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ABSTRACT 

The lack of multi-day data for household travel and vehicle capability requirements 

is an impediment to evaluations of energy savings strategies, since 1) travel requirements 

vary from day-to-day, and 2) energy-saving transportation options often have reduced 

capability. This work demonstrates a survey methodology and modeling system for 

evaluating the energy-savings potential of household travel, considering multi-day travel 

requirements and capability constraints imposed by the available transportation resources. 

A stochastic scheduling model is introduced – the multi-day Household Activity 

Schedule Estimator (mPHASE) – which generates synthetic daily schedules based on 

“fuzzy” descriptions of activity characteristics using a finite-element representation of 

activity flexibility, coordination among household members, and scheduling conflict 

resolution. 

Results of a thirty-household pilot study are presented in which responses to an 

interactive computer assisted personal interview were used as inputs to the mPHASE 

model in order to illustrate the feasibility of generating complex, realistic multi-day 

household schedules. Study vehicles were equipped with digital cameras and GPS data 

acquisition equipment to validate the model results. The synthetically generated 

schedules captured an average of 60 percent of household travel distance, and exhibited 

many of the characteristics of complex household travel, including day-to-day travel 

variation, and schedule coordination among household members. Future advances in the 

methodology may improve the model results, such as encouraging more detailed and 

accurate responses by providing a selection of generated schedules during the interview. 

Finally, the Constraints-based Transportation Resource Assignment Model (CTRAM) 

is introduced. Using an enumerative optimization approach, CTRAM determines the 

energy-minimizing vehicle-to-trip assignment decisions, considering trip schedules, 

occupancy, and vehicle capability. Designed to accept either actual or synthetic schedules, 

results of an application of the optimization model to the 2001 and 2009 National 

Household Travel Survey data show that U.S. households can reduce energy use by 10 
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percent, on average, by modifying the assignment of existing vehicles to trips. 

Households in 2009 show a higher tendency to assign vehicles optimally than in 2001, 

and multi-vehicle households with diverse fleets have greater savings potential, 

indicating that fleet modification strategies may be effective, particularly under higher 

energy price conditions. 
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Introduction 

1.1. Overview 

Light-duty vehicles used for personal travel accounted for 65 percent of U.S. 

transportation sector greenhouse gas emissions (GHG) emissions in 2009, and 18 percent 

of emissions from all sectors (U.S. EPA 2011). In addition to the negative environmental 

impacts, providing energy to these vehicles results in significant economic costs and a 

dependence on unstable regions for a steady supply of petroleum. The response of auto 

manufacturers to more stringent fuel economy regulation and increased consumer interest 

in efficiency has been to accelerate the deployment of technological innovations such as 

direct injection (DI), hybrid-electric (HEV), plug-in hybrid-electric (PHEV), and electric 

vehicles (EV), while also expanding the selection of smaller vehicles. However, 

widespread adoption of more efficient vehicles will be limited to some extent by the 

higher cost of these technologies, the capacity limitations of smaller vehicles, and the 

range limitations of EV’s and PHEV’s.  

A wide range of factors influence vehicle choice and its use, not least of which are 

cost, personal preference, convenience and perceived safety. But at a minimum, a feasible 

vehicle choice must be able to satisfy the physical capability requirements of the trips for 

which it will be used. Because these requirements vary, vehicles may operate much of the 

time with underutilized capacity. In the case of passenger capacity, the average 

occupancy for trips in 2009 was 1.7, while the average capacity of personal vehicles, was 

5 occupants (Santos et al. 2011). Underutilized capacity represents an opportunity for 

energy savings, since at any given level of technology, a decrease in capacity is 

invariably tied to a decrease in energy intensity (in terms of energy used per unit of 

distance traveled) as smaller vehicle size and power requirements result in decreased 
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inertial mass and frictional losses. However, without information about a household’s 

multi-day patterns of travel requirements, it is not possible to know whether the 

composition or use of their vehicle fleet can be modified without making major changes 

in activity participation. 

Household travel surveys often collect detailed information about vehicle utilization 

and activity schedules, but almost without exception are limited to one or two days 

because of the significant costs of administering the survey, and the high burden placed 

on participants. The results of recent studies using in-vehicle Global Positioning System 

(GPS) receivers to collect trip path data offer some promise for reducing these costs, 

especially over long survey periods. However, this GPS data by itself is insufficient for 

determining the vehicle capability requirements of trips. Additional information about 

travel party size and carried items is also needed. The primary goal of this research is to 

develop and demonstrate a survey methodology and modeling system for evaluating the 

energy-savings potential of household travel, considering multi-day travel requirements 

and the constraints imposed by the available transportation resources. 

1.2. Activity-based approach to travel behavior analysis 

In the last few decades, significant progress has been made towards the goal of 

understanding travel from the standpoint of the activities that are conducted, rather than 

the trips themselves. With a shift in focus to the underlying reasons for travel, it becomes 

possible to capture many of complex individual, interpersonal and environmental factors 

that motivate and constrain decisions. Yet despite the theoretical advantages of an 

activity-based approach, the realization of an operational model of household travel 

remains an elusive goal, in large part due to the difficulty of collecting data which can be 

used to explain complex travel behavior. 

 Before the activity-based approach: The four step model 

The modern era of transportation planning began in the 1950’s in the United States. 

The need for a more integrated and systematic approach for planning infrastructure arose 

from the goal of connecting major population centers with a national network of 

highways, and the widespread diffusion of the automobile for personal use. The four-step 

model (FSM) (Table 1.1) was developed to achieve this goal, and with its widespread use 
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by transportation planners around the world, became known as the conventional method 

(McNally 2000). 

Table 1.1 The Four Step Model 
Step Description 
Trip Generation Propensity to travel for a population is represented by frequencies of trip end 

productions and attractions  
Trip Distribution Spatially defined origin-destination pairs are estimated from trip productions and 

attractions, considering the transportation network and travel times 
Mode Choice Transportation network and demographic information is used to divide trips 

between public transit and personal vehicles 
Route Choice Trips are assigned to paths on the transportation network according to a 

minimization objective, often travel time 

A typical application of the FSM would be to aid in the decision of whether or not to 

fund a transportation project, such as the addition of a road to a network, or the expansion 

of an existing road. Based on the network traffic predicted by the model, the cost-

effectiveness of various proposals could be compared in terms level-of-service or 

capacity, using metrics such as average speed or flow rate. 

The major drawback of the conventional method is that its theoretical foundation 

lacks any consideration of the underlying behavioral determinants of travel. All trips are 

assumed to exist in isolation, and no distinction is made between trips conducted by 

members of the same household and those of strangers. So there is no possibility for an 

individual to chain trips together or reassign trips among household members. Perhaps 

more significantly, the FSM assumes that travel demand is fixed, as a model input, and 

does not account for the possibility that people adjust their schedules and agendas to 

adapt to new conditions. As a result, conventional transportation modeling is not well-

suited to analyze Travel Demand Management (TDM) policies, which are intended to 

reduce travel demand in order to meet goals for reducing energy consumption, air 

pollution, congestion, or capital expenditures on new infrastructure projects (Kitamura et 

al. 1997). 

 Origins of the activity-based approach 

While transportation studies will naturally include a locational component, the 

consideration of the spatial dimension in behavioral research is a relatively recent 

development. It wasn’t until the seminal work on household activity systems by urban 

planners Chapin and Hightower (1966) that a framework was defined for describing both 
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the temporal and spatial aspects of an individual’s behavior, using the concept of activity 

patterns. At about the same time, in the late 1960’s, geographers at the University of 

Lund, Sweden took similar steps to place the individual in spatial models, with an 

emphasis on the movement from one point to another (Hägerstrand 1970). 

Whereas previous spatial models of human behavior had predominantly aggregated 

individuals into mass probabilistic representations, these new efforts recognized that 

individuals are not simply data points, isolated in time and space to be consolidated or 

subdivided to suit the needs of the analyst. In reality, individuals exist in a continuum of 

time and space, with their decisions influenced by other people, and the events and 

conditions both in the past and the future. Torsten Hägerstrand (1970), a leading 

proponent of the disaggregate approach, observed, “on the continuum between biography 

and aggregate statistics, there is a twilight zone to be explored, an area where the 

fundamental notion is that people retain their identity over time, where the life of an 

individual is his foremost project, and where aggregate behavior cannot escape these 

facts.” 

In the 1970’s, some in the transportation research community adopted the 

disaggregate modeling concept from this early work, believing it to be the best approach 

for dealing with the contemporary issues of energy shortages, air quality and 

environmental degradation, and urban decline in an environment of reduced public 

funding for infrastructure and a shift from large-scale, long-term strategic planning to 

local, community-level solutions (Jones 1983a). The term activity-based approach was 

coined during this period to describe the incorporation of individual behavioral 

considerations into efforts to explain, and predict transportation behavior. However, in 

practice, although the many studies classified as activity-based are loosely related by 

their disaggregate approach, the field has been characterized throughout its four-decade 

existence by a lack of, and the search for, a unifying methodology (Goodwin 1983; Pas 

1990). Despite the diversity in methods, some recurring themes have emerged that can be 

used to tie together the broad range techniques used. Various lists of attributes have been 

compiled, but the one presented by Jones et al. (1990) is particularly complete and 

concise, defining the activity-based approach as a framework which considers: 

(i) that demand for travel is derived from the desire to partake in activities; 
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(ii) behavioral patterns and sequences, rather than discrete trips; 

(iii) decisions in a household context, considering interactions among its members; 

(iv) both the timing and duration of activities and travel; 

(v) spatial, temporal, and inter-personal constraints; 

(vi) interdependency among events across time, location, and participants; 

(vii) household and person classifications based on activity needs, commitments, and 

constraints. 

At this point, it is instructive to review some of the important travel analyses and 

modeling that have been conducted using the activity-based approach from the inception 

of field, until today. The techniques used can be generally classified into those based on 

empirical analysis using econometric and statistical methods, and those employing rules-

based simulations of travel behavior. With a focus on the significant achievements, as 

well as the shortcomings of these techniques, the following discussion is intended to 

place the contributions of this dissertation in the context of a field that has become 

reasonably well established, but has yet to coalesce around a set of methodologies that 

can fulfill the ambitious goals of the activity-based approach.  

 Econometric and statistical techniques 

The increased focus on the individual decision maker in travel research occurred at 

the same time that significant advancements in discrete choice methodology in 

econometrics were being made. Some of the first attempts to include behavioral 

considerations in travel models involved the use of consumer choice models from 

economics to improve the estimation of mode choice in the conventional four-step model 

(Quandt and Baumol 1966; Reichman and Stopher 1971; Rassam et al. 1971). The major 

breakthrough came with the Nobel-prize winning work of Daniel McFadden, who while 

working as a consultant for California’s Bay Area Rapid Transit (BART) authority 

conceived of linking discrete choice theory from the field of psychology with the  method 

of logistic regression used in biostatistics to create what is now known as the multinomial 

logit (MNL) model (McFadden 1974; 2001). The method was initially promoted as 

complementary to the existing, conventional aggregate model, for its ability to facilitate 

calibration and improve forecasting accuracy (McFadden and Reid 1975). The mode 
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choice module of the four step model was one promising application, and continuing 

along the lines of McFadden’s BART study, MNL models were used to link levels of 

auto ownership and use of public transportation to demographic characteristics (Ben-

Akiva and Lerman 1976; Train 1980a). Yet some of the most significant contributions of 

discrete choice methods have come from the applications outside of the conventional, 

aggregate framework. The following decades have seen disaggregate, discrete choice 

methods used on their own so frequently as to create an entire sub-discipline within 

activity-based travel research. 

Many early applications of the discrete choice model were motivated by an increased 

focus on energy conservation and regulatory initiatives to improve the efficiency of the 

personal automobile that arose from the oil crisis of the late ‘70’s. These included studies 

of household vehicle holdings and response to fuel economy regulations (Lave and Train 

1979; Boyd and Mellman 1980; Manski and Sherman 1980), the market for electric 

vehicles (Beggs and Cardell 1980; Train 1980b), usage in multivehicle households 

(Mannering 1983; Hensher 1985), and joint discrete-continuous models of vehicle choice 

and usage (Mannering and Winston 1985; Hensher 1986). 

As complex as vehicle and travel mode choice decisions are, applications of discrete 

choice methods to the questions of activity participation, frequency, duration, and timing 

face an additional challenge. Because the number of discrete choice alternatives which 

encompass all combinations of activity characteristics is exceedingly large, econometric 

analyses are often focused on one or two particular aspects of an activity, such as its 

duration (Kitamura 1984), start time (Abkowitz 1981), period between occurrences, or 

joint participation with other household members.  

More recent developments have extended the capabilities of discrete choice 

methodology. When combined with the hazard model used more commonly in 

engineering and biology, discrete choice models have incorporated continuous values for 

activity and inter-episode durations (Ettema et al. 1995; Bhat et al. 2004; Cirillo and 

Axhausen 2009). Modeling of agenda setting and daily schedules generation has been 

achieved by aggregating the durations of activities of the same type (Munshi 1993), or by 

classifying schedules into predefined activity patterns (Adler and Ben-Akiva 1974; 

Bowman and Ben-Akiva 2000). Multi-dimensional discrete choice modeling can avoid 
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this simplifying aggregation step, while simultaneously addressing activity timing, 

duration, frequency, and location through the use of multi-stage and nested logit models 

(Wen and Koppelman 1999). Genetic Algorithms, with a capability for handling large 

numbers of choice combinations, have been used to specify discrete choice models of 

activity scheduling considering interaction among household members (Meister et al. 

2005; Charypar and Nagel 2005; Roorda et al. 2006). 

Similar questions have been answered without discrete choice models using other 

statistical techniques. For example, structural equations modeling (SEM) has been used 

to investigate the relationship between vehicle type and usage in multivehicle households 

(Golob et al. 1996), and interactions among household members (Golob and McNally 

1997; Fujii et al. 1999). Data reduction of large travel survey data sets has been achieved 

using statistical methods for the identification of relationships among variables, recurring 

patterns, and causal factors. Techniques have included multi-dimensional contingency 

tables (Kostyniuk and Kitamura 1983), Principal Components Analysis (Cullen and 

Godson 1975; Hanson and Huff 1986; Doherty 2006), pattern recognition and sequence 

alignment methods (Wilson 1998; Joh et al. 2002), and data mining algorithms (Wets et 

al. 2000). 

A discussion of the weaknesses of discrete choice methodology is well-documented, 

with the greatest criticisms aimed at the theory of utility maximization, and the limited 

cognitive capacity of humans (Simon 1955). The theory of bounded rationality maintains 

that humans make sub-optimal decisions in situations where the number of choices 

becomes large, or some uncertainty exists about the outcome of a choice (Simon 1957; 

Kahneman and Tversky 1979). The process of decision making itself has some disutility 

so that considering every possible combination of choices, if that were even possible, 

may be undesirable. As a result, people are believed to approach complex decisions by 

employing heuristics, and selecting an option that is “good enough” though a process of 

satisficing (Simon 1956). Discrete choice models and data reducing statistical techniques 

in activity-based research have proven themselves to be operationally practical, and will 

continue to provide useful insights into travel behavior. At the same time, recognition of 

the weaknesses of these statistical techniques has led to development of alternative 
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methodologies involving rules-based simulations, which model the specific decision 

making steps of individuals. 

 Rules-based simulations 

Whereas discrete choice models are based on choice outcomes in the form of either 

revealed preference or stated preference data, rules-based simulations begin with a 

representation of the choice process itself. It has been argued that the simulation approach 

provides a more behaviorally sound basis for a theory of decision making (Heggie 1978), 

although not without its own significant drawbacks of complex rule definitions, and data 

collection challenges, to be discussed further below. 

 Computational Process Models 

One type of rules-based simulation, the Computational Process Model (CPM), is 

based on the concept of the production system developed by Newell and Simon (1972), 

and attempts to replicate the problem solving process using a series of IF-THEN decision 

rules. In early applications to travel analysis, CPM techniques were used to account for 

limitations in human ability to perceive and recall spatial relationships. The TOUR 

(Kuipers 1978), NAVIGATOR (Gopal et al. 1989), and TRAVELLER (Leiser and 

Zilbershatz 1989) models simulate an individual’s cognitive map of her environment in 

order to more realistically represent way-finding and spatial learning. The SCHEDULER 

model (Golledge et al. 1994) combines spatial learning with an activity scheduling 

component, and considers both long and short term calendars to simulate human memory 

and account for habitual behavior. 

Even under the assumptions of bounded rationality, utility considerations still play a 

major role in many decisions, and utility theory is often incorporated into rules-based 

simulations. Recker et. al (1986a;1986b) developed the STARCHILD model, which 

incorporates an MNL choice module for selecting a final activity program from all 

feasible combinations of activities. In the SMASH scheduling model (Ettema et al. 1993), 

activities are sequentially added, removed, or modified to produce a final schedule when 

further steps fail to increase the total utility. 

One of the major obstacles preventing more widespread adoption of CPM’s is 

difficulty collecting data in a useful form for defining the complex decision rules. 
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Approaches for addressing this challenge include the use of computer learning to improve 

rule definitions over repeated iterations of the model (Arentze and Timmermans 2004) 

and the use of fuzzy rules to accommodate more qualitative descriptions of the decision 

process in the model (Vause 1997). 

 Constraints-based models 

The concept of constraints on the movement of individuals (Hägerstrand 1970) has 

been widely accepted in activity-based research, and is incorporated into many of the 

techniques described above. Constraints-based simulation models typically address 

constraints in terms of the spatial and temporal limitations they impose on individuals, 

such as the infeasibility of being in two places at the same time, or the requirement that 

two or more people participate in an activity together. Without any consideration of the 

decision process, a purely constraints-based model cannot claim to forecast responses to 

policy actions. Nevertheless, these models can be useful as planning tools by providing 

insight into the upper limits of the effectiveness of various policy proposals. In particular, 

if the objective is to reduce energy consumption, a best-case study would compare the 

competing proposals assuming that resources are used optimally. 

Despite the strong influence of transportation mode and vehicle choice on energy use, 

the limitations imposed by vehicle capability constraints are often ignored, even in 

constraints-based simulations. This dissertation was motivated in part by the lack of 

previous work on the important topic of vehicle capability constraints. 

 Comprehensive modeling systems 

None of the activity-based techniques discussed up to this point are capable of 

performing all the functions of the conventional four-step model, nor are they intended to. 

For this purpose, complex modeling systems have been developed which integrate many 

concepts of the activity-based approach, including discrete choice modeling, constraints, 

intra-household interactions, activity characteristics, and scheduling algorithms, in 

addition to transportation network and land use data. Notable among these integrative 

modeling systems are SMART (Stopher et al. 1996) and TRANSIMS (Rilett 2001). 

While activity-based techniques can potentially be incorporated into comprehensive 
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models like these, it’s important to remember that more focused applications have been 

proven to provide useful insights into travel behavior, and will continue to do so. 

1.3. Research questions 

The need to develop new survey methods capable of providing data for disaggregate 

models of travel behavior was identified at an early stage in the development of the 

activity-based approach (Clarke, Dix, and Jones 1981; Brög and Erl 1983; Goodwin 

1983). In particular, the development of improved methods for multi-day data collection 

has been cited as an important topic in activity-based research (Kitamura 1988; Jones and 

Clarke 1988; Madre 2003). Yet despite methodological and technical advances in data 

collection techniques, the overwhelming majority of travel behavior analyses are still 

based on data from single-day travel-activity diaries. 

The lack of multi-day data creates a particular challenge for any analysis of the 

potential for households to reduce transportation energy use. Since travel requirements 

vary over time, it is not possible to use a single-day of data to determine the feasibility of 

household fleets modified with more efficient, but less capable, vehicles. Even if travel 

requirements can be satisfied on one particular day by a vehicle with reduced capability, 

the vehicle may fail to meet the requirements of another day. Any judgment about the 

overall feasibility of a reduced capability fleet requires knowledge of travel patterns over 

multi-day time periods. 

To restate from the beginning of this chapter, the main goal of this research is to 

develop and demonstrate a model system which can be used to evaluate the energy-

savings potential of modifications to household vehicle fleet composition and use, 

considering multi-day travel requirements and the constraints imposed by the available 

transportation resources. This goal is approached through five specific research questions. 

[Q1], [Q2], and [Q3] are questions about the methodology for collecting multi-day data 

for household travel and vehicle capability requirements. [Q4] and [Q5] are empirical 

questions intended to illustrate how the consideration of vehicle capability constraints in 

an activity-based analysis can provide useful insights into travel behavior and the 

potential effectiveness of energy-saving strategies. 
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[Q1].  Is it feasible to collect multi-day data for household activities using an interactive 

survey approach? 

[Q2]. Is it feasible to generate complex and realistic household schedules using activity 

characteristics reported as probabilities and ranges?   

[Q3]. Is it feasible to use passive in-vehicle data acquisition equipment to observe trip 

capacity requirements over extended time periods? 

[Q4]. What was the average energy savings potential for U.S. households in 2001 and 

2009 if existing vehicle fleets were utilized optimally? 

[Q5]. Did multi-vehicle households in 2009 utilize their fleets more optimally than in 

2001? 

The reporting of multi-day data using a travel-activity diary places a high burden on 

participants. Interactive survey techniques can accommodate flexibility of responses, 

encourage discussion among household participants, and facilitate the identification of 

inconsistencies and missed responses. [Q1] is intended as an initial investigation to 

determine if the approach merits further attention. [Q2] addresses the format of the 

survey questions, and the potential for integrating probabilistic, “fuzzy” responses into a 

schedule generating model for household activities.  [Q3] addresses the method of 

validating survey responses, and the use of passive data acquisition equipment to make 

observations of the physical requirements of trips. 

Although there are many ways in which households can reduce their transportation 

energy consumption, changes in travel behavior are more likely to be adopted if they do 

not require major changes in activity participation. [Q4] addresses one of the simplest 

ways that households with multi-vehicle fleets can achieve immediate energy savings, 

which is to optimally assign existing vehicles to trips. Optimal assignment is defined as 

the matching of vehicles to trips which minimizes total household transportation energy 

consumption while satisfying the requirements of the given travel-activity schedule. 

Because of differences in vehicle capability, the requirements of each trip must be 

considered separately in order to determine if vehicle reassignment is feasible. In addition 
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to vehicle capability constraints, coupling constraints enforce the requirement that trip 

schedules and vehicle availability coincide for feasible assignments. Because of increases 

in energy prices and the ongoing economic recession in 2009, households would have a 

greater incentive to make optimal assignment decisions than in 2001, a hypothesis that is 

tested in [Q5]. 

1.4. Organization of this dissertation 

In chapter 2, a model is introduced which generates household schedules using a 

method of characterizing activities in terms of their likelihood of occurrence, range of 

potential times, and other “fuzzy” descriptors. The multi-day Probabilistic Household 

Activity Schedule Estimator (mPHASE) employs a novel finite element approach for 

assigning activity times and durations based on a physical representation of the household 

schedule. Examples are provided for how considering the intra-household coordination of 

activities can produce complex schedules ([Q2]).  

Chapter 3 describes the Household Travel Patterns Study, a pilot investigation of 30 

households to test an interactive survey method ([Q1]). The original aspect of the survey 

approach is the reporting of typical activity frequencies, locations, places, times, and 

participants in terms of probabilities and ranges. Responses from the survey are used as 

inputs to the mPHASE model, which generates synthetic multi-day activity schedules. 

Also described is an electronic data acquisition device developed for this work, the 

Vehicle Utilization Survey Equipment (VUSE) with GPS and digital image capture 

capability ([Q3]). The generated schedules from the mPHASE model are compared to the 

travel observed using VUSE units to provide additional insights into the feasibility of the 

survey method ([Q1]), and the realism of the mPHASE-generated schedules ([Q3]). 

Chapter 4 introduces the Constraints-based Transportation Resource Assignment 

Model (CTRAM), providing a computationally efficient enumerative optimization of 

household vehicle assignments. The model is applied to the 2001 and 2009 National 

Household Travel Survey data, and a discussion of the results is provided for [Q4] and 

[Q5]. 
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Finally, the research questions are reviewed in the Conclusion, along with a 

discussion of empirical findings, potential applications, and limitations of the methods 

introduced in this work. 
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A multi-day probabilistic scheduling model for household 
activities 

After several decades of advancement, activity-based methods have been 

successfully shown to provide useful insights into real-world questions about travel 

demand. These efforts were largely motivated by a desire to study travel in ways more 

firmly grounded in fundamental theories of human decision making and spatio-temporal 

relations than were the previously available methods. By extension, a richer set of 

questions about the influence of such factors as demographic and land use changes, 

transportation policies, and infrastructure investment could be explored with an 

expectation of more realistic results. The significant number of existing activity-based 

travel demand models is evidence of the attraction of activity-based methods. But the 

continuing development of new models and methods shows that no single model has 

achieved preeminence, and as is likely, no model will ever be perfectly suited to every 

purpose. 

This chapter presents a model which generates household activity schedules for the 

purpose of evaluating the potential effectiveness of various strategies for reducing 

personal travel energy consumption. The model, referred to hereafter as the multi-day 

Probabilistic Household Activity Schedule Estimator (mPHASE), borrows elements from 

existing techniques and also adopts a novel finite element approach for assigning activity 

times and durations based on a physical representation of the household schedule. The 

generated schedules output by mPHASE have three important characteristics which are 

critical for the model’s designed purpose. Namely, the schedules: 1) reflect the day-to-

day variability inherent in household travel; 2) ensure that time conflicts are avoided by 

considering the inter-personal and intra-personal coordination of household members’ 

activity times and locations; 3) account for the activity characteristics which constrain 
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travel options and thus influence energy use. It is useful to begin by placing the mPHASE 

model in the context of existing schedule generation models, focusing particularly on 

those which exhibit one or two of the characteristics above.  

2.1. Background 
 Activities and their classification 

In the most basic sense, an activity describes what one is doing at a particular time.  

Yet while an individual may have a good sense of ‘what they are doing’, the researcher 

has a difficult task quantifying the use of time in a consistent and useful way. The 

subjective nature of time itself has been revealed in previous work (Ampt and West 1983) 

and described by Scheuch (1972)“…the perception of how one’s time is spent as a 

socially-relevant derivative of the physical property time varies with the type of society.” 

Classification attempts are further complicated by the fact that in reality our time is 

occupied by a continuous stream of behaviors, sometimes simultaneous, than cannot 

always be broken down into discrete activities (Dagfinn 1978). 

These difficulties notwithstanding, researchers have a strong motivation to define 

activity characteristics, in particular their priority and flexibility – two features of great 

importance in scheduling decisions. These features are illustrated by the activity-peg 

theory of scheduling, where high-priority activities with limited space and time flexibility 

act as pegs about which other, more flexible activities are positioned (Cullen and Godson 

1975). This intuitive concept has been supported empirically (Lee and McNally 2006), 

and underlies a common practice of characterizing activities as either mandatory or 

discretionary. While mandatory implies higher priority and might clearly be used to 

describe work or school activities, the degree of flexibility for many activities cannot be 

defined along a single dimension. Even the most rigidly constrained activity has some 

variation in its characteristics while the most flexible activities still have some constraints 

on who can conduct them, and when and where they can take place. Stopher et al. (1996) 

proposed that in addition to highly fixed mandatory activities, discretionary activities 

which vary in frequency, time and space should be considered as optional, and a third 

category of flexible should be added to describe activities with a combination of fixed and 

variable characteristics. 
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The focus on the household as the unit of analysis has led others to identify the 

importance of flexibility in the participants of an activity.   The addition of a maintenance 

category has been used to describe required activities which are not assigned to a 

particular household member (Reichman 1976; Wen and Koppelman 2000; Vovsha et al. 

2005; Srinivasan and Bhat 2005), while an individual or joint specification has been used 

to clarify the interpersonal coordination required for discretionary and mandatory 

activities (Kang and Scott 2009). 

 More detailed classifications have been proposed, such as by the need underlying 

the activity (Nijland et al. 2010), but any attempt to assign strict categories will result in 

some ambiguity because of the multi-dimensional nature of activities. 

An alternative to a rigid classification system is to describe the characteristics of 

activities across multiple dimensions. Doherty (2006) recognized that different activities 

of the same type (work, school, etc.) often have varying flexibilities, and proposed 

instead to define activities according to the features that can better explain the complex 

processes of activity scheduling and tour formation. Using Principal Component Analysis 

on one week data from the CHASE survey, he identified seven “salient attributes” of an 

activity: frequency, duration, involved persons, travel time, temporal flexibility, spatial 

flexibility, interpersonal flexibility. 

 Review of existing activity scheduling models 

While household schedule data is readily available for single-day periods, the 

availability of multi-day schedules is limited by the difficulty in conducting long-term 

surveys – an issue that is addressed in detail in chapter 3. This lack of multi-day schedule 

data has led to an interest in the generation of synthetic schedules using models which 

attempt to reproduce the results of actual scheduling decision processes. What follows is 

a review of some of the most relevant existing models, which are listed in Table 2.1. 
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Table 2.1 Existing Scheduling Models 
Model type and name Generated schedules consider: Input data source 
  Multi-day 

variation 
Inter-personal 
Coordination 

Activity 
Constraints 

 

Rules-based     
 CARLA (Clarke, Dix, Jones, et al. 

1981) 
╳ △ ○ Single day activity diary 

 STARCHILD 
(Recker, McNally, and Root 1986b) 

╳ ○ △ Single day activity diary 
and constraints 

 SCHEDULER2 
(Gärling et al. 1998) 

╳ ╳ ○ Fictitious activity 
descriptions 

 SMASH 
(Ettema et al. 1995) 

○ ○ ╳  

 TASHA 
(Miller and Roorda 2003) 

╳ ○ ╳ One-day activity diary 

 Albatross  
(Arentze and Timmermans 2004) 

△ ○ △ Two-day activity diary 

Random Utility Maximizing     
 van Der Hoorn (1983) ○ ╳ △ One-week time table and 

activity diary 
 Bowman and Ben-Akiva (2000) ╳ ○ ╳ Single-day travel diary 
 Cirillo and Axhausen (2009) ○ ╳ ╳ Six-week MOBIDRIVE 

survey 
○: full consideration, ╳ : no consideration, △ : partial consideration (see text for details) 

In activity-based analysis, existing models for generating trip schedules can be 

generally classified as either econometric choice models or rules-based simulations.  

Econometric, or random utility maximizing (RUM) models, are based on the principle of 

utility maximization and require the definition of discrete choice sets of travel options 

(McFadden 1981). These models estimate choice probabilities by fitting regression 

models to empirical data in which the observed choices have been characterized 

according to predefined attributes. In contrast, rules-based models build up choice 

probabilities from the perspective of individuals using a series of IF-THEN steps that 

attempt to replicate the decision making process. 

 Econometric (RUM) scheduling models 

In general RUM techniques, which require a priori definition of choice sets, are not 

particularly well-suited to the scheduling problem since even relatively coarse increments 

on the time scale result in an exponentially large number of possible choice combinations. 

Still, several RUM models are worth mentioning here, although they cannot all truly be 

considered scheduling models. Bowman and Ben-Akiva (2000) demonstrated an 
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econometric model using single-day diary data from a Boston travel survey which 

defined choice sets in terms of tours, or combinations of trips. These tours were 

characterized by the number, sequence, and purpose of the primary and secondary 

activities conducted on that tour. While the sequencing of activities is considered, this 

can only marginally be described as a scheduling model, since the time of day is coarsely 

divided into four periods in order to reduce the number of choice combinations. More 

recently, Cirillo and Axhausen (2009) introduced an application of discrete choice 

methods to what they termed “dynamic” multiday activity modeling. Based on the six-

week MOBIDRIVE data from 1999, theirs is the first example of an RUM model which 

considers the dependence of activity generation decisions on past occurrences. RUM 

methods are becoming well-established in operational models, although the definition of 

choice sets presents a challenge for a fine-grained analysis of multi-day travel behavior 

which has a very large number of choice combinations. 

 Rules-based scheduling models 

Rules-based models can be constructed based on the fundamental factors underlying 

actual decision behavior, and would therefore seem to be a natural fit for activity-based 

analysis. Constraints on activities can be explicitly defined, as well as the interaction 

between members of the household - both important factors when determining which 

activities will be undertaken and when. However, despite the apparent advantages, rules-

based methods do not yet have the well-established methodology that RUM methods 

enjoy (Wets et al. 2000). 

One of the earliest examples of a rules-based scheduling model, CARLA (Jones et al. 

1983), was developed to evaluate potential reactions to a disturbance to an existing 

household schedule such as might occur with a change in school hours. CARLA is 

actually a re-scheduling, rather than a scheduling model, since it takes an existing one-

day set of activities, and rearranges them with the goals of minimizing travel disutility 

and/or maximizing free time according to various definitions. A mathematical 

programming approach is used which considers all combinations of activity sequences 

and time placements. In order to limit the total combinations to a computationally 

feasible level, the range of possible adjustments is restricted to 15 minute increments for 

activity starting time, and a fixed duration reduction of 25 percent. 
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The STARCHILD modeling framework (Recker, McNally, and Root 1986a) is more 

ambitious than CARLA in its approach to simulating the selection of activities from an 

agenda to include in a daily schedule. Like CARLA, every possible combination of 

activities is reduced to the feasible set, considering the constraints on time, location, and 

shared resources such as vehicles. Detailed schedules would then be constructed using 

utility maximizing principles. STARCHILD was not implemented using real-word data, 

but a mathematical programming approach to the framework was later defined in the 

Household Activity Pattern Problem (HAPP) (Recker 1995), for which an optimal 

schedule solution could be found using techniques of Mixed Integer Linear Programming 

(MILP). This approach provides the benefits of a continuous time scale, and the ability to 

specify windows for the earliest and latest activity times. In addition to minimizing travel 

disutility, other proposed objective functions included the minimization of the risk of not 

returning home in time, or the risk of not being able to complete an activity due to 

stochastic variations in travel times and activity durations. The HARP model (Gan and 

Recker 2008) focused the HAPP model towards the solution of a single-day activity 

rescheduling problem, as demonstrated by example of the cancellation of a car-pooling 

agreement to pick up a child from school. An interesting feature of all of these models is 

their ability to consider the allocation of household vehicles to trips, reflecting the 

suitability of mathematical programming techniques towards solving logistical and fleet 

assignment problems. 

The SCHEDULER and SCHEDULER2 models (Gärling et al. 1998) activities are 

added into open time slots in the schedule in a priority determined by a utility for 

conducting a particular type of activity, the cost to travel to the activity location, and the 

state of readiness to perform any activity. Activity durations are assumed to be fixed, and 

gaps between activities are considered waiting time. The required model inputs include 

characteristics of potential activities such as type, duration, and utility by hour of day, 

and characteristics of potential locations such as spatial coordinates, opening and closing 

hours, and aversion to visiting. The model has been tested with fictitious activity 

descriptions, but does not appear to have been validated with real-world data. 

The Toronto Area Scheduling Model for Household Agents (TASHA) uses single-

day activity diary data to generate a detailed 24 hour schedule for synthetic households 
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(Miller and Roorda 2003). The daily activity agenda is constructed by applying the 

survey data distributions for frequency, start times, durations, and number of people 

involved. Conflicts between activity episodes that overlap on the schedule are resolved 

using rules to shift or remove activities depending on their priority, precedence, and the 

available gaps. When available gaps are insufficient, activity durations can be shortened 

by up to 50 percent. Using seven-day survey data, the original TASHA model was 

adapted to use a utility maximizing approach to generate daily activity programs for 

flexible activities using, but this iteration of the model stops short of producing daily 

schedules (Habib and Miller 2008). 

The Albatross model (Arentze and Timmermans 2003;2004) creates schedules in a 

two-step process, first adding fixed activities along a continuous time scale, and then 

filling in flexible activities into available openings in six discrete time-of-day segments 

according to probabilistic decision trees created from two-day activity diary data. The 

boundaries of each time segment act as constraints, limiting how much an activity can be 

shifted in time by its earliest start time, or latest end time. Unless two activities are 

explicitly linked, gaps in the schedule are left undefined. As a result, the model does not 

fully define start and end times for each activity. 

As a subset of the rules-based model, a computational process model (CPM) is an 

explicit attempt to simulate the cognitive decision making process. This includes realistic 

limitations to perception, memory, and logic which lead to sub-optimal results in real-

world decision heuristics (Gärling et al. 1994). SMASH (Ettema et al. 1993) is an early 

example of a CPM scheduling model which builds the schedule incrementally through 

the addition, deletion and modification of activities. The suboptimal nature of decision 

making is exhibited by the heuristic of selecting the best next step in the sequential 

process rather than a global maximum.  Similar to the HARP model, an output variable is 

proposed which measures the chance of successfully completing the schedule, given the 

statistical distribution of activity duration and travel time. 

As scheduling problems become more complex, it becomes untenable to construct 

rules based simply on expert knowledge and intuition. Attempts to develop a standard 

methodology for constructing rules based on travel dairy data have made use of inductive 

learning techniques such as a CHAID-based algorithm in Albatross (Arentze and 



 

21 
 

Timmermans 2004), and data mining techniques such as the C4 algorithm (Wets et al. 

2000). 

2.2. mPHASE model overview 

Despite the theoretical attractiveness of rules-based models, their actual applications 

have been limited by the difficulties involved with specifying rules and collecting the 

required model input data. The multi-day Probabilistic Household Activity Schedule 

Estimator (mPHASE) has been developed to realize some of the benefits of a rules-based 

model, while ensuring that required input data can still be reasonably supplied by 

households using a companion survey such as the one described in detail in chapter 3. 

It is useful to first clarify the definitions of some familiar terms as they are applied to 

the following description of the mPHASE model. An activity is considered to be the set 

of actions that occur contiguously (possibly simultaneously) at a single location which 

satisfy one or more needs of the individuals involved or of the household as a whole. This 

set of satisfied needs together define the activity purpose. A particular occurrence of an 

activity is referred to as an activity episode1. 

 Activity purpose as the central organizing theme 

In a trip-based approach to travel analysis, the purpose of a trip may be just one of 

many details recorded in a diary along with travel party members, mode, destination, trip 

start and end time, etc. In the approach described here for the multi-day Probabilistic 

Household Activity Scheduling Estimator (mPHASE), the purpose is central so that all 

activity episodes which serve to meet a particular need are considered to be mutually 

exclusive, and are considered together, even though the particular characteristics of the 

episodes may vary. 

To illustrate the interchangeability of episodes with a common purpose, consider 

how a couple shopping for groceries together satisfies the need for a particular type of 

household maintenance. Shopping trips by either person alone would replace the need for 

a mutual trip unless the companionship they receive while shopping together is a 

requirement for the activity. 

                                                           
1 This distinction between an activity ‘episode’ and ‘purpose’ is consistent with the definitions used by  
Chapin and Hightower (1966). 
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 Templates and probabilistic multi-dimensional descriptions of activities 

In order to avoid the ambiguous and subjective classification of activities to pre-

defined categories, the approach of a multi-dimensional description of activities by their 

salient attributes proposed by Doherty (2006) is used. Of the five dimensions selected for 

use in mPHASE – day, time, location, household participants, and items carried – the first 

four are considered in some manner by nearly all existing scheduling models. The last, 

items carried, is included to help achieve the model’s goal of accounting for activity 

characteristics which constrain travel mode options and thus influence energy use. The 

five dimensions and their relationship to this goal are summarized in Table 2.2. 

Table 2.2 Five Dimensions of mPHASE Activity Templates 
Activity dimension Related to energy consumption through: 
1: Day Mode and vehicle availability 
2: Time Mode and vehicle availability 
3: Location Distance traveled, mode access, and vehicle range capability 
4: Household participants Vehicle capacity limitations (passenger capacity) 
5: Items carried Vehicle capacity limitations (cargo volume and weight capacities)  

 A description of an activity across all five dimensions is called an activity template, 

and defines the ranges of values that activity episodes fitting within the template can 

exhibit. A unique template is created if it differs from existing templates in the values 

assigned to one or more dimensions. To illustrate, a young company employee is given 

the responsibility of providing donuts for his co-workers once a month, on a Friday of his 

choice. Although most many aspects of this new Friday work activity remain the same, a 

new template would be required to describe the dimensional changes in the day (Fridays), 

the time (following a “pick-up donuts” activity), and items carried (donuts), while the 

dimensions of household member and location would remain unchanged. The new “work 

with donuts” template would still serve the same purpose as the “work without donuts” 

template, such that the two templates are prohibited from both contributing to a work 

episode on the same day. The five dimensions of mPHASE activity templates are 

described in more detail below. 

 Dimension 1: Day 

The week is an important organizing structure for many activities, and the operation 

of nearly all institutions is tied in some way to the day of the week. As a result, household 



 

23 
 

schedules tend to exhibit weekly patterns, making it critical to include the day of the 

week in any scheduling model. In addition, some institutions also reflect seasonal or 

monthly constraints, with school being an obvious example. 

The mPHASE model represents these day of the week constraints as ratios of 

probable occurrence on each day relative to the other days of the week. Table 2.3 shows 

examples of three different activity templates. An activity in template A has an equal 

chance of occurring on any day of the week, while those in template B are restricted to 

the weekend. An activity in template C is also restricted to the weekend, but more likely 

to occur on Saturday. Seasonal and monthly constraints are incorporated in mPHASE 

using a binary value to indicate if the activity can be conducted all year (template A), in 

the school year (template B), or only in July (template C) as shown in Table 2.4. 

Table 2.3 Examples of Weekday Occurrence Ratios 
Activity template Mon Tue Wed Thu Fri Sat Sun 

A 0.14 0.14 0.14 0.14 0.14 0.14 0.14 
B 0 0 0 0 0 0.5 0.5 
C 0 0 0 0 0 0.75 0.25 

Table 2.4 Examples of Month Occurrence Constraints 
Activity template Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

A 1 1 1 1 1 1 1 1 1 1 1 1 
B 1 1 1 1 1 0 0 0 1 1 1 1 
C 0 0 0 0 0 1 1 1 0 0 0 0 

Dimension 2: Time 

Many activities have some limitations on the times of day when they can occur. 

Activities such as meetings which involve interpersonal coordination, and activities that 

take place at institutions with limited operating hours provide two examples. The 

mPHASE activity templates accommodate a flexible specification of activity time limits, 

allowing hard constraints to be defined for the earliest and latest possible start and end 

times, and the longest and shortest possible durations. Within those limits, target times 

and durations are also specified. The time constraints and targets are used in the 

mPHASE activity scheduling and conflict resolution module described in detail in 

Section 2.4. 

Dimension 3: Location 

The accessibility of a potential location is a function of the distance from the prior 

activity location and the average travel speed. The spatial relationships between a 
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potential activity episode and the prior and subsequent episodes are accounted for in the 

mPHASE scheduling module by an estimate of travel times between each location pair.  

It is not uncommon that an activity can be performed at a variety of locations while 

still fulfilling the same need. Shopping is an obvious example, but other recreational and 

entertainment activities are also often not restricted to any single place. A household may 

have a favorite movie theater, but when the preferred showing time is not available, they 

might visit the theater across town. Multiple potential activity locations are defined in 

mPHASE templates by their relative likelihoods. As shown in Table 2.5, an activity in 

templates A or C might be restricted to one work or school location, a softball game in 

template D might be equally likely to be scheduled at one of three fields, and template B 

could describe a shopping activity that is more likely to occur at one store than another. 

Table 2.5 Examples of Location Probabilities 
Activity template Location 1 Location 2 Location 3 Location 4 Location 5 Location 5 

A (work) 1 0 0 0 0 0 
B (shopping) 0 0 0.90 0.10 0 0 
C (school) 0 1 0 0 0 0 
D (softball) 0 0.33 0 0 0.33 0.33 

 Dimension 4: Household participants 

Household maintenance activities are defined by the characteristic that they are not 

specific to any one member of the household. Activities may include individuals in the 

travel party whose presence is not essential for the primary purpose to be fulfilled. 

Instead they may join the activity to satisfy a desire for companionship, or because their 

presence is required for another activity in the trip chain. In the case of children, activity 

participation may be the result of need to be in the presence of a caregiver throughout the 

day. 

For these reasons, the composition and number of household participants may vary 

between activity episodes in the same template. In the mPHASE model, each activity 

template is required to have at least one primary participant defined, without whom the 

activity would not be possible. If the primary role can only be filled by particular 

household members, their presence is categorized as mandatory. In other cases, the 

primary participant(s) could be any combination of household members authorized to fill 

an optional, primary role. Individuals whose presence is not central to the activity are 

assigned a secondary, optional role, or for children, a follow-caregiver role if they are not 
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permitted to remain alone. Household members who do not fulfill mandatory, optional, or 

follow-caregiver roles are considered to be prohibited from participating in activities in 

that template. This includes members who are assigned a drop off/pickup only role. 

Examples of household member participation roles are given in Table 2.6. Template A 

might define a work activity which has only one possible participant. Template B would 

be representative of a shopping activity which could be conducted by either, or both, 

individuals with optional roles. A school activity for a young child could be described by 

template C, which has only one possible participant, but involves other household 

members in drop off/pickup roles.  Finally, template D could be used to describe a 

recreational softball game which has one mandatory participant, but might optionally 

involve other household members as supporters. 

Table 2.6  Examples of Household Member Participation Roles 
Activity template Household member X Household member Y Household member Z (child) 

A (work) 1 0 0 
B (shopping) 2 2 4 
C (school) 5 5 1 
D (softball) 3 1 4 

Primary participation categories:   1=Mandatory, 2=Optional  

Secondary participation categories: 3=Optional, 4=Follow caregiver 

Prohibited participation categories: 0=Prohibited, 5=Drop off/Pickup 

 Dimension 5: Items carried and non-household members 

The size and weight of items that need to be carried to or from an activity are 

important factors because they influence the potential of using a particular mode of 

transportation or type of vehicle for a trip. The feasibility of walking to the store is 

constrained not only by the distance, but also by one’s ability to carry the purchased 

items home. When personal vehicles are used, the number of people in the travel party, 

including non-household members, may exceed the capacity of some vehicle types. 

The mPHASE model accounts for variation in the items carried and travel party size 

by the specification of minimum, maximum and average values for item mass, item 

volume, and accompanying non-household members as shown in Table 2.7. The work 

activity in template A doesn’t require any additional items, while the shopping activity in 

template B will require that groceries be carried from the store, and remain with the 

participants until they return home.  The other example templates involve non-household 
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members, with car-pooling for dropping off at school in template C, and taking up to 

three softball teammates to and from the game, along with their equipment, in template D. 

Table 2.7 Examples of Items Carried and Non-household Member Ranges 
Activity template Item mass (kg) Item volume (m3) Non-household members 

 min avg max min avg max min avg max 
Carried to          

 A (work) 0 0 0 0 0 0 0 0 0 
 B (shopping) 0 0 0 0 0 0 0 0 0 
 C (school) 0 0 0 0 0 0 0 1 1 
 D (softball) 8.2 8.2 8.2 0.11 0.11 0.11 0 2 3 

Carried from          
 A (work) 0 0 0 0 0 0 0 0 0 
 B (shopping) 0.2 5.5 10.1 0.010 0.025 0.040 0 0 0 
 C (school) 0 0 0 0 0 0 0 0 0 
 D (softball) 8.2 8.2 8.2 0.11 0.15 0.11 0 2 3 

 Occurrence rules and accounting for day-to-day variability 

From an individual’s perspective, the variation in schedules is the result of both 

intentional choices that reflect the degree of flexibility in activities, and those factors that 

are outside of their control. Some highly variable activities are quite flexible, like going 

out for ice cream, while others are not, such as a doctor on-call being asked to see a 

patient, or a school closing which causes a parent to stay at home with their child. In 

these cases, the activity is highly irregular but there is little flexibility in the individual’s 

choice of activities. 

In the mPHASE model, the reasons for the day-to-day differences in an activity are 

of less importance than the resulting variation itself. This is by design, since the model 

specification relies on the responses of individuals who may not even be able to easily 

identify the underlying cause of the differences. For example, it would be difficult to 

report whether some shopping trips take longer than others because the store is crowded 

or because they spent more time browsing. Variability, whether by choice or externally 

imposed, is expressed by a single probabilistic representation for each of the various 

activity characteristics. 

Day-to-day variation in occurrence is defined in mPHASE by rules which specify 

whether episodes occur periodically, with a certain frequency or likelihood, or a 

combination of these. These rules also are used to describe relationships between all the 

activity templates sharing a common purpose. The probability of occurrence of an 
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activity on any given day is calculated using these rules in the mPHASE agenda setting 

module, as described in detail in Section 2.3. The characteristics of periodicity, frequency, 

and likelihood are introduced below. 

 Variability in periodic activities 

Periodicity is a trait of activities for which the utility derived is related to the time 

elapsed since it was last performed (Kraan 1997). The desire to return to the park may be 

low immediately after a visit, but is likely to grow as the week progresses. Similarly, the 

need to buy groceries increases as supplies dwindle, so that one may try to shop for 

groceries every three days, but on some occasions shop two days in a row and at other 

times wait a full seven days. This variation can be defined by a cumulative distribution 

function which represents the cumulative probability of occurrence as a function of the 

time since the last occurrence (the inverse of a survival function), as shown in Figure 2.1. 

If the distribution is known, the survival function can be estimated for this model by 

fitting a curve through points which are defined as the minimum, median, and maximum 

time between two occurrences. In this example, one goes shopping at least every seven 

days (Pr(tmax)=Pr(7)=1), typically every three days (Pr(tmedian)=Pr(3)=0.5), but never 

more frequently than every two days (Pr(tmin)=Pr(2)=0). 

 
Figure 2.1 Example of cumulative distribution function for periodic activities 

Pr(t) 

1 2 3 4 5 6 7 8 
Time since last occurrence (days) 

1 

0.5 

0 

Pr(tmedian)=0.5 

Pr(tmin) = 0 

Pr(tmax)=1 
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 Variability in activity frequency 

Frequency is an appropriate measure for activities that occur a certain number of 

times in a period, with no regularity in the time elapsed between episodes. This might be 

the case for the work activity of a substitute teacher who is restricted to 10 days a month, 

but has no idea of which days they might be. Activity frequency variability in mPHASE 

is defined as the minimum, maximum, and average number of episodes per week, per 

month, or per year. 

 Variability in activity likelihood 

Other activities occur neither at regular periods or a set frequency, but instead tend to 

occur at fixed calendar dates and times. Often these are activities which involve 

coordination with institutions and people outside of the household, such as a Monday 

through Friday school week, or a meeting on the first Tuesday of the month. In these 

cases, the uncertainty is most easily represented by a percentage probability of 

conducting the activity on that day. For example, one might know that they have used 

three sick days in the last year, and can therefore estimate that they attend 99% of the 

days in their weekday job. While it would also be possible to assign a frequency for 

number of workdays in a year, it is simpler in this case to report the percentage likelihood. 

 Defining occurrence rules 

The probability of occurrence for some activities cannot be defined completely using 

only one of the characteristics of periodicity, frequency, or likelihood. As an example, 

some work rules may limit the number of consecutive days (the period) yet require a 

certain number of days per week or month (the frequency). Furthermore, activity 

templates which share a common purpose may place different restrictions on episode 

occurrence. For example, an eight hour work shift might occur two or three times a week, 

while a twelve hour shift might be limited to one time per week. The mPHASE model 

uses flexible definitions of occurrence rules, and allows as many rules as necessary to 

define occurrence variability for every template of an activity purpose. 
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 Model structure 

The overall flow of the mPHASE model is shown in Figure 2.2. The model takes as 

inputs a set of potential activities for a household, defined by the templates for each 

activity purpose, and outputs the detailed schedules for each day in the study period. 

Alternatively, multiple iterations of the model over the study period can produce a 

distribution of multi-day schedules. Internally, the model consists of two main 

components 1) the activity agenda-setting module, and 2) the scheduling and conflict 

resolution module. 

 
Figure 2.2 mPHASE model flow diagram. 

2.3. Activity priority and the daily agenda 

For the ith day, the probability of activity pattern j occurring can be represented by 

PrOCCURi,j. Some activities on the complete activity list will be automatically excluded 

from consideration, either because institutional constraints make them infeasible, e.g. 

operating schedules, or because they are not part of the household routine so that PrOCCUR 

=0. All other activities will have a non-zero chance of appearing on the daily agenda. The 

first step of the mPHASE model process, shown in figure 1, is to generate an activity 

agenda for a randomly selected day on the calendar by drawing from the complete 

activity list according to values of PrOCCUR. 
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 An activity’s presence on the agenda does not guarantee that it can be performed, 

because there may be scheduling constraints or a lack of required resources to travel to 

and conduct the activity. 

The method proposed for the mPHASE model is to 1) initially assign a priority 

ranking randomly to all activities, 2) generate a random agenda for the ith day based on 

the values of PrOCCUR , 3) order the activities on the agenda according to their priority 

ranking, 4) starting with the highest priority activities, add activities from the agenda to 

the schedule one at a time until a conflict occurs, or the time pressure reaches a 

predetermined level, 5) if any activities were excluded from the schedule, increase their 

priority by readjusting the activity rankings according to values of 𝑷𝒓𝑂𝐶𝐶𝑈𝑅,𝑗 × 𝑄𝑗  , 

where Qj is the cumulative number of times that activity j has been excluded from a 

schedule over all model iterations. In this way, activities which have been 

disproportionately excluded from the schedule previously are less likely to be excluded in 

future iterations. As a result, over many iterations the fraction of days in which activity j 

occurs will approach PrOCCUR,j. 

2.4. A finite element approach to activity scheduling and conflict resolution 

The activity scheduling problem has much in common with the physical systems that 

engineers encounter in structural design. The beams of a truss can be thought of as 

analogous to individual activities. The primary difference between the two is that the 

coordinates of the physical structure are defined in 3-dimensional space, while a schedule 

is defined along a temporal axis. Scheduling conflicts prevent activities at different 

locations from overlapping in time in the same way that elements of a physical structure 

cannot occupy the same space. The beams of a truss deform when external forces are 

applied, while activities in a schedule are shortened or extended to accommodate pressure 

applied by the preceding and following activities. Finally, the movement of activities can 

be limited by external scheduling constraint. For example, the operating hours of a 

business might define the feasible limits of an activity just as a rigid barrier can define the 

maximum displacement of the physical structure. 

Beyond the similarities between the scheduling and structural engineering problems, 

the Finite Element Method (FEM) used here is particularly well-suited to aspects of 
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activity scheduling that are difficult to handle with rules-based methods. First, the activity 

schedule is both discrete, in terms of the individual activities, and continuous, in the 

potential placement of activities in time. This description corresponds to the discrete 

elements in FEM which can be displaced continuously in space. Second, the schedules of 

individual household members are often linked together in complex ways through joint 

participation in activities, and the allocation of shared responsibilities and resources (like 

household vehicles). These relationships can be readily represented in FEM by defining 

connections at each element node to one or more adjoining elements. 

 Description of the Finite Element Method 

The Finite Element Method encompasses a set of numerical techniques for finding a 

solution to differential equations which define the behavior of an idealized representation 

of a physical system. Implementations of the FEM include engineering analysis of heat 

transfer, fluid dynamics, and vibration of structures, in addition to static structural 

analysis. In the field of classical mechanics, a system is defined to be in static equilibrium 

when it is at rest and the sum of forces acting on each particle within the system is zero. 

For simple structures, this means that displacements resulting from an external force can 

be calculated by solving a system of simultaneous equations for force balance and 

displacement continuity at each node. However, the class of problems in which the 

structure is subject to redundant constraints, known as “statically indeterminate”, cannot 

be solved by manipulating these equations using methods of elimination and substitution. 

The direct stiffness method (DSM) was developed initially to solve a statically 

indeterminate problem in aircraft wing design (Levy 1953; Turner et al. 1956). The 

method’s use of matrix algebra to represent elements makes it particularly well-suited for 

the digital computation of large problems, while its generality has extended its usefulness 

from its original applications in aeronautical engineering. 

The direct stiffness method continues to serve as the basis for many FEM 

implementations, in addition to other, calculus-based approaches. What follows is a brief 

overview of the DSM, which consists of three steps: breakdown, assembly, and solution. 

The starting point is an idealized representation of the real-world structure as bar 

elements, each connected at their end nodes to one or more adjoining elements. In the 

breakdown step, these elements are each considered separately as individual springs, with 
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a stiffness that depends on the material properties and cross-sectional dimensions of the 

actual truss. In mechanics, Hooke’s law (equation 2.1) provides the relationship between 

the force on a spring and its displacement, where F is the net force, δ is the displacement, 

and k is the spring constant, or stiffness. 

F = kδ ( 2.1) 

In order to account for forces and displacements in any direction and at either end 

node of an element, force and displacement relationships in Hooke’s law are expressed as 

member stiffness relations (equation 2.2) where Ke is the member stiffness matrix 

(equation 2.3). Ke is a square matrix, with a row and column for every degree of 

translational and rotational freedom for each of the element’s two nodes, i and j. Most 

engineering applications of FEM are applied to 2-D or 3-D systems, but for simplicity a 

system constrained to move along a single dimension, the x axis, is presented here. 

�
𝑓𝑥,𝑖
𝑓𝑥,𝑗

�  =  Ke �
𝑢𝑥,𝑖
𝑢𝑥,𝑗

� ( 2.2) 

Ke = �
K𝑒,𝑖=1,𝑗=1 K𝑒,𝑖=1,𝑗=2
K𝑒,𝑖=2,𝑗=1 K𝑒,𝑖=2,𝑗=2

� = 𝑘 � 1 −1
−1 1 � ( 2.3) 

Simple 1-D systems can be easily represented by a single element with an equivalent 

spring constant calculated from the individual spring constants based on whether they are 

configured in parallel or in series. For more complex systems where multiple sets of 

springs in series and parallel are nested within each other, a general solution for finding 

the equivalent stiffness combinations of springs is desirable. This is achieved by the 

second step of the direct stiffness method, assembly, where member stiffness matrices are 

aggregated into a single master stiffness matrix, K. The connectivity of any n spring 

elements can be described by an Element Freedom Table (EFT) which maps i and j end 

nodes of each element to a global nomenclature. Figure 2.3 shows an example of a six 

element spring system and the associated EFT.  
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Figure 2.3  1-D System of springs. 

The master stiffness matrix, K, is constructed by summing the contributions of the 

member stiffness matrices at each node, according to the EFT (equation 2.4). Note that 

the summations for each element 1 thru n are performed over nested loops over i, then j. 

The force-displacement relations for the all of the m nodes of the entire system can then 

be expressed by the master stiffness equation (equation 2.5). 

Kpq =  ∑ 𝐊𝑒,𝑖𝑗
𝑛
𝑒=1           for i = 1 to 2, j = 1 to 2, p = EFT(e,i), q = EFT(e,j) ( 2.4) 
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⎥
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 ( 2.5) 

The solution step is the third and final phase of the DSM. Without any external 

constraints or boundary conditions, the rows and columns of the master stiffness matrix 

are linear combinations of each other so that K is singular in equation 2.5. Therefore, the 

node displacements resulting from an applied external force cannot be solved. Physically, 

this would be as if the spring system in Figure 2.3 were “floating” in space. Either the 

displacement of a node, or the external force may be prescribed for any node, but not 

both. By rearranging the row ordering of f and u in equation 2.5 , K can be split into four 

sub matrices depending on whether the force or displacements are known for each 

particular node (equation 2.6). 

�fknown    
funknown

�  = �K11 K12
K21 K22

� �
uunknown
uknown    

� ( 2.6) 

Since the goal is to determine node displacements, the first matrix equation of 2.6 

can be used to express the unknown node displacements as a function of the known 

forces and displacements (equation 2.7). Displacements can be solved for most efficiently 
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using the Gaussian elimination method, thus eliminating the computationally expensive 

step of calculating the inverse of the K11 matrix.  

uunknown= K11
-1(fknown- K12uknown) ( 2.7) 

 Representing activities as elements 

An activity’s position in a daily schedule can be defined simply by a combination of 

any two of its start time, end time, and duration. In the mPHASE model, individual 

activities are defined by three-elements referred to as start anchor, end anchor, and 

activity elements (Figure 2.4). The start and end anchor elements join fixed nodes (3 and 

4) to the activity start and end nodes (1 and 2), respectively. The anchor points represent 

“target” or neutral times for the activity’s beginning and end, such that it requires more 

effort to schedule an activity at undesirable times. The activity element itself provides 

resistance to departure from a neutral activity duration, independent of the start and end 

anchor elements. As a result, there will be more resistance to shifting start and end nodes 

each 10 minutes in opposite directions away from the neutral times than to shifting them 

by 10 minutes in the same direction away from the neutral times. The relative stiffness of 

the three elements is set independently so that start time, end time, and duration can have 

different values of flexibility for deviation from their neutral values. For example, an 

activity might have very little flexibility in its duration, but significant flexibility in its 

start time or vice versa. 

 
Figure 2.4 Representation of an activity in mPHASE. 

In addition to the resistance provided by the start and end elements, an attempt to 

shift an activity too far for from its neutral time can be limited by hard constraints on 

earliest and latest times, and duration (Figure 2.5). 
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Figure 2.5 Constraints on activity duration, and start and end times. 

 Activity schedules at the household level 

By joining together individual activity elements at their start and end nodes, a daily 

schedule can be created with node positions determined using the finite element method. 

To illustrate, consider the after-dinner activities of a three-person household consisting of 

a mother (p1), father (p2) and their son (p3). The final portion of the household’s activity 

agenda for day i is shown in Table 2.8. All three members of the household are 

mandatory participants in the dinner activity at home (L1). The son is the sole participant 

in the study group at a classmates house (L4). The travel times between every pair of 

locations L1 through L5 can be estimated from the relative distance between the locations, 

and an assumption about average travel times as shown in Table 2.9 and Figure 2.6. In 

this example, it’s a 15 minute trip from home to the study group activity. In the finite 

element model, travel time is represented using travel elements with a length equal to the 

time needed to travel between adjoining activities which occur at different locations. 

Travel time is assumed to be inflexible, and elements are assigned a high spring constant2. 

                                                           
2 FEM cannot accept spring constant values of zero or infinity, since either will result in division by a 
determinate of zero when computing the inverse of the K matrix. For very large values, mPHASE assigns 
kinf = 9x107, and for very small values, kzero = 1x10-7. 
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Table 2.8 Activity Agenda Example 1: After Dinner Study Group Only 
  Participation tstart tend duration(d),(minutes) 

j Activity p1 p2 p3 earliest neutral latest earliest neutral latest min neutral max 
.. … … … … … … … … … … … … … 
13 Dinner 1 1 1 17:00 17:45 18:30 - - - 15 30 45 
14 Study group 0 0 1 18:00 18:30 - 19:30 20:00 20:05 60 - - 
Table 2.9 Location Probabilities by Activity and Location Pair Travel Times 
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Location Location  
1 travel time (minutes) 

L1 L2 L3 L4 L5 
.. … … … …  … … … …  … 
L1 1 0 0 0  L1 - 14 4 15 3 
L2 0 0 0.4 0  L2  - 12 6 13 
L3 0 0 0 1  L3   - 16 1 
L4 0 1 0 0  L4    - 17 
L5 0 0 0.6 0  L5     - 

 
Figure 2.6 Spatial map of activity locations with travel times. 

As shown in Figure 2.7, the entire day’s activities are defined from 00:00 to 04:00 

(12:00am to 4:00am the following day). A day in real life is not composed of a 

continuous stream of distinct activities. This is not to say that the time between activities 

is spent idly, yet a certain amount of time is inevitably spent waiting for the next activity, 

especially if the available time is too short to engage in anything else. At home in 

particular, a significant amount of time may be spent doing small chores, such as tidying 

up. This is certainly time well spent, but it would be too difficult to categorize each of 
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these highly flexible and brief tasks as a distinct activity. In the mPHASE model, the 

unspecified time between defined activities is classified as slack time, and is represented 

by elements with spring constants of near zero, in accordance with the great degree of 

flexibility involved. 

 
Figure 2.7 Finite element representation of activity agenda example 1. (p1 = mom; 

p2 = dad, p3 = son) 

 Minimizing time pressure and finding equilibrium in schedules 

In the previous example, the travel time of 15 minutes was equal to the difference 

between the neutral end time of the dinner activity at 18:15, and the neutral start time of 

the study group activity at 18:30. Since no forces will be applied to disturb the activities 

from their neutral positions, a displacement of zero for each node is the trivial FEM 

solution. Consider instead the activity agenda for example 2, shown in Table 2.10, which 

now has a shopping activity with a neutral duration of 30 minutes. Any member of the 

household can conduct the activity, but for purpose of illustration, Figure 2.8 focuses on 

the son. The store is open until 20:30, so he could choose to go shopping either on the 

way to the study group, or on his way home. If he chose to go before, one or more of the 

following adjustments would need to be made: 1) move the dinner end time earlier, 2) 

begin the study group activity later, or 3) shorten the shopping activity. If the son chose 

to go shopping after his study group, there would be more flexibility, although he might 

decide to leave the study group earlier in order to finish shopping before the store closes. 

A number of various combinations of activity sequencing, location, and participants are 

possible, although some will require greater effort to fit within the given constraints. The 

degree of effort can be considered to represent a ‘time pressure’ of that schedule, which 
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household members would recognize as being too busy to conduct activities as they 

normally would.  A heuristic for excluding activities on the generated agenda from the 

final schedule would ideally consider the time pressure of the schedule by removing 

activities which cause excessive pressure, or shifting time pressure across multiple days 

to match some predetermined distribution. At the same time, a decision rule which 

simply minimized time pressure would consistently reject the most demanding activities, 

causing the resulting activity distributions to deviate from the targeted PrOCCUR values. 

Table 2.10 Activity Agenda Example 2: After Dinner Shopping and Study Group 
  Participation* tstart tend duration(d),(minutes) 

j Activity p1 p2 p3 earliest neutral latest earliest neutral latest min neutral max 
.. … … … … … … … … … … … … … 
13 Dinner 1 1 1 17:00 17:45 18:30 - - - 15 30 45 
14 Study group 0 0 1 18:00 18:30 - 19:30 20:00 20:05 60 - - 
15 Shopping 2  2 2 08:00 19:45 - - - 20:30 20 30 60 
* Participation codes are defined in Table 2.6 as 0: prohibited, 1: mandatory, 2: optional/independent, 3: 

optional/non-independent, 5: drop-off/pick-up 

 
Figure 2.8 Finite element representation of activity agenda example 2:  

a) shopping before study group; and b) shopping after study group. 

In the mPHASE model, the energy stored in the system of finite elements is used to 

measure time pressure. This energy value is calculated after each attempt to insert an 

activity on the agenda in order to determine which combination of activity sequence, 

location, and participants will be selected for inclusion in the final schedule. The decision 
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rule used in the model is to select the option which minimizes time pressure. In real-

world terms, time pressure is a measure of how far activity start/end times and durations 

are moved from their ideal values, and how flexible these values are. In the FEM 

representation, time pressure depends on the degree to which activity element nodes have 

been shifted from their neutral positions, and the level of rigidity of the activity and 

anchor elements (i.e., their spring constants). More precisely, the mPHASE model 

calculates time pressure as the potential energy (PE) of all elements for the m activities in 

the finite element schedule (equation 2.8). 

𝑡𝑖𝑚𝑒 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 𝑃𝐸

=  �
1
2

𝑚

𝑒=1 

�(𝑘𝑒𝛿𝑒2)𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦
𝑒𝑙𝑒𝑚𝑒𝑛𝑡

+ (𝑘𝑒𝛿𝑒2)𝑒𝑛𝑑 𝑎𝑛𝑐ℎ𝑜𝑟
𝑒𝑙𝑒𝑚𝑒𝑛𝑡

+ (𝑘𝑒𝛿𝑒2)𝑠𝑡𝑎𝑟𝑡 𝑎𝑛𝑐ℎ𝑜𝑟
𝑒𝑙𝑒𝑚𝑒𝑛𝑡

� ( 2.8) 

In the previous shopping example, it seems likely that there would be less time pressure 

induced by placing the shopping activity at the end of the day (Figure 2.8b), where it is 

displacing the son’s highly flexible slack time. Shopping earlier in the day (Figure 2.8a) 

would require large displacements in the more rigidly constrained dinner and study group 

activities. Also, the son had two options for the location of the shopping activity, L2 and 

L5. It might seem that either location choice would result in the same time pressure, since 

the total travel time returning home (L4L5L1 or L4L2L1) is 20 minutes in each 

case. However, the travel time from L4 to L2 is less than the time from L4 to L5, so 

selecting L2 would allow more time for shopping before the store closed. The exact time 

pressure value for each option, however, would be determined in mPHASE using the 

spring constant values unique to each activity. 

When adding a new activity to an existing schedule, the static equilibrium must be 

found for the revised finite element system. As defined earlier, a system is said to be in 

static equilibrium when it is at rest and the sum of forces acting on each particle within 

the system is zero. The algorithm used in mPHASE performs a search for equilibrium by 

splitting the schedule in two parts where the new activity will be inserted, and displacing 

the schedule’s right hand side (RHS) and left hand side (LHS) in steps. The force balance 

requirement is achieved when the force applied to the LHS is equal and opposite to the 

force RHS. The equilibrium algorithm is shown graphically in Figure 2.9, and consists of 

five steps: 1) at the insertion point for the new activity, disconnect original nodes and 
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remove travel element if it exists; 2) join the open node of the schedule LHS with a travel 

element (to the new activity) and the new activity element; 3) shift the open nodes of the 

RHS and modified LHS in opposite directions, until the gap is equal to the travel time 

duration (from the new activity); 4) shift the LHS and RHS together in the direction 

which minimizes the difference in forces, until they are balanced; and 5) join the open 

nodes on the LHS and RHS with the travel element. 

Left-hand side (LHS) Right-hand side (RHS)  

 

Original schedule 

 
Step 1: Remove travel element. 

 

Step 2: Add new activity (C) and 
travel to LHS. 

 

Step 3: Shift LHS earlier, and/or  RHS 
later, until gap is equal to travel 
time between activities C and B. 

 

Step 4: Maintaining the gap, shift LHS 
and RHS together in the direction 
which minimizes the difference in 
forces, until they are balanced (FRHS 
= -FLHS). 

 

Step 5: Connect nodes with travel 
element between activities C and B. 

Figure 2.9 Search algorithm for schedule equilibrium when adding new activity. 
 (anchor elements not shown for clarity) 

 Coordinating schedules among multiple household members 

When multiple household members participate jointly in an activity, the schedule 

must be arranged so that every member is simultaneously present at a common location 

both before and after the joint activity. This requirement arises from the assumption in 

the mPHASE model that participating household members travel together to and from 

any non-home based joint activities, and do not arrive at a location by independent travel. 
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In the current implementation of mPHASE, the gathering of individuals before and after a 

joint activity is limited to the home location, but it could conceivably include any 

location. As a result, unless the exact travel party is already gathered at a common 

location, members will return home before departing for the new joint activity. 

Table 2.11 Activity Agenda Example 3: Ice Cream Outing 
  Participation tstart tend duration(d),(minutes) 

j Activity p1 p2 p3 earliest neutral latest earliest neutral latest min neutral max 
.. … … … … … … … … … … … … … 
13 Dinner 1 1 1 17:00 17:45 18:30 - - - 15 30 45 
14 Study group 0 0 1 18:00 18:30 - 19:30 20:00 20:05 60 - - 
15 Shopping 2  2 2 08:00 19:45 - - - 20:30 20 30 60 
16 Ice cream 1 1 1 18:30 19:00 - - - 22:00 15 20 30 

In example 3, the family decides to go out for ice cream that evening (Table 2.11). 

The algorithm used in mPHASE for adding joint activities is similar to that of finding 

schedule equilibrium for an individual (Figure 2.9). The primary difference is that 

multiple nodes must now be joined on the schedule right and left hand sides. Additionally, 

the number of possible insertion points increases as the new activity can occur at any one 

of the various sequence combinations for each participant. The sequencing process is 

shown as Step 1 in Figure 2.10, and is simplified in this example since the parents’ 

schedules have only one possible insertion point after dinner. The son, for purpose of 

illustration, will conduct the new activity after shopping. In Step 2, nodes are separated at 

each insertion point, and travel elements are removed, if present. In Step 3, slack time 

and travel elements for a return trip home are added for individuals who are not already at 

home either before or after the new activity. Because the shopping activity includes only 

the son, he will need to return home after shopping to pick-up his parents, even though he 

would have traveled less if he had driven to the ice cream shop directly from the store. 

For individuals who are already at home, slack time elements are added so that in Step 4, 

open nodes can be aligned. This is achieved by extending the earliest open nodes on the 

LHS later, so that all LHS nodes are coincident. Similarly, the latest open nodes on the 

RHS are extended earlier until all RHS nodes are aligned. Finally, in Step 5, the new 

activity is added and equilibrium is found by applying the schedule equilibrium search 

algorithm. 
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Step 1: Select 
sequence. 

 

Step 2: Separate 
nodes and remove 
travel. 

 

Step 3: Add slack time 
at common location. 

 

Step 4: Align nodes.  

 

Step 5: Add new 
activity and find 
equilibrium. 

Figure 2.10 Multi-participant coordination algorithm for new activity, as Example 
3, Ice Cream Outing. (p1 = mom; p2 = dad, p3 = son, anchor elements not shown 
for clarity) 
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The Household Travel Patterns Study: 
A pilot demonstration 

The trip diary has been an indispensable tool for transportation researchers, 

providing data that have been used to illuminate many aspects of household travel 

behavior. The popularity of the methodology is due in large part to its simplicity and 

general applicability, yet despite its advantages there remain some questions that cannot 

be answered using data from existing trip diaries. Among the method’s most significant 

weaknesses is the difficulty of collecting data over periods longer than one or two days. 

Alternatives like GPS technology can be used to reduce respondent burden for multi-day 

studies, but by itself cannot provide information about the trip purpose and other 

important activity details which influence the decision making process. 

This chapter begins with an overview of existing techniques, and then introduces an 

activity-based method for collecting travel data over multi-week time periods. Unlike trip 

diaries which rely on the accurate reporting of specific trips, the proposed methodology 

asks respondents to describe the range of values for each dimension of a possible activity: 

time, day of week, place, participants, and items carried. The combination of these 

dimensional descriptions forms an activity template, with a probability of occurrence 

defined by rules relating the frequency, periodicity, or daily likelihood for all the 

templates which satisfy a common activity purpose. Responses are intended to be used as 

inputs to the mPHASE model for generating multi-day travel-activity schedules, 

potentially offering an alternative to the conventional trip diary data collection method. 

The chapter concludes by presenting the results of the Household Travel Patterns Study 

(HTPS), a thirty household pilot demonstration conducted in 2011 in the Ann Arbor, 

Michigan area. Descriptions of typical travel were collected during home visits using a 

computer-assisted personal interview (CAPI) with involvement from all household 
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members. The household’s two vehicles were each equipped with digital cameras and 

GPS data acquisition equipment to observe usage for two weeks. The goal of the HTPS 

was to determine if the mPHASE model and its companion web survey are capable of 

producing complex and realistic multi-day travel-activity schedules. 

3.1. A review of methods for multi-day data collection 

Travel behavior studies rely heavily on written diaries recording one or two days of 

travel as the primary source of data. The self-reported activity timelines commonly used 

in cross-sectional analyses today evolved from time-use studies going back nearly one 

century, including a 1924 study of the daily lives of workers in Moscow (Hedges 1972). 

These early time budget surveys were not specifically intended for travel analysis, and as 

the field of activity-based travel research took shape in the late 1960’s and early 1970’s, 

geographers and urban planners were motivated to extend the methodology to include 

spatial information (Bullock et al. 1975). Even at this early stage, the weaknesses of the 

diary as a survey instrument were recognized. In a pre-test comparison of contemporary 

methods (Scheuch 1972), it was noted “the various shortcomings of a particular 

technique tended to have a stronger influence on time-budget figures than on other 

objects of research.” 

Among the most significant shortcomings of the diary as a survey instrument is the 

subjective nature of classifying and cataloging activities which occur in a constant stream 

of behavior (Dagfinn 1978) and often simultaneously (Scheuch 1972). Another is the 

considerable amount of effort required of respondents to produce diaries which provide 

reliable information at the level of detail necessary to be useful. To make this burden 

manageable, diaries are normally limited to short time periods. The resulting single-day 

data is sufficient for cross-sectional analyses of aggregate travel tendencies and inter-

personal variations, but cannot provide any insights into intra-personal travel variation 

and patterns at the household level (Hanson and Huff 1982). 

The desire to employ a new technique for data collection is summarized nicely by 

Jones and Clarke (1988) who wrote, “As we move in the urban policy arena increasingly 

away from transport investments designed to cater for unrestricted demand, to some form 

of management of travel behaviour, it becomes necessary to understand more about the 
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processes of travel. We argue that some of the issues being addressed cannot be 

answered using one-day data, regardless of the sample size, because by their nature they 

are questions about variations in behaviour over time.” 

Over the last few decades, a great deal of effort has been applied towards developing 

methods for collecting travel-activity data over extended time periods. The most 

straightforward examples have simply extended the diary methodology to a period of one 

week in the German Mobility Panel, U.K. National Travel Survey, and Dutch Mobility 

Panel (Sharp and Murakami 2005; Golob and Meurs 1986), a period of two weeks for the 

German KONTIV survey and in Belgium (Brög et al. 1983; Bellemans et al. 2009), and 

up to six weeks in the case of the German Mobidrive study (Axhausen et al. 2002). These 

long-term diaries can be less costly per day of data collected compared to single-day 

diaries, but this comes at the expense of a larger sample size and the estimation power for 

small population subgroups (Sharp and Murakami 2005). Perhaps more importantly, the 

phenomenon of reporting fatigue has been shown to cause significant underreporting of 

trips as the study period grows longer, particularly for short trips and those which may be 

perceived by the respondent as unimportant or incidental (Barnard 1983; Golob and 

Meurs 1986). 

Alternatives to the travel diary have emerged which offer the potential to not only 

extend the time-period, but also provide some insight into the activity scheduling and 

travel decision making processes not possible with purely observational methods. At the 

same time, technological advancements like GPS equipment have made multi-day 

observation of travel an increasingly realistic alternative to travel diaries, especially when 

combined with supplemental details from participant survey responses (Giaimo et al. 

2010). 

 Alternative survey techniques 

In the absence of reliable multi-day schedules from travel diaries, alternative 

approaches attempt to identify the underlying determinants of travel behavior, as 

influenced by a wide variety of factors including individual opinions, preferences, social 

norms, available options, and the real and perceived constraints imposed by the material 

environment and interpersonal commitments (Brög and Erl 1980). Considering the 

complex interplay between these factors, it would seem an impossible task to create any 
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standardized survey instrument that provides insight into travel decisions, particularly 

when combined with the challenge of activity and time-use classification discussed in 

chapter 2. The alternatives that have been proposed include interactive interviews, 

gaming simulations, dynamic scheduling, qualitative surveys and web-based instruments. 

While these techniques are wide-ranging, they share in common a great degree of 

flexibility in capturing diverse responses, and the rejection of a rigid, standardized 

questioning format. 

 Interactive and situational surveys 

As a survey procedure moves away from a rigid structure towards a less-well defined 

format, the interaction between the respondent and the interviewer plays an increasingly 

important role in the quality of the results. While observer effects are normally to be 

avoided in behavioral research, the interactive interviewing technique seeks to “exploit 

the dynamics of the personal interview in order to probe the attitudes, motivations, 

perceptions and behaviour of respondents at a deeper level than is possible using the 

structured questionnaire” (Jones 1983b). In practice, this requires that a skilled 

interviewer engages respondents in a dialogue which allows relevant comments to be 

pursued and inconsistencies identified. Placing individuals in the situational context of 

actual decision making is likely to improve the accuracy of the responses, and can be 

simulated by conducting interviews in a group setting with all household members 

present. 

The pioneering work using interactive techniques in travel behaviour research was 

conducted by researchers at Oxford University’s Transport Studies Unit, and focused on 

small-scale demonstrations of the Household Activity Travel Simulator (HATS) 

developed there (Jones 1979). The three critical elements of the technique are: 1) the 

interactions with the interviewer and among participants; 2) the use of visual aids as a 

structuring device; and 3) the gaming simulation approach. Employing a game-like 

display board, the HATS procedure begins with participants representing their activities 

by placing markers on the map and filling in timelines with colored blocks to indicate 

travel and activity types and durations. The interviewer encourages a discussion about 

activity constraints and linkages among household members, and then asks participants to 

explore potential adaptations to a proposed change. In addition to serving as a device 
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around which to structure the interview, the novelty of the game board as a visual-aid was 

found to maintain respondent interest throughout the interview, and engage individuals 

who might otherwise be reluctant to share information with the interviewer. This HATS 

technique has been used to study household adaptations to changes in school hours, shift 

scheduling for city bus drivers, rural bus service level, and rail service frequency (Jones 

1979;1980;1983b). The approach has been adopted by other research agencies, and used 

to address the question of how households adapt their vehicle use to energy shortages and 

gasoline rationing (Phifer et al. 1980). 

 Dynamic scheduling surveys 

Interactive techniques attempt to collect information about the scheduling process by 

conducting the interview in a manner that resembles the situational context of real 

decision making.  Another approach is to collect information about actual scheduling 

decisions in real time (or as close to real time as possible), allowing researchers to 

observe the dynamics of scheduling as activities are planned, modified or removed from 

the agenda, and added or canceled spontaneously. 

One of the first of these dynamic scheduling surveys was the Computerized 

Household Activity Scheduling Elicitor (CHASE) which prompted each individual in the 

household to enter a planned schedule for the one week study period, and then revisit 

those responses at least daily, adding, deleting, or modifying activities as necessary 

(Doherty et al. 1997). Respondents were also instructed to report when the decision was 

made, and the reason for a modification, making it possible to investigate the process of 

decision making in scheduling. 

Building on this approach, the REACT! software (Lee and McNally 2001) improved 

the data input interface, and allowed for gaps to remain in the planning schedule, 

avoiding the tendency for respondents to complete all the unplanned portions of the time 

table. More recently, the Agent-based Dynamic Activity Planning and Travel Scheduling 

(ADAPTS) model was developed which adds more resolution to the scheduling process, 

allowing individual attributes of the activities to be planned in advance, independently of 

other attributes and in an order that is not fixed a priori (Auld and Mohammadian 2009). 
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One difficulty with dynamic scheduling surveys is that a very large number of 

alternatives may be available which are evaluated and screened continuously, sometimes 

subconsciously, as new opportunities arise in a constant stream (Roorda and Miller 2005). 

 Responses as ranges and probabilities 

Variation is an important aspect of multi-day schedules, and not properly considered 

by methods which ask respondents to strictly define activity start times, durations, and 

frequencies. Vause (1997) argued that our real life conception of time is “fuzzy and 

adaptable”, and would be better represented by fuzzy times in surveys. The example 

given would define activity episode start times in quadruples (t1, t2, t3, t4) where t2–t3 is 

the ideal start time range, and t1–t2 and t3–t4 are the allowable time ranges. 

The French National Institute for Transport and Safety Research (INRETS) 

developed a telephone survey which used this approach to capture 4-weeks of travel 

behavior by asking respondents how frequently they conducted activities in each of eight 

categories over the past month (Madre 2003). 

 Qualitative approaches 

The difficulty in using quantitative methods to understand complex travel behavior 

has motivated some researchers to increase the flexibility of their methods through the 

incorporation of open-ended responses. Focusing on the issue of activity re-scheduling, 

Clark and Doherty found that using qualitative techniques allowed them to identify 

significantly more rescheduling decisions and conflicts than the CHASE dynamic 

scheduling survey (Clark and Doherty 2009). 

 GPS and passive location-finding technologies 

The constellation of Global Positioning System (GPS) satellites launched and 

maintained by the U.S. Government since the late 1970’s were originally intended solely 

for defense purposes. It eventually became clear, however, that general population would 

also benefit from a wide range of civilian uses. In the year 2000, the Selective Ability 

feature which intentionally reduced accuracy was disabled, allowing non-military users to 

utilize the full capability of the system (Clinton 1996). The advancements in GPS when 

combined with the steady progress in consumer electronics towards smaller and more 
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inexpensive devices created the opportunity in the last decade for passive-location 

finding technology to be used in travel behavior research. 

The high cost and power requirements of the earliest commercial GPS units 

restricted their use in travel studies to in-vehicle units. Personal data collection units are 

better suited for general travel studies for their ability to record an individual’s 

movements regardless of travel mode, but the first demonstrations involved cumbersome 

units with large battery packs. Significant effort was directed at making the devices more 

convenient to carry (Stopher et al. 2005), and more recently, GPS receivers have been 

incorporated into increasingly smaller devices such as mobile phones which have reduced 

power requirements for extended battery life. The trend towards even less expensive and 

smaller devices is likely to further accelerate the use of the technology in travel research. 

With just over a decade passed since the first applications in small-scale pilot studies, 

the role of GPS in travel behavior research is still evolving. The potential uses of the 

technology offer many benefits over traditional data collection methods, but the cost of 

GPS units remains an obstacle to its adoption in large scale studies. As shown in Table 

3.1, most studies involving GPS are conducted at a small scale. 

Table 3.1 Applications of GPS Technology in Travel Behavior Studies 
Study Sample size, period, and method Purpose 
1997 Lexington  100 vehicle, six day, vehicle GPS + 

PDA input 
Feasibility, route choice 

200 vehicles w/GPS + paper diary Feasibility, validation of paper 
survey, trip end identification 

1997 Austin 117 household/186 vehicle,  
2000 Atlanta (Wolf et al. 2001) 30 vehicles w/GPS + PDA input Potential to replace trip diary 
2002 Lexington (Du and 

Aultmanhall 2007) 
276 vehicles w/GPS Automatic trip end identification 

2007 Waterloo (Clark and 
Doherty 2008) 

40 individuals, 2 day, personal GPS 
units, preplanning and prompted 
recall CASE, open-ended 
interview 

Test data collection method for 
dynamic scheduling process 

2009 Cincinnati HTS pilot 
(Giaimo et al. 2010) 

100 households, 3 day, personal 
GPS units, prompted recall CASI  

Test response rates of different 
demographics and incentive levels 

2009 Chicago UTRACS (Frignani 
et al. 2010) 

112 people, 2 week, personal GPS 
units, prompted recall CASI 

Test data collection method for 
dynamic scheduling process 

2009-2010 Cincinnati HTS 
(Stopher et al. 2011) 

3500 households, personal GPS 
units 

First GPS-only full scale survey 

Despite the unique capability of GPS equipment to accurately identify travel 

trajectories, studies which have considered the stand-alone potential for the technology 
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have found that major obstacles remain in the identification of precise destinations for 

individual trips and their purposes (Wolf 2000). The problem of identifying trip start and 

endpoints has been addressed with the use of a minimum stop time, such as used by Wolf 

et al. (2001), where a trip end point was defined for stops of longer than 120 seconds. 

However, the short stops to pick-up and drop-off passengers might be missed. More 

involved methods use a combination of dwell time, vehicle heading change, and distance 

from the road network. Using these techniques, trip end points have been successfully 

identified with an error rate of around 5 percent (Du and Aultmanhall 2007). 

Even more challenging than the automatic identification of trips from GPS data is the 

assignment of purposes to these trips. Wolf et al. (2001) conducted a pilot study using 30 

vehicles in Atlanta for the purpose of determining if trip diaries could be replaced with 

GPS data by assigning trip purposes automatically using geocoded addresses. They found 

that most trip purposes could be correctly identified, but 22 percent would require some 

clarification. Similarly, Stopher et al. (2007) concluded that if additional information 

about the addresses for home, work, and the two most frequented grocery stores were 

collected, both mode and purpose could be deduced from geocoded GPS traces for about 

70 percent of trips. 

Reflecting the challenges in extracting activity details from observed travel paths, 

most studies of the use of GPS in travel surveys have not been intended to show that the 

technology can entirely replace the active participation of respondents. Instead, GPS 

technology has been more often investigated for its role as a supplement to other survey 

instruments, since the information required for many travel studies goes beyond an 

accounting of where individuals are located throughout the day. One approach has been 

to incorporate the observed GPS paths into web-based prompted recall surveys to provide 

more details about the activities which underlie the observed trips (Clark and Doherty 

2009; Frignani et al. 2010; Stopher et al. 2011). By eliminating the need for respondents 

to recall exact times and locations, interviews can then focus on capturing other details 

about activities, and identify trips that would have otherwise been missed. 
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3.2.  A proposed companion survey for mPHASE  

The multi-day Probabilistic Household Activity Schedule Estimator (mPHASE) 

presented in chapter 2 provides a technique for placing activity episodes on a continuous 

time scale considering the linkages among household members and constraints imposed 

by activity time limits and travel time between activity locations.  The goals of the 

proposed companion survey are to produce the input data for the mPHASE model 1) in a 

single session of household interviewing, and 2) of sufficient detail and quality for the 

generation of realistic and complex multi-day schedules. The key aspects of the survey 

share similarities with previous data collection efforts, and many of the techniques 

described in Section 3.1 are applied. What is unique is the method’s achievement of 

flexible activity definitions through the use of probabilities and value ranges to describe 

every dimension of an activity. While a probabilistic description of activities is, by design, 

a requirement of the mPHASE model, it is also believed that respondents can reasonably 

be expected to report variable, multi-day activities in terms of probabilities and value 

ranges – a hypothesis that is tested in the HTPS pilot investigation. 

 Key aspects of the survey approach 

 Flexible activity definitions 

The classification of activities into rigid categories is a difficult and ambiguous task, 

as discussed in chapter 2, and does little to illuminate the properties relevant to the 

scheduling problem. Instead of forcing the classification of activities into predefined 

categories, such as work and shopping, this approach requires that respondents describe 

activities by their salient attributes, as proposed by Doherty (2006). 

 Fuzzy responses 

Activity characteristics are defined using fuzzy responses in this approach. A 

description of activity variation in terms of probabilities and ranges is potentially an 

intuitive method for respondents, and one that directly satisfies the input requirements of 

the mPHASE model. 
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 Interactive interviewing 

In contrast to the highly-structured format of surveys utilizing travel-activity diaries, 

this approach is more open-ended, by design, to allow flexibility of responses. Interactive 

interviewing, by engaging all household members in a two-way dialogue, is a method of 

improving the accuracy and completeness of open-ended responses. 

 Feedback and iterative input 

Although not implemented for the pilot study, synthetic schedules generated by 

mPHASE are intended to be shown to participants as they are providing responses. As 

one element of the interactive interview approach, the purpose of this feedback is to 

increase the identification of inconsistencies, to facilitate discussion, and to encourage 

greater engagement of participants in an iterative process of adding and revising activity 

characteristics when unrealistic schedules are displayed. 

 

 Description of the web-based survey instrument 

The companion web survey to the mPHASE model is intended to be interactive, and 

be completed by the household members together as a group. First, household members 

are asked to select the locations they typically might visit. Next, they are asked to 

describe the activities that might be performed at these locations. Finally, a series of 

schedules generated by the mPHASE model are presented, and the household members 

are asked to review them, and if necessary make revisions to their responses for activity 

locations and detail. 

 Selection of locations 

Identifying activity locations with the level of accuracy required for computing travel 

distances is a potentially time consuming task. The web survey provides respondents with 

several options for adding location marker icons to a Google Maps™ panel on the 

activity location data input page (Figure 3.1). The available methods are 1) a marker icon 

can be dragged directly onto the map, and positioned visually, 2) an address, if known, 

can be typed into search box, or 3) a place name can be typed into a search box. If the 

address or place name text searches return multiple results, the correct location can be 
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selected from a list, and the marker will be automatically placed in the correct location on 

the map. Regardless of the method used, when a location is added, an information 

window appears, prompting the user to input a place name, and select a place type. 

Respondents can continue to add markers in this manner, while the added locations are 

summarized as a list of place names alongside the map. 

 
Figure 3.1 Web survey input page: Activity locations . 

 Description of activity characteristics 

After a sufficient number of markers have been added to the location page, the 

interview proceeds to the activity details page (Figure 3.2). Participants are encouraged to 

add as many activities as they can, with an emphasis on those which 1) occur regularly, 

2) require long travel distances, or 3) require transporting bulky or heavy items, or a large 

number of passengers. 
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Figure 3.2 Web survey input page: Activity details. 

For each activity purpose, one or more activity templates must be defined, as 

described in chapter 2. The mPHASE model requires that probabilistic descriptions be 

provided in each of an activity template’s five dimensions – day, location, time, 

household participants, and items carried. Within each displayed row of an activity 

template, the five dimensions are represented by icons, the selection of which causes the 

appropriate detail popup window to appear (Figures 3.3, 3.4, 3.5, 3.6, and 3.7). The 

responses entered in these popup windows are used directly in the mPHASE model as the 

probability and range values defining the activity characteristics. 

The markers added previously to the locations page are made available in the activity 

places detail popup window (Figure 3.4). Multiple potential locations can be selected for 

each activity template, and a relative likelihood value assigned to each location. 



 

55 
 

 
Figure 3.3 Web survey input popup window: Day details. 

 
Figure 3.4 Web survey input popup window: Locations. 
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Figure 3.5 Web survey input popup window: Time. 

 
Figure 3.6 Web survey input popup window: Household participants. 

 
Figure 3.7 Web survey input popup window: Carried items. 

When multiple activity templates have been created within a single activity purpose, 

flexible rules can be created to define the relationships among the templates (Figure 3.8). 

Using these rules, any combination of an activity template’s occurrence likelihood, 
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frequency, or period can be defined, either independently, or in conjunction with other 

templates. This highly flexible use of rules allows many different activity patterns to be 

considered. For example, it’s possible to define rules which specify that an activity 

occurs at least three times a month, but never more than two days in a row. 

 
Figure 3.8 Web survey input popup window: Rule definitions. 

 Iterative review of generated schedules 

After several activity templates and their occurrence rules have been defined, it is 

possible to begin generating schedules using the mPHASE model. Even if participants 

have not yet fully described their common activities, a review of some sample daily 

schedules at this point can help to identify inconsistencies in the reporting of activity 

characteristics and rules. In addition to potentially improving the quality of the responses, 

an interactive process of reviewing generated schedules can help maintain participant 

interest throughout the survey. 
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3.3. Custom in-vehicle data acquisition equipment 
 Overview 

The purpose of the VUSE equipment is to record trip start time, trip end time, and 

route taken for every trip made by a household vehicle, along with images of the vehicle 

interior which show vehicle occupants and items carried. Furthermore because of the 

multi-week data collection period, the units should be capable of operating continuously 

without any action required by participants. 

There are a number of existing inexpensive GPS vehicle positioning devices which 

are capable of sensing vehicle location, heading, and speed. This information is either 

recorded to an on-board data logger, or transmitted in real-time to a data center via 

satellite or cellular phone networks. GPS units are also available which have been paired 

with video surveillance, consisting of a rearward facing camera mounted inside the 

vehicle near the top of the windshield, and a data recording or transmitting device. These 

video-capable units are intended for improving safety by offering parents of young 

drivers and managers of vehicle fleets the ability to remotely monitor driver behavior 

(McGehee et al. 2007; Richtel 2011).  However, the field-of-view of these single-camera 

units misses much of the vehicle interior and cargo areas, making them unsuitable for this 

study. 

The custom-designed VUSE equipment used in this research was developed by 

Micro-Basics, a small embedded electronics design firm, according to the specifications 

provided. A summary of the basic equipment specifications is given in Table 3.2. The 

production of 50 printed circuit boards was sourced to a firm specializing in low-volume 

prototyping, and 20 complete units were fabricated by the principal investigator and a 

research assistant. 
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Figure 3.9 Hardware block diagram of VUSE units. 

Table 3.2 Summary of VUSE Specifications 

 

 Trip detection and image capture logic 

A trip is defined here as travel from the location of one activity (the origin) to the 

location of another activity (the destination). For vehicular trips, this definition often 

coincides with occupants entering or exiting the vehicle. A stop at a bank or restaurant 

drive-thru window where the occupants remain in the vehicle would be an exception, and 

still considered a trip for this study. Cases when individuals exit the vehicle for some 

reason other than to conduct an activity are not considered trips. Examples include 

General
Unit size: 14 x 9 x 3 cm
Power input (at unit): 5 volt mini-USB
Image resolution (max): 640x480 pixels
Camera connections (max): 4
GPS: External receiver
Cost/unit: $200 (approx, w/2 cameras + GPS)

Vehicle electrical connections
Connection location: Vehicle cabin or engine fuse box
Unit power supply: 12 volt constant power circuit
Ignition signal input: 12 volt ignition-powered circuit
Vehicle circuit protection: 2 amp fuse

Data storage
Storage media: SD card
Data capacity (max): 2GB (approx 125 weeks)
File format: Comma separated value (csv)
Output file fields: GPS signal status, Date, Time, Lat, Long, Speed,

   Heading, Elapsed Time, Event Description, Event 
Configurable settings

GPS: Time interval, stop speed threshold, stop time threshold
Camera: Image resolution, image capture logic
Light Sensor: Trigger light level threshold
Microphone: Trigger sound level threshold
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returning to the trip origin to retrieve a forgotten item, stopping to ask for directions, or 

moving a vehicle because of parking restrictions. 

The task of GPS-based trip detection has been accomplished in previous studies 

using dwell time to automatically identify potential stops, followed by a manual 

inspection using GIS software to confirm the validity of the stop (Wolf et al. 2001). The 

use of dwell time as the sole means of instant trip identification will result in some 

improperly identified trips. Some very brief stops, such as dropping off a passenger, may 

only require several seconds. However, setting the dwell time threshold this low would 

result in many erroneous trip destinations at traffic signals and in congested areas. It is 

particularly important that the VUSE equipment minimize the number of misidentified 

trips in order to reduce unnecessary image processing time and storage requirements. By 

adding vehicle door open and close event sensing to vehicle speed sensing, the VUSE 

equipment allows a zero second dwell time threshold without generating false trips in 

traffic. 

The VUSE trip identification and image capture algorithms, using a configurable 

combination of events and system state rules, determine the occurrence of capture events 

which trigger one or more cameras and the associated time and GPS location. The trip 

start event is defined as the last door closing before the vehicle starts moving, while the 

trip stop event is the first door opening after the vehicle stops. The trip period is the time 

between the trip start and stop events during which the state of vehicle occupants and 

items carried, together the capacity state, are assumed to be fixed. 

Ideally, there will be one and only one capture event during each trip period, so that 

the capacity state can be assigned to the trip without ambiguity. This could be done by 

capturing an image just after the last door closing at the start of a new trip period. Two 

issues that arise are 1) it is not possible to know at the time a door closes if it is the last 

closing, and 2) without a supplemental light source, there will often be insufficient 

lighting to capture an image after last door has closed. This is also true, even in the 

daytime, for vehicles which have a cargo area in the trunk that is separate from the cabin. 

The configuration of the VUSE software allows capture event rules, shown in Table 3.3, 

to be defined separately for each camera. Multiple capture event rules can also be 
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assigned to a single camera to reduce the potential for missing images by causing capture 

at different points in the trip period. 

Table 3.3 VUSE System States and Capture Event Rules 

 

To illustrate how capture event rules are used to produce images of every capacity 

state, consider the example of a vehicle with two cameras, A and B. The timeline in 

Figure 3.10 shows the use of the vehicle for three separate trips. In the first trip, the driver 

takes a passenger, who places something in the trunk before leaving. The driver drops off 

the passenger without turning off the ignition. The second trip is the driver’s return home, 

where she turns off the ignition, opens the door, exits, and closes the door. In the third 

trip, the driver opens the door, turns on the car, and then places something in the trunk 

before closing the door. Another passenger then gets in, and after traveling to their 

destination, the ignition is turned off and both driver and passenger exit the vehicle. 

Camera A is located in the passenger area, and is configured to take an image 

according to rules 1, 2.1, 3.1, and 5.  The last digit of rules 2.x and 3.x identifies which of 

four light sensors are associated with a camera. In this example, light sensor 1 is located 

near the cabin dome light, and serves to trigger camera A on rule 3.1 the first time the 

dome light turns on while the vehicle is stopped. This is intended to provide an image of 

System States
Movement state: Set to 1(on) when speed threshold is exceeded

Set to 0 (off) when speed falls below threshold
Sound state: Set to 1(on) when threshold of peak sound relative to the average is exceeded 

   while vehicle is stopped
Set to 0 (off) when vehicle starts moving

Light state: Set to 1(on) when threshold of peak light is exceeded while vehicle is stopped.
Set to 0 (off) when vehicle starts moving

Powerup state: Set to 1 when the unit is powered on
(no 0 value, since  unit is inoperable without power)

Ignition state: Set to 1(on) when ignition-switched vehicle circuit is supplied with 12 volts.
Set to 0 (off) when vehicle starts moving

Capture Event Rules
Rule 1: Image capture in moving vehicle at trip beginning

Occurs when movement state changes from 0 to 1 while sound state = 1
Rules 2.x : Image capture in moving vehicle at trip beginning

Occurs when movement state changes from 0 to 1 while light sensor x  light state = 1
Rules 3.x : Image capture in stopped vehicle at trip completion, or previous parked state

Occurs when light sensor x  light state changes from 0 to 1
Rule 4:  Image capture at unit configuration.

Occurs when powerup state is set to 1
Rule 5: Image capture in moving vehicle at trip beginning

Occurs when movement state changes from 0 to 1 while ignition state = 1
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the capacity state for the trip just completed, and because the interior is illuminated, can 

be used in low-light conditions. Rules 1, 2.1, and 5 are intended to take an image just 

after the vehicle starts moving for the first time after a sound event, a light event, or an 

ignition event, respectively. These events often occur together at the start of a trip, and 

some redundancy in rule definitions can increase reliability against incorrect sensor 

readings. Multiple simultaneous triggers for a camera are reduced to a single image 

capture event. 

Camera B in this example is located in the trunk, and will take an image according to 

capture event rule 3.2.  Because there is usually no light in the trunk when the vehicle 

starts moving, the other rules are not appropriate. Light sensor 2 is located on the trunk 

illumination light, and serves to trigger camera B as soon as the trunk is open, the first 

time after the vehicle is stopped. The resulting image will represent the capacity state of 

all the previous trips since the trunk was last opened. 

 
Figure 3.10 Sample timeline of VUSE system state changes and image capture 

events. 
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3.4. Household Travel Patterns Study protocol 

While the mPHASE model and the companion web survey share many elements in 

common with existing travel behavior research techniques, some new concepts are 

unproven. In particular, the application of FEM to solve the scheduling problem and the 

web survey’s probabilistic description of activity characteristics are two ideas that require 

some evidence of their effectiveness in order to merit further attention. Small scale pilot 

studies are often used in travel behavior research to demonstrate new techniques (Ampt 

and West 1983). The purpose of these studies is not to draw any general conclusions 

about the population being studied, but instead to identify the strengths and weaknesses 

of the methodology.  

The goal of the Household Travel Patterns Study (HTPS) was to test the feasibility 

of using a web survey to 1) collect long-term travel pattern data, and 2) generate realistic 

multi-day schedules using mPHASE. A sample size of 30 households is sufficiently large 

to meet these objectives, and achievable within the five month study period by the HTPS 

team which consisted of the author and three undergraduate assistants. 

 Participant recruitment 

Eligible households for this study were required to have two regularly-used vehicles, 

at least two registered drivers, and a home internet connection. Some complexity in travel 

patterns was required to adequately test the methodology, so single-vehicle and single-

driver households were excluded. The limited number of data acquisition units prevented 

the inclusion of households with a large number of vehicles, so only households with two 

vehicles were considered. Additionally, applicants who made a significant number of 

trips by means other than their personal vehicles were not accepted, since it would not 

have been possible to observe their travel. The research team was required to make two 

home visits to each participant, so households were required to be within a one hour 

driving radius from the University of Michigan’s Ann Arbor campus. 

 Study subjects were recruited primarily through a call for participants posted on a 

website for local part-time job openings (Figure A.2). A financial incentive of $100 cash 

was provided to each household after completion of the web survey to compensate for 

their time and to alleviate any concerns about the installation of VUSE units in their 
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personal vehicles. A carry-out meal was also provided at the time of the first home visit, 

with a value of $8 - $15 per person, depending on their meal choice (Figure A.3). Aside 

from the purpose of assisting in recruitment, the meal was also intended to encourage all 

members of the household to take an interest in the study, and to actively contribute 

towards the completion of the web survey. 

Respondents to the call for participants were instructed to provide a contact phone 

number and other basic information using an online form (Figure A.4). Applicants were 

then contacted by phone by the author and given a brief description of the study purpose 

and what they would be expected to do as participants. After confirming their eligibility 

for the study, respondents were given a chance to ask questions. Those still expressing an 

interest were then asked if they would like to participate, and if so, an appointment was 

scheduled for the first home visit. 

  First home visit 

 Arrival and informed consent 

Initial home visits were scheduled for a time when all household members would be 

present, to the extent possible, and when all household vehicles would be available for 

equipment installation. The home visit team consisted of the author and one or two 

research assistants. After introducing the visit team and providing a verbal overview of 

the research, each licensed driver in the household was asked to sign an individual 

consent form, in paper format (Figure A.5and Figure A.6). 

At this point, participants were given the option of either taking the web survey 

immediately, or waiting until all household members were available to gather. In either 

case, a research assistant began installing the in-vehicle data acquisition equipment as 

soon as the consent forms had been signed. 

 Administering the web-based survey 

To conduct the survey, described in Section 3.2., a location in the participant’s home 

was selected where everyone could be seated to view an enlarged image of the laptop 

computer screen, projected on a blank wall.  After establishing a connection to the 

household’s internet service, the author initiated a session on the study website with a 

user id and password specific to that household. After briefly introducing the survey, the 
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four sections were completed sequentially, with the responses recorded by the author. 

Participants were informed that the target time required to complete the survey was 

between 60 and 90 minutes. 

 Installing the in-vehicle data acquisition equipment 

Observations of actual travel activity episodes over the study period were recorded 

using the in-vehicle data acquisition units designed and fabricated for use in this study. 

The Vehicle Utilization Survey Equipment (VUSE), described in detail in Section 3.3, 

combines the GPS receiver and position logging capability available in many off-the-

shelf units with the ability to capture digital images of the vehicle interior from up to four 

cameras. These images can then be used to document the travel party members without 

burdening participants with the requirement of recording household and non-household 

members in a written log. The images also show any cargo items carried, which would be 

difficult to note in a detailed and consistent manner using a log. 

The VUSE in-vehicle data acquisition units, described in detail in Section 3.3, were 

installed in the two household vehicles by the research assistants while participants were 

taking the web survey. The installation process required between 1.5 and 2 hours per 

vehicle, and did not require any permanent modification to the vehicles. The main 

module was placed under the driver’s seat, with 12 volt power provided by a wire 

connected to the vehicle’s fuse box. The cameras and GPS antenna were affixed to the 

interior plastic trim panels using removable double-sided adhesive tape. After completing 

the installation, a test was performed to confirm that the vehicle position and image data 

were being recorded properly. 

 Wrap-up and departure 

After completing the VUSE unit installation and survey, drivers were shown the 

equipment in their vehicles, and given instructions to not unplug the units during the data 

collection period. They were also asked to call the author immediately if they noticed any 

problems with the equipment such as cameras becoming detached, or a loss of power to 

the units. Participants were asked to select a time and date between two and three weeks 

later for a second home visit when the equipment could be recovered. Finally, the home 

visit team thanked the participating individuals, and departed. 
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 Second home visit 

Prior to removing the VUSE equipment, the collected data was checked for 

completeness. In cases where a correctable equipment malfunction in either of the 

vehicles resulted in missed data, households were asked to extend their participation to 

ensure a total of at least two weeks of data in both vehicles, concurrently. After 

confirming the units had functioned properly, photographs of the installation were taken 

for later reference and the equipment was removed, concluding the household’s 

participation in the study. 

 Data post processing 

A web-based tool was developed to improve the consistency and speed of data post-

processing VUSE data (Figure B.1). The main steps required for post-processing are 1) 

automatic identification of trip ends based on the recorded vehicle events, 2) visual 

inspection of identified trip segments, and correction with split and join operations, 3) 

flagging of erroneous trip segments, and 4) visual inspection of digital images and coding 

of passengers and items, and their locations in the vehicle for each trip segment. 

 Manual trip identification 

The VUSE equipment is well-suited for the automatic identification of trip ends, 

because it is capable of recording both vehicle ignition and door closing events. However, 

events such as an interruption in the gps signal, stopping to ask for directions after getting 

lost, or returning to a location to retrieve a forgotten item may result in the 

misidentification of trip ends. A post-processing tool was developed for the purpose of 

reviewing the automatically generated trip data. By visually inspecting the trip segment 

data on a map, incorrectly identified trips were corrected by joining or splitting segments, 

as necessary (Figure B.1). 

In other cases poor GPS reception, a power supply issue or other equipment failure 

resulted in a gap in the trip segment path. In these cases, error codes were assigned to the 

trip segment based on a visual inspection of the suspect path, and those before and after 

(Table 3.4). 
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Table 3.4 Segment Post Processing Error Codes 
Error code Description 
0 Parked Events recorded while vehicle parked 
1 Missing start Path does not contain identifiable start 
2 Missing middle Path has gap between segment start and end 
3 Missing end Path does not contain identifiable end 
4 Shuffled Segment consists of movement to another parking location 
5 Configured Segment begins with unit power-up 
6 GPS jump after Path has gap between segment end and next segment start 
7 Missing start and end Path does not contain identifiable start or end 

 Digital image inspection and coding 

The post-processing of digital images was conducted through a process of visual 

inspection. The web-based post-processing tool simultaneously displays all the images 

captured during a trip segment, allowing the items carried and vehicle occupant 

information to be input with some consideration of the context of the particular trip 

(Figure B.1). 

3.5. Results of pilot study 
 Sample description 

The Household Travel Patterns Study (HTPS) pilot investigation described in 

chapter 3 was conducted in 2011 using thirty households in the Ann Arbor, Michigan 

area (Figure 3.11). Study requirements stipulated two-household vehicles, although the 

types of those vehicles varied widely from compact 4-passenger cars to 8-passenger, full-

size SUV’s (Figure 3.13). The largest household size was five members, while multiple 

households had two members. Half of the households had one or more minors (Figure 

3.12). 
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Figure 3.11 Location of participant households in southeast Michigan. 

 Household members 

 
Figure 3.12 Age and gender of household members. 
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 Vehicles 

 
Figure 3.13 Passenger capacity range of vehicles in household – Max and Min 

 Interactive web survey experience 

The group interview process was, in nearly every case, found to be an effective 

method for encouraging discussion among participants. Arranging the interviews at a 

meal time, and providing a carry-out meal as an incentive was likely an important factor 

in the success of this approach. In only two households was it necessary for the primary 

contact person in the household to provide activity information on behalf of another adult 

household member. In both of these cases, the non-participation was due to scheduling 

conflicts, and not, apparently, due to lack of interest. 

For the thirty households, the interactive survey required an average of 90 minutes, 

to complete, ranging from as short as 30 minutes to as long as 140 minutes. Some 

improvements in the web survey instrument allowed more activity details to be collected 

in a given time for the later households. Throughout the study period, longer survey 

durations were correlated with greater details in terms of the number of reported activity 

purposes, templates, and locations (Figure 3.14), and in general, the survey improvements 

did not reduce the time to complete the interview. 

All participants seemed able to easily conceptualize the reporting of activities in 

terms of ranges and probabilities for frequency, time, location, participants. The reporting 

of items carried was unproblematic for common shopping activities. However, for less 
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frequent activities requiring the transport of large or heavy items, reporting was 

complicated by the lack of pre-coded items in the survey instrument. 

 
Figure 3.14 Activity response detail for a) templates, and b) locations. 

 Multi-day schedules generated using mPHASE 

Based on the responses generated by the HTPS pilot investigation, the mPHASE 

model was able to generate synthetic schedules which exhibited many of the 

characteristics of complex household travel. Total daily travel distances were found to 

exhibit 1) distinct patterns of weekday and weekend travel, 2) occasional non-travel days, 

and 3) occasional high-travel days (Figure 3.15). 

Complex household interactions were evident in the generated schedules, including 

1) the assignment of activities to designated household members according to their 

availability, and 2) the coordination of picking up and dropping off other household 

members at their activities. 
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Figure 3.15 Average daily household distance - Synthetic vs. observed travel. 

 
Figure 3.16 Variation in daily travel distance - Synthetic vs. observed travel. 
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Figure 3.17 Average daily number of trips - Synthetic vs. observed travel. 

 
Figure 3.18 Variation in daily number of trips - Synthetic vs. observed travel. 
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Capability constraints and the optimal assignment of 
vehicles to trips 

Transportation energy use for households with access to multiple vehicles can be 

heavily influenced by decisions regarding which vehicles should be used to conduct the 

desired travel-activity schedule. While these vehicle-to-trip assignment decisions may be 

influenced by a variety of factors, at a minimum the vehicles selected must be capable of 

meeting the physical requirements of the trips. The number of people in the travel party, 

the items carried, and the distance to an activity location are examples of trip 

requirements that cannot exceed the constraints imposed by the capability of the selected 

vehicle. 

This chapter begins with a review of existing constraints-based techniques, and 

previous work on the household vehicle assignment problem. The Constraints-based 

Transportation Resource Assignment Model (CTRAM) is then introduced which 

determines the fuel-use minimizing vehicle assignments for a given travel schedule and 

vehicle fleet. This original enumerative optimization model is unique in its ability to 

consider any number of vehicle attributes related to an activity’s physical travel 

requirements in a computationally efficient manner. One of the most common vehicle 

constraints, passenger capacity, is considered here in some detail, although the model can 

also account for vehicle range and cargo carrying capability, among others. 

An analysis of the 2001 and 2009 National Household Travel Survey (NHTS) is then 

presented. By supplementing this publicly available survey data with detailed vehicle 

specification data, the CTRAM model is able to explore the influence of vehicle 

capability constraints on potential energy saving strategies more thoroughly than was 

possible using previously existing methods. Questions investigated in this chapter include 
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the potential fuel savings with optimal assignments, the influence of fuel prices, and 

differences in assignment decisions between 2001 and 2009. 

A constraints-based approach to the problem of vehicle assignment is appropriate for 

exploring the boundaries of behavioral reaction to a given scenario, but is not intended to 

predict what an actual response might be. Nevertheless, based on single-day travel survey 

data, the CTRAM model can provide useful insights into the energy savings that can be 

achieved using existing household fleets. When provided with the hypothetical, multi-day 

activity schedules generated using the methodology described in chapter 2, the CTRAM 

model can be used to investigate a wider range of strategies, including changes in 

household fleet composition and size, the adoption of range-limited electric vehicles, and 

the use of alternatives to personal vehicles, such as public transportation, walking, biking, 

and car sharing. 

4.1. Background 

The explicit consideration of constraints in travel analysis was an important 

contribution made by geographers at the University of Lund in the late 1960’s. The time-

space prism framework they developed integrates various types of constraints 

(Hägerstrand 1970), and defines how an individual’s spatial boundaries of potential 

movement change as he progresses through time (Lenntorp 1976). An individual’s range 

of travel is defined by the type of transportation, or more generally, by the capability 

constraints imposed by the available technology, and may be expanded with the 

availability of faster transportation. An individual’s path in space and time within a prism 

is governed by coupling constraints that define when and where the individual has to join 

other individuals, tools, and materials and authority constraints that arise from the 

various rules that are observed in work, home, public, and other domains. Of these three 

types of constraints identified by Hägerstrand, coupling and capability constraints are 

particularly relevant to vehicle assignment decisions and household transportation energy 

use, and are the focus of the constraints-based methodology introduced in this chapter. 

 Household fleet capability and coupling constraints 

 The actual decision of which vehicle to use for a trip will be based on a wide range 

of factors that include personal preference, convenience, habit, and household rules 
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restricting drivers from particular vehicles. But at a minimum, the selected vehicle must 

be capable of meeting the physical requirements of the trip, and be available when the 

travel party embarks. 

The availability of a vehicle at the correct time and place is dependent on the 

coupling constraints which govern not only how household members coordinate activities 

with others, but also how common resources like vehicles are scheduled and shared. The 

need to coordinate vehicle use is evident in households with more drivers than vehicles. 

But even in households with one or more vehicles per driver, scheduling conflicts may 

result in the preferred vehicle being unavailable at the required time. 

Availability is not by itself sufficient for trip assignment since the vehicle used must 

also have the ability to reach the destination in the required time, and to carry the people 

and cargo that need to be carried to and from the activity location. Capability constraints 

may reduce the number of feasible options, leaving only those vehicles with sufficient 

capacity, range, and average speed (given the available refueling infrastructure, traffic 

congestion, and weather conditions). 

Capability constraints are particularly relevant when considering energy use, since at 

a given level of technology, a decrease in capability is invariably tied to a decrease in a 

vehicle’s fuel consumption rating (defined in terms of the amount of fuel consumed per 

unit of distance traveled) as reduced vehicle size and power requirements leads to 

reduced inertial mass and frictional losses.  One measure of the potential to reduce 

capacity is the load factor, which is expressed as the ratio of the carried load to the 

vehicle capacity. For passenger travel in the U.S., average load factors of 0.83 for 

domestic air travel (BTS 2011), 0.49 for passenger rail (Amtrak 2011), and 0.333 for 

automobiles (Santos et al. 2011) indicate that there is an opportunity to save energy by 

either reducing vehicle size, or increasing the number of passengers per vehicle. However, 

eliminating excess capacity is complicated by the variability in transportation needs, and 

the uncertainty of accurately projecting future needs. As McCarthy (1984) noted, “the 

larger capacity expected to be needed for some trips, however infrequently, induces 

households to purchase vehicles with enough room to meet these contingencies. Similar 

considerations apply to other features, including load carrying and performance. As a 

                                                           
3 Based on the reported average of 1.67 occupants per trip, and an assumed passenger capacity of 5. 
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result, there occurs, on average, a mismatch between a household's trip requirements 

and the characteristics embodied.” 

When a fleet is composed of a diverse range of vehicles, some level of capacity 

matching can be achieved by assigning the vehicle with capabilities just sufficient to 

satisfy the trip requirements. This practice is common for businesses and institutions that 

manage large fleets, and is the topic of many studies in the branch of operations research 

dealing with logistics. On a smaller scale, households with multiple vehicles can also 

realize some energy savings through vehicle assignment decisions. 

 Constraints-based methods and vehicle assignment in previous work 

Many of the earliest constraints-based disaggregate travel studies were strongly 

influenced by the space-time prism concept pioneered by the Lund School. Studies of 

accessibility – the range of destinations that can be reached by an individual – were a 

natural application of this approach. Lenntorp (1976) investigated accessibility, and the 

effects of varying average travel speeds, connection schedules, and wait times that 

characterize multi-modal, public transportation journeys.  Burns (1979) used a similar 

approach to argue that greater highway travel speeds of personal automobile trips had 

objectively increased accessibility, despite the longer travel distances associated with 

low-density suburban development. Forer and Kivell (1981) used space-time prisms to 

investigate the accessibility of urban destinations for women in single-vehicle households.  

Following the fuel shortages of the 1970’s, constraints-based methods were applied 

to answer questions regarding household vehicle usage and energy conservation. An 

initial step in this direction was the recognition that when considering the energy 

efficiency of travel, passenger miles traveled (PMT) is a more meaningful measure of 

vehicle utilization than commonly used measure of vehicle miles traveled (VMT) (Lee-

Gosselin 1983). 

One approach to investigating the role of constraints in household travel decisions is 

the use of gaming simulations in an interactive household interview, as conceived by the 

pioneering work done at Oxford University’s Transport Studies Unit on the Household 

Activity Travel Simulator (HATS) (Jones 1979). The HATS methodology employs a 

game board, where scheduled vehicle use is represented with colored blocks which 

provide an intuitive, physical representation of scheduling conflicts and coupling 
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constraints. New York state transportation planners adapted the HATS methodology to 

create the Response to Energy and Activity Constraints on Travel (REACT) game, to 

investigate how one and two-vehicle households would react to public policies for energy 

conservation such as gasoline rationing, and vehicle-specific no-drive days (Phifer et al. 

1980). The Car-Use Patterns Interview Game (CUPIG) modifies the HATS approach to 

include a fuel budget allocation dimension (Lee-Gosselin 1990). Respondents are given a 

limited number of tokens, representing units of fuel, which they can use to indicate their 

household vehicle assignment decisions as they attempt to modify their activity schedules 

to adapt to various fuel shortage and energy conservation scenarios. 

Vehicle assignment decisions have been incorporated into predictive models of 

travel behavior using econometric, random utility maximizing (RUM) methods. This 

approach has been adopted in analyses of mode choice to address the question of whether 

any, rather than which, household vehicle will be used (Bhat and Koppelman 1993; 

Roorda et al. 2006). However, for an analysis of energy use, an understanding of how 

particular vehicles are used is vital. Econometric methods which require that choice sets 

be defined in advance are not well-suited for the complete analysis of assignment 

decisions in multi-vehicle households, where the number of possible combinations can be 

exponentially large. To make the assignment problem more tractable, statistical methods 

like structural equation modeling and RUM have been used to quantify how the 

characteristics of vehicles in the household fleet are related to their utilization, defined 

not by a vehicle’s use on an individual trip assignment, but by its proportion of total 

household travel distance (Mannering 1983; Hensher 1985; Golob et al. 1996). The 

disadvantage of this aggregate approach is its inability to identify scheduling conflicts 

and specific activity requirements that may limit vehicle choices. 

Simulation techniques offer the potential for considering disaggregated vehicle 

assignment decisions in a manner that is computationally manageable. Following nearly 

two decades with little advancement in methodology, aspects of the Lund School’s space-

time prisms have begun to appear in more comprehensive simulation models of travel-

activity behavior. The Prism-Constrained Activity-Travel Simulator (PCATS), which was 

designed as a more complete modeling system to predict behavioral responses to such 

disturbances as increased traffic congestion, and changes in work schedules (Kitamura 
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and Fujii 1998). Another simulation incorporated the range limitations of walking and 

biking to study potential reductions of automobile dependency in French cities (Massot et 

al. 2006). 

4.2. CTRAM - Constraints-based Transportation Resource Assignment Model 

Constraints-based methods allow researchers to explore the boundaries of potential 

behavioral responses, without the uncertainties involved with predictive behavioral 

models (Recker and Parimi 1999). This advantage is particularly beneficial if one wishes 

to investigate scenarios that are dramatically different from the existing conditions, when 

the empirical specification of a predictive model would be difficult to justify. For 

example, efficient vehicles available now and in the future are likely to have different, 

and sometimes reduced, capabilities from the vehicles they replace. Electric vehicles with 

range limitations cannot be used in the same way as conventionally fueled vehicles, and 

the consideration of range and other capability constraints to remove infeasible choices 

can improve the realism of any model of vehicle utilization, regardless of the 

methodology used. The Constraints-based Transportation Resource Assignment Model 

(CTRAM) presented below is intended to provide insight into the potential for household 

transportation energy savings through the optimal assignment of transportation resources. 

The focus here is on household fleets of personal vehicles, but transportation resources 

in the model might include any mode of transportation, public or private, motorized or 

non-motorized. 

 Model Overview 

The goal of the optimal vehicle assignment problem can be summarized as finding 

the combination of vehicle to trip assignments which minimizes total cost while 

satisfying the requirements of the travel schedule. The term “cost” is used in the general 

sense, and might include any of the negative effects of travel, including emissions of 

greenhouse gases, fuel consumption, or monetary expenditures. The flow diagram shown 

in Figure 4.1 illustrates the inputs required for CTRAM’s household vehicle assignment 

algorithm to produce optimal vehicle assignments. The schedule and trip requirement 

inputs can be provided by household travel diary data, as demonstrated in section 4.3, or 

by synthetic schedules like those generated using the methodology described in chapter 2. 



 

79 
 

The household vehicle fleet can be the actual vehicles, in which case the model output 

can be used to gauge the degree of optimality of the actual vehicle assignment decisions. 

Or, various hypothetical fleets can be compared to determine the combination of vehicle 

characteristics which provide the greatest potential for savings.   

 
Figure 4.1 CTRAM flow of model inputs and output. 

 Travel blocks and scheduling conflicts 

The model is structured around the household as the basic unit of analysis, within 

which individuals are likely to share resources and conduct some activities jointly. The 

travel-activity schedules of every household member are combined into a single schedule 

which includes information about trip origin, destination, start time, and end time. A tour 

is defined as the combination of trips which start and end at a common location. Work-

based tours would be common for an employee who conducts errands on her lunch hour, 

although any location might serve as a tour origin, as in the case of a parent who goes 

shopping between dropping off and picking up his child at an activity. Home-based tours 

are of particular interest in the vehicle assignment problem, because it offers the only 

opportunity under normal circumstances to exchange vehicles with other drivers in the 

household. For clarity, a home-based tour is hereafter referred to as a travel block, and 

defines the time period when the vehicle is unavailable for other trips (Figure 4.2). 

Household Vehicle 
Assignment Model

Optimal Vehicle 
Assignment

Household Travel 
Schedule

Trip Requirements

Household Vehicle 
Fleet

Vehicle Capability 
Specifications

Specified Objective 
Function
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Figure 4.2 Household vehicle use schedule with trips grouped by travel blocks. 

When a single vehicle is used for multiple trips with varying requirements, the 

assigned vehicle must satisfy the most demanding requirements for all trips in the block 

(Table 4.1, Figure 4.3). For example, if a travel block includes shopping or picking-up 

passengers, the capacity requirements for cargo and passengers must be satisfied for the 

entire travel block, even if the vehicle capacity in some trip segments is underutilized. 

Excluding the identical trips for multiple household members travelling jointly, sets of 

blocks which overlap in time represent conflicts for the shared vehicles. If the travel 

schedule is to be successfully completed, the number of feasible vehicle choices (i.e., 

satisfying both vehicle capability and availability requirements) must be no less than the 

total number of conflicting blocks at any time. 

Table 4.1 Vehicle Specifications for Sample Household Fleet 
Vehicle ID 

 
Fuel consumption 

(L/100km) 
Passenger 
Capacity 

Cargo Capacity  
(103 Liters) 

Maximum 
Range (km) 

A 
 

7.8 0.6 ∞ ∞ 

B 
 

9.8 0.9 ∞ ∞ 

C 
 

15.7 1.9 ∞ ∞ 
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Figure 4.3 Vehicle capability requirements of ordered travel blocks. 

 Enumeration of assignment combinations 

The task of assigning the vehicles in a fleet to travel blocks in order to optimize 

some objective function is not a trivial one. For example, if the objective is to minimize 

fuel consumption, one strategy is to always select the most efficient vehicle available for 

the next travel block. This decision making algorithm is known as greedy, and does not 

always yield optimal results because there is no consideration of how a current decision 

will influence the available choices in the future. In the example shown in Figure 4.3, the 

greedy algorithm applied to the first travel block would make the most efficient vehicle 

unavailable for subsequent blocks of greater distance, and therefore not result in the 

lowest possible total fuel consumption. A more rigorous approach requires the 

simultaneous consideration of conflicting blocks. Even when two blocks do not directly 

conflict, a choice made in one block may affect the set of choices available for a later one 

through a cascading effect. These conflict cascades are defined here as sets of travel 

blocks which can be identified by sorting all the blocks by starting time, and including 

each block which overlaps any of the previous blocks. The first block which does not 

overlap any of the earlier blocks will form the start of the next conflict cascade set. 

Analyzing choices by dividing schedules in this way can reduce the computational 

requirements of the model considerably, since the number of assignment combinations, m, 
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increases dramatically with the number of travel blocks in the conflict cascade, p 

(equation 4.1). 

𝑚 = ∏ 𝑎𝑘
𝑝
𝑘=1   ( 4.1) 

The elements of the vector a represent the number of vehicles available to choose 

from at the start of each travel block. The values of a can be determined by subtracting 

the number of vehicles in use at that time from the number of vehicles available at the 

start of the conflict cascade, a1, which would normally be equal to the size of the 

household fleet (equations 4.2, 4.3). 

𝑎𝑘 = 𝑎1 − 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑢𝑠𝑒  ( 4.2) 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑖𝑛 𝑢𝑠𝑒 = �𝑏𝑙𝑜𝑐𝑘𝑠 𝑠𝑡𝑎𝑟𝑡𝑒𝑑 −�𝑏𝑙𝑜𝑐𝑘𝑠 𝑒𝑛𝑑𝑒𝑑  ( 4.3) 

Continuing the example in Figure 4.3, for a household with a fleet of three vehicles, 

𝑎 = [3 2 2 1 2], and 𝑚 = 24. 

The vector a can be used to generate the ranked choice matrix, C with each column 

representing one of the m unique possible assignment combinations. The 24 possible 

assignment combinations for the five travel blocks in this example are represented by the 

p x m (5 x 24) matrix in equation 4.4. 
greedy choice actual choice
combination combination

1 22

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 33
1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 22
1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 22
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

j j

a C

= =
↓ ↓

 
 
 = ⇒ = 
 
   52 k

 
 
 
 
 
 ← = 

 
( 4.4) 

The values of the ranked choice matrix, C, represent the ordinal position of the 

chosen vehicle within the set of available vehicles of size ak. The method of ordering the 

available vehicle set is not critical, so long as the method is applied consistently. If, as in 

this example, available vehicles are ranked according to increasing fuel consumption, 

with the most efficient available vehicle first, a column of all ones in the C matrix 

represents the greedy choice combination for the objective function of minimizing fuel 

use. The composition of the available vehicle sets at the start of each block varies for 
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each of the m combinations because the vehicles in use at any time are a result of choices 

that were made for previous travel blocks. For example, the chosen vehicle for the fifth 

travel block of the actual choice combination, j = 22, is the second vehicle from a two-

vehicle set (see equation 4.4). This corresponds to vehicle C, because vehicle B is still 

occupied by the fourth travel block. If the travel block schedule is used in this way to 

translate all the position values from the ranked choice matrix, the result is the vehicle 

choice matrix, U, with a column for each unique assignment combination, whose 

elements represent vehicle assignments not by rank, but by the particular vehicle 

identifiers (equation 4.5). 

𝑈 =

⎣
⎢
⎢
⎢
⎢
⎡
A A A A A A A A B B B B B B B B C C C C C C C C
B B B B C C C C A A A A C C C C A A A A B B B B
B B C C B B C C A A C C A A C C A A B B A A B B
C C B B C C B B C C A A C C A A B B A A B B A A
A B A C A B A C A B B C A B B C A C B C A C B C⎦

⎥
⎥
⎥
⎥
⎤

 ( 4.5) 

 Capability constraints and feasible assignments 

Availability does not guarantee the feasibility of a choice because a vehicle must also 

be capable of meeting the requirements of the travel block. For a household with n 

vehicles, a capacity utilization matrix, CU, with dimensions p x n can be defined for each 

capability constraint of interest. Capacity utilization is calculated as the ratio of each 

travel block’s capacity requirements to the maximum capacity of each vehicle. Equation 

4.6 shows occupancy and cargo volume capacity utilization matrices for the example 

household in Figure 4.3. The utilization of range, towing capacity, and other measures of 

vehicle capability can also be represented in this way. 

                      vehicles                                                     vehicles  
                     A        B        C                                            A              B            C 

𝐶𝑈𝑜𝑐𝑐 =

⎣
⎢
⎢
⎢
⎡
1/5 1/7 1/3
4/5 4/7 4/3
2/5 2/7 2/3
1/5 1/7 1/3
1/5 1/7 1/3⎦

⎥
⎥
⎥
⎤
𝑘 = 2

,𝐶𝑈𝑐𝑟𝑔𝑣𝑜𝑙 =

⎣
⎢
⎢
⎢
⎡
0.2/0.6 0.2/0.9 0.2/1.8
0/0.6 0/0.9 0/1.8
0/0.6 0/0.9 0/1.8
0/0.6 0/0.9 0/1.8
0/0.6 0/0.9 0/1.8 ⎦

⎥
⎥
⎥
⎤

 
( 4.6) 

Elements of CU with a value greater than one indicate that the vehicle is not capable 

of meeting the requirements of a travel block, and therefore any choice combinations 

containing that vehicle and travel block pair are infeasible. In this example, the number of 
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passengers in the second travel block exceeds the capacity of vehicle C, as indicated with 

a strikethrough in equation 4.6. Therefore, the choice combination columns 5 thru 8 and 

14 thru 17 in U can be excluded from further consideration (equation 4.7). 

𝑈 =

⎣
⎢
⎢
⎢
⎢
⎡
A A A A A A A A B B B B B B B B C C C C C C C C
B B B B CX CX CX CX A A A A CX CX CX CX A A A A B B B B
B B C C B B C C A A C C A A C C A A B B A A B B
C C B B C C B B C C A A C C A A B B A A B B A A
A B A C A B A C A B B C A B B C A C B C A C B C⎦

⎥
⎥
⎥
⎥
⎤

  

                         

                   

                            
���������

infeasible 
choice combinations

     

                   

                            
���������

infeasible 
choice combinations

 

( 4.7) 

 Determining the optimal assignment combination 

The distances of the travel blocks are represented in this example by a p-length 

vector, 𝑑 = [26 13 80 45 64]𝑘𝑚, while fuel consumption of the household fleet 

is given by the n-length vector, 𝑓 = [7.8 9.8 15.7]𝐿/100𝑘𝑚. The total fuel use by 

the household, Fj, (for assignment combination j) can be calculated by summing the 

products of the block distances and the fuel consumption of the assigned vehicle, v 

(equation 4.8). 

For fuel use: 𝐹𝑗 =  ∑ (𝑓𝑣 ∙ 𝑑𝑘) 𝑝
𝑘=1  , where v is the vehicle assigned to the kth block  

                                                          and jth choice combination (𝑣 = 𝑈𝑘,𝑗) 
( 4.8) 

Total monetary expenditures, Mj, and greenhouse gas emissions, Gj, can be 

calculated in the same way using vectors of the relevant cost per unit distance traveled, e 

and g, respectively (equations 4.9 and 4.10). The elements of g represent the total fuel 

cycle greenhouse gas emissions in units of 𝑔 ∙ 𝐶𝑂2/𝑘𝑚 for each vehicle in the fleet. 

Elements of the e vector represent operating expenditures, in units of $/𝑘𝑚, and include 

expenditures on fuel, and components of vehicle depreciation, maintenance, and 

insurance which depend on distance driven. 

For monetary expenditures:                  𝑀𝑗 =  ∑ (𝑒𝑣 ∙ 𝑑𝑘)𝑝
𝑘=1   ( 4.9) 

For greenhouse gas emissions:              𝐺𝑗 =  ∑ (𝑔𝑣 ∙ 𝑑𝑘)𝑝
𝑘=1   ( 4.10) 

The optimal vehicle assignment, j,opt, can be determined by finding the minimum 

total cost from among all j assignment combinations (equations 4.11 thru 4.13). For a 

fleet composed of single-fuel vehicles, the optimal vehicle assignment combination will 



 

85 
 

be the same for both the fuel use and greenhouse gas minimizing objective functions. 

Similarly, the optimal assignment for monetary expenditures will agree with the fuel use 

objective when fuel costs dominate operating expenditures. This will not be the case if 

any of the available vehicles are capable of operating on multiple energy sources. For 

example a plug-in hybrid electric vehicle (PHEV) uses a combination of gasoline and 

electricity, and the variations in emissions intensity and price for the two energy sources 

will likely result in different vehicle assignment combinations for optimal greenhouse gas 

emissions and monetary expenditures. 

Optimal fuel use:                                    𝐹𝑗,𝑜𝑝𝑡 =  min𝑗=1:𝑚�𝐹𝑗�  ( 4.11) 
Optimal monetary expenditure:            𝑀𝑗,𝑜𝑝𝑡 =  min𝑗=1:𝑚�𝑀𝑗�  ( 4.12) 

Optimal greenhouse gas emissions:       𝐺𝑗,𝑜𝑝𝑡 =  min𝑗=1:𝑚�𝐺𝑗�  ( 4.13) 

Concluding the example in this section, for all feasible choice combinations the 

minimum possible fuel use of 20.8 liters occurs with choice combination j=17, which is 

20 percent less than the actual fuel consumption (j=22, 26.1 liters), and 11 percent less 

than the greedy choice combination (j=1, 23.3 liters). 

4.3. Analysis of 2001 and 2009 NHTS data using CTRAM 

This section presents an analysis of these two latest versions of the NHTS, 2001 and 

2009, based on the results of the CTRAM model. The goals of this application of 

CTRAM are 1) to quantify the opportunities for reducing fuel use through optimal 

vehicle assignment, and 2) to investigate any changes in the optimality of assignment 

decisions that may have occurred over the past decade. 

 Description of 2001 and 2009 NHTS data sets 

Beginning in 1969 when the first Nationwide Personal Transportation Survey (NPTS) 

was conducted, the U.S. Federal Highway Administration (FHWA) has periodically 

conducted national surveys to help policy makers and researchers quantify travel 

behavior by mode, intensity, and purpose, and to identify trends and demographic 

relationships for various travel characteristics. The surveys in the series are a convenient 

source of data because they are publicly available, offer generally consistent questions 

and coding of variables for cross-year-comparisons, and have sample sizes large enough 

to permit the targeted analysis of households with the particular characteristics of interest. 
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For use in the CTRAM model, the surveys are especially valuable because they contain 

information about trips for all members of a household, and for trips using a household 

vehicle, specify the year, make, and model used and the number of occupants (Table 4.2). 

Table 4.2 Minimum Data Requirements for CTRAM 
Characteristic Details 
Household Composition of vehicle fleet (year, make, model) 
Vehicle Fuel consumption rate 

Capability (max occupancy, cargo volume, other) 
Trip Start/end times 

Depart/return home flag 
Distance 
Occupancy/ other capacity requirements 

Households which did not complete any trips on their assigned travel day, or began 

or ended the day away from home are not suitable for analysis using the CTRAM model. 

This analysis is focused only on light-duty vehicle utilization, so households without at 

least one vehicle or with a motorcycle in the fleet were also not considered. After 

removing samples which displayed one or more of these characteristics, the suitable 

sample size was 13,347 households in the 2001 NHTS, and 54,785 households in the 

2009 NHTS (Table 4.3). 

Table 4.3 2001 and 2009 NHTS Sample Sizes 
 Survey period Sample size 

(households) 
Suitable sample size 

(households) 
2001 March 2001 - May 2002 26,038 13,347 
2009 March 2008 - May 2009 150,147 54,785 

 Adding vehicle specifications to NHTS data 

The information collected by the NHTS about household vehicles is limited to model 

year, manufacturer, and model name. Precise values for fuel consumption are unknown 

since these characteristics may vary according to vehicle trim, engine, and transmission 

options. The U.S. Energy Information Administration (EIA) provided an augmentation to 

the 2001 and 2009 NHTS, adding vehicle fuel economy values (measured in miles per 

gallon) based on the EPA test values, adjusted to account for some of the factors which 

influence the actual, in-use vehicle performance (U.S. EIA 2011). However, the EIA data 

makes adjustments for real-world driving based on the vehicle distance traveled on the 

study day, which is one of the dependent variables output by CTRAM. Also, the EIA 

does not provide separate city and highway fuel consumption rates, thereby eliminating 
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the possibility of applying more accurate, trip-specific values. Finally, important vehicle 

capability specifications such as passenger and cargo capacities are not available in either 

the original NHTS data or the augmented EIA data. For these reasons, a procedure was 

developed for augmenting the NHTS data with vehicle specifications from other data 

sources. 

 Chrome New Vehicle Database 

Detailed vehicle specifications have been compiled into proprietary databases for 

most light-duty vehicles sold in the U.S. over the past two decades. A primary use for this 

data is to provide information to consumers via commercial websites to assist vehicle 

purchase decisions (vehix.com 2011; cars.com 2011; edmunds.com 2011). For this study, 

a data product prepared by Chrome Systems Inc. was obtained for supplementing the 

NHTS data. The Chrome New Vehicle Data (NVD) contains detailed specifications for 

every new vehicle sold since 1997, and more limited data for vehicle model years 1983 to 

1996. 

 In-use fuel consumption 

Prior to the 2008 model year, EPA methodology for testing new vehicles has tended 

to underestimate the fuel used in real-world driving conditions. Adjustment factors are 

applied to correct test results for city fuel consumption, fccty, (equation 4.14) and highway 

fuel consumption, fchwy, (equation 4.15) using the methodology of Mintz et al. (1993). 

Beginning with 2008 model year vehicles, the EPA testing methodology was revised to 

account for higher driving speeds, more aggressive driving styles, and air conditioning 

use in real-world driving, so that corrections are not applied to test values for these newer 

vehicles. 

For pre-2008 model year:                 𝑓𝑐𝑐𝑡𝑦 = 0.90 ∙ 𝑓𝑐𝑐𝑡𝑦,𝑡𝑒𝑠𝑡  L/100km ( 4.14) 
For pre-2008 model year:                𝑓𝑐ℎ𝑤𝑦 = 0.78 ∙ 𝑓𝑐ℎ𝑤𝑦,𝑡𝑒𝑠𝑡  L/100km ( 4.15) 

Fuel consumption values which are not available in the Chrome NVD are estimated 

using the combined city and highway fuel economy value, fecmb (measured in miles per 

gallon) that is available in the NHTS data for most vehicles. The EPA’s assumption of a 

45 percent city, 55 percent highway driving proportion was used originally to generate 

the NHTS fecmb value based on separate city and highway fuel economy values. Using 
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this knowledge, and the additional assumption that city driving uses 15% more fuel than 

highway driving, fecmb can be converted into separate city and highway fuel consumption 

rates (equations 4.16 and 4.17). 

                     𝑓𝑐𝑐𝑡𝑦 = 235.21 𝐿/100𝑘𝑚
𝑔𝑎𝑙./𝑚𝑖.

/((0.55 + 0.45 ∙ 0.85) ∙ 𝑓𝑒𝑐𝑚𝑏
𝑚𝑖.
𝑔𝑎𝑙.

)  ( 4.16) 

                    𝑓𝑐ℎ𝑤𝑦 = 235.21 𝐿/100𝑘𝑚
𝑔𝑎𝑙./𝑚𝑖.

/((0.55/0.85 + 0.45) ∙ 𝑓𝑒𝑐𝑚𝑏
𝑚𝑖.
𝑔𝑎𝑙.

) ( 4.17) 

 Characteristics of vehicles in 2001 and 2009 

The 2001 and 2009 NHTS surveys were conducted primarily in 2001 and 2008, 

respectively. However, due to the range of vehicle ages in operation (see Figure 4.4), 

many vehicles in the 2001 survey are of 1980’s vintage, while many in the 2009 survey 

are from the 1990’s. The characteristics of vehicles in household fleets are therefore not 

necessarily equivalent to those of new models at the time of the survey, but instead reflect 

vehicle lifespans, and market penetration of the various vehicle classes, designs, and 

technologies over roughly the two preceding decades. 

The average age of vehicles in 2009 was 9.24 years, slightly more than 8.83 years in 

2001. Some of this increase may be due to an increase in reliability leading to longer 

vehicle holding times. A sharp decrease in the proportion of vehicles under two years old 

in 2009 indicates that the slow-down in vehicle sales that accompanied the 2007–2009 

recession was an unusual, possibly temporary, factor in the average age increase. 

 
Figure 4.4 Distribution of vehicle ages in 2001 and 2009. 

The characteristics of vehicles in operation in 2009 were a reflection of federal fuel 

efficiency standards that had remained virtually unchanged since 1984, and increased fuel 

prices had not yet resulted in an industry-wide focus on efficiency. Over the preceding 

two decades, a variety of technologies such as multi-valve cylinders and high 
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compression ratio engines had been widely adopted to increase the power output for a 

given amount of energy embodied in fuel. This new technology was applied towards 

making more powerful engines for heavier vehicles with more features, while 

maintaining, rather than reducing fuel consumption. According to the augmented NHTS 

data, from 2001 to 2009 average engine power increased more than 10 percent, from 

179.4hp to 201.1hp, while average curb weight increased almost 80kg (Figure 4.5a and b). 

Average real-world fuel consumption remained virtually unchanged at 16.3L/100km city, 

and 10.7L/100km highway (Figure 4.6a and b). Although the averages are unchanged, the 

variation among vehicles in 2009 (σ = 3.56L/100km) is greater than in 2001 (σ = 

3.30L/100km) for city fuel consumption rates, as hybrid electric vehicles (HEV’s) 

became available earlier in the decade with values under 6L/100km, accompanied by an 

increase in the proportion of vehicles  consuming more than 20L/100km.  

 
Figure 4.5 Distribution of a) engine power, and b) curb weight in 2001 and 2009. 
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Figure 4.6 Distribution of a) city,and b) highway fuel consumption in 2001 and 

2009. 

The average passenger capacity increased slightly from 5.04 in 2001, to 5.18 in 2009. 

A decrease in the number of four-passenger vehicles is offset by an increase in five-

passenger vehicles, and the introduction of more eight-passenger mini-vans and SUVs 

(Figure 4.7a). Despite increases in vehicle power and curb weight, there was little change 

in average cargo volume capacity between 2001 and 2009. In both years, vehicles follow 

a bimodal distribution of relatively low-capacity automobiles, and higher capacity mini-

vans and SUVs (Figure 4.7b). 

 
Figure 4.7 Distribution of a) passenger capacity, and b) cargo vol. in 2001 and 

2009. 
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 Intra-fleet diversity in multi-vehicle households 

In multi-vehicle households, the importance of assignment decisions becomes 

greater as intra-fleet differences in fuel consumption increase. A household with two 

identical vehicles would not realize any benefit by changing how they are used, while a 

household with two different vehicles might. 

Households with a larger fleet size can be expected to exhibit greater diversity in 

vehicle characteristics. This relationship is apparent in both 2001 and 2009, for fuel 

consumption (Figure 4.8a and b), passenger capacity (Figure 4.9a), and cargo volume 

(Figure 4.9b). For all household fleet sizes, the intra-fleet diversity in fuel consumption is 

greater in 2009 than in 2001 (Table 4.4), a finding consistent with the larger variation in 

2009 across all vehicles sampled, as noted earlier. There is no significant difference in 

overall intra-fleet diversity for passenger capacity and cargo volume between the two 

survey years (Table 4.5). 

 
Figure 4.8 Intra-household diversity in a) city, and b) highway fuel consumption. 
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Table 4.4 Summary Data for Figure 4.8: Diversity of Fuel Consumption 
  fc,cty gap (max-min) (L/100km) fc,hwy gap (max-min) (L/100km) 

2001 fleet size N Mean Std. Deviation Mean Std. Deviation 
 2 10390 3.70 2.83 2.55 1.98 
 3 3683 5.77 2.98 3.96 2.10 
 4+ 1602 7.28 3.12 5.07 2.20 
 Total 15675 4.55 3.16 3.14 2.21 
2009       
 2 45276 3.86 3.03 2.68 2.10 
 3 16870 6.40 3.51 4.44 2.50 
 4+ 6294 8.45 3.83 5.94 2.80 
  Total 68440 4.91 3.59 3.42 2.53 

 

 
Figure 4.9 Intra-household diversity in a) passenger cap., and b) cargo volume. 
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Table 4.5 Summary Data for Figure 4.9: Diversity of Vehicle Capability 
  Passenger capacity gap (max-min) Cargo vol. gap (max-min) (Liters) 

2001 fleet size N Mean Std. Deviation Mean Std. Deviation 
 2 10390 1.04 1.06 1320 1250 
 3 3683 1.53 1.16 1950 1360 
 4+ 1602 1.83 1.20 2290 1460 
 Total 15675 1.23 1.13 1580 1340 
2009       
 2 45276 1.04 1.10 1304 1130 
 3 16870 1.59 1.27 1920 1230 
 4+ 6294 2.00 1.39 2320 1310 
  Total 68440 1.26 1.21 1550 1230 

 Results and Discussion 

By comparing the optimal vehicle assignment decisions output by the CTRAM 

model to the actual decisions made by NHTS sample households, it possible to determine 

1) the maximum potential for reducing trip fuel consumption by selecting a different 

vehicle, and 2) the degree to which households already make decisions in-line with 

reducing fuel consumption. Assuming that households do not have access to other modes 

of transportation or outside vehicles, the choices for any trip are limited to the vehicles 

within the household fleet. In this analysis, since public transportation and non-motorized 

modes are not considered, only trips made using a household vehicle are included. 

Single-vehicle households are assumed to have no opportunity to assign another vehicle, 

so they are excluded from this analysis, along with any households that reported a 

motorcycle as part of their fleet. 

 Optimality of vehicle assignment decisions in 2001 and 2009 

The potential reduction in fuel use that can be achieved by optimally allocating 

vehicles in the existing household fleet is given by equation 4.18, where 𝐹𝑗,𝑎𝑐𝑡  is the 

actual total fuel use, and 𝐹𝑗,𝑜𝑝𝑡 is the optimal total fuel use on the study day. 

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝐹𝑗,𝑎𝑐𝑡 − 𝐹𝑗,𝑜𝑝𝑡

𝐹𝑗,𝑎𝑐𝑡
∙ 100% ( 4.18) 

The results of the CTRAM model are summarized in Figure 4.10 for all suitable 

households. The average potential fuel use reduction in 2009 is 10.13%, less than the 

10.91% potential reduction in 2001. It might be logical to expect that given the greater 

intra-fleet diversity in 2009, that the opportunities for reductions would be greater than in 
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2001. The contrary result provides an indication that on aggregate, a change in decision 

making behavior may have occurred between 2001 and 2009 – specifically that 

households in 2009 placed additional priority on assignment decisions which reduced 

fuel usage. 

 
Figure 4.10 Potential fuel use reduction in multi-vehicle households in 2001 and 

2009. 

To investigate further, households are grouped into short (0-50km) and long (50+km) 

categories of study day travel distance. In both 2001 and 2009, the potential for savings is 

less for long travel days than for short travel days (Table 4.6). This result is consistent 

with the idea that households, at some level, consider fuel use in their vehicle assignment 

decisions, since households which travel furthest on the study day will benefit most from 

optimal assignments in terms of the absolute fuel use reduction. Their decisions could 

occur on short time scales, such as the active switching of vehicles during the day, or on a 

longer time scale, such as selecting a more efficient vehicle to be used on a regular basis 

by a driver with a long commute. 

Households with greater intra-fleet diversity in fuel consumption have more potential 

for fuel use reductions in both 2001 and 2009 (Figure 4.11 a and b). However, in 2009, 

the marginal increase in potential fuel use reduction with increasing fleet diversity is less 

than in 2001, providing further evidence that households in 2009 were more motivated to 

reduce fuel use. 
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Figure 4.11 Potential fuel use reduction, by fuel consumption gap and 1-day 

distance. 

Table 4.6 Summary Data for Figure 4.11 
  Potential reduction in fuel use (%) 
2001 1-day dist. (km) N Mean Std. Deviation 
 0to50 4922 11.24 14.13 
 50+ 8355 10.71 12.85 
 Total 13347 10.91 13.35 
2009     
 0to50 23403 10.58 13.85 
 50+ 31382 9.81 12.50 
  Total 54785 10.13 13.10 

 Effect of gasoline price 

The 2009 NHTS was conducted at a time of unusual volatility in fuel prices, with 

gasoline fluctuating in a range from $1.24/gallon to $4.25/gallon over the course of the 

survey. This variation in price provides a unique opportunity to explore how household 

behavior changes as a result of unusually high fuel prices. Households are grouped into 

six categories according to the regional fuel prices the week of their study day. Those 

households in the lower fuel price group exhibited the greatest average potential for fuel 

savings, 10.60%, while households in the highest fuel price group exhibited lower 

savings potential, 10.15% (Figure 4.12). This fuel price effect provides evidence that the 

consideration of monetary expenditures is an important factor in determining the 

optimality of vehicle assignment decisions. 
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Figure 4.12 Potential fuel use reduction, by gasoline price in 2009. 

Table 4.7 Summary Data for Figure 4.12 

Gas price ($/gal) 
 Potential reduction in fuel use (%) 

N Mean Std. Deviation 
 $1.25to$1.75 5672 10.60 13.17 
 $1.75to$2.25 18473 10.22 13.17 
 $2.25to$2.75 3280 9.95 13.14 
 $2.75to$3.25 1665 9.55 12.67 
 $3.25to$3.75 11679 9.90 12.93 
 $3.75+ 14016 10.15 13.14 
 Total 54785 10.13 13.10 

4.4. Case study of optimal vehicle replacement 

Public policy decisions aimed at reducing the energy consumed by personal vehicles 

can often have a significant effect on both the characteristics of vehicles, and the 

composition of the vehicle market. For the past 30 years, the primary approach in the U.S. 

has been to regulate new vehicles with Corporate Average Fuel Economy (CAFE) 

requirements. This direct approach has helped to shape the characteristics of the entire 

U.S. vehicle fleet so that the average fuel economies of vehicles in use now closely 

matches the minimum required by law. While this demonstrates that CAFE has 

succeeded in improving vehicle efficiency relative to an unregulated market, the potential 

of more stringent requirements to quickly provide significant energy savings is limited by 

the slow rate of penetration of new vehicles in the overall fleet. Furthermore, because 

drivers often have access to multiple vehicles with a range of fuel economies within a 



 

97 
 

household fleet, the total energy consumption depends how those vehicles are assigned to 

trips. The potential of new vehicles to contribute to energy savings could therefore be 

improved by either discouraging the use of older, less efficient vehicles through higher 

fuel prices, or encouraging their early retirement or replacement. 

 The C.A.R.S. accelerated vehicle retirement program 

Accelerated vehicle retirement (AVR) schemes have been adopted in the past two 

decades with the goals of improving air quality through reduced vehicle emissions, and 

supporting automobile manufactures during economic downturns. More recently, 

programs have been adopted which have the additional goal of reducing fuel 

consumption through requirements on improvements in vehicle fuel economy. In July, 

2009 the Car Allowance Rebate System (C.A.R.S.) was initiated in the US. A summary 

of the rules of this program is shown in Table 4.8. 

 
Table 4.8 Summary of C.A.R.S. Program Rules 

Replaced Vehicle Added Vehicle 

Incentive 
Fuel Economy 

(mpg) 
Age 
(yrs) 

Fuel Economy 
(mpg) 

Price Age 
(yrs) 

Car: <18 
Truck-1*: no limit 
Truck-2*: no limit 

< 25 
Car: >old mpg +4 and >22 
Truck-1*: >old mpg +2 and >18 
Truck-2*: >old mpg +1 and >15 

<$45,000 New $3,500 

“ ” “ ” 
Car: >old mpg +10 and >22 
Truck-1*: >old mpg +5 and >18 
Truck-2*: >old mpg +2 and >15 

“ ” “ ” $4,500 

*Category 1 Trucks:  SUVs, pickups (wheelbase < 115in.), minivans, vans (wheelbase < 124in.), GVWR < 
8,500lbs. 
  Category 2 Trucks: Pickups (wheelbase > 115in.) and vans (wheelbase > 124in.), GVWR < 8,500lbs. 
  Category 3 Trucks: Work trucks (Program rules not shown), GVWR > 8500lbs. 

The potential vehicle transactions for a household include disposal, addition, or 

holding. Any analysis of an existing or proposed early retirement program is confounded 

by the fact that it is difficult to know whether a vehicle transaction would occur, even if 

the program were not in place. Existing studies generally have not accounted for the 

difference in vehicle utilization that is likely to occur when a vehicle is replaced with one 

that is newer, or of a different type. Although programs are often designed to prevent 

subsidizing the disposal of derelict vehicles, it is very possible that the vehicles being 

traded in are driven less than other vehicles in the household fleet. Assuming that the 

added vehicle is more efficient and less polluting that the replaced vehicle, a tendency to 
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prioritize the use of newer vehicles will tend to increase the positive environmental 

effects of the program. Conversely environmental benefits may be lessened if a smaller 

added vehicle has lower capacity than the replaced vehicle, and therefore cannot be 

utilized on trips with higher capacity requirements. 

The purpose of this vehicle replacement case study is to demonstrate how the 

CTRAM model can be used to evaluate the influence of vehicle-to-trip assignment 

decisions on the effectiveness of a public policy designed to encourage energy 

conservation. 

 Methodology 

The National Household Travel Survey (NHTS) provides information about 

household vehicle fleets and their utilization for daily travel. This study considers the 

range of potential effects an accelerated vehicle replacement program might have on 

households in 2002 conditions, using the data from the 2001 NHTS. 

 Decision-making scenarios for vehicle replacement and use  

The specific rules of an AVR program define both the eligible retired and 

replacement vehicles. However, owners of vehicles eligible for retirement will likely 

have many options for its replacement, and the program incentive value may vary 

depending on the characteristics of the selected vehicle. Furthermore, a single household 

may have multiple eligible vehicles. In order to conduct an analysis of a proposed AVR 

program without using econometric, utility maximization methods, it is first necessary to 

establish rules which define different scenarios for household decisions. 

In this study, three hypothetical decision-making rule sets are applied separately to 

the entire household sample.  In the first scenario, it is assumed that households minimize 

total vehicle costs. The retired vehicle will be the one with the highest sum of fixed and 

variable costs, including fuel expenditures based on the reported annual mileage. The 

replacement vehicle will have the lowest total costs among all the eligible vehicles, 

assuming that it is driven the same annual distance as the retired vehicle. The second 

scenario assumes that households minimize fuel consumption. The vehicle with the 

lowest fuel economy in the fleet is retired, and replaced with the eligible vehicle with the 

highest fuel economy. Finally, in the third scenario, the oldest household vehicle is 
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selected to be replaced with a vehicle of similar inflation-adjusted manufacturer’s 

suggested retail price (MSRP). This is intended to represent business-as-usual rules for 

household decisions, which are not based on minimizing costs or energy consumption. 

Depending on the requirements of the AVR program, households may have an 

incentive to change to a smaller vehicle. This study considers the case where households 

keep the same vehicle type, based on market classification, the case where any vehicle 

which satisfies the decision criteria can be selected, regardless of the vehicle type. 

Combining the three decision making scenarios, with the two vehicle type cases 

results in a total of six scenarios, which are summarized in Table 4.9. 

Table 4.9 Vehicle Replacement Decision Scenarios 

Decision Type Replaced Vehicle Added Vehicle 
Replacement 

Vehicle Type * 
Scenario 

Number * 

Cost-minimizing  Highest 5-year 
avg. cost 

Lowest 5-year avg. cost  
(based on original usage) 

Same Type 1 
Any Type 2 

Fuel-minimizing Lowest fuel 
economy Highest fuel economy Same Type 3 

Any Type 4 
Non-optimizing 

(Business as 
Usual) 

Oldest 
Same MSRP as retired 

vehicle 
(adjusted for inflation) 

Same Type 5 

Any Type 6 

* Vehicle types based on market classes 

Households are assumed to be limited to one vehicle replacement, although in the 

C.A.R.S. program the condition is placed on one transaction per driver. Some households 

without any qualifying vehicles will still replace vehicles, but these background 

transactions are excluded from this analysis. Finally, the household does not receive any 

money in exchange for the retired vehicle, apart from the program incentive. The vehicle 

may in fact still have some value derived from scrap material, or recovered parts, but this 

is assumed to go entirely to offset the costs of administering the program, and is excluded 

from this analysis. 

 Description of data sources  

The 2001 National Household Travel Survey (NHTS) was conducted between March 

2001 and May 2002, and provides detailed information about a single day’s travel for 

each of the 69,817 participating households. Excluding the households that were part of 

region-specific add-on surveys, 26,400 households in the national sample households 
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were retained for this study. Individuals were asked to keep a travel diary in which they 

recorded the start and end times of every trip, as well as the trip purpose and vehicle used.  

The NHTS data does not contain the necessary cost and capacity specification 

information for the 53,275 individual vehicles in the national sample. Using the year, 

make and model as identifiers resulted in 4,846 unique vehicle models, which were then 

matched with proprietary data sources from Chrome Systems, Inc., and Automotive 

Leasing Guide (ALG), Inc. Vehicle specifications and MSRP for 1996 model year and 

later vehicles were obtained from Chrome System’s New Vehicle Database (NVD). 

Specifications for pre-1996 vehicles were populated using average values for the 

particular vehicle type. Vehicle depreciation values were obtained from ALG residual 

value data. These residual values are a projection of future vehicle depreciation, and 

therefore represent the type of information that would be available to households making 

decisions about future vehicle ownership costs. Furthermore, these residual value 

projections are used to set vehicle lease payment amounts, and therefore are directly 

related to the ownership costs of leased vehicles. 

 Vehicle ownership costs 

This study uses a five-year average of total vehicle costs, which is a rough 

approximation of the average period that a vehicle is held by a single owner. The total 

cost of owning and operating a vehicle are a combination of fixed costs and variable costs. 

Fixed costs are dependent only on the length of time the vehicle is held, and include 

depreciation, opportunity cost, and insurance. Any decrease in value that might be 

inflicted by unusually high annual mileage is ignored here. Opportunity cost is a function 

of the vehicle value, and represents the forgone income from other investments due to the 

household’s wealth being tied-up in vehicles. In this study, a 6 percent discount rate is 

used. Insurance costs are the third and final fixed cost considered here, not including 

those policies which charge rates at least partly based on mileage. The insurance rate of 

$1,200 per vehicle per year used in this study was assumed to be independent of driver 

characteristics, or vehicle type and age. Variable costs are composed of maintenance, 

repair, and fuel costs, each of which is a function of the distance driven. A maintenance 

and repair rate of $0.043 per mile is based on the assumption of $650 per 15,000 miles 

driven. Fuel costs were calculated based on the CTRAM results. 
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Vehicle depreciation is one of the most significant costs of vehicle ownership, so for 

this study as model was developed to estimate vehicle value as a function of age, MSRP, 

and vehicle type. ALG data for the projected depreciation over the first five years of 

ownership for new 2002 vehicles consists of the MSRP, and percentage of value retained 

at 24, 36, 48, and 60 months. For this study, it was necessary to estimate values beyond 

this period, because existing household vehicles may be older than five years. Figure 4.13 

shows the average depreciation of all 2002 model year vehicles, according to vehicle type.  

 

   
Figure 4.13 Average of 2002 model year vehicles, by type for a) rate of annual 

depreciation, and b) percent retained value 

The data points from the ALG data were extrapolated according to equations 4.19 

and 4.20, where d0 is the initial depreciation that occurs as soon as a new vehicle is 

purchased, and m and b describe the tendency of the rate of annual depreciation to 

gradually diminish, until the vehicle reaches a steady-state minimum value.  

𝑉𝑎𝑙𝑢𝑒𝑥 = 𝑚𝑠𝑟𝑝 �1 − 𝑑0 −�[𝑚𝑖𝑛(𝑚𝑥 + 𝑏, 0)]
𝑥
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� 
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𝑑0 = 1 − 𝑣𝑎𝑙𝑢𝑒𝑥=2 −�(𝑚𝑥 + 𝑏)
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 Results and Discussion 

The initial results of this analysis are shown in Figure 4.14 and Table 4.10 for each 

of the six replacement scenarios. Out of all sample households, approximately 22 percent 

are eligible for the program when the replacement can be of any type (scenarios 2, 4, and 

6). When the replacement vehicle is restricted to be of the same type as the replaced one, 

the percentage of eligible households ranges from 10 to 12 percent (scenarios 1, 3, and 5). 

 
Figure 4.14 Household savings for a) cost, and b) fuel use, by scenario and usage. 

Table 4.10 Summary Data for Figure 4.14 
 Average change in cost from 

original. 
$ per year 

(fractional change) 

Average change in fuel use 
from original  
Gal. per year 

(fractional change) 
Decision Scenarios Fraction of 

households 
eligible 

Actual Use Optimal Use Actual Use Optimal Use 

5-Age (Same Type) 0.11 -$5730 
(0.015) 

-$5528 
(-0.016) 

111 
(-0.112) 

199 
(-0.185) 

6 -Age (Any Type) 0.22 -$5422 
(0.030) 

-$5117 
(-0.007) 

140 
(-0.140) 

249 
(-0.230) 

1 -Cost(Same Type) 0.10 -$6730 
(-0.027) 

-$6570 
(-0.056) 

127 
(-0.117) 

201 
(-0.185) 

2 - Cost (Any Type) 0.22 -$5736 
(-0.080) 

-$5505 
(-0.118) 

205 
(-0.186) 

294 
(-0.274) 

3 -Fuel (Same Type) 0.12 -$6106 
(-0.023) 

-$5925 
(-0.051) 

135 
(-0.131) 

216 
(-0.200) 

4 -Fuel (Any Type) 0.22 -$5739 
(-0.051) 

-$5388 
(-0.112) 

276 
(-0.256) 

432 
(-0.410) 

 



 

103 
 

Among households that are eligible for the program, the cost and fuel savings vary 

widely depending on the replacement decision rule. Assuming the new vehicle is of the 

same type as the old one, and is used in the same way, the decision rule has only a minor 

effect on fuel savings, with values ranging from 11 to 13 percent. When the new vehicle 

can be of any type, average fuel savings increase to over 25 percent when the least fuel 

efficient vehicle is replaced compared to 14 percent when the oldest vehicle is replaced. 

Cost and fuel savings are influenced by not only the replacement decisions, but also 

by the vehicle to trip allocation decisions made by household members. Optimal vehicle 

assignments increase fuel savings under every decision rule, but have a particularly large 

savings of 41 percent in scenario 4, where the least efficient vehicle is replaced and there 

are no vehicle type restriction on the new vehicle. Overall, it can be concluded that the 

simultaneous consideration of both the vehicle replacement rule and the usage of the 

modified household fleet can result in significantly reduced fuel usage (or cost) compared 

to either factor by itself. 

4.5. Potential applications and limitations of constraints-based approach 

This application of a constraints-based assignment model to the 2001 and 2009 

NHTS data illustrates how additional insights can be gained in activity-based research by 

including vehicle capability among the set of constraints considered. The intention is not 

to predict travel behavior, but instead to generate a realistic estimate of the maximum 

potential for various strategies to reduce energy use and greenhouse gas emissions. For 

example, it is not realistic to expect that an average fuel use reduction of 10 percent 

across all households can be achieved by the reassignment of existing vehicles alone. 

However, an increase in the intra-fleet diversity of vehicles can lead to a significant 

increase in potential savings. For many households with three or more vehicles, potential 

savings of greater than 10 percent through fleet reassignment are as significant (and less 

expensive) as many of the technological options for increasing the fuel economy of 

internal combustion engines (National Research Council 2002). 

This analysis accounted for passenger capacity as a constraint, but not for other 

vehicle capability constraints, such as those related to carrying cargo. As the set of 

capability requirements taken into consideration is extended beyond only passenger 
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capacity, the number of assignment combinations can be expected to decrease as some 

infeasible vehicle options are eliminated. The lack of detailed data for trip requirements 

presents an obstacle to the consideration of other trip requirements in future applications 

of this model. Although vehicle occupancy data is often collected in travel surveys, cargo 

and towing requirements are particularly important because of the relationship between 

vehicle capacity and energy intensity. Collecting this data through traditional survey 

techniques would be costly and overly burdensome for the respondent, so the use of in-

vehicle data acquisition equipment and alternative survey techniques can be considered, 

as explored in chapter 3. 

The decision of which vehicle a household member will use for a particular trip is 

influenced by many factors beyond physical feasibility. Personal preferences for certain 

vehicle characteristics may override considerations of energy and cost savings for some 

drivers, even when a more efficient vehicle is available for their use. Household rules 

might also prohibit some individuals from using a vehicle, as is often the case with young, 

inexperienced drivers. In other cases, the inconvenience of changing vehicles may be a 

deterrent, such as when a child seat needs to be moved from one vehicle to another. 

Although this analysis considered only the reassignment of vehicles in existing fleets, 

the model can also be used to compare the energy use and monetary expenditures for 

various hypothetical household fleets. An application of the CTRAM model to a fleet 

composition problem is appropriate, since changing a vehicle in the fleet will likely result 

in changes in utilization for other vehicles in the fleet. The model could then be used to 

answer questions such as which vehicle should be added to the fleet, which vehicle (if 

any) should be prioritized for replacement, and what should the characteristics of that 

new vehicle be in order to satisfy household trip requirements. The capability 

characteristics of potential vehicles do not need to be limited to passenger and cargo 

capacities, but could also include range for non-motorized travel and EV’s, or operability 

in inclement weather for biking, mopeds, and motorcycles. 
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Conclusions 

Even though vehicle capability constraints are an important factor in determining the 

feasibility of energy saving strategies, they have received insufficient attention in 

previous research. Similarly, although multi-day data collection has been identified for 

several decades as an important area of improvement for the activity-based approach, the 

majority of travel behavior research is still based on single-day travel-activity survey data. 

The combined lack of multi-day data and vehicle capability requirement data is a 

significant impediment to the ability to evaluate many types of energy savings strategies, 

since 1) household travel requirements vary from day-to-day, and 2) energy-saving 

transportation options often have reduced capability, whether in terms of passenger and 

cargo capacity for compact vehicles, or in terms of range for EV’s, PHEV’s, and non-

motorized transportation modes like walking and biking. The overall goal of this research 

is to develop and demonstrate a survey methodology and modeling system for evaluating 

the energy-savings potential of household travel, considering multi-day travel 

requirements and the constraints imposed by the available transportation resources. 

5.1. Key findings 

Research questions [Q1], [Q2], and [Q3] address the methodology of collecting 

multi-day household travel data, with a particular focus on requirements for vehicle 

capability. Research questions [Q4] and [Q5] are empirical questions intended to 

illustrate how the consideration of vehicle capability constraints in an activity-based 

analysis can provide useful insights into travel behavior and the potential effectiveness of 

energy-saving strategies. 
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[Q1]. Is it feasible to collect multi-day data for household activities using an interactive 

survey approach? 

The Household Travel Patterns Study (HTPS) pilot investigation described in 

chapter 3 was conducted in 2011 using thirty households in the Ann Arbor, Michigan 

area. The interactive survey approach employed a computer assisted personal interview 

(CAPI), with the simultaneous participation of all household members. The group 

interview process was, in nearly every case, found to be an effective method for 

encouraging discussion among participants. Arranging the interviews at a meal time, and 

providing a carry-out meal as an incentive was likely an important factor in the success of 

this approach. In only two households was it necessary for the primary contact person in 

the household to provide activity information on behalf of another adult household 

member. In both of these cases, the non-participation was due to scheduling conflicts, and 

not, apparently, due to lack of interest. 

The interactive survey required an average of 90 minutes to complete, ranging from 

45 minutes for the most brief, to 140 minutes for the most lengthy. Improvements in the 

web survey instrument for the latter half of the study allowed activity details to be 

collected more quickly. The improvements in the survey instrument resulted in the 

reporting of a greater number of activities and locations, and did not reduce the time to 

complete the interview. 

All participants seemed able to easily conceptualize the reporting of activities in 

terms of ranges and probabilities for frequency, time, location, participants. The reporting 

of items carried was unproblematic for common shopping activities. However, for less 

frequent activities requiring the transport of large or heavy items, reporting was 

complicated by the lack of pre-coded items in the survey instrument. 

[Q2]. Is it feasible to generate complex and realistic household schedules using activity 

characteristics reported as probabilities and ranges? 

The multi-day Probabilistic Household Activity Schedule Estimator (mPHASE) 

introduced in chapter 2 employs a novel physical representation of household activities to 

account for time constraints, coordination among household members, and resistance to 
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modifying activity times and durations. The finite element method used in the mPHASE 

model is well-established in the engineering field for the analysis of physical structures, 

but this is believed to be the first application in the field of activity-based travel research. 

Based on the responses generated by the HTPS pilot investigation, the mPHASE 

model was able to generate synthetic schedules which exhibited many of the 

characteristics of complex household travel. Total daily travel distances were found to 

exhibit 1) distinct patterns of weekday and weekend travel, 2) occasional non-travel days, 

and 3) occasional high-travel days. Complex household interactions were evident in the 

generated schedules, including 1) the assignment of activities to designated household 

members according to their availability, and 2) the coordination of picking up and 

dropping off other household members at their activities. 

[Q3]. Is it feasible to use passive in-vehicle data acquisition equipment to observe trip 

capacity requirements over extended time periods? 

The VUSE in-vehicle data acquisition equipment described in chapter 3 was 

developed for two purposes. First, the GPS paths collected over two-weeks could be used 

to validate survey responses. Second, the utilization of vehicle capacity for passengers 

and cargo could be observed using the captured digital images of the vehicle interior. 

In general, the VUSE equipment was found to be capable of providing images with 

sufficient resolution for the identification of individual household members, and cargo 

item type. Images in low-light conditions were often difficult to interpret. Of the sixty 

vehicles in the study, ten had equipment malfunctions that resulted in a partial or total 

loss of data. Five cases were the result of improper installation, three were caused by 

software malfunctions, and two were of undetermined cause. 

The post-processing of GPS data is an important topic in survey methodology 

research. A web post-processing tool was developed for this research to reduce the time 

required, and potential for error. The main steps of the process were 1) automatic 

identification of trip ends based on the recorded vehicle events, 2) visual inspection of 

identified trip segments, and correction with split and join operations, 3) flagging of 

inspected trip segments as complete or incomplete, 4) visual inspection of digital images 
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and coding of passengers and items, and their locations in the vehicle for each trip 

segment. 

The post-processing tool was highly effective for the enforcement of consistent 

coding, and the efficient viewing of trip segments and their associated photos. On 

average, 90 minutes were required for the processing of a single vehicle’s two weeks of 

data, with 50 percent of the time devoted to image inspection. 

[Q4]. What was the average energy savings potential for U.S. households in 2001 and 

2009 if existing vehicle fleets were utilized optimally? 

The Constraints-based Transportation Resource Assignment Model (CTRAM) 

introduced in chapter 4 was applied to an analysis of the 2001 and 2009 NHTS data to 

evaluate the fuel-use optimality of vehicle assignment decisions. The CTRAM 

enumerative optimization model is unique in its ability to consider any number of vehicle 

attributes related to an activity’s physical travel requirements in a computationally 

efficient manner. In addition to vehicle capability constraints, the model also accounts for 

coupling constraints, ensuring that vehicle switching only occurs when vehicles and 

drivers are coincident in time and space. 

 The lack of a convenient data source for vehicle capability specifications has been 

one obstacle to the consideration of capability constraints in the past, and was addressed 

in this work by the augmentation of the publicly available NHTS data with a proprietary 

vehicle specifications database.  

Although there are many ways in which households can reduce their transportation 

energy consumption, one of simplest, for multi-vehicle households, is to optimally assign 

existing vehicles to trips. Results of the CTRAM analysis showed that the average 

potential fuel use reduction in 2009 is 10.13%, less than the 10.91% potential reduction 

in 2001. 

[Q5]. Did multi-vehicle households in 2009 utilize their fleets more optimally than in 

2001? 

Results of the CTRAM analysis support the hypothesis that households in 2009 were 

more motivated to make fuel use-minimizing decisions than in 2001. First, from the 
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finding of [Q4], the overall potential for savings was less in 2009, which is consistent 

with conscious effort to optimally assign vehicles. Second, households in 2009 with 

greater intra-fleet diversity in vehicle fuel consumption ratings showed a significantly 

higher tendency to optimally assign vehicles than similar households in 2001. Finally, in 

2009, higher fuel prices are negatively correlated with potential fuel use reductions 

through optimal assignment, indicating that households are taking monetary expenditures 

into consideration when making vehicle assignment decisions. 

5.2. Limitations 

The finite element approach employed by the mPHASE model is analogous to real-

world scheduling problems in its consideration of constraints, and interaction among 

household members. However, the model does not replicate the actual decision-making 

processes of individuals, which often must be highly dynamic and flexible in order to 

adapt to changes in conditions and events throughout the day. Dynamic scheduling 

models have been created which develop schedules continuously as decisions are made 

about adding, removing, or modifying activities. The approach used by the mPHASE 

model is quite the opposite, and attempts to create a schedule based on reported activity 

characteristics, rather than the bottom-up approach used in some models of human 

decision-making. As a result, the mPHASE model is not well-suited for forecasting the 

behavioral response changes in conditions that are outside of the individual’s frame-of-

reference when they are completing the survey. 

The constraints-based approach used in this work, both in the mPHASE and 

CTRAM models, is intended to identify the feasible boundaries of potential decisions. 

Many factors that play a role in real-world decisions are not included in this proposed 

modeling system, thus limiting its potential usefulness as a forecasting tool. For example, 

vehicle assignment decisions are influenced not only by considerations of physical 

feasibility, but also by factors of convenience, perceived safety, and personal preference. 
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5.3. Potential applications and future work 

While the mPHASE model was developed to work in conjunction with CTRAM to 

evaluate the energy-savings potential of household fleet modifications, either model 

could be used independently in a wide range of studies (Table 5.1). 

Table 5.1 Potential Applications of mPHASE/CTRAM Modeling System 
 without 

mPHASE 
with 

mPHASE 

without 
CTRAM 

 
- scheduling constraint studies 
- land use studies 
- flex-time/work-from-home studies 

with 
CTRAM 

- equivalent-capability fleet studies 
(within-class technology adoption) 

- walking/biking studies 

- fleet reliability studies 
- maximum market size studies 
- reduced-capability fleet studies 

(EV’s, small cars) 
- car sharing studies 

 Potential standalone applications of mPHASE 

The synthetic schedules generated by the mPHASE model could be used in many 

studies related to scheduling and travel behavior, apart from the analysis of optimal 

vehicle assignment with CTRAM. Previous applications of interactive survey methods 

have studied potential household reactions to changes in scheduling constraints, such as a 

shift in school opening hours (Jones 1979). Similar investigations could be performed 

using mPHASE by adjusting the relevant activity time constraints from the original 

values collected during the interactive survey. Analysis of the effects of flex-time and 

work-from-home employment policies on household activity scheduling could also be 

conducted by modifying the mPHASE time and location characteristics for the work 

activity. 

Spatial relationships are represented in the mPHASE scheduling algorithm by the 

travel times between potential activity locations. The specification of an alternative 

location could be used to model a change in residential location. Or an entire set of 

hypothetical locations could be used to model broader land use changes, and their 

potential impact on household activity schedules. 
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 Potential standalone applications of CTRAM 

Even without the availability of multi-day data of travel requirements, the CTRAM 

model can be applied to an analysis of the potential energy savings from both existing 

and modified vehicle fleets, as demonstrated in chapter 4. Vehicle assignment decisions 

in a modified fleet will likely be different from the decisions in the original fleet, and one 

cannot automatically assume that a new vehicle will be used in exactly the same way as 

the replaced one. A major advantage of the constraints-based approach used here is that it 

addresses the boundaries of potential assignments, without attempting to predict actual 

decisions. With single-day travel data, however, applications of CTRAM must be 

restricted to analysis of new fleets with equivalent or greater capability than the replaced 

fleets, since it is unknown if reduced-capability vehicles could satisfy the requirements of 

the non-observed days. One exception to that could be studies of the potential for options 

outside of the household fleet, since the opportunities for walking, biking, or public 

transportation are likely already available for many trips, even with no modification to 

household vehicle fleets. 

 Potential applications of mPHASE/CTRAM system 

With modified vehicle fleets of reduced capability, CTRAM can identify not only the 

optimal vehicle assignments, but also the cases where no assignment can satisfy the given 

travel requirements. When combined with the multi-day activity schedules generated by 

mPHASE, CTRAM can be used to produce a fleet reliability value, or measure of the risk 

of unsuccessful schedule completion. For example, potential buyers of EV’s might be 

concerned about being stranded after exceeding the available range of their batteries. A 

similar risk exists for users of efficient, but limited capacity, two-passenger commuter 

cars if they occasionally need to transport more passengers or cargo items. Those 

considering joining a car sharing program while eliminating a personal vehicle from their 

fleet might worry if the shared vehicle will be in use by another member when they need 

it. In each of these cases, the mPHASE/CTRAM modeling system can be used to 

estimate the potential risk that a vehicle will be unavailable, or incapable of satisfying the 

requirements of their desired trip. Approaching the question from another perspective, if 

an acceptable risk value is assumed, the modeling system can be used to estimate the 
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maximum market penetration of new, efficient vehicle technologies and designs with 

reduced capabilities, or to estimate the number and type of vehicles needed for a car 

sharing program to meet its members’ needs. 

 Future work 

Questions about vehicle downsizing are of particular interest because of the strong 

relationship between a vehicle’s size and mass, and therefore its fuel consumption. 

Without any information about the requirements for vehicle capability over extended 

time periods, one and two-passenger commuter vehicles may be too easily dismissed as 

impractical. Analyses of the tradeoffs between efficiency and capability should be 

considered in the context of multi-day household travel requirements, and the 

mPHASE/CTRAM modeling system introduced here is potentially a useful tool as policy 

makers and auto manufacturers attempt to determine the best vehicle mix for reducing 

greenhouse-gas emissions while still meeting household travel demands. 

 During the course of the pilot study, several opportunities were identified for 

improving upon the proposed methodology. One improvement would be the 

incorporation of the mPHASE model directly into the interactive web survey, rather than 

as the currently separate program. By providing immediate feedback for survey responses, 

in the form of generated, synthetic schedules, participants would be able to identify 

inconsistencies more easily. Rules for stopping the survey could also be established, for 

example, after a participant had verified a certain number of generated schedules. 

Due to the limited number of VUSE data acquisition units, the HPTS pilot 

investigation was limited to a 2-week observation period for each household. A longer 

observation period, preferably 12 months, would allow for validation of any reported 

seasonal variation in activities, and the capture of infrequent, but important, long-distance 

trips. 
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Appendix A  
Study recruitment materials 

 
Figure A.1 Online participant signup form 
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Figure A.2 Call for participants – online posting 
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Figure A.3 Complimentary meal options 
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Figure A.4 Recruitment flyer 
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Figure A.5 Informed consent agreement – page 1 of 2 
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Figure A.6 Informed consent agreement – page 2 of 2 
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Appendix B  
VUSE data post processing 

 
Figure B.1 VUSE data post processing web tool 
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Appendix C  
Web survey screen shots 

 
Figure C.1 Navigation page for the survey. 
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Figure C.2 Household member data input page. 

 
Figure C.3 Household vehicle data input page. 
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Figure C.4 Activity locations data input page (extended view).



 

123 
 

 
Figure C.5 Activity details data input page (extended view). 



 

124 
 

REFERENCES 

Abkowitz, Mark D. (1981) “An analysis of the commuter departure time decision.” 
Transportation 10 (3): 283-297. 

Adler, Thomas J., and Moshe E. Ben-Akiva. (1974) “Joint-choice model for frequency, 
destination, and travel mode for shopping trips.” Transportation Research Record: 
Journal of the Transportation Research Board 569. 

Ampt, E., and Laurie West. (1983) The Role of the Pilot Survey in Travel Studies. In 
New Survey Methods in Transport: 2nd International Conference. Hungerford Hill, 
Australia: VSP Intl Science. 

Amtrak. (2011) Monthly performance report for September 2011. 

Arentze, Theo A., and Harry J. P. Timmermans. (2003) “Modeling learning and 
adaptation processes in activity-travel choice A framework and numerical 
experiment.” Transportation 30 (1): 37–62. 

———. (2004) “A learning-based transportation oriented simulation system.” 
Transportation Research Part B: Methodological 38 (7): 613-633. 

Auld, Joshua, and Abolfazl Mohammadian. (2009) Adapts: Agent-Based Dynamic 
Activity Planning and Travel Scheduling Model–A Framework. In TRB 2009 
Annual Meeting CD-ROM. 

Axhausen, Kay W., Andrea Zimmermann, Stefan Schönfelder, G. Rindsfüser, and T. 
Haupt. (2002) “Observing the rhythms of daily life: A six-week travel diary.” 
Transportation 29 (2): 95–124. 

BTS. (2011) Press release for airline traffic in August 2011. 

Barnard, P. O. (1983) Evidence of trip under-reporting in Australian Transportation 
Study home interview surveys and its implications for data utilisation. In New 
Survey Methods in Transport: 2nd International Conference. Hungerford Hill, 
Australia. 

Beggs, Steven D., and N. Scott Cardell. (1980) “Choice of smallest car by multi-vehicle 
households and the demand for electric vehicles.” Transportation Research Part A: 
General 14 (5-6): 389-404. 

Bellemans, Tom, Kelly van Bladel, Davy Janssens, Geert Wets, and Harry J. P. 
Timmermans. (2009) “Measuring and estimating suppressed travel with enhanced 



 

125 
 

activity—travel diaries.” Transportation Research Record: Journal of the 
Transportation Research Board 2105: 57-63. 

Ben-Akiva, Moshe E., and S R Lerman. (1976) A behavioral analysis of automobile 
ownership and mode of travel: Volume 3 - Technical Report. 

Bhat, Chandra R., T Frusti, H Zhao, Stefan Schönfelder, and Kay W. Axhausen. (2004) 
“Intershopping duration: an analysis using multiweek data.” Transportation 
Research Part B: Methodological 38 (1): 39-60. 

Bhat, Chandra R., and Frank S. Koppelman. (1993) “A conceptual framework of 
individual activity program generation.” Transportation Research Part A: Policy 
and Practice 27 (6): 433–446. 

Bowman, John L., and Moshe E. Ben-Akiva. (2000) “Activity-based disaggregate travel 
demand model system with activity schedules.” Transportation Research Part A: 
Policy and Practice 35 (1): 1-28. 

Boyd, J. Hayden, and Robert E. Mellman. (1980) “The effect of fuel economy standards 
on the U.S. automotive market: An hedonic demand analysis.” Transportation 
Research Part A: General 14 (5-6): 367-378. 

Brög, Werner, Arnim H. Meyburg, Peter R. Stopher, and Manfred J. Wermuth. (1983) 
Collection of household travel and activity data: Development of an instrument. In 
New Survey Methods in Transport: 2nd International Conference. Hungerford Hill, 
Australia. 

Brög, Werner, and Erhard Erl. (1980) “Interactive measurement methods : Theoretical 
bases and practical applications.” Transportation Research Record: Journal of the 
Transportation Research Board 765: 1-6. 

———. (1983) Application of a model of individual behaviour (situational approach) to 
explain household activity patterns in an urban area to forecast behavioural changes. 
In Recent Advances in Travel Demand Analysis, ed. Susan Carpenter and Peter M. 
Jones, 350-370. Aldershot, England: Gower Publishing Co. Ltd. 

Bullock, Nicholas, Peter Dickens, Mary Shapcott, and Philip Steadman. (1975) “Time 
budgets and models of urban activity patterns.” Social Trends 5: 45-63. 

Burns, Lawrence D. (1979) Transportation, Temporal, and Spatial Components of 
Accessibility. D.C. Heath and Company, June. 

Chapin, F Stuart, and Henry C Hightower. (1966) Household Activity Systems - A Pilot 
Investigation. 



 

126 
 

Charypar, David, and Kai Nagel. (2005) “Generating complete all-day activity plans with 
genetic algorithms.” Transportation 32 (4): 369-397. 

Cirillo, Cinzia, and Kay W. Axhausen. (2009) “Dynamic model of activity-type choice 
and scheduling.” Transportation 37 (1): 15-38. 

Clark, Andrew F, and Sean T. Doherty. (2008) Use of GPS to automatically track activity 
rescheduling decisions. In 8th International Conference on Survey Methods in 
Transport. Annecy, France. 

Clark, Andrew F., and Sean T. Doherty. (2009) “Activity rescheduling strategies and 
decision processes in day-to-day life.” Transportation Research Record: Journal of 
the Transportation Research Board 2134 (-1): 143-152. 

Clarke, Mike I., Martin C. Dix, Peter M. Jones, and Ian G. Heggie. (1981) “Some recent 
developments in activity-travel analysis and modeling.” Transportation Research 
Record: Journal of the Transportation Research Board 794: 1-8. 

Clarke, Mike I., Martin C. Dix, and Peter M. Jones. (1981) “Error and uncertainty in 
travel surveys.” Transportation 10 (2): 105-126. 

Clinton, William. (1996) U.S. Global Positioning System policy press release. 

Cullen, I, and V Godson. (1975) “Urban networks: the structure of activity patterns.” 
Progress in Planning 4: 1–96. 

Dagfinn, Ås. (1978) “Studies of Time-Use: Problems and Prospects.” Acta Sociologica 
21 (2): 125-141. 

van Der Hoorn, Toon. (1983) Development of an activity model using a one-week 
activity-diary data base. In Recent Advances in Travel Demand Analysis, ed. Susan 
Carpenter and Peter M. Jones, 335-349. Aldershot, England: Gower Publishing Co. 
Ltd. 

Doherty, Sean T. (2006) “Should we abandon activity type analysis? Redefining 
activities by their salient attributes.” Transportation 33 (6): 517-536. 

Doherty, Sean T., Erika Nemeth, Matthew J. Roorda, and Eric J. Miller. (1997) “A 
computerized household activity scheduling survey.” Transportation 24 (1): 75-97. 

Du, J, and L Aultmanhall. (2007) “Increasing the accuracy of trip rate information from 
passive multi-day GPS travel datasets: Automatic trip end identification issues.” 
Transportation Research Part A: Policy and Practice 41 (3): 220-232. 



 

127 
 

Ettema, Dick, Aloys Borgers, and Harry J. P. Timmermans. (1993) “Simulation model of 
activity scheduling behavior.” Transportation Research Record: Journal of the 
Transportation Research Board 1413: 1–11. 

———. (1995) “Competing risk hazard model of activity choice, timing, sequencing, and 
duration.” Transportation Research Record: Journal of the Transportation Research 
Board (1493): 101–109. 

Forer, P C, and Helen Kivell. (1981) “Space - time budgets, public transport, and spatial 
choice.” Environment and Planning A 13 (4): 497-509. 

Frignani, Martina Z., Joshua Auld, Abolfazl Mohammadian, Chad Williams, and Peter 
Nelson. (2010) “Urban Travel Route and Activity Choice Survey.” Transportation 
Research Record: Journal of the Transportation Research Board 2183: 19-28. 

Fujii, Satoshi, Ryuichi Kitamura, and Keiko Kishizawa. (1999) “Analysis of Individuals’ 
Joint-Activity Engagement Using a Model System of Activity-Travel Behavior and 
Time Use.” Transportation Research Record: Journal of the Transportation 
Research Board 1676: 11-19. 

Gan, Li Ping, and Will W. Recker. (2008) “A mathematical programming formulation of 
the household activity rescheduling problem.” Transportation Research Part B: 
Methodological 42 (6): 571-606. 

Giaimo, Greg, Rebekah Anderson, Laurie Wargelin, and Peter R. Stopher. (2010) Will it 
work? Pilot results from the first large-scale GPS-based household travel survey in 
the United States. In TRB 2010 Annual Meeting CD-ROM. 

Golledge, Reginald G., Kwan Mei-Po, and Tommy Gärling. (1994) “Computational 
process modeling of household travel decisions using a geographical information 
system.” Papers in Regional Science 73 (2): 99-117. 

Golob, Thomas F., S. Kim, and W. Ren. (1996) “How households use different types of 
vehicles: A structural driver allocation and usage model.” Transportation Research 
Part A: Policy and Practice 30 (2): 103–118. 

Golob, Thomas F., and Michael G. McNally. (1997) “A model of activity participation 
and travel interactions between household heads.” Transportation Research Part B: 
Methodological 31 (3): 177-194. 

Golob, Thomas F., and Henk Meurs. (1986) “Biases in response over time in a seven-day 
travel diary.” Transportation 13 (2): 163-181. 



 

128 
 

Goodwin, Phil. (1983) Some problems in activity approaches to travel demand. In Recent 
Advances in Travel Demand Analysis, ed. Susan Carpenter and Peter M. Jones, 470-
474. Aldershot, England: Gower Publishing Co. Ltd. 

Gopal, Sucharita, Roberta L. Klatzky, and Terence R. Smith. (1989) “Navigator: A 
psychologically based model of environmental learning through navigation.” 
Journal of Environmental Psychology 9 (4): 309-331. 

Gärling, Tommy, T Kalén, J Romanus, M Selart, and B Vilhelmson. (1998) “Computer 
simulation of household activity scheduling.” Environment and Planning A 30 (4): 
665-679. 

Gärling, Tommy, M. Kwan, and Reginald G. Golledge. (1994) “Computational-process 
modelling of household activity scheduling.” Transportation Research Part B: 
Methodological 28 (5): 355–364. 

Habib, Khandker M. N., and Eric J. Miller. (2008) “Modelling daily activity program 
generation considering within-day and day-to-day dynamics in activity-travel 
behaviour.” Transportation 35 (4): 467-484. 

Hanson, Susan, and James Huff. (1982) “Assessing day-to-day variability in complex 
travel patterns.” Transportation Research Record: Journal of the Transportation 
Research Board 891: 18-24. 

———. (1986) “Classification issues in the analysis of complex travel behavior.” 
Transportation 13 (3): 271-293. 

Hedges, B. M. (1972) “Time budgets.” Social Trends 5. 

Heggie, Ian G. (1978) “Putting Behaviour into Behavioural Models of Travel Choice.” 
Journal of the Operational Research Society 29 (6): 541-550. 

Hensher, David A. (1985) “An econometric model of vehicle use in the household sector.” 
Transportation Research Part B: Methodological 19 (4): 303-313. 

———. (1986) “Dimensions of automobile demand: an overview of an Australian 
research project.” Environment and Planning A 18 (10): 1339-1374. 

Hägerstrand, T. (1970) “What about people in regional science?” Papers in Regional 
Science 24 (1): 6–21. 

Joh, C, Theo A. Arentze, F Hofman, and Harry J. P. Timmermans. (2002) “Activity 
pattern similarity: a multidimensional sequence alignment method.” Transportation 
Research Part B: Methodological 36 (5): 385-403. 



 

129 
 

Jones, Peter M. (1979) “‘HATS’: a technique for investigating household decisions.” 
Environment and Planning A 11 (1): 59-70. 

———. (1980) “Experience with Household Activity-Travel Simulator (HATS).” 
Transportation Research Record: Journal of the Transportation Research Board 
765: 6-12. 

———. (1983a) The practical application of activity-based approaches in transport 
planning: An assessment. In Recent Advances in Travel Demand Analysis, ed. Susan 
Carpenter and Peter M. Jones, 56-78. Aldershot, England: Gower Publishing Co. Ltd. 

———. (1983b) Interactive measurement travel surveys: The state-of-the-art. In New 
Survey Methods in Transport: 2nd International Conference. Hungerford Hill, 
Australia. 

Jones, Peter M., Martin C. Dix, Mike I. Clarke, and Ian G. Heggie, eds. (1983) 
Understanding Travel Behaviour. University Computing. Gower Publishing Co. Ltd. 

Jones, Peter M., Frank S. Koppelman, and Jean-Pierre Orfeuil. (1990) Activity analysis: 
State-of-the-art and future directions. In Developments in Dynamic and Activity-
Based Approaches to Travel Analysis, ed. Peter M. Jones, 35-55. Aldershot, England: 
Gower Publishing Co. Ltd. 

Jones, Peter M., and Mike I. Clarke. (1988) “The significance and measurement of 
variability in travel behaviour.” Transportation 15 (1): 65–87. 

Kahneman, Daniel, and Amos Tversky. (1979) “An analysis of decision under risk.” 
Econometrica 47 (2): 263-291. 

Kang, Hejun, and Darren M. Scott. (2009) Modeling Day-to-Day Dynamics in 
Individuals’ Activity Time Use Considering Intrahousehold Interactions. In 88th 
Annual Meeting of the Transport Research Board, Washington, DC. 

Kitamura, Ryuichi. (1984) “A model of daily time allocation to discretionary out-of-
home activities and trips.” Transportation Research Part B: Methodological 18 (3): 
255-266. 

———. (1988) “An evaluation of activity-based travel analysis.” Transportation 15 (1-2): 
9-34. 

Kitamura, Ryuichi, Satoshi Fujii, and Eric I. Pas. (1997) “Time-use data, analysis and 
modeling: toward the next generation of transportation planning methodologies.” 
Transport Policy 4 (4): 225-235. 



 

130 
 

Kitamura, Ryuichi, and Satoshi Fujii. (1998) Two computational process models of 
activity-travel choice. In Theoretical Foundations of Travel Choice Modeling, ed. 
Tommy Gärling, Thomas Laitila, and Kerstin Westin. Elsevier Science Ltd. 

Kostyniuk, Lidia P., and Ryuichi Kitamura. (1983) An empirical investigation of 
household time space paths. In Recent Advances in Travel Demand Analysis, ed. 
Susan Carpenter and Peter M. Jones, 266-289. Aldershot, England: Gower 
Publishing Co. Ltd. 

Kraan, M. (1997) In search for limits to mobility growth with a model for the allocation 
of time and money. In Activity-based approaches to travel analysis, ed. Dick Ettema 
and Harry J. P. Timmermans, 89-116. 

Kuipers, Benjamin. (1978) “Modeling spatial knowledge.” Cognitive Science 2 (2): 129-
153. 

Lave, Charles A., and Kenneth E. Train. (1979) “A disaggregate model of auto-type 
choice.” Transportation Research Part A: General 13 (1): 1-9. 

Lee, Ming, and Michael G. McNally. (2001) “Experiments with Computerized Self-
Administrative Activity Survey.” Transportation Research Record: Journal of the 
Transportation Research Board 1752 (1): 91-99. 

———. (2006) “An empirical investigation on the dynamic processes of activity 
scheduling and trip chaining.” Transportation 33 (6): 553-565. 

Lee-Gosselin, Martin. (1983) Measuring passenger load in surveys of private automobile 
usage. In New Survey Methods in Transport: 2nd International Conference. 
Hungerford Hill, Australia. 

———. (1990) The Dynamics of Car Use Patterns Under Different Scenarios : A 
Gaming Approach. In Developments in Dynamic and Activity-Based Approaches to 
Travel Analysis, ed. Peter M. Jones. Aldershot, England: Gower Publishing Co. Ltd. 

Leiser, David, and Avishai Zilbershatz. (1989) “The Traveller: A Computational Model 
of Spatial Network Learning.” Environment and Behavior 21 (4): 435-463. 

Lenntorp, Bo. (1976) Paths in Space-Time Environments: A Time-geographic Study of 
Movement Possibilities of Individuals. The Royal University of Lund, Sweden 
Department of Geography. 

Levy, Samuel. (1953) “Structural analysis and influence coefficients for delta wings.” 
Journal Of The Aeronautical Sciences 20 (7): 449-454. 



 

131 
 

Madre, Jean-Loup. (2003) Multi-day and multi-period data. In Transport Survey Quality 
and Inovation, ed. Peter M. Jones and Peter R. Stopher. Elsevier Science Ltd. 

Mannering, Fred L. (1983) “An econometric analysis of vehicle use in multivehicle 
households.” Transportation Research Part A: General 17 (3): 183-189. 

Mannering, Fred L., and Clifford Winston. (1985) “A dynamic empirical analysis of 
household vehicle ownership and utilization.” The RAND Journal of Economics 16 
(2): 215. 

Manski, Charles F., and Leonard Sherman. (1980) “An empirical analysis of household 
choice among motor vehicles.” Transportation Research Part A: General 14 (5-6): 
349-366. 

Massot, Marie-Hélène, Jimmy Armoogum, Patrick Bonnel, and David Caubel. (2006) 
“Potential for car use reduction through a simulation approach: Paris and Lyon case 
studies.” Transport Reviews 26 (1): 25-42. 

McCarthy, P.S. (1984) “The Shared Vehicle Fleet: A Study of Its Impact upon 
Accessibility and Vehicle Ownership.” Journal of Transport Economics and Policy 
18 (1): 75–94. 

McFadden, Daniel. (1974) Conditional logit analysis of qualitative choice behavior. In 
Frontiers in Econometrics, 105-142. New York: Academic Press. 

———. (1981) Econometric models of probabilistic choice. In Structural analysis of 
discrete data and econometric applications, ed. Charles F. Manski and Daniel L. 
McFadden. Cambridge: The MIT Press. 

———. (2001) “Economic Choices: Nobel prize acceptance speech.” The American 
Economic Review 91 (3): 351-378. 

McFadden, Daniel, and Fred Reid. (1975) “Aggregate travel demand forecasting from 
disaggregated behavioral models.” Transportation Research Record: Journal of the 
Transportation Research Board 534: 24-37. 

McGehee, Daniel V, Mireille Raby, Cher Carney, John D Lee, and Michelle L Reyes. 
(2007) “Extending parental mentoring using an event-triggered video intervention in 
rural teen drivers.” Journal of Safety Research 38 (2): 215-27. 

McNally, Michael G. (2000) The Four Step Model. In Handbook of Transport Modelling, 
ed. David A. Hensher and Kenneth J Button, 35-52. Elsevier Science Ltd. 

Meister, Konrad, Martin Frick, and Kay W. Axhausen. (2005) “A GA-based household 
scheduler.” Transportation 32 (5): 473-494. 



 

132 
 

Miller, Eric J., and Matthew J. Roorda. (2003) “Prototype Model of Household Activity-
Travel Scheduling.” Transportation Research Record: Journal of the Transportation 
Research Board 1831: 114-121. 

Mintz, M., A. Vyas, and L. Conley. (1993) “Differences between EPA-test and in-use 
fuel economy: Are the correction factors correct?” Transportation Research Record: 
Journal of the Transportation Research Board 1416: 124-130. 

Munshi, K. (1993) “Urban passenger travel demand estimation: A household activity 
approach.” Transportation Research Part A: Policy and Practice 27 (6): 423-432. 

National Research Council. (2002) Effectiveness and Impact of Corporate Average Fuel 
Economy (CAFE) Standards. Washington, D.C.: National Academy Press. 

Newell, A., and Herbert A. Simon. (1972) Human problem solving. Englewood Cliffs, 
New Jersey: Prentice-Hall. 

Nijland, Linda, Theo A. Arentze, and Harry J. P. Timmermans. (2010) Eliciting Needs 
Underlying Activity-Travel Patterns and Their Covariance Structure: Results of 
Multi-Method Analyses. In 89th Annual Meeting of the Transport Research Board, 
Washington, DC. 

Pas, Eric I. (1990) Is travel demand analysis and modelling in the doldrums? In 
Developments in Dynamic and Activity-Based Approaches to Travel Analysis, ed. 
Peter M. Jones, 3-27. Aldershot, England: Gower Publishing Co. Ltd. 

Phifer, Susan P., Alfred J. Neveu, and David T. Hartgen. (1980) “Family reactions to 
energy constraints.” Transportation Research Record: Journal of the Transportation 
Research Board 765: 12-16. 

Quandt, Richard E., and William J. Baumol. (1966) “The demand for abstract transport 
modes: Theory and measurement.” Journal of Regional Science 6 (2): 13-26. 

Rassam, P. R., R. H. Ellis, and J. C. Bennet. (1971) “The N-dimensional logit model: 
Development and application.” Highway Research Record 369: 91-103. 

Recker, Will W. (1995) “The household activity pattern problem: General formulation 
and solution.” Transportation Research Part B: Methodological 29 (1): 61-77. 

Recker, Will W., Michael G. McNally, and G. S. Root. (1986a) “A model of complex 
travel behavior: Part I—Theoretical development.” Transportation Research Part A: 
General 20 (4): 307-318. 

———. (1986b) “A model of complex travel behavior: Part II—An operational model.” 
Transportation Research Part A: General 20 (4): 319-330. 



 

133 
 

Recker, Will W., and A Parimi. (1999) “Development of a microscopic activity-based 
framework for analyzing the potential impacts of transportation control measures on 
vehicle emissions.” Transportation Research Part D: Transport and Environment 4 
(6): 357-378. 

Reichman, Shalom. (1976) Travel adjustments and life styles - A behavioral approach. In 
Behavioral Travel-Demand Models, ed. Peter R. Stopher and Arnim H. Meyburg, 
143-152. Lexington Books. 

Reichman, Shalom, and Peter R. Stopher. (1971) “Disaggregate stochastic models of 
travel-mode choice.” Highway Research Record 369: 91-103. 

Richtel, Matt. (2011) “In-car cameras protect teenage drivers, study finds.” The New York 
Times, April 1. 

Rilett, LR. (2001) “Transportation Planning and TRANSIMS Microsimulation Model: 
Preparing for the Transition.” Research Record: Journal of the Transportation 1777: 
84-92. 

Roorda, Matthew J., Eric J. Miller, and Nicolas Kruchten. (2006) “Incorporating within-
household interactions into a mode choice model using a genetic algorithm for 
parameter estimation.” Transportation Research Record: Journal of the 
Transportation Research Board 1985: 171-179. 

Roorda, Matthew J., and Eric J. Miller. (2005) Strategies for resolving activity scheduling 
conflicts: An empirical analysis. In Progress in Activity-based Analysis, ed. Harry J. 
P. Timmermans, 203-222. Elsevier Science Ltd. 

Santos, Adella, Nancy McGuckin, Hikari Yukiko Nakamoto, Danielle Gray, and Susan 
Liss. (2011) Summary of travel trends: 2009 National Household Travel Survey. 

Scheuch, Erwin K. (1972) The time-budget interview. In The use of time : Daily activities 
of urban and suburban populations in twelve countries., ed. Sándor Szalai, 69-87. 
The Hague: Mouton. 

Sharp, Joy, and Elaine Murakami. (2005) “Travel Surveys : Methodological and 
Technology-Related.” Journal of Transportation and Statistics 8 (3): 97-113. 

Simon, Herbert A. (1955) “A behavioral model of rational choice.” The Quarterly 
Journal of Economics 69 (1): 99. 

———. (1956) “Rational choice and the structure of the environment.” Psychological 
Review 63 (2): 129-138. 

———. (1957) Models of man social and rational. New York: Wiley. 



 

134 
 

Srinivasan, Sivaramakrishnan, and Chandra R. Bhat. (2005) “Modeling household 
interactions in daily in-home and out-of-home maintenance activity participation.” 
Transportation 32 (5): 523-544. 

Stopher, Peter R., Camden FitzGerald, and Min Xu. (2007) “Assessing the accuracy of 
the Sydney Household Travel Survey with GPS.” Transportation 34 (6): 723-741. 

Stopher, Peter R., Stephen Greaves, and Camden FitzGerald. (2005) Developing and 
deploying a new wearable GPS device for transport applications. In 28th 
Australasian Transport Research Forum, 1-13. 

Stopher, Peter R., DavidT. Hartgen, and Yuanjun Li. (1996) “SMART: simulation model 
for activities, resources and travel.” Transportation 23 (3): 293-312. 

Stopher, Peter R., Christine Prasad, Laurie Wargelin, and Jason Minser. (2011) 
Conducting a GPS-only household travel survey. In 9th International Conference on 
Survey Methods in Transport. 

Train, Kenneth E. (1980a) “A structured logit model of auto ownership and mode choice.” 
The Review of Economic Studies 47 (2): 357-370. 

———. (1980b) “The potential market for non-gasoline-powered automobiles.” 
Transportation Research Part A: General 14 (5-6): 405-414. 

Turner, M J, R W Clough, H C Martin, and L J Topp. (1956) “Stiffness and deflection 
analysis of complex structures.” Journal Of The Aeronautical Sciences 23 (9). 

U.S. EIA. (2011) Methodologies for estimating fuel consumption using the 2009 National 
Household Travel Survey. http://nhts.ornl.gov/2009/pub/EIA.pdf. 

U.S. EPA. (2011) Inventory of U.S. greenhouse gas emissions and sinks: 1990-2009. 

Vause, M. (1997) A rule-based model of activity scheduling behaviour. In Activity-based 
Approaches to Travel Analysis, ed. Dick Ettema and Harry J. P. Timmermans, 73-87. 

Vovsha, Peter, Mark Bradley, and John L. Bowman. (2005) Activity-based travel 
forecasting models in the United States: Progress since 1995 and prospects for the 
future. In Progress in Activity-based Analysis, ed. Harry J. P. Timmermans. Emerald 
Group Pub Ltd. 

Wen, Chieh-Hua, and Frank S. Koppelman. (1999) “Integrated model system of stop 
generation and tour formation for analysis of activity and travel patterns.” 
Transportation Research Record: Journal of the Transportation Research Board 
1676: 136–144. 



 

135 
 

———. (2000) “A conceptual and methdological framework for the generation of 
activity-travel patterns.” Transportation 27: 5-23. 

Wets, Geert, Koen Vanhoof, Theo A. Arentze, and Harry J. P. Timmermans. (2000) 
“Identifying decision structures underlying activity patterns: an exploration of data 
mining algorithms.” Transportation Research Record: Journal of the Transportation 
Research Board 1718: 1–9. 

Wilson, W C. (1998) “Activity pattern analysis by means of sequence-alignment 
methods.” Environment and Planning A 30 (6): 1017-1038. 

Wolf, Jean. (2000) Using GPS data loggers to replace travel diaries in the collection of 
travel data. Ph.D. diss., Georgia Institute of Technology. 

Wolf, Jean, Randall Guensler, and William Bachman. (2001) Elimination of the Travel 
Diary: An Experiment to Derive Trip Purpose Grom GPS Travel Data. In 80th 
Annual Meeting of the Transport Research Board, Washington, DC. 

cars.com. (2011) cars.com. http://www.cars.com/. 

edmunds.com. (2011) edmunds.com. http://www.edmunds.com/. 

vehix.com. (2011) vehix.com. http://www.vehix.com/. 

 


	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	1.1. Overview
	1.2. Activity-based approach to travel behavior analysis
	Before the activity-based approach: The four step model
	Origins of the activity-based approach
	Econometric and statistical techniques
	Rules-based simulations
	Computational Process Models
	Constraints-based models

	Comprehensive modeling systems

	1.3. Research questions
	1.4. Organization of this dissertation

	A multi-day probabilistic scheduling model for household activities
	2.1. Background
	Activities and their classification
	Review of existing activity scheduling models
	Econometric (RUM) scheduling models
	Rules-based scheduling models


	2.2. mPHASE model overview
	Activity purpose as the central organizing theme
	Templates and probabilistic multi-dimensional descriptions of activities
	Dimension 1: Day
	Dimension 2: Time
	Dimension 3: Location
	Dimension 4: Household participants
	Dimension 5: Items carried and non-household members

	Occurrence rules and accounting for day-to-day variability
	Variability in periodic activities
	Variability in activity frequency
	Variability in activity likelihood
	Defining occurrence rules

	Model structure

	2.3. Activity priority and the daily agenda
	2.4. A finite element approach to activity scheduling and conflict resolution
	Description of the Finite Element Method
	Representing activities as elements
	Activity schedules at the household level
	Minimizing time pressure and finding equilibrium in schedules
	Coordinating schedules among multiple household members


	The Household Travel Patterns Study: A pilot demonstration
	3.1. A review of methods for multi-day data collection
	Alternative survey techniques
	Interactive and situational surveys
	Dynamic scheduling surveys
	Responses as ranges and probabilities
	Qualitative approaches

	GPS and passive location-finding technologies

	3.2.  A proposed companion survey for mPHASE
	Key aspects of the survey approach
	Flexible activity definitions
	Fuzzy responses
	Interactive interviewing
	Feedback and iterative input

	Description of the web-based survey instrument
	Selection of locations
	Description of activity characteristics
	Iterative review of generated schedules


	3.3. Custom in-vehicle data acquisition equipment
	Overview
	Trip detection and image capture logic

	3.4. Household Travel Patterns Study protocol
	Participant recruitment
	First home visit
	Arrival and informed consent
	Administering the web-based survey
	Installing the in-vehicle data acquisition equipment
	Wrap-up and departure

	Second home visit
	Data post processing
	Manual trip identification
	Digital image inspection and coding


	3.5. Results of pilot study
	Sample description
	Household members
	Vehicles

	Interactive web survey experience
	Multi-day schedules generated using mPHASE


	Capability constraints and the optimal assignment of vehicles to trips
	4.1. Background
	Household fleet capability and coupling constraints
	Constraints-based methods and vehicle assignment in previous work

	4.2. CTRAM - Constraints-based Transportation Resource Assignment Model
	Model Overview
	Travel blocks and scheduling conflicts
	Enumeration of assignment combinations
	Capability constraints and feasible assignments
	Determining the optimal assignment combination

	4.3. Analysis of 2001 and 2009 NHTS data using CTRAM
	Description of 2001 and 2009 NHTS data sets
	Adding vehicle specifications to NHTS data
	Chrome New Vehicle Database
	In-use fuel consumption
	Characteristics of vehicles in 2001 and 2009
	Intra-fleet diversity in multi-vehicle households

	Results and Discussion
	Optimality of vehicle assignment decisions in 2001 and 2009
	Effect of gasoline price


	4.4. Case study of optimal vehicle replacement
	The C.A.R.S. accelerated vehicle retirement program
	Methodology
	Decision-making scenarios for vehicle replacement and use
	Description of data sources
	Vehicle ownership costs

	Results and Discussion

	4.5. Potential applications and limitations of constraints-based approach

	Conclusions
	5.1. Key findings
	5.2. Limitations
	5.3. Potential applications and future work
	Potential standalone applications of mPHASE
	Potential standalone applications of CTRAM
	Potential applications of mPHASE/CTRAM system
	Future work


	Appendix A  Study recruitment materials
	Appendix B  VUSE data post processing
	Appendix C  Web survey screen shots
	REFERENCES

