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Chapter I 

Neural mechanisms of chewing. 

 

Introduction. 

 

Mastication is one of the most important mammalian oral functions, being 

absolutely essential for survival. Integrity of the masticatory system has been 

directly correlated with good health, nutrition [1] and quality of life [2] [3]. 

Mastication is the first step of digestion, consisting of breaking down the food into 

small particles to facilitate the swallowing process and to increase food surface 

area for better contact with digestive enzymes. During chewing there is an 

increase in saliva production, with the purpose of moistening the food to create a 

cohesive bolus to be swallowed [4].  Different factors such as bite force, number 

and condition of teeth, occlusion and malocclusion [5] will influence the chewing 

performance. Chewing is efficiently regulated by neural control, a mixed 

interaction between central motor systems and feedback and feed-forward from 

peripheral sensory systems. 
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Once ingestion has been performed, food is transported to the occlusal surfaces 

of posterior teeth; here the food will enter a processing stage where it will be 

broken down into small particles, moistened and flavors released. The number of 

required chewing cycles will depend on how difficult the food is to chew and 

process for safe swallowing [6]. The efficiency of the chewing cycle depends on 

the masticatory muscle activity, jaw movements, bite force [7], condition of the 

dentition, and the synchrony and coordination of tongue, cheek and lip muscles 

[8]. Factors such as  bite force [9], muscle activity [10] and jaw movements can 

also be modified depending on food hardness [11] [12] [13]. 

 

Chewing is a cyclical and rhythmical process elicited by the central nervous 

system, and modified by the peripheral nervous system. A chewing cycle can be 

considered as the unit of the masticatory behavior. Typically, masticatory cycles 

can be composed of up to four different phases, which are defined by their 

position in the cycle and their relative velocity (slow opening, fast opening, fast 

closing and slow closing) [14].  

 

Previous studies in small mammals and non-human primates have shown that 

the masticatory movements can be elicited by stimulation of a motor cortex zone 

called the cortical masticatory area (CMA) [15] [16] [17]. When the CMA is 

obliterated there are changes in the animal’s behavior and chewing dynamics 

such as decrease of food intake, abnormal tongue movements, wider jaw 
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opening and difficulty in starting the closing movement; however the chewing 

rhythm remains unaltered[18]. 

 

Several animal studies have demonstrated that chewing rhythm is very stable 

and that the masticatory rhythm is generated in central pattern generator (CPG) 

circuits in the brainstem [19] [20]. Also it has been reported that stimulation of the 

CPG induces rhythmical fictive chewing cycles in animals, even when the 

animals have been decerebrated [21]. Peripheral changes in the masticatory 

system, such as artificially increasing the weight of the jaw, do not induce 

changes in the chewing rhythm. This is because sensory inputs provide feedback 

that modulates bite force through varying muscle recruitment levels with the net 

effect being a relative invariant chewing frequency. 

 

There are different types of reflexes [22] coming from the muscles’ spindles, the 

periodontal ligament  [23], the muscular tendons [24] and oral mucosa that 

provide a fast and accurate sensory feedback during chewing. When these 

reflexes are eliminated by damage of the sensory nerves, changes in the length 

of the chewing cycle are observed [25].  

 

Although brain activity related to mastication has been widely studied in small 

mammals and non-human primates, our knowledge about brain activity during 

human chewing is very limited. Most of the techniques used in animal studies, 

such as decerebration, electrical or pharmaceutical stimulation, are extremely 
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invasive and cannot be performed in humans. In the last decade some positron 

emission tomography (PET) and functional magnetic resonance imaging studies 

have given some insights into the brain activity related with oral function  [26] [27] 

and parafunction [28] [29] [30] in humans. Similar to the results found in previous 

animal models, these human studies have shown that the motor cortex and 

sensory-motor cortex demonstrate increased activity associated with oral 

function [26] [31] [32] [16]. However the experimental designs used in the studies 

present some limitations, such as small sample sizes, absence of control of 

chewing side, and manipulation of the chewing rhythm using a metronome. I 

decided to develop a new set of experiments using MRI technology, with the 

purpose being to understand the neural mechanisms associated with human 

chewing. 

 

Virtually everything that is known about chewing is based on work performed in 

animal models. Also numerous brain regions, e.g., cerebellum, precuneus, basal 

ganglia, supplementary motor cortex, known to be involved in movement 

production and motor coordination have not been studied in terms of their 

potential roles in chewing. In addition, knowledge of brain mechanisms involved 

in human chewing rely on very few imaging studies or on inferences from human 

movement disorders involving the oral structures. This study was design to rectify 

this dearth in knowledge.  
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BOLD. Blood Oxygen Level Dependent. 

 

Cerebral blood flow and brain activity. 

Functional Magnetic Resonance Imaging (fMRI) is a technique used in 

neuroscience, which allows human in vivo brain activity related to a determined 

task to be evaluated. Generally speaking BOLD is a method that measures blood 

flow changes in the brain, and uses these changes to determine which brain 

areas are more or less active during a specific task. To explain the BOLD 

concept, there is a direct correlation between neuronal activity, energy demand 

and cerebral blood flow (the latter of which is the variable assessed during fMRI). 

50% to 60% of the energy consumed by the brain is used to maintain the 

electrophysiological function (i.e. maintain membrane gradients, synthesis and 

reuptake of neurotransmitters), and the 40% remaining is used to maintain cell 

homeostasis [33]. Glucose and oxygen supply energy to the brain. It has been 

established that there are regional increases in blood flow associated with 

increases in brain activity [34]. This concept of increased blood flow during brain 

activity is the basis for fMRI studies.  

 

In nature, atomic nuclei with an odd number of protons or neutrons have a 

property called spin, which creates an angular momentum. Under a strong 

magnetic field, these spinning nuclei become aligned with the magnetic field. In 

the presence of a second magnetic coil that is used to energize the spinning 

nuclei, changes in energy of the spinning nuclei can be registered. Two different 
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types of resulting energy signals can be recorded, depending on the proton 

relaxation process. These two signals are known as the T1 and T2 signals, and 

images created from them are known as T1 and T2-weighted images, 

respectively. In T1 weighted images the strength of the relaxation is dependent 

on the concentration of protons. Since each water molecule is made up of two 

protons, T1-weighted images match a gray scale depending on the quantity of 

water in the tissue.  The greater the concentration of water, the darker the image. 

These T1 images are typically high contrast and provide detailed anatomical data 

about the imaged brain. In MRI studies, these images are used to provide 

detailed maps of a given subject’s brain; however, they provide no information 

about function. The T2 weighted image, is used in fMRI studies to identify areas 

of brain activity [35]. Deoxy-hemoglobin due to its Fe2+ nuclei, is paramagnetic, 

i.e., magnetic in the presence of a magnetic field [36], and it is the key feature 

exploited to generate the BOLD contrast in fMRI images. When deoxy-

hemoglobin becomes oxygenated, it enters a low spin state, and this difference 

will allow fields having a higher concentration of deoxy-hemoglobin to be 

differentiated from those having a higher concentration of oxy-hemoglobin. As 

described before there is a direct relation between brain activity and cerebral 

blood flow; hence, while the brain is coordinating a specific experimental task, 

there is an increase in blood flow, what will result in changes in deoxy-

hemoglobin levels between the resting state and the task state [37]. The 

difference between the resting and task states is used in BOLD studies to identify 

regions that are involved in a task. Because it is the difference between the 
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resting and task states that is necessary to identify, statistical contrasts 

(subtraction of the data obtained during rest from data obtained during the task) 

are performed on data to identify brain activations. However since BOLD 

contrasts measure the dynamic changes in the cerebral blood response, a 

hemodynamic response function, which is a statistical “template” defining how 

blood flow changes occur through time, is used as a predictor in fMRI analysis to 

identify blood flow changes that are task related. This is done by convolving the 

hemodynamic response function on the contrasted images in order to identify 

“real”, i.e., task-related” changes in brain activation and differentiate such 

changes from statistical noise. 

 

General hypothesis 

 

All the central nervous system areas known to participate in motor control will be 

involved in human chewing production.  

 

Specific aims 

 

 

Aim 1. To use functional MRI to describe brain activity associated with human 

chewing. 
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Hypothesis: Chewing will produce activations patterns in the orofacial primary, 

secondary and supplementary motor and sensory cortices, pontine brainstem, 

precuneus and cerebellum. 

 

Aim 2. To determine the central connectivity patterns associated with human 

chewing using fcMRI. 

  

Hypothesis: Chewing will produce functional connectivity maps integrating the 

orofacial primary, secondary and supplementary motor and sensory cortices, 

pontine brainstem, precuneus and cerebellum. 

 

Aim 3. To develop a new mechanism to evaluate dynamic changes in chewing 

work. 

 

Purpose: Design, test and validate a new technology that will allow the 

assessment of human chewing under controlled conditions for long time periods. 
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Chapter II  

 

Functional magnetic resonance imaging (fMRI) of human chewing. 

 

Introduction. 

 

The purpose of the orofacial sciences is to preserve and restore the structural 

and functional integrity of the masticatory system. Although large efforts have 

been made to find different ways to reestablish the function of the masticatory 

system, the brain mechanisms that underlie human chewing remain poorly 

studied.  Animal studies have shown that the brainstem is responsible for the 

generation of the masticatory rhythm, and it is also responsible for coordination 

of masticatory, jaw, facial and tongue muscles activity [1] [2] . Animal studies 

have also shown that the masticatory rhythm is evocable with stimulation of the 

cerebral cortex [3]. The degree to which human neural mechanisms of oral motor 

control compare with or are similar to non-human mammalian neural 

mechanisms of oral motor control is unclear. 
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Most of the studies concerning brain activity related to chewing have been 

performed in animals, using different invasive techniques such as neural 

ensemble recording, electromyography, electrical stimulation, brain slice 

preparations, obliteration of cortical areas and complete decerebration among 

others [4]. Since none of these protocols can be used in humans, we have used 

functional magnetic resonance imaging (fMRI) technology as a non-invasive 

method to understand the cortical and subcortical brain structures related to 

human chewing.  

 

Positron emission tomography (PET) has been used to assess blood flow while 

humans chewed gum. The contrast between chewing and rest showed increased 

blood flow in the precentral gyrus, insula, supplementary motor cortex, thalamus, 

stratium, cerebellum and prefontral areas [5]. Similar results were found in 

edentulous patients, who underwent an fMRI scan performing a chewing task 

using complete dentures and later an implant overdenture [6]. Blood oxygen level 

dependent (BOLD) studies, where left and right handed patients were clenching 

and resting for periods of 30 seconds, showed that there were bilateral 

activations in the motor and premotor areas, and unilateral activation in the 

prefrontal and parietal cortex [7]. These few PET and fMRI studies have provided 

some understandings of brain activity related to oral function [8] [6]  and 

parafunction [9] [7] [10]. However the experimental designs used in the studies 

present some limitations, such as small sample sizes, absence of control of 

chewing side, and manipulation of the chewing rhythm using a metronome. The 
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purpose of this investigation was to develop an appropriately controlled paradigm 

to study the brain mechanisms associated with relatively naturalistic chewing in 

human subjects.  

 

 Material and Methods. 

 

Subjects. 

This study was evaluated and approved by the medical institutional review board 

(IRB-Med) of the University of Michigan. Subjects read and signed an informed 

consent before starting any procedure. 

 

Twenty nine healthy right handed subjects (15 males and 14 females), with class 

I occlusion and fully dentate, pain-free and with an average age of 24 years 

(SD+/-3.5), were selected for the study. The research diagnosis criteria for 

temporomandibular disorders (RDC-TMD) [11] was used to exclude any subject 

that had any myogenic or extreme arthrogenic alteration in the masticatory 

system. All subjects selected were medication-free, without diagnoses of 

systemic, vascular and central nervous diseases. A safety fMRI questionnaire 

was performed before the subjects went into the scanner; this questionnaire was 

used to exclude subjects with devices and conditions that otherwise would be 

dangerous for the subjects, or would not be compatible with the fMRI 

environment.   
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Functional MRI protocol. 

A 3 Tesla GE scanner at the Functional MRI laboratory at the University of 

Michigan was used to perform the magnetic resonance scanning. Subjects were 

placed in the scanner and their heads were securely fastened in order to 

decrease movement artifacts. T1 images were recorded under the following 

parameters TR = 12.3, TE = 5.2, flip angle = 15 degrees, bandwidth = 15.63, field 

of view = 26cm, number of slices = 144 and slice thickness = 1mm, and used 

during the analysis for preprocessing of the anatomic and functional data. 

Subjects used mirror glasses to watch a visual projection that guided the subjects 

to chew gum on the right side for 25 seconds and then to stop chewing, stay still 

and rest for 25 seconds (Figure 1); this sequence was repeated 10 times. fMRI 

images were recorded using a TR=2500 ms, TE = 30, flip angle = 90 degrees, 

field of view = 22, slice thickness = 3.0mm, number of scans = 200, number of 

slices = 53 and voxel size = 3.44x3.44x3. For each run, the first 5 images were 

discarded to allow signal stabilization. 

 

Functional MRI data analysis. 

The functional data were analyzed using SPM 5 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm5/) executed under Matlab 7.1. The 

images were preprocessed using a time correction and a motion correction 

realigning all the images with the first image. Then the anatomical images were 

normalized following a standard Montreal Neurological Institute (MNI) template. 

http://www.fil.ion.ucl.ac.uk/spm/software/spm5/
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Thereafter, all images were smoothed using a 6mm Gaussian kernel. Fitting the 

data with hemodynamic response functions (HRF) a first level analysis was 

performed for each set of data for each subject, contrasting the chew task blocks 

with the resting period blocks. A second level analysis was performed to 

compare group differences between the chew task and rest. A corrected p-

value< 0.001 was used to establish brain responses associated with chewing.  

 

Animal studies have described that the brain activity responsible for chewing 

initiation (beginning of the chewing movement) is different from the brain activity 

related to the sustained chewing action (continued chewing after initiation) [4]. 

Based on this concept, a second analysis was performed. This unique analysis 

involved dividing the chewing block into five segments of 5 seconds each (Figure 

1). To evaluate the differences in brain activity between segments of the chewing 

block, a first level analysis for each subject and a second level analysis for the 

group of subjects, was performed where each chewing segment was contrasted 

versus the rest block, viz., rest vs. 1/5, rest vs. 2/5, rest vs. 3/5, rest vs. 4/5, and 

rest vs. 5/5, and also versus successive segments, viz., 1/5 vs. 2/5; 2/5 vs. 3/5; 

3/5 vs. 4/5; 4/5 vs. 5/5. 

 

Results. 
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Contrast between chew and rest blocks. 

The fMRI analysis demonstrated that the head translational movement artifact in 

the x, y and z axes was < 1 mm and that rotational head movement artifact was < 

1o. Table 1 and Figure 2 show the results associated with the chewing versus 

rest contrast. The contrast of chew versus rest revealed a bilateral activation in 

the posterior lobes of the cerebellum (p<0.001). This activation was relatively 

large involving clusters of 1734 voxels (left) and 383 voxels (right).  

 

Also, there were activations in the left and right precentral gyrus extending over 

the primary motor cortex, Brodmann areas 3, 4 and 6 and the postcentral gyrus,  

(464 and 390 voxels in the left and right cortices respectively, p<0.001). In 

addition, there were activations in the rostrum of the corpus callosum, and in the 

head of the caudate nucleus (92 voxels p<0.01). 

 

On the other hand, the contrast between rest versus chewing (Table 1), which 

represent areas that were more active during rest than chewing, showed 

extremely large clusters of activity in the right frontal lobe with peak values at the 

level of the inferior frontal gyrus (23897 voxels, p<0.001) and the inferior 

operculum (259 voxels, p<0.001). 
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Contrast between chewing block segments and rest. 

The results of the contrast between each chewing block segment versus rest are 

shown in Table 2 and Figure 3. Activations in the posterior lobe of the left 

cerebellum were present among the contrasts between all five chewing 

segments and rest. On the other hand, the same contrast showed that 

activations in the posterior lobe of the right cerebellum were only present in the 

first three segments. There were bilateral activations in the right and left 

precentral gyrus for all five contrasts as well. 

 

Contrast between successive chewing segments. 

The results of the contrasts between successive chewing segments are shown in 

Table 3 and Figure 4. 

 

Contrast of the first segment versus second segment. 

The contrast between the first and second segment showed an activation in the 

left superior frontal gyrus that extended to the supplementary motor cortex, the 

Brodmann area 6 and middle frontal cortex. This contrast means that the brain 

was more active in these areas during the first segment compared with the 

second segment. In addition an activation at the level of the precentral gyrus 

extended to the Brodmann area 4 and 6. Also increased activity was present in 

the caudate and putamen nuclei.  
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Contrast of the second segment versus third segment. 

The contrast between the second and third segment showed no significant 

results. This result indicates that brain activity remained unchanged during these 

two segments. After brain activity necessary for initiation of the chewing 

movements (showed in the first segment), the brain regions involved with 

sustained chewing appear to have arrived at constant activation levels. 

 

Contrast of the third segment versus fourth segment. 

The contrast between the third and fourth segment showed activity in the anterior 

lobe of the right cerebellum, temporal gyrus and cuneus.  

 

Fourth segment minus fifth segment contrast. 

 Lastly the contrast between the fourth and the last fifth showed activity increased 

in the right anterior and posterior cingulate cortex. These results demonstrated 

that brain activity associated with chewing evolved through time. 

 

Discussion. 

The results of contrasts between chew block versus rest block in this study are 

similar to the results of brain activity observed in animal experiments; activity in 

the primary motor cortex and supplementary motor cortex is seen in both human 

and animal chewing [4]. Figure 2 shows the bilateral activations in the middle 

section of the precentral gyrus, corresponding to the mouth and face in the motor 
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homunculus. Increased activity has been described in Brodmann’s areas 4 and 6 

in patients chewing two gums of different consistencies [8]. It has been proposed 

that these cortical areas can evoke masticatory movements, and have thus been 

named the cortical masticatory areas (CMA) [1]. Animal experiments where the 

CMA was obliterated revealed that this area is responsible for initiating the 

contraction of digastric, masseter and pterygoid muscles [12] [13]. In non-human 

primates, chewing, swallowing and ingestion can be altered when the CMA is 

anesthetized; these studies demonstrated that CMA extended from the motor 

areas in the precentral gyrus to the sensory cortex in the postcentral gyrus [14] 

[15].  Lund, et al. support the idea that chewing rhythm can be activated by the 

cortex or by inputs from the peripheral sensory system from the oral cavity [16]. 

Even though our subjects were chewing on the right side, there were no 

differences between left- and right-sided results (Table 1), suggesting an 

interhemispheric interaction and that chewing is associated with right and left 

cortical activity. In addition, other fMRI studies have reported increased activity in 

the somatosensory cortex in subjects performing oral parafunctional tasks such 

as clenching and grinding teeth [9]. 

 

Apart from the CMA, brain activations have been reported also in the 

supplementary motor area (SMA), dorsolateral frontal cortex and posterior 

parietal cortex during teeth clenching [17]. The SMA [18] is involved with the 

modulation of chewing movements depending on the hardness of the bolus. 

Since the shape of a food bolus varies and the amount of force necessary to 
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chew on the bolus varies as well, the SMA is likely an important area to 

complement the action of the primary motor cortex. The SMA is an association 

area that regulates the different type of muscular contractions. Because gum 

stiffness remains relatively stable over time, the role of the SMA in this study is 

unclear. However we can speculate that the SMA modulates the shaping, folding 

and repositioning of the gum bolus. 

 

We have described bilateral activations in the posterior lobe of the cerebellum 

close to the midline; similar to results reported by Onozuka and colleagues [19]; 

however, these investigations only found activation in the posterior lobe of the left 

cerebellum. In our experiment, subjects were allowed to chew at their own paces, 

without a metronome. Hence, the differences in the cerebellum activation 

between the two studies could be related to the differences in study designs vis-

à-vis control of the masticatory rhythm. According to animal studies, the 

cerebellum controls voluntary muscle movements, the muscle tonus, balance 

and coordination of the movement (i.e. hand and eye movement coordination) 

[20]. Although chewing studies in animals do not focus on the cerebellum, 

studies from other systems (i.e. eye movements) have suggested the importance 

of the cerebellum in motor coordination [21]. Also it has been reported that 

circuits formed by the motor cortex, pons and cerebellum will be involved in 

motor coordination [22]. FMRI studies which evaluate eye movement have 

shown bilateral activation in the cerebellum [23]. In addition it has been 
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demonstrated that the cerebellum is involved in the coordination and rhythmicity 

of oral function such as licking [24].  

 

In addition the present study reported an activation that ran from the midbrain to 

the pons. Previous studies performed in small mammals showed that the 

superior portion of the motor nuclei of the trigeminal nerve, as well as the motor 

nuclei of the facial nerve are responsible for the generation of the masticatory 

rhythm; in fact, these nuclei can maintain the rhythm in absence of sensory 

feedback or inputs from suprabulbar or spinal systems [16] [25] [26] [27]. Thus, 

our results of brainstem activations suggest that these regions are involved in 

similar ways as they are in other mammals. 

 

Also the stimulation of the sensory cortex has been shown to induce jaw 

movements with different features than when the motor cortex and the cortical 

masticatory area are stimulated [28]. It has been suggested that the 

posterolateral somatosensory cortex is related to lateral movements rather than 

opening and closing movements [3]. We hypothesize, therefore that this area is 

probably involved with modifying the basic chewing pattern, and that chewing 

pattern modification was a minor requisite in our study where subjects chewed an 

even-consistency gum on the right side.   
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In the second analysis we divided the chewing block into five segments. The 

contrast between the first segment and the second segment showed a large 

number of activations (Table 3). In particular there was increased activity in the 

left motor cortex. There is evidence from small animal studies that the CMA is 

responsible for the initiation of the chewing movement [29]. Our results suggest 

that the motor cortex plays a similar initiatory role in humans. These results 

indicate that activity in the motor cortex or other brain areas is not constant 

during a chewing sequence, rather activations can change dynamically over time.   

 

Also, we described an activation cluster at the level of the brainstem; however, 

the fMRI technique does not provide adequate spatial resolution to determine the 

specific area in the brainstem. Due to the position of the cluster in the pons, we 

can infer that it is including the pontine section of the trigeminal motor nuclei; this 

is consistent with findings in animal experiments, where the motor nuclei of the 

trigeminal nerve, as well as other nuclei in the brainstem are involved with the 

masticatory rhythm and pattern generation [30].  

 

In addition the analysis contrasting the segments of the chewing block versus the 

rest block showed activations at the level of the head of the caudate nucleus and 

in the body of the putamen nucleus; both nuclei have been described to be 

associated with movement control [31]. Although little evidence exists about the 

role of the basal ganglia in mastication, an fMRI study showed increased activity 
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in the putamen and caudate while subjects were clenching their teeth [7]. These 

results show how both nuclei are related to oral parafunction and our findings 

suggest that they are associated with oral function as well; since both tasks 

(chewing and clenching) are similar it was expected for them to have similar 

brain activity patterns. 

 

It is noted that the contrast between each segment of the chewing block and the 

rest block showed a consistent activity in the motor and supplementary motor 

cortex and the cerebellum; however the contrast between successive segments 

of the chewing block showed different sizes (number of voxels) of activation in 

these brain regions, suggesting dynamic changes over time in the brain activity 

while the subjects were chewing. Since chewing is a rhythmical sequence of 

movements, without presenting large kinetic changes, we were expecting that the 

brain activity in the chewing block would be stable; however we showed how 

brain activity evolves over time during the chewing cycle. 

 

Information about the role of the cerebellum in mastication is very limited; 

however, based on what it is known from other studies the cerebellum plays a 

major role in movement [32] [33]. Results from this study and results that will be 

discussed in the next chapter suggest that the cerebellum is playing a major role 

in mastication. Further experiments will be necessary to elucidate its role. 
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Previous studies of small mammals and non-human primates have shown that 

the brainstem generates the masticatory rhythm. There are difficulties with high-

resolution imaging of the brainstem using MRI methods. The brainstem has a 

high concentration of small nuclei and these nuclei are involved in different 

systems (motor, sensory, autonomic). Images generated by fMRI do not have the 

resolution necessary to differentiate these nuclei. Therefore when activity 

changes were observed in the brainstem, we assumed that these changes were 

associated with chewing, and would thus represent activations of the masticatory 

CPG in the pons. In addition, there can be large anatomical variations in the 

brainstem considering that it is a small structure. Although all the images were 

normalized to a brain template, the areas of activation between subjects can 

differ. Also the vertebral arteries can provoke movement artifacts that can affect 

the image resolution.  

 

In conclusion, the contrast between the chewing block and the rest block showed 

activations in the motor cortex, and these activations were constant when the five 

segments of the chewing block were contrasted with the rest block. However 

when the segments of the chewing block were contrasted between successive 

segments, there were differences in activation patterns. This showed that brain 

activity related to chewing has dynamic changes. Also there were activations in 

the supplementary motor cortex, basal ganglia and brainstem associated with 

human chewing. One of our most important descriptions was the activations in 

the cerebellum. These activations remained present during the contrast of the 
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chewing block versus the rest block, and the contrasts of the five segments of the 

chewing block and the rest block. Finally our analysis of the chewing block by 

segments showed how there were dynamic changes in brain activity patterns 

over time. 
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Block 
 
 
 

Chew-Rest 

Anatomical Structure Cluster 
size 

 
T 

 
Z 

Coordinates 

x y z 

Left cerebellum posterior lobe*** 1734 10.08 6.50 -18 -72 -18 
Right Precentral gyrus*** 390 9.72 6.38 48 -14 40 
Left Precentral gyrus*** 464 9.54 6.32 -44 -14 34 
Right cerebellum posterior lobe*** 383 9.31 6.24 10 -68 -48 
Corpus callosum and Caudate nuclei ** 92 6.08 4.81 -2 20 2 
Right anterior cingulate cortex* 77 4.57 3.92 2 38 0 
Midbrain/Pons 83 4.36 3.55 -6 -22 -36 

 
 

Rest-Chew 
Right inferior frontal gyrus*** 23897 9.87 6.43 32 30 -14 
Right frontal inferior operculum*** 259 7.23 5.39 40 10 26 
Left cerebellum posterior lobe** 202 6.76 5.16 -34 -82 -46 

 

Table 1. Results of the contrast between the chewing block versus the rest block. 

Table shows the peak corrected values for the cluster. *=p<0.05, **=p<0.01, 

***=p<0.001. Cluster size is in total number of voxels. T = t-test score; Z = z 

score. Coordinates are anteroposterior (x), superior-inferior (y) and lateral (z). 
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Block 
 
 
 

1/5 - Rest 

Anatomical Structure Cluster 
size 

 
T 

 
Z 

Coordinates 
x y Z 

Left cerebellum posterior lobe*  148 9.70 6.37 10 -68 -48 
Right precentral gyrus (6) (4)*** 365 9.51 6.31 44 -16 40 
Left/right posterior cingulate cortex*** 5521 9.21 6.23 -6 -44 4 
Left precentral gyrus (6)(4)*** 310 7.94 5.70 -44 -16 34 
Right cerebellum posterior lobe** 203 6.88 5.22 -6 -68 -50 

 
 

 
 
 

2/5 - Rest 

Left cerebellum posterior lobe***  223 10.01 6.47 -16 -64 -18 
Left cerebellum inferior semilunar 
lobule*** 

242 9.56 6.32 -8 -70 -50 

Left precentral gyrus*** 229 9.52 6.31 -44 -14 34 
Right cerebellum posterior lobe*** 352 7.21 5.38 20 -58 -22 
Right precentral gyrus*** 161 6.90 5.23 40 -12 34 

 
 

 
 
 

3/5 - Rest 

Right cerebellum posterior lobe***  1303 10.88 6.75 12 -60 -16 
Left cerebellum posterior lobe*** 231 7.98 5.72 -10 -68 -46 
Right cerebellum inferior semi-lunar 
lobule** 

182 6.92 5.24 12 -68 -46 

Left precentral gyrus** 165 6.89 5.23 -46 -14 36 
Right precentral gyrus** 169 6.61 5.09 42 -10 34 

 
 

 
 

4/5 - Rest 

Left cerebellum posterior lobe***  234 8.91 6.08 -6 -68 -50 
Left precentral gyrus*** 281 8.56 5.95 -42 -16 32 
Right precentral gyrus*** 199 8.02 5.73 46 -14 40 
Right anterior cingulate cortex*** 307 5.48 4.48 6 22 2 

 
 

 
 
 

5/5 - Rest 

Right precentral gyrus***  1535 13.50 7.46 46 -10 34 
Left precentral gyrus*** 2184 12.26 7.15 -50 -12 44 
Left cerebellum posterior lobe*** 1364 10.09 6.50 -24 -60 -20 
Right inferior parietal lobe** 354 6.26 4.91 60 -38 26 
Right occipital pole* 109 5.90 4.72 12 -102 -2 
Right middle cingulate* 110 5.80 4.66 8 10 44 

 

Table 2. Results of the contrasts between each segment of the chewing block 

and the rest block. The first column shows the specific contrast. The table shows 

peak corrected values for the cluster were a positive contrast was found. 

*=p<0.05, **=p<0.01, ***=p<0.001. Brodmann areas are shown in parentheses. 

Cluster size is in total number of voxels. T = t-test score; Z = z score. 

Coordinates are anteroposterior (x), superior-inferior (y) and lateral (z). 
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Block 

Anatomical Structure Cluster 
size 

 
T 

 
Z 

Coordinates 
x y Z 

 
 
 
 
 
 
 
 
 

1/5 – 2/5 

Occipital lobe/temporal 
lobe/precuneus***  

12436 9.87 6.43 -4 -42 4 

Left superior temporal gyrus*** 964 8.75 6.02 -40 -34 16 
Superior frontal gyrus (6) 314 8.72 6.01 0 -6 76 
Right superior temporal gyrus** 161 8.17 5.79 48 12 -8 
Right superior temporal gyrus (8)*** 264 6.96 5.26 36 4 -14 
Left posterior insula* 96 6.78 5.17 -36 -22 -2 
Left caudate nuclei 249 6.76 5.16 -14 22 0 
Left superior temporal gyrus*** 274 6.56 5.07 -56 16 -6 
Right amygdala** 137 6.52 5.05 20 0 -12 
Left putamen nuclei* 98 6.10 4.83 32 -18 -2 
Left Cerebellum posterior lobe/Tonsil* 126 5.80 4.66 -18 -52 -50 
Left precentral gyrus** 186 5.68 4.60 -44 -16 40 
Brainstem** 147 5.61 4.55 -6 -26 -6 
Right cingulate gyrus*** 227 5.38 4342 2 8 44 
Right cuneus* 132 5.50 4.49 18 -90 10 

 
2/5 -3/5 No significant results 

 
3/5 – 4/5 Right cerebellum anterior lobe***  254 6.79 5.18 28 -50 -22 

Right superior temporal gyrus*** 248 6.71 5.14 50 -56 12 
Right occipital lobe* 97 6.46 5.01 16 -88 10 
Right cerebellum anterior lobe*** 279 5.39 4.43 12 -62 -14 
Left posterior cingulate cortex 178 5.10 4.25 -14 -62 6 
Right cuneus** 146 5.01 4.20 2 -78 30 

 
4/5 – 5/5 Right posterior cingulate***  445 7.70 5.60 4 -54 12 

Right anterior cingulate*** 814 7.08 5.32 4 44 0 

 

Table 3. Results of the contrasts between the successive segments of the 

chewing cycle. Table shows peak corrected values for the cluster. *=p<0.05, 

**=p<0.01, ***=p<0.001. Brodmann areas are shown in parentheses. Cluster size 

is in total number of voxels. T = t-test score; Z = z score. Coordinates are 

anteroposterior (x), superior-inferior (y) and lateral (z). 
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Figure 1. Block design used during the scanning sessions at the MRI laboratory. 

Subjects were lying in the MRI scanner and asked to stay at rest for 25 seconds 

and to chew on the right side for 25 seconds; this sequence was repeated ten 

times. The chewing block was divided in five segments for analysis purposes. 
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Figure 2. fMRI results of the contrast between chewing blocks minus rest blocks. 

Red/yellow areas show activations during chewing blocks compared to 

successive rest blocks and blue/green areas show deactivations during chewing 

blocks compared with successive rest blocks. Pg= Precentral Gyrus. CC= 

Corpus callosum. CpL=Cerebellum posterior lobe. iFg= inferior frontal gyrus. 
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Figure 3. Images of the contrast between the five segments of the chewing block 

and rest block. Red/yellow areas show activations (increased brain activity during 

the respective chewing segments compared to subsequent rest) and blue/green 

areas show deactivations (decreased brain activity during the respective chewing 

segments compared to subsequent rest) in the contrast. Sagittal images show 

activation in the cerebellum in all five contrasts. Coronal images show activations 

in the left and right precentral gyrus in all five contrasts. pCg=Precentral gyrus; 

plC=Posterior lobe of the cerebellum; Bs=Brainstem; ACC=Anterior cingulate 

cortex. 
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Figure 4. Images of the contrasts between successive segments of the chewing block. Red/yellow areas 

show activations (where brain activity increased in the time between one segment and the next) and 

blue/green areas show deactivations (where brain activity decreased in the time between one segment and 

the next). The first contrast (1/5 – 2/5) shows the brain activations during the initiation of the chewing 

movement. The other contrasts show brain activity during sustained chewing. Note that brain activity 

dynamically evolves over the duration of the chewing block. pCg=precentral gyrus; prCg=paracentral gyrus; 

preC=Precuneus; CC=Cingulate Cortex; ACC= Anterior cingulate cortex; PCC= Posterior Cingulate cortex; 

plC=Cerebellum posterior lobe; T=Thalamus; C=Caudate nucleus; In=Insula; mB=Midbrain; Bs=Brainstem; 

STg=Superior Temporal gyrus. 
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Chapter III  

Functional connectivity of human chewing. 

 

Introduction. 

 

Chewing can be described as one of the main functions of the orofacial system 

that is important in survival. Previous animal studies have described brain areas 

and their axonal connections related to chewing. Motor areas in the cortex, e.g., 

the cortical masticatory area in M1 and motor nuclei in the brainstem, e.g., 

nucleus paragigantocellularis, nucleus gigantocellularis pars oralis, and the 

parvocellular reticular formation are involved in the generation, rhythmicity and 

coordination of the masticatory, facial and tongue muscles [1] . Also, sensory 

trigeminal nuclei and sensory cortical areas play a role providing feedback from 

the masticatory activity. Studies in cats have shown connections between motor 

cortex and the orbital gyrus with motoneurons of the trigeminal system related to 

jaw closing movements [2] [3] [4]. Other studies have demonstrated a relation 

between stimulation of the oral mucosa [5], periodontal ligament  [6] and muscle 

spindles [7] and changes in neuron firing at the brainstem level.  
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In our previous chapter in the fMRI study we showed that motor cortex, 

brainstem and cerebellum were active during chewing in humans; however, how 

these structures interact with each other and with other areas of the central 

nervous system remains unclear. As far as we are aware, no other research 

team has evaluated brain activity associated with chewing using functional 

connectivity MRI (fcMRI). fcMRI is a novel methodology which allows 

investigators to select a specific region of the brain (seed region) and find which 

other areas are highly correlated with the seed region. However fcMRI does not 

provide direct information about anatomical connectivity between two areas; 

rather, this method gives information about areas that are highly correlated 

among themselves during a specific task or at resting state. Although correlation 

does not mean causation, the design of fcMRI studies demonstrates functional 

associations between brain regions. The aim of this study was to use fcMRI as a 

noninvasive method to evaluate the connectivity of different areas of the central 

nervous system related to chewing.  

 

Methods. 

 

Subjects. 

This study was evaluated and approved by the medical institutional review board 

(IRB-Med) of the University of Michigan. Subjects read and signed an informed 

consent before starting any procedure. 
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Twenty nine healthy right-handed subjects (15 males and 14 females), with class 

I occlusion and fully dentate, pain-free and with an average age of 24 years 

(SD+/-3.5), were selected for the study. The research diagnosis criteria for 

temporomandibular disorders (RDC-TMD) [8] was used to exclude any subject 

that had any myogenic or extreme arthrogenic alteration in the masticatory 

system. All subjects selected were medication-free, without diagnoses of 

systemic, vascular and central nervous diseases. A safety fMRI questionnaire 

was performed before the subjects went into the scanner; this questionnaire was 

used to exclude subjects with devices and conditions that otherwise would be 

dangerous for the subjects, or would not be compatible with the fMRI 

environment.   

 

Functional MRI protocol. 

A 3 Tesla GE scanner at the functional MRI laboratory at the University of 

Michigan was used to perform the magnetic resonance scanning. Subjects were 

placed in the scanner and their heads were securely fastened in order to 

decrease movement artifacts. T1 images were recorded under the following 

parameters TR = 12.3 ms, TE = 5.2 ms, flip angle = 15 degrees, bandwidth = 

15.63 KHz, field of view = 26°, number of slices = 144 and slice thickness = 

1mm, and used during the analysis for preprocessing of the anatomic and 

functional data. Subjects used mirror glasses to watch a visual projection that 

guided the subjects to chew gum on the right side for 25 seconds and then to 

stop chewing, stay still and rest for 25 seconds; this sequence was repeated 10 
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times. fMRI images were recorded using a TR=2500 ms, TE = 30 ms, flip angle = 

90 degrees, field of view = 22mm, slice thickness = 3.0mm, number of scans = 

200, number of slices = 53 and voxel size = 3.44 mm x 3.44 mm x 3 mm. For 

each run, the first 5 images were discarded to avoid magnetic field defects. 

 

Functional connectivity pre-processing. 

Version 8 of the Statistical Parametric Mapping (SPM) software from Functional 

Imaging Laboratories, London, UK and the functional connectivity toolbox Conn 

(http://www.nitrc.org/projects/conn) from the Cognitive and Affective 

Neuroscience Laboratory of the Massachusetts Institute of Technology, 

Cambridge, MA, USA, both running under Matlab 7.5b (Mathworks, Sherborn, 

MA, USA) were used to pre-process and analyze the data. Data preprocessing 

consisted of motion correction, normalization and smoothing. Functional and 

structural images were loaded for each subject. MarsBar software 

(http://marsbar.sourceforget.net) and coordinates from the Montreal Neurological 

Imaging were used to create 6mm spherical seeds in the right (x=42; y=-14; 

z=36) and left (x=-44; y=-12; z=34) motor cortex, right (x=10; y=-68; z=-48 and 

x=14; y=-58; z=-88) and left (x=-6; y=-68; z=-48 and x=-16; y=-62; z=-18) 

cerebellum and a 2mm spherical seed in the pons (x=0; y=-34; z=-34). Seeds 

were selected based on the results obtained in the previous chapter. Onset times 

and durations of the rest and chewing blocks were defined for each subject.  

High frequency noise was removed using a band pass filter of 0 to 0.03 Hz. The 

white matter, cerebral spinal fluid, motion parameters, the effect of rest and the 

http://www.nitrc.org/projects/conn
http://marsbar.sourceforget.net/


41 
 

effect of chewing were used as confounds during the data preprocessing. Then a 

first level analysis to evaluate single subject differences was run using the seeds 

described above. Thereafter, a second level analysis was performed to 

determined group connectivity results. 

 

Results. 

 

Significant results for the fcMRI for chewing were determined using a corrected 

p-value<0.05 at cluster level. 

 

Functional connectivity of the motor cortex seeds. 

Table 1 and figure 1 show the results for the seeds in the right and left motor 

cortex. There was a functional connection of each motor cortex with the 

contralateral motor cortex. These were large clusters that had their peak values 

in the precentral gyri, but they extended over the postcentral gyrus, the parietal 

lobe, superior temporal gyrus, superior, middle, inferior and frontal gyrus, insula, 

putamen nucleus and thalamus. Also both cortices showed functional 

connections with clusters that had peak values in the posterior lobes of the 

cerebellum; this connectivity map extended to the inferior semi-lunar lobule and 

the vermis. Furthermore, the motor cortex seeds showed functional connections 

with the precuneus and the brainstem.  
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Functional connectivity of the pontine seed. 

The seed in the pons showed functional connections with both parahippocampal 

cortices and also with the right cerebellum and the right inferior temporal cortex 

(Table 2; Figure 2).  

 

Functional connectivity of the cerebellar seeds. 

Both the right and left cerebellar hemispheres showed functional connections 

with the contralateral cerebellum. The cluster associated with the connectivity 

map in the contralateral cerebellum was vast, and included the anterior and 

posterior lobe of the cerebellum, the culmen, cerebellar tonsil, the inferior 

semilunar lobule and the occipital pole. The functional connectivity map with 

peak values in the contralateral motor cortex extended to superior parietal lobule, 

postcentral gyrus, paracentral lobule, superior and medial frontal gyrus and 

precuneus. Also the cerebellar seeds showed functional connections with the 

cingulate cortex (Table 3; Figure 3). 

 

Discussion. 

 

In our previous chapter, we showed how there were bilateral activations in the 

motor cortex during chewing on the right side. In this experiment the motor 

cortices showed contralateral functional connections (Table 1). Previous studies 

have shown connections between both sides of the cortex occur via the corpus 

callosum. Transcranial magnetic stimulation of the motor cortex has been shown 
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to elicit bilateral contraction of the masseter and digastric muscle in humans [9]. 

Studies in small mammals have shown the existence of the connection between 

the two motor cortices and how it is involved in mastication [10]. Also when one 

of the cortical sides is experimentally damaged, there are changes in jaw and 

tongue movements during chewing [11]. Similar results are found in patients 

suffering from stroke, where chewing efficiency is reduced [12]. These studies 

support our findings of bilateral connectivity between the motor cortices during 

chewing. 

 

We also described that the motor cortex had a functional connection with the 

brainstem and the pons (Table 1). Animal studies have shown the existence of a 

corticobulbar tract between the cortex (cortical motor area) and the trigeminal 

motor nuclei in the pons and the reticular formation in the brainstem [13]. This 

tract modulates the brainstem central pattern generators responsible for the 

chewing movements [14]. The masticatory rhythm has been eliminated upon 

stimulation of the motor cortex in studies of small mammals where this tract has 

been obliterated [15]. It is, therefore possible that humans like animals possess 

these connections involved in the control of the masticatory movements. 

 

Unique to this study, we found that the cerebellum played a role in chewing; 

however, what specific action the cerebellum performs during chewing still 

remains unclear. Pathways connecting the motor cortex and the cerebellum have 

been described previously. In animals, descending neurons from the cortex 
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synapse in the pons, and the postsynaptic neurons project to the cerebellum via 

the cerebellar peduncle [16] [17]. In addition, these projections to the cerebellum 

not only originate in the motor cortex but also in the cingulate cortex, 

somatosensory cortex and supplementary motor cortex [18]. An fcMRI study 

performed in humans has described functional connections between the motor 

cortex and the dorso-lateral prefrontal cortex with the cerebellum [19]; however, 

this previous experiment was performed at rest, and the connectivity map was 

not associated with any task. The present results support the idea of these 

regions being functionally connected during the chewing task. It is possible that 

the cerebellum is involved in the coordination of chewing movements. Also it is 

possible that the functional connections of the cerebellum are related to the 

coordination of the group of muscles involved in mastication (masticatory 

muscles, suprahyoid muscles, muscles of the tongue and facial muscles) and 

coordinating the chewing process with swallowing and breathing [20]. 

 

There were also connections between the motor cortex and both the precuneus 

and cuneus (Table 1). These areas have not been described before as being 

related to mastication. Other studies have shown that these areas increase in 

activity during other types of movements such as upper limb movements and eye 

movements [21] [22] [23] [24]. We hypothesize that the role of the precuneus 

during chewing could be that it is involved with the identification of shapes and 

textures of the bolus. It could also be involved with the association between 

movement and sensory inputs.  
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It was interesting that the main functional connections of the pons were with the 

left and right parahippocampal gyrus (Table 2). The parahippocampal gyrus 

traditionally is related to memory and not with movement tasks [25]. In addition, 

the importance of the pons in mastication has been described before; however it 

would require further MRI studies to understand how its relation with the 

parahippocampal gyrus will be involved with chewing. Since the pontine area 

contains multiple nuclei belonging to different motor and sensory systems, it is 

possible that the seed region in the pons reflects functional connections not 

related to trigeminal systems. In addition the axons of the trigeminal motor 

nucleus will project to the periphery, making it less probable to observe a 

connectivity map in the brain. These previous concepts could explain why the 

connectivity of the seed in the pons is not showing expected results.  

 

The cerebellar seeds showed large connectivity maps (Table 3). It is interesting 

that the vast majority of the animal and human studies that assessed mastication 

have not described the importance of the cerebellum in oral function, and most of 

the mastication studies have focused on the CMA and the CPG. We described 

functional connections between the cerebellum and the precentral gyri 

(Brodmann areas 6 and 4); since this is the anatomical location of the cortical 

masticatory area [14], this result suggests the importance of this connection for 

the control of chewing movements. Also the cerebellar hemispheres were largely 

connected with the frontal cortex and the temporal cortex.  
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Chewing, swallowing, talking and breathing are functions that must be timed and 

coordinated. Furthermore there are common groups of muscles performing these 

functions, and many of the muscles and their neural circuitry will be involved in 

multiple tasks (i.e. there are specific tongue movements during chewing versus 

swallowing versus breathing). The extensive connectivity map of the cerebellum 

may be associated with the coordination of these oral functions (speech 

included) and breathing. Patients that suffered cerebellar stroke present speech 

difficulties [26], abnormalities in breathing [27] and swallowing complications [28]. 

 

In conclusion, fcMRI showed connectivity maps in humans related to chewing. 

We described that the motor cortices were functionally interconnected and 

connected to the brainstem (similar as in animals).  In addition we showed a 

reciprocal functional connection during chewing between the motor cortices and 

the cerebellar hemispheres.  
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Seed region 

 
Connectivity region 

 
BA 

Cluster 
size 

Z 
score 

Coordinates 
x y z 

Right motor cortex Left precentral gyrus*** 6 14159 7.35 -46 -12 34 
Left cerebellum posterior lobe*** - 3314 7.28 -18 -64 -18 
Left cerebellum inferior semi lunar 
lobule*** 

- 394 5.33 -8 -72 -46 

Left cuneus*** - 827 4.99 -20 -90 22 
Right cerebellum posterior lobe ***  245 4.95 22 -86 -50 
Left superior parietal lobule*  145 4.93 -26 -50 64 
Posterior cingulate cortex*** 30 254 4.73 -12 -66 8 
Left poscentral gyrus/inferior 
parietal lobule* 

 169 4.55 -32 -36 46 

Right cuneus/precuneus***  269 4.42 14 -82 40 
Left brainstem/Thalamus* 
 

- 157 4.25 -12 -22 -4 

Left motor cortex Right precentral gyrus/ postcentral 
gyrus*** 

4/6 20719 6.98 50 -10 30 

Left cerebellum posterior lobe*** - 8867 6.68 -18 -60 -18 
- Right cerebellum posterior 

lobe*** 
-  6.39 16 -60 -18 

Left cerebellum inferior semi-lunar 
lobule*** 

- 278 5.58 -10 -70 -48 

Right cerebellum inferior semi-
lunar lobule *** 

- 308 4.93 14 -66 -52 

Right Middle/Superior frontal 
gyrus*** 

10/46 828 4.76 34 46 28 

Left Middle/Superior frontal gyrus 
*** 

10/46 529 4.42 -44 42 20 

Right Precuneus* 19 133 4.26 34 -72 38 
Right Precuneus** 7 221 4.16 2 -52 56 
Pons/brainstem* 
 

- 167 4.16 -2 -30 -34 

 

Table 1. Results of the fcMRI for the motor cortex seeds. The table shows the 

connectivity map for the seeds in the right and left motor cortex. BA = Brodmann 

area. *=p<0.05, **=p<0.01, ***=p<0.001. Cluster size is in total number of voxels. 

T = t-test score; Z = z score. Coordinates are anteroposterior (x), superior-inferior 

(y) and lateral (z). 
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Seed region 

 
Connectivity region 

 
BA 

Cluster 
size 

Z 
score 

Coordinates 
x y z 

Pons Right parahippocampal gyrus*** 28 485 5.13 24 -10 -34 
Left parahippocampal gyrus*** 20 492 4.88 -30 -10 -32 
Right cerebellar tonsil*  122 4.40 34 -46 -44 
Right inferior temporal gyrus* 
 

20 130 4.05 42 -32 -12 

 

Table 2. Results of the fcMRI for the seed in the pons. BA = Brodmann area. 

*=p<0.05, **=p<0.01, ***=p<0.001. Cluster size is in total number of voxels. T = t-

test score; Z = z score. Coordinates are anteroposterior (x), superior-inferior (y) 

and lateral (z). 
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Seed region 

 
Connectivity region 

 
BA 

Cluster 
size 

Z 
score 

Coordinates 
x y z 

Right posterior 
cerebellum  
10 -68 -48 

Left Cerebellum Posterior lobe*** - 11385 6.18 -14 -64 -22 
Right Superior Temporal Gyrus/ 
Precentral gyrus/Postcentral gyrus*** 

22 523 4.92 62 -6 10 

Left precentral gyrus** 6/4 199 4.64 -44 -16 36 
Left Superior Pariental lobe*** 7 264 4.55 -24 -62 58 
Left Superior Temporal Gyrus* 22 170 4.30 -58 -6 10 
Left Precentral Gyrus * 6/4 173 4.19 -34 -14 58 
Left Cingulate Gyrus/Supplementary 
Motor Area* 
 

32 135 3.99 0 16 48 

Right posterior 
cerebellum  
14 -58 -18 

Left Cerebellum Posterior Lobe*** - 43445 7.38 -24 -74 -22 
Right Inferior Frontal Gyrus** 10 215 4.52 48 50 4 
Left Middle Temporal Gyrus*** 20 495 4.41 -42 2 -28 
Left Cingulate Gyrus*** 24 303 4.24 -4 -22 36 
Left Inferior Parietal Lobule** 40 233 4.21 -32 -54 58 
Right Medial Frontal Gyrus/Frontal 
Orbital Gyrus* 
 

11 139 4.11 4 50 -12 

Left posterior 
cerebellum 
-16 -62 -18 
 

Right superior parietal lobule *** 7 385 4.94 26 -58 62 
Left inferior temporal gyrus*** 20 347 4.85 -40 2 -48 

Left posterior 
cerebellum 
-6 -68 -48 

Right cerebellum inferior semi lunar 
lobule*** 

 14931 6.95 10 -64 -54 

Right medial frontal gyrus/paracentral 
gyrus*** 

 6 2631 5.94 4 -24 80 

Left superior temporal gyrus*** 22 650 5.16 -64 -6 4 
Right precentral/postcentral gyrus*** 6 562 5.01 48 -12 34 
Right inferior temporal gyrus*** 20 627 4.91 58 -8 -24 
Right precentral gyrus*** 6 302 4.85 60 0 6 
Left precentral/postcentral gyrus *** 6 346 4.67 -46 -14 28 
Left insula** 13 237 4.45 -38 -10 16 
Left superior frontal gyrus ** 10 235 4.39 -24 56 16 
Left posterior  cingulate gyrus* 24 172 4.35 0 -26 28 
Left frontal orbital gyrus* 10 125 4.27 -10 70 -10 
Right superior frontal gyrus* 10 143 4.21 32 60 -4 
Left middle temporal gyrus ** 21 208 4.17 -64 -12 -16 
Left superior frontal gyrus* 6 129 4.11 -28 -4 68 

 

Table 3. Results of the fcMRI for the seeds in the cerebellum. BA = Brodmann 

area. The coordinates for each seed are shown under the name of the seed. The 

table shows the connectivity maps for each seed. *=p<0.05, **=p<0.01, 

***=p<0.001. Cluster size is in total number of voxels. T = t-test score; Z = z 

score. Coordinates are anteroposterior (x), superior-inferior (y) and lateral (z). 
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Figure 1. Images of the functional connectivity maps for the seeds in the motor 

cortices. Seed Region (X); Cingulate gyrus (Cg); Thalamus (T); Precuneus 

(PreC); Cerebellum posterior lobe (Cpl); precentral gyrus (PreCg); Brainstem 

(Bs); Pons (P); Cerebellum posterior lobe (Cpl); Superior frontal gyrus (sFg) 
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Figure 2. Images of the functional connectivity maps for the seed in the pons. 

Seed Region (X); Cerebellum posterior lobe (Cpl); Parahippocampal gyrus 

(pHpg) 

Seed: Pons 

  

 
  pHpg pHpg 
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Figure 3. Images of the connectivity maps for the seeds in the cerebellum. 

Frontal orbital gyrus (FOg); Cingulate gyrus (CC); Superior Parietal gyrus (sPg); 

Precentral gyrus (preCg); Superior Temporal gyrus (STg); Superior Frontal gyrus 

(sFg); Posterior cingulate gyrus (PCC); Inferior temporal gyrus (iTg);  Insula (In) 
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Chapter IV. 

The oral dynamometer: a new technology to evaluate human chewing. 

 

Introduction. 

Chewing is the first step of the digestion process, where the food is ground into 

small pieces to increase the surface area for a better interaction with saliva and 

gastrointestinal digestive enzymes and to moisturize the food for adequate 

swallowing. Different technologies have been used to investigate human 

chewing. Gum base and commercially available gum have been used in 

conjunction with a recording systems (i.e. videos, electromyography) to analyze 

chewing [1] [2] [3] [4]. However chewing gum does not represent the same task 

as chewing food, because gum is not ingested one bite at a time, transported to 

the molar region for reduction and then swallowed. From a research perspective, 

gum also has some limitations. For instance, gum loses its consistency with time 

and there are no direct methods to assess how much pressure is being applied 

to the gum during each chewing cycle.  

 

Food such as bread, peanuts [5], carrots [6], beef, salmon among others [7] and 

artificial foods such as Optocal ATF [8], CutterSil [9] and silicone [10] have been 
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used to evaluate chewing performance. Real and artificial foods have the same 

disadvantages. They can provide data for only around 30 chewing cycles, and 

bite pressure and physical parameters of the chewing function cannot be 

recorded. 

 

Electromyography (EMG) has been used to evaluate the activity of the muscles 

of mastication (masseter, temporalis and digastric muscles) during chewing [11] 

[12] [13]. Although this technique allows the researcher to assess directly the 

muscle activity, variables such as food used in the experiment, electrode 

placement, tissue impedance and electrical activity from distant muscles can 

influence the outcome. In addition, the EMG gives the information about 

individual muscle contractions and relaxations, but the overall pressure required 

to grind the food remains undetermined. 

 

Chewing has been evaluated using digital tracking systems [3] [14], where 

reflective or light generating markers are placed on the subjects face and jaw, 

and then their movement is used to track jaw and head movements via video 

recording while subjects chewed. This method is able to evaluate chewing 

kinematics (movements); however, similar to the other methods, chewing 

pressure is a variable that remains unmeasured. 

 

The aim of this project was to create an oral dynamometer, a new device where 

the subjects can perform a chewing like task, at a constant pressure, for a long 
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period of time, and where pressures and pressure changes during chewing can 

be recorded.  

 

Material and Methods 

 

Oral dynamometer.  

The oral dynamometer consisted of two unilateral plastic trays (superior and 

inferior) (Figure 1A). Both trays were attached via their handles to a 40 psi 1 inch 

long piston. The piston (Norgreen® RLA01ADAPNA00) was connected through a 

hose to an air-regulated source (Figure 1B). A pressure sensor in the air 

regulator was used to send a voltage signal to a data acquisition system 

(National Instruments® NI USB-6009). The trays were stabilized on the posterior 

teeth from the second premolar to the second molars using Blue Bite®. Once the 

trays were in place, air was delivered to the piston, which created a positive 

pressure inside the piston, inducing an opening movement in the jaw. When the 

subject started chewing on the trays, there were recordable changes in the 

pressure in the piston, which decreased and increased when the subject opened 

and closed during chewing, respectively. These changes of pressure were 

recorded and stored in a computer for further analysis.  
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Subjects. 

This study was evaluated and approved by the medical institutional review board 

(IRB-Med) of the University of Michigan. Subjects read and signed an informed 

consent before starting any procedure. 

 

Forty subjects (22 men and 18 women) with an age average of 24 years 

(SD±3.7), fully dentate, with Class I occlusion were selected for the project.  

 

Chewing protocol. 

The trays of the oral dynamometer, already adapted to the piston, were secured 

on the right (superior and inferior) premolars and molars using Blue Bite®. An air 

pressure of 8 psi was applied to the piston, and the subjects were asked to start 

chewing at their own preferred chewing rate. Pressure in the piston was recorded 

at a frequency of 10Hz. All the subjects chewed on the oral dynamometer for 10 

minutes. After the 10 minutes, the air pressure was suspended and the trays 

were removed from the mouth. 

 

Data preprocessing. 

Data obtained with the oral dynamometer were preprocessed using the software 

R version 2.12.1 (R Development Core Team, 2010). Single chewing cycle 

durations were determined by calculating the time frame between maximum 

opening values. The number of chewing cycles per minute was determined for 

each subject. Chewing pressure was calculated for each chewing cycle by 

https://web.mail.umich.edu/blue/imp/message.php?mailbox=INBOX&index=19366#_ENREF_27
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measuring the difference between the first maximum (cycle onset) and minimum 

values in each cycle.  

 

Results. 

Figure 2 shows an example of the pressure recorded on the oral dynamometer 

while a subject was chewing. The pressure inside the piston increased and 

decreased from a baseline value of 8 psi as the subjects opened and closed their 

jaws. The spikes in the graph (Figure 2) where the pressures are at a maximum 

represent the points of the chewing cycles when the jaw was closed and the 

lower minimum points in the curve represent the instances when the mouth was 

open. A complete chewing cycle can be defined either from a maximum point 

pressure to another one or from a minimum point of pressure to the next 

minimum. Either way represents an effective method whereby the number of 

chews per minute can be determined for each subject. For purposes of this 

project, chewing cycles were defined from maximum to maximum pressure 

values. 

 

Work associated with chewing.  

An index of the amount of work performed for each chewing cycle was 

determined by calculating the product of the duration of the cycle by the 

corresponding pressure of that cycle, with the latter being defined as the 

difference between the first maximum and minimum pressures occurring during 

the given cycle. The chewing work per minute was determined by summing all 
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chewing cycle work values for each minute of the 10-min trial during which the 

subjects were performing the task. A principal component analysis was 

performed using the ten 1-min values for each subject as variables. The 

coefficients for each of the ten minutes ranged from 0.946 to 0.978, indicating 

that each minute contributed approximately equally to the first principal 

component (Table 1). Furthermore, virtually all the variation in the data set was 

captured in a single principal component. These results show that chewing work 

was stable through time in healthy subjects. Figure 3 shows that chewing work 

was normally distributed, and the Q-Q plot (Figure 4) also supports the 

hypothesis that chewing work in healthy subjects follows a normal distribution. A 

t-test was performed to identify differences between men and women (Figure 5). 

There were no significant differences between genders with respect to chewing 

work. 

 

In Figure 6 the numbers of chewing cycles per minute for each subject are 

represented. To assess the stability of chewing rate over time, subjects were 

divided into quartiles based on their mean chewing rates for the first minute of 

chewing, and these means were compared with the means obtained from the 

tenth minute of chewing. A Chi-square test with a McNamara posttest was then 

performed to determine whether subjects grouped into fast, average or slow 

chewers based on the initial minute of chewing maintained this group 

membership at minute ten. Results presented in Table 2A and 2B show that 

there were no statistically significant differences in group memberships from 
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minute one to minute ten, indicating that the subjects kept their chewing 

frequency stable.  

 

Discussion. 

The aim of this chapter was to introduce the oral dynamometer as a new 

technology to assess human mastication. We have shown how the oral 

dynamometer allows subjects to perform a chewing like task at a constant 

pressure for a long period of time. Other devices to register bite pressure have 

been developed before, but they are only able to measure single bite pressures 

[15] [16], some of them with the limitation that they only record pressures when 

the teeth crowns are in contact. The advantage of the oral dynamometer is that it 

allowed us to differentiate subjects according to their chewing frequency, and we 

observed that the frequency remained stable over time. We will be interested in 

further studies to evaluate if increasing the pressure resistance in the oral 

dynamometer’s piston will induce a change of chewing frequency over time and 

how it affects chewing performance. 

 

In addition the new device permitted us to record pressures for every chewing 

cycle. We estimated the masticatory work per subject for each minute that they 

performed the task, and we were able to establish that in healthy subjects 

chewing work was normally distributed. Both of these findings indicate that 

mastication is a task that has high efficacy, which showed no statistically 

significant differences between men and women (Figure 5). Also chewing rate 
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was stable for both genders, with minor variation among each gender. Due to 

these stable results, the oral dynamometer promises to be a useful tool to 

evaluate chewing in subjects that may have alteration in their masticatory system 

such as TMD pain [17].   
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Minute 

Work per  
minute 

 
Component 

1 894 .946 
2 1219 .959 
3 1447 .972 
4 1570 .963 
5 1400 .978 
6 1212 .978 
7 1300 .973 
8 1367 .957 
9 1519 .958 

10 1573 .969 

 

 

Table 1.  A principal component was assigned to chewing work (for each minute). 

The results of the principal component analysis demonstrate that chewing work 

in healthy subjects is stable over time. 
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A. 

 

 Chewing frequency Minute 10  

Slow Average Fast Total 

 

Minute 1 

Slow 6 2 0 8 

Average 3 10 5 18 

Fast 0 3 5 8 

Total 9 15 10 34 

 

 

 

 

B. 

Chi-Square Tests 

 P Value df Asymp. Sig. (2-sided) 

McNemar-Bowker Test .700 2 .705 

N of Valid Cases 34   

 
 

Table 2. A. Crosstabulation between minute one and minute 10 for chewing 
frequency. Subjects have been assigned to Slow (lower quartile), Average 
(middle quartiles) or Fast (upper quartile) groups for minute 1 and for minute 10 
separately. B. Chi-Square test with McNamara posttest results for subject 
groupings shown in A. This table showed that the variation in chewing frequency 
over time is not statistical significant, indicating that subjects’ chewing 
frequencies remained stable from minute 1 to minute 10. 
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Figure 1A. Trays used on the oral dynamometer.  

Figure 1B. Oral dynamometer’s air regulator. 

A B 
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Figure 2. Example of changes in pressure while one subject was chewing on the 
oral dynamometer (only 15 seconds of the total 10 minutes are displayed in this 
graph). A chewing cycle was defined as the length of time between two 
successive maximum values. The pressure for each chewing cycle was 
determined as the difference between the maximum value and the minimum 
value of each chewing cycle. 
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Figure 3. Chewing work. 

Work distribution over 10 minutes of chewing on the oral dynamometer. Zero (0) 

is the mean value, 1 and -1 are the value of one standard deviation. 
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Figure 4. Q-Q plot for chewing work. Theoretical quantiles are plotted against the 

expected normal values. 
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                       Men                                             Women 

Figure 5. Comparison of chewing work between men and women.  

Zero (0) is the mean, 1 and -1 are one standard deviation. 
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Figure 6. Chewing frequency. Number of chewing cycles per minute for all the 

subjects over ten minutes of chewing on the oral dynamometer. 
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Chapter V. 

 

Conclusions. 

 

Outgoing contributions. 

In summary our studies helped to generate a better understanding about brain 

mechanisms associated with chewing in healthy humans. In addition through this 

research we created a new device to evaluate human chewing, giving us the 

opportunity to study and understand chewing kinematics and chewing work in 

healthy patients. 

 

fMRI contributions. 

Although there are other fMRI and PET studies that have assessed brain activity 

during chewing, our fMRI study had advantages that the other studies did not 

consider. First, when the patients were in the MRI scanner, they received 

instructions to chew exclusively on the right side; chewing side has not been 

controlled in other studies. Our fMRI study showed brain activity related to 

unilateral chewing in healthy subjects. Given this design it is informative that our 
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results show symmetrical brain activity in the motor cortices during unilateral 

chewing. However, during chewing both sides of the jaw move at the same time 

albeit asymmetrically. This is, perhaps, a reason for bilateral brain activity, when 

the chewing block and the rest block were contrasted. In addition unique from our 

study, we divided the chewing block in five segments of 5 seconds each, and we 

contrasted each of these segments versus the rest block. The results from this 

analysis showed that brain activity related to chewing remained constant in the 

motor cortex and in the cerebellum; however, the size and precise positions of 

these activations changed over the segments. After that we contrasted 

successive segments of the chewing block, we were expecting to observe 

constant patterns of brain activity in all the contrasts; however, what we 

described was completely different. The brain activity associated with the 

initiation of the chewing movement was unique, and the pattern of brain activity 

evolved and changed over the duration of the chewing block. In summary this 

study showed that there was a specific brain activity pattern related to chewing in 

healthy subjects, and that this pattern had dynamic changes over time. 

 

fcMRI contributions. 

In chapter III we described brain activations related to chewing. Our second 

interest was to describe how the main areas that have been described to be 

involved in chewing such as the motor cortex and the brainstem and new areas 

that we described in our previous chapter that have a substantial role in chewing 

such as the cerebellum are connected among themselves and to others areas in 
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the brain. Unique to this research, we showed that both sensorimotor cortices 

were reciprocally connected. Also our findings demonstrated that the right and 

left motor cortices were functionally connected with the left and right cerebellar 

hemispheres, and these connections were reciprocal between the cerebellum 

and motor cortex. In addition we revealed the connections between the motor 

cortex and the precuneus, brainstem and thalamus. Moreover the cerebellum 

was shown to be functionally connected to both superior temporal gyri, inferior 

temporal gyri, insula, orbital gyrus and precuneus.  

 

Oral dynamometer contributions. 

In the fourth chapter we described the oral dynamometer as a new device to 

evaluate human chewing. The purpose was to create a device that could 

overcome the disadvantages of other methods used to evaluate chewing. We 

demonstrated that the oral dynamometer is biocompatible, safe to use, and that it 

will be an excellent method to record chewing pressure data, chewing frequency 

and chewing kinematics. We tested the oral dynamometer in a group of 40 

healthy subjects, and we concluded that chewing frequency remains constant; 

we calculated the work output of the chewing task, and we determined that it was 

normally distributed. Since both variables (frequency and work) were shown to 

be stable, they can be used in further studies using traditional parametric tests to 

evaluate chewing function in other cohorts of patients.  
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Limitations. 

During our study we found some limitations during the development of the 

experimental protocols. 

 

First, during the fMRI and fcMRI study we analyzed the images at the level of the 

brainstem. The brainstem is an area that has a high concentration of small nuclei 

and both imaging techniques do not provide a sufficiently high resolution of the 

brainstem, making it difficult to identify specific nuclei.  

 

Second, in the MRI scanner, subjects were chewing gum, which is similar to 

chewing food, with the difference being that gum is not converted into small 

pieces and that it is not swallowed after being chewed. Even though both actions 

are similar, we have to take into account that it is possible that the brain activity 

associated with chewing gum and chewing food might be different.  

 

Third, while in the scanner the subjects were asked to chew on their right side; 

however it is known that during spontaneous chewing, the bolus changes from 

one side to the other in the mouth. We have to consider the possibility that 

maybe the brain activity and the connectivity maps could be different while the 

patients are chewing on just one side, compared with if they had been chewing 

on the contralateral side or chewing in a normal manner.  
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Also there were some difficulties with the experimental protocols of the oral 

dynamometer. First, normal chewing allows the temporomandibular joint to move 

in three directions, however the oral dynamometer allowed movements mainly in 

two directions (in the vertical plane and the horizontal plane). One of our 

purposes was to use the oral dynamometer in the MRI scanner, but since the 

piston is cast in magnetic metals, it was impossible to use it in scanner-based 

research. 

 

A second difficulty was that the material for the trays started breaking after 

applying more than eight psi of pressure to the piston. This disadvantage made it 

impossible to test how chewing frequency or chewing work could vary when the 

pressure in the piston was increased. 

 

Ideas for further studies. 

In further studies we will develop new fMRI paradigms get a better understanding 

of the role of the cerebellum and the precuneus during chewing. Also we will use 

DTI to determine the pathways that are connecting the different areas that we 

described in chapters two and three. In addition we will research if there are 

differences in brain activity depending on the chewing side (left or right) or 

following a normal pattern of chewing. Also we will develop an MRI compatible 

oral dynamometer, to be able to compare our results from the MRI scanner with 

the chewing activity.  
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In addition, we will build high pressure resistant trays, that will allow us to 

evaluate chewing variables (frequency, work and kinematics) when subjects are 

chewing at high pressures. Also we would like to introduce a new variable which 

is chewing evoked pain; the aim will be to induce pain by eliciting extreme 

muscular activity as a result of chewing against high pressures. This will allow 

studies of function-evoked pain, fatigue and exercise to be implemented. 
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APPENDICES 

 
Appendix A. Individual fMRI results for the brainstem. Images are the contrast 
between the chewing and rest blocks for each subject.  They show the p-values 
where activations were detected in the brainstem. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P<0.005-482voxels P<0.001-662voxels P<0.001-36voxels 

P<0.05-791voxels P<0.001-654voxels P<0.001-3110voxels 

P<0.001-137voxels P<0.05-17voxels P<0.05-645voxels 

P<0.001-21voxels P<0.001-10254voxels P<0.005-47voxels 
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P<0.001-N/A voxels 

P<0.001-831voxels 

P<0.001-499voxels 

P<0.001-390voxels 

P<0.1-5voxels P<0.001-22voxels 

P<0.01-42voxels P<0.001-216voxels 

P<0.005-N/A voxels P<0.001-714voxels 

P<0.001-19072voxels P<0.001-14566voxels 
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Appendix B. Brodmann’s areas.  
In our experiments we described patterns of activity and connectivity in the 
cerebral cortex. One of the most frequent maps used to identify functional zones 
in the cerebral cortex is the map of Brodmann’s areas. (image obtained from: 
http://www.mrc-cbu.cam.ac.uk/people/jessica.grahn/neuroanatomy.html). 
Primary motor cortex, supplementary motor cortex, premotor cortex are located 
in areas 4 and 6.  
 

 

http://www.mrc-cbu.cam.ac.uk/people/jessica.grahn/neuroanatomy.html
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Appendix C. MRI Glossary 

 

Voxel: Is a three dimensional volume (cuboidal shape), that represents a single 

data point in the three dimensional data set. In MRI all three dimensional images 

are formed by a group of voxels. 

 

Cluster: Is a group of voxels that defines a volume in the data set. In MRI, 

clusters are the volumes that represent the zones with activations or 

deactivations. 

 

Activations (opposite deactivation): In fMRI, when performing a contrast 

between two blocks (i.e. chewing and rest) the positive results of such a contrast 

are referred to as activations, and the negative results are referred to as 

deactivations.  

 

Seed Region: In fcMRI, the area that is selected as the starting point for the 

connectivity map is named the seed region. 

 

TE (Echo time). Time between middle of exciting radiofrequency pulse and 

middle of spin echo production.  
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TR (Repetition time): The period of time between the beginning of a pulse 

sequence and the beginning of the succeeding pulse sequence. 

 

Field of view (FOV): The rectangular region superimposed over the human body 

over which MRI data are acquired. Its dimensions are specified in length in each 

in-plane direction. 
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Appendix D. Changes in regional gray and white matter volume in patients with 
myofascial-type temporomandibular disorders: a voxel-based morphometry 
study. Gerstner G, Ichesco E, Quintero A, Schmidt-Wilcke T. J Orofac Pain. 2011 
Spring;25(2):99-106 
 

http://www.ncbi.nlm.nih.gov/pubmed/21528116
http://www.ncbi.nlm.nih.gov/pubmed/21528116
http://www.ncbi.nlm.nih.gov/pubmed/21528116
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Appendix E. Altered Functional Connectivity Between the Insula and the 

Cingulate Cortex in Patients With Temporomandibular Disorder: A Pilot Study. 

Ichesco E, Quintero A, Clauw DJ, Peltier S, Sundgren M, Gerstner GE, Schmidt-

Wilcke T.  

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ichesco%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Quintero%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Clauw%20DJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Peltier%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sundgren%20PM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gerstner%20GE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schmidt-Wilcke%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schmidt-Wilcke%20T%22%5BAuthor%5D
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