, each agent places a bid for the task that is the best value. The value of a task

for an agent is defined as the benefit of that agent being assigned the task minus

the price paid for the task. The prices are raised incrementally until the exchange

of tasks reaches an equilibrium. The classic auction algorithm of [7] shows that the

classic assignment problem can be solved in linear time. That is, the classic auction

algorithm has a time-complexity linear in the number of tasks being assigned. The

only constraints that the classic auction algorithm can cope with are those associated

with the capabilities of the agents. This type of constraint is dealt with by restricting

the set of agents that may bid on a task.

The assignment problem of [7] can be stated in terms of agents and tasks as

follows. Consider the set of Na > 0 agents in (3.2) and the set of Nt > 0 tasks in

(3.1). Let bij be the benefit of assigning task ti to agent aj. The assignment problem

is to find an assignment TA of tasks to agents such that

J(TA) =
∑

(ti,aj)∈TA

bij (2.14)

is maximum.
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The basic low complexity auction algorithm of [7] is as follows. Let ij satisfy

aj = TA(tij). The auction algorithm of [7] is a repair heuristic that operates on the

assumption that each task ti has a price pi that an agent must pay in order to be

assigned to it. The algorithm seeks an assignment such that,

bijj − pij = maxi{bij − pi} − ε. (2.15)

where ε is called the slack variable. The market mechanism used to achieve this

requires that each agent aj place a bid for a task tij where

ij ∈ arg max
i:ti∈T
{bij − pi}. (2.16)

Each unassigned agent aj places a bid γj = vj − wj + ε where

vj = maxi{bij − pi}, (2.17)

wj = maxi,i 6=ij{bij − pi}, (2.18)

and the price pi is raised by γji upon agent aji winning task ti. This algorithm

repeats this process until bijj−pij ≥ maxi{bij−pi}− ε for all tasks ti ∈ T . The basic

auction algorithm terminates in O(
maxi,j |bij |

ε
) iterations and with ε < 1

N
the algorithm

terminates with an optimal assignment.

The work of [101] detailed mechanisms for negotiating agents to assign resources

amongst themselves. This work provided a game theoretic and a distributed sys-

tems point of view. Auction protocols, contracting, coalition formation, and deceitful

agents are addressed in the Sandholm dissertation.

The work in [29] presents a method for resource allocation among distributed

agents where the agents’ preferences are induced by a Markov Decision Process
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(MDP). A critical assumption here is that the agents’ transitions between states of

the MDP and the rewards received are independent of each other once the resources

are allocated. Additionally, resources may not be reallocated once allocated. The

objective function being minimized is quasi-linear and the agents bid on bundles of

resources. The enumeration of possible bundles can result in an exponential increase

in complexity with respect to the cardinality of the set of resources. A MILP formal-

ism is used to address this issue. A central auctioneer is required to moderate the

auction.

The work of [116] treats a scheduling problem where time slots are assigned to

agents who must schedule the execution of jobs. The scheduling problem is posed as

an exchange economy and is treated using market-oriented programming (i.e., auc-

tion mechanisms). This work discusses fundamental factors that effect the existence

of equilibrium solutions and gives conditions for such existence. Several auction mech-

anisms and the associated convergence, complexity, and optimality characteristics are

discussed.

In the negotiation and auction work of [101, 29, 116], privacy of information is

a concern. Privacy of agent information is not an explicit concern in the current

dissertation. This difference is due to the separate communities these bodies of work

serve. The current work considers agents that are seeking to maximize a global bene-

fit. Bidding is used as a tool to accomplish this. The benefits of auction mechanisms

exploited here are their distributed operation and efficiency.

The classic auction algorithm is extended by [19]. The auction algorithms of [19]

provide the following extensions to the classic auction algorithm. Data aggregation is

not necessary; a large class of nonlinear objective functions is accommodated; bounds

on the distance of cost value from optimality were given; and Nt ≥ Na is allowed. The

extension to a distributed framework is done by having agent relay bids across the

network and use conflict resolution to determine winners. A similar technique is used
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here. The extension to nonlinear objective functions is done for a class of objective

functions where the function value increases monotonically with the assignment of

multiple tasks to a single agent. Optimality bounds are given by showing that the

algorithm performs no worst than a greedy algorithm.

The Contract Net Protocol (CNP) of [105] is a task sharing protocol. It is designed

to allow agents to enlist their peers to assist with performing tasks that can better

be performed with or by other agents. The CNP operates as follows. An agent

responsible for a task can choose to ask other agents, that it may communicate with,

to share in performing the task or accept responsibility for the task altogether. In

the single task case, an agent (the contracting agent) first sends a request for bids.

The request is sent to the agent’s neighbors. If the other agents choose to bid for

the job, they will send their bids. If the bid values are acceptable, the contracting

agent grants the contract to perform the task to the highest bidder. For a task that

can be separated into sub-tasks to enlist the help of others, the same procedure is

repeated for the sub-tasks. The work of [26] extends this contracting behavior into a

negotiation paradigm that can be used to formalize distributed problem solving more

broadly. The authors focus on using the idea of negotiation as a cooperative tool.

The CNP is used to implement this tool. The CNP is used for vehicle routing in

[11]. The CNP optimizes the assignments of locations to vehicles, while an insertion

heuristic optimizes the routes of the vehicles.

In [52] the problem of Communication-Constrained Distributed Assignment (CDAP)

is formulated and solved. The CDAP is the problem of assigning tasks to agents such

that agents assigned tasks sharing a constraint can communicate directly. This work

presents a correct randomized algorithm, the Stochastic Bidding Algorithm (SBA),

to solve the CDAP. For an algorithm to solve the CDAP, it must find an area of

the communication network that contains the required subgraph. This problem is a

cousin of the graph matching problem which is NP-complete. The SBA is shown to
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find a solution if one exists and to have linear average-case complexity.

The Stochastic Bidding Algorithm developed in Chapter IV is used for constrained

task assignment. It is similar to the above auction algorithms in that it is used by

agents to bid for tasks. Unlike the above techniques, this algorithm solves a nonlinear

task assignment problem using a distributed stochastic search. In our discussion of

task assignment and task scheduling task scheduling is used to determine the times at

which tasks will start and finish. The following sections reviews the task scheduling

literature.

2.2.3 The Job-Shop Scheduling Problem

Scheduling has often been considered separately in the form of the Job-shop

Scheduling Problem (JSP) that originated in manufacturing. In many practical cases

scheduling is NP-Hard. The NP-completeness of two fundamental classes of JSPs is

proven in [110]. In [110] it is shown that the JSP with two machines, each capable

of performing all tasks, and the JSP where all operation durations are equal, are

both NP-complete. This result is important because it verifies the NP-completeness

of problems that are generalizations of these two. The analysis of [110] considers the

problem of verifying the existence of a schedule given a known fixed makespan. When

minimization of the makespan is considered, the problem of verifying the solution be-

comes as difficult as finding the solution, and is NP-hard.

The work of [17] and [18] review Genetic Algorithm (GA) methods for solving

JSPs. When using a GA, it is important to describe the problem such that it is

solvable by a GA. This description is the solution representation. In [17] various

types of solution representations are reviewed in detail. The intention is to discuss

the ability of each representation to cope with the constraints of the JSP. In [18] the

various crossover operations associated with each type of solution representation are

reviewed in detail. A GA is presented in [53] that solves the problem of scheduling
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jobs amongst several factories, each with various capabilities. The factories in this

work are considered to be geographically distributed, but the solution method is

centralized. The solution method is an adaptation of a centralized Genetic Algorithm-

based method for the problem of [53]. A GA is introduced to solve the flexible JSP

(FJSP) in [88]. The FJSP is a generalization of the JSP where, for each job, a machine

must be chosen to perform the job from a set of capable machines. That is, in the

FJSP, the assignments of operations to machines has not been done a priori.

In [98] and [97] a number of heuristics are evaluated that can effectively reduce the

complexity of Backtracking searches. Specialized heuristics for the JSP are developed

that are able to use constraint satisfaction methods to minimize makespan. These

heuristics are applied to the JSP problem domain for this analysis. Several heuristic

improvements for Backtracking searches are detailed in [119]. These heuristics adjust

the order in which a Backtracking search should proceed to assign times to tasks so

as to avoid backtracking. Several of these heuristics are also given in [95].

The work of [74] addresses the problem of job scheduling using a due-date-based

heuristic. This heuristic incorporates the precedence constraints of the JSP. The

objective function used is weighted tardiness. This objective function is used to

penalize the sum of the lateness of completion of the jobs being scheduled. It is a

linear function of the finish times of the jobs and the weights must be determined

a priori. This work is based on Dispatch Scheduling, a greedy scheduling procedure

that is used for real-time scheduling and execution.

The Shifting Bottleneck Procedure is described in [2]. The Shifting Bottleneck

Procedure is a construction heuristic that gives priority to the machine that is the

source of the bottleneck. That is, the heuristic attempts to build a schedule by

scheduling the machine that is the source of the bottleneck first while locally opti-

mizing the individual schedules of the other machines.

Simulated Annealing can be used to solve the JSP [113, 72]. The work of [113]
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presents a formulation that gives good solutions to the JSP where the objective is

to minimize makespan. The asymptotic convergence to optimality is proven. The

work of [63] presented a method to counteract the high computational-time cost of

using Simulated Annealing to solve the JSP. The problem presented in [63] treats

a typical JSP with a unique, distributed method of computation. In this work the

authors were able to distribute the computational effort of solving the JSP over several

computational nodes.

2.2.4 Distributed Scheduling

Distributed scheduling concerns the scheduling of tasks when the knowledge of

the tasks, scheduling constraints, and (possibly) knowledge of the schedule are dis-

tributed.

Scheduling computational jobs on computer clusters is addressed in [124]. This

work addresses real-time task scheduling and optimizes the associated quality of ser-

vice (QoS). Additional concerns of this work are fault-tolerance. The algorithm devel-

oped for this scheduling problem is capable of functioning when cluster computers fail.

This is accomplished by maintaining backup copies of jobs and scheduling the backup

jobs at later times than the respective primary job. This scheduling is adjusted to

maximize quality of service.

In [27] a distributed auction formulation is developed for a JSP including task

assignment and capacity constraints. This novel approach applies Lagrangian Relax-

ation to incorporate scheduling constraints into a cost minimization procedure. Two

complementary auctions are used. The first implements an auction between agents to

minimize a price paid by each agent for tasks it is assigned. The second implements

an auction between tasks to minimize resources used as a function of the Lagrange

multipliers. This method is able to simultaneously minimize a linear cost function

and determine the Lagrange Multipliers that augment the cost function with the
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constraints. This work assumes a complete communication graph.

One important approach to distributed scheduling is via the Temporal Decoupling

Problem (TDP) [47, 46, 90]. The TDP can be described generally, but is described

in the task scheduling framework as follows. We are given several tasks that must be

scheduled by distinct agents where the scheduled times of the tasks must obey a set

of precedence constraints. We are also given a partitioning of the tasks, each agent

corresponding to a subset in the partition. The goal is to find the following: a set

of constraints corresponding to each agent; such that each agent may independently

schedule its tasks subject only to its set of constraints, while guaranteeing satisfaction

of the original timing constraints. This is subject to the existence of a solution. The

time points together with the original precedence constraints are called a Simple

Temporal Network (STN).

A family of sound and complete algorithms is given in [47] for solving the TDP. The

topics of augmenting, controllability of, and distributing control of STNs is covered

in [48]. Augmented STNs contain a time point that represents the current time. The

aim of distributing control of an augmented STN to several agents is for the agents

to be able to perform their tasks considering the decoupled STNs without interfering

with each other.

Optimal Temporal Decoupling is addressed in [90]. The OTD Problem is to find

a solution to the TDP that maximizes some metric h that is a function of the decou-

pling [46]. The work of [90] demonstrated that the OTD Problem is NP-hard. This

work also offered classes of the metric h that facilitated the polynomial-time solu-

tion of the OTD Problem using Linear Programming. In [89] algorithms are offered

that improve on the previously best known time and space complexity of checking

the consistency of Simple Temporal Networks (STNs). That is, they provide effi-

cient algorithms for checking to be sure a solution exists that satisfies temporal (or

precedence) constraints.
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The problem of distributed scheduling subject to uncertain completion times is

addressed in [106]. Uncertainty is addressed in two ways. First, the idea of explicitly

inserting slack into the schedule between constrained tasked is used to absorb unex-

pected delays in execution. This is done using a STN problem formulation. Second,

rescheduling is used to account for unexpected changes that will cause constraint

violations.

The work of [49] addresses arbitrarily-constrained distributed scheduling. This

method involves using a discrete-time representation and incorporating temporal and

logical mission constraints using a constraint satisfaction problem framework. Repre-

sentation of the scheduling problem as a DCSP is used here to solve the MADSP. This

work is extended in this dissertation to the OptDNSB Algorithm that gives minimum-

time schedules. The scheduling goals of this dissertation are twofold. The first is the

inclusion of constraints that can express logical and temporal restrictions of mission

planning. The second is the minimization of mission time. This is accomplished in

Chapter IV.

2.3 Multi-Agent and Distributed Systems

Multi-agent systems [118, 31, 10, 111, 26] is a broad field that studies the in-

teraction of agents (often computational) that interact for the purpose of achieving

cooperative or selfish interests, or both. This section reviews work in this field.

2.3.1 Distributed Problem Solving

Distributed Problem Solving is largely concerned with the study of cooperative

agents. This field addresses the challenges of having distributed agents cooperate to

solve problems given that their actions, goals, and computing abilities are distributed.

An exposition is given in [118] covering topics such as multi-agent decision mak-

ing, problem solving, search, learning, practical applications, etc. This work intro-
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duces agents as being able to perceive their environment, respond to changes, exhibit

goal-directed behavior, and interact with other agents. Agents use these abilities to

accomplish their own, and possibly global goals. In [118] the topics of agent commu-

nication (languages), interaction protocols are addressed; planning representations,

task sharing and coordination protocols are given. Multi-agent constraint satisfaction,

optimization, and rational decision making considering selfish and dishonest agents

are discussed. Multi-agent learning, organization, and reasoning formalisms are given.

Additionally, [118] discusses practical agent-based programming and software design.

Early work on distributed problem solving can be found in [71, 31]. The work of

[71] developed the idea that the distributed system need not provide a correct output

at all times. The idea is that the cooperating agents could iteratively solve pieces of

a global plan and that this plan can eventually be satisfactory (by some measure).

Additionally, the agents can potentially reduce communication requirements by com-

puting partial results from data collected locally and then communicate more distilled

information. The idea here is to enhance robustness, reduce communication costs,

distribute processing, and increase the ability of the system to respond quickly to

new data.

In [31] partial global planning is considered as dynamic coordination between

agents. It is some of the first work to provide a general framework for distributed

agents to design consistent global plans using local information and coordination with

neighbors. Partial Global Planning is a technique for distributed problem solving

where each of the distributed agents produces a local plan that addresses its needs.

Agents use plan information from their neighbors to adjust their own plans to avoid

conflicts. The idea is for agents to plan locally to accomplish their local goals, then

to adapt those plans through communication with neighbors to achieve coordination.

The work of [10] considers the fundamental coupling relationships between the

agents’ own actions and a group of cooperating agents. This work also explores
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the coupling effect of the particular problem the agents are solving. This work is

fundamental in that it addresses the concept of “distributed-ness” as opposed to

a multi-agent system being distributed or centralized. This work is able to quantify

coupling in terms of two parameters, one dependent on the coupling inherent between

the actions of the agents, and the other dependent on the particular problem being

solved.

In [86] the concepts of [10] were explored through implementation of a Distributed

Constraint Satisfaction Problem planning algorithm. Their algorithm used heuristic

value ordering combined with local search strategies for pruning to achieve efficiencies

in the CSP search. The search also gives preference to actions that are judged more

likely, by the search tool, to yield goal-achieving plans. In essence, these tools help

to search the solution space in a more effective order and quickly prune unfruitful

portions of the solution space. Distributed Constraint Satisfaction is reviewed in

further detail in Section 2.3.2.

Agents can coordinate their actions with others if they know the effects of those

actions. These effects must be modeled; one approach is to model these effects using

learning algorithms [125]. In this work, the actions and the constraints of the envi-

ronment are known. A satisfaction scheme uses this knowledge to generate models for

the actions that can then be used for multi-agent planning. In principle, this method

allows the designer to focus on specifying the actions and the constraints rather than

manual model design.

Another way to consider multi-agent planning is using multi-agent Markov Deci-

sion Process tools [6, 107]. This type of framework uses a model of the environment

that is discretized into states, whereby agents may probabilistically transition be-

tween states by employing actions. When in a state an agent receives an observation

and a reward. The observation and reward functions may differ between agents. The

aim is to find a policy (or plan) for each agent; this plan dictates its actions for the
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state it believes it is in. This policy will determine how the agent will interact with its

environment and with the other agents. The work of [107] contributes a toolbox for

modeling and testing multi-agent planning systems using Markov Decision Process

frameworks.

2.3.2 Distributed Constraint Satisfaction and Optimization

A review of constraint satisfaction problem (CSP) solution techniques is given in

[4]. This review discusses formulation of planning problems as CSPs. Techniques for

solving CSPs are discussed and speedup techniques based on heuristics are presented.

Scheduling problems are also discussed in [4] and heuristics for specific problems are

given. The link between planning and scheduling is illustrated. That is, planning is

presented as the problem of determining which tasks to perform and scheduling as

the problem of deciding when to perform the tasks.

The work of [121] studied the Distributed Constraint Satisfaction Problem (DCSP).

This is the first work to use classic backtracking techniques in a distributed setting.

These algorithms can solve a broad class of distributed problems including resource

allocation, scheduling, and truth maintenance. Distributed backtracking techniques

are the basis for much of the work on distributed problem solving. This is due to the

expressiveness of the CSP framework.

The work of [121] is extended to distributed optimization in [83]. The Distributed

Optimization Problem (DCOP) is the problem of minimizing a quasi-linear objective

function (i.e., a sum of nonlinear terms) given that the variables of discourse are

distributed among a group of communicating agents. The DCOP can be solved using a

cousin of Distributed Backtracking called the Asynchronous Distributed Optimization

(ADOPT) Algorithm. This work [83] is the first to address distributed optimization

with this level of generality.

Resource Constraints are included in the the DCOP formulations of [8, 78]. The
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work of [8] developed a version of the ADOPT algorithm that is able to prune regions

of the solution space that violate hard constraints. In [78], the Resource Constrained

DCOP is introduced that considers that certain variables represent the use of par-

ticular limited resources. The objective of the optimization is to minimize the same

quasi-linear objective function of the original DCOP subject to the satisfaction of

the resource constraints. The complexity of the algorithm in [78] is subsequently

improved in [79].

Privacy of agents’ information is a concern in modern distributed problem solving

research [35, 122]. Agent privacy can be of concern in situations where relinquishing

information can decrease an agent’s competitive position. In scenarios of negotiation

where parties have complex needs and desires the constraints may contain information

on these needs and desires that the parties may not want to reveal. The works of

[35] and [122] provide modifications to existing distributed constraint satisfaction

and distributed optimization algorithms that help to reduce the amount of private

information shared during the solution process.

The method of Asynchronous Partial Overlay (APO) is a mediation-based algo-

rithm for solving DCSPs [76]. The method of APO is a new paradigm for distributed

constraint satisfaction. In contrast to traditional distributed backtracking techniques,

agents maintain two lists, good list and agent view, that contain information about

the variables, variable domains, and constraints that involve the agents’ own vari-

ables. Conflicts are resolved using mediation. An agent requests to be mediator

when it recognizes a conflict in the current variable values. Mediators are selected

based on the size of their good list, i.e., how much knowledge they have. Mediators

are responsible for resolving conflicts. The algorithm is correct and complete.

The work of [99] presented modern DCSP solution techniques and discussed several

open problems in the DCSP community including, privacy of agent data, exploiting

degrees of problem distribution to reduce message and time complexity, failure in DC-
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SPs, and uncertainty in the knowledge of constraints. This work also described the

high-level developments of modern train scheduling problems using the CSP frame-

work.

The Distributed Backtracking-based methods of [121, 120, 83] assume that agents

sharing involvement in constraints are neighbors. As such, these agents can commu-

nicate directly. The assumptions on the nature of the communication are equivalent

to an acknowledgement-based communication link with delay (i.e., messages are re-

ceived in the order they are sent, are subject to arbitrary finite delay, and are not

lost or corrupted). These assumptions are realistic in many scenarios and have led to

expressive distributed algorithms for solving the DCSP and DCOP. These assump-

tions incur a penalty in the communication links required; this penalty is related to

the expressiveness of the constraints used to describe the problem. This dependence

is discussed in detail in Section 4.1.7.

The current work extends the DCSP formalism for use in constrained distributed

scheduling. The DCSP can be stated as follows. Consider a set of N processes,

Processes, each in control of a variable vi ∈ Di, i = 1, . . . , N . The processes com-

municate using acknowledgement-based communication links. The communication

topology is specified by the process graph (1.15). The neighborhood of a process [pi]

on Gp is defined as

N[pi] = {[pj] : {[pi], [pj]} ∈ Ep}. (2.19)

Consider Nc constraints,

pm : D1 × . . .×DN → {false, true},m = 1, . . . , Nc, (2.20)

where the inputs to the constraint functions are the values of the variables and the

constraints output true if the values of the variables satisfy the constraint and output

false if they do not. The N processes trade messages to inform their neighbors of
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the values of their variables. For the purposes of backtracking, a priority function

PR : Processes→ N, (2.21)

is defined. The priority function allows for processes to be ordered. This ordering

is used in the distributed backtracking search to properly perform the operations of

expansion and backtracking. The specification and detailed role of this function is

discussed further in Section 4.2.

The following assumptions illustrate the difficulty of solving a CSP due to dis-

tributing the problem data over several processes. A process [pi] is assumed to know

the following:

1. Its neighborhood on the communication graph N[pi],

2. Its priority PR([pi]),

3. All constraints pm that vi is involved in,

4. And the domain of vi, Di.

The processes send and receive messages M ∈ M. The assumptions on message

communication are as follows.

1. Messages may experience arbitrary, but finite delay.

2. Messages are not lost.

3. Messages may be duplicated.

4. Messages are not corrupted.

The DCSP is: given the distributed knowledge and authority of the processes,

find values of the N variables such that all constraints evaluate true.
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2.3.3 Distributed Computing

Distributed computing is the field that is concerned with the inter-operation of

computers that operate asynchronously, and are subject to communication delays,

process failure, communication failure, and distribution of control, [36]. A review of

distributed computing is given in [36]. This review discusses the theoretical develop-

ments of distributed computing in comparison to the solutions needed and developed

by practitioners. The work illustrates a disconnect between theoretical developments

and the practical utility of these theories. The use of pessimistic models of process

asynchrony, process failure, and communication failure can result in theoretical re-

sults that are illuminating and elegant, but that may have limited utility in practice.

These results, [67, 37], often motivate the development of tools that are heuristic, but

function effectively in practice [16, 15].

The fundamental result of [37] considered the commit problem (see Section 2.3.4).

They show that for a completely asynchronous distributed system, agreement between

processes is impossible in the presence of even one faulty process. In practice complete

asynchrony is extremely pessimistic. In practice, algorithms are available for solving

the commit problem under slightly more restrictive assumptions [68, 69, 15]. While

algorithms to overcome faults are available, it can be more useful to have a more

general formalism that guarantees properties on which other distributed algorithms

can rely, [16]. In [16], it is shown that (distributed) failure detectors can be designed

that can eventually determine which processes have failed and which have not. This

work allows for the use of failure detectors, which satisfy certain properties, to be

used to assist other distributed algorithms.

The following distributed problems and distributed algorithms to solve them are

presented in [75]: electing a leader amongst several processes, constructing a breadth-

first search tree, constructing a minimum spanning tree, constructing a maximal

independent set, and resource allocation. Several of these problems are addressed
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for synchronous and asynchronous settings. The following subsections review the

problems of distributed commitment and distributed consensus.

2.3.4 Distributed Consensus

Agreement is a fundamental problem in distributed systems. Agreement problems

primarily come in two types: 1) several processes are to agree on the value for a single

discrete variable among several possible proposed values, and 2) several processes are

to asymptotically agree on the value of a variable. We refer to the first case as

commitment and the second as consensus. Algorithms that solve these two types

of consensus problems operate very differently. Discussion of these problems and

algorithms for their solution follow.

2.3.4.1 The Commit Problem

The problem of having multiple agents achieve consensus by commitment to the

discrete value of a quantity is called the commit problem. Algorithms used to solve

this problem are designed to ameliorate the effects of agent failure. In [66], the

algorithmic and implementation challenges of such systems were detailed. The work

of [37] proved the fundamental need for the agents of a distributed system to have

access to at least a rudimentary clock in order to solve the commit problem. Here,

we do not consider failure, but address the challenges of task assignment and task

scheduling when the communication topology is arbitrary and only locally known.

Commitment is treated in [69, 15, 13, 75, 66] and [37]. The commit problem in dis-

tributed systems is motivated by the need for fault-tolerant algorithms for distributed

databases. The commit problem is often stated as the coordinated attack problem

[75]. In this problem, several generals must coordinate an attack. The generals must

attack if possible and when they attack, they must all attack at once. The generals

coordinate the attack by sending messages to each other via message couriers that
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are unreliable in the sense that they may by captured or otherwise not deliver their

messages. One of the most successful algorithms used to solve the commit problem

is the Paxos Algorithm [69]. The algorithm is elegant and correct, but comes with

its own implementation challenges which are discussed in [15]. The Paxos Algorithm

is described briefly as follows.

Consider N processes with unique IDs where the processes are connected by un-

reliable communication links. All processes operate under the assumptions of the

following partially synchronous model.

1. Messages may be lost, delayed for an arbitrary length of time, or duplicated,

but are never corrupted.

2. Processes may fail by simply stopping and may recover.

3. Processes have incorruptible memory.

4. Processes know when they have failed and recovered.

The communication graph is complete and known by all processes. Values v with an

associated proposal number, m ∈ N can be proposed, without loss of generality v ∈ N.

The following four conditions must hold to guarantee the safety (or correctness) and

completeness of a commit algorithm.

1. Only a value that has been proposed by some process may be chosen.

2. Only one value may be chosen.

3. A process never learns that a value has been chosen unless it actually has been.

4. Eventually a proposed value is learned.

The Paxos algorithm uses three classes of processes: proposers, acceptors, and learn-

ers. In the context of distributed databases, proposers act on behalf of a client who
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wants to modify a database. The role of acceptors is to approve the modification

given that several proposers may be vying for different modifications. Learners are

the memory of this distributed system; their role is to remember the values that are

accepted by acceptors.

2.3.4.2 The Consensus Problem

In [92], the problem of consensus regarding time varying quantities is studied. The

variety of consensus problems in the literature include consensus in the presence of

time delays [96] and applications to distributed estimation [14]. A detailed survey of

consensus problems and discussion of properties therein is given by [93]. Algorithms

for distributed consensus work well when multiple agents must come to approximate

agreement, e.g., in applications of estimation where approximate agreement is suffi-

cient. Consensus algorithms seek results of an asymptotic nature. Typical consensus

problems are for a set of agents to agree on the common values of a set of quantities.

Often these quantities represent vehicle positions, velocities, or decision variables.

Communication models for consensus problems typically involve a set of agents

as in (3.2), that are the nodes of a communication graph. The edges of the graph

represent communication links between agents and can be assumed to be directed or

undirected. In the case of a directed graph, the communication between agents is uni-

directional and the communication graph is assumed to be strongly connected. That

is, there is a directed path between any two vertices of the graph. For an undirected

communication graph, communication is bidirectional and the communication graph

is assumed to be connected. That is, there is an undirected path between any two

vertices of the graph.

The basic consensus problem consists of the set of agents and a quantity x to

be estimated by each of the agents. The consensus problem is for all agents to

asymptotically output the same estimated value for x. Let Nai be the neighborhood
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of agent ai ∈ A on the undirected communication graph. Let xi be the value of x

approximated by agent ai ∈ A. An agent updates its estimate of x by an update law

of the following form,

ẋi = −
∑

j:aj∈Ni

αij(t)(xi(t)− xj(t)), xi(t0) = x0i , (2.22)

where for a static topology αij(t) = αij and αij is a function of the time-invariant

adjacency matrix of the communication graph. For agents communicating over an

undirected, connected communication graph, an update law of this form results in

so-called average-consensus. That is, for the asymptotic estimates of the agents,

lim
t→∞

x1 = . . . = lim
t→∞

xNa =

∑
i:ai∈A x0i
Na

. (2.23)

The problem formulations and algorithms presented in this section address a wide

range of problems for vehicle routing, task assignment and task scheduling, multi-

agent, and distributed systems. This dissertation contributes to the centralized and

distributed task assignment and task scheduling literature. This contribution involves

(to varying degrees) the intersection of all of these subject areas. The contributions

of this dissertation are further discussed in the context of these bodies of literature

in the following section.

2.4 Limitations of Existing Literature

This section reviews the limitations of the existing literature that are of interest

in this dissertation.
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2.4.1 Centralized Task Assignment and Task Scheduling

Existing centralized formulations address multiple agent task assignment and task

scheduling with precedence constraints, and minimum-time scheduling. However, ex-

isting approaches either incur a high computational burden, or only address a subset

of these features. This limits the use of these methods on problem instances of prac-

tical size. The Tabu/2-opt heuristic developed here includes precedence constraints

and mission time minimization at a reduced computational burden. This is accom-

plished by using a novel separation of the VRP solutions as task assignments and

task schedules. The task assignments are optimized using a Tabu Search heuristic.

The schedules are optimized using a recursive 2-opt heuristic that optimizes the total

mission time. As a secondary objective the 2-opt heuristic is used to locally optimize

individual agent routes. The combination of heuristics is shown to solve the version of

the VRP stated here and is able to find feasible solutions to the optimization problem

quickly.

2.4.2 Distributed Task Assignment and Task Scheduling

The existing unmanned air vehicle task assignment and task scheduling literature

incorporates expressive mission constraints as in [33, 58, 34, 103]. These formulations

compute the task assignments and task schedules in a centralized way for distributed

execution. They solve for a solution centrally and then distribute the task assignment

and task schedule while assuming the central computer can communicate reliably with

all agents. They are inherently incapable of exploiting distributed computation be-

cause these formulations do not consider distributed-ness in the problem formulation.

The development of distributed task assignment and task scheduling algorithms

that incorporate temporal and logical mission constraints has not yet been addressed.

Also, no formulations address minimization of mission time subject to mission con-

straints while using an arbitrary communication network topology. The work of this
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dissertation extends the distributed task assignment and task scheduling literature

into these areas and provides tools for cooperative distributed task assignment and

task scheduling with constrained communication. Section 2.5 presents more detailed

comparisons to the methods that most closely address the features of interest in this

dissertation.

2.5 Comparisons With Existing Centralized Methods

This section compares several centralized methods of formulating task assignment

and task scheduling problems. These frameworks and algorithms address important

features of the problems posed and solved in this dissertation.

Single TSP Formulations can be solved with great efficiency using tools that can

be leveraged in solving the mTSP and VRP. Mixed Integer Linear Programming

Formulations have been used to design task assignments and task schedules for the

mTSP. Tree Search problem formulations can express a wide variety of VRPs and

Branch and Bound Algorithms have been used on several occasions to solve VRPs.

Precedence Constrained TSPs (PCTSP) incorporate precedence constraints into the

single TSP can be expressed as linear programs and solved using Branch and Cut

Algorithms. Temporal and logical constraints can be incorporated into VRP formu-

lations. This section compares the above methods with the VRP formulation used

here and Tabu/2-opt Heuristic used to solve it.

2.5.1 TSP, PCTSP, and mTSP Comparison

The TSP, mTSP, and PCTSP are formulations that (individually) incorporate

several features of the VRP the current work addresses. The classic formulation of

the TSP is for Na = 1 and Nt > 0. The formulation of the mTSP considers Na > 0

agents and Nt > 0 tasks, or cities to visit. The classic TSP formulation cannot

be used directly to address problems of multiple vehicle task assignment and task
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Figure 2.1: Comparison of centralized algorithms for task assignment and task
scheduling.

scheduling. However, with modification, tools for solving the classic TSP can be used

for solving mTSP instances [42]. Several mTSP formulations are available in [55] that

can leverage the efficient tools of linear programming. However, these formulations

are unable to optimize for mission time and are not capable of including precedence

constraints when such constraints relate tasks performed by separate agents. The

formulation of this work can express, precedence constraints between tasks that are

performed by different agents, and a mission time objective function. The Tabu/2-

opt heuristic designed here is able to solve this problem while searching through only

feasible solutions (i.e., only solutions that obey precedence constraints).

The PCTSP formulation of [3] incorporates precedence constraints into a classic

TSP problem and is solved using a Branch and Cut method. The algorithm iteratively

solves a linear program. Branch and Cut relies on generating cutting plane constraints

from precedence constraints. These constraints are generated when the algorithm

discovers a portion of the solution space that violates the precedence constraints. The

method then proceeds augmented with the additional constraints. This technique is

able to leverage traditionally efficient linear programming tools, but it relies on a linear
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expression for the objective function and is only a single TSP formulation. The work

of [102] is able to ameliorate this worst-case exponential increase in the number of

constraints and provide polynomial bounds on the number of cutting plan constraints

generated. This formulation only addresses the precedence constrained single TSP. It

is not able to express VRPs with other types of constraints and objective functions.

2.5.2 Branch and Bound and MILP-Based Methods Comparison

Tree Search formulations can be used to solve a variety of problems in vehicle

routing [70]. Any problem that can be expressed as a search-tree can be solved using

Branch and Bound B&B algorithms. Because the core technique used is to enumerate

possible solutions, Tree Search methods can incorporate precedence, logical, capacity,

and other types of constraints. This same expressiveness can be used to incorporate

objective functions that represent mission time, risk, etc. The strength of B&B meth-

ods is that they can be very efficient if tight bounds are available for the particular

application at hand. The weakness of B&B methods is that they can be as inefficient

as exhaustive search if bounding information is not available to help prune the search

space. For this reason B&B is a less viable option for larger scale VRPs. Contrary

to these limitations, the Tabu/2-opt heuristic used here is able to directly generate

and optimize over a space of feasible solutions. This allows the heuristic to provide

feasible solutions quickly.

Mixed Integer Linear Programming formulations are able to express problems that

have an objective function and constraints that are linear in the problem variables.

These problem formulations are able to incorporate discrete and continuous variables.

In VRP formulations the discrete MILP variables typically represent decision variables

indicating which vehicles will perform each of the tasks. The continuous variables

represent time. The MILP formulations suffer from the same scalability issues that

reduce the practical effectiveness of Branch and Bound methods. The size of MILP
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problems can scale exponentially with the number of tasks and agents.

2.6 Comparisons With Existing Distributed Methods

This section gives a comparison with several distributed methods this dissertation

considers to be representative of important and related classes of task assignment

and task scheduling frameworks and algorithms. These frameworks and algorithms

address features we believe are important to the problems detailed and solved in this

dissertation.

The assignment problem presented in [7] is solved using the Classic Auction Al-

gorithm. The nonlinear assignment problem of [19] incorporates a large class of

objective function and is solved using the Consensus-Based Bundle Algorithm and

the Consensus-Based Auction Algorithm. The Auction-Based Distributed Scheduling

Algorithm of [27] solves a precedence constrained task assignment and task scheduling

problem. Constraint Satisfaction Problem Frameworks are an expressive way to in-

corporate constraints into task assignment and task scheduling problems. These types

of problems can be addressed using Distributed Backtracking methods. Lastly, the

Distributed Constraint Optimization Problem Framework can address a broad class

of distributed optimization problems. The table of Figure 2.2 presents comparison

with these formulations.

2.6.1 Task Assignment Formulations Using Auction-Based Methods

The assignment problem of [7] is to find a task assignment TA that is feasible with

respect to capability constraints, i.e., (t, TA(t)) ∈ Capability, t ∈ T . The Classic

Auction Algorithm solves a maximization problem where Na = Nt with the following

objective function,

J(TA) =
∑

(i,j)∈TA

bij, (2.24)

61



Figure 2.2: Comparison of distributed algorithms for task assignment and task
scheduling.

where bij is the benefit of assigning task ti ∈ T to agent aj ∈ A. The optimization

problem can be stated as

max
TA∈AT

J(TA) (2.25)

s.t. TA ⊆ Capability

The objective function here is linear in the assignments. While extremely versatile,

the Classic Assignment Algorithm cannot be used to find a task assignment that

satisfies the constraints of (1.9).

The work of [19] addresses an assignment problem similar to that of (2.25), where

Nt ≥ Na and the bij’s are not constants, but are functions of the set of tasks that

are assigned to the agent aj ∈ A. The Consensus Based Bundle Algorithm (CBBA)

developed in [19] is an auction algorithm built on several extensions to the Classic

Auction Algorithm.

The CBBA is able to find assignments that minimize an objective function that

need only be a non-negative function of the assignments and for which the bij’s must

satisfy the property of having diminishing marginal gain (DMG). This means that

62



the value of a task should not increase as other elements are added to the set before

it, [19]. This is not the case for the objective function representing the constraints

of (1.9). The violation of this property is due to the fact that assigning additional

tasks to a single agent may satisfy additional clustering constraints not yet satisfied,

thus improving the value of the assignments already made with respect to this agent.

In addition to our problem’s violation of the DMG assumption, we require that all

clustering constraints be satisfied. The CBBA and CBAA of [19] have guarantees of

within 50% of optimal. In the current work, the CDAP is solved by converting the

communication constraints into an objective function to be minimized. If the work of

[19] were used to solve this problem we could not guarantee the global minimization

of this objective function that we need to satisfy all clustering constraints.

The work of [27] is an elegant approach to solve a distributed task assignment and

task scheduling problem. This work considers precedence constrained task scheduling

to minimize an objective function that is linear with respect to the scheduled times of

the tasks. The coefficients are unlike those in (2.24) in that they depend on the time

when the task is performed. The method detailed in [27] is used by agents operating

on a complete communication network. An auction is set up to minimize the linear

objective function subject to precedence constraints. The auction uses a novel dual

auction method where the constraints are relaxed in a Lagrangian sense. The tasks

bid for time slots and agents to perform them. The agents bid to minimize the used

of their own capacity. The price that the tasks must bid for the time slots is related

to this capacity. This method finds an optimal solution for the problem addressed,

but leverages the linearity of the objective function and linearity of the constraints.

We do not require this linearity in the current work.
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2.6.2 Distributed Constraint Satisfaction and Distributed Constraint Op-

timization Comparison

With regards to including clustering constraints in a Distributed Constraint Sat-

isfaction Problem formulation, to include the constraint that those agents assigned

tasks that share involvement in a constraint,

Nc∑
m=1

| Capability(Tm) | (2.26)

additional binary constraints must be included in the formulation.

There is the additional requirement that a task assignment be a mapping. The

Stochastic Bidding Algorithm inherently ensures this requirement is met. Incorpo-

rating this into a DCOP framework would require Nt constraints whose order is given

by N = |Capability(ti)|, i = 1, . . . , Nt.

If distributed backtracking is used to find a schedule that obeys clustering and

mapping constraints, the worst-case complexity would be O(NNt). Backtracking is

efficient when the constraints are of low order (e.g., order 1 or 2); as the order of the

constraints increases, Backtracking becomes less efficient. The clustering constraints

can be decomposed into binary constraints, but the mapping constraint for a task

t ∈ T has order |Capability(t)|.

It is possible to formulate the CDAP and the MADSP using Distributed Con-

straint Optimization. The details and consequences of such a formulation are given

below. The distributed constraint optimization problem (DCOP) presented in [83]

generalizes the notion of constraint satisfaction. Typically, a constraint satisfaction

problem is to find the arguments for constraints that produce all true values. The

work of [83] generalizes the constraints to be integer functions of integer variables

and seeks to find the arguments that minimize the sum of the outputs of these func-

tions. This DCOP formulation considers N > 0 variables vi and their values di ∈ Di,
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i = 1, . . . , N . The objective function for the DCOP formulation is

J(d1, . . . , dN) =
Nc∑
m=1

fm(d1, . . . , dN) (2.27)

where fm : D1 × . . . × DN → N, m = 1, . . . , Nc. The DCOP formulation includes

optimization constraints as a subset of the functions fm. The DCOP formulation in

[83] considers the functions fm to have only two arguments; however, it is conjectured

that this can be generalized as above. The following analysis conservatively assumes

that this generalization holds.

For this analysis, we treat our Minimum-Time Arbitrarily-Constrained Distributed

Scheduling Problem (MADSP) with the DCOP framework. The objective function

representing the maximum finish time for the schedule can be represented as the

function f0 : TTmax → N, where

f0 = max
t∈T

TS(t) (2.28)

and the optimization constraints are

fm : TTs → {0, 1} ⊂ N. (2.29)

For these constraints, let fm = 0 when the constraint is satisfied and fm = 1 when

the constraint is violated. The reason for the difference in the definitions of satisfied

and violated will be clear shortly. In the DCOP framework, the constraint violations

and the objective function are minimized simultaneously as

min
TS∈TTs

f0(TS) +
Nc∑
m=1

fm(TS). (2.30)

By definition, a schedule TS is feasible if fm(TS) = 0, m = 1, . . . , Nc. Addition-
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ally, a schedule TS is feasible if and only if

Nc∑
m=1

fm(TS) = 0. (2.31)

A schedule TS∗ is optimal, with respect to minimizing f0, if ∀TS ∈ TTmax, f0(TS∗) ≤

f0(TS). The OptDNSB Algorithm finds a feasible schedule if one exists; this schedule

is provably optimal. The following development shows that, for a class of constrained

optimization problems, the Adopt Algorithm is not guaranteed to return feasible

optimal schedules.

Consider a schedule TS ′, that is not feasible, that is optimal with respect to

f0(TS) +
∑Nc

m=1 fm(TS). That is,

∀TS ∈ TTmax, f0(TS ′) +
Nc∑
m=1

fm(TS ′) ≤ f0(TS) +
Nc∑
m=1

fm(TS). (2.32)

Also, let f0(TS
′) < f0(TS

∗)−1, f1(TS
′) = 1, and

∑Nc

m=2 fm(TS ′) = 0. That is, TS ′ is

a solution to the DCOP, and one that the Adopt Algorithm can return as a solution.

However, TS ′ is not feasible. This behavior is intuitively reasonable; for example, in

the context of scheduling improvements in the total schedule time can be gained by

violating precedence constraints.

2.6.3 Communication Consequences

It is common in the distributed systems and distributed problem solving literature

to assume that agents are able to, or only required to, communicate with a subset

of all available agents, [83, 111, 120, 121]. This assumption is useful because it

does not require that a complete network be maintained during the assignment and

scheduling process. In the absence of this assumption, the communication load can

be increased. The function in Equation (2.28) involves all of the tasks in T . By the
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assumption that agents can communicate directly if their tasks share involvement in

a function, fi, i = 0, . . . , Nc, agents assigned any task must be able to communicate

by acknowledgement-based link.

Several commonly cited distributed constraint satisfaction techniques carry the

name asynchronous [120, 83]. These methods use the following important assump-

tion; messages are received in the order in which they are sent. This assumption

can often be guaranteed in practice; this is accomplished using acknowledgement-

based communication protocols (e.g., TCP/IP, [109]). While useful, this assumption

restricts the distributed algorithm to being partially synchronous rather than asyn-

chronous. Strict definitions of synchronous and asynchronous distributed algorithms

are given in [37, 75]; these are used here. As such, we do not refer to algorithms that

follow the above assumptions as asynchronous.

The literature review of this chapter reviews the areas of Vehicle Routing, Task

Assignment and Task Scheduling, and Multi-Agent and Distributed Systems. These

areas of the literature provide context for the remainder of the dissertation. Chap-

ter III develops and solves the problem of multiple vehicle routing where mission

time is minimized subject to precedence and vehicle kinematic constraints. A cen-

tralized point of view is taken in this chapter. Chapter IV develops and solves two

problems: the first is that of distributed communication-constrained task assignment,

the second leverages these results to solve the problem of constrained minimum-time

task scheduling. A multi-agent and distributed systems point of view is taken when

formulating the distributed task assignment and task scheduling problem.
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CHAPTER III

Centralized Task Assignment and Task Scheduling

Problem Formulation

This chapter develops the centralized task assignment and task scheduling problem

of this dissertation. The formulation of this chapter contributes a way to formulate

a relevant class of mission optimization problems [104]. There are several important

features to note; this problem includes: capability constraints on the task assign-

ments, precedence constraints between tasks, multi-agent task cooperation (synchro-

nized agent to task arrival times), vehicle kinematic constraints, and minimization of

mission time. This problem is of particular interest because our research considers the

planning of military missions [104], where these types of constraints occur naturally.

The Tabu/2-opt Algorithm developed to solve this problem also has several features

of note. The algorithm has polynomial time complexity. It can output feasible so-

lutions in polynomial time and in fractions of a second. It minimizes mission time

with the added optimization of individual agent routes. And it converges to solutions

within (average) 25% of optimal in seconds for medium size problems. The Tabu/2-

opt heuristic is a so-called greedy repair heuristic. That is, it iteratively improves an

initial candidate solution to generate a solution that is closer to optimality than the

initial solution. The discussion below formulates this centralized task assignment and

task scheduling problem with application to multiple vehicle routing.
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This chapter also introduces a technique that is able to quantify the quality of

candidate solutions to combinatorial optimization problems for which there is no ana-

lytical solution quality guarantee. This technique takes a unique approach, stochastic

characterization of the solution set of a problem, to gain insight into the cost distri-

bution of candidate solutions. The technique then applies a transformation to the

sampled distribution that permits the use of standard Gaussian tools to provide rel-

ative solution quality measures.

To formulate task assignment and task scheduling problems, we need several ab-

stractions. The notions of tasks and agents are used to abstract the specific tasks to

be completed and the machines that will perform the specific tasks. Formally, the set

of tasks is

T = {t1, . . . , tNt}, (3.1)

where Nt > 0 is the number of tasks. Formally, the set of agents is

A = {a1, . . . , aNa}, (3.2)

where Na > 0 is the number of agents.

The capabilities of the agents to perform the various tasks are described using a

relation from T to A, i.e., a subset of their Cartesian product:

Capability ⊆ T ×A. (3.3)

A pair (t, a) ∈ T × A is in Capability if and only if task t can be performed by

agent a. Without loss of generality, we assume that the range of Capability is A. In

other words, we assume that each agent is capable of performing at least one task.

Informally a task assignment indicates which agent or agents will perform a task.

Depending on the formulation, a task assignment may be a relation or a mapping.
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This is a modeling decision. This dissertation uses two formulations of the problem:

in the first a task assignment is a relation; in the second, a task assignment is a

mapping. A task assignment that is defined as a relation is formally given as

TA ⊆ T ×A (3.4)

and an a task assignment that is defined as a mapping is formally given as

TA : T → A. (3.5)

This distinction lies in the uniqueness of the assignment. For a relational task as-

signment, a task is assigned to a set of agents. For the case of a mapping, we require

that each task be assigned to one and only one agent. This mapping need not be

injective, i.e., an agent may be assigned several tasks. This mapping need not be

surjective, i.e., an agent may not be assigned any task at all. Note that there is no

loss of generality in requiring that a task assignment be a mapping: if a task requires

several agents, it should be split into subtasks requiring one agent each. The choice

of how to model the task assignments is dictated by the algorithm used to solve the

task assignment problem.

A task assignment is called feasible with respect to capability if TA ⊆ Capability,

i.e.,

(ti, TA(ti)) ∈ Capability, i = 1, . . . , Nt. (3.6)

In practice, this means that each task is assigned to an agent that is capable of

performing it.

Informally, a schedule indicates whether a task will be performed and when it will

be performed. A task schedule is a mapping from the set of tasks T to a set of non-

negative finish times Ts. We assume that all tasks are assigned, but that tasks may be
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scheduled such that they are not executed. This allows for agents to choose whether

or not to perform tasks if permitted (or required) by scheduling constraints. This can

be modeled by specifying that a finish time in Ts that (without loss of generality)

equals zero represents a task not executed. The finish time of zero is chosen because

a task would have to be reached in zero travel time and have zero duration for it to

finish execution at time zero. This is unlikely in the current framework, hence the

zero finish time is reserved. The set of finish times may be finite or not. Formally, a

schedule is a mapping

TS : T → Ts. (3.7)

Additionally, TS need not be injective nor surjective.

3.1 Constraints

Constraints are used to restrict the set of allowable task assignments and task

schedules. In general, constraints involve task assignments and task schedules. In-

formally, a constraint is a function that tells whether or not a task assignment and

task schedule are acceptable. Physically, constraints may represent precedence re-

strictions, capability restrictions, capacity limits, timing restrictions, communication

restrictions, etc. Formally, a constraint is a function

pASm : AT ×TTs → {false, true},m = 1, . . . , Ncl (3.8)

where Ncl is the number of constraints. Given a task assignment TA and a task

schedule TS, a constraint pm is violated if pASm(TA, TS) = false and pm is satisfied

if pASm(TA, TS) = true.

Assignment constraints restrict which agents tasks can be assigned to. That is,

assignment constraints are only a function of the task assignments TA. Formally,
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assignment constraints are defined as

pm : AT → {false, true},m = 1, . . . , Nas, (3.9)

where Nas > 0 is the number of assignment constraints. The assignment constraints

in (3.9) are general. That is, any assignment constraint that can be represented as a

predicate that evaluates either false or true is captured by (3.9).

Informally, scheduling constraints are used to characterize the allowable schedules.

Scheduling constraints are formally defined as functions that map from the set of

schedules to the set {false, true}. The number of constraints isNcl. These constraints

are defined as

pm : TTs → {false, true},m = 1, . . . , Ns, (3.10)

where Ns > 0 is the number of scheduling constraints. The scheduling constraints in

(3.10) are general in the same sense as (3.9).

3.2 Constraint Satisfaction Problems and Backtracking

The Constraint Satisfaction Problem (CSP) is the problem of finding values of

several variables that satisfy predicate constraints that are a function of the variables.

The CSP formalism has been used to solve scheduling problems in [98, 97]. Formally,

a CSP is given by several variables with their respective universes of discourse and

predicate constraints, defined on these universes of discourse, to be satisfied. The

variables of the problem are

vi ∈ Di, i = 1, . . . , Nv (3.11)

where Nv > 0 is the number of variables and Di is a finite, typically discrete, universe

of discourse for the variable vi.
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The constraints are

pm : D1 × . . .×DNv → {false, true} (3.12)

CSPs can be solved efficiently using variants of Backtracking. The traditional back-

tracking algorithm is detailed as follows.

Given an ordered set D, define a set of sequences DNv of length less than or equal

to Nv. Let vsi ∈ DNv be one such sequence of length i, with elements vsi(j) ∈ vsi,

j = 1, . . . , i. Similar to (3.12), define constraints pm : DNv → {false, true} on

sequences vsi ∈ DNv , m = 1, . . . , Nc. The problem here is to find a sequence vsi ∈ DNv

such that i = Nv and pm(vsi) = true, m = 1, . . . , Nc. This can be done using a

backtracking algorithm [95].

Define the set untriedi ⊆ D. Define the function expand : DNv ×D → DNv that

accepts as input, a sequence vsi and untriedi and returns a new sequence vsi+1 ∈ DNv .

Define the function backtrack : DNv → DNv that accepts as input, a sequence

vsi+1 and returns the sequence vsi.

Data: vs0 = ∅
1 untried1 = D
2 while i < Nv or ∃m : pm(vsi) = false do
3 if untried1 = ∅ then
4 no solution exists
5 return vsi = ∅
6 else if ∃m : pm(vsi) = false then
7 vsi−1 := backtrack(vsi)
8 else
9 vsi+1 := expand(vsi, untriedi)

10 untriedi = untriedi \ vsi+1(i+ 1)
11 untriedi+1 = D
12 end

13 end
Result: vsi

Algorithm 1: Classic Backtracking Algorithm: performs Backtracking given a set
variables, their domains, and the constraint functions to be satisfied by the variable
values. The algorithm either outputs a solution, or that no solution exists.
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The procedure in Algorithm 1 performs backtracking. If all values in D are ex-

hausted for vs1, there is no sequence vs ∈ DNv that can satisfy the given constraints.

The expansion of new, possibly feasible, solutions is performed at line 9 in Algorithm

1. The removal, or pruning of subsequent portions of the set DNv that do not contain

a feasible solution is done during backtracking at line 7 of Algorithm 1.

3.3 Nonlinear Versus Linear Objective Functions

Constraint satisfaction is essential; but optimization of an objective function is

often important. That is, we often desire to formulate task assignments and task

schedules that will (upon execution) optimize a resource of interest. This is often

formulated as minimizing a chosen objective function. The objective function can

represent: distance (e.g. distance traveled by one or more vehicles); time (e.g. time

taken to complete several tasks [50]); or even risk (e.g. risk associated with executing

a military mission [34]).

One of the simplest and most useful nonlinear objective functions is mission time.

Consider the set of tasks in (3.1). The set of finish times for these tasks are given by

the schedule as {TS(t1), . . . , TS(tNt)}. One form of mission time is

J(TS) = max
ti∈T

TS(ti). (3.13)

Minimizing the objective function (3.13), i.e., solving

min
TS∈TTs

J(TS) (3.14)

is important because this objective represents the time needed to complete all tasks.

The objective function (3.13) is a nonlinear function of the variable of discourse,

i.e., the schedule TS. Nonlinear objective functions present difficulty because, while
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linearity can often be exploited to search the solution space efficiently, nonlinearity

often defeats traditional linear tools. For problems with general nonlinear objective

functions (i.e., problems where no properties of the objective function are assumed a

priori) variants of Backtracking can be used to guarantee an optimal solution.

One of the simplest and most useful linear objective functions is a sum of benefits

resulting from a task assignment TA. The set of agents assigned to each of the tasks

ti ∈ T is {TA(t1), . . . , TA(tNt)}. Let bij ∈ R be the benefit of assigning task ti to

agent aj. The objective function

J(TA) =
∑

(i,j):(ti,aj)∈TA

bij (3.15)

is the total benefit resulting from the task assignment TA. Maximizing the objective

function (3.15), i.e., solving

max
TA∈AT

J(TA) (3.16)

represents the maximization of the total benefit resulting from the task assignment.

The objective function in (3.15) is a linear function of the variable of discourse, i.e.,

the task assignments TA. Linear objective functions are less expressive. The objective

function J must be a linear combination of the discourse variables.

The task assignment and task scheduling problems presented in this dissertation

are problems with nonlinear objective functions. There are several reasons for this.

The VRP detailed in Chapter III is a constrained task assignment and task schedul-

ing problem where the objective is to minimize mission time. This is the objective

function of (3.13), and is nonlinear in the schedule. In practice, this accomplishes

the mission in as little time as possible while obeying all mission constraints. The

constraints of the assignment problem detailed in Chapter IV are nonlinear in the

assignments. This nonlinearity is the result of clustering constraints that bind tasks

and the agents that are assigned to them. The objective function of the scheduling
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problem detailed in Chapter IV is the objective function of (3.13) and is nonlinear in

the schedule.

A variant of the vehicle routing problem is developed here that includes capability

constraints and precedence constraints between tasks. The objective in this problem

is to minimize mission time. Unlike the VRP with pick-up and deliver constraints,

here, the precedence constraints apply to tasks that may be performed by different

agents. In this case the routes must be coordinated so that the timing constraints

are obeyed. To achieve this coordination, agents may vary their velocity between

zero and a maximum velocity. The capabilities of the agents are heterogeneous; the

agents may only be able to perform a subset of tasks and may travel with different

maximum velocities.

The Tabu/2-opt Heuristic is developed to solve this VRP. The algorithm finds

feasible solutions in fractions of a second, finds low cost solutions in seconds for

medium sized problems, and finds low cost solutions in minutes for large problems.

The Tabu/2-opt Heuristic is a gradient-based search heuristic. The heuristic uses a

two-stage optimization; it optimizes the routes of the agents, and then optimizes the

task assignments. This approach is also able to minimize an important secondary ob-

jective: the 2-opt part of the heuristic gives minimum length individual agent routes.

This minimization follows the minimization of mission time subject to precedence

constraints.

3.4 Vehicle Routing Problem Formulation

Consider a VRP where Na agents are to complete Nt tasks. Assignment con-

straints restrict the possible assignments of agents to tasks and completion order

constraints restrict the possible order which tasks can be performed. The sets of

agents and tasks are A and T respectively, as in (3.1) and (3.2).

The notions of precedent and dependent tasks are used here to denote the set of all
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tasks that must occur earlier in time or later in time, respectively, than a given task.

The formulation of this chapter considers tasks of zero duration, hence, consideration

of a single occurrence time for each task is sufficient. The occurrence time of a task

tj is TS(tj). The precedent and dependent sets are,

Pj = {tk ∈ T | TS(tk) < TS(tj)}, j = 1, . . . , Nt, (3.17)

Dj = {tk ∈ T | TS(tk) > TS(tj)}, j = 1, . . . , Nt, (3.18)

and capture all transitivity relationships. For this version of the VRP, the set Pj is

empty for at least one task and the set Dj is empty for at least one task. The set

Pj is used with Dj to quickly determine the feasibility of a given problem instance,

as addressed in (3.28). The sets Capability(tj) and TA(tj), j = 1, . . . , Nt, are the

set of agents capable of performing task tj and the set of agents assigned to perform

task tj respectively. Let TA and Co specify the assignments of vehicles to tasks and

the order in which tasks are completed. A solution to the task assignment problem

is given in the form of a task assignment TA and a partially ordered set giving the

order in which the tasks should be completed, Co. We require that a task assignment

be a relation, as opposed to a mapping, as described in Chapter I. A solution to the

task assignment problem is given by TA and Co, where

TA ⊆ T ×A, (3.19)

Co = (u1, . . . , uNt). (3.20)

Here, ui represents the task that is placed at position i in the partial ordering. The

arrival time of an agent ai at a task tk is TS(tk). The arrival time of agent ai at its

final location is Tei(TA, Co). The optimization problem is,

min
TA,Co
{max

i
Tei(TA, Co)} s.t. (3.21)
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TS(tk) > TS(tj), ∀tj ∈ Pk, k = 1, . . . , Nt, (3.22)

TS(tk) > Tki, ∀ai ∈ TA(tk), k = 1, . . . , Nt, (3.23)

TA(tj) ⊆ Capability(tj), j = 1, . . . , Nt. (3.24)

The objective is to minimize the mission time (3.21), that is, the time for the last agent

to complete its final task. This objective function is a function of the assignments of

agents to tasks, the order of completion of the tasks, and the vehicle kinematics. Note

that only the set Pk is used in the problem specification, Dk is used later in (3.28)

to check whether the problem can be solved by the heuristic method developed in

this chapter. The operational constraints restrict agents to only perform tasks after

all precedence constraints have been met (3.22) and after every agent assigned to the

task has arrived (3.23). These constraints also restrict the agents permitted to be

assigned to a task (3.24). This problem is of particular interest because our research

considers the planning of military missions [104], where these types of constraints

occur naturally. It is also appropriate to minimize the total duration of the mission.

This formulation is flexible enough to allow agents to cooperate to complete individual

tasks if this helps minimize the cost.

Recall that the vehicles are assumed to obey steerable unicycle kinematics, operate

in the Euclidean plane, which is a reasonable approximation if the tasks are far

apart compared to the actual turn radius of the vehicles. The vehicle velocities are

limited by Vi ∈ [0, Vmaxi ], where Vmaxi is the maximum travel velocity of agent ai,

i = 1, . . . , Na. Endurance constraints and limits on resources cannot be directly

addressed by this formulation. Timing constraints are addressed in Algorithm 2,

guarantees that if the completion ordering satisfies order constraints, the resulting

times of occurrence satisfy (3.22). If two tasks that have an order relationship between

them are assigned to different agents, the timing must be enforced by the constraints

(3.22).
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To determine the cost of a feasible solution to the optimization problem the fol-

lowing must be known: the agents that are assigned to all of the tasks, the order in

which each of the agents will complete the tasks it is assigned to, and the kinematics

it will follow to perform these tasks. The set TA represents the assignments for each

task and the partially ordered set Co represents the order of the task completion.

The optimization procedure is performed in two levels. The upper level performs the

optimization of the task assignments. The lower level performs the optimization of

the completion order. The search procedure begins with an initial task assignment

set. A 2-optimal completion order [73, 1] is constructed for this task assignment set

and the cost of the resulting solution is evaluated. The task assignment set is altered

systematically and a new 2-optimal completion order is constructed for each new set

of assignments. This search proceeds, accepting new solutions that improve upon the

best cost. The description of a solution to this problem contains all of the information

concerning which agents are assigned to do which tasks and the order in which these

tasks are to be completed. The vehicle kinematics determine precisely when the tasks

will be completed. The nonlinearity in the objective function is due to the fact that

the mission time is a function of only one agent’s route. This route cannot be decided

a priori as one must know the solution to know which route is the longest one. Hence

the objective function is not a linear combination of the variables.

3.5 The Tabu/2-opt Heuristic Search

This section develops the Tabu/2-opt Algorithm that solves the VRP posed in

Section 3.4. Algorithm 2 describes how a given task assignment and a corresponding

completion order are used to determine the completion times of the tasks being ser-

viced by the agents. This is followed by an evaluation of the algorithm’s complexity.

Algorithm 2 begins with a solution and loops through the corresponding com-

pletion order. The algorithm first computes the maximum arrival time maxi Tji of
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any agent performing task tuj . It then checks the completion time of each of tuj ’s

precedents, Puj . Note that in line 4 of Algorithm 2, the occurrence time of a task

can be equal to that of its last occurring precedent task. The constraints of (3.22)

can be enforced strictly by including an arbitrary, fixed period of time between a task

and its last occurring precedent task. The start time of this task, TS(tuj), is then set

to the maximum of these. Each agent performing tuj is assumed to arrive at tuj at

TS(tuj).

Data: TA, Co
1 for j = 1 to Nt do
2 Tamax = maxi{Tuji},∀ai ∈ TA(tj)
3 TPmax = maxk TS(tk), ∀tk ∈ Puj
4 TS(tuj) = max{Tamax , TPmax}
5 Tuji = TS(tuj), ∀ai ∈ TA(tj)

6 end
Result: TS

Algorithm 2: Timing evaluation

For each of the Nt tasks, the evaluations are as follows. Arrival time computation

is O(Na) in the worst case for checking every ai ∈ TA(tj) = A. The worst case

complexity for precedent occurrence time computation is O(Nt − 1) ' O(Nt) for

checking all tasks in Co. Setting the actual start times is performed in O(Nt) time.

The worst case complexity for the total evaluation is then O(NaN
2
t ). The cost of

any solution given by TA and Co is maxj TS(tj), j = 1, . . . , Nt. This is evaluated in

O(Nt) time. The cost of a solution is then evaluated in O(NaN
3
t ) time. This is easily

reduced to O(NaN
2
t ) time if maxj TS(tj) is evaluated during the timing evaluation.

Thus cost evaluation for any solution to the optimization problem requires O(NaN
2
t )

time.

The following describes how the solution representation is helpful in guaranteeing

that every solution considered obeys the assignment and order constraints imposed

in the problem. These constraints are described in (3.22) and (3.24). These types

of constraints appear naturally in cooperative control problems considering heteroge-
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neous agents and complicated missions that contain order dependent outcomes [104].

The restrictions on which agents are permitted to be assigned to each task are cap-

tured in (3.24). The heuristic method will only choose assignments for tasks that are

from this set. This ensures that all assignments obey the constraints in (3.24).

The next step in guaranteeing constraint satisfaction is to use the completion

order set Co to describe the portion of the solution that represents the order in

which tasks are performed. These partially ordered sets of tasks are constructed to

guarantee order constraint satisfaction. The sets are then refined using an operation

that preserves constraint satisfaction. Consider Nc order constraints of the form,

pm = (TS(tj), TS(tk)),∀m = 1, . . . , Nc. (3.25)

These order constraints (3.25) indicate that task tj must be performed before task tk.

This input must be restructured to reflect the transitive relationships between tasks.

For example, if task ti must be performed before task tj and tj before task tk, then

ti must also be performed before tk. In this case, tk must also be performed after ti.

The pairwise order constraints of (3.25) are restructured into the sets Pj and Dj of

(3.17) and (3.18) for each task tj ∈ T .

The feasibility of the assignments is satisfied if at least one agent is selected to

perform each task and all agents selected to perform each task tj ∈ T belong to

Capability(tj). This is possible provided the following is true:

Capability(tj) 6= ∅, ∀tj ∈ T , (3.26)

TA(tj) 6= ∅, ∀tj ∈ T . (3.27)

Precedence constraints can be input in the form of (3.25). These constraints must

be linked together to form the sets Pj and Dj for each task. The feasibility of the

81



resulting constraints are checked by the following,

Pj ∩ Dj = ∅, ∀tj ∈ T . (3.28)

The check in (3.28) says that no task tj may have the restriction that there is a task

tk that must both come before and after the task tj. For example, the constraints

p1 = (TS(ti), TS(tj)), p2 = (TS(tj), TS(tk)), and p3 = (TS(tk), TS(ti)) result in an

infeasible instance of the problem.

The completion order is a partially ordered set. Order relations are defined be-

tween constrained tasks and tasks that belong to the same agent’s route. Completion

orders are constructed using a greedy method. Algorithm 3 details this process. The

sets available and notAvailable refer to the sets of tasks that have had all of their

precedent tasks selected and those that have not, respectively. The cardinality of a

set is denoted by | · |. Algorithm 3 is initialized with an empty completion order

and all tasks are initially assumed unavailable. Each unavailable task is tested for

availability by checking the completion order for its precedent tasks. If it has none

or if the precedent tasks are included, it becomes available. Tasks are chosen from

the set available according to which task will increase the final time the least. The

procedure for determining available tasks is performed in O(N2
t ) time due to having

to search Co for each task in notAvailable. The cost associated with adding each

task tk ∈ available to the completion order is computed. The task that causes the

minimum increase in cost is added to the completion order. Each cost function eval-

uation is done in O(NaN
2
t ) time. The entire evaluation takes O(NaN

4
t ) time. After

the completion order is constructed for the set of task assignments, 2-opt refinement

is used on the route.

The 2-opt exchange heuristic is a specific case of the variable k-opt heuristic at

the heart of the Lin-Kernighan heuristic [73]. The 2-opt heuristic achieves in the
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Data: TA
1 Co = ∅
2 notAvailable = T
3 available = ∅
4 while | notAvailable |> 0 do
5 for k = 1 to | notAvailable | do
6 if uj ∈ Co,∀tuj ∈ Puk then
7 available = available

⋃
{tuk}

8 notAvailable = notAvailable \ {tuk}
9 end

10 end
11 kmin = argminkcost(TA, Co), tk ∈ available
12 Co = (Co, tkmin

)
13 notAvailable = notAvailable \ tkmin

14 available = available \ tkmin

15 end
Result: TA, Co

Algorithm 3: Greedy completion order construction

neighborhood of 5% excess over the Held and Karp lower bound for single TSP

instances using random Euclidean instances [1]. The basic 2-opt move cuts an agent

route at two segments. Each segment is the link between two tasks or cities in a

route. The problem is to find two of these segments (x1 and x2) that can be replaced

with two different segments (y1 and y2) to reduce the cost of the route. This can be

generalized to more than two cuts [73]. The version of the 2-opt exchange used here

operates on the routes of the individual agents. The standard 2-opt exchange does

not necessarily result in routes that obey order constraints. This feasibility is ensured

by rejecting those routes that do not obey order constraints. A basic 2-opt move for

a single closed tour (route whose start position is the same as its end position) is

shown in Figure 3.1. The vehicle routes however do not necessarily begin and end at

the same location. To accommodate this, the starting location and end location are

connected by a link x0 that is never considered as a candidate for the 2-opt exchange.

This is shown in Figure 3.2. Note that for the basic 2-opt exchange, x1 and x2 each

correspond to a pair of tasks. For any pair of cuts, x1 and x2, if the cuts are adjacent,
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a route remains unchanged. All other pairs of x1 and x2 are tested for improvement.

x1 x2

y1 y2 y1 y2

Figure 3.1: Standard 2-opt exchange on tours.

x0ustart uend ustart uendx0
x1 x2

y1 y2 y1 y2

Figure 3.2: 2-opt exchange on vehicle routes.

The process of completion order improvement by 2-opt exchange proceeds as fol-

lows. Consider the completion order,

Co = (t1, t2, t3, t4). (3.29)

Let the route of agent a1 be the totally ordered set, (ustart, t2, t4, uend) and the single

agent completion order be

Co1 = (t2, t4). (3.30)

The only 2-opt exchange for this route results in

Co1 = (t4, t2). (3.31)

The resulting agent route is then reinserted into the original completion order to
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obtain

Co = (t1, t4, t3, t2). (3.32)

The resulting completion order is then tested for adherence to the precedence con-

straints. Resulting completion orders that violate precedence constraints are rejected

and the process proceeds checking the remaining possible 2-opt exchanges until a

feasible improvement is found or the possible 2-opt exchanges are exhausted. This

process is performed for each vehicle’s route; when an improvement for one vehicle’s

route is found, the improvement is kept and the process is repeated for the next vehi-

cle’s route. This process terminates when no further 2-opt improvements are possible

for any route. The search through possible 2-opt exchanges requires O(N2
t ) time due

to the worst case of searching each possible 2-opt exchange. The evaluation used to

check if a new completion order violates precedence constraints requires O(N3
t ) com-

putations. The timing evaluation of Algorithm 2 requires O(NaN
4
t ) computations.

It can now be seen that if a particular problem instance is highly constrained, the

2-optimization of completion orders will be dominated by O(NaN
5
t ) computations in-

stead of O(NaN
6
t ) computations. This is because the violating solutions are rejected

before the timings are evaluated. For highly constrained problem instances, the al-

gorithm spends most of its time rejecting solutions instead of checking costs. This

is desirable because in practice, the algorithm runs faster when more constraints are

introduced.

Tabu search is a metaheuristic used for combinatorial optimization [40]. The

Tabu search can be viewed as searching a graph in the neighborhood of a given initial

solution. The neighborhood of a task assignment set is as follows,

NTA = {TA′ | ∃!TA′(tj) s.t. TA(tj) = TA′(tj) =⇒ TA′ = TA}. (3.33)

The Tabu search relies on a move to be defined that is used to perturb one solution
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to another. The move used here is a perturbation in the assignment for each task.

The feasible assignments TAf (tj) for each task are enumerated as follows:

TAf (tj) = {(tj, {a1}), (tj, {a2}), (tj, {a1, a2}), (tj, {a3}), (tj, {a1, a3}),

(tj, {a2, a3}), (tj, {a1, a2, a3}), . . . , (tj, {a1, . . . , aNa})}.
(3.34)

Each set TAf (tj) represents one or more agents being assigned to a task. Let cj be a

bound placed on the number of agents allowed to perform task tj. That is, a maximum

of cj agents will cooperatively perform task tj ∈ T . If cj = Na, the cardinality of

each set of possible assignments to each task, | TAf (tj) |, grows exponentially with

the number of agents. With cj equal to a constant, | TAf (tj) | is bounded by O(N
cj
a ).

The time to search the elements of TAf (tj) is O(N
cj
a ).

The set of feasible assignments is generated for each task only once at the start

of the optimization. The Tabu search algorithm used in this work is summarized

as follows. The termination criterion for the algorithm is reached when it has run

a fixed number of iterations, nIterations. This number is based on a judgement of

convergence by the user. The value used here was nIterations = 100. The Tabu

search algorithm begins with an initial feasible task assignment TAo. The neigh-

boring task assignments TAj, j = 1, . . . , | NTA | of the current task assignment TA

correspond to task assignment sets in the neighborhood NTA of the task assignment

set for the current task assignment TA. The search then checks the neighboring solu-

tions by searching the neighboring task assignment sets, generating the corresponding

2-optimal completion orders for them and checking the resulting solution for a cost

improvement. The search through the neighborhood of a task assignment stores the

best task assignment in that neighborhood as TA′. The function cost evaluates the

mission time for a given solution. If cost(TAj) < cost(TAbest) the best solution known

is replaced with TAj. In the event that the search through the neighborhood of TA

does not provide improvement, a local minimum has been reached and the current
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Final
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yes
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Figure 3.3: Overview of heuristic search.

solution is updated to the best neighboring solution found TA′. A Tabu list is kept,

to prevent becoming stuck in a local minimum. When a new move is chosen, its in-

verse is added to the Tabu list. That is, a move that undoes that perturbation is not

allowed while that move is on the Tabu list. A chart of this algorithm is presented in

Figure 3.3.

The overall complexity at each step of the algorithm can be seen by combining our

analysis of the completion order construction and refinement with the Tabu search

procedure complexity. For each step of the Tabu search, the worst case number of

perturbations in the assignments at the current solution will beO(N
cj
a Nt) because this

procedure could be performed for every tj ∈ T . An upper bound on the complexity at

each step is the Tabu search step complexity combined with the complexity incurred

by generating the refined completion orders at each step. This gives a step complexity

of O(N
cj
a N7

t ). For the following examples, cj = 1, resulting in the algorithm scaling

as O(NaN
7
t ). Physically, this corresponds to the case where agents do not cooperate
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to perform individual tasks, but still coordinate task completion for tasks related by

precedence constraints. With | A |≤| T |, the step complexity is bounded by O(N8
t ).

In some cases, a Nearest Assignment heuristic is used to initialize the Tabu Search.

This heuristic is simple and in many cases can provide an increase in solution quality.

The Nearest Assignment heuristic initializes the task assignments as the lowest cost

for each task as defined with respect to the initial configuration of the agents. This

can be described as follows,

TAnnj
= min

TAf (tj)
TS(tj). (3.35)

This heuristic physically manifests as choosing the agent that is capable of reaching

the task the earliest. In the special case where all agents can travel at the same

maximum speed, the heuristic has the effect of partitioning the tasks geographically.

This clustering effect typically gives the assignment search a better initial starting

point than a random initialization. The search then proceeds to satisfy all ordering

constraints and reassigns tasks to improve cost. The Tabu/2-opt heuristic is built on

methods that are traditionally effective for use on vehicle routing problems. However,

it is still desired to compare the output of the heuristic to a method that gives optimal

solutions to experimentally determine the typical optimality gap of the solutions.

A Branch and Bound method is used to search a tree for a solution with optimal

cost. The Branch and Bound search algorithm is initiated by a Best First Search

(BFS) [95] algorithm that provides an immediate feasible assignment. It starts with

the root node of the tree and the estimated cost of each child is calculated by using the

distance between the assigned agent and its assigned task. The child node with the

smallest estimate is selected and the cost of the trajectory to perform the assignment

is evaluated.

Several examples are chosen that can be treated by both the heuristic method
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Figure 3.4: Tree structure.

and the optimal tree search. The computational limits for this implementation of

the Branch and Bound search are reached at a problem size of about eight tasks and

three agents. The agent initial positions lie on a 10×10 Euclidean grid and the agent

maximum velocities are equal to 1 with consistent units. Tasks are to visit waypoints

that lie on the 10× 10 Euclidean grid. Figure 3.5 shows a problem instance.

Figure 3.5: Problem instance for method comparison.

The results of mean, minimum, and maximum optimality gap for twenty randomly

generated problem instances are presented are Table 3.1.

Table 3.1: Optimality Gap
Instance Mean Min Max
Unconstrained 23% 6% 39%
Constrained 22% 9% 31%
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Table 3.2: Completion times of constrained tasks.
Task TS(t1) TS(t2) TS(t3) TS(t4) TS(t5) TS(t6)
Completion time 11.1 14.5 25.7 13.0 16.1 16.9
Completing agent a3 a2 a2 a1 a2 a1

Table 3.3: Completion times of constrained tasks.
Task TS(t7) TS(t8) TS(t9) TS(t10) TS(t11) TS(t12)
Completion time 5.7 20.0 22.5 6.8 9.1 22.4
Completing agent a1 a3 a1 a3 a3 a2

The optimality gap is defined as,

OG =
costheuristic − costopt

costopt
. (3.36)

The solutions to the ten unconstrained cases show a mean optimality gap of 23%

and the constrained examples show a corresponding optimality gap of 22%. For each

agent, the user inputs the start and desired end position as well as the types of task

that the agent is allowed to perform. For each task, the inputs are the beginning and

final position for the task and the type of the task. In general, the agent may begin

and end the task at different positions. These results are produced from instances of

the problem that are subject to the following precedence constraints,

p1 = (TS(t1), TS(t2)), (3.37)

p2 = (TS(t2), TS(t3)). (3.38)

The following example contains simulation results for a scenario where three agents

perform thirty tasks. In this example there are several precedence constraints that

must be obeyed. This example demonstrates the performance of the search method

on a problem similar to the multiple depot mTSP. The problem is for three agents

to visit thirty tasks with the cost being the maximum time for any agent to finish

its route and arrive at its final location. The final location is set to be its starting
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location. The order constraints are,

p1 = (TS(t1), TS(t2)), (3.39)

p2 = (TS(t2), TS(t3)), (3.40)

p3 = (TS(t4), TS(t5)), (3.41)

p4 = (TS(t5), TS(t6)), (3.42)

p5 = (TS(t7), TS(t8)), (3.43)

p6 = (TS(t8), TS(t9)), (3.44)

p7 = (TS(t10), TS(t11)), (3.45)

p8 = (TS(t11), TS(t12)). (3.46)

Here, solutions of the same problem instance are compared. First, the starting assign-

ment for the optimization was chosen at random. Second, the starting assignment

is chosen using the Nearest Assignment heuristic. Figure 3.6(a) and 3.6(b) show the

convergence of the Tabu search for the two cases obtained after 100 iterations of the

Tabu search. The dotted line is the current solution that is being perturbed through-

out the optimization and the solid lower bounding line is the progress of the best

solution.

(a) Tabu search cost, random
initial solution

(b) Tabu search cost, nearest
initial assignment

Figure 3.6: Tabu search cost.

Figures 3.7(a)-3.7(c) present the agent routes that result from a random initial
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assignment. It was found that when the optimization algorithm is initialized with

random initial assignments, the resulting solution tends to settle into equilibria where

the agents loop around large portions of the plane. This seems to be due to the

uniform nature of the initial assignments. These solutions tend to have gentle turns,

although this is not explicitly enforced.

(a) Route of agent 1, random
initial assignment.

(b) Route of agent 2, random
initial assignment.

(c) Route of agent 3, random
initial assignment.

Figure 3.7: Agent routes and results for random initial assignment.

The times of completion of the order constrained tasks are listed in Table 3.2.

Notice that even though several tasks are coupled through constraint relations, these

tasks need not be serviced by the same agent. The algorithm is capable of enforcing

the transitive order constraints without requiring those tasks to be done by the same

agent. The routes resulting from the use of the nearest initial agent heuristic are

presented below. These routes are more efficient with regards to moving shorter

distances and to the global cost function itself. However, these routes tend to have

many tight turns which are not penalized by the cost function or constraints. This

can be seen by the plots of the routes in Figures 3.8(a)-3.8(c).
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(a) Route of agent 1, nearest
initial assignment.

(b) Route of agent 2, nearest
initial assignment.

(c) Route of agent 3, nearest
initial assignment.

Figure 3.8: Agent routes and results for nearest initial assignment.

The satisfaction of the constraints is independent of the type of initial assignment

and all routes are 2-optimal with respect to the restrictions of the precedence con-

straints. It is worth noting that the routes of the agents cross each other. This occurs

for the route of an individual agent and in an inter-agent sense. This is particular to

the cost function used. For example, if the cost were the total length of all routes and

not the mission time, this would not occur when the nearest agent heuristic is used or

in optimal solutions. The precedence constraints also contribute to this phenomenon.

In the presence of the precedence constraints, it can be beneficial for agents’ routes

to cross. Figure 3.9(a) shows an example with no precedence constraints. Notice that

two of the agents routes cross due to the choice of cost function, but that because

all individual routes are 2-optimal, no individual route crosses itself. This example

also shows that the Nearest Assignment heuristic can be improved upon by the Tabu

search. Figure 3.9(b) shows a slight increase in the solution quality from the initial

assignment. These solutions are generated in approximately 18 seconds on a 2.4 GHz
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MacBook.

(a) Routes with no prece-
dence constraints.

(b) Corresponding cost.

Figure 3.9: Example solution with no precedence constraints.

It is interesting to understand what aspects of a problem, when changed or varied,

cause a heuristic to deviate from optimality and by how much. That is, we would

like to understand what causes a heuristic to perform worse. This understanding can

help practitioners in determining the suitability of a heuristic for a given application.

This understanding can be quantitative or qualitative.

The Tabu/2-opt heuristic employs a tabu list; this allows the heuristic to continue

exploring candidate solutions after a local minimum is reached. The greedy nature

of this heuristic enables it to rapidly improve the cost of the best known solution

to a problem instance. The Tabu Search performs better than the purely greedy

counterpart when the tabu list is “long enough” to ensure that the search can escape

local minima. This judgement is problem dependent and the practitioner should tailor

the tabu list length from experience.

The 2-opt repair heuristic is known to perform better for a smaller number of

tasks than for a larger number of tasks [1]. This is the case for the k-opt heuristic

in general. For agent routes visiting on the order of one hundred tasks the 2-opt

heuristic provides low cost routes within 3% of optimality. The quality of the routes

degrades as the number of tasks visited increases.
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3.6 Measurement of Solution Quality

This section presents a measurement of solution quality for combinatorial prob-

lems. The task assignment and task scheduling problems addressed in this work are

NP-hard. Techniques for overcoming this issue were discussed in Section 1.7. Meta-

heuristics such as [53, 88, 40, 61] can be used to solve a variety of problems involving

objective functions and constraints that limit the effectiveness of analytical tools. In

this section, we use a technique for measuring solution quality that relates the quality

of a given solution to the distribution of solution quality for a problem instance. This

technique only assumes that the objective function values take on finite values, the

distribution of the objective function values only has one mode, and that feasible so-

lutions can be readily generated (i.e., either directly or by rejection sampling). This

is useful because it allows us to quantitatively measure the quality of a solution to a

problem for which no analytical guarantees exist. The quality measurement is in the

form of the probability of finding a better solution and quality relative to the space

of possible solutions.

Consider the optimization problem

min
s∈S

J(s) (3.47)

s.t.

s ∈ Cs (3.48)

where J : S → J ⊆ R. The set Cs ⊆ S represents the set of solutions that obey all

constraints on the structure of the final solution. This work describes a way in which

the set J can be statistically characterized. This characterization can in general be
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non-Gaussian. In the majority of cases, this will not present a problem. A stochastic

characterization of J allows us to measure the quality of solutions relative to the cost

distribution of the entire solution space. The set Cs can be given by enumeration of

all elements or by the properties of the elements. In the task assignment problem

of section 3.5, the set Cs is defined using constraints on the characteristics of these

elements.

The problem domain we consider has a useful stochastic structure. This structure

is used to compute an estimate of the value of the cumulative distribution function

corresponding to a solution’s cost value. This gives a useful measure of the quality of

a solution provided by an optimization algorithm. This method also gives perspective

on the cost distribution of the problem domain. The cost distribution can in general

be non-Gaussian (NG). This is overcome by using a method for approximating the

cumulative distribution function (CDF) for any fractile on the non-Gaussian distri-

bution by mapping that fractile to a Gaussian distribution. This method can be used

for any single-modal distribution with finite first four moments.

The sample set is as defined in Eq. 3.48. Random solutions that satisfy all

problem constraints are generated using a Las Vegas Algorithm, i.e., a random tree

search. The key assumptions on the function J are that its image, J , contains only

finite values and that this mapping is deterministic. It is important that J contain

only finite values to ensure finite statistical moments. The cost of these solutions is

evaluated. These cost values represent outcomes of a random variable with sample

space J . They are independent and identically distributed (iid). It is the distribution

of this random variable we seek to quantify.

The key descriptors for the distribution of cost values are the first four standard-

ized moments of the unknown distribution. These moments are the mean, standard

deviation, skewness and kurtosis. These moments are approximated by their corre-
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sponding sample counterparts as follows.

J̄ = E[J(s)] ' 1

N

N∑
i=1

J(si), (3.49)

σ2 = E[(J(s)− J̄)2] ' 1

N

N∑
i=1

(J(si)− J̄)2, (3.50)

α3 =
E[(J(s)− J̄)3]

σ3
' 1

Nσ3

N∑
i=1

(J(si)− J̄)3, (3.51)

α4 =
E[(J(s)− J̄)4]

σ4
' 1

Nσ4

N∑
i=1

(J(si)− J̄)4. (3.52)

Here E is the expectation operator, s ∈ Cs and N is the sample size. For convenience

let the parameter J̃i = J(si)−J̄ . This approximation is guaranteed to converge to the

actual values of the respective statistical moments by the weak law of large numbers

when all cost values are finite. In order to determine the convergence of the sample

moments, we use a convergence criterion similar to the notion of settling time,

max

∣∣∣∣∣ 1

N

N∑
i=1

J(si)−
1

k

k∑
i=1

J(si)

∣∣∣∣∣ < δ, (3.53)

max

∣∣∣∣∣ 1

N

N∑
i=1

J̃2 − 1

k

k∑
i=1

J̃2

∣∣∣∣∣ < δ, (3.54)

max

∣∣∣∣∣ 1

Nσ3

N∑
i=1

J̃3 − 1

kσ3

k∑
i=1

J̃3

∣∣∣∣∣ < δ, (3.55)

max

∣∣∣∣∣ 1

Nσ4

N∑
i=1

J̃4 − 1

kσ4

k∑
i=1

J̃4

∣∣∣∣∣ < δ, (3.56)

k = N − 1, . . . , N −∆, N > ∆. (3.57)

This convergence criterion ensures that the deviations of the four sample moments is

slower than δ of their current values in ∆ samples. When this criterion is satisfied, the

moments are considered to be converged and are then used to describe the distribution

of J . The use of σ in equations 3.55 and 3.56 refers to the current estimate of the
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standard deviation.

The Hermite transformation [117] is used to transform fractiles from a non-

Gaussian (NG) distribution to a Gaussian distribution. The Hermite transforma-

tion allows us to find the value of the CDF for any fractile on a NG distribution by

transforming that fractile to a standardized Gaussian distribution and computing the

value of the CDF in Gaussian space. The heart of the Hermite method uses a finite

number of higher order statistical moments to create this transformation.

The idea is to approximate the outcome of a standardized NG process as a function

of a standardized Gaussian random process. This function is a truncated power

series function with terms that are the Hermite polynomials. The coefficients of the

polynomials in this transformation are shown in Winterstein [117] to be functions of

the higher order moments of the NG distribution. The effect is that the statistical

moments of order higher than four are assumed negligible and only the first four

statistical moments of the NG distribution are used in the transformation [117]. The

transformation applied here is only able to treat single modal distributions. Let x

and u be outcomes of random variables X and U where,

X =
Y − µY
σY

, (3.58)

U =
V − µV
σV

. (3.59)

The random variables Y and V correspond to non-standardized NG and non-standardized

Gaussian processes respectively. The random variablesX and U are the corresponding

standardized random variables. The transformation from u to x and the correspond-

ing inversions are developed in Winterstein [117]. The following transformation is

the approximate mapping from the standardized NG response x to the standardized

Gaussian response u.

This transformation differs depending on whether the response is softening or

98



hardening. A softening response refers to an NG distribution with a “fatter” tail

than a Gaussian distribution. Such distributions have α4 > 3. A hardening response

refers to a distribution with a “thinner” tail than a Gaussian distribution and α4 < 3.

The measure of quality we seek is the CDF of the solution cost for the possibly NG

distribution of J . As such, we only require the transformation from x to u. The

transformation for a softening response that maps from x to u is

u ' ξ(x)
[
(1 + ψ(x))3 + (1− ψ(x))3

]
− a, (3.60)

ξ(x) = (1.5b(a+ x)− a3)
1
3 , (3.61)

ψ(x) =

[
1 +

(
b− 1− a2

ξ2(x)

)3
] 1

2

, (3.62)

(3.63)

where a = h3
3h4

and b = 1
3h4

. The coefficients h3 and h4 are given by: h3 = α3

3!
and

h4 = α4−3
4!

. This transformation is monotone, that is the mapping is unique if the

following criterion is satisfied,

h23 < 3h4(1− 3h4). (3.64)

The transformation for a hardening response that maps from x to u is,

u ' x− h3(x2 − 1) + h4(x
3 − 3x). (3.65)

This transformation is monotone if the following criterion is satisfied,

16α2
3 < 9(3− α3)(5 + α4). (3.66)

We only consider distributions for which the relative skewness and kurtosis fall within

the monotone limits. An extension to this is given in Choi [20] where non-monotone
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transformations are considered. For all of these transformations, the skewness and

kurtosis must be within the so called practical limit with relative values above the

parabola,

α4 ≥ α2
3 + 1. (3.67)

3.6.1 A Traveling Salesman Problem Example

When the VRP of section 3.4 involves only one agent and no precedence con-

straints on tasks, the classical Traveling Salesman Problem (TSP) is recovered. We

first use this well studied problem to illustrate our method for measuring solution

quality. We use the implementation of the Lin-Kernigan Heuristic that is extensively

detailed in Helsgaun [73]. This implementation has been shown to find optimal solu-

tions for all known TSP instances that have been solved exactly. We will be concerned

with a relatively small number of cities and so consider the results provided by this

implementation as our baseline.

The TSP instances are generated by uniformly distributing city positions over a

10 by 10 unit square. All four moments converge after 21,519 samples. The values

of these statistical moments for this example are J̄ = 157, σ = 11.4, α3 = −0.11,

and α4 = 2.95. For this example, the values of the skewness and kurtosis deviate

from corresponding Gausssian values of skewness = 0 and kurtosis = 3. This

negative skewness causes the distribution to lean to the right. Figure 3.10 shows the

convergence of the moments in this example.

Figure 3.11 displays a histogram of the cost data. The CDF of the optimal solution

and that of the cost value found by the 2-opt heuristic both have numerical values of

zero. These solutions lie at approximately −9.415σ from the mean.
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Figure 3.10: Convergence of first four moments for TSP example.

Figure 3.11: Histogram of cost data for TSP example.
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3.6.2 Nonlinear Example and Results

This section demonstrates the solution of the full problem presented in Section

3.5. This problem is an example of a large scale nonlinear task assignment problem.

The exact solution of this problem is not known to the best of the authors’ knowledge.

We now consider the problem of Section 3.5 with two agents, all of which are

able to complete all thirty tasks. This problem includes the following precedence

constraints.

P1 = ∅, D1 = {t2, t3} (3.68)

P2 = {t1}, D2 = {t3} (3.69)

P3 = {t1, t2}, D3 = ∅ (3.70)

P5 = ∅, D5 = {t6, t7} (3.71)

P6 = {t5}, D6 = {t7} (3.72)

P7 = {t5, t6}, D7 = ∅ (3.73)

The cost function is J(s) = maxi Tei and represents the final arrival time of the last

agent to arrive at its final position. The cost distribution is shown in Figure 3.12.

The statistical moments of J for this example converge to J̄ = 97.02, σ = 11.28,

α3 = 0.503, and α4 = 3.167. We can see from the skewness and kurtosis that this

distribution is NG. The histogram also clearly shows this fact. The best cost value

J? = 32.81seconds has a CDF of approximately 1.8779 × 10−9 and a standardized

value of −5.8946σ. The CDF was computed using the Hermite method and the

standardized cost value is that of the corresponding Gaussian fractile.

Use of the Hermite method allows us to compute the CDF of the solution to the

task assignment problem obtained from the Tabu Search. The CDF value and the
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Figure 3.12: Histogram of cost data for Tabu/2-opt solution of multiple agent exam-
ple.

σ location of this fractile indicate that this solution is of high quality. This measure

ultimately uses random search as a benchmark. That is, the CDF value of a fractile is

the probability of exceeding that value by generating a random solution from the Las

Vegas method used. This method allows us to determine a relative and quantitative

measure of solution quality by utilizing the generally non-Gaussian statistical char-

acteristics of the cost function codomain in response to random sampling of feasible

solutions.

The centralized task assignment and task scheduling problem formulation of this

chapter provides a framework for minimizing mission time where a set of agents are

assigned and scheduled to complete a set of tasks. The kinematic, capability, and

precedence constraints are of interest to the vehicle routing and military mission

planning community as detailed in Chapter II. The formulation of this chapter con-

tributes a way to formulate a relevant class of mission optimization problems [104].

Instances of useful size, dozens of tasks and several agents, can be solved in reasonable

time (seconds). Additionally, this chapter gives a technique to measure the quality

of candidate solutions to problem instances relative to the set of possible solutions.
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3.7 Limitations of Centralized Formulations

Centralized formulations allow us to express a multitude of hard problems. The

vast literature on centralized task assignment and task scheduling algorithms gives

us tools with which to solve these problems. In practice, the task assignment and

task scheduling algorithm is run on a central computer. The agents that execute the

task assignment and task schedule that is produced by the central computer must

communicate with this computer to receive instructions. In situations where commu-

nication may be unreliable or incomplete, the centralization of task assignment and

task scheduling threatens the ability to distribute the instructions to the executing

agents. In situations where the computers may be unreliable, centralization threatens

the completion of the task assignment and task scheduling process. These are fun-

damental reasons for considering distributed problem formulations that are able to

model communication between agents and the failure of communication and agents.

There are many additional benefits to developing distributed problem formulations

and algorithms to solve them; these are discussed in Chapter IV.
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CHAPTER IV

Distributed Task Assignment and Task Scheduling

Problem Formulation

This chapter contributes a framework for distributed task assignment and task

scheduling. This framework includes two problem statements: the first is the Communication-

Constrained Distributed Assignment Problem (CDAP), the second is the Minimum-

time Arbitrarily-constrained Distributed Scheduling Problem (MADSP). Solving these

two problems results in: a task assignment that is feasible with respect to capabil-

ity constraints and clustering constraints, and a minimum-time task schedule that

satisfies scheduling constraints. The capability constraints are similar to those in

Chapter III and the clustering constraints guarantee that two agents assigned tasks

related by scheduling constraints can communicate. The scheduling constraints of

the MADSP are predicates; these constraints can incorporate temporal and logical

mission restrictions.

The separate treatment of these two problems allows distributed agents to find

task assignments and task schedules that are feasible, optimal if possible, when using

a communication network that has an arbitrary topology. The distributed algorithms

presented in this chapter solve these problems. Correctness, completeness, and op-

timality is proven. Average and worst-case complexity results are detailed. The

communication benefits of treating these problems separately are analyzed. The task
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assignment and task scheduling algorithms must have specific properties to guarantee

the correctness and completeness of the combined algorithm. These properties are

discussed in detail.

The CDAP is important when assigning distributed agents to tasks where direct

communication must be guaranteed between agents assigned to constrained tasks and

the communication network topology is only locally known. Assuming only a con-

nected network of arbitrary topology can limit the number of available communication

links. The result is that the agents must find regions of the communication network

that can satisfy capability and clustering requirements. The Stochastic Bidding Al-

gorithm (SBA) is used by the agents to solve the CDAP. The correctness of the SBA

is proven. The completeness of the SBA is analyzed, which indicates that the SBA

will find a solution if one exists. The complexity analysis conservatively suggests

average-case polynomial complexity. Auction methods are used for their efficiency;

several of their core principles are used as the basis for the SBA. Unlike other auc-

tion methods, the SBA uses controlled randomness to find a global minimum of the

relevant objective function. The randomness used here is reminiscent of Simulated

Annealing. However, Simulated Annealing relies on centralized information about the

solution and centralized authority to change the solution. In Simulated Annealing,

the solution is manipulated using local search techniques. Knowledge of the entire

solution and the ability to manipulate it must be centralized. Randomness is used

in the SBA, but no agent ever has complete authority over the entire task assign-

ment. Additionally, the distribution that characterizes the randomness is structured

differently here.

In this chapter the dependence of the number of required communication links on

the number of constraints coupling task assignment and task scheduling is quantified.

The dependence of the number of required communication links on the generality of

the problem description allows us to sacrifice problem expressiveness to operate on a
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network with a reduced number of communication links. This reduced generality is

modeled as a separation of task assignments and task schedules. The problem can be

solved more efficiently if this coupling can be reduced.

The MADSP is important to task scheduling problems (such as described in Chap-

ter I) where data describing tasks and constraints are distributed, the communication

network topology may not be complete, and the communication topology is only lo-

cally known. The solution of this problem guarantees the simultaneous satisfaction of

all mission constraints and the minimization of mission time. It is important that the

constraints be satisfied with the minimization of the objective function. The Optimal

Distributed Non-Sequential Backtracking Algorithm (OptDNSB) solves the MADSP.

If a solution exists, the OptDNSB Algorithm is able to find a schedule that satisfies

the arbitrary constraints while minimizing mission time. If no solution exists, all

agents will recognize that there is no solution. The OptDNSB Algorithm is proven

correct, complete, and optimal.

4.1 The Communication-Constrained Distributed Assignment

Problem

This section develops the Communication-Constrained Distributed Assignment

Problem (CDAP). The CDAP is to find a task assignment that obeys communica-

tion and capability constraints using the problem data that are distributed amongst

several agents over a communication network that is unknown a priori. Here, the

CDAP is converted into an optimization problem that, when solved, gives an assign-

ment that obeys all constraints. The Stochastic Bidding Algorithm (SBA) solves this

optimization problem by placing bids that are greater for agents whose assignments

satisfy more constraints. The bids are adjusted stochastically to so that the algorithm

avoids remaining stuck in local minima. The correctness of the SBA is proved and
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the computational complexity analysis suggests polynomial average-case complexity

with respect to key parameters.

The example scenario in Figure 4.1 is used to illustrate the concepts of this section.

The example involves four unmanned aircraft, two of which have the capability to take

pictures of targets, while the other two have the capability to attack targets. There are

two unmanned ground vehicles that have the capability to track targets. There are two

human operators that have the ability to confirm targets and authorize prosecution.

The vehicles and operators are the agents in this example. The black lines in Figure

4.1 represent acknowledgement-based communication links. The prosecution of a

target requires that the following tasks be performed: a photo must be taken of the

target; an operator must confirm this target and authorize prosecution; confirmation

must be relayed to the attacking aircraft; the attacking aircraft must attack the

target; and the tracking vehicle must track the target while the latter is attacked.

These tasks are defined formally in Section 4.1.1. In this scenario, there are four

targets.

Operator 1 Operator 2

UGV 1

UAV_camera 1

UAV_attack 1

Target 1

UAV_camera 2

Target 2

Target 4Target 3

UGV 2

UAV_attack 2

Figure 4.1: Military operations example.

Note that not all pairs of agents are connected by a communication link. Actual

causes of such situations can result from the failure of individual communication links,

a wireless network that has spotty or insufficient coverage, or the use of heterogeneous

communication hardware or protocols. Agents know their own capabilities and those
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of the agents they can communicate with, e.g., UAV camera1 is capable of taking

a picture. Agents know the constraints involving the tasks they are capable of per-

forming, e.g., the agent that photographs target 1 must communicate with the agent

that attacks target 1. Agents know the local topology of the communication network,

e.g., UGV 1 does not know who UGV 2 can communicate with. These limitations

motivate the statement of the CDAP and the development of distributed assignment

algorithms that can solve this problem.

4.1.1 CDAP Problem Definition

This subsection details the concepts used to formulate the problem of this section.

The concepts of this section are illustrated using the example scenario of Section 4.1.

Only one target is considered for the sake of simplicity. The set of tasks to be assigned

is as defined in 3.1. For the example of Section 4.1, Nt = 5 and the set of tasks is

T = {t1, t2, t3, t4, t5}, (4.1)

where t1 ≡ photograph target 1; t2 ≡ classify target 1; t3 ≡ confirm status of target

1; t4 ≡ attack target 1; and t5 ≡ track target 1.

Tasks are to be assigned to agents. The set of agents is as defined in 3.2. For the

example of Section 4.1, Na = 8 and the set of agents is

A = {a1, a2, a3, a4, a5, a6, a7, a8, }, (4.2)

where a1, a2 ≡ operator 1,2 respectively; a3, a4 ≡ UAV camera 1,2 respectively;

a5, a6 ≡ UAV attack 1,2 respectively; and a7, a8 ≡ UGV 1,2 respectively.

Here, a task assignment is a mapping from tasks to agents. It is defined formally

as in 3.5. The following is an instance of a task assignment for the example of Section
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4.1,

TA1 = {(t1, a3), (t2, a1), (t3, a4), (t4, a5), (t5, a8)}. (4.3)

Two notions of feasibility of task assignments are used here. The first refers to

feasibility with respect to capability. The capability of the agents is described using

the relation defined in 3.3. The capability relation for the example of Section 4.1, as

it pertains to target 1, is

Capability = {(t1, a3), (t1, a4), (t2, a1), (t2, a2)

(t3, a3), (t3, a4), (t3, a5), (t3, a6)

(t4, a5), (t4, a6), (t5, a7), (t5, a8)}.

(4.4)

For the motivating example, the task assignment of (4.3) is feasible with respect to

capability whereas the task assignment,

TA2 = {(t1, a1), (t2, a3), (t3, a2), (t4, a4), (t5, a4)} (4.5)

is not.

A central idea of this section is that tasks are bound to each other in the following

sense. Tasks are related by operational constraints, as defined in (3.10), and the

agents that are assigned such related tasks must be able to communicate in order to

properly schedule for and perform these tasks. In the motivating example, tracking

and attacking tasks for a single target are related by the operational constraint that

they must be performed at the same time (i.e., when scheduled, these tasks must be

scheduled to occur at the same time). Consider Ns > 0 task clusters,

T1, . . . , TNs ⊆ T , (4.6)

each of which represents a particular constraint and contains as elements the tasks
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that are involved in each such constraint. For the example of Section 4.1 Ns = 4 and

the clusters are

T1 = {t1, t2}, (4.7)

T2 = {t2, t3}, (4.8)

T3 = {t3, t4}, (4.9)

T4 = {t4, t5}. (4.10)

Define the cluster group relation between tasks,

CG ⊆ T × T . (4.11)

The cluster group relation is defined for a pair of tasks (ti, tj) ∈ CG when there

exists a sequence of intersecting clusters between ti and tj, and can be read ti is

in the same cluster group as tj. By its definition, the cluster group relation is an

equivalence relation, and therefore induces a partition of T . The elements of this

partition are referred to as cluster groups. In practice, cluster groups correspond to

subsets of tasks that are not related by constraints. Figure 4.2 illustrates this for the

motivating example.

clusters cluster groups

t1t2
t3

t4 t5
set of tasks

Figure 4.2: Cluster group for example scenario (target 1).

The agents in (3.2) have communication capability described by an undirected,
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connected communication graph,

Gc = (A, Ec). (4.12)

There is an edge between two agents if and only if they are able to communicate di-

rectly with each other. The type of communication assumed here is acknowledgement-

based, where each agent knows when communication is established with another

agent. The edge set of the communication graph for the motivating example is

E = {{a1, a3}, {a2, a4},

{a3, a4}, {a3, a5}, {a3, a6},

{a4, a5}, {a4, a6},

{a5, a6}, {a5, a7}, {a6, a8}}.

(4.13)

A task assignment is said to be feasible with respect to clustering if and only if

(A, Ec) |TA(Ti) is complete, i = 1, . . . , Ns. (4.14)

Requirement (4.14) means that the agents that are assigned to the tasks belonging to a

cluster must all be able to communicate directly with each other. The task assignment

of (4.5) is feasible with respect to clustering, whereas the task assignment of (4.3) is

not. The infeasibility of the task assignment TA1 with respect to clustering results

because agent TA1(t2) cannot directly communicate with agent TA1(t3) although t2

and t3 belong to the same cluster T2.

Definition IV.1. Feasible task assignment:

A task assignment that is feasible with respect to capability and feasible with respect

to task clustering is said to be a feasible task assignment.

For the motivational example, the task assignment,
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TA3 = {(t1, a3), (t2, a1), (t3, a3), (t4, a6), (t5, a8)} (4.15)

is feasible.

Proposition IV.2. Let X ∈ {0, 1}Nt×Na represent a task assignment so that Xij = 1

if TA(ti) = aj and Xij = 0 otherwise. Then the problem of finding a feasible assign-

ment can be formulated as a system of nonlinear equations in X.

Proof. Proposition IV.2

Let matrix Bc represent the adjacency matrix of the graph Gc, that is, Bcjl = 1

if {aj, al} ∈ Ec, Bcjl = 0 otherwise. Let the matrix Bcl represent the clustering

relationships between tasks, that is, Bclik = 1 if there exists a cluster Tm such that

ti ∈ Tm and tk ∈ Tm.

The matrix productXTBclX ∈ {0, 1}Na×Na has the following meaning: (XTBclX)jl =

1 if the agents aj and al are assigned tasks that share a cluster, (XTBclX)jl = 0 oth-

erwise.

Let matrix AC represent the capability constraints. Here, ACij = 0 if (ti, aj) ∈

Capability and 1 otherwise. The following constraints must be satisfied for the task

assignment X to be feasible:

Bcil − (XBclX
T )il ≥ 0,

i, l = 1, . . . , Na,

(4.16)

Nv∑
j=1

ACijXij = 0,

i = 1, . . . , Na,

(4.17)
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Na∑
i=1

Xij = 1,

j = 1, . . . , Nt.

(4.18)

Equation (4.16) is nonlinear in the assignments, which proves Proposition IV.2.

Proposition IV.2 illustrates the nonlinearity of the CDAP problem.

Each agent aj is assumed to know the following data:

1. The set Capability−1(aj), i.e., the tasks that aj can perform,

2. The set TA−1(aj), i.e., the tasks that aj is assigned to,

3. ∀t ∈ Capability−1(aj), Tm such that t ∈ Tm, i.e., the clusters that contain the

tasks in Capability−1(aj),

4. The set Naj , i.e., the neighborhood of aj on the communication graph Gc,

5. ∀ak ∈ Naj , the set Capability−1(ak), i.e., the tasks that the neighbors of aj can

perform,

where j = 1, . . . , Na and m = 1, . . . , Ns.

The CDAP is for the agents in A to collectively find a feasible task

assignment TA using only the available data together with communication

with neighbors by (4.12).

The difficulty of this assignment problem is due to several factors: 1) the number of

assignments that are feasible with respect to capability isO(maxi(|Capability(ti)|)Nt),

ti ∈ T ; 2) the clustering constraints are nonlinear; and 3) the problem data are

distributed across a communication network of arbitrary topology.

With regards to assumptions, we have explicitly assumed that Gp is connected.

The primary implication for a disconnected Gp is that assignments cannot be made
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uniquely. That is, we cannot guarantee that a task assignment TA be a mapping. Our

formulation is independent of the implementation of specific communication protocols

used to guarantee acknowledgement-based communication. For instance, if multi-hop

communication or ad-hoc networking is used to guarantee acknowledgement-based

communication between two agents, this results in an edge between the two agents in

Gc. The associated effects on the network bandwidth are not addressed in this work.

4.1.2 Technical Approach

This subsection details the framework and the tools used to automate the solution

of the assignment problem presented in Section 4.1.1. Define a set of messages M,

possibly infinite and closed under union. The content that the agents communicate

to their neighbors originates in this set of messages. For every multi-index (i, j) such

that (ti, aj) ∈ Capability, define a process similar to (1.12),

[ti, aj] = (Statesij, startij, transij,msgsij). (4.19)

This quadruple is called a process, where Statesij is the state space of process [ti, aj],

i.e., a set of configuration quantities that may be boolean, integer, or real valued that

describe the configuration of the process and represent its memory; startij ∈ Statesij

is the state at which process [ti, aj] begins operation;

transij : M× Statesij → Statesij, (4.20)

msgsij : M× Statesij →M. (4.21)

Processes advance this state appropriately through the function transij, which accepts

incoming messages and produces a new state from the current state. The function

msgsij is responsible for reading received messages, the new state, and based on

these, sending appropriate messages. Let Processes be the set of processes defined
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in (4.19). Define the undirected process graph Gp = (Processes, Ep), where

Ep = {{[ti, aj], [tk, al]} | {aj, al} ∈ Ec}. (4.22)

The process [ti, aj] is connected to the process [tk, al] if agent aj is connected to agent

al by a communication link. The process graph for the motivating example is shown

in Figure 4.3(b). The process graph is shown next to the communication graph of

Figure 4.1 for illustration. The vertex set of the process graph for the motivating

example (with one target) is given by (4.4) and the edge set follows from (4.13) and

(4.22).

Operator 1 Operator 2

UGV 1

UAV_camera 1

UAV_attack 1

UAV_camera 2

UGV 2

UAV_attack 2

(a)

[t2,a1] [t2,a2]
[t1,a3]

[t3,a3]

[t1,a4]

[t3,a4]

[t3,a5]

[t4,a5]

[t3,a6]
[t5,a7] [t5,a8]

[t4,a6]

(b)

Figure 4.3: Process graph for the example of Section 4.1.

The processes [ti, aj] ∈ Processes form a distributed system in the sense specified

in Section 4.1. The following modeling assumption is made here, the distributed

system operates synchronously. That is, the processes each simultaneously update

their state and then simultaneously send messages to their neighbors. Each iteration

of computation and message transmission is referred to as a round.

The assumption of synchronicity allows us to reason about the operation of the

system in discrete steps. In practice, the synchronous assumption can be relaxed to

partially synchronous operation. It is possible to consider processes that compute

(and communicate) at different rates, but wait to receive messages from their neigh-

bors at each round. Message sending and reception must be reliable and messages

must also be received in the order they are sent. In practice, we only need the system
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to obey partial-synchrony. That is, processes may not operate at the same speed,

but must wait to receive information from other bidding processes. This type of

synchronization can result in rounds of unequal duration.

We describe a process’ ability to satisfy assignment constraints locally as follows:

we introduce the notion of a cluster union, defined for each task ti as the set of tasks

with which task ti shares a cluster. Formally a cluster union is,

Ci = {tk | ∃m ≤ Ns : ti ∈ Tm and tk ∈ Tm},

i = 1, . . . , Nt.

(4.23)

The cluster unions for each task in the example of Section 4.1 are

C1 = {t2}, (4.24)

C2 = {t1, t3}, (4.25)

C3 = {t2, t4}, (4.26)

C4 = {t3, t5}, (4.27)

C5 = {t4}. (4.28)

A process [ti, aj] is assignable, informally, if its neighborhood contains processes whose

agents can be assigned to the tasks tk ∈ Ci. Formally, we have the following,

Definition IV.3. Assignable Process:

Process [ti, aj] is assignable if ∀tk ∈ Ci, ∃[tk, al] ∈ N[i,j].

Unassignable processes are not able to satisfy clustering constraints. To illustrate

this concept, consider the modification of the example of Section 4.1 obtained by

disabling the communication between a4 and a5 and between a4 and a6 as shown in

Figure 4.4(a). It can be seen in Figure 4.4(b) that this results in process [t3, a4] being

unassignable.
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Operator 1 Operator 2

UGV 1

UAV_camera 1

UAV_attack 1

UAV_camera 2

UGV 2

UAV_attack 2

(a)

[t2,a1] [t2,a2]
[t1,a3]

[t3,a3]

[t1,a4]

[t3,a4]

[t3,a5]

[t4,a5]

[t3,a6]
[t5,a7] [t5,a8]

[t4,a6]

(b)

Figure 4.4: Modified example showing assignability and unassignability.

The problem of finding a feasible assignment is addressed using minimization. This

is done by equating the satisfaction of the clustering constraints to the minimization

of a carefully chosen objective function. The following discussion describes how this

is done. For each [ti, aj] ∈ Processes, let

Xij =

 1 if TA(ti) = aj

0 otherwise
, (4.29)

specify whether or not ti is assigned to aj. For the example of Section 4.1 and the

task assignment of (4.3), X13 = X21 = X34 = X45 = X58 = 1. The set of processes

that allow process [ti, aj] to satisfy the clustering constraints associated with task ti

is

NCij = {[k, l] ∈ N[ti,aj ] | Xkl = 1

and tk ∈ Ci},
(4.30)

and has cardinality

ncij =| NCij | . (4.31)

Note that by the definitions of NCij and ncij, 0 ≤ ncij ≤ |Ci|. If ncij = | Ci | and

Xij = 1, then all required clustering constraints for task ti are satisfied. For process

[t1, a3] and process [t1, a4] and the task assignment of (4.3), NC13 = {[t2, a1]} and

NC14 = ∅. That is, nc13 = 1 and nc14 = 0.
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Consider the set of all assignable processes whose agents belong to Capability(ti).

This set is

Bi = {[ti, aj] ∈ Processes | aj ∈ Capability(ti)

and [ti, aj] is assignable},

i = 1, . . . , Nt.

(4.32)

For the example of Section 4.1 and task t1, B1 = {[t1, a3], [t1, a4]}.

The deficiency of a process is defined as

ndij =| Ci | − ncij. (4.33)

Note that by (4.30), (4.31), and (4.33), 0 ≤ ndij ≤ |Ci|. The sum of this deficiency

across the process graph is

J(TA) =
∑

i,j:[ti,aj ]∈Processes

ndij ·Xij. (4.34)

This objective function is never computed centrally and satisfies J(TA) ≥ 0. The

constraints of (4.14) are satisfied by minimizing the objective function J(TA). Indeed,

define the optimization problem

min
TA∈AT

J(TA) (4.35)

s.t. TA ⊆ Capability.

The minimum value of any process deficiency, ndij, is zero and corresponds to TA(ti)

being in communication with all agents TA(tk) where tk ∈ Ci, i = 1, . . . , Nt.
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Proposition IV.4. J(TA) = 0 if and only if TA satisfies (4.14).

Proof. Proposition IV.4

“→” Assume that ∀Tm ⊆ T , (A, Ec)|TA(Tm) is complete. This implies that ∀{ti, tk}

such that there is a Tm where {ti, tk} ⊆ Tm, {TA(ti), TA(tk)} ∈ Ec. This implies that

∀[ti, aj] ∈ Processes where Xij = 1, ncij = |Ci|. By (4.34), J(TA) = 0.

“←” Assume J(TA) = 0. This implies that ncij = |Ci| for all processes [ti, aj]

where Xij = 1. Now, ncij = |Ci| for all (ti, TA(ti)), i = 1, . . . , Nt, implies that

for all {ti, tk} ∈ Tm,m = 1, . . . , Ns, {TA(ti), TA(tk)} ∈ Ec. By (4.14), ∀Tm ⊆ T ,

(A, Ec)|TA(Tm) is complete.

Proposition IV.4 demonstrates that solving the optimization problem defined in (4.35)

is equivalent to solving the CDAP. Note that ndij is a function of Xkl, where [tk, al] ∈

N[ti,aj ]. This introduces a nonlinearity into the objective function (4.34) that is similar

to that of Proposition IV.2.

A pervasive concept in the auction literature is that of Pareto Optimality. Pareto

Optimality is a property of an assignment of resources, tasks, etc. to agents. In the

context of task assignment, a task assignment is Pareto Optimal (or efficient) if we

cannot increase the total benefit of the task assignment by changing the assignment

for any one task. Next we demonstrate this for the CDAP. Choose a benefit function

for aj ∈ A,

bj : AT → N (4.36)

that represents the benefit of an assignment TA to the agent aj. The benefit function

is

bj(TA) =
∑

i:(ti,aj)∈TA

ncij. (4.37)

where ncij follows from 4.31. The total benefit of a task assignment TA is
∑

j:aj∈A bj(TA).
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Proposition IV.5. J(TA) = 0 if and only if TA is Pareto Optimal.

Proof. Proposition IV.5

“→” Let TA1 and TA2 both be Pareto Optimal. That is
∑

j:aj∈A bj(TA1) =
∑

j:aj∈A bj(TA2).

Consider
∑

j:aj∈A bj(TA1), which attains its maximum when ncij = |Ci|, i.e.,
∑

j:aj∈A bj(TA1)

=
∑

i:ti∈T |Ci|. From this, and 4.34, J(TA1) =
∑

(i,j)∈TA1
(|Ci| − |Ci|), J(TA1) =

J(TA2) = 0.

“←” Consider TA1 and TA2, let J(TA1) = J(TA2) = 0. This implies that ncij = |Ci|,

(i, j) ∈ TA1. Similarly for TA2. Hence,
∑

j:aj∈A bj(TA1) =
∑

j:aj∈A bj(TA2) =∑
i:ti∈T |Ci|. It follows that TA1 and TA2 are both Pareto Optimal.

4.1.3 Solution Procedure

This section discusses the SBA that is based on the principles of Simulated An-

nealing and uses controlled randomness to find a solution to the CDAP. Processes

use the SBA presented in [52] to bid on behalf of their agents for the tasks that

the corresponding agent is capable of performing. The Stochastic Bidding Procedure

(SBP) is run by each process. The SBA is the aggregate of all SBPs running on all

processes, together with a termination condition.

4.1.4 The Stochastic Bidding Procedure

Two types of messages are used, bid messages and next messages. A bid message

contains the numerical bid by a process for its respective task. A next message tells

that the sending process has received all of the bids it was expecting. When a process

bidding for a task has received bid messages from all processes bidding for the same

task, it determines the winner as the process with the highest bid. This allows the
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processes to determine the winner for themselves without relying on an auctioneer.

The bids are computed such that it is unlikely (with probability equal zero) that two

bids be identical. Thus there is a unique winner and each bidding process computes

the same winner (with probability equal one).

The bids are computed as follows. Let the quantity NDij be a local estimate of

the value of J(TA) in (4.34). Processes [ti, aj] ∈ Processes update the value of NDij

every time next messages are received from processes [tk, al] where Xkl = 1. Let qij

be a random variable with probability density function

pdf(qij) =


1

2
√

2πσ2
ij

exp[− q2ij
σ2
ij

], qij > 0, for σij > 0,

0, for σ = 0

, (4.38)

with standard deviation,

σij =
NDij · c

T
, (4.39)

where the parameter c is constant and T goes to infinity as time elapses. The bid

values for each assignable process [ti, aj] ∈ Processes are computed as,

bidij = ncij − qij. (4.40)

The bids computed in (4.40) favor processes that satisfy their respective clustering

requirements dictated by Tm, m = 1, . . . , Ns.

Tasks are bid on in round-robin order. Without loss of generality, the bidding

begins with task t1. Bidding begins for ti ∈ T when a process [ti, aj] ∈ Bi, has

received next messages from every [t(i−1), aj] ∈ Bi−1, where t0 is defined as tNt by

round-robin. When a process bidding for ti has received bid messages from every

[ti, aj] ∈ Bi, that process computes the winning bidder and sends a next message.

Note that each process maintains local authority over the task it bids on and when
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it bids.

These messages are relayed by each process across the graph Gp. A round refers to

a process running trans and msgs; and a session refers to the completion of bidding

for each of the Nt tasks, that is, one turn of round-robin. In (4.39), T is equal to

the number of sessions. This procedure can be thought of as a distributed Simulated

Annealing method. The bidding procedure is depicted graphically in Figure 4.5.

Check
Messages

all
nexts

received

Compute bid value

all
bids

received

Check Messages

Compute winner

send
next

message

send bid message

yes

noyes

no

start

Figure 4.5: Bidding procedure diagram.

The SBP is described formally as follows. The state stateij of process [ti, aj] ∈
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Processes and the messages, M are defined as follows,

stateij = (j, i, | Ci |, ncij,

NDij, Nsentij , bidij, Xij,

allBidRecvdij, allNextRecvdij,

sendBidij, sendNextij),

(4.41)

and

Mbid = {(Nsentij , j, i,

bidij, | Ci |, ncij)},
(4.42)

Mnext = {(Nsentij , j, i,

Xij, | Ci |, ncij)},
(4.43)

M =Mbid ∪Mnext. (4.44)

The quantities | Ci |, ncij, NDij and bidij are computed per their definitions. The

quantity Nsentij is the number of messages sent by process [ti, aj]. The boolean quan-

tities Xij, allBidRecvdij, sendNextij, and sendBidij are initialized as zero, and the

boolean quantity,

allNextRecvdij =

 1 if i = 1

0 otherwise
. (4.45)

Define the function computeBid, which computes a bid value by (4.38), (4.39), and

(4.40). Also define the function computeX, which determines if process [ti, aj] is the

winning bidder for task ti. This is done after all bids for task ti are received by process

[ti, aj] ∈ Processes. The function forwardNew sends all new incoming messages to

all neighbors except for the sending process, and sendMsg sends a message M ∈M

to all neighbors. Algorithms 4 and 5 detail the operation of the transij and msgsij
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functions respectively for the algorithm presented in this section.

Data: M,Stateij
1 if allNextRecvd then
2 allNextRecvd = 0
3 computeBid(NDij, ncij)
4 sendBid = 1

5 end
6 if allBidRecvd then
7 allBidRecvd = 0
8 computeX()
9 sendNext = 1

10 end
Result: stateij ∈ statesij

Algorithm 4: transij

Data: stateij
1 forwardNew()
2 if sendBid then
3 sendBid = 0
4 M = Mbid

5 sendMsg(M)

6 end
7 if sendNext then
8 sendNext = 0
9 M = Mnext

10 sendMsg(M)

11 end
Result: M ∈M

Algorithm 5: msgsij

4.1.5 Liveness Condition

Note that the procedure depicted in the diagram in Figure 4.5 does not terminate.

The liveness condition for this algorithm is specified as follows:

Livenesss condition:

∀[ti, aj] ∈ Processes, NDij = 0.
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This liveness condition is a function of the states of each process and thus requires

current knowledge of each process which, in general, no process will have. Rather than

terminate, it is enough that there exists a round at which the processes collectively

output a solution. In the case of the Stochastic Bidding procedure there is a round at

which the processes output a feasible assignment. In addition, after this round, the

processes output this assignment and only this assignment. The liveness condition

relies on knowledge of the states of each process.

There are several properties of the SBA worth noting. As J(TA) and similarly

NDij decrease, the probability that a process that satisfies a large number of its

communication requirements wins the bidding for its task increases. As a result, the

bid that any process [ti, aj] ∈ Processes can place for its task is maximized when

σij = 0. This corresponds to NDij = 0, which implies that every process that has

won the bidding for its task can communicate with all processes that have won the

bidding for the tasks in Ci. This implies that if process [ti, al] can match process

[ti, aj]’s bid for task ti, then process [ti, al] can also meet the same communication

requirements as process [ti, aj].

It would be realistic to have a constraint that clustered tasks be assigned to distinct

agents regardless of capability. This constraint can be incorporated by restricting the

set Bj to vary with the assignment. That is, if two tasks must be assigned to separate

agents, said agents should not bid on both tasks.

The number of rounds required for the sharing of all bid messages is upper bounded

by diam(Gp). The number of rounds required for all of the processes bidding on the

next task to receive all next messages is also upper bounded by diam(Gp). This results

in a upper bound between the beginning of bidding for ti and ti+1 of 2 · diam(Gp).
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4.1.6 Analysis of Stochastic Bidding

This section presents an analysis of the SBA. The SBA developed above is able

to find the global minimum of the objective function in (4.34). This is contrary to

other auction methods that, while they perform well, may not find a global minimum

when minimizing a nonlinear objective function. The SBA is unique in that it uses

controlled randomness to achieve this. While the SBA has a Simulated Annealing

character, it is distinctly different in that it is a distributed algorithm where no agent

has global authority over the solution. It is important to show that the SBA con-

verges to a task assignment that is feasible. That is, it should converge and it should

converge to a solution to the CDAP. This section shows the SBA to be correct and

to find a solution if one exists. The correctness is as follows,

Proposition IV.6. Correctness:

The Stochastic Bidding Algorithm terminates if and only if a feasible assignment TA

has been found.

Proof. Proposition IV.6

“→” Assume bidding has terminated, that is NDij = 0 for all processes. Now,

NDij = 0 for all processes implies that for all processes, ndij · Xij = 0. By the

definition of ndij and Xij, and Proposition IV.4, TA is feasible.

“←” Assume TA is feasible. By the definition of a feasible task assignment and

Proposition IV.4, J(TA) = 0. By the connected graph assumption, each process will

have NDij = 0 within diam(Gp) rounds. Moreover, NDij = 0 for all processes implies

liveness.

Proposition IV.6 concerns the ability of the SBA to recognize that a solution has been
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found and terminate.

Here we discuss the complexity of the SBA. Since each process corresponds to

one task, the cluster groups also induce a partition on the set of processes. This

partition is composed of the subsets of processes that bid for tasks in each cluster

group. Without loss of generality, we can consider the assignment of a single cluster

group because processes bidding within different cluster groups will never be related

by constraints.

The following discussion concerns the analysis of the complexity of the SBA. For

this analysis, it is assumed that each task has the same number of agents capable of

performing it. That is, |Capability(t1)| = . . . = |Capability(tNt)| = N . The number

of assignments that are feasible with respect to capability is O(NNt). This motivates

the study of the effects of N and Nt on computational complexity.

Define the connection index CI to be the number of inter-process connections

required by clustering constraints. Given a set of tasks and the corresponding clusters,

it is simple to determine CI. The maximum value of CI = Nt(Nt−1)
2

and the minimum

value of CI = Nt − 1 and are referred to as CImax and CImin respectively. For the

example of Section 4.1, CI = 4 = CImin. Figures 4.6(a) and 4.6(b) illustrate five tasks

and two different cluster configurations. The dotted lines illustrate the communication

requirements that will be imposed between the agents that are assigned to the tasks.

The configuration of Figure 4.6(a) presents a clustering configuration that corresponds

to CI = 6 and Figure 4.6(b) presents a clustering configuration that corresponds to

CI = 10. The quantity CI is additionally illustrated by comparing it with NCij in

(4.30) and J(TA) in (4.34). The maximum cardinality of NCij =| C |, notice that

if this is the case for all processes [ti, aj] where Xij = 1 then
∑

ij ncij = 2CI and

J(TA) = 0. It follows that the maximum that J(TA) can attain is 2CI. Therefore

by choosing CI, we are directly choosing the difficulty of the problem as it relates to

the effects of clustering.
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Figure 4.6: Tasks are related by clusters. Clusters impose communication require-
ments.

To investigate the computational complexity of the SBA, we investigate the num-

ber of sessions needed to find a feasible assignment as N , Nt, and CI change. The

parameter c in (4.39) is important to the convergence of the bidding procedure. Its

effect is analyzed separately.

The importance of a session relates to the fact that it represents the change of the

current tasks assignment across the network with respect to each task. By measuring

the number of sessions taken to find a feasible solution, we are able to abstract the

structure of the graph in studying the algorithm’s complexity. That is, the relative

location (on Gp) of agents that are bidding on a single task affects the number of

rounds needed to bid on that task. However, the number of sessions required to bid

on all tasks once is one regardless of the structure of Gp.

We study the computational complexity of the SBA experimentally. Note that

the parameters N and Nt fix the number of processes at |Processes| = N ·Nt. Recall

that the process graph Gp must satisfy the connectedness assumption. Also, it is only

necessary to consider processes that are assignable. It is important that there exist a

solution. Stochastic Bidding cannot output that there is no feasible assignment even

if there does not exist one. This is a result of using stochastic search. The following

procedure is used to construct Gp:

1. Pick N , Nt, CI
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2. Create N ·Nt processes and Nt tasks

3. Create the cluster group as follows. Create a graph with tasks as vertices. Pick

two tasks at random and connect them by an edge; this is the cluster group.

Pick a task that is in the cluster group and one that is not in the cluster group

at random and connect them. Repeat this until all tasks are in the cluster

group. Select pairs of tasks that are not connected by an edge at random and

connect them by an edge until the number of edges is equal to CI.

4. Create Gp as follows. Pick two processes at random and connect them by an

edge. Select at random a process that is connected to the others and one that

is not and connect them. Repeat this until Gp is connected. Pick at random

one process corresponding to each task. Connect them according to the cluster

group.

5. For each process, if it is not assignable, select at random processes that will

allow it to meet the assignability criterion and connect them.

This analysis considers instances of Gp that are created to satisfy the necessary

assumptions. These instances of Gp are not created using Gc from (4.12). Several

phenomena motivate this type of analysis. Recall that Gp represents the capabilities

of the agents and how those capabilities are related by communication links. This

abstraction is useful because it lets us focus only on the capabilities of the agents

and how those capabilities are related by communication links. Note that when

considering Gc in (4.12), the addition of communication links in Gc represents the

addition of one or more communication links in Gp. Satisfying the requirements of

the existence of a solution, connectedness of Gc, and the assignability requirements

for processes implies that these requirements are satisfied for Gp. Thus performing

the complexity analysis for random instances of Gp results in conservative estimates

of algorithm complexity.
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The results in Figures 4.7(a) and 4.7(b) describe the complexity behavior of the

SBA. Each line in Figure 4.7(a) was created using data points collected at two task

intervals along the abscissa, similarly for N in Figure 4.7(b). Notice that from the

plots, this spacing is sufficient to suggest the nature of the mapping from Nt to

sessions and similarly for N to sessions. Each of these data points represents the

mean of 30 randomly generated experiments created by the above procedure. The

spread lines show the one standard deviation bounds for the resulting number of

sessions required to find a feasible assignment for each collection of experiments.

(a) N = 8 (b) Nt = 8

Figure 4.7: Number of sessions needed to find a feasible assignment.

Figure 4.7(a) shows how the mean number of sessions required to find a feasible

assignment using the SBA changes as the number of tasks is increased. Here, the value

of N is kept constant and N = 8. Figure 4.7(a) contains the results for CI = CImax

and CI = CImin. Figure 4.7(b) shows how the mean number of sessions required

to find a feasible assignment changes as N is increased. Here, the value of Nt is

kept constant at Nt = 8. Figure 4.7(b) contains the results for CI = CImax and

CI = CImin.

The main drivers of computational complexity are Nt and CI. Increasing the

value of CI clearly increases the number of sessions needed to find a feasible task

assignment. However, the shapes of the curves plotted for CImin and CImax are

qualitatively similar. Additionally, the spread of the data is consistently larger for
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the CImax curves. In practice this means that we will be less confident about the

number of sessions needed to find a feasible assignment when CI is large. The results

of Figure 4.7(a) show that the effect of increased agent capability (i.e., increased N)

on the computational complexity of the algorithm is less than linear. That is, for a

fixed CI, there appears to be a linear upper bound on computational complexity as

a function of N . This suggests that while increasing the number of capable agents

increases the time to find a solution, the algorithm becomes less sensitive to this

effect as N is increased. The results of Figure 4.7(b), while not as benign as those of

Figure 4.7(a), show a distinctly linear behavior of the computational complexity as a

function of Nt.

The relative behavior of the plots in Figures 4.7(a) and 4.7(b) are also important.

Recall that an upper bound on the number of possible task assignments is O(NNt),

under the assumption that ∀ti ∈ T , |Capability(ti)| = N . This statement says that

the effect of Nt on the computational complexity can be exponential whereas the

effect of N is polynomial. The computational experiments show a linear expected

computational complexity and that the qualitative difference in the effects of Nt and

N on computational complexity remain. It is also interesting to note that the linear

complexity with respect to the number of tasks is seen in the classic auction algorithm

[7].

For every experiment performed, there is a value of c in (4.39) for which the SBA

finds a solution. The following demonstrates that the effect of an increase in c is to

increase the uniformity of the bidding procedure. That is, increasing c makes agents

more equal with regards to the competitiveness of their bids. From (4.39) we can see

that

lim
c→∞

σij =∞. (4.46)

It follows that

lim
c→∞

pdf(qij) = U(0,∞), (4.47)
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where U(a, b) is the uniform distribution with support (a, b). From this it follows that

as c goes to infinity, bidij has the same distribution for each process. The effect of c

is to increase the number of sessions T required to bias bidding toward processes that

satisfy clustering constraints. Equation (4.47) implies that during any session, there is

a non-zero probability of generating a feasible assignment. This is important because

it tells us that c is a tuning value for the SBA that allows us to insert randomness

into the algorithm to further explore the solution space.

4.1.7 The Dependence of Required Communication Links on Modeling

The coupling between task assignment and task scheduling is addressed here.

The number of communication links required for task scheduling depends on how the

problem of finding a task assignment and a task schedule is modeled. The mechanism

for this dependence is that the methods of [49, 121, 120] require that agents assigned to

tasks related by constraints be able to communicate. For a communication network of

arbitrary topology, these communication links may not be available. The SBA in this

section is able to find assignments that guarantee that this requirement is met while

only requiring that the communication network be connected. Scheduling can then

be done using [49]. This section motivates a way of modeling the task assignment and

scheduling problem using constraints that separate the task assignment and schedule.

The results of this section show that modeling the problem in this way reduces the

number of required communication links needed for finding a task assignment and

task schedule.

A task schedule is defined as in 3.7). Informally, scheduling constraints are used

to characterize the allowable schedules. Scheduling constraints are formally defined

as functions that map from the set of schedules to the set {false, true}. The number

of constraints is Ns. These constraints are defined as in (3.10).

A generalized specification of the problem of finding a task assignment and task
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schedule can be given using constraints of the form (3.8). Constraints such as these

affect not only the times at which tasks are performed, but also the agents that

perform them. Using this type of constraint imposes the additional communication

requirements that result in the dependence detailed as follows.

Consider that the set of tasks T can be redefined as follows. Let T ′ be a new set

of tasks with elements

tji ∈ T ′ s.t. (ti, aj) ∈ Capability. (4.48)

This represents the task ti being performed by agent aj. Consider task assignments

that operate on the new set of tasks,

TA′ : T ′ → A. (4.49)

The capability relation becomes

Capability′ = {(tji , aj) | (ti, aj) ∈ Capability}, (4.50)

Note that there is only one task assignment that is feasible with respect to Capability′,

TA′ = {(tji , aj) | (ti, aj) ∈ Capability}. (4.51)

This results from the fact that each of the tasks tji ∈ T ′ corresponds to the specific

agent aj ∈ A.

Consider constraints similar to those in (3.10) that operate over the set of schedules

for T ′,

p′m : TT
′

s → {false, true}, (4.52)

and the resulting clusters T ′m ⊆ T ′, m = 1, . . . , N ′s. The constraints of (4.52) are
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equivalent to those in (3.8). That is, the constraints of (4.52) incorporate all possible

assignments of tasks to agents. Note that in addition to the constraints of (3.10), the

following constraints are required to guarantee that TA is a mapping,

p′i =

 1 if ∃!j : TS(tji ) > 0, j = 1, . . . , Na

0 otherwise
, (4.53)

where i = 1, . . . , Nt, hence Ns ≤ N ′s. The constraints of (4.53) ensure that for each

ti ∈ T , ti is performed by only one agent. This representation incurs the following

penalty. The constraints in (4.53) result in the clusters T ′i . The task assignment TA′

is the only task assignment that is feasible with respect to Capability′. For TA′ to

be feasible with respect to clustering,

(A, Ec)|TA′(T ′m), (4.54)

must be complete, m = 1, . . . , N ′s. This requirement imposes the additional commu-

nication constraints associated with the clusters T ′i , i = 1, . . . , Nt. Physically, this

requirement means that the agents in the set Capability(ti) must be able to commu-

nicate directly. For the example of Section 4.1, this requirement results in the need

for the additional communication links in Figure 4.8.

Let Ni =| Capability(ti) |. The cost of this modeling decision is that

L =
Nt∑
i=1

Ni(Ni − 1)

2
, (4.55)

additional communication links must be available.

For the following analysis assume N1 = . . . = NNt = N , that is, each task has an

equal number of capable agents. Under this assumption, the number of additional

communication links required in Equation 4.55 is L = Nt
N(N−1)

2
. The number of
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Figure 4.8: Illustration of additional communication links required by the generalized
model.

additional communication links is plotted in Figure 4.9 as a function of N . Hence,

Figure 4.9: The number of additional communication links required between pro-
cesses if the assignment and schedule are not separated, plotted as a
function of the capability of the agents.

the quantification of the task assignment and task schedule coupling is given by (4.55)

and Figure 4.9.

Solving the CDAP gives a task assignment that satisfies communication con-

straints. Satisfaction of these constraints guarantees that the agents assigned to tasks

136



that are involved in scheduling constraints can communicate directly. The specifica-

tion of the Minimum-time Arbitrarily-constrained Distributed Scheduling Problem

of the following section includes communication assumptions that the CDAP satis-

fies. The Optimal Distributed Non-Sequential Backtracking Algorithm exploits the

fact that the SBA satisfies these assumptions. The relationship between the satisfac-

tion of these communication assumptions by an algorithm such as the SBA and the

scheduling algorithm is discussed in detail in the next section.
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4.2 Distributed Constrained Minimum-Time Schedules in Net-

works of Arbitrary Topology

This section presents the details of the Minimum-time, Arbitrarily-constrained,

Distributed Scheduling Problem (MADSP). This is the problem of finding a minimum-

time schedule subject to arbitrary constraints using problem data that are distributed

amongst several agents over a communication network topology that is only locally

known. The Optimal Distributed Non-Sequential Backtracking (OptDNSB) Algo-

rithm solves the MADSP. This section presents proofs of the correctness, complete-

ness, and optimality of the algorithm. It is shown that the OptDNSB Algorithm

retains these properties under conditions where the task assignment changes during

scheduling. This is important because it admits a class of task assignment algorithms,

that includes the SBA, to be used that can satisfy the communication constraints nec-

essary for scheduling using the OptDNSB Algorithm.

The example scenario in Figure 4.10 is used throughout this section. This is a fire

fighting example considering two houses, each surrounded by three fires. The goal is to

extinguish at least two of the three fires surrounding each house and rescue the people

inside as quickly as possible using three vehicles. The tasks are: the extinguishing of

the six fires (F1-F6) and the rescue of the people in the two houses (H1-H2). These

tasks are constrained in the following way: at least two of the three fires near each

house must be extinguished, this must be done before the rescue, and each vehicle

can only perform one task at a time. The tasks are defined formally in Section 4.1.1.

The vehicles are two aircraft (EV1 and EV2) and one ground vehicle (R1). The two

aircraft are able to extinguish fires. The ground vehicle is able to rescue the people

from each house. These three vehicles are referred to more generally as agents.

The black lines between EV1 and R1, and R1 and EV2 in Figure 4.10 represent

reliable communication links. Note that not all pairs of agents are connected by a
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Figure 4.10: Cooperative rescue example.

communication link. Such situations can result from the failure of individual com-

munication links, a wireless network that has spotty or insufficient coverage, or the

use of heterogeneous communication hardware or protocols. Agents know their own

capability and that of the agents they can communicate with, e.g., EV1 is capable

of extinguishing a fire. Agents know the constraints involving the tasks they are ca-

pable of performing, e.g., at least two of the three fires around each house must be

extinguished. Agents only know the local topology of the communication network,

e.g., EV1 knows that it can communicate with R1, but does not know with whom R1

can communicate.

In this example, the assignment of tasks to agents has been made a priori. The

agents must schedule the tasks while obeying the aforementioned constraints on task

completion order and choice. The tasks must be scheduled to minimize the time

needed to perform all required tasks. The need to do minimum-time scheduling

under these limitations motivates the statement of the MADSP and the development

of distributed scheduling algorithms that can solve this problem.

4.2.1 MADSP Problem Definition

This section details the concepts that are used to formulate the MADSP. The

concepts of this section are illustrated using the example scenario of Section 4.2.
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The set of tasks to be assigned is as defined in (3.1). For the example of Section

4.2 Nt = 8 and the set of tasks is

T = {t1, t2, t3, t4,

t5, t6, t7, t8},
(4.56)

where t1, t5 ≡ rescue H1 and H2; t2, t3, t4 ≡ extinguish F1, F2, and F3; and t6, t7, t8 ≡

extinguish F4, F5, and F6.

Tasks are assigned to agents. The set of agents is as defined in (3.2). For the

example of Section 4.2, Na = 3 and the set of agents is

A = {a1, a2, a3}, (4.57)

where a1, a3 ≡ EV1 and EV2, and a2 ≡ R1.

Here, a task assignment is a mapping and is defined as in (3.5). The following is

an example task assignment for the example of Section 4.2:

TA = {(t1, a2), t2, a1), (t3, a1), (t4, a1),

(t5, a2), (t6, a3), (t7, a3), (t8, a3)}.
(4.58)

The agents in (3.2) have communication capability described by an undirected,

connected communication graph in (4.12). There is an edge between two agents if

and only if they are able to communicate directly with each other. The type of com-

munication assumed here is acknowledgement-based, where each agent knows when

communication is established with another agent. The edge set of the communication

graph for the motivating example is:

E = {{a1, a2}, {a2, a3}}. (4.59)
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A duration function is used to describe the length of time required to complete

a task. The duration of a task is defined as a function that maps from T to a finite

subset of the set of integers Ts ⊆ N,

D : T → Ts. (4.60)

Tasks are assumed to have known duration. In many practical situations, the duration

of a task may depend on a number of factors: the agent performing the task; the

order of task completion; and the choice of which tasks to complete. It is possible

to model the problem in a more general way where, in addition to the stop time (or

start time) of the task, the duration is chosen and must satisfy constraints. These

modeling decisions affect how the scheduling method must be designed to guarantee

completeness. Here, the duration of a task is only a function of the task. An example

duration function for the example of Section 4.2 is

D = {(t1, 1), (t2, 1), (t3, 1), (t4, 1),

(t5, 1), (t6, 1), (t7, 1), (t8, 1)}.
(4.61)

A task schedule is a mapping and is defined in (3.7). Here, Ts = {0, . . . , s} and

s ≤ smax, the scheduling horizon, is an integer that is adjusted iteratively. The integer

smax is an upper bound on the duration of the mission that is known a priori. The

set Ts where s = smax is Tmax. We refer to the elements of Ts as time slots. Here

s represents the mission time. In practice, it is often desirable to find an assignment

and a schedule that minimize the duration of the mission. A schedule maps tasks

to stop times. That is, the stop time of a task t ∈ T is TS(t). The stop time of a

task is the time at which it finishes execution. The time at which task t ∈ T begins

execution is its start time TS(t)−D(t). The zero stop time is reserved and indicates

that a task is not performed. That is, TS(t) = 0, where t ∈ T indicates that t is not
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performed. This is physically significant as it indicates that regardless of the duration

of the task, it must finish at time slot 0 ∈ Ts. Note that all tasks are assigned, but not

necessarily performed. Here, we show that the OptDNSB Algorithm finds a schedule

that minimizes the maximum over all task stop times. This is discussed in detail in

Section 4.2.4. The following is a schedule for the example of Section 4.2,

TS1 = {(t1, 3), (t2, 0), (t3, 1), (t4, 2),

(t5, 1), (t6, 0), (t7, 1), (t8, 2)}
(4.62)

Scheduling constraints are formally defined, as in (3.10), as functions that map

from the set of schedules to the set {false, true}. The number of constraints is Ns.

If pm(TS) = true we say that the constraint is satisfied by the schedule, otherwise

the constraint is violated. The constraints for the example of Section 4.2 are,

p1 ≡
4∑
i=2

I(TS(ti) > 0) ≥ 2, (4.63)

p2−4 ≡ TS(ti) > 0⇒ TS(ti) < TS(t1)−D(t1),

i = 2, 3, 4,

(4.64)

p5 ≡
8∑
i=6

I(TS(ti) > 0) ≥ 2, (4.65)

p6−8 ≡ TS(ti) > 0⇒ TS(ti) < TS(t5)−D(t5),

i = 6, 7, 8,

(4.66)

p9 ≡[TS(t1) < TS(t5)−D(t5)]∨

[TS(t5) < TS(t1)−D(t1)],

(4.67)

The function I in (4.63) and (4.65) is an indicator function that evaluates 1 if its argu-

ment is true and 0 if its argument is false. Constraints of (4.63) and (4.65) state that
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at least two of the fires around each house should be extinguished. The constraints

of (4.64) and (4.66) state that if a fire is extinguished, it must be extinguished before

the people in the respective house are rescued.

The number of task clusters, as defined in (4.6), for the example of Section 4.2

is Ns = 9. The clusters representing the choice between the fires F1-F3 and the

precedence constraints between F1-F3 and H1 are

T1 = {t2, t3, t4}, (4.68)

T2 = {t2, t1}, (4.69)

T3 = {t3, t1}, (4.70)

T4 = {t4, t1}; (4.71)

the clusters representing the choice between the fires F4-F6 and the precedence con-

straints between F4-F6 and H2 are

T5 = {t6, t7, t8}, (4.72)

T6 = {t6, t5}, (4.73)

T7 = {t7, t5}, (4.74)

T8 = {t8, t5}; (4.75)

and the cluster representing the one-task-at-a-time constraints between H1 and H2 is

T9 = {t1, t5}. (4.76)

Figure 4.11 illustrates the cluster groups for the motivating example. Without loss

of generality, we consider the scheduling of one cluster group.

Informally, if a task is not involved in any constraints that are violated it is said
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Figure 4.11: Clusters for the example scenario.

to be consistent. This idea is used to tell when all constraints a task is involved in

have been satisfied. Formally, task ti ∈ T is consistent if for every m where ti ∈ Tm,

pm(TS) = true, m = 1, . . . , Ns. For the schedule in (4.62), TS(t5) = 1 causes p7 and

p8 in (4.66) to be violated. As such, tasks t5, t6, t7, and t8 are inconsistent.

Informally, a feasible schedule is a schedule that does not violate any constraints.

Formally, feasible schedules are defined as follows.

Definition IV.7. Feasible schedule:

A schedule TS is called feasible if ∀ti ∈ T , ti is consistent.

The schedule

TS2 = {(t1, 3), (t2, 0), (t3, 1), (t4, 2),

(t5, 4), (t6, 0), (t7, 1), (t8, 2)}
(4.77)

is feasible, while the schedule in (4.62) is not. The schedule in (4.77) is illustrated

graphically using a Gantt chart in Figure 4.12.

In addition to feasibility, we desire a schedule that minimizes the time required to

complete all tasks. Informally, a schedule that satisfies this is called minimum-time.
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Figure 4.12: Gantt chart of the schedule in (4.77).

The objective function is

J(TS) = max
ti∈T

TS(ti). (4.78)

Formally, a minimum-time schedule TS∗ ∈ TTmax is a solution to the optimization

problem,

min
TS∈TTmax

J(TS) (4.79)

s.t. pm(TS),m = 1, . . . , Ns. (4.80)

4.2.2 Problem Statement

Each agent aj ∈ A is assumed to know the following data:

1. The set TA−1(aj), i.e., the tasks that aj is assigned to,

2. The set Naj , i.e., the neighborhood of aj on the communication graph Gc,

3. The set TA−1(Naj), i.e., the tasks that the neighbors of aj are assigned to,

4. For all t ∈ TA−1(aj), pm and Tm where t ∈ Tm, i.e., all constraints and clusters

that involve the tasks aj is assigned to,
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5. The function D(t), t ∈ TA−1(aj)
⋃
TA−1(Naj), i.e., the duration function for

tasks assigned to aj and its neighbors,

6. The quantity smax, i.e., the maximum allowable mission time,

where m = 1, . . . , Ncl. Note that as TA is not necessarily injective, the inverse of TA

provides a set of tasks rather than a single task.

The MADSP is for the agents in A to, given the data (1)-(6) and com-

munication abilities defined by (4.12), find a TS∗ that minimizes (4.79)

subject to (4.80).

The assumed data (1)-(6) explicitly state the distributed nature of the MADSP.

The knowledge of the set of tasks, the communication graph, the constraints, and

the task durations is distributed. As a consequence, the agents must communicate to

solve the MADSP. The difficulty of this scheduling problem is due to several factors:

1) the number of possible schedules is O((smax)
Nt); 2) the scheduling constraints are

general, predicate functions; 3) the objective function (4.78) is a nonlinear function of

the TS(ti), that is, (4.78) is not a linear combination of the elements TS(ti), ti ∈ T ;

and 4) the problem data are distributed across a communication network of arbitrary

topology.

4.2.3 Technical Approach

This section details the framework and the tools used to solve the task scheduling

problem presented in Section 4.2.1. Similar to (4.19), for every multi-index (i, j) such

that (ti, aj) ∈ TA, define a quadruple,

[ti, aj] = (Statesij, Startij, transij,msgsij). (4.81)
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Here, Startij ⊂ Statesij is the set of states at which process [ti, aj] may begin oper-

ation;

transij : M× Statesij → Statesij, (4.82)

msgsij : Statesij →M. (4.83)

A process [ti, aj] only sends messages to those processes [tk, al] where ti and tk share

a cluster group. Let Processes be the set of processes defined in (4.81).

Similar to (4.22), define the undirected process graph Gp = (Processes, Ep), where

Ep = {{[ti, aj], [tk, al]} | {aj, al} ∈ Ec}. (4.84)

The process [ti, aj] is connected to the process [tk, al] if and only if agent aj is con-

nected to agent al by a communication link. The process graph for the motivating

example is shown in Figure 4.13.

[t2,a1] [t1,a2]
[t3,a1]

[t4,a1]
[t5,a2]

[t6,a3]

[t7,a3]

[t8,a3]

Figure 4.13: Process graph for the example of Section 4.2.

The vertex set of the process graph for the example of Section 4.2 is given by (4.58)

and the edge set follows from (4.59) and (4.22).

The processes [ti, aj] ∈ Processes form a distributed system in the sense speci-

fied in Section 4.2. This paper considers this distributed system under synchronous

operation. That is, the processes each simultaneously update their state and then

simultaneously send messages to their neighbors. Each iteration of computation and

message transmission is referred to as a round.

When the problem data are not distributed among several agents a traditional

147



backtracking algorithm such as that presented in [95] can be used to find a feasible

schedule. A basic variant of this algorithm is detailed in Appendix I. Distributed back-

tracking uses a set of processes to implement the traditional backtracking algorithm

in a distributed way.

In a centralized setting, that is when the problem data are not distributed among

several agents, a traditional backtracking algorithm such as that presented in [95] can

be used to find a feasible schedule. Distributed backtracking uses a set of processes

to implement the traditional backtracking algorithm in a distributed way. A basic

variant of this algorithm is detailed in Algorithm 1.

In the OptDNSB Algorithm the elements vsNv(i), i = 1, . . . , Nv in the sequence

vsNv ∈ DNv represent scheduled stop times of tasks. Each element vsNv(i), i =

1, . . . , Nv in the sequence vsNv ∈ DNv is associated with a process [ti, aj], which is

responsible for setting the value of vsNv(i) ∈ D and for running the expand and

backtrack functions. The processes send appropriate messages to relay knowledge of

the results of applying the expand and backtrack functions.

4.2.4 Solution Procedure

This section discusses the Optimal Distributed Non-Sequential Backtracking Al-

gorithm used to solve the MADSP. The OptDNSB Algorithm also uses the specificity

of the problem to find an optimal schedule. The OptDNSB Algorithm is augmented

with the Minconflict Heuristic [81] that has been shown to improve backtracking

efficiency.

Referring to Section 3.2, consider the sequence of variable values vs of length Nv,

where for at least one of the pm, pm(vs) = false, m = 1, . . . , Nc. Minconflict Back-

tracking iteratively improves vs, with respect to the number of violated constraints,

by selecting a new value for a sequence element, vs(j),j = 1, . . . , Nv, that minimizes

the number of constraint violations. Similarly to Algorithm 1, the selected elements
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are removed from untriedj ⊆ D. When untriedj becomes empty, backtracking is

performed. In this way, Minconflict Backtracking is able to achieve the efficiency of

local search with the completeness of Backtracking.

The OptDNSB Algorithm exploits the benefits of Minconflict Backtracking [81]

without appending additional constraints to the problem. This is in contrast to [120]

where, in the worst case, the amount of memory required and the time required to

evaluate the additional constraints can grow exponentially with the number of tasks.

This is important because we deal with highly constrained problems where feasible

solutions may not be numerous.

The OptDNSB Algorithm exploits parallelism and the specific properties of the

scheduling problem in the following ways. Computation of the schedule times TS(t)

are computed in parallel by the processes [t, TA(t)] ∈ Processes. The backtracking

algorithm operates using two basic message types, Mok and Mbt, where Mok messages

relay the current values of the schedule and Mbt messages request that backtracking

be done. In practice, these messages are sent by processes when a new result is com-

puted. Constraint violations trigger backtracking, when backtracking is needed, it is

requested (in parallel) and the violating portion of the solution space is pruned. The

OptDNSB Algorithm minimizes mission time. Unlike other methods, it is not neces-

sary to introduce additional constraints to be satisfied or functions to be minimized;

this is accomplished by using a distributed extension of Minconflict Backtracking [81].

This minimization is done by iteratively searching over portions of the solution space

where the mission time is a lower bound on the optimal mission time. The greatest

known lower bound is communicated by processes to their neighbors in Mok and Mbt

messages. That is, only local information on the greatest lower bound is necessary.

When a feasible schedule is found, this lower bound is tight and an optimal solution

has been found. Hence, the OptDNSB Algorithm satisfies feasibility and optimality

simultaneously.
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Define a function called the priority function,

PR : T → N, (4.85)

that orders the set of tasks by assigning a natural number to them.

The transij and msgsij Algorithms are run by processes [ti, aj] ∈ Processes in

synchronous rounds. The schedule at round r is referred to as TSr. The state, stateij,

of process [ti, aj] is as follows,

stateij = (j, i, highPrChangeij, untriedij,

currentij, violatedij, consistentij,

foundSolutionij,maxHighPrij,minHighPrij,

sendBtij, sendNSij, sij,Tij).

(4.86)

At round r, for process [ti, aj], the boolean quantity highPrChangeij = 1 if TSr(tk) 6=

TSr−1(tk) for any tk ∈ Ci where PR(tk) > PR(ti). The vector untriedij ⊆ Tij is an

ordered list of untried values in Tij. The integer quantity currentij is the index

of the value in untriedij corresponding to TSr(ti). The set violatedij is the set of

those tk ∈ Ci which are not consistent. If violatedij ⊆ {tk : PR(ti) > PR(tk)}, then

consistentij := 1. The quantity foundSolutionij ∈ {−1, 0, 1}. If consistentij = 1

and consistentkl = 1 for all [tk, al] where tk ∈ Ci, foundSolutionij := 1. If process

[ti, tj] decides that no solution exists, foundSolutionij := −1; this is detailed in

Algorithms 6 and 7. The tasks maxHighPrij and minHighPrij, are defined as

follows,

maxHighPrij = arg max
tk

PR(violatedij), (4.87)

minHighPrij = arg min
tk
{tk ∈ violatedij

s.t. PR(tk) > PR(ti)}.
(4.88)
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The boolean quantity sendNSij tells whether sij has been incremented. The value

sij is initialized as sij = D(ti).

The three types of messages are: Mok ∈Mok which indicate that consistentij = 1,

Mbt ∈Mbt which request that backtracking be initiated, and MnoSol ∈MnoSol which

communicate that there does not exist a feasible schedule. The set of messagesM is

defined as follows,

M =Mok ∪Mbt ∪MnoSol, (4.89)

Mok = {(j, i, TSr(ti), PR(ti),

consistentij, TSr(minHighPrij)},
(4.90)

Mbt = {(j, i, TSr(ti), PR(ti),

consistentij, TSr(minHighPrij))},
(4.91)

MnoSol = {(sij)}, sij ∈ N, (4.92)

where i, j are such that [ti, aj] ∈ Processes.

The termination condition for this distributed algorithm applies to individual clus-

ter groups. This results because the satisfiability of the constraints that correspond to

one cluster group does not effect the satisfiability of the constraints that correspond

to a different cluster group. Let the set Tcg1 be the set of tasks that belong to at

least one pair that is a member of the cluster group CG1. The termination of the

OptDNSB Algorithm for those processes whose tasks share the cluster group CG1 is:

Termination condition:

∀[ti, aj] s.t. ti ∈ Tcg1 , foundSolutionij = 1 or ∀[ti, aj] s.t. ti ∈ Tcg1 , foundSolutionij =

−1.

When one process sets foundSolutionij := −1, it sends an Mnosol message to
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its neighbors. Its neighbors then set foundSolutionij := −1 and send it to their

neighbors. This repeats until each process corresponding to a task in the cluster

group has set foundSolutionij := −1.

The function findConsistent() is used by transij to set the value of TSr(ti) to

a value that does not violate any constraints. If there is no such value, it sets a

value that minimizes the number of violated constraints as in [81]. The function

setBacktrack() saves the pair (tk, TSr(tk)) so that a backtrack request may be sent

by process [ti, aj] to process [tk, al]. The function sendMsg() sends: an Mok message

to all neighbors whose respective tasks share a cluster group with ti; an Mbt message

to process [minHighPrij, TA(minHighPrij)]; and an MnoSol message to all neighbors

whose respective tasks share a cluster group with ti.

For process [ti, aj], Algorithm 6 is the transij function; it is responsible for finding

consistent values of TS(ti) and recognizing that a feasible schedule has been found.

Algorithm 7 performs the backtracking operation when it is called by transij; it is

responsible for incrementing sij and recognizing when there is no solution. Algorithm

8 is the msgsij function; it is responsible for sending messages. The following de-

scription of the OptDNSB Algorithm refers to the classic Backtracking Algorithm

(Algorithm 1) of Appendix I.

Line 11 of Algorithm 6 tests whether any values TSr(tk), where PR(tk) > PR(ti),

have changed. If this is the case, untriedij is reset to an ordered list of the elements

in Tij. Lines 5 and 6 of Algorithm 6 perform the operation of line 11 of Algorithm 1.

Lines 15-22 of Algorithm 6 tests whether task PR(ti) is less than all tasks in

violatedij. If this is the case, process [ti, aj] is responsible for initiating backtracking

by sending backtrack requests associated with the violated constraints it is involved

in. In this way, either line 16 of Algorithm 6 finds a value of TSr(ti) for which ti

is consistent or lines 18-20 of Algorithm 6 initiates backtracking. This performs the

operation of line 7 of Algorithm 1.

152



Data: stateij, M
1 if M = MnoSol then
2 if Mnosol(s) > sij then
3 sij = Mnosol(s)
4 Tij = {0} ∪ {D(ti), . . . , sij}
5 untriedij = Tij

6 sendNSij = 1

7 else if MnoSol(s) = −1 then
8 foundSolution := −1
9 end

10 end
11 if highPrChangeij = 1 then
12 untriedij := Tij

13 consistentij := findConsistent()

14 end
15 if min(PR(violatedij)) > PR(ti) then
16 consistentij := findConsistent()
17 if consistentij = 0 then
18 setBacktrack(minHighPrij,
19 TSr(minHighPrij))
20 sendBt := 1

21 end

22 end
23 if M = Mbt and TSr(ti) = M(6) then
24 backTrack()
25 end
26 if ∀tk ∈ Ci, consistentkl = 1 and consistentij = 1 then
27 foundSolutionij := 1
28 end

Result: stateij
Algorithm 6: transij
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1 if highPrChangeij = 0 then
2 if | untriedij |= 1 then
3 if PR(ti) > PR(maxHighPrij) then
4 if sij = smax then
5 foundSolutionij := −1
6 else
7 sendNS = 1
8 sij + +
9 Tij = {0} ∪ {D(ti), . . . , sij}

10 untriedij = Tij

11 end

12 end
13 consistentij := findConsistent()
14 if consistentij = 0 then
15 setBacktrack(minHighPrij,
16 TSr(minHighPrij))
17 sendBt := 1

18 end

19 else
20 untriedij := untriedij \ untriedij(currentij)
21 consistentij := findConsistent()

22 end

23 end
Algorithm 7: backTrack()

Data: stateij
1 if foundSolutionij = −1 or sendNS = 1 then
2 sendNS = 0
3 M = MnoSol

4 else
5 if sendBt = 1 then
6 sendBt = 0
7 M = Mbt

8 sendMsg(M)

9 end
10 M = Mok

11 end
12 sendMsg(M)

Result: M
Algorithm 8: msgsij
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Lines 23-25 of Algorithm 6 respond to requests for backtracking. The element

M(6) refers to the finish time that must be changed. Note that backtracking only pro-

ceeds if TSr(ti) is still equal M(6). If all of the possible values for TSr(ti) ∈ Tij have

been exhausted, a backtracking request is sent to process [minHighPrij, TA(minHighPrij)],

lines 16-18 of Algorithm 7. If untriedij contains a feasible value, the current value

TSr(ti) is removed from untriedij and a new value is found using findConsistent()

by lines 21 and 22 of Algorithm 7. This prunes portions of the search space that do

not contain a feasible schedule, i.e., performs the operation of line 10 of Algorithm 1.

Lines 26-28 of Algorithm 6 test whether consistentkl = 0 for any [tk, al] ∈ N[ti,aj ]

where there exists a Tm s.t. ti, tk ∈ Tm. If consistentkl = 1 for all such [tk, al], process

[ti, aj] declares that it has found a solution.

Line 4 of Algorithm 7 tests whether PR(ti) > PR(tk) for all tk ∈ violatedij. If this

is the case and process [ti, aj] has exhausted all possible start times in Tij, process

[ti, aj] declares that there is no solution for the current value of sij. If sij = smax then

there is no solution for the specified maximum schedule range.

4.2.5 Analysis of Optimal Distributed Non-Sequential Backtracking

This subsection analyzes the Optimal Distributed Non-Sequential Backtracking

Algorithm. The OptDNSB Algorithm is proven correct, complete, and optimal. The

algorithm is correct in that it outputs that a schedule is feasible if and only if the

schedule is feasible. The algorithm is complete in that it either returns a feasible

schedule or decides that there is no such schedule exists in finite time. The algorithm

is optimal in that if a feasible schedule exists it returns a minimum-time feasible

schedule. Lemmas IV.8-IV.11 state the algorithm’s correctness, Lemma IV.12 and

Theorem IV.13 states the algorithm’s completeness and optimality. All lemmas apply

to processes whose respective tasks belong to a single cluster group.
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4.2.6 Correctness

Correctness of the OptDNSB Algorithm refers to the requirement that the al-

gorithm output that a schedule is feasible if and only if a schedule is feasible, or

output that no such schedule exists if and only if there exists no feasible schedule.

Lemma IV.8 states the first part of the correctness of the OptDNSB Algorithm as

the equivalence of consistentij = 1 for all processes to a feasible schedule being found.

Lemma IV.8.

∀[ti, aj] ∈ Processes, consistentij = 1 if and only if TS feasible.

Proof. Lemma IV.8

“→” Assume that for all [ti, aj] ∈ Processes, consistentij = 1. This implies that

pm(TS) = 1,m = 1, . . . , Ncl, which implies that TS is feasible.

“←” Assume TS is feasible. A feasible TS implies that ∀[ti, aj] ∈ Processes,

violatedij = ∅. This implies that violatedij \ {tk : PR(ti) > PR(tk)} = ∅, which

implies that for all [ti, aj] ∈ Processes, consistentij = 1.

The second part of the correctness of the OptDNSB Algorithm is its ability to

correctly disregard portions of the solution space that contain no feasible schedules.

Lemma IV.9 states that requests for backtracking are only sent when there exists a

subset of TS that cannot be part of a feasible schedule.

Lemma IV.9.

If a process [ti, aj] ∈ Processes sends an Mbt message at round r, then there ex-

ists a pm(TSr−1) = false where ti ∈ Tm and |untriedij| = 1. And if a process

[tk, al] ∈ Processes backtracks in response to anMbt message, then there exists a pm:
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pm(TSr) = false.

Proof. Lemma IV.9 1) This proof is by contradiction. Let TSr be a feasible sched-

ule and PR(ti) < PR(tk). Assume that an Mbt message has been sent by process

[ti, TA(ti)] to [tk, TA(tk)]. By lines 3, 14, and 15 of Algorithm 7, the only remaining

element in untriedij results in ti being inconsistent. That is, there exists a constraint

p1 where ti ∈ T1 and p1(TSr) = false. This is a contradiction, TSr cannot be feasible

and violate a constraint.

2) By line 23 in Algorithm 6, backTrack() only executes if TSr(ti) = M(6). By (1),

TSr(ti) = M(6) implies that ∃p1: p1(TSr) = false. Hence, Lemma IV.9.

This lemma is important because it ensures that the OptDNSB Algorithm never

prunes a portion of the search space that may contain a feasible schedule. Here, if

the set untriedij has cardinality equal 1 and consistentij = 0 for the corresponding

value of TS(ti), then process [ti, aj] has exhausted all values in Tij and backtracking

must be initiated. Lemma IV.10 states that the OptDNSB Algorithm expands the

intervalTs ⊆ {0, . . . , s} only when no solution exists for the current value of s ≤ smax.

Lemma IV.10.

A process [ti, aj] ∈ Processes increments sij if and only if there does not exist a

feasible schedule where ∀t ∈ T , TS(t) ≤ sij.

Proof. Lemma IV.10

“→” Assume some process [ti, aj] ∈ Processes increments sij. This implies that all

values TS(ti) ∈ Tij, by lines 3 and 7 in Algorithm 7 and Lemma IV.9, have been

correctly eliminated as possibly belonging to a feasible schedule.
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“←” Assume there does not exist a feasible schedule where s = sij. That is, there

exists at least one constraint p1 : ∀TS ∈ TTs , p1(TS) = 0. Without loss of generality

we can consider a single unsatisfiable constraint; this is because a set of constraints

that is unsatisfiable can be replaced by a single unsatisfiable constraint for analysis

purposes. Let ti = arg maxt∈T1 PR(T1), eventually [ti, aj] will receive Mbt messages

for all values in Ts. This implies that eventually, [ti, aj] will set sij = sij + 1.

Lemma IV.11 extends Lemma IV.10 to guarantee that the OptDNSB Algorithm

outputs that no solution exists for Ts = Tmax ⊆ {0, . . . , smax} only when no solution

exists for the prespecified maximum value of s (i.e., s = smax).

Lemma IV.11.

A process [ti, aj] ∈ Processes sets foundSolutionij = −1 if and only if there does

not exist a feasible schedule.

Proof. Lemma IV.11

Consider process [ti, aj] ∈ Processes where sij = smax. Let p1 be unsatisfiable and

ti = arg maxt∈T1 PR(T1). By Lemma IV.10, [ti, aj] will eventually set sij = sij + 1.

Lines 5-7 of Algorithm 7 will set foundSolution = −1.

4.2.7 Completeness and Optimality

Completeness of the OptDNSB Algorithm refers to the algorithm’s ability to ter-

minate with a solution to the constrained optimization problem of (4.79) and (4.80)

or decide that no solution exists in finite time. The completeness of the OptDNSB

Algorithm is formally given by Lemma IV.12 and Theorem IV.13. Lemma IV.12

states that each process within a cluster group will eventually output that a solution

has been found or that no feasible schedule exists. Lemma IV.12 also states that each
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such process will output the same answer.

Lemma IV.12.

All processes [ti, aj] ∈ Processes in a cluster group eventually either: 1) all set

foundSolutionij = 1, or 2) all set foundSolutionij = −1.

Proof. Lemma IV.12

1) By Lemmas IV.9 and IV.8, OptDNSB will never incorrectly skip a feasible schedule

and OptDNSB will always correctly identify a feasible schedule. Hence, if OptDNSB

terminates, it will terminate with a feasible schedule or correctly output that no

feasible schedule exists.

2) Line 21 in Algorithm 7 prunes infeasible schedules from the search space. By

Lemma IV.10 and lines 2-3 in Algorithm 6 and line 9 in Algorithm 7, sij increases

monotonically for all [ti, aj] ∈ Processes. Hence, the OptDNSB Algorithm progresses

monotonically through the set of schedules TTmax. The set of schedules TTmax is finite.

Hence, OptDNSB will eventually terminate.

By 1) and 2), OptDNSB will terminate and will terminate with a feasible schedule,

i.e., foundSolutionij = 1 at s = smax, or correctly output that no feasible schedule

exists, i.e., foundSolution = −1 at s = smax, [ti, aj] ∈ Processes.

Theorem IV.13 states the completeness and optimality of the OptDNSB Algo-

rithm.

Theorem IV.13.

The OptDNSB Algorithm terminates in finite time with a minimum-time schedule.
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Proof. Theorem IV.13

The quantity sij is initialized as D(ti) where the D(ti) ≤ maxiD(ti), ti ∈ T are

all lower bounds on the cost function of (4.78). By Lemma IV.10 and lines 2-3 in

Algorithm 6 and line 9 in Algorithm 7, sij increases monotonically for all [ti, aj] ∈

Processes.

Lemma IV.12 shows the completeness of OptDNSB. We have the following: by

Lemma IV.10, sij is incremented when no solution exists forTij = {0}
⋃
{D(ti), . . . , sij};

lines 2-3 in Algorithm 6 and lines 1 and 3 of Algorithm 8 ensure that all processes

will increment sij; by completeness, sij will be incremented until an s is found such

that a feasible schedule exists. That is, the first feasible schedule found is an optimal

schedule.

Hence, OptDNSB will terminate when and only when the lower bound s is tight,

i.e., when an optimal schedule has been found.

By Lemmas IV.8-IV.12 and Theorem IV.13, the OptDNSB Algorithm is correct,

complete, and finds a minimum-time schedule. The OptDNSB Algorithm does this

while reducing computational complexity when possible. The mechanism for this is

in the fact that the co-domain of the schedule function TS is Ts which represents

the finish times of the tasks in T . In traditional distributed backtracking searches,

the size of this co-domain is fixed in advance [121]. In this scheduling application,

the parameter s is increased incrementally such that it remains a lower bound on the

minimum-time. In essence, the OptDNSB Algorithm searches for a feasible schedule

over sets of monotonically increasing schedule lengths until a feasible schedule is

found.

4.2.8 Simulation Examples

Here, we demonstrate the solution of the example problem in Section 4.2. Consider

the duration function (4.61) and the constraints (4.63)-(4.67). The optimal schedule
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found by the OptDNSB Algorithm is that of (4.77). The algorithm finds this schedule

in 25 rounds. The optimal objective function value is J(TS2) = 4. Note that several

feasible schedules achieve the same value of the objective function in (4.78). For this

example, the schedules

TS3 = {(t1, 3), (t2, 2), (t3, 1), (t4, 0),

(t5, 4), (t6, 2), (t7, 1), (t8, 0)}
(4.93)

and

TS4 = {(t1, 3), (t2, 1), (t3, 0), (t4, 2),

(t5, 4), (t6, 1), (t7, 0), (t8, 2)}
(4.94)

are both feasible and optimal with J(TS3) = J(TS4) = 4. Hence, optimal sched-

ules are generally not unique. In addition, aircraft EV1 and EV2 are scheduled to

simultaneously extinguish fires F2 and F5 followed by F3 and F6, R1 is scheduled to

rescue H1 and H2 immediately following. It is expected that EV1 and EV2 would

be scheduled to act simultaneously to reduce the overall time needed. Vehicle travel

time is not modeled here.

Consider the follow duration function,

D = {(t1, 1), (t2, 1), (t3, 1), (t4, 1),

(t5, 1), (t6, 2), (t7, 2), (t8, 2)},
(4.95)

where fires F4-F6 will take twice as long to extinguish as F1-F3. The optimal schedule

found by the OptDNSB Algorithm with the duration function of (4.95) is

TS5 = {(t1, 4), (t2, 2), (t3, 1), (t4, 0),

(t5, 5), (t6, 0), (t7, 2), (t8, 4)}.
(4.96)
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The schedule in (4.96) is illustrated graphically using the Gantt chart in Figure 4.14.

The schedule in (4.96) is found in 22 rounds. For this example, J(TS5) = 5, which
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Figure 4.14: Gantt chart of the schedule in (4.96).

results from the extra time needed to extinguish fires F5 and F6. Note that R1 is

scheduled to finish the rescue of H1 at TS(t1) = 4. It is expected that the rescue of

H1 would be scheduled to precede H2 due to the extra time needed to extinguish F5

and F6. However, one effect of using the objective function in (4.78) is that H1 is not

scheduled to be rescued as quickly as possible because this would not effect the value

of the objective function. That is, for

TS6 = {(t1, 3), (t2, 2), (t3, 1), (t4, 0),

(t5, 5), (t6, 0), (t7, 2), (t8, 4)},
(4.97)

the objective function J(TS6) = J(TS5) = 5.

4.2.9 Big-O Complexity Analysis

The complexity of the OptDNSB Algorithm is as follows. The OptDNSB Al-

gorithm iteratively solves a constraint satisfaction problem. In the worst case the

algorithm incurs a complexity of O((s∗)Nt) each iteration. Here, s∗ ≤ smax is the min-

imum of (4.78). The resulting worst-case computational complexity of the OptDNSB

Algorithm is O((s∗)Nt+1). In contrast, if Ts were fixed at Ts = Tmax, the worst-case
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complexity would be O(sNt
max).

Now we can see that if s∗ = smax, the OptDNSB Algorithm incurs a higher worst-

case complexity. However, in practice s∗ is unknown and while an upper bound may

be available, it may not be tight. For such instances, the OptDNSB Algorithm can

provide minimum-time solutions with lower computational complexity.

When tasks belong to different cluster groups, they are not related by constraints.

The function msgsij only sends messages to those processes [tk, al] ∈ N[ti,aj ] where

ti and tk share a cluster group. Hence, processes in one cluster group cannot affect

the values of consistentij, sij, and foundSolutionij of a process in a different cluster

group. Each cluster group therefore represents a distinct scheduling subproblem. The

independence of scheduling subproblems decreases the computational complexity of

solving the MADSP. Let c be the maximum number of tasks in any cluster group.

Additionally, let each process execute in parallel, i.e., a round executes in O(1) time.

Then the worst-case complexity of the OptDNSB Algorithm is O((s∗)c+1). For a

given maximum cluster group size, the worst case complexity is independent of Nt.

This is consistent with the results of [95].

4.2.10 Experimental Complexity Analysis

This section presents experimental results on the complexity of the OptDNSB

Algorithm. Figure 4.15 shows the mean and standard deviation of the number of

rounds needed to solve random instances of the MADSP as a function of the number

of tasks. The following discussion presents the methodology of constructing these

problem instances.

Without loss of generality, we consider problem instances with a single cluster

group. The development of the OptDNSB Algorithm considers constraints of any

order, i.e., order | Tm | <∞, m = 1, . . . , Ncl. For instance, a constraint to choose M

from N tasks, M < N , is of order N . A common type of scheduling constraint is the
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Figure 4.15: Number of rounds needed to find an optimal schedule. Data points
represent mean and standard deviation of the number of rounds for 50
randomly generated scheduling problems.

precedence constraint,

pm ≡ (TS(ti) ≤ TS(tj)−D(tj)),m = 1, . . . , Ncl, (4.98)

where ti ∈ T , tj ∈ T , and pm is satisfied if and only if ti finishes before (or when) tj

begins. Note that precedence constraints are of order two, i.e., | Tm |= 2. Consider a

graph

Gt = (T , Et), (4.99)

where the edges in Et correspond to precedence constraints. Considering a single

cluster group restricts this graph to be connected. We restrict Gt to be a spanning

tree so that no sequence of precedence constraints results in a contradiction. A

problem instance is constructed by first constructing a random spanning tree on the

node-set T . The edges of the spanning tree correspond to the constraints of the

problem instance. Spanning trees are constructed uniformly from the set of possible

spanning trees. This technique produces random precedence-constrained scheduling

problem instances.
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Each problem instance is solved to optimality using the OptDNSB Algorithm.

Each data point in Figure 4.15 represents the sample-mean and standard deviation

of 50 computational experiments. The slope of the line representing the mean num-

ber of rounds is approximately constant. This indicates a near-linear average-case

complexity with respect to the number of rounds for this class of problem.

With regards to communication complexity, the sendMsg() function in msgsij

(Algorithm 8) sends, at most, two messages to | Ci | of the processes in N[ti,aj ] at

each round where [ti, aj] ∈ Processes. Hence, each process sends, at most, 2· | Ci |

messages at each round. Let the number of rounds needed to find a solution to the

MADSP be given by the function fr(Nt, s
∗). It follows that the number of messages

sent, the communication complexity, is O (2· | Ci | ·fr(Nt, s
∗)). For the big-O analysis

this gives an exponential communication complexity. For the average-case analysis in

Figure 4.15 the communication complexity is near-linear.

4.2.11 The Coupling Between Assignments and Schedules

The motivation for task assignment and task scheduling decoupling is related to

the ability to solve the distributed task assignment and task scheduling problems

when the communication network has an arbitrary topology. This section details the

properties that a distributed assignment algorithm must satisfy so that a distributed

scheduling algorithm can run concurrently.

The capability relation for the example of Section 4.2 is

Capability = {(t1, a2), (t2, a1), (t2, a3), (t3, a1), (t3, a3),

(t4, a1), (t4, a3), (t5, a2), (t6, a1), (t6, a3),

(t7, a1), (t7, a3), (t8, a1), (t8, a3)}.

(4.100)

Note that (4.100) states that: EV1 and EV2 are capable of performing the fire ex-

tinguishing tasks t2, t3, t4, t6, t7, and t8; and R1 is capable of performing the rescue
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tasks t1 and t5. The task assignment of (4.3) is feasible with respect to capability and

clustering, i.e., it is a feasible task assignment.

Rather than have processes wait for a feasible assignment to begin scheduling,

we allow processes to begin scheduling when they become schedulable. Informally, a

constraint pm is schedulable if the clustering constraint associated with Tm is satisfied.

Formally, constraint schedulability is defined as follows.

Definition IV.14. Schedulable Constraint:

Constraint pm is schedulable if (A, Ec)|TA(Tm).

A process [ti, aj] is schedulable with respect to the constraint pm, where ti ∈ Tm,

if its neighbors are assigned all other tasks tk ∈ Tm. A process [ti, aj] ∈ Processes is

schedulable with respect to a constraint Tm if it is in communication with all processes

whose agents are assigned the tasks it shares cluster Tm with.

Definition IV.15. Schedulable Process:

A process [ti, aj] is schedulable with respect to pm if (ti, aj) ∈ TA and ∀tk ∈ Tm, k 6= i,

∃[tk, al] ∈ Nij s.t. (tk, al) ∈ TA.

The ability of processes to determine schedulability locally is discussed as follows.

Define a function

SC : Processes× {1, . . . , Ns} → {false, true}, (4.101)

to be an indicator function that evaluates true if the input process is schedulable

with respect to constraint pm,m ∈ {1, . . . , Ns} and false if not. Processes use this

166



function to determine schedulability locally. Lemma IV.16 says that schedulability of

a constraint pm can be determined locally by a process [ti, aj] where ti ∈ Tm if process

[ti, aj] has access to SC.

Lemma IV.16. Local Schedulability

∀ti ∈ Tm SC([ti, aj],m) = true if and only if pm is schedulable.

Proof. Lemma IV.16

“→” Assume pm is schedulable, that is {TA(ti), TA(tk)} ∈ Ec for all ti, tk ∈ Tm. This

implies that {[ti, TA(ti)], [tk, TA(tk)]} ∈ Ep for all ti, tk ∈ Tm. That is, [ti, TA(ti)] and

[tk, TA(tk)] are schedulable for all ti, tk ∈ Tm which implies that SC([ti, aj],m) = 1

∀ti ∈ Tm.

“←” Assume SC([ti, aj],m) = 1 ∀ti ∈ Tm. That is, for all ti, tk ∈ Tm, [ti, TA(ti)] and

[tk, TA(tk)] are schedulable. This implies that {[ti, TA(ti)], [tk, TA(tk)]} ∈ Ep for all

ti, tk ∈ Tm and that {TA(ti), TA(tk)} ∈ Ec for all ti, tk ∈ Tm. This implies that pm is

schedulable.

It is important that processes determine schedulability locally before scheduling

tasks. Satisfying schedulability for a constraint pm is equivalent to satisfying the

constraints of (4.14) for Tm. Once schedulability is satisfied the OptDNSB Algorithm

can be used to find a feasible schedule. This takes advantage of the separation of

assignment and scheduling in cases where scheduling constraints do not involve the

task assignment. It is important to show that scheduling tasks as constraints become

schedulable does not adversely effect the completeness of the OptDNSB Algorithm.

Without loss of generality, let the constraints p1, . . . , pNcl
become schedulable in

numerical order. That is, p1 becomes schedulable, then p2, etc. Let the sets

T
T
sm ⊆ T

T
s ,m = 1, . . . , Ncl, (4.102)
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be such that TTsm is the set of schedules that are feasible with respect to constraints

p1, . . . , pm. That is: ∀TS ∈ TTs1 , p1(TS) = true; ∀TS ∈ TTs2 , p1(TS)∧p2(TS) = true;

... and ∀TS ∈ TTsm , p1(TS) ∧ . . . ∧ pm(TS) = true. The sets in (4.102) are nested in

the following way,

T
T
sm ⊆ T

T
sm−1

⊆ . . . ⊆ TTs1 ,m = 1, . . . , Ncl. (4.103)

Note that increasing the number of constraints can never make the problem less con-

strained and that increasing the number of constraints cannot reduce the value of

the optimal cost in (4.79). Lemma IV.17 says that the number of constraints can be

increased and completeness is maintained.

Lemma IV.17. Addition of constraints

The OptDNSB Algorithm remains correct when solving the problem of (4.79) and

(4.80) over the sets TTs1 , . . . ,T
T
sm in sequence.

Proof. Lemma IV.17

From Theorem IV.13, OptDNSB is correct, complete, and optimal, i.e., it solves

(4.79), (4.80). This result is independent of the number of constraints in (4.80). Let

there exist a feasible schedule TS∗ ∈ TTmax.

This proof is by induction. Consider e = k + 1 executions of OptDNSB where

execution e+1 is initialized with the last schedule of the previous execution TS = TSe.

Let m = 1 in (4.80) for execution e = 1. By completeness of OptDNSB, no feasible

schedule in TTs1 has been missed.

Consider execution e = k and m = 1, . . . , k in (4.80). Assume TS∗ ∈ TTsk has

been found; by completeness and optimality, no feasible schedule has been skipped.

Consider execution e = k+ 1 and m = 1, . . . , k+ 1 in (4.80) with the initial schedule
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TSe = TS∗ ∈ TTsk . By completeness and optimality, OptDNSB finds TS∗ ∈ TTsk+1
.

By induction, at execution e = Ncl, OptDNSB will find TS∗ ∈ TTsNcl
. If no solution

exists in TTsk where k < Ncl, there exists no solution in TTsNcl
. By completeness,

OptDNSB will output that there is no solution.

Lemma IV.17 does not address the removal of constraints. Constraint removal

must be addressed because we only require that the assignment algorithm eventually

find a feasible assignment. Theorem IV.18 completes this point. Recall that we only

consider static problem instances. That is, the tasks, agents, communication graph,

duration function, the capability relation, and the constraint functions do not change.

Theorem IV.18. Removal of constraints

If there exists a round r′ where ∀r > r′ and ∀pm, pm is schedulable, then the schedu-

lability of constraints may change and the OptDNSB Algorithm remains complete.

Proof. Theorem IV.18

Removing constraints relaxes the problem instance, i.e., removing constraint pm re-

sults in searching for a schedule TS ∈ TTsm−1
where TTsm ⊆ T

T
sm−1

. The eventual

schedulability of all constraints implies that any schedules that are pruned before

the removal of constraint pm would be pruned when pm is eventually returned to

schedulability. Additionally, by the completeness of OptDNSB, no solution in TTsm−1

will be missed while pm remains unschedulable. Hence, by Lemma IV.17 and the

fact that infeasible schedules resulting from pm will be pruned, constraints may be

removed from and returned to schedulability without affecting the completeness of

OptDNSB.

The importance of Theorem IV.18 is that if a distributed assignment algorithm

finds a task assignment that is feasible with respect to capability and clustering,
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by Lemma IV.17 and Theorem IV.18, the distributed scheduling algorithm remains

complete.

The results of this chapter demonstrate that task assignment and minimum-time

task scheduling can be accomplished by distributed agents using a network with arbi-

trary topology. The strategy used here first satisfies communication constraints, then

guarantees an optimal and feasible task schedule. This strategy allows expressiveness

in the problem description to be sacrificed to reduce the communication link require-

ments of solving the task assignment and task scheduling problem. This strategy

is useful when the task assignment constraints and the task scheduling constraints

are independent. This strategy works because adding and removing scheduling con-

straints, that must be satisfied eventually, to and from the task scheduling problem

cannot cause the task scheduling algorithm to erroneously prune feasible portions of

the search space.

Several quantities influence the difficulty of these problems. The clustering index

is the quantity that indicates the connectedness required to satisfy the clustering

constraints. The difficulty of the CDAP increases with the value of the clustering

index. Increasing the number of agents increases the complexity of the SBA and

increasing the number of tasks increases the complexity of both the SBA and the

OptDNSB Algorithm. Both the SBA and the OptDNSB Algorithm exhibit reasonable

complexity. This is justified by the linear and less than linear complexity exhibited

by these algorithms when solving randomized problem instances.
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CHAPTER V

Summary of Accomplishments and Future Work

The contributions of this dissertation are in the areas of centralized and dis-

tributed task assignment and task scheduling. The centralized task assignment and

task scheduling problem solved in Chapter III is a vehicle routing problem of in-

terest in military mission planning. The formulation is able to incorporate com-

mon mission constraints and express an important objective function, mission time.

The polynomial-time algorithm developed for solving the problem is the Tabu/2-opt

heuristic. This repair heuristic exploits a separation of the task assignment and task

schedule to quickly (greedily) improve the quality of an initial candidate solution.

The solution quality was compared to a Branch and Bound solution technique that

provides optimal solutions for small problem instances. This analysis showed that

while the combined heuristic is suboptimal, the resulting solutions average 23% de-

viation from optimal. The final solutions for a typical instance with O(10) tasks

are computed in O(10) seconds on a modest computer, but the initial feasible solu-

tion is generated in O(0.001) seconds. This time requirement is quite acceptable for

real-time operations where the mission execution time can be an hour or more.

A new measurement of solution quality for combinatorial problems was presented.

This method considers task assignment and task scheduling problems, in particular,

those that are NP-hard. This technique exploits the fact that feasible candidate
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solutions to many task assignment and task scheduling problems can be computed

quickly. The method also exploits the fact that if the costs of those solutions (when

sampled independently) follow a distribution with a single mode, the distribution can

be transformed into a Gaussian distribution. This allows for quantitative comparison

between candidate solutions and the space of possible solutions. This is useful because

it allows us to quantitatively measure the quality of a solution to a problem for

which no analytical guarantees exist. The quality measurement is in the form of the

probability of finding a better solution. This technique gives the solution quality

relative to the space of possible solutions.

It contributes specifically to the literature of distributed task assignment and task

scheduling where the communication network may have an incomplete topology that

is only locally known. This dissertation developed the Communication-Constrained

Distributed Assignment Problem. This problem was converted to a minimization

problem and the Stochastic Bidding Algorithm was developed to solve the CDAP.

The SBA was proven correct and its completeness and complexity were analyzed. It

was shown that the SBA asymptotically solves the CDAP. The average-case complex-

ity is linear with respect to the number of tasks and less than linear with respect to

the capability of the agents. This is in contrast to a worst-case complexity that is

exponential with respect to the number of tasks and polynomial with respect to the

capability of the agents. By using the SBA this constrained nonlinear assignment

problem can be solved with the same time complexity as a linear unconstrained as-

signment problem. The parameter CI, which expresses the effects of clustering, is

important to the behavior of the algorithm complexity and should be reduced when-

ever possible. The number of communication links required increases with the ex-

pressiveness with which the problem is modeled. The constraints on task assignments

and task schedules should be separated as detailed in this dissertation in situations

where the necessary communication links may not be available.
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This dissertation presented the Minimum-time Arbitrarily-constrained Distributed

Scheduling Problem. The MADSP is for distributed, communicating agents to find

an optimal schedule that is feasible with respect to arbitrary predicate constraints.

The OptDNSB Algorithm solves the MADSP; the correctness, completeness, and

optimality was proven. The OptDNSB Algorithm solves the MADSP through an it-

erated distributed backtracking technique with an expanding time horizon that yields

minimum-time schedules. This also results in a decrease in worst-case complexity in

instances where the optimal time horizon is poorly known. The communication net-

work was considered to have an arbitrary topology. It was also shown that task

scheduling can be done concurrently with task assignment while the task assignments

change without affecting completeness. This is important as it allows the exploitation

of the separation between task assignment and task scheduling constraints to operate

on an incomplete communication network.

The contributions of this dissertation range from centralized to distributed task

assignment and task scheduling. These contributions extend these areas of the lit-

erature and provide tools that practitioners can use in automated mission planning.

The insights presented here shed light on the connection between task assignment and

task scheduling. Specifically that the two can be decoupled for communication bene-

fit. This point of view can be used in mission modeling to assist in mission planning.

This work addresses several areas that are relevant to the Air Force and other armed

services. These interests concern the exploitation of on-board vehicle intelligence to

overcome challenges of operating in an environment where communication may fail

and where agents should be able to act independently from a human operator.

5.1 Future Work

Possible improvements related to the modeling of the centralized problem and

the Tabu/2-opt heuristic are as follows. Incorporating a more detailed model of ve-
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hicle kinematics would result in flyable trajectories that could then be assigned to

unmanned aircraft or ground vehicles. Other likely extensions of this work relate

to the search itself. The following improvements to the Tabu/2-opt heuristic would

provide asymptotic optimality. The Tabu search can be extended to search more ex-

tensive perturbations by extending the definition of the neighborhood, NT a to include

changes in the assignments of more than one task. The 2-opt procedure can also be

extended to include k-opt exchanges which would further decrease the optimality gap.

Asymptotic optimality results from the fact that considering a perturbation in every

task assignment and an n-optimal task schedule results in exhaustive search, in the

limit.

Possible improvements related to the solution of the distributed task assignment

and task scheduling problem are as follows. It could be shown that the sampling

of problem instances used in the computational experiments is uniform. It may be

possible to gain computational efficiency by having processes bid on tasks, or clusters,

in parallel. Extension of this work to time varying communication graphs, i.e., fault-

tolerance, and to dynamic problems, i.e., task execution, are additional areas of future

work. With regards to the MADSP and the OptDNSB Algorithm, the work can be

extended to include time-varying problems, i.e., where constraints may be removed

and not returned, or where tasks may be executed. Another extension would be to

use the results of scheduling to improve the dynamic assignment of tasks. This work

can also be extended to study how the failure of agents affects the ability to satisfy

constraints given that the assignments are decided separately.
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