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CHAPTER I

Introduction

Performance scalability is one of the central problems that needs to be addressed

when designing large-scale communication networks. An often-overlooked issue in

large-scale networks is that limited local resources such as memory and power can

be critical factors in determining the overall network performance, as the size of the

network increases. The finiteness of local resources can create performance bottle-

necks. Such performance bottlenecks are usually not prominent in small-size net-

works. However, minor deficiencies that can be tolerated in small-size networks can

accumulate and become dominant factors that limit the performance in large-scale

networks. We emphasize that this issue cannot be solved simply by over-provisioning

local resources of each network device, since required upgrades in a large legacy net-

work are likely to have a prohibitive cost. Hence, there is a need for investigating the

fundamental performance limits due to the finiteness of local resources in large-scale

networks.

In this dissertation, we aim to understand fundamental properties of various per-

formance characteristics of large-scale communication networks with limited local

resources. We focus on theoretical investigation, since conducting experimental stud-

ies is impractical due to the considerable cost of building large prototypes, and

1
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even simulating such networks is sometimes not feasible because of computational

limitations. This dissertation addresses the following three topics on performance

scalability: (i) effectiveness of application-layer coding, (ii) existence of fixed-point

processes in linear loss networks, and (iii) throughput scalability for linear finite-

buffer networks. We develop mathematical frameworks for studying these topics,

and investigate asymptotic characteristics of the networks, as the number of users or

the size of the network increases. Furthermore, we illustrate by simulation studies

that these asymptotic results are reasonably accurate and applicable for networks of

finite size. Our analytical results provide good guidelines for the development and

optimization of scalable network architectures and protocols.

We note that we consider networks that do not utilize feedback. Feedback mecha-

nisms for large-scale networks are usually difficult to design and not straightforward

to implement. Moreover, the value of feedback information decreases to the point

where it is sometimes detrimental to use due to large delay, as the size of the network

increases. Thus, it is reasonable to employ simple control protocols without feedback

in large-scale networks, and we focus on such networks.

1.1 Effectiveness of application-layer coding

In this section, we summarize the results on effectiveness of application-layer

coding provided in Chapter II. Application-layer coding is one of the mechanisms

to achieve reliable communication in packet networks. If application-layer coding is

employed, sources encode their data packets into coded packets and transmit them

instead. Then, even though some of the encoded packets are lost from the network,

receivers can reconstruct the original data packets by decoding a received subset of

coded packets. In this research, we study the effectiveness of application-layer coding
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in a wired network with a large number of users. In wired networks, transmission

errors due to channel noise are rare, and, thus, it is reasonable to assume that

losses are due to buffer overflows only (i.e., transmissions are error-free). We note

that employing coding has two conflicting effects on the network performance: (i)

additional packets increase the overall offered load, which results in a higher drop

probability, and (ii) some of the dropped packets can be recovered at the end users

after decoding, which decreases the loss rate. The effectiveness of coding depends on

which of the above-mentioned effects is dominant, and it is unknown a priori when

application-layer coding is advantageous.

Formally, we consider a sequence of networks, indexed by the number of users

(sources), consisting of a single link with a finite buffer shared by all users. This finite-

buffer node with a single transmission link, in which some packets are dropped when

the buffer is full, can be thought of as an erasure channel. For analytical simplicity,

we consider systematic linear block codes as our coding scheme. If a systematic

code is employed, a fixed number of additional coded packets are generated per each

coding block consisting of a fixed number of data packets. The additional coded

packets are transmitted along with the data packets. All data and coded packets are

assumed to have the same priority in the buffer. If data packets are given priority,

coded packets do not affect drops of data packets, and, thus, coding does not degrade

the network performance. Nevertheless, we consider a system without priority, since

such a system is straightforward to implement and users have no incentive to mislabel

their packets intentionally.

In order to investigate the effectiveness of coding, we first establish a relevant scal-

ing regime (i.e., the critical-loading scaling) of the network parameters (i.e., arrival

rate, link capacity, buffer size and coding block length), in terms of the number of
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users. Under this regime, we compare the asymptotic loss probabilities (due to buffer

overflows) in networks with and without coding, as the number of users increases.

These asymptotic results indicate that the network parameter space is partitioned

into two regions where coding is beneficial and detrimental, respectively. In partic-

ular, the critical regime that we establish contains the boundary between these two

regions. On the boundary, networks with and without coding have the same per-

formance. Informally, it is argued that coding can be advantageous in under-loaded

networks only; in over-loaded networks, the overhead of coding exceeds its benefit,

and coding only worsens the network performance. Finally, we demonstrate on ex-

amples that our asymptotic results render reasonable approximations for networks

with a finite number of users.

1.2 Existence of fixed-point processes in linear loss networks

This section outlines the research contributions on the asymptotic characteristics

of the departure (output) processes of linear loss networks presented in Chapter III.

A linear network is a tandem network consisting of a series of identical nodes, in which

customers (packets) enter the network at a fixed source node and are relayed from

one node to another in a fixed order until they exit the network at a fixed destination

node. This tandem network is a representative model of large-scale communication

networks with limited or no cross-traffic interference along the paths from the sources

to destinations. An example of such a network is a sensor network where concurrent

traffic volume is small relative to the size of the network.

In a linear network, the output process from a queue (node) is in turn the input

process to the next queue (node). If the input and output processes are equal in

distribution, then such processes are called fixed-point processes. If the number of
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buffers at each node is limited, the input is always denser than the output. Thus,

in order to investigate their asymptotic characteristics, it is necessary to scale the

departure processes properly, in terms of the network size. We focus on linear loss

networks consisting of bufferless nodes each of which operates as a ·/M/1/0 queue.

Under a proper scaling, as the size of the network increases, scaled inter-departure

times of the customers from the destination node tend to consecutive distances be-

tween coalescing Brownian motions in a one-dimensional space, in which any two

Brownian motions coalesce into one whenever they hit each other. The coalescing

procedure of the Brownian motions is called one-species two-body diffusion-limited

reaction and was studied in [5–7, 22]. By exploiting connections between the two

areas, we provide a complete characterization of the asymptotic departure process

(i.e., the joint probability density function of any finite number of consecutive inter-

departure times). This asymptotic property of the departure process is completely

attributed to the characteristics of the network itself (i.e., the distributions of service

times and the number of buffers) and is not impacted by the input as long as the

input does not vary with the size of the network.

1.3 Throughput scalability for linear finite-buffer networks

This section provides a summary of the results on the critical regime for linear

finite-buffer networks presented in Chapter IV. A critical loading regime is a scaling

regime of the input arrival rate, in terms of the size of the network, under which

the input and output (throughput) rates are proportional, i.e., the asymptotic loss

probability due to limited buffer space is strictly within (0, 1), as the size of the

network increases. Such a regime is of interest since it delivers a relatively high

throughput at low network (energy) cost. If the offered load is (order-wise) higher
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than the critical load, then the loss probability tends to 1 asymptotically. In that

case, only a negligible fraction of packets is delivered, and, thus, operating a network

in such a way is not (energy) efficient. On the other hand, the asymptotic loss

probability of 0 occurs when the offered load is (order-wise) lower than the critical

load. Then, higher throughputs can be achieved with small increments of the network

cost. Hence, in this case, the network capacity is not efficiently utilized. Under

the critical regime, one balances between two conflicting goals: (i) achieving high

throughput, and (ii) maintaining low loss probability (low network cost).

In this research, we identify a critical loading regime for linear networks consist-

ing of finite-buffer nodes each of which operates as a ·/M/1/b queue for fixed b ≥ 1.

To this end, we first develop a multi-dimensional random walk within a wedge that

approximately describes the evolution of the relative distances between a finite num-

ber of consecutive packets in a linear finite-buffer network. In particular, an event

of the random walk visiting the origin corresponds to a loss of a packet in the lin-

ear network. Thus, the loss probability of a (stationary) packet can be evaluated

approximately by analyzing hitting probabilities of random walks within a wedge.

Our analytical results indicate that the input rate under the critical loading regime

is Ω(1/
√
k) and O(

√

log k/k) for b = 1, and Θ(k−1/(b+1)) for b ≥ 2, as k → ∞,

where k denotes the number of nodes in the network.1 It was shown in [35] that the

critical loading regime for linear networks with bufferless nodes (i.e., b = 0) occurs

when the input rate is Θ(1/
√
k), as k → ∞. From these results, we conclude that

the qualitative behavior of the critical loading regime for linear networks depends

on whether the buffer size is greater than 1. Finally, we illustrate with simulation

studies that these asymptotic approximations are reasonably accurate for finite-size
1Throughout the dissertation, we use the standard asymptotic notation; e.g., see [20, Section I.3.1].
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networks.

1.4 Organization of the dissertation

The dissertation is organized as follows. In Chapter II, we discuss the effectiveness

of application-layer coding. Linear networks are studied in Chapters III and IV. In

particular, Chapter III investigates the departure process of the linear loss network,

and Chapter IV establishes a critical loading regime for linear finite-buffer networks.

Chapter V contains conclusions and the future work of the dissertation. Technical

proofs omitted in the main text and can be found in the Appendices.



CHAPTER II

Effectiveness of application-layer coding

2.1 Introduction

The primary reason for losses in packet networks is buffer overflow – each link

in a network has finite capacity, and intermediate routers have limited memories to

store packets. In general, there are two basic approaches to overcome this kind of

packet losses:

• Retransmission mechanism. The source transmits its data packets to the re-

ceiver. Packets that have not been acknowledged (explicitly or implicitly) are

retransmitted.

• Application-layer coding. The source encodes its data packets into coded packets

and transmits them instead. The receiver reconstructs the original data packets

by decoding received coded packets.

In wired networks, transmission errors due to channel noise are rare, and, thus, it is

reasonable to assume that losses are due to buffer overflows only (i.e., transmissions

are error-free). This study focuses on evaluating the effectiveness of application-layer

coding in such networks. In wireless networks, however, packet losses attributed to

transmission errors (due to unreliable channels) can be considerable and must be

accounted for. We note that application-layer coding (i.e., fountain coding) for such

8
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networks has been studied substantially as one of the possible methods to achieve

reliable communication (e.g., see [17, 41]).

Application-layer coding allows end users to recover the original data packets

from the received subset of coded packets by decoding. However, employing such

coding results in a higher offered load, and, therefore, increases drop probability.

From this perspective, it is unclear when application-layer coding is advantageous;

application-layer coding was shown to be advantageous in certain cases [10]. Hence,

it is of interest to investigate the effectiveness of such coding. As a first step, we

study the effectiveness of coding in the baseline model consisting of a single link with

a finite buffer. In particular, a sequence of systems indexed by the number of users

N is considered. We first discuss an appropriate scaling of the system parameters

for investigating the effectiveness of coding, and establish that the critical-load scal-

ing is the relevant one. Under the critical-load scaling, system utilization and drop

probability behave as 1−Θ(1/
√
N) and Θ(1/

√
N), respectively, when the number of

users N is large. We then examine the loss probabilities in systems with and without

coding. Our asymptotic analysis indicates that application-layer coding can be ad-

vantageous in under-loaded systems; in over-loaded systems, however, the overhead

of coding exceeds its benefit, and coding only worsens the system performance. In

addition, we demonstrate on examples that our asymptotic results render reasonable

approximations for systems with a finite number of users.

The rest of the chapter is organized as follows. In the next section, we describe

a system model and assumptions that are used throughout the chapter. We discuss

a relevant scaling for investigating the effectiveness of coding in Section 2.3. In Sec-

tion 2.4 we review erasure codes and their performance. Section 2.5 contains the

analysis for the loss probability without coding. Then, we analyze the drop proba-
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Figure 2.1: The source i, 1 ≤ i ≤ N , generates AN
(i)(t) ∈ {0, 1} packets in the time slot t ≥ 1.

When application-layer coding is employed, source-generated packets are encoded into
coded packets by individual encoders. All packets from the encoders of N sources are
transmitted to a single link of capacity CN with a buffer of size BN . The packets that
are not dropped from the buffer are first delivered to the decoder of each source and
decoded into the original packets. End users receive the output packets of their own
decoders.

bility with coding and discuss the coding overhead due to the increased offered load

in the following section. In Section 2.7 we explore the loss probability with coding

and establish the boundary where systems with and without coding have the same

performance. A discussion on the system performance for a systematic minimum-

distance-separable (MDS) code is presented in Section 2.8. Concluding remarks and

technical proofs can be found in Section 2.9 and Appendix A, respectively.

2.2 System model

2.2.1 Model

We consider a sequence of systems indexed by N , where N is the number of sources

that transmit packets to a link with a finite buffer. Let CN and BN denote the link

capacity and the buffer size, respectively. Time slotted operations are assumed. In

addition, let AN
(i)
(t), 1 ≤ i ≤ N , t ≥ 1, denote the number of packets generated

by the source i in the time slot t. The processes {AN
(i)
(t), t ≥ 1}, i = 1, 2, · · · , N ,

are assumed to be independent Bernoulli random processes with parameter λ, i.e.,

AN
(i)
(t) ∈ {0, 1} and EAN

(i)
(t) = λ for 1 ≤ i ≤ N and t ≥ 1. If present, application-
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layer coding is performed at each source (see Figure 2.1). All packets from the

encoders are transmitted to the queue consisting of a single link with a finite buffer.

The packets that are not dropped from the queue are first delivered to the decoder

of each source and decoded into the original packets. End users receive the output

packets of their own decoders.

We examine loss probability as a measure of the system performance. The loss

probability is defined as the long-term ratio of the number of lost packets to the total

number of source-generated packets. A dropped packet is a packet that is discarded

from the queue when the buffer is full, and a lost packet is a packet that is not

delivered to the end users. In a system without coding, every dropped packet is

also a lost packet since no dropped packets can be recovered. If a system utilizes

coding, however, some of dropped packets can be recovered at the end users, and,

therefore, we differentiate a lost packet (loss probability) from a dropped packet

(drop probability) in this case. Even though the drop probability increases due to

the additional offered load attributed to coding, the loss probability can decrease by

means of coding if enough dropped packets are recovered.

2.2.2 Coding scheme

The queue, in which some packets are dropped when the buffer is full, can be

thought of as an erasure channel, e.g., see [21, 40]. Two main features of our model

are as follows:

• Systematic linear block code. We assume that each encoder uses a linear block

code for producing additional α packets per each coding block consisting of

MN data packets generated by its source. For this operation, each encoder is

assumed to have a memory space for storing copies of MN most recent data
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packets from its source. A data packet generated by a source is transmitted

in the same time slot (without any delay due to the encoder). The encoder

produces α coded packets when the source generates the last data packet of the

block. These additional α packets are transmitted in the same time slot as the

last data packet of the block1; α does not vary with N . See Figure 2.2 for an

example. Note that under this scheme, the decoding delay is positive only in

the presence of packet drops.

• Non-priority queue. It is assumed that all packets have the same priority in

the queue and that they are served on the first-come, first-serve basis. If a

system gives priority to data packets over coded packets in the queue, then

coded packets do not affect drops of data packets, and, thus, coding does not

degrade the system performance. Nevertheless, we consider a system without

priority since such a system is straightforward to implement and users have no

incentive to mislabel their packets intentionally (cheat). Moreover, when the

loss probability is very low (to be made precise later in the chapter; regime

studied in [10]), coding is beneficial in both systems with ([10]) and without

(our model) priority, i.e., in that regime, the priority does not impact results in

a qualitative way.

Let HN
(i)
(t) ∈ {0, 1, 1 + α}, 1 ≤ i ≤ N , t ≥ 1, denote the total number of packet

arrivals (both data and coded packets) from the encoder of the source i in the time

slot t. We say that a coding block “ends” at the time slot t if the MN th packet of

the block is generated by the source at time t; the following block “starts” at the
1This assumption is not crucial and does not impact the nature of our main results. Other schemes are possible,

e.g., additional packets can be transmitted in consecutive time slots.
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Figure 2.2: The figure illustrates an example of our coding scheme for MN = 3 and α = 1. In
this example, data packets (white) are generated (and transmitted) in the time slots
with indices 1, 2, 5, 7, 10 and 13; additional coded packets (gray) are generated (and
transmitted) in the time slots 5 and 13. The first coding block starts at t = 1 and ends
at t = 5; the second coding block starts at t = 6 and ends at t = 13. We also indicate
the values of AN

(i)(t), X
N
(i)(t) and HN

(i)(t) for each t.

subsequent (t+ 1) time slot (the first block starts at time t = 1). Then, we have

HN
(i)
(t) = AN

(i)
(t) + α1{AN

(i)(t)=1, XN
(i)(t)=MN−1},

where XN
(i)
(t) ∈ {0, 1, . . . ,MN − 1} is the number of data packets generated by the

source i from the beginning of the current coding block up to (and including) the

time slot t − 1; by definition, XN
(i)
(t) = 0 if coding block starts at time t. See

Figure 2.2 for an example. Now observe that the arrival process {HN
(i)
(t), t ≥ 1} is

completely determined by a Markov chain {(AN
(i)
(t), XN

(i)
(t)), t ≥ 1} with the state

space S = {(a, x) : a ∈ {0, 1}, x ∈ {0, 1, . . . ,MN − 1}} and transition probabilities

Pij, i, j ∈ S, given by

Pij =



















λ, aj = 1, xj = (xi + 1{ai=1}) mod MN ,

1− λ, aj = 0, xj = (xi + 1{ai=1}) mod MN ,

where i = (ai, xi) and j = (aj , xj). Since this Markov chain is finite, aperiodic

and irreducible, it has an unique stationary distribution π(a, x), a ∈ {0, 1}, x ∈
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{0, 1, . . . ,MN − 1}, given by

(2.1) π(a, x) =



















(1− λ)/MN , a = 0,

λ/MN , a = 1.

2.3 Scaling

In this section, we discuss an appropriate scaling (as the number of users increases,

N → ∞) for investigating the effectiveness of application-layer coding. Recall that

we assume that α additional packets are generated per each block of length MN .

The additional offered load due to coding is then equal to αλN/MN while the spare

capacity of the link is CN − λN . Thus, we consider the block length MN such that

αλN/MN = Θ(CN − λN), as N → ∞, since this scaling allows one to examine

both under- and over-loaded systems by adjusting appropriate constants (system

parameters). Next we review three possible scalings for CN and MN 2. Let p and

pD denote the loss probability without coding and the drop probability with coding,

respectively.

• Under-load scaling : for β > 0 and m > α/β,

CN = ,λN + βN-, MN = ,mλ-.

In this regime, p and pD are asymptotically O(e−θN) and O(e−θ′N), respectively,

as N → ∞, for some positive constants θ and θ′ such that θ′ < θ (e.g., see

[42, Ch. 12]); θ′ approaches θ when m increases. Informally, despite the fact

that drop probability increases due to coding, the expected number of dropped

packets in a block is close to 0 for large N . If at least one coded packet is added

per block (α ≥ 1), we can recover most of the dropped packets as long as the
2Although other scalings are possible, these three cover the main tradeoffs between efficiency and quality.
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coding block is large enough so that (α + 1)θ′ > θ. Therefore, coding improves

the system performance in this case as suggested in [10].

• Over-load scaling : for β > 0 and m > α/β,

CN = ,λN + β-, MN = ,mλN-.

Due to the central limit theorem (CLT), both p and pD are asymptotically given

by Θ(1/
√
N), as N →∞. In this case, the expected number of dropped packets

in a block is Θ(
√
N) since the block length is Θ(N). However, the maximum

number of dropped packets that can be recovered in a block is only α = Θ(1).

For large N , hence, the possibility of recovering dropped packets is very small.

Hence, in this scaling, coding worsens the system performance.

• Critical-load scaling :

(2.2) CN = ,λN + β
√
N-, MN = ,mλ

√
N-.

Under this scaling, both p and pD behave as Θ(1/
√
N) in the limit as N →∞

(e.g., see [45, Ch. 10]). Since the block length is Θ(
√
N), the expected number of

dropped packets in a block is Θ(1), i.e., the numbers of dropped and additional

packets are of the same order. Therefore, in this case, the effectiveness of coding

depends on α and m for given system parameters such as β (capacity) and b

(buffer size), and it is feasible to find the critical points where systems with and

without coding have the same performance.

The scaling for the buffer size BN stems from the fact that if BN = o(σN), as

N →∞, where σN denotes the standard deviation of the total arrival process, then

the performance of the system is asymptotically equal to the one with BN = 0 (as

N → ∞); on the other hand, if BN = ω(σN), as N → ∞, then the system behaves
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Table 2.1: Summary of key notations (under critical-load scaling)

System

N Number of users (sources)

λ Arrival rate per source

CN Link capacity

BN Buffer size

β Scaled spare capacity (CN = ,λN + β
√
N-)

b Scaled buffer size (BN = ,b
√
N-)

User

α Number of additional packets per block

MN Coding block length (in packets)

m Scaled coding block length (MN = ,mλ
√
N-)

asymptotically as the one with BN = ∞ (as N → ∞). Hence, for evaluating the

effect of the buffer size on the system performance, the relevant buffer size should

satisfy BN = Θ(σN), as N →∞. For the considered model, we have σN = Θ(
√
N),

as N →∞, and, thus, we let, for b ≥ 0,

(2.3) BN = ,b
√
N-.

In the following sections, we demonstrate that the critical-load scaling is the

relevant scaling as far as the effectiveness of coding is concerned. Under the critical-

load scaling, the following scaled variables are useful in obtaining the drop and loss

probabilities:

ĈN = (CN − λN)/
√
N → β,

B̂N = BN/
√
N → b,

(2.4)

as N → ∞. Moreover, Table 2.1 summarizes the key notations (under the critical-

load scaling) that will be used throughout the chapter; note that β, b and m are the

scaled parameters that determine spare capacity, buffer size and coding block length,

respectively (see (2.2) and (2.3)).
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We note that in [10], application-layer coding was studied in the context of a

system with priority (data packets are given priority). In particular, the authors

considered the under-load scaling only (linear scaling between the link capacity and

the number of users), and concluded that application-layer coding improves perfor-

mance (in the limit as N → ∞). In contrast, we focus on the critical-load scaling

since under this scaling, application-layer coding can be either beneficial or detri-

mental depending on the exact parameters of the system. Our result indicates that

application-layer coding is beneficial in the under-load regime (as N → ∞) even

if data packets are not prioritized over coded packets. As mentioned in Subsec-

tion 2.2.2, utilizing application-layer coding does not degrade the performance of a

system with priority. However, as will be discussed in Section 2.9, the critical-load

scaling also plays a role in the model with priority. Namely, in this regime, the ratio

of loss probabilities in two corresponding systems with and without coding tends to

a constant strictly within (0, 1), as N →∞. On the other hand, this ratio tends to

0 (exponentially fast in N) in the under-load regime [10], and to 1 in the over-load

regime.

2.4 Erasure codes

In this section, we review erasure codes and their performance. The relevance of

such codes is due to the fact that the finite-buffer queue can be thought of as an

erasure channel, e.g., see [21,40]. We consider (M+α,M) linear block codes –M data

packets are used to generate M+α packets to be transmitted. Let v = [v1 v2 · · · vM ]

be the data packets in a single coding block, and let u = [u1 u2 · · · uM+α] be the

output packets encoded from these data packets. The output packets are generated



18

from the data packets according to the following rule:

(2.5) u = vG,

where G is a generator matrix that depends on a specific code. All arithmetic is over

GF (q) for some positive integer q (e.g., see [28, Ch. 5]). Next we examine various

erasure codes.

2.4.1 Ideal block code

Let D denote the number of dropped packets among the M + α output packets

from a single block, and let L denote the number of lost packets in the same block,

i.e., L original data packets can not be reconstructed after decoding. We define the

ideal block code as a code that satisfies the following property:

(2.6) L = (D − α)+ = D − (D ∧ α).

Note that ifD output packets are dropped, then a decoder can recover onlyM+α−D

linear equations in (2.5) from the remaining output packets. From M +α−D linear

equations, at most M + (α−D)− data packets can be decoded correctly. Therefore,

the ideal block code, if it exists, achieves the best performance among all linear block

codes.

2.4.2 Systematic MDS code

A linear block code with minimum distance d can recover all of the original data

packets in a block when the number of dropped packets in the block is less than d.

If a (M + α,M) linear block code has minimum distance d = α + 1, we call such

codes as MDS codes; these MDS codes achieve equality in the Singleton bound (e.g.,

see [28, Ch. 15]). Reed-Solomon codes belong to the class of MDS codes. When a

code is systematic, the output packets from a block contain M original data packets
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and additional α coded packets, i.e., ui = vi for i = 1, 2, . . . ,M . Given a block,

let Dd and Dc denote the numbers of dropped packets among the M data packets

and the additional α coded packets, respectively. If Dd +Dc ≤ α, then all M data

packets can be reconstructed from (2.5). On the other hand, if Dd+Dc > α, then no

dropped data packets can be recovered from (2.5) and only M −Dd data packets are

obtained. Therefore, letting L be the number of lost packets after decoding leads to

(2.7) L = Dd · 1{Dd+Dc>α}.

2.4.3 Partial coding

Suppose that a systematic MDS code is applied to only ρ fraction of data packets

in a block. That is, ,ρM- data packets are used to generate ,ρM-+α output packets,

and remaining M − ,ρM- data packets are transmitted without any encoding. In

this case, only the dropped packets from the ρ fraction of the block can potentially

be recovered. Let D̃d and D̄d denote the numbers of dropped packets among ,ρM-

data packets in the coding part and M − ,ρM- data packets in the non-coding

part, respectively. Moreover, let Dc denote the number of dropped packets among

additional α coded packets in the coding part. Setting L to be the number of lost

packets after decoding yields

(2.8) L = D̄d + D̃d · 1{D̃d+Dc>α} = Dd − D̃d · 1{D̃d+Dc≤α},

where Dd = D̃d + D̄d.

2.4.4 Comparison

In Figure 2.3, we illustrate the difference between these three coding schemes on

an example. In particular, we compare the conditional expectation of the number of

lost packets given the value of the number of dropped packets in a block for the ideal
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Figure 2.3: The conditional expectation of the number of lost packets E [L|D] given the value of the
number of dropped packets D in a block for the ideal block code (◦), a systematic MDS
code (•) and partial coding with ρ = 0.5 (×) when M = 10 and α = 2. In this example,
it is assumed that all packet drops are independent with the same drop probability.

block code, a systematic MDS code and partial coding with ρ = 0.5. The block length

M and the number of additional coded packets α are set to be 10 and 2, respectively.

Just for this example, all packet drops are assumed to be independent with the same

drop probability. As expected, the ideal block code has the smallest expected value

of the number of lost packets for a given value of the number of dropped packets.

When a systematic MDS code is employed, all dropped data packets can be recovered

if the number of dropped packets is at most α (α = 2 in this example); otherwise, no

dropped data packets can be recovered. When partial coding is used, even though

the number of dropped packets is greater than α, the dropped data packets that

belong to the coding part can be recovered if the number of dropped packets in the

coding part is at most α; in this case, thus, partial coding has better performance

than pure block coding. On the other hand, if the number of dropped packets is

not greater than α, then partial coding underperforms pure block coding since the
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dropped data packets in the non-coding part can not be recovered.

2.4.5 Coding with overlapping blocks

In this subsection, we examine one particular scheme that utilizes overlapping

blocks. Suppose that each half of a block overlaps with either one of its adjacent

blocks and that α/2 additional packets are generated from each block of length M ;

M and α are assumed to be even for simplicity. Note that the number of additional

packets per block is halved for fair comparison to the scheme with non-overlapping

blocks since the number of blocks is doubled. Let {vi, i ∈ Z} be the sequence of data

packets from a source. The nth coding block vn, n ∈ Z, is given by vn = [v̇n v̇n+1],

where v̇n = [v(n−1)M/2+1 v(n−1)M/2+2 . . . vnM/2]. The output packets un, which are

generated from vn, include the data packets in v̇n and additional α/2 coded packets.

Observe that the data packets in v̇n are used to generate two sets of α/2 coded

packets. It is assumed that a systematic MDS code is used to encode each block,

and each block is decoded independently, i.e., no dropped data packets are recovered

if the number of dropped packets in a block is greater than α/2.

Let Ḋn
d denote the number of dropped packets in v̇n, and let Ḋn

c denote the number

of dropped packets among the additional α/2 coded packets that are generated from

vn. In addition, let L̇n denote the number of lost packets in v̇n after decoding. The

following lemma characterizes the number of lost packets in one half of a block when

the scheme with overlapping blocks is employed.

Lemma 2.1. Suppose that the system is in stationarity. If {Ḋn
d , n ∈ Z} and {Ḋn

c , n ∈

Z} are two independent i.i.d. sequences, then

E[L̇n|Ḋn
d = k] = k(1− ξ(k))2,

where ξ(0) = 1, ξ(k) = 0, k > α/2, and ξ(k), 1 ≤ k ≤ α/2, satisfies the following
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equation:

ξ(k) = P[Ḋn
d + Ḋn

c ≤ α/2− k] +
α/2
∑

i=1

ξ(i)P[α/2− k − i < Ḋn
c ≤ α/2− k]P[Ḋn

d = i].

Proof. See Appendix A.1.

2.5 Loss probability without coding

This section discusses the loss probability due to buffer overflow in a system

without coding. Since the link capacity is finite, if the number of packets generated

by users exceeds the capacity, some packets should either be stored in the buffer, if

possible, or be dropped from the queue. In a system without coding, every dropped

packet is also a lost packet; thus, in this case, the loss probability is equal to the drop

probability. We first study queue occupancy, i.e., the number of packets stored in the

buffer, and, then, use it to analyze the loss probability in the following subsection.

2.5.1 Queue occupancy

Recall that AN
(i)
(t), 1 ≤ i ≤ N , t ≥ 1, is the number of packet arrivals in the time

slot t from the source i. Let AN (t), t ≥ 1, denote the number of packets generated

from all N sources in the time slot t:

AN(t) =
N
∑

i=1

AN
(i)
(t).

The queue occupancy QN (t), t ≥ 0, is defined to be the number of packets that

remain in the buffer at the end of the time slot t. The packets that are transmitted

in the time slot t include the packets that were in the buffer at the end of the previous

time slot as well as newly arrived packets in the time slot t. Recall that the link is

capable of transmitting CN packets in one time slot and that at most BN packets
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can be stored in the buffer. Therefore, the queue occupancy satisfies the following

well-known equation:

(2.9) QN (t) = (QN(t− 1) + AN (t)− CN )+ ∧BN .

The random variable QN (t), t ≥ 1, depends on QN(t − 1) and AN(t). As stated

in Section 2.3, the buffer size under the critical-load scaling satisfies BN = Θ(
√
N);

this implies that the queue occupancy also behaves as Θ(
√
N). Hence, we consider

the scaled queue occupancy Q̂N(t), t ≥ 0, defined as

Q̂N (t) = QN(t)/
√
N.

Note that (2.9) can be rewritten in the following form:

Q̂N (t) = (Q̂N(t− 1) + ÂN (t)− ĈN )+ ∧ B̂N ,

where ÂN(t) = (AN (t) − λN)/
√
N . For fixed t, the distribution of ÂN(t) tends to

the normal distribution with zero mean and variance λ(1 − λ), as N → ∞ (due to

the CLT). Moreover, ĈN → β and B̂N → b, as N → ∞ (see (2.4)). Assuming that

all processes are in their stationary regimes, it can be shown that for fixed t (e.g.,

see [45, Sec. 2.3 and Ch. 5])

Q̂N(t)⇒ Q̂,

as N → ∞, for a random variable Q̂, whose distribution function FQ̂ satisfies the

following integral equation:

(2.10) FQ̂(x) =



































0, x < 0,

∫

[0,b] Φ−β,σ2(x− y)dFQ̂(y), 0 ≤ x < b,

1, x = b,
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Figure 2.4: The distribution function FQ̂ of the stationary scaled queue occupancy Q̂N (t) =

QN (t)/
√
N in the limit as N → ∞ (see (2.10)) for λ = 0.5, b = 0.5 and β ∈

{0.1, 0.3, 0.5}. Simulation results for N = 100 and β = 0.1 (×), β = 0.3 (•) and
β = 0.5 (◦) are also shown.

where Φ−β,σ2 denotes the normal distribution function with mean −β and variance

σ2 = λ(1− λ). Note that FQ̂ has discontinuities at x = 0 and x = b.

Figure 2.4 shows the distribution functions of Q̂ for λ = 0.5, b = 0.5 and β ∈

{0.1, 0.3, 0.5}, which are numerically computed from (2.10). For a fixed value of

x, 0 ≤ x < b, the value of FQ̂(x) increases as β increases since larger β implies a

larger capacity. In addition, this figure includes the estimated values of FQ̂N (x)

(by simulation) for N = 100, BN = 5 (b = 0.5) and CN ∈ {51, 53, 55} (β ∈

{0.1, 0.3, 0.5}).

2.5.2 Loss probability

Let LN (t), t ≥ 1, denote the number of lost packets in the time slot t. Without

coding, a dropped packet is also a lost packet since no dropped packets can be

recovered. Therefore, we have

(2.11) LN (t) = (QN(t− 1) + AN (t)− CN −BN )+.
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The loss probability pN is defined to be the long-term ratio of the number of lost

packets to the total number of arrivals from N sources. Given that the system is in

stationarity and it is ergodic, pN can equivalently be represented by

(2.12) pN = E[LN (t)]/E[AN (t)].

The preceding equality and (2.11) yield

(2.13) pN = E (QN + AN − CN − BN)+/λN,

where AN is equal in distribution to AN (t), and QN has the stationary distribution

of QN (t); the random variables QN and AN are independent. As discussed in Sec-

tion 2.3, the loss probability under the critical-load scaling behaves as Θ(1/
√
N), as

N →∞, and, thus, we define the scaled loss probability p̂N by

p̂N = λ
√
NpN = E (Q̂N + ÂN − ĈN − B̂N )+,

where ÂN = (AN − λN)/
√
N and Q̂N = QN/

√
N . Further-more, the limiting (as

N →∞) scaled loss probability p̂ is defined by

(2.14) p̂ = lim
N→∞

p̂N = E (Q̂+ Â− β − b)+,

where ÂN ⇒ Â, Q̂N ⇒ Q̂, as N → ∞, and the random variables Â and Q̂ are

independent.

Figure 2.5 shows p̂ as a function of β for λ = 0.5 and b ∈ {0, 0.5, 1}. As expected,

the loss probability decreases when β (capacity) or b (buffer size) increase. More-

over, this figure includes estimated values of p̂N (by simulation) for N = 100 and

BN ∈ {0, 5, 10} (b ∈ {0, 0.5, 1}). This example illustrates the applicability of our

asymptotic analysis to systems with a finite number of users.
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Figure 2.5: The scaled loss probability without coding p̂N = λ
√
NpN in the limit as N → ∞ (see

(2.14)) for λ = 0.5 and b ∈ {0, 0.5, 1}. Simulation results for N = 100 and b = 0 (×),
b = 0.5 (•) and b = 1 (◦) are also shown.

The loss probability can be approximated for large values of |β|. To this end, we

have p̂ ≈ E (Â − β − b)+ for β 1 0 since the buffer is likely to be empty when the

link capacity is larger than the offered load. In this case, it follows that

(2.15) p̂ ≈
∫ ∞

β+b

(x− β − b)ϕ0,σ2(x)dx ≈ σ4

(β + b)2
ϕ0,σ2(β + b),

where ϕ0,σ2 is the probability density function of the normal distribution with zero

mean and variance σ2 = λ(1−λ); the approximation follows from (x−1−x−3)ϕ0,1(x) <

1 − Φ0,1(x) < x−1ϕ0,1(x) (e.g., see [24, p.175]). On the other hand, if β 2 0, then

the buffer is likely to be full since the offered load is greater than the link capacity.

Thus, in that case, we obtain

(2.16) p̂ ≈ E (Â− β)+ ≈ −β.

In such an over-loaded system, all extra arrivals, which exceeds the capacity, are

likely to be dropped from the queue since the buffer is full with high probability.



27

2.6 Drop probability with coding

In this section, we examine the drop probability when coding is employed. When

a system utilizes coding, the offered load is increased by additional coded packets,

and, consequently, more packets are likely to be dropped from the buffer, compared

to a system without coding. Note that in this case, the drop probability should

be differentiated from the loss probability since some of the dropped packets can

be recovered from the received subset of packets by decoding. We discuss the loss

probability under coding in the next section.

Recall that HN
(i)
(t), 1 ≤ i ≤ N , t ≥ 1, denotes the number of packet arrivals from

the encoder of the source i to the buffer in the time slot t. Assuming that the system

is in stationarity, (2.1) implies

(2.17) P
[

HN
(i)
(t) = h

]

=



































1− λ, h = 0,

λ− λ/MN , h = 1,

λ/MN , h = 1 + α,

for 1 ≤ i ≤ N , t ≥ 1. The mean λN
∗ and the variance (σN

∗ )2 of HN
(i)
(t) are respectively

given by

λN
∗ = λ+ αλ/MN ,

(σN
∗ )2 = λN

∗ (1− λN
∗ ) + α(1 + α)λ/MN ;

(2.18)

note that λN
∗ → λ and (σN

∗ )2 → λ(1 − λ), as N → ∞. Let HN(t), t ≥ 1, denote

the total number of packets sent from the encoders of N sources to the buffer in the

time slot t:

HN(t) =
N
∑

i=1

HN
(i)
(t).

The drop probability pND is defined to be the long-term ratio of the number of

dropped packets to the total number of arrivals from the encoders. Then, analogously
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to (2.13), we have

pND = E (QN
∗ +HN − CN − BN)+/λN

∗ N,

where HN is equal in distribution to HN(t), and QN
∗ has the stationary distribution

of the queue occupancy when coding is used. When coding is employed, original

arrival processes are altered by additional coded packets as stated in Section 2.2.

Thus, the queue occupancy is also affected by the coding scheme. Under the critical-

load scaling, the drop probability is Θ(1/
√
N), as N → ∞. Therefore, we consider

the scaled drop probability p̂ND defined by

p̂ND = λ
√
NpND

=
λ

λN
∗
E (Q̂N

∗ + ĤN + (λN
∗ − λ)

√
N − ĈN − B̂N )+,

where ĤN = (HN−λN
∗ N)/

√
N and Q̂N

∗ = QN
∗ /
√
N ; note that (λN

∗ −λ)
√
N → α/m,

as N →∞. Next we define p̂D as the limiting (as N →∞) scaled drop probability:

(2.19) p̂D = lim
N→∞

p̂ND = E (Q̂∗ + Ĥ + α/m− β − b)+,

where ĤN ⇒ Ĥ, Q̂N
∗ ⇒ Q̂∗, as N → ∞, and the random variables Ĥ and Q̂∗ are

independent. It can be shown that Ĥ has the normal distribution with zero mean

and variance λ(1 − λ) (due to the CLT) and that the distribution of Q̂∗ satisfies

(2.10) with β replaced by β − α/m (e.g., see [12, Sec. 25]).

We define the coding overhead ζ as a function of α/m:

(2.20) ζ(α/m) =
p̂D
p̂

=
E (Q̂∗ + Ĥ + α/m− β − b)+

E (Q̂ + Â− β − b)+
.

In Figure 2.6, the solid lines show ζ(α/m) for λ = 0.5, b = 0.5 and β ∈ {0, 0.5, 1}.

The dashed lines are for λ = 0.5, β = 0.5 and b ∈ {0, 1}. Since the additional offered

load due to coding increases as α/m increases, ζ is an increasing function of α/m.
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Figure 2.6: The coding overhead ζ (α/m) = p̂D/p̂ (see (2.20)) for λ = 0.5: solid lines for b = 0.5
and β ∈ {0, 0.5, 1}, and dashed lines for β = 0.5 and b ∈ {0, 1}.

The figure also illustrates that, for a fixed value of α/m, the value of ζ increases when

β (capacity) or b (buffer size) increase. Note that p̂D is exactly equal to p̂ when β is

replaced by β − α/m in (2.14). As seen in Figure 2.5, the larger the β is, the faster

the p̂ decreases as β increases. Thus, p̂ decreases faster than p̂D when β increases.

Approximations given in (2.15) and (2.16) also support this observation. Namely, for

α/m 1 β, p̂D decreases linearly when β increases while p̂ decreases exponentially;

when α/m 2 β, both p̂ and p̂D decrease exponentially, but p̂ decreases faster than

p̂D due to α/m term. Similar reasoning can be applied to the case of b.

Since decoding is performed on a per-block basis, the loss probability depends

not only on the drop probabilities of individual packets but also on the distribution

of the number of dropped packets in a block. Thus, in order to evaluate the loss

probability, one needs to consider the behavior of the packet drops in a block. The

following theorem characterizes the number of dropped packets in a block in the limit

as N →∞.
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Theorem 2.1. Suppose that the system is in stationarity, and consider the critical-

load scaling. Let DN
d be the number of dropped packets among MN data packets in a

block. Then, in the limit as N →∞, DN
d is Poisson:

P
[

DN
d = k

]

→ (mp̂D)
k

k!
e−mp̂D ,

as N →∞, where p̂D is the limiting scaled drop probability that satisfies (2.19). Fur-

thermore, if DN
c is the number of dropped packets among additional α coded packets

in a block, then, as N →∞,

P
[

DN
c = 0

]

→ 1.

Proof. See Appendix A.2.

Informally, the theorem can be interpreted as follows. Consider a single block,

and suppose that the packets in this block are dropped independently with drop

probability equal to pND . Then, the number of dropped packets in the block of length

MN = ,mλ
√
N- follows the binomial distribution:

P
[

DN
d = k

]

=

(

,mλ
√
N-

k

)

(

pND
)k (

1− pND
)'mλ

√
N)−k

.

It is straightforward to verify that this binomial distribution tends to the Poisson

distribution with mean mp̂D in the limit as N →∞. However, packet drops are not

independent in a system with finite N . The drop probability of a packet in a fixed

time slot t depends on the total number of arrivals from the encoders of N sources

in the time slot t and the queue occupancy at the end of the time slot t − 1. Since

both the total arrival process and the queue occupancy have the Markov property,

as discussed in Section 2.2, packet drops have dependency across time. However,

Theorem 2.1 shows that the effect of this time dependency becomes negligibly small
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Figure 2.7: The boundary where p̂NL = p̂N , as N → ∞, for the ideal block code (•), a systematic
MDS code (◦), coding with overlapping blocks (!) and partial coding with ρ = 0.9 (×),
ρ = 0.99 (+) and ρ = 0.999 (∗) when λ = 0.5, b = 0.5 and m = 10. Note that
α/m ∈ {0.1, 0.2, . . .} since α ∈ N. For each boundary, the lower-right and upper-
left areas are the regions where application-layer coding is beneficial (p̂L < p̂) and
detrimental (p̂L > p̂), respectively.

in the limit as N → ∞. Given that the drop probability in a fixed time slot t is

Θ(1/
√
N), the possibility that a packet is dropped shortly after another packet is

dropped from the same block diminishes as N → ∞. That is, when a packet is

dropped, we can assure, with high probability, that enough time has elapsed for the

system to enter its stationary regime.

Finally, Theorem 2.1 also indicates that the number of dropped packets in a block

is Θ(1). Since the number of additional coded packets for each block is also Θ(1),

the dropped packets can be recovered in some cases, as intended by means of coding.

This result verifies the relevance of the considered critical-load scaling to the study

of the effectiveness of application-layer coding.
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2.7 Loss probability with coding

Here, we consider the loss probability with coding for erasure codes discussed in

Section 2.4. The loss probability pNL is defined as the long-term ratio of the number

of lost packets after decoding to the total number of data packets. Let LN denote

the number of lost packets among MN = ,mλ
√
N- data packets in a block. Then,

analogously to (2.12), we have

pNL = ELN/MN .

The scaled loss probability p̂NL is given by

(2.21) p̂NL = λ
√
NpNL = ELN/mN ,

where mN = ,mλ
√
N-/λ

√
N , and the limiting (as N → ∞) scaled loss probability

p̂L is defined by

(2.22) p̂L = lim
N→∞

p̂NL = lim
N→∞

ELN/m.

The following theorem specifies the limiting scaled loss probability for the coding

schemes discussed in Section 2.4.

Theorem 2.2. Suppose that the system is in stationarity, and consider the critical-

load scaling. Let D(x), x > 0, denote a Poisson random variable with mean xmp̂D,

where p̂D is the limiting scaled drop probability in (2.19). Then

(i) for the ideal block code:

(2.23) p̂L = E (D(1) − α)+/m,

(ii) for the systematic MDS code:

(2.24) p̂L = E
[

D(1) · 1{D(1)>α}
]

/m,
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(iii) for the partial coding:

p̂L = p̂D − E
[

D(ρ) · 1{D(ρ)≤α}
]

/m,

(iv) for the coding with overlapping blocks:

p̂L = 2E
[

D(1/2)(1− ξ(D(1/2)))
2
]

/m,

where ξ(0) = 1, ξ(k) = 0, k > α/2, and ξ(k), 1 ≤ k ≤ α/2, satisfies the following

equation:

ξ(k) = P[D(1/2) ≤ α/2− k] +
α/2
∑

i=α/2−k+1

ξ(i)P[D(1/2) = i].

Proof. See Appendix A.6.

2.7.1 Ideal block code

By using (2.14), (2.19) and (2.23), one can compare the loss probabilities with

and without coding for a given set of parameters (β, b, α,m). In Figure 2.7, we show

the boundary where p̂L = p̂ for the ideal block code when λ = 0.5, b = 0.5 and

m = 10. Note that the boundary partitions the parameter space (β, α/m) into two

regions: the upper left region where p̂L > p̂ (no coding is preferable) and the lower

right region where p̂L < p̂ (coding is preferable). The ideal block code has the largest

region where coding is advantageous among all linear block codes since it achieves the

best performance among such codes. It is interesting to observe that employing even

the ideal block code can be counter-productive for some set of system parameters.

In particular, consider an over-loaded system (λN > CN or, equivalently, β < 0). In

this case, the expected number of dropped packets in a single block due to coding

overhead is (pD − p) ·MN ≈ α. However, the number of dropped packets in a block

is not a constant; this leads to a situation where more than α packets are dropped
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Figure 2.8: The scaled loss probability with coding p̂NL = λ
√
NpNL in the limit as N → ∞ (see

(2.24)) for a systematic MDS code when λ = 0.5, b = 0, m = 10 and α ∈ {1, 2, 5, 10}.
The variances of arrival processes are adjusted to be (σN

∗
)2 for N = 900 (see (2.18))

instead of the limiting value λ(1 − λ). Simulation results for N = 900 and α = 1 (×),
α = 2 (+), α = 5 (•) and α = 10 (◦) are also shown. The dotted line is for the scaled
loss probability without coding.

in some blocks and fewer than α packets are dropped in the others. In such a case,

coding is not efficient in recovering dropped packets.

2.7.2 Systematic MDS code

Figure 2.8 shows p̂L as a function of β for a systematic MDS code when λ = 0.5,

b = 0, m = 10 and α ∈ {1, 2, 5, 10}. Note that, just for this example, we use the

variance (σN
∗ )2 for N = 900 (see (2.18)) instead of the limiting value λ(1− λ) when

we compute p̂D, which determines p̂L. Since the loss probability is sensitive to the

variances of arrival processes, this adjustment is needed to make our asymptotic

result to be applicable for finite N . The figure also shows the estimated values of p̂NL

(by simulation) for N = 900, MN = 150 (m = 10) and α ∈ {1, 2, 5, 10}. One can

observe that simulation results agree with analytical results well in this example. For

an over-loaded system (β 2 0), p̂L increases as α increases because the number of
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dropped packets in a block is likely to be beyond the number that can be recovered.

Therefore, in this case, additional packets behave just as overhead. On the other

hand, if a system is under-loaded (β 1 0), then p̂L decreases at first as α increases

since the benefit of coding exceeds its overhead in this case. For some value of α,

p̂L is minimized, i.e., the coding benefit is maximized. If α is increased further,

however, p̂L starts increasing, and coding is not beneficial anymore. The dotted line

represents the limiting scaled loss probability without coding p̂ (see (2.14)). One

can find a point where p̂L = p̂ for each value of α/m. These points correspond to

the boundary where schemes with and without coding have the same performance

(shown in Figure 2.7). We refer the reader to Section 2.8 for a further discussion on

application-layer coding with a systematic MDS code.

2.7.3 Partial coding

Figure 2.7 includes the boundary where p̂L = p̂ for partial coding with ρ ∈

{0.9, 0.99, 0.999} when λ = 0.5, b = 0.5 and m = 10. Note that the partial coding

scheme with ρ = 1 is identical to the scheme with pure block coding. As seen in

the figure, the region where coding is advantageous expands as ρ increases. Recall

that the partial coding scheme might be beneficial only when the number of dropped

packets in a block is greater than the number of additional packets in the block

(see Section 2.4). In the region where coding is advantageous, however, the drop

probability is so small that the number of dropped packets is not likely to be greater

than the number of additional packets in a block. One can observe that partial

coding is getting worse as β (capacity) increases. This result is consistent with the

previous observation since larger β results in smaller drop probability.



36

β

α
/
m

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

p̂L < p̂

m

α

p̂L > p̂

Figure 2.9: The boundary where p̂NL = p̂N , as N → ∞, for a systematic MDS code when λ = 0.5
and b = 0.5: solid lines for α ∈ {2, 10, 50}, and dotted lines for m = 2 (•), m = 10 (◦)
and m = 50 (·). For each boundary, the lower-right and upper-left areas are the
regions where application-layer coding is beneficial (p̂L < p̂) and detrimental (p̂L > p̂),
respectively.

2.7.4 Coding with overlapping blocks

In Figure 2.7, we plot the boundary where p̂L = p̂ for coding with overlapping

blocks. As seen in the figure, the described coding scheme with overlapping blocks

underperforms compared to the one with non-overlapping blocks as far as probability

of loss is concerned. This stems from the fact that the non-overlapping scheme can

recover up to α dropped packets per block, while the overlapping version is capable

of recovering only α/2 dropped packets per half block. It should be noted, however,

that the overlapping scheme might result in shorter decoding delays.

2.8 Discussion

In this section, we discuss the performance of application-layer coding with a

systematic MDS code. Figure 2.9 shows the boundary where p̂L = p̂ for a systematic

MDS code when λ = 0.5, b = 0.5, m ∈ {2, 10, 50} and α ∈ {2, 10, 50}. If we increase
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Figure 2.10: The boundary where p̂NL = p̂N , as N →∞, for a systematic MDS code when λ = 0.5,
m = 10 and b ∈ {0, 0.5, 1, 2}. For each boundary, the lower-right and upper-left areas
are the regions where application-layer coding is beneficial (p̂L < p̂) and detrimental
(p̂L > p̂), respectively.

the length of a block while increasing the number of additional packets as well, then

the asymptotic drop probability does not change, but the number of possible packet

drop patterns that can be recovered in a block increases. For example, suppose that

α = 1 and 1 dropped packet can be recovered in a block. If we double the length of a

block and generate 2 coded packets per double-length block, then 2 dropped packets

can be recovered in one half of a block provided that no packets are dropped in the

other half. Note that larger m (and larger α for fixed α/m) implies a longer block.

Hence, the region where coding is advantageous to no coding increases as m (and α

for fixed α/m) increases. Note that this reasoning applies to a large class of block

codes.

Figure 2.10 shows the boundary where p̂L = p̂ for a systematic MDS code when

λ = 0.5,m = 10 and b ∈ {0, 0.5, 1, 2}. Recall that Figure 2.6 indicates that the coding

overhead ζ = p̂D/p̂ increases as b (buffer size) increases. Thus, larger b results in a
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Figure 2.11: The boundary where a buffer-less system with coding (using a systematic MDS code)
and a system with a buffer but no coding have the same performance, i.e., minα p̂NL
for b = 0 and p̂N for b > 0 are equal, as N →∞, for λ = 0.5 and m ∈ {10, 20, 50}. For
each boundary, the lower-right and upper-left areas are the regions where the buffer-
less system with coding has better performance than the system with a buffer but no
coding (p̂L < p̂) and vice versa (p̂L > p̂), respectively. The figure also shows that the
boundary tends to β = 0 (the dashed line) in the limit as m→∞.

smaller region where coding outperforms no coding. It is interesting to observe that

the critical values of α/m for different values of b converge as β (capacity) increases.

In particular, the boundary tends to α/m = β as β increases. As long as the system

is under-loaded (α/(mβ) < 1), for large β (and, hence, large β − α/m for a fixed

ratio of α/(mβ)), the buffer is likely to be empty with high probability; when the

system is over-loaded (α/(mβ) > 1), however, the buffer is likely to be full. This

behavior is not significantly impacted by the buffer size b. Thus, (for β 1 0) the

value of b only has a secondary effect on the loss probability, and, therefore, does not

perform a significant role in determining the boundary.

In Figure 2.11, we plot the boundary where a buffer-less system with coding (using

a systematic MDS code) and a system with a buffer but no coding have the same

performance, i.e., minα p̂L for b = 0 and p̂ for b > 0 are equal, for λ = 0.5 and
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m ∈ {10, 20, 50}. Similarly to Figure 2.9, this figure also illustrates that larger m

(block length) results in a larger region where coding is advantageous. Moreover, the

figure indicates that the boundary tends to β = 0 (the dashed line) in the limit as

m→∞. Informally, from (2.24), we can derive

p̂L = p̂D

∞
∑

k=α

(mp̂D)k

k!
e−mp̂D .

In the limit as m → ∞, the Poisson distribution tends to the normal distribution

with mean mp̂D and variance mp̂D:

p̂L ≈ p̂D

(

1− Φ0,1

(

α−mp̂D√
mp̂D

))

;

this, in turn, implies (for large values of m)

p̂L ≈



































0, α/m > p̂D,

p̂D/2, α/m = p̂D,

p̂D, α/m < p̂D.

Now, for an under-loaded system (β > 0), there exists some α that satisfies α/m > p̂D

for largem. Thus, it is possible to reduce p̂L to an arbitrary small value by increasing

m (block length). On the other hand, for an over-loaded system (β < 0), we have

p̂D ≈ α/m− β > α/m from (2.16). In this case, p̂L ≈ p̂D ≈ α/m− β ≥ −β > 0 can

not be made arbitrarily close to zero even if m is increased indefinitely.

Table 2.2 shows estimated (by simulation) drop and loss probabilities (i.e., pND and

pNL , respectively) for different values of λ, MN and α in a finite system with fixed

N = 100, CN = 50 and BN = 0; note that not only λ, but also MN and α impact

offered load and, thus, utilization. For the considered values of λ, the results show

that drop and loss probabilities are of the same order. Furthermore, we can see that

employing coding is either beneficial or detrimental depending on the specific values
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Table 2.2: Estimated (by simulation) drop and loss probabilities (i.e., pND and pNL , respectively)
for different values of λ, α and MN in a finite system with fixed N = 100, CN = 50
and BN = 0. The table also shows approximated loss probabilities (p̃NL ) based on
Theorem 2.2(ii).

λ MN α Utilizationa pND pNL p̃NL
b

0.45

20

0 0.900 9.14 · 10−3 9.14 · 10−3 9.14 · 10−3

1 0.945 2.26 · 10−2 8.18 · 10−3 8.22 · 10−3

2 0.990 4.51 · 10−2 1.07 · 10−2 1.03 · 10−2

3 1.035 7.34 · 10−2 1.53 · 10−2 1.34 · 10−2

30

0 0.900 9.14 · 10−3 9.14 · 10−3 9.14 · 10−3

1 0.930 1.73 · 10−2 7.02 · 10−3 7.00 · 10−3

2 0.960 3.06 · 10−2 7.30 · 10−3 7.16 · 10−3

3 0.990 4.79 · 10−2 9.04 · 10−3 8.41 · 10−3

0.49

100

0 0.9800 3.12 · 10−2 3.12 · 10−2 3.12 · 10−2

1 0.9898 3.61 · 10−2 3.50 · 10−2 3.51 · 10−2

2 0.9996 4.19 · 10−2 3.85 · 10−2 3.86 · 10−2

3 1.0094 4.85 · 10−2 4.17 · 10−2 4.18 · 10−2

200

0 0.9800 3.12 · 10−2 3.12 · 10−2 3.12 · 10−2

1 0.9849 3.36 · 10−2 3.35 · 10−2 3.36 · 10−2

2 0.9898 3.64 · 10−2 3.61 · 10−2 3.62 · 10−2

3 0.9947 3.96 · 10−2 3.87 · 10−2 3.90 · 10−2

a Utilization = (1 + α/MN )λN/CN .
b Loss probability approximation based on Theorem 2.2(ii):

p̃NL = pND

(

1−
α−1
∑

k=0

(MNpND)k

k!
e−MNpN

D

)

;

note that pND is evaluated by simulation.

of α and MN . In particular, one can determine the boundary where systems with

and without coding have the same performance (e.g., see α = 1 and 2 for λ = 0.45

and MN = 20). The results indicate that the derived approximations based on

Theorem 2.2(ii) are fairly accurate when N = 100 and drop/loss probabilities are

on the order of 10−3 ÷ 10−2. The applicability of the approximation is due to the

fact that it is based on the CLT. The case λ = 0.49 can be viewed as an instance

of a system in the over-load regime. However, the approximation from Theorem 2.2

provides a reasonable estimate as can be seen in the table. The analysis of the under-
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load regime is based on the large-deviation theory (e.g., see [10]), and, thus, the

asymptotic approximation is valid only for extremely small drop/loss probabilities

(e.g., on the order of 10−9 ÷ 10−7, and N 1 100).

2.9 Concluding remarks

In this chapter, we investigated the effectiveness of application-layer coding for

systems with a large number of users. The system consists of a single link with a

finite buffer, and the loss probability was considered as the measure of the system

performance. We first showed that the critical-load scaling is the relevant scaling to

explore the effectiveness of coding. Next we examined the asymptotic behavior of

the loss probabilities with and without coding, and established the boundary that

partitions the system parameter space into two regions where coding is beneficial

and detrimental. The asymptotic results showed that coding is advantageous for

under-loaded systems with a certain set of system parameters; in over-loaded sys-

tems, however, coding is detrimental since the coding overhead exceeds its benefit.

That is, application-layer coding enhances the performance in systems with low drop

probabilities, but employing such coding in systems with high drop probabilities only

worsens the performance. In addition, we illustrated in some simulation examples

that our asymptotic results provide reasonable approximations for systems with a

finite number of users.

Finally, we conclude this chapter with a comment on systems with priority. As

stated in Subsection 2.2.2, a system can employ priority in order to improve its

performance (implementing priority requires an extra level of system complexity).

In systems with priority, data packets have priority over additional coded packets

in the queue, and, thus, coded packets do not impact the drops of data packets.
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Therefore, in this case, coding does not harm the system performance, and one can

generate, ideally, as many coded packets as needed to enhance the performance. Let

WN(t), t ≥ 1, denote the number of received coded packets in the time slot t by

all N users. In the ideal setup (assuming that every user generates a large enough

number of coded packets to fill up the spare capacity in every time slot), we have

WN(t) = (CN − AN (t) − QN(t − 1))+; for simplicity, it is assumed that coded

packets are not buffered. Since there are N receivers in the system, the receiving

rate of coded packets per receiver pNW is then given by pNW = E (CN −AN −QN )+/N .

From this expression, we can derive the critical-load scaling for systems with priority

that is similar to the one for systems with non-priority (see Section 2.3). Namely,

the link capacity and the buffer size are given by CN = ,λN + β
√
N- and BN =

,b
√
N-, respectively. Under this scaling, the drop probability of data packets and

the receiving rate of coded packets are both Θ(1/
√
N), as N →∞. Given a block of

length MN = ,mλN-, the expected numbers of dropped data packets and received

coded packets are of the same order (i.e., Θ(1)), and, therefore, it is feasible to find

the boundary that partitions the system parameter space into two regions where

employing coding is significantly and marginally beneficial.



CHAPTER III

Existence of fixed-point processes in linear loss networks

3.1 Introduction

A linear network is a tandem network consisting of a series of identical nodes in

which customers (packets) enter the network at a fixed source node and are relayed

from one node to another in a fixed order until they exit the network at a fixed

destination node. This stochastic tandem network is motivated by various large-scale

communication networks. One specific example is large-scale wireless networks with

limited or no cross-traffic interference along the paths from sources to destinations

[26, 29]; a sensor network where concurrent traffic volume is small relative to the

size of the network belongs to such an example. Another motivating example is

next-generation optical networks [39]. Even though the model we consider is basic,

it is interesting to understand how the fundamental performance properties, such as

throughput, behave as the size of the network increases, while the local resources

at each node remain fixed. In this chapter, we particularly investigate asymptotic

characteristics of the departure process of a linear network consisting of bufferless

nodes, as the size of the network increases. The departure process is of interest

since various performance properties of the network such as throughput and traffic

burstiness can be obtained from it. Currently, little is known about the departure

43
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processes of linear networks with finite-buffer nodes, and, here, we focus on the

simplest case where each node has no buffer. We note that as the size of the network

grows large, the value of the feedback information from the destination decreases

to the point where it is not useful due to large delays. Thus, it is reasonable to

employ a simple control protocol and to assume that the input of the network is a

fixed process determined by the information available at the source only, without

any feedback from the network.

In a linear network, the output process from a node is in turn the input pro-

cess to the next node. If the input and output processes at each node are equal in

distribution, then such processes are called fixed-point processes. For infinite-buffer

queues, the uniqueness and existence of fixed-point processes have been studied ex-

tensively [1, 18, 34, 38]. In particular, it is well known that Poisson processes are

fixed-point processes for ·/M/1/∞ queues [16]. The uniqueness of fixed-point pro-

cesses for ·/M/1/∞ queues was established in [1]. This result was extended in [18]

for ·/GI/1/∞ queues having service time distributions with finite means and un-

bounded supports. A similar result requiring only a finite mean can be found in [38].

In [34], the existence of fixed point processes was studied for ·/GI/1/∞ queues with

service time S satisfying
∫

P[S ≥ u]1/2du < ∞. The linear network with ·/M/1/∞

queues was considered in [36], and it was shown that for any ergodic input process

with a finite rate, the departure process converges in distribution to the fixed-point

process (i.e., a Poisson process) with the same rate, if the input rate is less than the

service rate, as the size of the network increases. A similar asymptotic property was

established in [38] for linear networks with ·/GI/1/∞ queues.

In a linear network with finite-buffer queues, input and output processes are not

comparable directly due to losses; in general, arrivals are denser than departures.
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Under a proper scaling (to be specified in Section 3.3), however, it is feasible to

characterize the asymptotic behavior of the (scaled) departure process, as the size

of the network grows. This chapter focuses on a linear loss network consisting of

·/M/1/0 queues and provides an asymptotic characterization of the scaled departure

process (i.e., the joint probability density function of any finite number of consecutive

inter-departure times) as the size of the network increases. The asymptotic form of

the departure process in such a network is not impacted by the input process as long

as the input does not vary with the size of the network.

3.1.1 Notation

Throughout the chapter, we use the following notation:

(i) For a ≤ b, a, b ∈ N, let xa:b be the (b − a + 1)-tuple vector consisting of xi,

a ≤ i ≤ b, i.e., xa:b ≡ (xa, . . . , xb); xb:a ≡ ∅, xa:a ≡ xa, (xa:c)b ≡ xb and

(xa:c)a:b ≡ xa:b for a ≤ b ≤ c. Moreover, let xa:b+c ≡ (xa+c, xa+1+c, . . . , xb+c).

(ii) Boldface symbols are used for denoting processes, e.g., x ≡ {x(t), t ≥ 0};

xa:b ≡ {xa:b(t), t ≥ 0} for a ≤ b, a, b ∈ N; xb:a ≡ ∅, xa:a ≡ xa, (xa:c)b ≡ xb and

(xa:c)a:b ≡ xa:b for a ≤ b ≤ c. Let xa:b + ca:b ≡ {xa:b(t) + ca:b, t ≥ 0}.

(iii) Rn, n ∈ N, is the n-dimensional Euclidean space; R ≡ R1. Let Rn
"
be a subset

of Rn such that

R
n
"
≡ {x1:n ∈ R

n : x1 ≤ x2 ≤ · · · ≤ xn}.

(iv) For a right continuous function f : R→ R with left limits, the left limit f(t−)

is defined as f(t−) ≡ lims↑t f(s).

(v) For f : (S,m) → (S ′, m′), let Disc(f) be the set of discontinuity points of f

(see [45, p. 86]).



46

(vi) For n ∈ N, let Dn[a, b] ≡ D([a, b],Rn) be the space of all Rn-valued functions

on [a, b], which are right continuous at all t ∈ [a, b) and have left limits at all

t ∈ (a, b], endowed with usual Skorohod J1 topology; let d[a,b](·, ·) denote the

standard J1 metric on the space Dn[a, b] (see [45, Ch. 12]). As an extension, we

set Dn ≡ D([0,∞),Rn) as the space of all Rn-valued functions, which are right

continuous and have left limits everywhere in [0,∞) and (0,∞), respectively;

we use d(·, ·) for denoting the standard J1 metric on the space Dn (e.g., see

[13, Section 16]). For notational simplicity, for x1:n,y1:n ∈ Dn, let

d[a,b](x1:n,y1:n) ≡ d[a,b]({x1:n(t), a ≤ t ≤ b}, {y1:n(t), a ≤ t ≤ b}).

(vii) Let Dn
"
, n ∈ N, be a subset of Dn such that

Dn
"
≡ {x1:n ∈ Dn : x1:n(t) ∈ R

n
"
, ∀t ≥ 0}.

(viii) Let ‖ · ‖[a,b] be the uniform norm on Dn[a, b] (e.g., see [45, p. 393]), i.e.,

(3.1) ‖x1:n‖[a,b] ≡ sup
a≤t≤b

max
1≤i≤n

|xi(t)|.

As an extension, we use ‖ · ‖ for the uniform norm on Dn. Moreover, ‖x1:n‖ ≡

max1≤i≤n |xi| for x1:n ∈ Rn.

(ix) For n ∈ N, let Cn[a, b] ≡ C([a, b],Rn) and Cn ≡ C([0,∞),Rn) be the space of all

continuous Rn-valued functions on [a, b] and [0,∞), respectively.

(x) Let
d
= denote equality in distribution. Symbols ∨, ∧ and ◦ denote the maximum,

minimum and composition operators, respectively.

(xi) Let Bi ≡ {Bi(t), t ≥ 0}, i ∈ Z, be independent standard one-dimensional

Brownian motions with Bi(0) = 0 a.s.. For a ≤ b, a, b ∈ Z, Ba:b ≡ {Ba:b(t), t ≥

0} denotes a standard (b− a + 1)-dimensional Brownian motion.
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  
· · ·

Figure 3.1: A linear loss network consists of a series of k bufferless nodes.

3.1.2 Organization

The rest of the chapter is organized as follows. The next section introduces the

k-node linear loss network. In Section 3.3, we present the main result of the chapter

in the following section. Section 3.4 contains some preliminary results for proving the

main result. Concluding remarks and technical proofs can be found in Section 3.5

and Appendix B, respectively.

3.2 Model

A linear loss network consists of a series of k ·/M/1/0 nodes indexed by 1, 2, . . . , k

(see Figure 3.1). Each node has no waiting room (buffer), and service times at each

node are exponentially distributed with unit mean; service times are assumed to

be independent both across customers and across nodes. In the linear network,

incoming customers enter the network at node 1, and, then, are relayed between

adjacent nodes until they are either serviced at node k or dropped at some node due

to the lack of buffer space. The nodes employ a work-conserving scheduling policy

(i.e., they service customers whenever feasible). Since there are no waiting rooms

at each node, in general, a customer dropping policy has to be specified. When the

service times are exponentially distributed, the remaining service time of a customer

being serviced is equal in distribution to the service time of a newly arrived customer

(due to the memoryless property of the exponential distribution). Thus, departure

times are insensitive to the dropping policy as long as the policy does not consider
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realizations of service times. We will define a policy that is convenient for analysis.

The input arrival process to the network is assumed to be stationary and ergodic.

Given this assumption, the departure process is stationary and ergodic as well; this

is due to the fact that the queue occupancy process is stationary and ergodic, which

follows from the finite-buffer version of the Lindley’s recursion and Loynes’ construc-

tion (e.g., see [3, Section 2.6] or [33]). Finally, the input arrival rate is positive and

the input process does not vary with the size of the network k; the input process and

service times are independent.

3.3 Main result

This section provides the main result of the chapter, Theorem 3.1, that charac-

terizes the departure process of the k-node linear loss network.

Definition 3.1 ([5]). The sequence of functions Hn(x1:2n) : R2n
"
→ [0,∞), n ∈ N, is

such that

H1(x1:2) =
1√
π

∫ ∞

x2−x1

e−t2/4dt,

and, for n ≥ 2, it satisfies the following recursion:

Hn(x1:2n) =
n
∑

i=1

H1(x1, x2i)Hn−1(x2:2i−1, x2i+1:2n)

−
n
∑

i=2

H1(x1, x2i−1)Hn−1(x2:2i−2, x2i:2n).

Theorem 3.1. Consider the k-node linear network with each node operating as a

·/M/1/0 queue. Suppose that the input arrival process to the network is a stationary

and ergodic process with fixed rate, which does not vary with k. Let X1:n(k), n, k ∈ N,

be the n-tuple vector consisting of n consecutive stationary inter-departure times at

node k. Then, as k →∞,

X̂1:n(k) ≡
1√
k
X1:n(k)⇒ Z1:n,
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where Z1:n is an n-tuple random vector with the joint probability density function

given by

fZ1:n(z1:n) = −
√
π

∂n+1

∂x1∂x3 · · ·∂x2n−1∂x2n
Hn(x1:2n)

∣

∣

∣

xi=
∑"i/2#

j=1 zj , 1≤i≤2n
,

zi ≥ 0, 1 ≤ i ≤ n.

Proof. See Appendix B.1.

Corollary 3.1. We have

fZ1(z) =
z

2
e−z2/4, z ≥ 0,

and fZ1:2(z1:2) =
z1 + z2
2
√
π

(

e−(z21+z22)/4 − e−(z1+z2)2/4
)

, z1, z2 ≥ 0,

implying that the correlation coefficient ρZ1,Z2 satisfies

ρZ1,Z2 =
3− π

4− π
≈ −0.16.

Remark 3.1. The limiting scaled departure process is not impacted by the input

process as long as the input process is fixed. Thus, the asymptotic form of the

output process is completely attributed to the characteristics of the network itself

(i.e., the exponential distribution of service times and the lack of buffer space).

The following example illustrates Theorem 3.1. Given that the input arrival pro-

cess is Poisson with rate 0.2, Figure 3.2 shows estimated (by simulation) probability

density functions of the scaled stationary inter-departure times in the k-node linear

loss network (i.e., X̂1(k)) for k = 100, 500 and 1000. Observe that as k increases, the

density function fX̂1(k)
approaches fZ1 (solid line) described in Corollary 3.1, which

is Rayleigh with mean
√
π.

For the purpose of illustrating the dependency between inter-departure times in

the considered linear loss network, in Figure 3.3, we plotted estimated (by simulation)
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Figure 3.2: Estimated (by simulation; the bin size is 0.2 and the number of samples is 2.5 · 106)
density functions of the scaled stationary inter-departure times at node k, i.e., X̂1(k),
for k = 100 (dash-dot line), k = 500 (dashed line) and k = 1000 (dotted line); the input
arrival process is Poisson with rate 0.2. The asymptotic density function fZ1 given in
Corollary 3.1 is also plotted (solid line).

probability density functions of the sums of two scaled consecutive stationary inter-

departure times at node k (i.e., X̂1(k) + X̂2(k)) for k = 100, 500 and 1000; as in the

previous example, the input is Poisson with rate 0.2. From Corollary 3.1, we have

fZ1+Z2(z) = ze−z2/8

(

√
2Φ(−z/2) − ze−z2/8

2
√
π

)

,

for z ≥ 0, where Φ denotes the standard normal distribution function. The figure

shows that the density function fX̂1(k)+X̂2(k)
approaches fZ1+Z2 (solid line) as k in-

creases. For comparison, we also plotted the density function of the sum of two

independent Rayleigh random variables with the same mean
√
π (dotted line with

circles), which would be obtained if the inter-departure times were independent. As

seen in the figure, assuming independence yields a more “dispersed” density func-

tion. This result is consistent with Corollary 3.1, which states that two consecutive
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Figure 3.3: Estimated (by simulation; the bin size is 0.2 and the number of samples is 2.5 · 106)
density functions of the sums of two consecutive scaled stationary inter-departure times
at node k, i.e., X̂1(k) + X̂2(k), for k = 100 (dash-dot line), k = 500 (dashed line)
and k = 1000 (dotted line); the input arrival process is Poisson with rate 0.2. The
asymptotic density function fZ1+Z2 obtained from Corollary 3.1 (solid line) and the
density function of a sum of two independent Rayleigh random variables with the same
mean

√
π (dotted line with circles) are plotted as well.

inter-departure times are negatively correlated.

Finally, the correlation coefficients ρZ1,Zn for 2 ≤ n ≤ 6 computed from The-

orem 3.1 by means of numerical integration are as follows: ρZ1,Z2 ≈ −1.6 · 10−1,

ρZ1,Z3 ≈ −1.8·10−2, ρZ1,Z4 ≈ −2.3·10−3, ρZ1,Z5 ≈ −3.0·10−4 and ρZ1,Z6 ≈ −4.5·10−5.

3.4 Preliminary results

In this section, we provide some preliminary results for proving our main result,

Theorem 3.1.

3.4.1 Convergence

Let {Ai}i∈Z be the increasing sequence of (stationary) arrival times of customers

at node 1; without loss of generality, we set A1 = 0. Customers arriving at node 1
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are labeled by integers in the increasing order according to their arrival times. The

fixed arrival rate is denoted by λ > 0. Let {di(j)}i∈Z, 1 ≤ j ≤ k, be the increasing

sequence of (stationary) departure times of customers at node j. Then, we have

(3.2) Xi(k) = di+1(k)− di(k) and di+1(k)− d1(k) =
i
∑

j=1

Xj(k), i ≥ 1.

Recall that characteristics of the departure process are insensitive to the dropping

policy due to the memoryless property of exponential service times (see Section 3.2).

Here, for analytical and notational simplicity, we assume that customer 1 has the

highest priority over all other customers. Under this policy, d1(j), 1 ≤ j ≤ k, denotes

the departure time of customer 1 from node j. Due to potential losses of customers

at intermediate nodes, some customers (except customer 1) may not reach and be

serviced at some node j. Hence, di(j) for some i 8= 1 does not necessarily correspond

to the departure time of customer i from node j.

We next consider an altered k-node linear loss network in which the input arrival

process is produced by deterministically thinning the original input process by a

factor of α > 1, α ∈ R. In particular, we let Aα
i = A'α(i−1))+1 for i ∈ Z, where

{Aα
i }i∈Z is the increasing sequence of arrival times of customers at node 1 in the

altered system; note that Aα
1 = A1 = 0. Customer i, i ∈ Z, in the altered system

corresponds to customer ,α(i− 1)-+ 1 in the original system. Suppose that service

completion times at the nodes with the same indices of the original and altered

systems are coupled. That is, whenever a customer departs from a node in one

system, a customer (if present) also departs from the node with the same index in

the other system. Due to the memoryless property of the exponential distribution,

service times in the two networks are still exponentially distributed even though they

are coupled as described above. In this altered system, we let {dαi (j)}i∈Z, 1 ≤ j ≤ k,

be the increasing sequence of (stationary) departure times of customers at node j.
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Similarly to (3.2), we have

(3.3) Xα
i (k) = dαi+1(k)− dαi (k) and dαi+1(k)− dα1 (k) =

i
∑

j=1

Xα
j (k), i ≥ 1,

where Xα
1:n(k), n, k ∈ N, denotes the n-tuple random vector consisting of n consec-

utive stationary inter-departure times at node k in the altered system. As in the

original system, customer 1 is given priority over all other customers, and dα1 (j),

1 ≤ j ≤ k, denotes the departure time of customer 1 from node j. Furthermore,

note that dα1 (j) = d1(j), 1 ≤ j ≤ k, when the two systems are coupled.

The following Proposition 3.1 shows that departure processes from node ,α2t-

in the original and altered systems converge in probability as α → ∞ and t → ∞,

when the two systems are coupled as stated above. From this result, it is feasible

to characterize asymptotic properties of the departure process of the original system

by analyzing the altered system.

Proposition 3.1. For any ε > 0, we have

lim
t→∞

lim
α→∞

P[‖X̂α
1:n(,α2t-)− X̂1:n(,α2t-)‖ > ε] = 0,

where

X̂α
1:n(k) ≡

1√
k
Xα

1:n(k).

Proof. See Appendix B.2.

3.4.2 Thinned system

Consider a linear network consisting of an infinite number of nodes. The input

process is the thinned process, as described in Section 3.4.1. The departure process

from node k in the infinite-node network is the same as the departure process from
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node k in the k-node linear network. Instead of examining a sequence of finite-

node networks increasing in size, we investigate a sequence of departure processes in

the infinite-node linear network. The latter approach is of interest since departure

processes from different nodes in the linear loss network are dependent. The basic

idea behind our analysis is to relate departure processes from different nodes in the

network to the arrival process at the first node; recall that the arrival process is the

altered process produced by thinning the original process by a factor of α > 1. This is

achieved in several steps. First, we define potential departure times at downstream

nodes (Section 3.4.2). These potential departure times do not take into account

packet drops. Hence, as an intermediate step, coalesced departure times are defined

(Section 3.4.2) in terms of potential departure times. Finally, inter-departure times

at any node are derived from coalesced departure times (Section 3.4.2).

Potential departure times

As stated earlier, we obtain the vector of inter-departure times Xα
1:n(k) at node k

in terms of the sequence {Aα
i }i∈Z in several steps due to an intricate dependency

between the two quantities. We start by introducing potential departure processes

Dα
i ≡ {Dα

i (t), t ≥ 0}, i ∈ Z, given by

(3.4) Dα
i (t) = Aα

i +

't)
∑

j=1

Sα
i (j),

where {Sα
i (j)}i∈Z, j∈N is a sequence of i.i.d. exponential random variables with unit

mean, independent of {Aα
i }i∈Z. It is appropriate to think of Sα

i (j) as the service

time of customer i at node j if no other customers were present in the network. In

that case, it follows that Dα
i (t) is the departure time of customer i from node ,t- if

the customer had priority over all other customers. Note that if customer i in fact

departs from node ,t-, i.e., it is not lost at nodes 1, 2, . . . , ,t-, then Dα
i (t) is equal to



55

the actual departure time of customer i at node ,t-; hence, we use the term potential.

Next, we let D̂α
i ≡ {D̂α

i (t), t ≥ 0} for i ∈ Z, where

(3.5) D̂α
i (t) ≡

1

α
(Dα

i (α
2t)− α2t);

observe that the values of D̂α
i at different values of the argument t provide scaled

potential departure times of customer i in the altered system. From (3.4) and (3.5),

it follows that

(3.6) D̂α
i (t) =

1

α



Aα
i +

'α2t)
∑

j=1

Sα
i (j)− α2t



 .

Coalesced departure times

Recall that we are interested in the vector of inter-departure times Xα
1:n(k) at

node k, and aim to derive it from potential departure times defined in the previous

section. Here, as an intermediate step, we define coalesced departure times. We first

introduce two operators: τ and ψn.

Definition 3.2. The operator τ : D2 → [0,∞] is such that

τ(x1:2) = inf{t ≥ 0 : x1(t) ≥ x2(t−)},

where x2(0−) ≡ x2(0).

Definition 3.3. The operator ψn : Dn → Dn
"
for n ∈ N is such that ψn(x1:n) = y1:n,

where y1 = x1 and yi ≡ {yi(t), t ≥ 0} for 2 ≤ i ≤ n satisfies

yi(t) =



















xi(t), 0 ≤ t < τ(yi−1,xi),

yi−1(t), t ≥ τ(yi−1,xi).

In particular, ψ1 is the identity operator; and if ψ2(x1:2) = y1:2, then y1 = x1 and y2

is given by y2(t) = x2(t)1{t < τ(x1:2)} + x1(t)1{t ≥ τ(x1:2)} for t ≥ 0.
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Remark 3.2. Note that y1:n = ψn(x1:n) can be obtained recursively. Initially, we have

y1 = ψ1(x1) = x1, since ψ1 is the identity operator. Next, in an increasing order of

i for 2 ≤ i ≤ n, one can compute yi from (yi−1,yi) = ψ2(yi−1,xi).

Remark 3.3. For a, b > 0 and c ∈ R, if x̂i(t) = axi(bt) + ct, 1 ≤ i ≤ n, t ≥ 0, then

(ψn(x̂1:n))i(t) = a(ψn(x1:n))i(bt) + ct for 1 ≤ i ≤ n and t ≥ 0.

In view of Remark 3.2, the following lemma is straightforward since xa+1:b does

not play a role in determining (ψb(x1:b))1:a.

Lemma 3.1. For any a, b ∈ N such that 1 ≤ a ≤ b, we have ψa(x1:a) = (ψb(x1:b))1:a.

Coalesced departure times of a customer are equal to actual departure times

(and, consequently, potential departure times) before the customer is lost. However,

if a customer is displaced from the network by another customer with a higher

priority at some node, we set the coalesced departure times of the lost customer

equal to the coalesced departure times of the displacing customer, from that node

on. Recall that the characteristics of the departure process are insensitive to the

dropping policy due to the memoryless property of exponential service times (see

Section 3.2). Nevertheless, it is necessary to specify the dropping policy in order to

formulate coalesced departure times. For analytical and notational simplicity, we let

customer 1 have the highest priority over all other customers, and the rest of the

customers follow the earlier arriving priority rule. Under this policy, customers with

indices i < 1 play no role on determining the departure times of customers with

indices i ≥ 1. Recall that customers are labeled according to their arrival times at

node 1.

From now on, we consider customers with positive indices only. Let Cα
i ≡

{Cα
i (t), t ≥ 0}, i ∈ N, be the coalesced departure process of customer i. Namely,
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Figure 3.4: An example of sample paths of Dα
1:5 and Cα

1:5.

Cα
i (t) is the coalesced departure time of customer i from node ,t-. By definition,

if customer i is displaced from the network by customer j < i at node l, then

Cα
i = {Cα

i (t), t ≥ 0} is given by

(3.7) Cα
i (t) =



















Dα
i (t), 0 ≤ t < l,

Cα
j (t), t ≥ l.

An example of sample paths of Dα
1:5 and Cα

1:5 is shown in Figure 3.4. Under the

considered dropping policy, if Cα
c (t) = Cα

a (t) for 1 ≤ a ≤ b ≤ c, then Cα
b (t) = Cα

a (t).

Hence, in (3.7), it holds that

(3.8) Cα
i (t) = Cα

j (t) = Cα
i−1(t), t ≥ l.
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Moreover, if customer i is lost due to customer j at node l, then Dα
i (l−1) ≤ Dα

j (l) =

Cα
j (l). Thus, by using (3.8), it can be shown that l in (3.7) satisfies

(3.9) l = inf{n ∈ N : Cα
i−1(n) ≥ Dα

i (n− 1)} = τ(Cα
i−1,D

α
i );

the second equality stems from the fact that ,t−- = t − 1 for t ∈ N. Finally, from

(3.7)–(3.9), it follows that for any N ∈ N,

Cα
1:N = ψN (D

α
1:N).

Inter-departure times

In order to derive inter-departure times from coalesced departure times, we define

the following operators νN , φN,n and ϕN,n. The operator νN counts the number

of (strictly) positive differences between adjacent elements of the input vector. By

utilizing this counting operator, the operator φN,n yields an n-tuple vector filled

(from the left) with positive adjacent element differences of the input vector as much

as possible, and padded with zeros elsewhere. The operator ϕN,n is similar to φN,n,

but can be applied to processes rather than vectors.

Definition 3.4. The operator νN : RN
"
→ {0} ∪ N for N ∈ N is such that

νN (x1:N) =
N−1
∑

i=1

1{xi+1 − xi > 0}.

Definition 3.5. The operator φN,n : RN
"
→ Rn forN, n ∈ N is such that φN,n(x1:N) =

y1:n satisfies

yi =



















xai − xai−1, 1 ≤ i ≤ n ∧ νN(x1:N ),

0, n ∧ νN (x1:N) < i ≤ n,

where a0 = 1 and ai = min{j > ai−1 : xj − xj−1 > 0} for 1 ≤ i ≤ n ∧ νN(x1:N ).



59

Definition 3.6. The operator ϕN,n : DN
"
→ Dn forN, n ∈ N is such that ϕN,n(x1:N ) =

y1:n, where

y1:n(t) = φN,n(x1:N(t)).

Remark 3.4. For a > 0 and c ∈ R, if x̂i = axi + c, 1 ≤ i ≤ N , then νN(x̂1:N ) =

νN(x1:N ) and φN,n(x̂1:N) = aφN,n(x1:N). Hence, letting x̂i(t) = axi(bt) + ct, 1 ≤ i ≤

N , t ≥ 0, for a, b > 0 and c ∈ R, yields ϕN,n(x̂1:N )(t) = aϕN,n(x1:N)(bt).

Note that the operator ϕN,n produces a finite number of consecutive inter-departure

times from the coalesced departure processes Cα
1:N = ψN(Dα

1:N) since the opera-

tor ϕN,n returns only positive differences between adjacent elements of the input;

recall that if a customer is displaced from the network, we set the coalesced depar-

ture time of the lost customer equal to the coalesced departure time of the displacing

customer, from that node on. In particular, for a finite, fixed t ≥ 0, if N is large

enough, the random vector ϕN,n ◦ ψN (Dα
1:N)(t) = ϕN,n(Cα

1:N)(t) consists of n inter-

departure times at node ,t-. However, if N is not large enough, it contains fewer than

n inter-departure times, and the rest of the elements are zeros. Let υαn(t), n ∈ N,

t ≥ 0, be the minimum number of customers (after and including customer 1) that

need to be taken into account in order to obtain at least n inter-departure times at

node ,t-. Formally, υαn(t) is defined as

(3.10) υαn(t) = inf{N ∈ N : νN(ψN (D
α
1:N)(t)) ≥ n}.

The following lemma shows that the stopping time υαn(t) is finite for fixed n ∈ N

and t ≥ 0.

Lemma 3.2. For α > 1, n ∈ N and t ≥ 0, it holds that P[υαn(t) > N ] → 0, as

N →∞.

Proof. See Appendix B.3.
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For fixed n ∈ N and t ≥ 0, as long as we consider more than υαn(t) customers,

the number of considered customers N does not impact the resulting first n inter-

departure times at node ,t- (i.e., ϕN,n◦ψN(Dα
1:N)(t)) since the customers from υαn(t)+

1 play no role on determining these first n inter-departure times under our customer

dropping policy (see Lemma 3.1). Hence, it follows that for all N ≥ υαn(t),

(3.11) ϕN,n ◦ ψN (D
α
1:N)(t) = ϕυαn (t),n ◦ ψυαn (t)(D

α
1:υαn (t)

)(t).

The next lemma indicates that the joint distribution of any finite number of

consecutive stationary inter-departure times at node k can be obtained by considering

a sufficiently large number of customers. Intuitively, one can obtain n+1 departures

at node ,t- by considering a sufficiently large number of arrivals at node 1.

Lemma 3.3. For α > 1, n ∈ N and t ≥ 0, we have, as N →∞,

ϕN,n ◦ ψN(D
α
1:N)(t)⇒ Xα

1:n(,t-).

Proof. See Appendix B.4.

Now consider the scaled processes D̂α
i = {D̂α

i (t), t ≥ 0}, i ∈ Z, defined in (3.5).

Analogously to (3.10), we let

(3.12) υ̂αn(t) = inf{N ∈ N : νN(ψN (D̂
α
1:N)(t)) ≥ n},

and, then, similarly to (3.11), for all N ≥ υ̂αn(t), we have

(3.13) ϕN,n ◦ ψN (D̂
α
1:N)(t) = ϕυ̂αn (t),n ◦ ψυ̂αn (t)(D̂

α
1:υ̂αn (t)

)(t).

The following corollary restates Lemma 3.2 and 3.3 for scaled quantities.

Corollary 3.2. For α > 1, n ∈ N and t ≥ 0, we have, as N →∞,

P[υ̂αn(t) > N ]→ 0,
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and

ϕN,n ◦ ψN (D̂
α
1:N)(t)⇒

1

α
Xα

1:n(,α2t-).

Proof. Due to (3.5) and Remark 3.3, we have

(3.14) (ψN (D̂
α
1:N))i(t) =

1

α
((ψN(D

α
1:N))i(α

2t)− α2t),

for 1 ≤ i ≤ N and t ≥ 0. This, together with Remark 3.4, further results in

νN(ψN (D̂
α
1:N)(t)) = νN(ψN (D

α
1:N)(α

2t)).

Hence, it follows from (3.10), (3.12) and the preceding equality that

υ̂αn(t) = υαn(α
2t).

Lemma 3.2 and the preceding equality render the first statement of the corollary.

Furthermore, from (3.14) and Remark 3.4, we have

ϕN,n ◦ ψN(D̂
α
1:N)(t) =

1

α
ϕN,n ◦ ψN (D

α
1:N)(α

2t),

and the second statement of the corollary follows from Lemma 3.3 and the preceding

equality.

The following lemma is the main result of this section.

Lemma 3.4. For N, n ∈ N, we have

ϕN,n ◦ ψN(D̂
α
1:N)⇒ ϕN,n ◦ ψN (B1:N + β1:N),

in (Dn, J1), as α →∞, where β1:N = λ−1(0, 1, . . . , N − 1).

Proof. See Appendix B.5.

Corollary 3.3. For N, n ∈ N and any fixed t ≥ 0, we have

ϕN,n ◦ ψN(D̂
α
1:N)(t)⇒ ϕN,n ◦ ψN (B1:N + β1:N)(t),

as α →∞, where β1:N = λ−1(0, 1, . . . , N − 1).
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Proof. We have (see (B.44) and Lemma B.6)

Disc(ϕN,n ◦ ψN (B1:N + β1:N)) ⊆ {τ(Bi + βi,Bj + βj), 1 ≤ i < j ≤ N},

and, thus, it follows that for any fixed t ≥ 0,

P[t ∈ Disc(ϕN,n ◦ ψN(B1:N + β1:N ))] ≤
∑

1≤i<j≤N

P[τ(Bi + βi,Bj + βj) = t] = 0.

Hence, Lemma 3.4 implies the statement of the corollary (e.g., see [13, p. 138-139]).

3.4.3 Brownian system

Consider a collection of one-dimensional Brownian motions indexed by integers

in the increasing order according to their initial values (at t = 0). Let {Bi + β̃i}i∈Z

denote such a collection of Brownian motions; note that β̃i, i ∈ Z, is the initial

position of the ith Brownian motion and we have β̃a:b ∈ Rb−a+1
"

for any a, b ∈ Z

such that a ≤ b. This collection of Brownian motions serves as a basis for a system

of coalescing Brownian motions [2]. In this new system, two Brownian motions

coalesce whenever they hit each other. After the coalescing time, the merged process

is a one-dimensional Brownian motion. The described coalescing procedure is called

one-species diffusion-limited coalescence and was studied in [5–7, 22]. Now let

(3.15) β̃a:b = λ−1(a− 1, . . . , b− 1) + U,

for any a, b ∈ Z such that a ≤ b, where U is a random variable uniformly distributed

on [0, 1] and independent of {Bi + βi}i∈Z. Let W1:n(t), t ≥ 0, n ∈ N, be n-tuple

random vector consisting of n consecutive distances between neighboring coalesced

Brownian motions at time t when the initial positions of them are given as in (3.15).

Then, it was shown that W1:n(t) satisfies the following limit as t→∞ [5, 6]:

(3.16)
1√
t
W1:n(t)⇒ Z1:n,
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where Z1:n is as in the statement of Theorem 3.1.

Remark 3.5. The distribution of W1:n(t) does not change if one replaces U with 0

in (3.15), since W1:n(t) only depends on the relative distances between coalesced

Brownian motions. Hence, from now on, we let β̃a:b = βa:b = λ−1(a − 1, . . . , b − 1)

for any a, b ∈ Z such that a ≤ b.

Similarly to (3.10), we define ωn(t) as follows:

ωn(t) = inf{N ∈ N : νN (ψN(B1:N + β1:N)(t)) ≥ n};

for fixed n ∈ N and t ≥ 0, ωn(t) is the minimum number of original Brownian motions

that need to be considered in order to obtain at least n + 1 coalesced Brownian

motions at time t. Analogously to (3.11), for all N ≥ ωn(t), we have

(3.17) ϕN,n ◦ ψN (B1:N + β1:N)(t) = ϕωn(t),n ◦ ψωn(t)(B1:ωn(t) + β1:ωn(t))(t).

The following proposition provides equivalent results to Lemma 3.2 and 3.3 for

the Brownian system.

Proposition 3.2. If β1:N = λ−1(0, 1, . . . , N−1), then, for n ∈ N and t ≥ 0, we have

lim
N→∞

P[ωn(t) > N ] = lim
N→∞

lim
α→∞

P[υ̂αn(t) > N ] = 0;

furthermore, as N →∞,

ϕN,n ◦ ψN (B1:N + β1:N )(t)⇒ W1:n(t).

Proof. See Appendix B.6.
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3.5 Concluding remarks

In this chapter, we studied the asymptotic characteristics of the departure process

of a linear network consisting of bufferless nodes with exponential service times. We

first established a relevant scaling regime for the departure process that becomes

sparser (due to losses) as the size of the network increases. Under the relevant scaling

regime, we characterized the limiting behavior of the scaled departure process by

determining the joint probability density function of any finite number of consecutive

inter-departure times. We discovered that this asymptotic behavior of the departure

process is completely attributed to the characteristics of the network itself (i.e., the

distribution of service times and lack of buffers) and is not impacted by the input as

long as the input does not vary with the size of the network.

The complete characterization of the departure process we provide in this chapter

contains information on the output traffic of the linear network, and many perfor-

mance properties of the network can be obtained from it. For example, the negative

correlation coefficients between the inter-departure times indicate that the output

traffic is not bursty, since bursty departures have positive correlation between the

inter-departure times. Moreover, we observed that the correlation coefficient be-

tween the inter-departure times converges to zero very fast as the lag between the

inter-departure times increases. This indicates that the dependency between the

departure times vanishes very quickly. Finally, we note that the departure process

from a network is of value since it often constitutes an input to another system. The

departing customers (packets) from a network can be fed into another system for

further processing, and, then, the knowledge of a network’s departure process can

be utilized in designing such subsequent systems.



CHAPTER IV

Throughput scalability for linear finite-buffer networks

4.1 Introduction

This chapter considers large linear networks consisting of a series of identical

nodes with finite-buffers. Packets (customers) enter the network at the first node

and are relayed from one node to another in a fixed order until they exit the network

at the last node. Such a tandem network is a representative model of large-scale

networks with no or limited cross-traffic interference along the paths from sources to

destinations, e.g., a sensor network where concurrent traffic volume is small relative

to the size of the network. As the size of the network increases, feedback information

received at the source is delayed to an extent that it is of marginal value. Thus, it is

reasonable to employ simple control protocols that insert packets into the network

based only on the information available at the source, without any feedback from

the network.

Performance scalability is one of the critical issues in designing modern commu-

nication systems that continue to expand in terms of traffic volume, the numbers of

users and nodes, as well as the range of applications. Here, we focus on understand-

ing the fundamental performance properties of linear finite-buffer networks, as the

size of the network grows while the local resources (i.e., the buffer space) at each

65
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node remain fixed. In particular, we aim to identify a critical loading regime under

which the loss probability defined as the long-term fraction of packets lost due to

limited buffer space is strictly within (0, 1) asymptotically as the size of the network

increases. Such a regime is of interest given that it delivers a relatively high through-

put at low network cost. The loss probability tends to 1 asymptotically when the

offered load is (order-wise) higher than the critical load. In that case, only a neg-

ligible fraction of packets is delivered, i.e., throughputs close to the maximal come

with high network costs, an undesirable feature in certain systems such as sensor

networks. On the other hand, the asymptotic loss probability of 0 occurs when the

offered load is (order-wise) lower than the critical load. Then, higher throughputs

can be achieved with small increments of the network cost. Under the critical regime,

one balances between the throughput and network cost.

Linear networks with bufferless nodes were studied in [19, 35]. It was shown

that the maximum throughput of the linear bufferless network with exponential

service times is Θ(1/
√
k), as k → ∞, where k denotes the size of the network;

moreover, the critical loading regime occurs when the input rate is Θ(1/
√
k), as

k → ∞. The specific relation between the throughput and network cost was also

identified in [35]. The main result in [19] provided an asymptotic characterization

of a properly scaled limiting departure process, i.e., the joint probability density

function of any finite number of consecutive inter-departure times. In this study,

we consider a more general model of linear networks, where each node has a finite

buffer. Our results indicate that under the critical loading regime, the input rate is

Ω(1/
√
k) and O(

√

log k/k) for b = 1, and Θ(k−1/(b+1)) for b ≥ 2, as k →∞, where b

denotes the size of buffer space at each node. Finally, we argue that these asymptotic

approximations are reasonably accurate for finite-size networks.
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1 2 k

λk θk· · ·

Figure 4.1: A linear finite-buffer network consisting of a series of k identical nodes with finite buffers.
In this example, the size of buffer space at each node is equal to 3 (i.e., b = 3).

4.1.1 Notation

Throughout the chapter, we use the following notation:

(1) For a ≤ b, a, b ∈ Z, let xa:b be the (b − a + 1)-tuple vector consisting of xi,

a ≤ i ≤ b, i.e., xa:b ≡ (xa, . . . , xb).

(2) Let ei1:n, 1 ≤ i ≤ n, n ∈ N, be the n-tuple vector with an 1 in the ith element

and 0s elsewhere. Let 11:n, n ∈ N, be the n-tuple vector with all 1s.

(3) For two real-valued functions f(x) and g(x), f(x) ∼ g(x), as x ↓ 0, denotes

f(x)/g(x)→ 1, as x ↓ 0.

(4) For a right continuous function f : R → R with left limits, the left limit f(t−)

is defined as f(t−) ≡ lims↑t f(s).

4.1.2 Organization

The rest of the chapter is organized as follows. We introduce a k-node linear finite-

buffer network in the next section. Section 4.3 contains some preliminary results,

while the main results are presented in the section that follows. Concluding remarks

and technical proofs can be found in Section 4.5 and Appendix C.

4.2 Model

We consider a k-node linear network consisting of a series of ·/M/1/b queues,

indexed by 1, 2, . . . , k – each node has a finite buffer of size b (see Figure 4.1). Service

times are exponentially distributed with unit mean; service times are independent
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both across packets and across nodes. In this tandem network, incoming packets

enter the network at node 1, and are relayed between adjacent nodes until they are

either serviced at node k or lost at some intermediate node due to limited buffer

space. The input arrival process to the network is assumed to be Poisson; the input

process and service times are independent.

For a finite-buffer system, in general, a buffer management scheme needs to be

specified. A buffer management scheme includes (i) service discipline and (ii) drop-

ping policy. The service discipline determines the order of packets to be serviced

(transmitted) at a node; in this chapter, nodes are assumed to employ a work-

conserving scheduling policy. The dropping policy prioritizes packets to be dropped

upon new arrivals at a node with the full buffer. Since service times are i.i.d. with

the exponential distribution, the remaining service time of a packet is equal in distri-

bution to the service time of a newly arrived packet. Thus, in that case, the choice

of the buffer management scheme does not impact throughput results as long as

the policy does not consider realizations of service times. Throughout the chapter,

the first-come, first-serve (FCFS) discipline is assumed to be employed. A suitable

dropping policy that is convenient for analysis will be defined later (see Section 4.3.3).

In the linear network model, a node can accommodate b+1 packets (including any

one in service), and a packet is lost if a new packet arrives at a node with a full buffer.

For b = 0, it was shown in [19] that, under a proper scaling, locations of packets in the

linear network can be viewed as coalescing Brownian motions, where two Brownian

motions coalesce whenever they hit each other. This coalescing procedure is called

as one-species two-body diffusion-limited reaction and was studied in [5–7,22]. More

general one-species many-body diffusion-limited reactions, where Brownian motions

coalesce when more than two of them collide, were investigated in [4, 8, 32, 37, 44].
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However, we point out that these results are not directly applicable in analyzing the

critical regime for linear networks with b ≥ 1.

4.3 Preliminary results

This section provides some preliminary results.

4.3.1 Multidimensional random walk within a wedge

In this subsection we consider an n-dimensional random walk relevant in analyzing

the interaction of (n + 1) consecutive packets in the original network. Let Wn be

a wedge-shaped n-dimensional Euclidean subspace (we simple call it a wedge) such

that

Wn ≡ {x1:n ∈ Z
n : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn}.

Given a parameter ρ ∈ (0, 1), an n-dimensional discrete-time random walk {X1:n(i), i ≥

0} in the wedgeWn is defined by the transition probabilities Px1:n,y1:n, x1:n, y1:n ∈ Wn,

given by

(4.1) Px1:n,y1:n =



















































Ii
n+1−ρ , y1:n = x1:n − ei1:n, 1 ≤ i ≤ n,

J
n+1−ρ , y1:n = x1:n,

1−ρ
n+1−ρ , y1:n = x1:n + 11:n,

0, otherwise,

where Ii ≡ 1{xi > xi−1}, J ≡
∑n

i=1 1{xi = xi−1} and x0 ≡ 0. It can be verified that the

stationary distribution πx1:n, x1:n ∈ Wn, satisfies

(4.2) πx1:n = ρn(1− ρ)xn .

Remark 4.1. After a proper scaling (ρ ↓ 0), the random walk converges weakly

to an n-dimensional reflected Brownian motion with a constant drift, which has an



70

exponential stationary distribution. Hence, the preceding result is in agreement with

the one in [27].

Let τ01:n be a first hitting time:

(4.3) τ01:n = inf{i ≥ 0 : X1:n(i) = 01:n},

i.e., the first time the random walk hits the origin. The following lemma provides an

estimate of τ01:n .

Lemma 4.1. For m,n ∈ N, we have

1

|Vn
m|

∑

x1:n∈Vn
m

E[τ01:n |Xn(0) = x1:n] ≤ (n+ 1− ρ)
m
∑

i=1

n
∑

j=1

(

n− 1

j − 1

)

(j − 1)!

ij−1

1

ρj
,

where Vn
m ≡ {x1:n ∈ Zn : 1 ≤ x1 ≤ x2 ≤ · · · ≤ xn = m}.

Proof. See Appendix C.1.

Remark 4.2. The reason for considering the set Vn
m in Lemma 4.1 is related to the

(initial) distribution of the distances between (n+1) consecutive packets in the linear

network (see Section 4.3.4 – Remark 4.3 in particular).

Let ξ(s), s ∈ N, be the number of times the increment of the random walk is

equal to 11:n during the first s steps:

(4.4) ξ(s) =
s
∑

i=1

1{X1:n(i)−X1:n(i− 1) = 11:n}.

Note that Wald’s equality yields (e.g., see [25, p. 64-67])

E[ξ(τ01:n)|X1:n(0) = x1:n] =
1− ρ

n+ 1− ρ
E[τ01:n |X1:n(0) = x1:n],

for all x1:n ∈ Wn, and, therefore,

(4.5) Eξ(τ01:n) =
1− ρ

n+ 1− ρ
Eτ01:n ;

the expectations above implicitly depend on the initial condition X1:n(0). We con-

clude this subsection with an asymptotic characterization of Eξ(τ01:n).
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Lemma 4.2. Suppose that the initial distribution of the random walk satisfies the

following three properties:

(A1)
∑∞

m=1 P[X1:n(0) ∈ Vn
m] = 1.

(A2) For m ∈ N and x1:n ∈ Vn
m,

P[X1:n(0) = x1:n|Xn(0) = m] = |Vn
m|−1.

(A3) EXn(0) ∼ cρ−1, as ρ ↓ 0, for finite, fixed c > 0.

Then, for n = 2,

lim
ρ↓0

ρ2

log ρ−1
Eξ(τ01:2) ≤ 1,

and, for n ≥ 3,

lim
ρ↓0

ρnEξ(τ01:n) ≤ (n− 1)2(n− 3)!.

Proof. See Appendix C.2.

4.3.2 Extended linear network

In this subsection, we consider an extended linear network constructed by adding

m infinite-buffer nodes in tandem in front of the first node of the original k-node

network; each infinite-buffer node operates as a ·/M/1/∞ queue with the unit service

rate (all service times are independent). In this new network, nodes are labeled by

integers from −m + 1 to k in increasing order according to their positions in the

network. Incoming packets enter the network at node −m + 1 and pass through

the infinite-buffer nodes first. Within this part of the network, no packets are lost.

Packets departing from node 0 are then relayed between the finite-buffer nodes until

they are either serviced at node k or dropped at some node due to limited buffer

space, like in the original network.
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Let the arrival process at node −m + 1 be Poisson with rate λk < 1. Then, the

output process at node 0 in the extended network described above is also Poisson

with rate λk [16]. Since no packets are lost from the infinite-buffer nodes, this further

results in

(4.6) pmk = p0k,

for all m ∈ N, where pmk is the loss probability defined as the long-term fraction of

packets that are lost before they reach node k and complete service successfully in

the extended (m + k)-node network described above. In other words, augmenting

the original network with infinite-buffer nodes does not alter the loss probability.

4.3.3 Dropping policy

Recall that throughput results are insensitive to the dropping policy (see Sec-

tion 4.2). In this subsection, we describe a suitable dropping policy convenient for

analyzing the loss probability in (4.6). To this end, we consider two identical linear

networks – they have the same numbers of packets at the nodes with the same indices

initially, and input processes at node −m+1 are also same in both networks. Pack-

ets are labeled by integers in (−∞,∞) in increasing order according to their arrival

times at node −m + 1, and when some arbitrary packet arrives at node −m + 1,

both networks are already in stationarity. Suppose that these two identical networks

adopt the following two different dropping policies (P1) and (P2), respectively:

(P1) All packets follow the earlier arriving priority rule.

(P2) Packets from 0 to b are given priority over all other packets, and the rest of

the packets follow the earlier arriving priority rule.

Moreover, it is assumed that service completion times at the nodes with the same

indices of the two linear networks are coupled. That is, whenever a packet departs
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from a node in one network, a packet (if present) also departs from the node with

the same index in the other network (regardless of the indices of packets). Due

to the memoryless property of the exponential distribution, service times in the two

networks are still exponentially distributed even though they are coupled as described

above. Thus, throughputs of the networks are not altered by this coupling.

Recall that both networks are already in stationarity when some packet arrives at

node −m+ 1. Under the dropping policy (P1), given that the network is in station-

arity, loss probabilities of individual packets are equal due to symmetry. Hence, the

loss probability pmk in (4.6), i.e., the long-term fraction of lost packets, is equal to the

loss probability of an arbitrary packet. However, under the dropping policy (P2),

the loss probabilities of individual packets can be different. Note that packets with

indices from 0 to b are never lost, since they have priority over all other packets and

each node can accommodate b + 1 packets (including any one in service). On the

other hand, packet b + 1 is displaced from the network when it enters a node with

full buffer that holds all packets from 0 to b. Now we compare the loss probabilities

of packet b+ 1 in both networks. Observe that in both policies, all packets arriving

before packet b+ 1 have priority over packet b+ 1. Moreover, recall that the FCFS

discipline is assumed to be employed (see Section 4.2). Then, since two linear net-

works are identical and service completion times at the nodes with the same indices

are coupled as described above, the numbers of packets present in the nodes where

packet b + 1 enters are always same in both networks even though their (packet)

indices can be different. That is, the loss probabilities of packet b + 1 are same for

both networks. Thus, the loss probability pmk in (4.6) can be obtained by evaluating

the probability that packet b+ 1 is lost under the dropping policy (P2).
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4.3.4 Initial distribution

From now on suppose that the network employs the dropping policy (P2). Recall

that under (P2), packet b + 1 is lost if and only if packets from 0 to b + 1 happen

to be at the same node before packet 0 departs from node k. Packets arriving after

packet b + 1 do not impact on the behavior of packets from 0 to b+ 1, i.e., the loss

of packet b + 1 is determined by packets 0, 1, . . . , b + 1 only. In this subsection, we

characterize the positions of packets from 0 to b+1 when packet 0 arrives at node 1;

this results will be utilized in the following subsection to identify the loss probability

of packet b+ 1.

Let {Ai}i∈Z be the increasing sequence of arrival times of packets at node −m+1

(in the extended network). Recall that packets are labeled by integers in increasing

order according to their arrival times (see Section 4.3.3). Let Lm
i , i ≥ 1, be the index

of the node where packet i is located when packet 0 arrives at node 1; in order to

properly define Lm
i for all i ≥ 1, we set Lm

i = −m, if packet i has not entered the

network by the time packet 0 departs from node 0. The following lemma characterize

the positions of packets from 1 to b+ 1 at the time when packet 0 enters node 1.

Lemma 4.3. For x1:b+1 ∈ Wb+1 such that xb+1 ≤ m, we have

P[Lm
1:b+1 = −x1:b+1] = λ

∑b+1
i=1 1{xi ≤ m+ 1}

k (1− λk)
xb+1.

Proof. See Appendix C.3.

Now consider a random vector L∞
1:b+1 such that

(4.7) P[L∞
1:b+1 = −x1:b+1] = λb+1

k (1− λk)
xb+1,

for x1:b+1 ∈ Wb+1. Note that setting m = ∞ in Lemma 4.3, even though it is

informal, simply yields (4.7). A formal relation between Lm
1:b+1 and L∞

1:b+1 is given in

the following corollary.
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Corollary 4.1. Given m ∈ N, we have

P[Lm
1:b+1 = −x1:b+1] = P[L∞

1:b+1 = −x1:b+1],

for all x1:b+1 ∈ Wb+1 such that xb+1 ≤ m− 1.

Remark 4.3. L∞
1:b+1 can be thought of the random vector consisting of the positions

of packets from 1 to b + 1 when packet 0 arrives at node 1 in the extended linear

network with m =∞. Now suppose that the initial distribution of the random walk

is given by

X1:b+1(0) = 11:b+1 − L∞
1:b+1.

When packet 0 arrives at node 1, packets from 1 to b+ 1 are located at some nodes

with indices less than or equal to 0, i.e., Xi(0) = 1 − L∞
i ≥ 1 for all 1 ≤ i ≤ b + 1.

Then, it is straightforward that (A1) in Lemma 4.2 holds. Moreover, it can be shown

from (4.7) that (A2) in Lemma 4.2 is also satisfied. This explains why we consider

the set Vn
m in Lemma 4.1 (see Remark 4.2). Finally, if ρ ∼ rλk, as λk ↓ 0, for some

finite, fixed r > 0, then

EXb+1(0) = 1− EL∞
b+1

= 1 + (b+ 1)λ−1
k ∼ (b+ 1)rρ−1,

as ρ ↓ 0, and this implies (A3) in Lemma 4.2.

4.3.5 Loss probability

In this subsection we focus on the behavior of packets 0, 1, . . . , b+1 in the extended

linear network after packet 0 departs from node 0. Results in here, together with

those in the previous subsection, are utilized to obtain the loss probability pmk in

(4.6). In particular, we consider an infinite-node linear network consisting of m

infinite-buffer nodes and an infinite number of finite-buffer nodes, i.e., the linear
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network described in Section 4.3.2 with k = ∞. Recall that the loss probability pmk

is equal to the loss probability of packet b + 1 in the (m + k)-node linear network

under the dropping policy (P2) (see Section 4.3.3). This probability can be obtained

by evaluating the probability that packet b+1 is lost before it reaches node k+1 in

the infinite-node linear network.

The loss of packet b+1 occurs if and only if packets from 0 to b+1 happen to be at

the same node in the network. We first consider the behavior of packet 0. Without

loss of generality, let time 0 be the time instance when packet 0 arrives at node 1,

and define W0(i), i ∈ N, to be the sojourn time of packet 0 at node i. The location

(node index) of packet 0 at time t ≥ 0 can be represented by a right-continuous

function {Lm
0 (t), t ≥ 0} that satisfies

(4.8) Lm
0 (t) = n + 1,

for T0(n) ≤ t < T0(n+ 1), n ≥ 0, where

(4.9) T0(n) ≡
n
∑

j=1

W0(j).

Note that T0(n), n ≥ 0, corresponds to the departure time of packet 0 from node i.

The behavior of packet 0 is impacted by packets with negative indices (i.e., the

packets that enter the network before packet 0). The characteristics of sojourn times

of packet 0 reflect all the effects of the packets with negative indices. Due to the

intrinsic dependency in the behavior of packets that interact along the network,

the sojourn times at different nodes are dependent, and it is not easy to characterize

them exactly. In the next section, we approximate these sojourn times to simplify the

analysis and compute the loss probability approximately (see Approximation 4.1).

Next we consider packets 1, 2, . . . , b+ 1. For now, assume that all packets from 1

to b + 1 have entered the network at time 0, i.e., Lm
b+1 ≥ −m + 1. The behavior of
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packets from 1 to b + 1 is determined by service completion times of them at each

node and their relative distances to packet 0. Imagine that the service completion

times are controlled by timers from 1 to b+1; timer i is associated with packet i. All

timers are set at time 0, and each timer expires and is reset every random amount of

time exponentially distributed with unit mean; these random times are all indepen-

dent. If packet i is in service when timer i expires, then packet i completes service

and proceed to the next node; otherwise, if packet i is waiting in the buffer when

timer i expires, then nothing changes. Due to the memoryless property of the expo-

nential distribution, the resulting service times of packets are still independent and

exponentially distributed with unit mean. This procedure renders right-continuous

functions {Lm
i (t), t ≥ 0}, 1 ≤ i ≤ b+ 1, satisfying

(4.10) Lm
i (t) = Lm

i +
n
∑

j=1

1{Lm
i (Ti(j)−) < Lm

i−1(Ti(j)−)},

for Ti(n) ≤ t < Ti(n+ 1), n ≥ 0, where

(4.11) Ti(n) ≡
n
∑

j=1

Si(j),

and {Si(j)}1≤i≤b+1, j∈N is a sequence of i.i.d. exponential random variables with unit

mean. Under the FCFS discipline, it is appropriate to think of Lm
i (t) for 1 ≤ i ≤ b+1

as the index of the node where packet i is located at time t (before packet b + 1 is

lost).

Finally we construct a discrete-time random process {Y m
1:b+1(n), n ≥ 0} such that

(4.12) Y m
1:b+1(n) ≡ Lm

0 (T (n))11:b+1 − Lm
1:b+1(T (n)),

where {T (n)}n≥0 is the (strictly) increasing sequence generated from all elements in

{Ti(n)}n≥0 for 0 ≤ i ≤ b + 1. This discrete-time process describes the evolution of

the relative distances between packets in the network. We note that this process is
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not Markovian since the increasing sequence {T0(n)}n≥0 has dependent increments,

which follows from the fact that the sojourn times of packet 0 at different nodes, i.e.,

W0(i), i ∈ N, are dependent (see (4.9)). Observe that the packet b+ 1 is lost if the

process hits the origin. Similarly to (4.3), we define τm
01:b+1

as the first hitting time

for this discrete-time process:

τm
01:b+1

= inf{i ≥ 0 : Y m
1:b+1(i) = 01:n}.

The packet b + 1 is lost before it reaches node k + 1 if and only if the location of

packet 0 at time T (τm
01:n) is less than or equal to k, i.e., Lm

0 (T (τ
m
01:n)) ≤ k. Note that

Lm
0 (T (s)) for any fixed s ∈ N can be represented by

Lm
0 (T (s)) = ξm(s) + 1,

where ξm(s), s ∈ N, is defined, analogously to (4.4), as

ξm(s) =
s
∑

i=1

1{Y m
1:n(i)− Y m

1:n(i − 1) = 11:n};

this follows from the fact that Y m
1:b+1(i) increases by 11:b+1 only when packet 0 proceeds

to the next node. Therefore, the loss of packet b+1 occurs if and only if ξm(τm
01:n) ≤

k − 1. Lemma 4.3 implies

P[Lm
b+1 ≤ −m] = P[Y m

b+1(0) ≥ m+ 1]→ 0,

as m → ∞, i.e., asymptotically, all packets from 1 to b + 1 enter the (extended)

network before packet 0 departs from node 0. Then, it is not difficult to see from

(4.6) and the preceding argument that

p0k = lim
m→∞

pmk

= lim
m→∞

P[ξm(τm
01:b+1

) ≤ k − 1, Y m
b+1(0) ≤ m].

(4.13)
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4.4 Main results

This section provides the main results of the chapter that characterize the critical

loading regime for linear finite-buffer networks. We first present a technical lemma.

Let θk(λ), k ∈ N, λ ≥ 0, be the throughput of a k-node linear network when the

input arrival process at node 1 is Poisson with rate λ.

Lemma 4.4. If 0 ≤ λ′ ≤ λ, then θk(λ′) ≤ θk(λ).

Proof. See Appendix C.4.

Now we consider a sequence of linear finite-buffer networks indexed by the size of

the network k. The input arrival process at node 1 is Poisson with rate λk that varies

with k. A critical loading regime is defined as a scaling regime of the input arrival

rate λk in terms of the size of the network k in which the loss probability defined as the

long-term fraction of lost packets are strictly within (0, 1) asymptotically as the size

of the network increases. In this regime, the input and output (throughput) rates are

proportional. Such a regime is of interest since it delivers a relatively high throughput

at low network cost per packet delivered. Asymptotic loss probabilities of 0 and 1

correspond to under-loaded and over-loaded regimes, respectively. Under the over-

loaded regime, only a small fraction of packets are delivered, and, thus, operating a

network in this regime is not (energy) efficient. On the other hand, under the under-

loaded regime, higher throughputs are feasible to achieve with small increments of the

network cost; hence, in this regime, the network capacity is not efficiently utilized.

Under the critical loading regime, one balances between two conflicting goals: (i)

achieving high throughput and (ii) maintaining low loss probability (low network

cost).

The critical loading regime for b = 0 is already established in [35], which is given
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by λk = Θ(1/
√
k), as k →∞. Thus, we focus on the case that b ≥ 1. Let rk be the

ratio of the throughput to the input arrival rate, i.e.,

rk ≡
θk(λk)

λk
.

The following subsection provides an asymptotic lower-bound on this ratio.

4.4.1 Lower-bound

The throughput θk(λk) is bounded below by (see [29, (7)])

(4.14) θk(λk) ≥ λk − kcbλ
b+2
k ,

where c−1
b =

∑b+1
i=0 λ

i
k. This yields the following asymptotic properties on the ratio rk.

Proposition 4.1. If λk = o(k−1/(b+1)), as k →∞, then

lim
k→∞

rk = 1.

Furthermore, if λk = Θ(k−1/(b+1)), as k →∞, then

(4.15) lim
k→∞

rk > 0.

Proof. The first statement of the proposition is straightforward from (4.14). For the

second statement of the proposition, it suffices to show that the statement holds if

λk ∼ ak−1/(b+1), as k → ∞, for any finite, fixed a > 0. If a ∈ (0, 1), then (4.15)

follows from (4.14) since cb ≤ 1. If a ≥ 1, then there exists some a′ ∈ (0, 1) such that

λk ≥ λ′
k = a′k−1/(b+1),

for all k ∈ N, and Lemma 4.4 yields

lim
k→∞

θk(λk)

λk
≥ lim

k→∞

θk(λ′
k)

λ′
k

λ′
k

λk

=
a′

a
lim
k→∞

θk(λ′
k)

λ′
k

> 0.

(4.16)
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Hence, the second statement of the proposition holds. Proposition 4.1 implies that

the critical loading regime should satisfy, as k →∞,

(4.17) λk = Ω(k−1/(b+1)).

4.4.2 Critical loading regime

In this subsection, we first identify an (approximate) upper-bound on the input

rate under the critical loading regime. This result along with (4.17) is then used

to characterize the critical loading regime. By definition (see Section 4.3.2), it is

straightforward that

(4.18) rk = 1− p0k.

In order to evaluate p0k from (4.13), it is necessary to characterize the sojourn times

W0(i), i ∈ N, explicitly (see Section 4.3.5). In this chapter, in order to simplify the

analysis, we utilize the following approximation.

Approximation 4.1. Sojourn times W0(i), i ∈ N, are independent and exponen-

tially distributed with mean (1 − ρ)−1, where ρ ∼ rλk, as λk ↓ 0, for some fixed

r ∈ (0, 1).

Remark 4.4. Under a critical-loading regime, by definition, the loss probability is

strictly within (0, 1) asymptotically as the size of the network increases. This implies

that the output rate (throughput) at each node of the network is proportional to the

input arrival rate. In that case, the density of packets in the network (i.e., the

expected number of packets per node) is asymptotically proportional to the input

arrival rate; this stems from the fact that the expected number of packets in a node

is asymptotically equal to the output rate. Now, observe that the service of packet 0

at a node can be blocked (delayed) by its preceding packets – packet 0 has to wait
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in the buffer if the server is busy. This results in non-zero waiting times. It can be

argued that the probability that packet 0 is blocked from being serviced due to its

preceding packets is proportional to the density of packets. Under the critical regime,

this blocking probability, denoted by ρ, is asymptotically proportional to the input

arrival rate. Finally, Approximation 4.1 follows by simplifying that such blocking

events occur independently within and across nodes (with probability ρ).

Let r̃k be the approximation of rk under Approximation 4.1. The following lemma

provides an upper-bound on r̃k.

Lemma 4.5. We have

r̃k ≤
E[ξ(τ01:b+1

)|X1:b+1(0) = 11:b+1 − L∞
1:b+1]

k
,

where L∞
1:b+1 satisfies (4.7).

Proof. See Appendix C.5.

Lemma 4.5 yields the following asymptotic results. For notational simplicity, we

use

(4.19) ub(k) ≡



















√

log k/k, b = 1,

k−1/(b+1), b ≥ 2.

Proposition 4.2. For b ≥ 1, if λk = ω(ub(k)), as k →∞, then

lim
k→∞

r̃k = 0.

Furthermore, if λk = Θ(ub(k)), as k →∞, then

(4.20) lim
k→∞

r̃k < 1.
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Proof. In view of Remark 4.3, if ρ ∼ rλk, as λk ↓ 0, for some fixed r ∈ (0, 1), which

is given in Approximation 4.1, then X1:b+1(0) = 11:b+1−L∞
1:b+1 satisfies (A1)–(A3) in

Lemma 4.2. Therefore, Lemmas 4.2 and 4.5 yield, if b = 1,

(4.21) lim
k→∞

r̃k ≤
1

r2
lim
k→∞

log λ−1
k

kλ2
k

,

and, if b ≥ 2,

(4.22) lim
k→∞

r̃k ≤
b2(b− 2)!

rb+1
lim
k→∞

1

kλb+1
k

.

The first statement of the proposition is straightforward from the preceding inequal-

ities. For the second statement of the proposition, as in the proof of Proposition 4.1,

it suffices to show that the statement is true if λk ∼ aub(k), as k →∞, for any finite,

fixed a > 0. For notational simplicity, let

Cb ≡



















r−1, b = 1,

r−1(b2(b− 2)!)1/(b+1), b ≥ 2.

If a > Cb, then (4.20) follows from (4.21) and (4.22). If a ∈ (0, Cb], then there exists

some a′ > Cb(Cb/a)1/b ≥ Cb such that

λk ≤ λ′
k = a′ub(k),

for all k ∈ N. Similarly to (4.16), it can be shown that

lim
k→∞

θk(λk)

λk
≤ lim

k→∞

θk(λ′
k)

λ′
k

λ′
k

λk
=

a′

a

(

Cb

a′

)b+1

< 1,

and the second statement of the proposition follows.

Recall that Approximation 4.1 is applicable for networks operating in the critical

loading regime only (see Remark 4.4). We can identify a critical loading regime by

first assuming that the network operates in a critical loading regime and evaluat-

ing the loss probability using Approximation 4.1; if the resulting loss probability is
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strictly within (0, 1), as k → ∞, it can be argued that the assumed critical load-

ing regime and Approximation 4.1 were appropriate. In this case, the constant r

in Approximation 4.1 corresponds to the limiting value of rk, as k → ∞, approxi-

mately, which is strictly within (0, 1) in the critical loading regime. From this point

of view, Proposition 4.2 implies that the critical loading regime for b ≥ 1 satisfies

(approximately)

(4.23) λk = O(ub(k)),

as k →∞, and this provides an upper-bound on the critical-loading regime.

From (4.17) and (4.23), the critical loading regime for b ≥ 2 is reduced to λk =

Θ(k−1/(b+1)), as k → ∞ (see (4.19)). For b = 1, the upper- and lower- bounds of

the critical loading regime, given in (4.17) and (4.23), respectively, do not coincide.

We conjecture that the upper-bound in (4.23) is tight despite it stems from an

approximation, and that the critical loading regime for b = 1 is given by λk =

Θ(
√

log k/k), as k → ∞. It is argued that the critical loading is not impacted

substantially if we increase the size of the buffer from 0 to 1. For b ≥ 2, the critical

loading regime is considerably impacted by the buffer size.

4.4.3 Simulation results

This subsection provides some simulation results that illustrate our analytical

results presented in the previous subsection. First, in order to see the behavior of

the input arrival rate λk under the critical loading regime, in Figure 4.2, we plotted

estimated (by simulation) input arrival rates that deliver loss probability of 0.5 (i.e.,

rk = θk(λk)/λk = 0.5) for different values of k ∈ [102, 105] and b ∈ {0, 1, 2, 3}. We

note that 0.5 is just an arbitrary value within (0, 1), and that for different choices

of the loss probability, the qualitative behavior of the critical input rate remains
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Figure 4.2: Estimated (by simulation) input arrival rate λk at node 1 that delivers θk(λk)/λk = 0.5
for b = 0 (×), b = 1 (◦), b = 2 (•), and b = 3 (+). The solid lines are obtained
by fitting the simulated data to the equation λk = ak−c; the estimated constants
are a = 0.79, 1.762, 2.039, 2.092 and c = 0.5034, 0.4338, 0.3414, 0.2732 for b = 0, 1, 2, 3,
respectively. For b = 1, we also plot the dotted line obtained by fitting the simulated
data to the equation λk = a

√
log kk−c; the estimated constants are a = 1.154 and

c = 0.511.

the same. Along with the simulated data, we also plotted fitted curves (solid lines)

obtained by fitting the simulated data to the equation λk = ak−c with parameters a

and c; we used a robust (using the bisquare weights method) non-linear least-squares

estimation in data fitting. For b = 0, 1, 2, 3, the estimated parameters are a =

0.79, 1.762, 2.039, 2.092 and c = 0.5034, 0.4338, 0.3414, 0.2732, respectively. Observe

that the estimated values of c are reasonably consistent with our analytical results

for b ∈ {0, 2, 3}. As b increases, however, the discrepancy between the estimated and

theoretical values of c becomes larger. This is due to the fact that the analytical

results are asymptotically true, as k →∞, in particular, as λk → 0; observe that the

estimated input rate λk for given k goes away from 0, as b increases. For b = 1, we

also plotted a fitted curve (dotted line) that obtained by fitting the simulated data
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Figure 4.3: Estimated (by simulation) input arrival rate λk at node 1 that delivers θk(λk)/λk = 0.5
for b = 0 (×), b = 1 (◦), b = 2 (•), and b = 3 (+). The solid lines are obtained by fitting
the data to the equation λk = a/

√
k for b = 0 and λk = aub(k) for b ≥ 1 (see (4.19));

the estimated constants are a = 0.7812, 1.172, 1.891, 1.865 for b = 0, 1, 2, 3, respectively.

to the equation λk = a
√
log kk−c with parameters a and c; the estimated parameters

are a = 1.154 and c = 0.511. As k increases, the simulated data fit better to

the equation λk = a
√
log kk−c, which supports that our analytical results become

accurate asymptotically as k →∞.

In Figure 4.2, we plotted the estimated (by simulation) input arrival rates λk that

result in loss probability of 0.5 for different values of k ∈ [10, 100] and b ∈ {0, 1, 2, 3}.

The solid lines are obtained by fitting the simulated data to the equation λk = a/
√
k

for b = 0 and λk = aub(k) for b ≥ 1 (see (4.19)); the estimated parameters are

a = 0.7812, 1.172, 1.891, 1.865 for b = 0, 1, 2, 3, respectively. This figure illustrates

that our asymptotic results are reasonably applicable to finite-size networks as well.
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4.5 Concluding remarks

A critical loading regime is a scaling regime of the input arrival rate in terms of the

size of the network in which the asymptotic loss probability is strictly within (0, 1),

as the size of the network increases. Such a regime is of interest since it delivers

a relatively high throughput at low network cost. The critical loading regime was

previously established only for linear networks with bufferless nodes. In this chapter,

we considered a more general model of the linear networks, where each node has a

finite buffer. Our analytical results indicated that the input rate under the critical

loading regime is Ω(1/
√
k) and O(

√

log k/k) for b = 1, and Θ(k−1/(b+1)) for b ≥ 2, as

k →∞, where k denotes the number of nodes in the network. It was shown in [35]

that the critical loading regime for linear networks with bufferless nodes (i.e., b = 0)

occurs when the input rate is Θ(1/
√
k), as k → ∞. These results indicate that the

qualitative behavior of the critical loading regime for linear networks depends on

whether the buffer size is greater than 1.

This chapter established a qualitative relation between the achievable throughput

and the required buffer space at each node of the network under the critical loading

regime. The throughput and the input rate are proportional under the critical loading

regime, and, thus, given the size of available buffers at each node of the network,

this qualitative relation provides some guideline in determining an appropriate input

rate at the source of the network for achieving a relatively high throughput with low

(energy) cost. Conversely, this can be utilized in determining a necessary amount of

buffers for achieving a certain throughput with low (energy) cost, and, moreover, is

applicable to some of the resource allocation problems in large-scale networks with

multiple users. When the buffer space at each node is shared by multiple users in
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the network, our results on the critical loading regime provide a qualitative criterion

in determining an appropriate amount of buffers that need to be allocated to each

user based on the requirements on its input rate, throughput and/or network cost.



CHAPTER V

Conclusions

Due to rapid expansion of modern communication networks, performance scalabil-

ity is a central problem in designing next-generation network protocols and architec-

tures. In large-scale networks, performance bottlenecks attributed to the finiteness

of local resources can be critical factors in determining the overall network perfor-

mance. While this problem was considered to some extent by practitioners and

system engineers, there has been a limited amount of work in establishing its math-

ematical foundations. The need for theoretical investigation is even more apparent

in view of the fact that conducting experimental studies on large-scale networks is

prohibitively expensive. In this dissertation, we focused on three models of large-

scale communication networks with limited local resources, and investigated their

asymptotic performance characteristics, as the size of the network or the number of

users increase.

First, we considered a packet network with a large number of users and investi-

gated the effectiveness of application-layer coding for recovering packet losses due to

buffer overflows. Application-layer coding is one of mechanisms for achieving reliable

communication in packet networks. Coding has two conflicting effect on the network

performance: (i) on the positive side, coding can enable end users to recover some

89
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of the dropped packets, thus, it reduces the packet loss rate. (ii) on the negative

side, coding introduces additional packets, increases the overall offered load, and

results in higher packet drop probability. The effectiveness of coding depends on

which of the above-mentioned effects is dominant. Our analytical results indicate

that the network parameter space can be partitioned into two regions where coding

is beneficial and detrimental, respectively. The results provide good guidelines to

network designers who consider application-layer coding as one of the methodologies

to improve the network performance. Informally, we concluded that coding can be

advantageous in under-loaded networks only.

Next, we studied the asymptotic characteristics of the departure processes of linear

loss networks, as the size of the network increases. A linear network is a tandem

network consisting of a series of identical nodes, which is a representative model of

large-scale communication networks with limited or no cross-traffic interference. The

departure process is of interest since various performance properties of the network

such as throughput and traffic burstiness can be obtained from it. In this research, we

characterized the asymptotic behavior of the departure process of the linear network

consisting of bufferless nodes with exponential service times by determining the joint

probability density function of any finite number of consecutive inter-departure times.

This asymptotic behavior of the departure process is completely attributed to the

characteristics of the network itself (i.e., the distributions of service times and the

number of buffers) and is not impacted by the input as long as the input does not

vary with the size of the network.

Finally, we focused on linear networks consisting of finite-buffer nodes, and iden-

tified a critical loading regime of the input under which the loss probability due to

buffer overflows is strictly within (0, 1), asymptotically as the size of the network in-
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creases. Such a regime is of interest given that it delivers a relatively high throughput

at low network (energy) cost. Our analytical results using an approximation indicate

that the qualitative behavior of the achievable throughput under the critical loading

regime depends on whether the buffer size is greater than 1.

In large-scale communication networks with limited local resources, the achiev-

able performance limits are usually given by functions of the network parameters,

including the amount of local resources available at each node of the network. Such

relations between the performance and network resources can be utilized in various

ways. If the available resources at each node are fixed, then these results provide

some guidelines to system designers or network operators in developing efficient net-

work algorithms or in tuning network parameters for achieving some performance

requirements. For example, using the results on application-layer coding in Chap-

ter II, one can determine whether employing coding is advantageous in a network

with specific network parameters such as the link capacity and buffer size. From

the results on the critical loading regime of linear finite-buffer networks in Chap-

ter IV, one can determine an appropriate input rate which delivers a relatively high

throughput with low network cost. On the other hand, the relations between the per-

formance and network resources can be utilized in determining a necessary amount

of local resources that guarantee a certain performance limit. Furthermore, they are

applicable in addressing some of the resource allocation problems in large-scale net-

works with multiple users. Namely, one can decide appropriate amounts of resources

that need to be allocated to individual users with different performance and/or qual-

ity requirements in a network with multiple users. For example, recall that the linear

network is a representative model for large-scale multi-hop wireless networks where

each node has limited buffers. If there are multiple source-destination pairs (users)
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in the network and the local resources at each node are allocated to individual users

disjointly, then the individual paths can be thought of independent linear networks.

Then, by using the results in Chapter IV, one can determine the necessary amounts

of local resources (i.e., buffer space and transmission capacity) for individual users

based on their input rates and/or throughput requirements.

We conclude this dissertation with a discussion of the future work. First, it is

of interest to establish a complete relationship between the throughput and network

(energy) cost in linear finite-buffer networks. Although we identified the critical load-

ing regime in which a relatively high throughput can be achieved with low network

cost, an explicit relation between these two properties is still unknown for general

linear finite-buffer networks. In order to identify this relation, one needs to obtain

an exact expression of the throughput for any given input process using an approach

different from the one we employed in this dissertation. Next, performance scalabil-

ity under specific QoS (Quality-of-Service) requirements (e.g., delay and loss rate)

is also an interesting problem to investigate. In order to address this problem, one

needs to identify the relation (or tradeoff) among various performance characteris-

tics of the network such as throughput, loss probability and delay. The results on

this problem can provide some guidelines in determining feasible QoS requirements

for various network services. So far, we have mainly focused on understanding the

fundamental performance properties of large-scale communication networks, but the

development of scalable network algorithms is also a problem of great importance.

An algorithm can be said to be scalable in the sense that it requires only a lim-

ited amount of resources (memory, power and computing power) at each node while

keeping some performance guarantee even though the size of the network increases.

Designing scalable network algorithms is a challenging problem since it requires not
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only mathematical insights but also creative ideas. In general, simple algorithms are

desirable since complex algorithm are difficult to implement. Moreover, if an algo-

rithm is complex, it may even not be feasible to verify its correctness and evaluate

its performance either theoretically or experimentally.
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APPENDIX A

Appendix for Chapter II

A.1 Proof of Lemma 2.1

Utilizing a systematic MDS code, we have either {L̇n = 0} or {L̇n = k} on the

event {Ḋn
d = k}. Therefore, it follows that

(A.1) E[L̇n|Ḋn
d = k] = k(1− P[L̇n = 0|Ḋn

d = k]).

Recall that the data packets in v̇n are included in both vn and vn−1. Assuming that at

least one packet from v̇n is dropped, define two events En
1 = {v̇n is recovered by decoding vn}

and En
2 = {v̇n is recovered by decoding vn−1}. For k > 0, we have

P[L̇n = 0|Ḋn
d = k] = P[En

1 ∪ En
2 |Ḋn

d = k]

= 1− (1− P[En
1 |Ḋn

d = k])(1− P[En
2 |Ḋn

d = k]),

where the second equality follows from the assumptions of the lemma. By combining

the preceding equality with (A.1), one can obtain

(A.2) E[L̇n|Ḋn
d = k] = k(1− ξn1 (k))(1− ξn2 (k)),

where ξn1 (k) = P[En
1 |Ḋn

d = k] and ξn2 (k) = P[En
2 |Ḋn

d = k]; for notational simplicity,

we extended the definition of ξn1 (k) and ξn2 (k) for k = 0. Observe that if Ḋn
d = 0



96

then L̇n = 0 since there are no dropped packets. Besides, if Ḋn
d > α/2 then L̇n = Ḋn

d

since no dropped packets can be recovered in this case. Formally, we have

(A.3) ξn1 (k) = ξn2 (k) =



















1, k = 0,

0, k > α/2.

Let Dn denote the number of dropped packets among the data packets in vn and

the additional α/2 coded packets generated from vn, i.e., Dn = Ḋn
d + Ḋn+1

d + Ḋn
c . If

Dn ≤ α/2, then all dropped packets in vn can be recovered. Otherwise, the dropped

packets in vn can be recovered only when the dropped packets in v̇n+1 are recovered

by decoding the next block vn+1 and the number of (remaining) unrecovered dropped

packets is at most α/2. This argument leads to

ξn1 (k) = P[Dn ≤ α/2|Ḋn
d = k] + P[Dn > α/2, Dn − Ḋn+1

d ≤ α/2, En+1
1 |Ḋn

d = k],

for 1 ≤ k ≤ α/2. The assumptions of the lemma imply that the event En+1
1 is

independent of both Ḋn
d and Ḋn

c . Thus, the second term on the right-hand side of

the preceding equality can be expressed as

P[Dn > α/2, Dn − Ḋn+1
d ≤ α/2, En+1

1 |Ḋn
d = k]

= P[α/2− Ḋn+1
d < Ḋn

c + k ≤ α/2, En+1
1 ],

and, if we represent this as the sum of conditional probabilities (conditioned on the

event {Ḋn+1
d = i} for 1 ≤ i ≤ α/2), then we have

P[α/2− Ḋn+1
d < Ḋn

c + k ≤ α/2, En+1
1 ]

=
α/2
∑

i=1

P[α/2− i < Ḋn
c + k ≤ α/2, En+1

1 , Ḋn+1
d = i].
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For notational simplicity, let α̇ = α/2. Then, one can derive the following equation

from the preceding argument:

(A.4) ξn1 (k) = P[Ḋn+1
d + Ḋn

c + k ≤ α̇]

+
α̇
∑

i=1

ξn+1
1 (i)P[α̇− i < Ḋn

c + k ≤ α̇]P[Ḋn+1
d = i],

for 1 ≤ k ≤ α̇. Likewise, it can be shown that

(A.5) ξn2 (k) = P[Ḋn−1
d + Ḋn−1

c + k ≤ α̇]

+
α̇
∑

i=1

ξn−1
2 (i)P[α̇− i < Ḋn−1

c + k ≤ α̇]P[Ḋn−1
d = i],

for 1 ≤ k ≤ α̇. Under steady-state, both (A.4) and (A.5) have the same solution

ξ(k) = ξn1 (k) = ξn2 (k). In this case, (A.2)–(A.5) yield

E[L̇n|Ḋn
d = k] = k(1− ξ(k))2,

where ξ(k), k ≥ 0, is given as in the statement of the lemma. This concludes the

proof of Lemma 2.1.

A.2 Proof of Theorem 2.1

Let DN(t), t ≥ 1, denote the number of dropped packets in the time slot t:

DN(t) = (QN
∗ (t− 1) +HN(t)− CN − BN)+,

where QN
∗ (t) denotes the queue occupancy at the end of the time slot t. Since all

packets are assumed to have the same priority, the drop probability of a packet at

the time slot t is given by

(A.6) pND(t) = DN(t)/HN(t).
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Without loss of generality, consider the arrival process of the source 1. Let {τs, 1 ≤

s ≤MN} be the sequence of arrival times of data packets in a block of the source 1.

Then, the probability that k data packets are dropped in a block is given by

(A.7) P[DN
d = k] =

∑

S∈Sk

E

[

∏

s∈S

pND(τs)
∏

s/∈S

(1− pND(τs))

]

,

where Sk is the collection of all k-subsets of {1, 2, . . . ,MN}.

Now define, for l ∈ N,

(A.8) Sk
l = {S : |i− j| > l, ∀i, j ∈ S ∈ Sk}.

The following lemma states that under the critical-load scaling, the intervals between

packet drops in a block are asymptotically Ω(logN), as N →∞.

Lemma A.1. Consider the critical-load scaling. Suppose that l = ,a logN- for fixed

a > 0. Then, as N →∞,

∑

S∈Sk\Sk
l

E

[

∏

s∈S

pND(τs)
∏

s/∈S

(1− pND(τs))

]

→ 0.

Proof. See Appendix A.3.

Lemma A.2. Consider the critical-load scaling. Suppose that l = ,a logN- for fixed

a > 0. Then, as N →∞,

∑

S∈Sk
l

E
∏

s∈S

pND(τs)

1− pND(τs)
→ (mp̂D)

k

k!
,

where p̂D is the limiting scaled drop probability that satisfies (2.19). Moreover, we

have

lim sup
N→∞

∑

S∈Sk
l

(

E
∏

s∈S

(

pND(τs)

1− pND(τs)

)2
)1/2

<∞.
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Proof. See Appendix A.4.

Lemma A.3. Consider the critical-load scaling. Then

MN
∏

s=1

(1− pND(τs))
P−→ e−mp̂D ,

as N →∞, where p̂D is the limiting scaled drop probability that satisfies (2.19).

Proof. See Appendix A.5.

Next we present a proof of Theorem 2.1.

Proof of Theorem 2.1. First consider DN
d , which denotes the number of dropped data

packets in a block of the source 1. The set Sk can be partitioned into two disjoint

subsets Sk
l and Sk \ Sk

l . Thus, in view of (A.7), we have

(A.9) P[DN
d = k] =

∑

S∈Sk
l

EΠN(S) +
∑

S∈Sk\Sk
l

EΠN (S),

where ΠN(S) =
∏

s∈S p
N
D(τs)

∏

s/∈S(1− pND(τs)). By letting

ΣN =
∑

S∈Sk
l

∏

s∈S

pND(τs)

1− pND(τs)
,

ΓN =
MN
∏

s=1

(1− pND(τs))− e−mp̂D ,

and by using the triangular inequality, it is straightforward to show that

(A.10)

∣

∣

∣

∣

∣

∣

∑

S∈Sk
l

EΠN (S)− (mp̂D)k

k!
e−mp̂D

∣

∣

∣

∣

∣

∣

≤
∣

∣E[ΣNΓN ]
∣

∣ + e−mp̂D

∣

∣

∣

∣

EΣN − (mp̂D)k

k!

∣

∣

∣

∣

.

For some ε > 0, define an event GN
ε = {|ΓN | < ε}. Then, we have

∣

∣E[ΣNΓN ]
∣

∣ ≤ E[|ΣNΓN | · 1GN
ε
] + E[|ΣNΓN | · 1ḠN

ε
]

≤ εEΣN + E[ΣN1ḠN
ε
];

(A.11)
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the first inequality is due to the Jensen’s inequality and the second inequality follows

from |ΓN | ≤ 1. Furthermore, the Cauchy-Schwarz inequality renders

E[ΣN1ḠN
ε
] ≤

∑

S∈Sk
l

(

E

[

∏

s∈S

(

pND(τs)

1− pND(τs)

)2
]

P[ḠN
ε ]

)1/2

.

Let l = ,a logN- for fixed a > 0. Then, the second statement of Lemma A.2,

Lemma A.3 and the preceding inequality imply E[ΣN1ḠN
ε
] → 0, as N → ∞. Since

limN→∞ EΣN <∞ (see the first statement of Lemma A.2) and (A.11) holds for any

ε > 0, it follows that |E[ΣNΓN ]| → 0, as N → ∞; combining this limit, the first

statement of Lemma A.2 and (A.10) yields

∑

S∈Sk
l

EΠN (S)→ (mp̂D)k

k!
e−mp̂D ,

as N → ∞. Due to Lemma A.1 and the preceding limit, the first statement of the

theorem follows from (A.9).

Second consider DN
c , i.e., the number of dropped packets among additional α

coded packets in a block of the source 1 (recall that without loss of generality, we

consider the arrival process of the source 1). Note that additional α coded packets

are transmitted in the same time slot as the last data packet of the block. Moreover,

all packets have the same priority in the system. Thus, it follows from the union

bound:

(A.12) P[DN
c > 0] ≤ αEpND(τMN ),

where τMN is the arrival time of the last data packet in the block. The drop proba-

bility pND(t) is bounded by

(A.13) pND(t) ≤
(HN(t)− CN)+

HN(t)
≤ (HN(t)− CN )+

CN
;
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this together with (A.12) leads to

(A.14) P[DN
c > 0] ≤ α(

√
N/CN)E(ȞN(τMN ))+,

where ȞN(t) = (HN(t)−CN )/
√
N . Moreover, the relation x+ < ex for x ∈ R implies

(A.15) E(ȞN(τMN ))+ ≤ EeȞ
N (τMN ).

Since additional α packets are transmitted in the same time slot as the last data

packet of the block, we have HN(τMN ) = (1 + α) +
∑N

i=2H
N
(i)
(τMN ). Assuming that

processes are in their stationary regimes except the one corresponding to the source 1,

the random variables HN
(i)
(τMN ), i = 2, 3, . . . , N , are i.i.d.. Thus, it follows that

EeȞ
N (τMN ) = E

N
∏

i=1

eȞ
N
(i)(τMN )

= e((1+α)−CN /N)/
√
N
(

EeȞ
N
(2)(τMN )

)N−1
,

where ȞN
(i)
(t) = (HN

(i)
(t)− CN/N)/

√
N . From (2.17), it can be shown that

EeȞ
N
(2)(t) = 1 +

α/m− β

N
+

λ(1− λ)

2N
+ o

(

1

N

)

,

as N →∞, and this further results in

(A.16) lim
N→∞

EeȞ
N (τMN ) <∞.

Finally, putting together (A.14)–(A.16) renders the second statement of the theo-

rem.

A.3 Proof of Lemma A.1

First we present a preliminary technical lemma.

Lemma A.4. If l = o(MN ), as MN →∞, then

|Sk
l | = ((MN )k/k!)(1− o(1)),
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and

|Sk| − |Sk
l | = O(l · (MN )k−1),

as MN →∞, for fixed k ∈ N.

Proof. Observe that |Sk| is bounded above by

|Sk| =
(

MN

k

)

≤ (MN )k

k!
,

and |Sk
l | is bounded below by

|Sk
l | ≥

1

k!

k−1
∏

i=0

(MN − i(2l + 1)) ≥ (MN − k(2l + 1))k

k!
.

Under the assumption of the lemma, these two inequalities imply the first statement

of the lemma. Furthermore, combining these two inequalities results in

|Sk| − |Sk
l | ≤

(MN )k − (MN − k(2l + 1))k

k!
,

and, then, the second statement of the lemma also follows due to the assumption of

the lemma.

Now we provide a proof of Lemma A.1.

Proof of Lemma A.1. The lemma holds for k = 0 trivially; hence, we consider k ≥ 1.

From (A.13), it follows that

(A.17)
∏

s∈S

pND(τs)
∏

s/∈S

(1− pND(τs)) ≤
∏

s∈S

pND(τs) ≤ (
√
N/CN)k

∏

s∈S

(ȞN(τs))
+.

Moreover, due to the Cauchy-Schwarz inequality, we have

E
∏

s∈S

(ȞN(τs))
+ ≤

∏

s∈S

(

E((ȞN(τs))
+)k
)1/k

≤
∏

s∈S

(

EekȞ
N (τs)

)1/k

;

(A.18)
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the second inequality follows from the relation x+ < ex for x ∈ R. Recall that τs, 1 ≤

s ≤MN , is the arrival time of the sth data packet in a block of the source 1. Thus,

we have HN(τs) = 1 + α · 1{s=MN} +HN
(−1)

(τs), where HN
(−1)

(t) =
∑N

i=2H
N
(i)
(t). Given

that all processes are in their stationary regimes except the one corresponding to the

source 1, the random variables HN
(−1)

(τs), s = 1, 2, . . . ,MN , are equal in distribution,

and, analogously to (A.16), it can be shown that

(A.19) lim
N→∞

EekȞ
N (τs) <∞,

for all τs, 1 ≤ s ≤ MN . Under the assumptions of the lemma, Lemma A.4 implies

|Sk| − |Sk
l | ≤ c,a logN-(MN )k−1 for some finite constant c. Combining this and

(A.17)–(A.19) leads to the statement of Lemma A.1.

A.4 Proof of Lemma A.2

Consider HN
(−1)

(t)−AN
(−1)

(t), i.e., the number of additional coded packets generated

by the encoders ofN−1 sources (except the source 1) in the time slot t, where HN
(−1)

(t)

and AN
(−1)

(t) are respectively given by

HN
(−1)

(t) =
N
∑

i=2

HN
(i)
(t), AN

(−1)
(t) =

N
∑

i=2

AN
(i)
(t).

The following lemma indicates that the number of such coded packets per time slot

can be approximated by (α/m)
√
N during an entire block.

Lemma A.5. Consider the critical-load scaling. Then

sup
τ1≤t≤τMN

∣

∣

∣

∣

HN
(−1)

(t)− AN
(−1)

(t)
√
N

− α

m

∣

∣

∣

∣

P−→ 0,

as N →∞.

Proof. For some ε > 0, define an event EN
ε as

EN
ε =

{

sup
τ1≤t≤τMN

∣

∣

∣

∣

HN
(−1)

(t)− AN
(−1)

(t)
√
N

− α

mN

∣

∣

∣

∣

≥ ε

}

,
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where mN =
√
NMN/(λ(N − 1)). Since mN → m, as N → ∞, it is sufficient to

show that for any ε > 0,

(A.20) P[EN
ε ]→ 0,

as N →∞. The event EN
ε satisfies EN

ε ⊆
⋃τMN

t=τ1 EN
ε (t), where

EN
ε (t) =

{∣

∣

∣

∣

HN
(−1)

(t)−AN
(−1)

(t)
√
N

− α

mN

∣

∣

∣

∣

≥ ε

}

.

Thus, the union bound renders

(A.21) P[EN
ε ] ≤ E

τMN
∑

t=τ1

P[EN
ε (t)].

Furthermore, the Markov’s inequality results in

P[EN
ε (t)] = P

[

∣

∣

∣

∣

HN
(−1)

(t)− AN
(−1)

(t)
√
N

− α

mN

∣

∣

∣

∣

4

≥ ε4
]

≤ (ε
√
N)−4

E

(

N
∑

i=2

UN
(i)
(t)

)4

,

(A.22)

where UN
(i)
(t) = HN

(i)
(t)−AN

(i)
(t)−αλ/MN . Note that the random variables UN

(i)
(t), i =

2, 3, . . . , N , are independent since packets are generated and encoded by individual

sources and their encoders independently. Furthermore, provided that the system

is in stationarity, the random variables UN
(i)
(t), i = 2, 3, . . . , N , are i.i.d. with zero

mean and

(A.23) P[UN
(i)
(t) = u] =



















1− λ/MN , u = −αλ/MN ,

λ/MN , u = α− αλ/MN ,

for all t ∈ [τ1, τMN ]; this stems from the fact that all processes except the one

corresponding to the source 1 are in steady-state at the time slot τ1. Therefore, it

follows that

(A.24) E

(

N
∑

i=2

UN
(i)
(t)

)4

≤ NE(UN
(2)
(t))4 + 3N2(E(UN

(2)
(t))2)2,
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for all t ∈ [τ1, τMN ]. From (A.23), one can obtain

E(UN
(2)
(t))k = (1− λ/MN)(−αλ/MN)k + (λ/MN)(α− αλ/MN)k,

for k ≥ 2, and this together with (A.22) and (A.24) leads to

(A.25) P[EN
ε (t)] = O(1/N),

as N →∞, for all t ∈ [τ1, τMN ]. Observe that τMN−τ1 =
∑MN

i=2 (τi−τi−1), where (τi−

τi−1), i = 2, 3, . . . ,MN , are i.i.d. geometric random variables with mean 1/λ (since

the sources are Bernoulli). Hence, combining (A.21) and (A.25) yields (A.20), and

this concludes the proof of the lemma. Next we introduce an additional technical

lemma. For some ε > 0, consider two systems that have the same link capacity CN

and buffer size BN ; however, assume that input processes are respectively given by

AN
−ε(t) = AN

(−1)
(t) + (α/m− ε)

√
N and AN

+ε(t) = AN
(−1)

(t) + (1 + α) + (α/m + ε)
√
N ,

instead of HN(t). Formally, the queue occupancies of these systems QN
±ε(t), t ≥ 1,

satisfy the following recursion:

(A.26) QN
±ε(t) = (QN

±ε(t− 1) + AN
±ε(t)− CN)+ ∧ BN ,

and the numbers of dropped packets DN
±ε(t), t ≥ 1, are respectively given by

(A.27) DN
±ε(t) = (AN

±ε(t) +QN
±ε(t− 1)− CN −BN )+.

Observe that the processes {QN
±ε(t), t ≥ 0} are Markov chains since {AN

±ε(t), t ≥ 1}

are i.i.d. processes.

The following lemma provides an upper and lower bound on the number of

dropped packets.

Lemma A.6. Consider the critical-load scaling. For any ε > 0, if QN
−ε(τ1 − 1) =

QN
+ε(τ1 − 1) = QN

∗ (τ1 − 1), then, as N →∞,

P[DN
ε ]→ 1,
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where DN
ε = {DN

−ε(t) ≤ DN(t) ≤ DN
+ε(t), ∀t ∈ [τ1, τMN ]}.

Proof. For some ε > 0, define an event AN
ε as

(A.28) AN
ε =

{

sup
τ1≤t≤τMN

∣

∣

∣

∣

HN
(−1)

(t)−AN
(−1)

(t)
√
N

− α

m

∣

∣

∣

∣

< ε

}

,

Given the event AN
ε , the following bound holds:

(A.29) AN
−ε(t) ≤ HN(t) ≤ AN

+ε(t), ∀t ∈ [τ1, τMN ];

this further implies (due to the monotonicity in (A.26))

(A.30) QN
−ε(t) ≤ QN

∗ (t) ≤ QN
+ε(t), ∀t ∈ [τ1, τMN ].

From (A.27), (A.29) and (A.30), on the event AN
ε , we also have

(A.31) DN
−ε(t) ≤ DN(t) ≤ DN

+ε(t), ∀t ∈ [τ1, τMN ].

Then, the statement of the lemma follows from Lemma A.5.

Next we present a proof of Lemma A.2

Proof of Lemma A.2. First consider the first statement of the lemma. Note that the

statement holds for k = 0 trivially; hence, we consider k ≥ 1. The proof consists of

three parts.

Part I. Observe that HN(t)∧CN ≤ HN(t)−DN (t) ≤ CN +BN ; this implies (see

(A.6))

(A.32)
DN(t)

CN +BN
≤ pND(t)

1− pND(t)
≤ DN(t)

HN(t) ∧ CN
=

DN(t)

CN
;

the equality is due to the fact that the event {HN(t) < CN} implies {DN(t) = 0}.

Then, it is sufficient to show that for all S ∈ Sk
l ,

(A.33) E
∏

s∈S

D̂N(τs)→ (p̂D)
k,
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as N → ∞, where D̂N(t) = DN(t)/
√
N . In particular, note that (A.32) and the

preceding limit imply

(CN/
√
N)kE

∏

s∈S

pND(τs)

1− pND(τs)
→ (p̂D)

k,

as N → ∞, for all S ∈ Sk
l ; then, the statement of the lemma follows from the first

statement of Lemma A.4. For k = 1, the limit (A.33) is straightforward (see (2.19));

thus, we consider k ≥ 2 from now on.

Part II. The proof is based on a coupling argument (e.g., see [15, Sec. 4.1.2]).

Given ε > 0, define two events CN
−ε,0(t1, t2) and CN

−ε,b(t1, t2) for time slots t1 and t2

(t1 < t2):

CN
−ε,0(t1, t2) = {∃t ∈ [t1, t2) : A

N
−ε(t) < CN − BN},

CN
−ε,b(t1, t2) = {∃t ∈ [t1, t2) : A

N
−ε(t) > CN +BN},

and consider the event CN
−ε(t1, t2) given by

(A.34) CN
−ε(t1, t2) = CN

−ε,0(t1, t2) ∩ CN
−ε,b(t1, t2).

The events {AN
−ε(t) < CN −BN} and {AN

−ε(t) > CN +BN} imply {QN
−ε(t) = 0} and

{QN
−ε(t) = BN}, respectively, regardless of the queue occupancy of the previous time

slot. On the event CN
−ε(t1, t2), thus, the buffer becomes empty and full at least once

during the time interval [t1, t2). Now consider a queue occupancy process {Q̇N
−ε(t), t ≥

t1 − 1} with the same arrival process {AN
−ε(t), t ≥ t1} but possibly different initial

distribution at t = t1 − 1. If there exists t0 ≥ t1 such that QN
−ε(t

0) ≤ Q̇N
−ε(t

0), then

QN
−ε(t) ≤ Q̇N

−ε(t) for all t ≥ t0. On the other hand, if there exists tb ≥ t1 such that

QN
−ε(t

b) ≥ Q̇N
−ε(t

b), then QN
−ε(t) ≥ Q̇N

−ε(t) for all t ≥ tb. Hence, the event CN
−ε(t1, t2)

implies that these two queue occupancy processes couple before the time slot t2, i.e.,

QN
−ε(t2) = Q̇N

−ε(t2), regardless of their initial distributions at t = t1 − 1.
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Let S = {s1, s2, . . . , sk} ∈ Sk
l , where s1 < s2 < · · · < sk. The assumption of the

lemma implies |si − sj| > ,a logN- for all si, sj ∈ S (see (A.8)); this further results

in (τsi − τsi−1) > ,a logN- for all i, 2 ≤ i ≤ k. Therefore, we have

P[C̄N
−ε(τsi−1 + 1, τsi)] ≤ (qN0 )'a logN) + (qNb )'a logN),

for all i, 2 ≤ i ≤ k, where qN0 = P[AN
−ε(t) ≥ CN−BN ] and qNb = P[AN

−ε(t) ≤ CN+BN ].

Since qN0 → q0 ∈ (0, 1) and qNb → qb ∈ (0, 1), as N →∞ (due to the CLT), it follows

that

(A.35) P[C̄N
−ε(τsi−1 + 1, τsi)]→ 0,

as N →∞, for all i, 2 ≤ i ≤ k. The union bound and the preceding limit yield

(A.36) P

[

k
⋃

i=2

C̄N
−ε(τsi−1 + 1, τsi)

]

≤
k
∑

i=2

P[C̄N
−ε(τsi−1 + 1, τsi)]→ 0,

as N → ∞. One can define a corresponding event CN
+ε(t1, t2) (as in (A.34)) for the

case “+ε”, and it can be shown that

(A.37) P[C̄N
+ε(τsi−1 + 1, τsi)]→ 0,

for all i, 2 ≤ i ≤ k, and

(A.38) P

[

k
⋃

i=2

C̄N
+ε(τsi−1 + 1, τsi)

]

→ 0,

as N →∞.

Part III. For some ε > 0 and S = {s1, s2, . . . , sk} ∈ Sk
l , s1 < s2 < · · · < sk, let

CN
ε,i(S) = CN

−ε(τsi−1 + 1, τsi) ∩ CN
+ε(τsi−1 + 1, τsi),

for 2 ≤ i ≤ k, and consider the event CN
ε (S) =

⋂k
i=2 CN

ε,i(S). It is straightforward to

show that

E[ΨN
−ε(S)1CN

ε (S)] = E

[

D̂N
−ε(τs1)

k
∏

i=2

(

D̂N
−ε(τsi)1CN

ε,i(S)

)

]

,
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where ΨN
−ε(S) =

∏

s∈S D̂
N
−ε(τs) and D̂N

−ε(t) = DN
−ε(t)/

√
N . For each i, 2 ≤ i ≤

k, consider a queue occupancy process {Q∗N
−ε,i(t), τsi−1 ≤ t ≤ τsi − 1} that is in

stationarity at the time slot t = τsi−1 and follows the same recursion (A.26) for

t ∈ [τsi−1 + 1, τsi − 1]. In particular, we assume that the initial queue occupancies

Q∗N
−ε,i(τsi−1), i = 2, 3, . . . , k, are i.i.d. and that they do not depend on the arrival

process {AN
−ε(t), t ≥ 1}. In addition, let D∗N

−ε,i(t), τsi−1 + 1 ≤ t ≤ τsi , 2 ≤ i ≤ k,

denote the number of dropped packets that corresponds to the queue occupancy

Q∗N
−ε,i(·):

(A.39) D∗N
−ε,i(t) = (AN

−ε(t) +Q∗N
−ε,i(t− 1)− CN − BN)+.

Due to the coupling argument given in the previous part, we have, for all i, 2 ≤ i ≤ k,

(A.40) DN
−ε(τsi)1CN

ε,i(S)
= D∗N

−ε,i(τsi)1CN
ε,i(S)

.

Note that each random variable D∗N
−ε,i(τsi)1CN

ε,i(S)
, 2 ≤ i ≤ k, is determined by the

initial queue occupancy Q∗N
−ε,i(τsi−1) and the random variables AN

−ε(t), t ∈ [τsi−1 +

1, τsi]. Since the random variables AN
−ε(t), t = 1, 2, . . . , are i.i.d. and the queue

occupancies Q∗N
−ε,i(τsi−1), i = 2, 3, . . . , k, are assumed to be i.i.d. with stationary

distribution (and they do not depend on the arrival process), it follows that

(A.41) E[ΨN
−ε(S)1CN

ε (S)] = E[D̂N
−ε(τs1)]

k
∏

i=2

E[D̂∗N
−ε,i(τsi)1CN

ε,i(S)
],

where D̂∗N
−ε,i(t) = D∗N

−ε,i(t)/
√
N . From the bound D∗N

−ε,i(t) ≤ (AN
−ε(t)− CN)+ and the

Cauchy-Schwarz inequality, we have

(A.42) E[D̂∗N
−ε,i(τsi)1C̄N

ε,i(S)
] ≤ E[(ǍN

−ε(τsi))
+1C̄N

ε,i(S)
]

≤
(

E[((ǍN
−ε(τsi))

+)2]P[C̄N
ε,i(S)]

)1/2
,
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for all i, 2 ≤ i ≤ k, where ǍN
−ε(t) = (AN

−ε(t)− CN )/
√
N . By using the similar steps

as in (A.15) and (A.16), one can obtain

(A.43) lim sup
N→∞

E((ǍN
−ε(τs))

+)2 <∞.

Furthermore, due to (A.35) and (A.37), we have P[CN
ε,i(S)] → 1, as N → ∞, for all

i, 2 ≤ i ≤ k. Then, from (A.42) and (A.43), it follows that, as N →∞,

(A.44) E[D̂∗N
−ε,i(τsi)1CN

ε,i(S)
]− ED̂∗N

−ε,i(τsi)→ 0,

for all i, 2 ≤ i ≤ k. Recall that the initial queue occupancies Q∗N
−ε,i(τsi−1), i =

2, 3, . . . , k, are assumed to have the stationary distribution; this implies ED̂∗N
−ε,i(τsi) =

ED̂N
−ε(τs1), for all i, 2 ≤ i ≤ k. Thus, combining (A.41) and (A.44) renders

(A.45) E[ΨN
−ε(S)1CN

ε (S)]− (ED̂N
−ε(τs1))

k → 0,

as N →∞.

The bound DN
−ε(t) ≤ (AN

−ε(t) − CN)+ and the Cauchy-Schwarz inequality yield

(see Lemma A.6)

(A.46) E[ΨN
−ε(S)1CN

ε (S)1D̄N
ε
] ≤ E[ΨN

−ε(S)1D̄N
ε
]

≤
(

E

[

∏

s∈S

((ǍN
−ε(τs))

+)2
]

P[D̄N
ε ]

)1/2

.

Since random variables ǍN
−ε(τs), s ∈ S, are i.i.d., we have

E
∏

s∈S

((ǍN
−ε(τs))

+)2 =
∏

s∈S

E((ǍN
−ε(τs))

+)2.

Then, by combining (A.43), (A.46) and Lemma A.6, it follows that E[ΨN
−ε(S)1CN

ε (S)1D̄N
ε
]→

0, as N →∞; this limit and (A.45) further result in

(A.47) E[ΨN
−ε(S)1CN

ε (S)1DN
ε
]− (ED̂N

−ε(τs1))
k → 0,
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as N →∞. Likewise, one can derive a similar limit for the case “+ε”, i.e.,

(A.48) E[ΨN
+ε(S)1CN

ε (S)1DN
ε
]− (ED̂N

+ε(τs1))
k → 0,

as N →∞, where ΨN
+ε(S) =

∏

s∈S(D
N
+ε(τs)/

√
N). For any ε > 0, Lemma A.6 implies

(A.49) ΨN
−ε(S)1ZN

ε (S) ≤ ΨN(S)1ZN
ε (S) ≤ ΨN

+ε(S)1ZN
ε (S),

where ZN
ε (S) = CN

ε (S) ∩ DN
ε and ΨN(S) =

∏

s∈S D̂
N(τs). In addition, due to

continuity, it can be shown that

lim
ε↓0

lim
N→∞

ED̂N
±ε(τs1) = p̂D.

Hence, from (A.47)-(A.49) and the preceding limit, one can derive

(A.50) lim
ε↓0

lim
N→∞

E[ΨN(S)1ZN
ε (S)] = (p̂D)

k.

On the other hand, the bound DN(t) ≤ (HN(t)−CN)+ and the Cauchy-Schwarz

inequality lead to

(A.51) E[ΨN (S)1Z̄N
ε (S)] ≤

(

E

[

∏

s∈S

((ȞN(τs))
+)2
]

P[Z̄N
ε (S)]

)1/2

.

Similarly to (A.18) and (A.19), one can obtain

(A.52) lim sup
N→∞

E
∏

s∈S

((ȞN(τs))
+)2 <∞.

Moreover, (A.36), (A.38) and Lemma A.6 imply P[ZN
ε (S)] → 1, as N → ∞. Then,

from (A.51) and (A.52), we have

E[ΨN(S)1Z̄N
ε (S)]→ 0,

as N →∞. The preceding limit and (A.50) imply (A.33), and the first statement of

the lemma follows.
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Finally consider the second statement of the lemma. From (A.32) and the bound

DN(t) ≤ (HN(t)− CN )+, we have

E
∏

s∈S

(

pND(τs)

1− pND(τs)

)2

≤ (
√
N/CN)2kE

∏

s∈S

((ȞN(τs))
+)2.

Then, since |Sk
l | = O((MN)k), as N → ∞ (see Lemma A.4), the second statement

of the lemma follows from (A.52).

A.5 Proof of Lemma A.3

The proof consists of two parts.

Part I. For some δ > 0, it can be shown that

(A.53) P





∣

∣

∣

∣

∣

MN
∏

s=1

(1− pND(τs))− e−mp̂D

∣

∣

∣

∣

∣

≥ δ





≤ P





∣

∣

∣

∣

∣

−
MN
∑

s=1

log(1− pND(τs))−mp̂D

∣

∣

∣

∣

∣

≥ δ′



 ,

where δ′ = log(1+δ/e−mp̂D). The relation x ≤ − log(1−x) ≤ x/(1−x) for 0 ≤ x < 1

renders

(A.54) pND(t) ≤ − log(1− pND(t)) ≤ pND(t)/(1− pND(t)).

Given ε > 0, the event AN
ε implies (see (A.28), (A.29) and (A.31))

pND(t) ≥
DN

−ε(t)

AN
+ε(t)

,
pND(t)

1− pND(t)
≤ DN(t)

CN
≤

DN
+ε(t)

CN
,

for all t ∈ [τ1, τMN ]; the second inequality follows from (A.32). Due to (A.54) and

the preceding inequalities, it follows that on the event AN
ε ,

(A.55)
MN
∑

s=1

PN
−ε(τs) ≤ −

MN
∑

s=1

log(1− pND(τs)) ≤
MN
∑

s=1

PN
+ε(τs),



113

where PN
−ε(t) = DN

−ε(t)/A
N
+ε(t) and PN

+ε(t) = DN
+ε(t)/C

N . Due to Lemma A.5, we

have P[AN
ε ] → 1, as N → ∞, for any ε > 0; hence, from (A.53) and (A.55), it is

sufficient to show that

(A.56) P





∣

∣

∣

∣

∣

MN
∑

s=1

PN
±ε(τs)−mp̂D

∣

∣

∣

∣

∣

≥ δ



→ 0,

as N →∞, for any δ > 0 and all sufficiently small ε > 0.

Part II. Consider the case “−ε”. For some ε > 0 and δ > 0, define an event BN
ε,δ

as

BN
ε,δ =







∣

∣

∣

∣

∣

MN
∑

s=1

PN
−ε(t)−MN

EPN
−ε(t)

∣

∣

∣

∣

∣

≥ δ







.

For notational simplicity, let P̄N
−ε(t) = PN

−ε(t)−EPN
−ε(t). The Chebyshev’s inequality

yields

(A.57) P[BN
ε,δ] ≤ δ−2

E





MN
∑

s=1

P̄N
−ε(τs)





2

.

Recall that the set S2 is the collection of all 2-subsets of {1, 2, . . . ,MN}. Thus, it

follows that

(A.58) E





MN
∑

s=1

P̄N
−ε(τs)





2

= 2
∑

S∈S2

E
∏

s∈S

P̄N
−ε(τs) +MN

E(P̄N
−ε(τ1))

2.

From the following bound:

(A.59) PN
−ε(t) ≤

(AN
−ε(t)− CN)+

AN
+ε(t)

≤
(AN

−ε(t)− CN )+

CN
,

we have

E(P̄N
−ε(τ1))

2 ≤ E(PN
−ε(τ1))

2

≤ (
√
N/CN)2E((ǍN

−ε(τ1))
+)2.

(A.60)

Then, due to (A.43), it can be shown that, as N →∞,

(A.61) MN
E(P̄N

−ε(τ1))
2 → 0.



114

For notational simplicity, define ΛN
−ε(S) =

∏

s∈S P̄
N
−ε(τs). The set S2 can be par-

titioned into two disjoint subsets S2
l and S2 \ S2

l (see (A.8)), and, therefore, we

have

(A.62)
∑

S∈S2

EΛN
−ε(S) =

∑

S∈S2
l

EΛN
−ε(S) +

∑

S∈S2\S2
l

EΛN
−ε(S).

The Cauchy-Schwarz inequality and the bound (A.60) render

∣

∣EΛN
−ε(S)

∣

∣ ≤ (
√
N/CN)2

∏

s∈S

(

E((ǍN
−ε(τs))

+)2
)1/2

,

and this together with (A.43) leads to |E[ΛN
−ε(S)]| = O(1/N), as N → ∞. Let l =

,a logN- for fixed a > 0. In this case, Lemma A.4 implies |S2|−|S2
l | ≤ c,a logN-MN

for some finite constant c > 0; hence, we have, as N →∞,

(A.63)
∑

S∈S2\S2
l

EΛN
−ε(S)→ 0.

Next consider the event CN
−ε(S) = CN

−ε(τs1 + 1, τs2) for some S = {τs1 , τs2} ∈ S2
l

(see (A.34)). Recall that this event implies DN
−ε(τs2) = D∗N

−ε,2(τs2), where D∗N
−ε,2(t),

τs1 + 1 ≤ t ≤ τs2 , denotes the number of dropped packets that corresponds to the

queue occupancy Q∗N
−ε,2(·) (see (A.39) and (A.40)). In a similar manner as in (A.41),

it can be shown that

(A.64) E[ΛN
−ε(S)1CN

−ε(S)
] = E[P̄N

−ε(τs1)]E[P̄
∗N
−ε (τs2)1CN

−ε(S)
] = 0,

where P̄ ∗N
−ε (t) = D∗N

−ε,2(t)/A
N
+ε(t)−E[D∗N

−ε,2(t)/A
N
+ε(t)]; note that we used the fact that

EP̄N
−ε(τs1) = 0. On the other hand, the Cauchy-Schwarz inequality renders

(A.65)
∣

∣

∣
E[ΛN

−ε(S)1C̄N
−ε(S)

]
∣

∣

∣
≤
(

E

[

∏

s∈S

(P̄N
−ε(τs))

2

]

P[C̄N
−ε(S)]

)1/2

.

From the bound (A.59), we have

E
∏

s∈S

(P̄N
−ε(τs))

2 ≤ (
√
N/CN)4E

∏

s∈S

(

(ǍN
−ε(τs))

+ + E(ǍN
−ε(τs))

+
)2

≤ (
√
N/CN)4

∏

s∈S

4E((ǍN
−ε(τs))

+)2;

(A.66)
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the second inequality follows from the fact that the random variables ǍN
−ε(τs), s ∈ S,

are i.i.d. and also from the Jensen’s inequality. Note that Lemma A.4 implies

|S2
l | = O((MN)2), as N → ∞. Thus, from (A.35), (A.43), (A.65) and (A.66), it

follows that
∑

S∈S2
l

E[ΛN
−ε(S)1C̄N

−ε(S)
]→ 0,

as N →∞. Putting together (A.57), (A.58), (A.61)–(A.64) and the preceding limit

yields

(A.67) P[BN
ε,δ]→ 0,

as N → ∞. By using the fact that AN
+ε(t)/N → λ, almost surely, as N → ∞

(due to the SLLN), it can be shown that limε↓0 limN→∞MNEPN
−ε(t) = mp̂D (due to

continuity), and combining this with (A.67) renders (A.56) for the case “−ε”. In a

similar manner, one can derive (A.56) for the case “+ε” as well. This concludes the

proof of Lemma A.3.

A.6 Proof of Theorem 2.2

From (2.6), (2.7) and (2.21), it is straightforward to show that the scaled loss

probability p̂NL satisfies

p̂NL = E (DN
d +DN

c − α)+/mN ,

for the ideal block code, and

p̂NL = E
[

DN
d · 1{DN

d +DN
c >α}

]

/mN ,

for a systematic MDS code, where the limiting distributions of DN
d and DN

c are given

in Theorem 2.1. Note that we have

(A.68) (DN
d , D

N
c )⇒ (D(1), 0),
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as N → ∞ (e.g., see [43, Theorem2.7]). From (2.22), the statements (i) and (ii) of

the theorem follow.

For the partial coding scheme, the scaled loss probability can be computed by

combining (2.8) and (2.21):

p̂NL = E
[

DN
d − D̃N

d · 1{D̃N
d +DN

c ≤α}
]

/mN ,

where D̃N
d is the number of dropped packets among ,ρMN- data packets in the coding

part of a block. As in Theorem 2.1, it can be shown that D̃N
d tends to Poisson with

mean ρmp̂D, as N →∞, and, thus, we have (D̃N
d , D

N
c )⇒ (D(ρ), 0), as N →∞ (see

(A.68)). Then, the statement (iii) of the theorem follows from (2.22).

Finally, we consider the coding scheme with overlapping blocks. Lemma 2.1 and

(2.21) yield

p̂NL = 2E[ḊN
d (1− ξN(ḊN

d ))
2]/mN ,

where ξN(0) = 1, ξN(k) = 0, k > α/2, and ξN(k), 1 ≤ k ≤ α/2, satisfies the following

equation:

ξN(k) = P[ḊN
d + ḊN

c ≤ α/2− k]

+
α/2
∑

i=1

ξN(i)P[α/2− k − i < ḊN
c ≤ α/2− k]P[ḊN

d = i];

ḊN
d and ḊN

c are the numbers of dropped packets respectively among M/2 data

packets in a half of a block and among α/2 coded packets generated per each (over-

lapping) block; recall that we only consider even values of MN and α for simplicity.

Now observe that we have

(A.69) E[ḊN
d (1− ξN(ḊN

d ))
2] = EḊN

d −
α/2
∑

k=0

k(1− (1− ξN(k))2)P[ḊN
d = k].

Similarly to Theorem 2.1 and (A.68), we can show that

(A.70) (ḊN
d , Ḋ

N
c )⇒ (D(1/2), 0),
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as N →∞. Moreover, ξN(k)→ ξ(k), k ≥ 0, as N →∞, where ξ(k), k ≥ 0, is given

in the statement of the theorem. Then, the statement (iv) follows by letting N →∞

in (A.69) and by using (A.70). This concludes the proof of the theorem.



118

APPENDIX B

Appendix for Chapter III

B.1 Proof of Theorem 3.1

The proof of the theorem consists of two parts.

Part I. Here we show that

(B.1)
1

α
Xα

1:n(,α2t-)⇒W1:n(t),

as α →∞, for any fixed t ≥ 0, where W1:n(t) is defined in Section 3.4.3. To this end,

consider a bounded, continuous real-valued function h : Rn → R and a fixed t ≥ 0.

The second statements of Corollary 3.2 and Proposition 3.2 yield (e.g., see [13, p. 26])

lim
N→∞

|E∆α
N,n(t)| =

∣

∣

∣

∣

Eh

(

1

α
Xα

1:n(,α2t-)
)

− Eh(W1:n(t))

∣

∣

∣

∣

,

where β1:N = λ−1(0, 1, . . . , N − 1) and

∆α
N,n(t) ≡ h(ϕN,n ◦ ψN (D̂

α
1:N)(t))− h(ϕN,n ◦ ψN (B1:N + β1:N)(t)).

Thus, for the limit (B.1), it suffices to show that (e.g., see [13, p. 26])

(B.2) lim
α→∞

∣

∣

∣

∣

Eh

(

1

α
Xα

1:n(,α2t-)
)

− Eh(W1:n(t))

∣

∣

∣

∣

= lim
α→∞

lim
N→∞

|E∆α
N,n(t)| = 0.

By using the triangular inequality, one obtains

(B.3) |E∆α
N,n(t)| ≤ |E[∆α

N,n(t)1{Θα
n(t) > N}]|+ |E[∆α

N,n(t)1{Θα
n(t) ≤ N}]|,
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where Θα
n(t) ≡ υ̂αn(t) ∨ ωn(t), while the Jensen’s inequality yields

(B.4) |E[∆α
N,n(t)1{Θα

n(t) > N}]| ≤ E[|∆α
N,n(t)|1{Θα

n(t) > N}].

Since the function h is bounded, there exists a finite constant C ≥ 0 such that

(B.5) |h(x1:n)| ≤ C <∞,

for all x1:n ∈ Rn, which further implies |∆α
N,n(t)| ≤ 2C < ∞. Therefore, it is

straightforward that

E[|∆α
N,n(t)|1{Θα

n(t) > N}] ≤ 2CP[Θα
n(t) > N ]

≤ 2C(P[υ̂αn(t) > N ] + P[ωn(t) > N ]).
(B.6)

From (B.4), (B.6) and the first statements of Corollary 3.2 and Proposition 3.2, it

follows that

(B.7) lim
N→∞

|E[∆α
N,n(t)1{Θα

n(t) > N}]| = 0.

From (3.13) and (3.17), it is straightforward that ∆α
N,n(t)1{Θα

n(t) = i} = ∆α
i,n(t)1{Θα

n(t) = i}

holds for 1 ≤ i ≤ N , and, therefore,

(B.8) E[∆α
N,n(t)1{Θα

n(t) ≤ N}] =
N
∑

i=1

E[∆α
i,n(t)1{Θα

n(t) = i}].

Due to (B.5), we have |∆α
i,n(t)| ≤ 2C, and, consequently, |E[∆α

i,n(t)1{Θα
n(t) = i}]| ≤

2C <∞ for all i ∈ N. Then, Fatou’s lemma leads to (e.g., see [12, p. 209])

lim
α→∞

lim
N→∞

N
∑

i=1

E[∆α
i,n(t)1{Θα

n(t) = i}] ≥ lim
N→∞

N
∑

i=1

lim
α→∞

E[∆α
i,n(t)1{Θα

n(t) = i}]

= lim
N→∞

lim
α→∞

N
∑

i=1

E[∆α
i,n(t)1{Θα

n(t) = i}].

(B.9)

Combining (B.8) and (B.9) yields

(B.10) lim
α→∞

lim
N→∞

E[∆α
N,n(t)1{Θα

n(t) ≤ N}] ≥ lim
N→∞

lim
α→∞

E[∆α
N,n(t)1{Θα

n(t) ≤ N}].
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Similarly, it can be shown that

(B.11) lim
α→∞

lim
N→∞

E[∆α
N,n(t)1{Θα

n(t) ≤ N}] ≤ lim
N→∞

lim
α→∞

E[∆α
N,n(t)1{Θα

n(t) ≤ N}].

Note that

(B.12) E[∆α
N,n(t)1{Θα

n(t) ≤ N}] = E∆α
N,n(t)− E[∆α

N,n(t)1{Θα
n(t) > N}].

Corollary 3.3 implies (e.g., see [13, p. 26])

(B.13) lim
α→∞

E∆α
N,n(t) = 0,

and, analogously to (B.7), the first statement of Proposition 3.2 renders

(B.14) lim
N→∞

lim
α→∞

E[∆α
N,n(t)1{Θα

n(t) > N}] = 0.

Combining (B.10)–(B.14) results in

(B.15) lim
α→∞

lim
N→∞

E[∆α
N,n(t)1{Θα

n(t) ≤ N}] = lim
N→∞

lim
α→∞

E[∆α
N,n(t)1{Θα

n(t) ≤ N}] = 0.

Finally, putting together (B.3), (B.7) and (B.15) leads to (B.2). Since the limit (B.2)

holds for any bounded, continuous real-valued function h and any fixed t ≥ 0, the

limit (B.1) follows.

Part II. For any fixed t > 0, we have

lim
k→∞

P[‖X̂
√

k/t
1:n (k)− X̂1:n(k)‖ > ε] = lim

α→∞
P[‖X̂α

1:n(,α2t-)− X̂1:n(,α2t-)‖ > ε].

This and Proposition 3.1 yield

(B.16) lim
t→∞

lim
k→∞

P[‖X̂
√

k/t
1:n (k)− X̂1:n(k)‖ > ε] = 0.

The limit (B.1) derived in Part I implies, as k →∞,

(B.17) X̂
√

k/t
1:n (k)⇒ 1√

t
W1:n(t).

The statement of the theorem follows from (3.16), (B.16) and (B.17) (see [13, The-

orem 3.2]).
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B.2 Proof of Proposition 3.1

Since the expected value of the stationary inter-departure time is equal to the

reciprocal of the throughput, we have

(B.18) EX̂1(k) =
1√
kθk

,

where θk denotes the throughput at node k in the original system. Theorem 1 in [35]

states that the maximum throughput θ∗k in the linear k-node network with unit-mean

exponential service times satisfies
√
kθ∗k → 1/

√
π, as k →∞. Thus, from θk ≤ θ∗k, it

follows that

(B.19) lim
k→∞

EX̂1(k) ≥
√
π.

Similarly to (B.18), we have

(B.20) EX̂α
1 (k) =

1√
kθαk

,

where θαk is the throughput of the altered k-node linear network in which the input

process is produced by thinning the original arrival process by a factor of α > 1. The

following lemma characterizes θαk .

Lemma B.1. We have

lim
t→∞

lim
α→∞

√

,α2t-θα'α2t) =
1√
π
.

Proof. See Appendix B.2.1

If the original and altered systems are coupled as stated in Section 3.4.1, the

inter-departure times at node k of the two systems, given in (3.2) and (3.3), satisfy

the following property.
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Lemma B.2. For n, k ∈ N, we have

n
∑

i=1

Xi(k) ≤
n
∑

i=1

Xα
i (k).

Proof. See Appendix B.2.2

Now we complete the proof of the proposition. Using the triangular inequality,

one obtains

|Xα
i (k)−Xi(k)| ≤

∣

∣

∣

∣

∣

i
∑

j=1

(Xα
j (k)−Xj(k))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

i−1
∑

j=1

(Xα
j (k)−Xj(k))

∣

∣

∣

∣

∣

,

for 2 ≤ i ≤ n. From Lemma B.2 and the preceding inequality, it is not difficult to

see that

n
⋂

i=1

{

i
∑

j=1

(Xα
j (k)−Xj(k)) ≤ ε/2

}

⊆ {‖Xα
1:n(k)−X1:n(k)‖ ≤ ε},

for any ε > 0. By the union bound and Markov’s inequality, the preceding relation

results in

P[‖X̂α
1:n(,α2t-)− X̂1:n(,α2t-)‖ > ε] ≤ 2ε−1

n
∑

i=1

i
∑

j=1

(EX̂α
j (,α2t-)− EX̂j(,α2t-)).

(B.21)

Lemma B.1 and (B.20) yield

(B.22) lim
t→∞

lim
α→∞

EX̂α
1 (,α2t-) = lim

t→∞
lim
α→∞

1
√

,α2t-θ〈α〉'α2t)

=
√
π.

The limit (B.19) implies

(B.23) lim
t→∞

lim
α→∞

EX̂1(,α2t-) ≥
√
π.

Since we have EX̂1(k) ≤ EX̂α
1 (k) for any k ∈ N from Lemma B.2, combining (B.21)–

(B.23) renders the statement of the proposition.
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B.2.1 Proof of Lemma B.1

Observe that the throughput θαk can be obtained from the following expression:

(B.24) θαk =
λ

α
ραk ,

where ραk , k ∈ N, is the probability that a given (stationary) customer reaches node k

and successfully completes service in the altered system; λ > 0 is the input arrival rate

(at node 1) in the original system. In view of [35, Lemma 1] (see also [35, Remark 5]),

the probability ραk can be obtained by considering only two customers in the altered

system and evaluating the probability that the later arriving customer does not

displace the earlier arriving customer within the k-node network. Note that as in

[35], later arriving customers are given priority for now; this is feasible since the

throughput results in [35] are insensitive to the customer dropping policy. Without

loss of generality, we consider two customers 1 and 2 arriving at node 1 at times

Aα
1 and Aα

2 , respectively; it is assumed that no new customers are inputted to the

network. Recall that Dα
i (j), i ∈ Z, j ∈ N, denotes the potential departure time of

customer i from node j (see Section 3.4.2). The probability ραk can be represented

by

(B.25) ραk = P

[

inf
1≤j≤k

{Dα
2 (j − 1)−Dα

1 (j)} > 0

]

;

for notational simplicity, we set Dα
2 (0) = Aα

2 . From (3.4), we have

(B.26) Dα
2 (j − 1)−Dα

1 (j) = Aα
2 −Aα

1 − Sα
1 (1) +

j−1
∑

l=1

(Sα
2 (l)− Sα

1 (l + 1)).

The stationarity and ergodicity of the original input process imply (e.g., see [23,

p. 465])

α−1(Aα
2 −Aα

1 ) = α−1(A'α)+1 −A1)→ λ−1 a.s.,
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as α →∞; moreover, it is straightforward that

α−1Sα
1 (1)→ 0 a.s.,

as α → ∞. From (B.26), the preceding two limits and the functional central limit

theorem (e.g., see [45, Section 4.3]) yield

(B.27) {α−1(Dα
2 (,α2t- − 1)−Dα

1 (,α2t-)), t ≥ 0} ⇒ {λ−1 +
√
2B(t), t ≥ 0},

in (D, J1), as α →∞, where {B(t), t ≥ 0} is a standard one-dimensional Brownian

motion. For α > 1 and t > 0, we have

inf
1≤j≤'α2t)

{Dα
2 (j − 1)−Dα

1 (j)} = inf
α−2≤s≤t

{(Dα
2 (,α2s- − 1)−Dα

1 (,α2s-))}.

From (B.25), (B.27) and the preceding equality, one obtains (e.g., see [45, Sec-

tion 14.3] and [13, p. 26])

(B.28) lim
α→∞

ρα'α2t) = P

[

inf
0<s≤t

B(s) > − 1√
2λ

]

=

√

2

π

∫ 1/(
√
2tλ)

0

e−s2/2ds;

the second equality stems from the reflection principle and the strong Markov prop-

erty of the Brownian motion (e.g., see [30, Section 2.6]). Since the following inequality

holds

λ−1e−1/(4tλ2) ≤
√
2t

∫ 1/(
√
2tλ)

0

e−s2/2ds ≤ λ−1,

it follows from (B.28) that

lim
t→∞

lim
α→∞

√
tρα'α2t) =

1√
πλ

.

Finally, the preceding limit, together with (B.24) and (B.25), renders the statement

of the lemma.
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B.2.2 Proof of Lemma B.2

Consider two single server queues (denoted by queue 1 and 2, respectively) with

no waiting rooms. Let Ai ≡ {Ai,j}j∈N and Di ≡ {Di,j}j∈N, i = 1, 2, be the (strictly)

increasing sequences of arrival and departure times at queue i, respectively; and let

Qi(t), t ≥ 0, i = 1, 2, be the number of customers in queue i at time t. The input

processes are assumed to start at time t = 0 (i.e., Ai,1 ≥ 0 for i = 1, 2), and arrival

times are independent of service times. Suppose that service completion times of the

queues are coupled, i.e., whenever a customer departs from one queue, a customer (if

present) also departs from the other queue. The following lemma provides a relation

between the departure processes of the coupled queues.

Lemma B.3. If A1 ⊆ A2 and Q1(0) = Q2(0), then D1 ⊆ D2.

Proof. Since the service completion times are coupled, the statement Q1(t) ≤ Q2(t)

for all t ≥ 0 implies the statement of the lemma. Note that the value of right-

continuous {Qi(t), t ≥ 0}, i = 1, 2, changes only when a customer arrives to or

departs from queue i. Thus, it is sufficient to show that Q1(t) ≤ Q2(t) for t ∈

A1 ∪A2 ∪D1 ∪D2.

The rest of the proof is based on induction. First, we construct an increasing

sequence {ti}i∈N from all the elements in A1 ∪ A2 ∪ D1 ∪ D2; we set t0 = 0 for the

base of the induction. For each i ≥ 0, suppose that Q1(t) ≤ Q2(t) for 0 ≤ t ≤ ti;

this accordingly implies Q1(t) ≤ Q2(t) for 0 ≤ t < ti+1. Next, in order to show

that Q1(ti+1) ≤ Q2(ti+1), we consider the following three (disjoint) cases: (i) ti+1 ∈

A1 ∪ A2 = A2, (ii) ti+1 ∈ D1, and (iii) ti ∈ D2 \ D1. No other cases are relevant

because of the assumptions of the lemma. In the case (i), the assumption A1 ⊆ A2

yields Q2(ti+1) = 1 ≥ Q1(ti+1). In the cases (ii) and (iii), we have Q1(ti+1−) =
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Q2(ti+1−) = 1 and Q1(ti+1−) = 0, Q2(ti+1−) = 1, respectively, and, in both cases,

the queues become empty at time ti+1 (i.e., Q1(ti+1) = Q2(ti+1) = 0). By combining

these results, it follows that Q1(t) ≤ Q2(t) for 0 ≤ t ≤ ti+1. Finally, by induction,

the statement of the lemma holds.

Next, we present the proof of Lemma B.2.

Proof of Lemma B.2. Recall that the altered input process is produced by thinning

the original process by a factor of α > 1:

(B.29) {Aα
i }i∈N = {A'α(i−1))+1}i∈N ⊆ {Ai}i∈N.

Let Qj(t) and Qα
j (t), 1 ≤ j ≤ k, t ≥ 0, be the numbers of customers at node j at

time t in the original and altered systems, respectively. Under the assumption that

customer 1 has the highest priority over all other customers, customers with indices

i < 1 play no role on determining the departure times of customers with indices

i ≥ 1. Hence, just for now, we suppose that no customers arrive before customer 1,

and this implies Qj(0) = Qα
j (0) for all 1 ≤ j ≤ k. Recall that service completion

times at the nodes with the same indices of the original and altered systems are

coupled. Then, (B.29) and Lemma B.3 recursively yield

(B.30) {dαi (j)}i∈N ⊆ {di(j)}i∈N,

for all 1 ≤ j ≤ k; moreover, note that dα1 (j) = d1(j) for all 1 ≤ j ≤ k. The statement

of the lemma follows from (3.2), (3.3) and (B.30).

B.3 Proof of Lemma 3.2

We first provide a technical lemma for proving Lemma 3.2.

Lemma B.4. For α > 1 and c > 0, we have P[Aα
N − Aα

1 < c]→ 0, as N →∞.
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Proof. Under the assumption that the arrival process at node 1 is stationary and

ergodic, we have (e.g., see [23, p. 465])

Aα
N −Aα

1

N − 1
→ αλ−1 a.s.,

as N →∞, which implies (e.g., see [12, p. 330])

(B.31) P

[∣

∣

∣

∣

Aα
N − Aα

1

N − 1
− αλ−1

∣

∣

∣

∣

> ε

]

→ 0,

as N →∞, for any ε > 0. If 0 < ε < αλ−1, then

(B.32) P[Aα
N −Aα

1 < c] ≤ P

[∣

∣

∣

∣

Aα
N −Aα

1

N − 1
− αλ−1

∣

∣

∣

∣

> ε

]

,

for all N ≥ c/(αλ−1− ε) + 1. Thus, the statement of the lemma follows from (B.31)

and (B.32).

Next we present the proof of Lemma 3.2.

Proof of Lemma 3.2. Since we have υαn1
(t) ≤ υαn2

(t) for n1 ≤ n2, it is straightforward

from (3.10) that

(B.33) P[υαn(t) > N ] = P[νN (C
α
1:N(t)) < n],

where Cα
1:N = ψN (Dα

1:N). For some x1:N ∈ RN
"

and 1 ≤ a < b ≤ N , if xa < xb, then

there must exist at least one a+ 1 ≤ i ≤ b such that xi − xi−1 > 0. Hence, we have

(B.34) {x1:N ∈ R
N
"
: x'(i−1)N/n)+1 < x'iN/n), 1 ≤ i ≤ n}

⊆ {x1:N ∈ R
N
"
: νN (x1:N) ≥ n}.

From (B.33) and (B.34), one obtains

P[υαn(t) > N ] = 1− P[νN (C
α
1:N(t)) ≥ n]

≤ 1− P

[

Cα
1:N(t) ∈

⋂

1≤i≤n

Si
N,n

]

= P

[

Cα
1:N(t) ∈

⋃

1≤i≤n

S̄i
N,n

]

,
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where Si
N,n = {x1:N ∈ RN

"
: x'(i−1)N/n)+1 < x'iN/n)}. The union bound further yields

(B.35) P[υαn(t) > N ] ≤
n
∑

i=1

P[Cα
1:N(t) ∈ S̄i

N,n] =
n
∑

i=1

P[Γα,i
N,n(t) = 0],

where Γα,i
N,n(t) ≡ Cα

'iN/n)(t) − Cα
'(i−1)N/n)+1(t) ≥ 0. For 1 ≤ i ≤ n and any c > 0, we

have

(B.36) P[Γα,i
N,n(t) = 0] ≤ P[Γα,i

N,n(t) = 0, Γα,i
N,n(0) ≥ c] + P[Γα,i

N,n(0) < c].

It is not difficult to derive

P[Γα,i
N,n(t) = 0, Γα,i

N,n(0) ≥ c] ≤ P[Γα,i
N,n(0)− Γα,i

N,n(t) ≥ c]

≤ P[Cα
'(i−1)N/n)+1(t)− Cα

'(i−1)N/n)+1(0) ≥ c];

(B.37)

we used the fact that Cα
'iN/n)(t)−Cα

'iN/n)(0) ≥ 0 when deriving the second inequality.

Note that the Markov’s inequality yields

(B.38) P[Cα
'(i−1)N/n)+1(t)− Cα

'(i−1)N/n)+1(0) ≥ c]

≤ c−1
E[Cα

'(i−1)N/n)+1(t)− Cα
'(i−1)N/n)+1(0)].

Recall that if some customer i is displaced from the network by some customer j at

node l, then the coalesced departure time of customer i at node l is set to be equal to

the departure time of customer j at node l. Since service times are i.i.d. exponential

with unit mean and the exponential distribution has the memoryless property, the

remaining service time of customer j at node l is also exponential with unit mean,

i.e., it is equal in distribution of the service time of customer i at node l. Thus, the

following holds for any j ∈ N:

Cα
'(i−1)N/n)+1(j)

d
= Cα

'(i−1)N/n)+1(j − 1) + Sα
'(i−1)N/n)+1(j).

By using the preceding equality, one obtains

(B.39) E[Cα
'(i−1)N/n)+1(t)− Cα

'(i−1)N/n)+1(0)] = ,t-,
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and combining (B.37)–(B.39) renders

(B.40) P[Γα,i
N,n(t) = 0, Γα,i

N,n(0) ≥ c] ≤ c−1t.

On the other hand, Lemma B.4 implies

(B.41) P[Γα,i
N,n(0) < c] = P[Aα

'iN/n) − Aα
'(i−1)N/n)+1 < c]→ 0,

as N →∞. Putting together (B.35), (B.36), (B.40) and (B.41) yields

lim
N→∞

P[υαn(T ) > N ] ≤ nc−1t,

and, since this holds for any c > 0, taking c → ∞ renders the statement of the

lemma.

B.4 Proof of Lemma 3.3

By the definition of υαn(t) (see (3.10)), all elements of ϕυαn (t),n◦ψυαn (t)(D
α
1:υαn(t)

)(t) are

strictly positive. Thus, for fixed t ≥ 0, it consists of n consecutive stationary inter-

departure times at node ,t-; recall that the arrival process at node 1 is stationary

(see Section 3.4.1), and, therefore, departure processes at the following nodes are

also in stationarity. Hence, we have

(B.42) ϕυαn(t),n ◦ ψυαn (t)(D
α
1:υαn (t)

)(t)
d
= Xα

1:n(,t-).

Due to (3.11), the following holds for any ε > 0:

P[|ϕN,n ◦ ψN(D
α
1:N)(t)− ϕυαn (t),n ◦ ψυαn (t)(D

α
1:υαn(t)

)(t)| > ε] ≤ P[υαn(t) > N ].

This and Lemma 3.2 further imply

(B.43) ϕN,n ◦ ψN (D
α
1:N)(t)

P−→ ϕυαn(t),n ◦ ψυαn (t)(D
α
1:υαn (t)

)(t),

as N → ∞. From (B.42) and (B.43), the statement of the lemma follows (e.g., see

[12, p. 330]).
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B.5 Proof of Lemma 3.4

For n ∈ N, consider a subset of Cn defined as

An ! {x1:n ∈ Cn : x1:n satisfies (A1), (A2) and (A3)},

where (A1), (A2) and (A3) are given by

(A1) x1:n(0) ∈ Rn
"
.

(A2) τ(xi,xj), 1 ≤ i < j ≤ n, have finite distinct values.

(A3) For 1 ≤ i < j ≤ n, given any ε > 0, there exist ε′, ε′′ ∈ (0, ε) such that (see [14])

xi(τ(xi,xj)+ε′) > xj(τ(xi,xj)+ε′) and xi(τ(xi,xj)+ε′′) < xj(τ(xi,xj)+ε′′).

Lemma B.5. The composite operator ϕN,n ◦ ψn : (DN , J1)→ (Dn, J1), N, n ∈ N, is

continuous at all x1:N ∈ AN .

Proof. See Appendix B.5.1

It is straightforward that B1:N +β1:N satisfies (A1) since β1:N = λ−1(0, 1, . . . , N−

1) ∈ RN
"
. The operator τ yields the first hitting time of the two (argument) processes.

The first hitting time of two processes can be thought of the first time instance at

which the difference becomes zero. If Bi and Bj are i.i.d. standard one-dimensional

Brownian motions, the difference Bi−Bj is also a one-dimensional Brownian motion.

One-dimensional Brownian motions are recurrent, i.e., they keep returning to zero

within arbitrary large times t <∞. Thus, τ(Bi+βi,Bj+βj), 1 ≤ i < j ≤ N , are all

finite. Moreover, they are all distinct since the Brownian motion in two dimensions is

not point recurrent, i.e., the two-dimensional Brownian motion never returns to the

origin. Hence, B1:N +β1:N satisfies (A2) a.s. (e.g., see [31, Section 8.5]). In addition,
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a standard one-dimensional Brownian motion changes sign infinitely many times in

any time-interval [0, ε], ε > 0, with probability one (see [30, p. 94, Problem 7.18]),

and, thus, B1:N + β1:N also satisfies (A3) a.s.. Finally, note that Brownian motion is

a continuous process. To summarize, we have

(B.44) P[B1:N + β1:N ∈ AN ] = 1.

The stationarity and ergodicity of the original input process imply (e.g., see [23,

p. 465])

α−1Aα
i = α−1(A'α(i−1))+1 − A1)→ λ−1(i− 1) a.s.,

as α →∞, for all i ∈ N; recall that we set Aα
1 = A1 = 0. Therefore, it follows that

α−1Aα
1:N → λ−1(0, 1, . . . , N − 1) a.s.

From (3.6) and the preceding limit, the functional central limit theorem yields (e.g.,

see [45, Section 4.3])

(B.45) D̂α
1:N ⇒ B1:N + β1:N ,

as α →∞, where β1:N = λ−1(0, 1, . . . , N − 1). From (B.44), (B.45), Lemma B.5 and

the continuous-mapping theorem (e.g., see [45, p. 86]), the statement of the lemma

follows.

B.5.1 Proof of Lemma B.5

Lemma B.6. For N, n ∈ N and x1:N ∈ AN , we have

Disc(ϕN,n ◦ ψN (x1:N)) ⊆ {τ(xi,xj), 1 ≤ i < j ≤ N}.

Proof. The proof is based on induction. It is straightforward that

(B.46) ϕ1:n ◦ ψ1(x) = ϕ1:n(x) = 01:n,
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for any x ∈ D1 and all n ∈ N, where 01:n ≡ {01:n(t) = (0, 0, . . . , 0), t ≥ 0}. Thus,

it is trivial that Disc(ϕ1:n ◦ ψ1(x)) = ∅, and the statement of the lemma holds for

N = 1 and all n ∈ N. As an inductive hypothesis, assume that the statement

of the lemma is true for N = l ∈ N and all n ∈ N. For some x1:l+1 ∈ Al+1,

let z1:n = ϕl+1,n ◦ ψl+1(x1:l+1). By Definitions 3.3 and 3.6, z1:n ≡ {z1:n(t), t ≥ 0}

satisfies

(B.47) z1:n(t) =



















a1:n(t), 0 ≤ t < τ(x1:2),

b1:n(t), t ≥ τ(x1:2),

where a1:n = (x2−x1, ϕl,n−1◦ψl(x2:l+1)) and b1:n = ϕl,n◦ψl(x1,x3:l+1). Here, observe

that τ(x1:2) can be a discontinuity point of z1:n. Thus, it follows that

Disc(z1:n) ⊆ Disc(a1:n) ∪ Disc(b1:n) ∪ {τ(x1:2)}

= Disc(ϕl,n−1 ◦ ψl(x2:l+1)) ∪ Disc(ϕl,n ◦ ψl(x1,x3:l+1)) ∪ {τ(x1:2)}

⊆ {τ(xi,xj), 1 ≤ i < j ≤ l + 1};

the last relation stems from the inductive hypothesis. Hence, the statement of the

lemma holds for N = l+1 and all n ∈ N, and, by induction, this completes the proof

of the lemma.

Next we present the proof of Lemma B.5.

Proof of Lemma B.5. The proof is based on induction. It is straightforward from

(B.46) that the statement of the lemma is true for N = 1 and all n ∈ N. As an

inductive hypothesis, suppose that the statement of the lemma holds for N = l ∈ N

and all n ∈ N. Now consider N = l + 1. For some x1:l+1 ∈ Al+1, let z1:n =

ϕl+1,n ◦ψl+1(x1:l+1). Note that it is sufficient to show that for any ε > 0, there exists

δ > 0 such that

(B.48) ‖x1:l+1 − x′
1:l+1‖ < δ implies d(z1:n, z

′
1:n) < ε,
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for any x′
1:l+1 ∈ Dl+1, where z′1:n = ϕl+1,n◦ψl+1(x′

1:l+1). Recall that z1:n ≡ {z1:n(t), t ≥

0} is given by (B.47). Then, from the inductive hypothesis, for any ε > 0, there exists

δ > 0 such that

(B.49) ‖x1:l+1 − x′
1:l+1‖ < δ implies d(a1:n, a

′
1:n) ∨ d(b1:n,b

′
1:n) < ε/2,

where a′
1:n = (x′

2 − x′
1, ϕl,n−1 ◦ ψl(x′

2:l+1)) and b′
1:n = ϕl,n ◦ ψl(x′

1,x
′
3:l+1). Now, for

notational simplicity, let τij ≡ τ(xi,xj) and τ ′
ij ≡ τ(x′

i,x
′
j). Since x1:l+1 ∈ Al+1

satisfies (A2), there exists η > 0 such that

(B.50) |τ12 − τij | > η,

for all (i, j) 8= (1, 2), 1 ≤ i < j ≤ l + 1. Due to Lemma B.6, we have τ12 /∈

Disc(a1:n) ∪Disc(b1:n), and this, together with (B.50), results in

(B.51) [τ12 − η, τ12 + η] ∩ (Disc(a1:n) ∪Disc(b1:n)) = ∅.

It is not difficult to see that the operator τ : (D2, J1) → [0,∞] is continuous at any

x1:2 ∈ A2; this further indicates that for any η′ ∈ (0, η ∧ ε),

(B.52) ‖x1:l+1 − x′
1:l+1‖ < δ implies |τ12 − τ ′

12| < η′ < η ∧ ε,

for small enough δ > 0. Consider a function λ : [τ12 − η, τ12 + η]→ [τ12 − η, τ12 + η]

satisfying λ(τ12 ± η) = τ12 ± η and λ(τ ′
12) = τ12 and defined by linear interpolation

elsewhere. Observe from (B.52) that

(B.53) ‖x1:l+1 − x′
1:l+1‖ < δ implies ‖λ− e‖[τ12−η,τ12+η] ≤ |τ12 − τ ′

12| < ε,

for small enough δ > 0, where e ≡ {e(t) = t, t ≥ 0}. From (B.47) and by using the

triangular inequality, one obtains

‖z1:n ◦ λ− z′1:n‖[τ12−η,τ ′12)
= ‖a1:n ◦ λ− a′1:n‖[τ12−η,τ ′12)

≤ ‖a1:n ◦ λ− a1:n‖[τ12−η,τ ′12)
+ ‖a1:n − a′1:n‖[τ12−η,τ ′12)

,

(B.54)
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where ‖f‖S ≡ supt∈S ‖f(t)‖ is the uniform norm for a function f defined on a set

S ⊆ [0,∞). Similarly, it can be shown that

(B.55) ‖z1:n ◦ λ− z′1:n‖[τ ′12,τ12+η] ≤ ‖b1:n ◦ λ− b1:n‖[τ ′12,τ12+η] + ‖b1:n − b′1:n‖[τ ′12,τ12+η],

Note that a1:n and b1:n are continuous at all t ∈ [τ12 − η, τ12 + η] due to (B.51).

Hence, it follows from (B.53) that

(B.56) ‖x1:l+1 − x′
1:l+1‖ < δ implies

‖a1:n ◦ λ− a1:n‖[τ12−η,τ ′12)
∨ ‖b1:n ◦ λ− b1:n‖[τ ′12,τ12+η] < ε/2,

for small enough δ > 0. Furthermore, from (B.49) and by using the fact that the con-

vergence in J1 topology to a continuous limit is equivalent to the uniform convergence

(e.g., see [13, p. 157-158]), we have

(B.57) ‖x1:l+1 − x′
1:l+1‖ < δ implies

‖a1:n − a′1:n‖[τ12−η,τ ′12)
∨ ‖b1:n − b′1:n‖[τ ′,τ12+η] < ε/2,

for small enough δ > 0. Combining (B.54)–(B.57) results in

‖x1:l+1 − x′
1:l+1‖ < δ implies ‖z1:n ◦ λ− z′1:n‖[τ12−η,τ12+η] < ε,

for small enough δ > 0, and this, together with (B.53), leads to

(B.58) ‖x1:l+1 − x′
1:l+1‖ < δ implies d[τ12−η,τ12+η](z1:n, z

′
1:n) < ε,

for small enough δ > 0; note that τ12± η /∈ Disc(z1:n) due to (B.50) and Lemma B.6.

From (B.47) and (B.49), we have

(B.59) ‖x1:l+1 − x′
1:l+1‖ < δ implies

d[0,τ12−η](z1:n, z
′
1:n) ∨ d[τ12+η,∞)(z1:n, z

′
1:n) < ε/2,

for small enough δ > 0. Finally, the statement (B.48) follows from (B.58) and (B.59)

(e.g., see [13, p. 168-169]). This completes the proof of the lemma.



135

B.6 Proof of Proposition 3.2

By definition (Section 3.4.2), we have

P[υ̂αn(t) > N ] = P[(ϕN,n ◦ ψN(D̂
α
1:N))n(t) = 0],

and

P[ωn(t) > N ] = P[(ϕN,n ◦ ψN (B1:N + β1:N))n(t) = 0],

where β1:N = λ−1(0, 1, . . . , N − 1). It follows from the preceding equalities and

Corollary 3.3 that (e.g., see [13, p. 26])

(B.60) lim
α→∞

P[υ̂αn(t) > N ] ≤ P[ωn(t) > N ],

for fixed n,N ∈ N and t ≥ 0. Let C1:N = ψN (B1:N + β1:N ). Similarly to (B.35), we

have

(B.61) P[ωn(t) > N ] ≤
n
∑

i=1

P[Λi
N,n(t) = 0],

where Λi
N,n(t) ≡ C'iN/n)(t)− C'(i−1)N/n)+1(t) ≥ 0. Observe that

(B.62) {Λi
N,n(t) = 0} =

{

inf
0≤s≤t

{C'iN/n)(s)− C'(i−1)N/n)+1(s)} = 0

}

.

By definition, it is not difficult to see that each Ci for 1 ≤ i ≤ N is continuous

at all t ≥ 0 and peicewisely equal to one of Bi + βi, 1 ≤ i ≤ N . For any two

integers a and b such that 1 ≤ a < b ≤ N , we have Ca(s) = (ψa(B1:a + β1:a))a(s)

and Cb(s) = (ψb−a(Ba+1:b + βa+1:b))b(s) for 0 ≤ s ≤ τ(Ca,Cb), which implies that

Ca and Cb are not related before they meet. Then, by the strong Markov property

of Brownian motion, one can see that Ca and Cb perform independent standard

one-dimensional Brownian motions before they meet. Hence, by using the reflection

principle and the strong Markov property of Brownian motion, (B.62) renders (e.g.,
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see [30, Section 2.6])

(B.63) P[Λi
N,n(t) = 0] =

√

2

π
E

∫ ∞

Λi
N,n(0)/

√
2t

e−s2/2ds.

For any c > 0, the following bound holds:

(B.64)

√

2

π
E

∫ ∞

Λi
N,n(0)/

√
2t

e−s2/2ds ≤
√

2

π

∫ ∞

c/
√
2t

e−s2/2ds+ P[Λi
N,n(0) < c].

Since we have β1:N = λ−1(0, 1, . . . , N − 1) for any N ∈ N, it is trivial that

(B.65) P[Λi
N,n(0) < c] = P[β'iN/n) − β'(i−1)N/n)+1 < c]→ 0,

as N →∞. From (B.63)–(B.65), it follows that

lim
N→∞

P[Λi
N,n(0) = 0] ≤

√

2

π

∫ ∞

c/
√
2t

e−s2/2ds.

The preceding inequality holds for any c > 0, and taking c→∞ renders P[Λi
N,n(0) ≤

0] → 0, as N → ∞. From (B.60), (B.61) and this limit, the first statement of the

proposition follows.

In view of Remark 3.5 and similarly to (B.42), we have

(B.66) ϕωn(t),n ◦ ψωn(t)(B1:ωn(t) + β1:ωn(t))(t)
d
= W1:n(t).

Moreover, analogously to (B.43), it can be shown that

(B.67) ϕN,n ◦ ψN(B1:N + β1:N)(t)
P−→ ϕωn(t),n ◦ ψωn(t)(B1:ωn(t) + β1:ωn(t))(t),

as N →∞. The second statement of the proposition follows from (B.66) and (B.67).
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B.7 Summary of key notations

X1:n(k) Theorem 3.1 Xα
1:n(k) Section 3.4.1 Dα

i (t) Section 3.4.2

X̂1:n(k) Theorem 3.1 X̂α
1:n(k) Proposition 3.1 D̂α

i (t) Section 3.4.2

Ai Section 3.4.1 Aα
i Section 3.4.1 Sα

i (j) Section 3.4.2

di(j) Section 3.4.1 dαi (j) Section 3.4.1 Cα
i (t) Section 3.4.2

θk Section B.2 θαk Section B.2 υαn(t) Section 3.4.2

λ Section 3.4.1 Z1:n Theorem 3.1 υ̂αn(t) Section 3.4.2

β1:n Lemma 3.4 W1:n(t) Section 3.4.3 ωn(t) Section 3.4.3

Hn Definition 3.1 τ Definition 3.2 ψn Definition 3.3

νN Definition 3.4 φN,n Definition 3.5 ϕN,n Definition 3.6
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APPENDIX C

Appendix for Chapter IV

C.1 Proof of Lemma 4.1

We first provide two technical lemmas. Lemma C.1 is straightforward from the

definition of Vn
m.

Lemma C.1. For m,n ∈ N, we have

|Vn
m| =

(

m+ n− 2

n− 1

)

.

The following lemma provides a relation between the expected first hitting times

for the random walks with different starting points. Let x1:n ≤ y1:n stand for xi ≤ yi

for all 1 ≤ i ≤ n.

Lemma C.2. For x1:n, y1:n ∈ Wn, if x1:n ≤ y1:n, then

E[τ01:n |X1:n(0) = x1:n] ≤ E[τ01:n |X1:n(0) = y1:n].

Proof. It is sufficient to show that if x1:n ≤ y1:n then

(C.1) P[τ01:n ≤ s|X1:n(0) = x1:n] ≥ P[τ01:n ≤ s|X1:n(0) = y1:n],

for all s ≥ 0. The following proof is based on induction. For notational simplicity,

let

Px1:n(s) ≡ P[τ01:n ≤ s|X1:n(0) = x1:n].



139

It is trivial that

Px1:n(0) = 1{x1:n = 01:n},

and, thus, (C.1) is true for s = 0. As an inductive hypothesis, suppose that (C.1)

holds for any s ≥ 0 and all x1:n, y1:n ∈ Wn satisfying x1:n ≤ y1:n. For x1:n ∈ Wn, one

obtains from (4.1) that

(C.2) Px1:n(s+ 1) =
1

n+ 1− ρ

n
∑

i=1

Πi
x1:n

(s) +
1− ρ

n + 1− ρ
Px1:n+11:n(s),

where x0 ≡ 0 and

Πi
x1:n

(s) ≡ 1{xi > xi−1}Px1:n−ei1:n
(s) + 1{xi = xi−1}Px1:n(s).

Now consider any x1:n, y1:n ∈ Wn such that x1:n ≤ y1:n. It is straightforward that

x1:n + 11:n ≤ y1:n + 11:n, and, then, the inductive hypothesis yields

(C.3) Px1:n+11:n(s) ≥ Py1:n+11:n(s).

Furthermore, if xi > xi−1 and yi > yi−1, then the inductive hypothesis renders

(C.4) Πi
x1:n

(s) = Px1:n−ei1:n
(s) ≥ Py1:n−ei1:n

(s) = Πi
y1:n(s).

Similarly, if xi = xi−1 and yi = yi−1, then

(C.5) Πi
x1:n

(s) = Px1:n(s) ≥ Py1:n(s) = Πi
y1:n(s),

and if xi > xi−1 and yi = yi−1, then

(C.6) Πi
x1:n

(s) = Px1:n−ei1:n
(s) ≥ Px1:n(s) ≥ Py1:n(s) = Πi

y1:n(s).

If xi = xi−1 and yi > yi−1, then yi > yi−1 ≥ xi−1 = xi; this further implies x1:n+ei1:n ≤

y1:n. Thus, in this case, the inductive hypothesis results in

(C.7) Πi
x1:n

(s) = Px1:n(s) ≥ Px1:n+ei1:n
(s) ≥ Py1:n(s) = Πi

y1:n(s).
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Combining (C.2)–(C.7) yields

Px1:n(s+ 1) ≥ Py1:n(s+ 1).

Finally, by induction, we show that (C.1) holds for all s ≥ 0, and this completes the

proof of the lemma.

Now we present the proof of Lemma 4.1.

Proof of Lemma 4.1. By definition (see (4.3)), it is trivial that

(C.8) E[τ01:n |X1:n(0) = 01:n] = 0.

Let γ01:n be the first return time to the origin, i.e.,

γ01:n = inf{i ≥ 1 : X1:n(i) = 01:n};

note the difference between γ01:n and τ01:n (see (4.3)). By using the first-step analysis

(e.g., see [15, p. 65-70]), it follows from (4.1) that

E[γ01:n |X1:n(0) = 01:n] =
1− ρ

n+ 1− ρ
E[τ01:n |X1:n(0) = 11:n] + 1;

Moreover, note from (4.2) that (e.g., see [15, p. 104-105])

E[γ01:n |X1:n(0) = 01:n] = π−1
01:n = ρ−n.

The preceding two equalities yield

(C.9) E[τ01:n |X1:n(0) = 11:n] =
(n+ 1− ρ)(1− ρn)

ρn(1− ρ)
.

For notational simplicity, let

(C.10) Tx1:n ≡ E[τ01:n |X1:n(0) = x1:n],
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for x1:n ∈ Wn; Tx1:n ≡ 0 if x1:n /∈ Wn. For any x1:n ∈ Wn, one obtains from (4.2)

that

(C.11) Tx1:n =
1

n+ 1− ρ

n
∑

i=1

1{xi > xi−1}Tx1:n−ei1:n

+
1

n+ 1− ρ

n
∑

i=1

1{xi = xi−1}Tx1:n +
1− ρ

n+ 1− ρ
Tx1:n+11:n + 1,

where x0 ≡ 0. For notational simplicity, let

Ξn
m ≡

∑

x1:n∈Wn
m

Tx1:n ,

Σn
m ≡

∑

x1:n∈Wn
m

Tx1:n+11:n,

An
m(i) ≡

∑

x1:n∈Wn
m

1{xi > xi−1}Tx1:n−ei1:n
,

Bn
m(i) ≡

∑

x1:n∈Wn
m

1{xi = xi−1}Tx1:n ,

where

Wn
m ≡ {x1:n ∈ Z

n : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn = m}.

For m ≥ 0, by definition, it is straightforward that

(C.12) |Wn
m| = |Vn

m+1|;

furthermore, we have

(C.13)
Σn

m

|Wn
m|

=
1

|Vn
m+1|

∑

x1:n∈Vn
m+1

Tx1:n,

which is of interest to us in this lemma. For each 1 ≤ i ≤ n− 1, one obtains

Ξn
m = An

m(i) +Bn
m(i+ 1).

Summing Tx1:n in (C.11) for all x1:n ∈ Wn
m and using the preceding equality render

(C.14) (2− ρ)Ξn
m = An

m(n) +Bn
m(0) + (1− ρ)Σn

m + (n+ 1− ρ)|Wn
m|.
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It is not difficult to see that

(C.15) An
m(n) = Ξn

m−1 and Bn
m(0) = Ξn

m − Σn
m−1.

Combining (C.14) and (C.15) results in

Σn
m − Ξn

m =
Σn

m−1 − Ξn
m−1

1− ρ
− n+ 1− ρ

1− ρ
|Wn

m|.

Since the preceding equality holds for all m ∈ N, it can be shown that

Σn
m − Ξn

m =
T11:n − T01:n

(1− ρ)m
−

m
∑

j=1

n + 1− ρ

(1− ρ)m+1−j
|Wn

j |;

note that we used the fact that Σn
0 − Ξn

0 = T11:n − T01:n . It follows from (C.8), (C.9)

and the preceding equality that

Σn
m − Ξn

m =
(n+ 1− ρ)(1− ρn)

ρn(1− ρ)m+1
−

m
∑

j=1

n + 1− ρ

(1− ρ)m+1−j
|Wn

j |

=
n+ 1− ρ

(1− ρ)m+1

(

1

ρn
−

m
∑

j=0

(

j + n− 1

n− 1

)

(1− ρ)j
)

=
∞
∑

j=m+1

(

j + n− 1

n− 1

)

n + 1− ρ

(1− ρ)m+1−j
;

(C.16)

we used (C.12) and Lemma C.1 in deriving the second equality and the third equality

stems from

(C.17)
1

ρn
=

∞
∑

j=0

(

j + n− 1

n− 1

)

(1− ρ)j.

Lemma C.2 implies

(C.18)
1

|Wn
m|

Ξn
m ≤ 1

|Wn
m−1|

Σn
m−1.

From (C.16) and (C.18), we have

Σn
m

|Wn
m|
−

Σn
m−1

|Wn
m−1|

≤
∞
∑

j=m+1

(

j+n−1
n−1

)

|Wn
m|

n + 1− ρ

(1− ρ)m+1−j
,
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and, since this holds for all m ∈ N, it follows that

Σn
m

|Wn
m|
≤

m
∑

i=1

∞
∑

j=i+1

(

j+n−1
n−1

)

|Wn
i |

n + 1− ρ

(1− ρ)i+1−j
+ T11:n

=
m
∑

i=0

∞
∑

j=i+1

(

j+n−1
n−1

)

(

i+n−1
n−1

)

n+ 1− ρ

(1− ρ)i+1−j

= (n+ 1− ρ)
m
∑

i=0

∞
∑

j=0

(

i+j+n
n−1

)

(

i+n−1
n−1

)(1− ρ)j ;

(C.19)

in deriving the first equality, we used (C.12), Lemma C.1 and the fact that (see (C.9)

and (C.17))

T11:n =
∞
∑

j=1

(

j + n− 1

n− 1

)

n+ 1− ρ

(1− ρ)1−j
.

Note that
(

i+j+n
n−1

)

(

i+n−1
n−1

) =
n−2
∏

l=0

i+ j + n− l

i+ n− 1− l

=
n−2
∏

l=0

(

1 +
j + 1

i+ n− 1− l

)

≤
(

1 +
j + 1

i+ 1

)n−1

.

(C.20)

From (C.19) and (C.20), it is straightforward that

Σn
m

|Wn
m|
≤ (n + 1− ρ)

m
∑

i=0

∞
∑

j=0

(

1 +
j + 1

i+ 1

)n−1

(1− ρ)j

= (n+ 1− ρ)
m
∑

i=0

n−1
∑

l=0

(

n− 1

l

)

1

(i+ 1)l
Ml(ρ),

(C.21)

where Ml(ρ) ≡
∑∞

j=0(j + 1)l(1− ρ)j , which satisfies

(C.22) Ml(ρ) ≤ l!
∞
∑

j=0

(

j + l

l

)

(1− ρ)j =
l!

ρl+1
;

the preceding inequality stems from (C.17). Combining (C.21) and (C.22) yields

(C.23)
Σn

m

|Wn
m|
≤ (n+ 1− ρ)

m
∑

i=0

n−1
∑

l=0

(

n− 1

l

)

1

(i+ 1)l
l!

ρl+1
,

and, then, the statement of the lemma follows from (C.13) and (C.23). This com-

pletes the proof of the lemma.
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C.2 Proof of Lemma 4.2

It is straightforward from (A1) and (A2) that

Eτ01:n =
∞
∑

m=1

1

|Vn
m|

∑

x1:n∈Vn
m

Tx1:nP[Xn(0) = m];

recall that Tx1:n is defined in (C.10). Combining (4.5), the preceding equality and

Lemma 4.1 yields

(C.24) Eξ(τ01:n) ≤
∞
∑

m=1

m
∑

i=1

n
∑

j=1

(

n− 1

j − 1

)

(j − 1)!

ij−1

1

ρj
P[Xn(0) = m].

Note that

(C.25)
m
∑

i=1

1

i
≤ 1 +

∫ m

1

1

x
dx = 1 + logm.

Similarly, for j ≥ 3, we have

(C.26)
m
∑

i=1

1

ij−1
≤ 1 +

∫ m

1

1

xj−1
dx ≤ 1 +

∫ ∞

1

1

xj−1
dx = 1 +

1

j − 2
.

From (C.24)–(C.26), it follows that, for n ≥ 2,

Eξ(τ01:n) ≤
1

ρ
EXn(0) +

n− 1

ρ2
(1 + E logXn(0)) +

n
∑

j=3

(

n− 1

j − 1

)

(j − 1)!
j − 1

j − 2

1

ρj
.

For n = 2, one obtains

(C.27)
ρ2

log ρ−1
Eξ(τ01:2) ≤

ρ

log ρ−1
EX2(0) +

1

log ρ−1
(1 + logEX2(0));

note that we used the fact that E logXn(0) ≤ logEXn(0), which follows from Jensen’s

inequality. Similarly, for n ≥ 3, it can be shown that

(C.28) ρnEξ(τ01:n) ≤ ρn−1
EXn(0) + (n− 1)ρn−2(1 + logEXn(0))

+
n
∑

j=3

(

n− 1

j − 1

)

(j − 1)!
j − 1

j − 2
ρn−j .



145

Under the assumption of the lemma (see (A3)), we have

lim
ρ↓0

ρEXn(0) = c and lim
ρ↓0

logEXn(0)

log ρ−1
= 1.

The statement of the lemma follows from (C.27), (C.28) and the preceding two limits,

and this completes the proof of the lemma.

C.3 Proof of Lemma 4.3

Let Qi, −m+1 ≤ i ≤ 0, be the number of packets at node i when packet 0 departs

from node 0. Assume that the system starts in stationarity. By Burke’s theorem

and the PASTA property, the system is in stationarity when packet 0 departs from

node 0 (e.g., see [9, Section 3.7]); note that the departure process from node 0 is

Poisson. Thus, it follows that (e.g., see [11, p. 146])

P[Q−m+1:0 = q−m+1:0] =
0
∏

i=−m+1

(1− λk)λ
qi
k

= λ
∑0

i=−m+1 qi
k (1− λk)

m,

(C.29)

for qi ≥ 0, −m+ 1 ≤ i ≤ 0.

Now consider some x1:b+1 ∈ Wb+1. If xb+1 ≤ m− 1, then

P[Lm
1:b+1 = −x1:b+1] = P[Q−xb+1

≥ r−xb+1
, Q−xb+1+1:0 = r−xb+1+1:0],

where ri, −m+ 1 ≤ i ≤ 0, are given by

(C.30) ri =
b+1
∑

j=1

1{−xj = i};

using (C.29) further results in

P[Lm
1:b+1 = −x1:b+1] = λ

r−xb+1

k

0
∏

i=−xb+1+1

(1− λk)λ
ri
k

= λ
∑0

i=−xb+1
ri

k (1− λk)
xb+1 .

(C.31)
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If xb+1 = m, then

P[Lm
1:b+1 = −x1:b+1] = P[Q−m+1:0 = r−m+1:0]

= λ
∑0

i=−m+1 ri
k (1− λk)

m.

(C.32)

From (C.30), we have

0
∑

i=−xb+1

ri =
0
∑

i=−m+1

ri =
b+1
∑

i=1

1{xi ≤ m− 1}.

Thus, the statement of the lemma follows from (C.31) and (C.32) and the preceding

equality.

C.4 Proof of Lemma 4.4

Consider two identical k-node linear networks, labeled by 1 and 2, respectively.

Let Ai ≡ {Ai,j}j∈N, i = 1, 2, be the increasing sequence of arrival times of packets

at node 1 in network i. Suppose that A2 is Poisson with rate λ and A1 is generated

by thinning A2 such that each arrival is selected randomly with probability λ′/λ,

independently of the others. Then the thinned process A2 is also Poisson with

rate λ′ (e.g., see [25, Section 2.3]). Under this setup, it is straightforward that

(C.33) A1 ⊆ A2.

Suppose that the system starts with empty nodes. Using [29, Lemma 1], it can be

obtained from (C.33) recursively for all 1 ≤ l ≤ k that

(C.34) {Dl
1,j}j∈N ⊆ {Dl

2,j}j∈N,

where {Dl
i,j}j∈N, i = 1, 2, is the increasing sequence of departure times of packets at

node l in network i. The the statement of the lemma simply follows from (C.34).
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C.5 Proof of Lemma 4.5

Under Approximation 4.1, it is straightforward that the process {T0(n), n ≥ 0}

is Poisson with rate 1 − ρ (see (4.9)). By definition, the processes {Ti(n), n ≥ 0},

1 ≤ i ≤ b + 1, are independent and Poisson with unit rate (see (4.11)); they are

also independent of the process {T0(n), n ≥ 0} since the sequences {W0(i)}i∈N and

{Si(j)}1≤i≤b+1, j∈N are independent; this follows from Burke’s theorem. Note that

the process {T (n), n ≥ 0} is the superposition of these independent processes. From

(4.8)–(4.12) and by the properties of superposed Poisson processes (e.g., see [15,

p. 327-329]), the discrete-time process {Y m
1:b+1(i), i ≥ 0} can be shown to behave as

the random walk introduced in Section 4.3.1, given that Lm
b+1 ≥ −m+1. Thus, from

(4.13) and (4.18), we have

(C.35) r̃k = 1− lim
m→∞

P[Em
k |X1:b+1(0) = Y m

1:b+1(0)],

where

Em
k ≡ {ξ(τ01:n) ≤ k − 1, Xb+1(0) ≤ m};

note that Y m
b+1(0) = 11:b+1 − Lm

1:b+1 (see (4.12)). Then, it follows from Corollary 4.1

that

(C.36) P[Em
k |X1:b+1(0) = Y m

1:b+1(0)] = P[Em
k |X1:b+1(0) = 11:b+1 − L∞

1:b+1].

It is not difficult to show that

(C.37) lim
m→∞

P[Em
k |Xb+1(0) = 11:b+1 − L∞

1:b+1]

= P[ξ(τ01:n) ≤ k − 1|Xb+1(0) = 11:b+1 − L∞
1:b+1].

Combining (C.35)–(C.37) and using Markov’s inequality render the statement of the

lemma.
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