
Self Assembly Problems of Anisotropic Particles in
Soft Matter

by

Carolyn Louise Phillips

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Applied Physics and Scientific Computing)

in The University of Michigan
2012

Doctoral Committee:

Professor Sharon C. Glotzer, Chair
Professor Leonard M. Sander
Professor Michael J. Solomon
Professor Quentin F. Stout
Professor Robert M. Ziff

ACKNOWLEDGEMENTS

I would like to thank the DOE Computational Science Graduate Fellowship under

DOE Grant DE-FG02-97ER25308, and specifically the staff of people who manage

and advise this fellowship. I deeply appreciate that you do not just fund graduate

students but actually develop them. Thanks for your occasional redirections, for

tolerating the early flailing of my PhD, and for your unflagging support. I would also

like to also thank Department of Energy, Office of Science, Basic Energy Sciences,

(DE - FG02 - 02ER4600) for funding me my last year and a half of my PhD.

I would like to acknowledge the incredibly talented and diverse Glotzer Group.

As “steel sharpens steel,” I have treasured my interactions with this great group of

minds. Specifically, Eric Jankowski who lured me to the the Glotzer Group with his

discussions of emergence, complex system and tetris pieces. It only took us four years

to find a project to work on together! Joshua Anderson, who taught me everything I

know on how to really write code. Aaron Keys, Michael Engel and Amir Haji-Akbari

who were essential in molding my thinking at critical moments. Chris Iacovella, my

first mentor, and Ryan Marson, who is carrying on the cause.

I would like to thank my advisor Sharon Glotzer, who creates a resource-rich

creative environment for her research group. I would like to officially recognize that

you were right more often than this stubborn researcher was willing to acknowledge

on many occasions. I would like to thank my dissertation committee for their support

and their willingness to wade through this diverse research work!

I would also like to acknowledge my wife, Heather, who supported me, encouraged

ii

me, listened to every presentation and always gave the best feedback, talked me up

and talked me down. You were the best part of my PhD, are the best part of my life,

and I promise to clean up the living room when this is all over so our house does not

become the Ann Arbor Math Museum.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . ix

LIST OF APPENDICES . xviii

ABSTRACT . xix

CHAPTER

1. Introduction . 1

1.1 Nanotechnology . 1
1.2 Computer Simulation . 3
1.3 How Can Current Computing Technology Be Used to Make

Simulations Faster? . 6
1.4 How Can New Types of Building Blocks Be Modeled? 8
1.5 How can building blocks be designed to self-assemble into novel

structures? . 9

2. Molecular Dynamics Methods 12

2.1 Molecular Dynamics . 12
2.1.1 Brownian dynamics 13

2.2 Coarse-Grained Pair Potentials and Bonds 13
2.2.1 Shifted potentials 13
2.2.2 Shifted Lennard-Jones 14
2.2.3 Shifted WCA . 14
2.2.4 Shifted Morse . 15
2.2.5 Shifted FENE . 16

2.3 Rigid Body Models . 16
2.3.1 NVE integration scheme 19
2.3.2 NVT and NPT integration schemes 20

2.4 GPU Computing . 20

iv

2.5 HOOMD-Blue . 22
2.6 Other Software Resources . 23
2.7 Computational Resources . 25

3. Rigid Body Calculations on the GPU 26

3.1 Implementation . 27
3.1.1 NVE integration kernels 29
3.1.2 FIRE energy minimization 30

3.2 Validation and Performance 33
3.3 Conclusion . 37

4. Massively Parallel Pseudo Random Number Generation for
Brownian Dynamics and Dissipative Particle Dynamics . . . 39

4.1 Pseudo-Random Number Generation 41
4.1.1 Parallel processor PRNG schemes 41
4.1.2 One-PRNG-per-kernel-call-per-thread scheme, pK−pT 43

4.2 SIMT Molecular Dynamics, Brownian Dynamics, and Dissipa-
tive Particle Dynamics . 45

4.2.1 Brownian dynamics 46
4.2.2 Dissipative particle dynamics 47

4.3 Validation . 49
4.3.1 SaruSaru and SaruTEA PRNG 49
4.3.2 Benchmarks . 54

4.4 Conclusion . 58

5. Filling - A New Shape Packing and Covering Optimization
Problem . 62

5.1 General Properties of the Medial Axis of G and Filling Solutions 65
5.1.1 Definitions and theorems 65
5.1.2 Filling contribution of a single ball 70

6. Filling Solutions in 2D . 71

6.1 Planar Shapes and Polygons 71
6.1.1 Properties of an optimal planar filling 75
6.1.2 Polygons . 77
6.1.3 Center-occupied junction points and optimal solutions 79

6.2 Algorithms for Generating Filling Solutions 83
6.2.1 Genetic algorithm 83
6.2.2 Heuristic algorithm for filling a polygon 85
6.2.3 Heuristic vs. genetic algorithm filling solutions . . . 93

6.3 Continuum Solutions in a Polygon 93

v

6.4 Conclusion . 99
6.5 Filling Problem Glossary . 102

7. Isosymmetric Filling Solutions for Platonic Solids and Hy-
percone Filling . 104

7.1 Platonic Solids . 105
7.2 Algorithm . 105
7.3 Results . 107
7.4 Scaling and Convergence . 110

7.4.1 Filling between two infinite parallel planes 112
7.4.2 Filling in a cone in two to eight dimensions 115

7.5 Conclusion . 119

8. Effect of Nanoparticle Polydispersity on the Self Assembly of
Polymer Tethered Nanospheres 121

8.1 Methods . 126
8.1.1 Simulation methods 126
8.1.2 Bounding the phase diagram 127
8.1.3 Low temperature response to polydispersity 128
8.1.4 Adjusting thermodynamic variables, T ∗ and ∆ . . . 131

8.2 Analysis techniques . 132
8.2.1 Identification of the double gyroid by the structure

factor . 132
8.2.2 RY LM local structure analysis 133
8.2.3 Voronoi tessellation 135

8.3 Results . 136
8.3.1 Detailed CP phase diagram of Double Gyroid 136
8.3.2 CP and AP phase diagrams 138
8.3.3 Polydispersity perturbation functions 143

8.4 Local Structure Analysis of the Double Gyroid 151
8.4.1 The RY LM local structure analysis 151
8.4.2 Analysis of low polydispersity promotion of local icosa-

hedral packing. 152
8.4.3 Studying the average structure properties with the

Voronoi tessellation 154
8.5 Conclusion . 157

9. Voronoi Tessellation for Characterizing Microphase Separated
Soft Matter Systems . 160

9.1 Voronoi Tessellation . 161
9.2 Voronoi S Cell and Radical Tessellation 167

vi

9.3 Characterizing the Microphase Separated Domain of a Double
Gyroid with the Voronoi Tessellation 171

9.4 Conclusion . 176

10. Self Assembling Clusters Related to Mathematical Extremal
Points on the Surface of a Sphere 177

10.1 Sphere Surface Extremal Points and Spherical Codes 179
10.2 Methods . 182

10.2.1 Hard Sphere and Sticky Sphere Model 182
10.2.2 Brownian Dynamics 185
10.2.3 Free Energy Calculations 185
10.2.4 Structure and mobility measures of a cluster 188
10.2.5 The calculation of Λ 190

10.3 Results . 190
10.3.1 Self-assembly and free energy of N -clusters 190
10.3.2 Structure of N -clusters 195
10.3.3 Mobility of N -clusters 198
10.3.4 Breaking the degeneracy for N = 5 202

10.4 Discussion . 206
10.5 Conclusion . 207

11. Conclusion and Outlook . 209

11.1 Conclusion . 209
11.2 Outlook . 211

11.2.1 Filling in two and three dimensions and beyond . . 211
11.2.2 Packing of attractive 3D particles 212
11.2.3 Packing of shaped objects around a central sphere . 212

APPENDICES . 213
A.1 Distribution function along a medial axis branch with no cur-

vature and a linear radius function 214
A.2 Distributions along the parabolic medial axis branch of a Poly-

gon . 217
A.3 Constant curvature, constant radius function 218
A.4 Deriving distribution of circles 221
A.5 How many ways? . 222
A.6 Unfilled volume between two balls in a hypercone 222
A.7 Proving the N=5-12 clusters are ergodic when mobile 226

A.7.1 N=5 . 227
A.7.2 N=6 . 227
A.7.3 N=7 . 228
A.7.4 N=8 . 229
A.7.5 N=9 . 230

vii

A.7.6 N=10 . 231
A.7.7 N=11 . 232
A.7.8 N=12 . 232

B.1 Chapter 2 . 234
B.2 Chapter 3 . 234
B.3 Chapter 4,5,6 . 234
B.4 Chapter 7 . 235

B.4.1 Polydisperse tethered nanosphere script 235
B.5 Chapter 8 . 238
B.6 Chapter 9 . 239

B.6.1 Spherical code self-assembly code 239
B.6.2 HP constrained to a CP surface 244

BIBLIOGRAPHY . 249

viii

LIST OF FIGURES

Figure

2.1 A collection of “rods” composed of five beads integrated as a rigid
unit. 16

3.1 (left) Initial configuration of randomly placed rods (blue) intermixed
with free particles (green). Rods are attracted to rods and free par-
ticles are attracted to free particles. (right) Final configuration after
the FIRE energy minimization converges. This image was originally
published in reference1. 31

3.2 A system of 225 patchy spheres, each composed of 90 particles. The
red and blue particles are attractive patches on the surface of the
body. A single patchy sphere is shown in the upper right for refer-
ence. As shown by Zhang2, these bodies self assemble into rings of
six spheres. The spheres have been made invisible in the frontmost
octant so that the ring structure formed by the invisible spheres can
be shown in green. This image was originally published in reference1. 32

3.3 Performance in time steps per second obtained while running a simu-
lation of 225 (dotted lines), 667 (dashed lines), and 2000 (solid lines)
rigid bodies consisting of 20250, 60030, and 180000 particles respec-
tively. LAMMPS performance on 1, 2, 4, 8, 16, 32, 64, and 128 CPU
cores is compared to HOOMD-blue performance on a single NVIDIA
GTX 480 (indicated by the horizontal lines). This image was origi-
nally published in reference1. 33

3.4 A system of one thousand tethered nanorods that have self-assembled
into a lamellar bilayer. The upper right inset depicts a single tethered
nanorod for reference. Each tethered nanorod is modeled by five
particles rigidly connected in a line, attached to a flexible tether of
nine particles. Bonds, both rigidly constrained and unconstrained,
are shown as cylinders. Tethers have been removed from view in
the right half of the image. This image was originally published in
reference1. 34

ix

3.5 Performance in time steps per second obtained while running a sim-
ulation of one thousand tethered nanorods (14000 total particles) on
various hardware configurations. Each benchmark is performed 50
times. Bars are plotted at the median value and error bars display
one standard deviation of variability. This image was originally pub-
lished in reference1. 35

4.1 For a Brownian Dynamics micro-benchmark, a one-PRNG-per-thread,
pT , scheme using the Saru and XORWOW streaming PRNG, is com-
pared to a one-PRNG-per-kernel-per-thread, pK−pT , scheme using
SaruSaru and SaruTEA combined PRNGs. This image was origi-
nally published in reference3. 56

4.2 For a Dissipative Particle Dynamics micro-benchmark, a One-PRNG-
per-thread, pT , scheme using the Saru and XORWOW streaming
PRNG, is compared to a one-PRNG-per-kernel-per-thread, pK−pT ,
scheme using SaruSaru and SaruTEA combined PRNGs. Two types
of neighbor lists, with different topologies and therefore different pat-
terns of memory usage, are shown to bound actual simulation per-
formance. This image was originally published in reference3. 57

4.3 Pictured is the full benchmark system for the DPD simulation method,
a A3B7 block copolymer system of 2400 polymers (24,000 particles)
self-assembled into the hexagonally packed cylinder phase. Details on
this system can be found in reference4,5. This image was originally
published in reference3. 60

4.4 Benchmarks comparing HOOMD-blue to LAMMPS, a parallelized
CPU molecular dynamics code package, for the DPD Benchmark of
Figure 4.3. This image was originally published in reference3. 61

5.1 The problem of filling a shape, such as a triangle, can be viewed as
a combination of a packing and covering problem. 63

5.2 Each pentagon is actually composed of 31 discs. 64
5.3 Each tetrahedron is composed of 81 balls. Sticky atches on the tetra-

hedra cause them to assemble into icosahedral clusters. 64
5.4 Two examples of degenerate solutions. In the case of the rectangle,

a single maximal ball can be placed in infinitely many locations. For
the symmetrical triangle, the asymmetrical solution can be reflected
to generate a degenerate solution. 67

5.5 The construction on the left has optimal solutions without maximal
balls. The center of the red disc need not be on the medial axis
(dashed green) for the shape to be completely covered. The con-
struction on the right need not have all of its medial axis (dashed
green) filled. A disc added to the red portion fills no additional area. 69

5.6 If the point of tangency is smooth in any direction, the largest ball
tangent to the point covers more volume than any smaller ball tangent
to the point. 69

6.1 Each point represents the center of a maximal disc on M(G). The
neighbors of the disc A are circled. 72

x

6.2 The construction of three discs A, B, and C that lie along a medial
axis path. 73

6.3 If disc A is kept fixed in position, then it divides M(G) from Fig. 6.1
into two parts, indicated as solid and dashed lines. There is no inter-
section between discs on the two parts of M(G) that is not covered
completely by disc A per Theorem 6.1.1. The two parts, therefore,
act as independent spaces. 76

6.4 Shown are the M(G) of two simple polygons (green online). The dots
(red online) represent junction points 78

6.5 (a) Case 1, (b) Case 2, and (c) Case 3. 78
6.6 In (a) the labeled diagram of the isolated medial axis structure cre-

ated by three connected polygon edges and a fixed disc is shown. For
θ1 = θ2 = 2π/3 and t = 0.2, two locally maximal solutions, (b) a
symmetrical solution with a disc on the L and R branch and (c) an
occupied junction LJ solution are shown. The second solution is the
global maximum. 79

6.7 Case (A): For the constructed problem of Figure 6.6, θ = θ1 = θ2, on
the top left is shown the type of the global maximum as a function of
θ and t. On the right the topological structure of the global maximum
is shown. On the bottom left, the number and form of the maxima
in each part of the phase diagram is indicated. 80

6.8 Case (B): For the constructed problem of Figure 6.6, but with θ1 =
π/2, θ = θ2, on the left is shown the type of the global maximum as
a function of θ and t. On the right the topological structure of the
global maximum is shown. 81

6.9 At the top of the figure is a medial axis with 5 pieces, three branches
and two junction points. (a) The full table of ways is shown for
N=0, 1, and 2. In (b) the search space is reduced using the greedy
assumption that the next best solution is related to the last best
solution. (c) We also add searches that deoccupy junction points and
inserts discs onto nearby branches. (d) If the best 1-way was not
searched, two of the four remaining 1-ways would have searched the
best 2-way on the next iteration. 89

6.10 Assume that the junction points 2 and 4 stay occupied. To generate
the N=13 solution, three ways are searched for a local maximum. To
generate N=14, only one additional way, 31613, needs to be searched.
The ways 41513 and 31514, can be created by combining the search of
branch 1 and 5 with the solution of branch 3 for N=13. The occupied
junction points isolate the solutions on each branch from solutions on
the rest of the medial axis. 90

6.11 Examples of the optimal filling solutions of three convex and two
concave polygons for N=1-21. The top row shows the medial axis of
each polygon. 94

xi

6.12 The triangle on the left is filled with 100 discs. On the right is the
fraction of the discs on each branch for N = 1-100, compared to the
prediction per equation 6.19 . 99

6.13 On the left is a log-log plot of the unfilled area of the triangle of
Fig. 6.19 converging to zero as N increases. On the right, the slope
of the log-log plot is shown. 100

7.1 The N=1-8 putative global filling solutions are shown for the tetra-
hedron. The isosymmetric solutions are in dashed boxes. 108

7.2 For a regular tetrahedron, the medial axis consists of six triangular
sheets that join at four seams and at a single junction equal to the
center of the tetrahedron. Each isosymmetric configuration is labeled
with its (J, Sm, St). 109

7.3 For a regular cube, the medial axis consists of twelve triangular sheets
that join at eight seams and at a single junction equal to the cen-
ter of the cube. Each isosymmetric configuration is labeled with its
(J, Sm, St). *The N=8 case is not a isosymmetric and is discussed in
more detail. 110

7.4 For a regular octahedron, the medial axis consists of twelve triangular
sheets that join at six seams and at a single junction equal to the
center of the octahedron. Each isosymmetric configuration is labeled
with its (J, Sm, St). 111

7.5 For a regular icosahedron, the medial axis consists of thirty triangular
sheets that join at twelve seams and at a single junction equal to the
center of the icosahedron. Each isosymmetric configuration is labeled
with its (J, Sm, St). 112

7.6 For a regular dodecahedron, the medial axis consists of thirty trian-
gular sheets that join at twenty seams and at a single junction equal
to the center of the dodecahedron. Each isosymmetric configuration
is labeled with its (J, Sm, St). 113

7.7 On the left, the best tetrahedral solution and best octahedral solution
are overlaid on each other. In the plot on the right, the φ of the best
tetrahedral solution is compared to the φ of all octahedral solutions.
As can be seen in the inset, the best tetrahedral solution fills the cube
by ∆φ = 10−5 more than the best octahedral solution. 114

7.8 On the left is a log-log plot of the unfilled area of the tetrahedron of
Fig. 7.2 converging to zero as N increases. On the right, the slope of
the log-log plot is shown. 115

7.9 (a) The arrangement of the centers of unit balls inside a triangle. (b)
The unfilled volume of the triangle (top) and the convergence of the
slope to -1 (bottom) as a function of N balls. 116

7.10 (a) The geometric pieces of the inclusion-exclusion formula of Eqn. 7.7.117
8.1 A polymer functionalized nanosphere of diameter 2. The polymer is

modeled as 8 soft sphere (WCA) beads connected by FENE springs. 122

xii

8.2 Two views of a simulation cell containing 2000 TNS in the H phase.
NS are blue; Tethers are not shown. The NS in this system have
polydispersity ∆ = 20%. 123

8.3 The left panel shows 8 unit cells of a double gyroid (DG) phase.
The NS are monodisperse and shown in blue and white. Tethers are
not shown. The right panel shows the same 8 unit cells from a side
perspective. 124

8.4 The left panel shows 2000 TNS that have self-assembled to the L
phase by a Conventional Path. The NS in this system have poly-
dispersity ∆ = 3%. The right panel shows 2000 TNS that have
self-assembled to the PLH phase by a Alternate Path. The NS in
this system have polydispersity ∆ = 10%. 125

8.5 Schematic showing the two paths used in the present study 129
8.6 Schematic of paths used in determining the quasiequilibration prop-

erties of polydispersity . 132
8.7 The structure factor of a double gyroid with 20% polydispersity is

shown as a function of m, the modulus of the integer wavelengths
scaled wave vector, which is independent of the unit cell size. The
characteristic gyroid peaks at

√
6,
√

8, and
√

20 are clearly visible.
This image was originally published in reference6. 133

8.8 A survey of the TNS phase diagram for 0.285 ≤ φ ≤ 0.315 and
0% ≤ ∆ ≤ 30%, indicating the probability of observing the DG
phase. The darkness of the shading indicates the fraction of the
ten trials for which the DG phase was found. If multiple simulation
box sizes were considered, the box size that produced most instances
of the DG phase was used. This image was originally published in
reference6. 137

8.9 The CP and AP phase diagrams (T ∗ versus ∆) are shown in overlay
for the volume fraction (a) φ = 0.25 and (b) φ = 0.3 ± 0.01. The
region where the CP indicates the phases to be stable is contained
within the region where the AP indicates the phase to be stable. Thus
the darker shaded region is labeled both Conventional and Alternate.
The bottom right graph (b) shows for DG the relative likelihood of
the DG phase self assembling via the CP as a function of polydispersity.139

8.10 The (a) CP and (b) AP phase diagrams (T ∗ versus ∆) is shown for
the volume fraction φ = 0.4. The arrows illustrate the path used to
explore the phase diagram. 140

8.11 The effect of polydispersity on (a) the crystalline vs (b) icosahedral
local packing, (c) the potential energy of the NS-NS interaction, and
(d) the coordination and (e) packing fraction of the particles, as de-
termined by a radical tessellation, is compared at φ=0.25, 0.3, and
0.4. The phases found along each curve are indicated in parentheses
in the legend. The dashed arrows indicates the collapse of QE∆ ↓
data onto QE∆↑ data at φ = 0.4. 144

xiii

8.12 A series of snapshots of the L phase is shown at polydispersity 0%,
6%, 10%, and 12% as polydispersity is grown into a monodisperse
cooled system. At each polydispersity, the system was allowed to
relax for 10 million time steps. Nanospheres are colored red if locally
crystalline, light blue if unidentifiable, and dark blue if icosahedral.
Tethers are not shown. Initially the system is in a totally crystalline
state, with a few non-crystal NS found at grain boundaries and de-
fects in the lamallae. At 6%, the system is still crystal, although
the number non-crystal NS at grain boundaries and lamellae defects
has increased. At 10%, the lamallae is mostly liquid and disordered,
with a few small islands of crystal bilayer remaining. At 12%, the
system is fully in the PLH phase. Note that although ”red” particles
are still present, they are not spatially correlated and represents the
limitations of the identification algorithm. 148

8.13 A cluster analysis is performed on the energy minimizing binary clus-
ters of Doye 20057 and the Cambridge Cluster Database. For each
binary cluster, an I is indicated if the cluster best matched a full or
partial icosahedral cluster, or a Z for best matching a Frank-Kasper
polyhedra. The c value of the cluster match is also shown. For a
coordination of 12, note that an icosahedral cluster and the Frank-
Kasper polyhedra are identical. This image was originally published
in reference6. 152

8.14 Increasing polydispersity induces a spreading in the coordination
number and potential energy of the NS in the DG as a function
of NS diameter. In (a), the number of NS neighbors (averaged over
2×106 time steps) for each NS is shown. In (b), the potential energy
(averaged over 2× 106 time steps) for each NS is shown. This image
was originally published in reference6. 156

8.15 An analysis is performed on the influence of polydispersity on the
average coordination and the correlation between NS diameter and
coordination for the data shown in Fig. 8.14.This image was origi-
nally published in reference6. 157

8.16 The diffusion coefficients of the average, 10% smallest, and 10%
largest NS of the DG are shown as a function of polydispersity. The
y-axis is scaled by a factor of 1000. The dimensionless units are in√
ε/m. This image was originally published in reference6. 158

9.1 (a) A double gyroid phase self-assembled from tethered nanorods. (b)
A double gyroid phase self-assembled from 18% polydisperse tethered
nanopheres . 162

9.2 (a) The distribution of packing fractions for the rods. (b) The rod-rod
coordination for the nanorods . 165

9.3 A cross section of the density map of a unit cell of a tethered rod
double gyroid based on the standard Voronoi tessellation. 166

xiv

9.4 (a) We consider a sphere of diameter 2.0 surrounded by smaller
spheres of diameter 1.0. (b) A conventionally defined Voronoi cell
is embedded inside the large sphere, which has been made partially
transparent so the Voronoi cell is apparent. (c) Alternately a Voronoi
S cell can be constructed around the sphere, which is shown with a
mesh to make the curvature of each face more apparent. (d) Or a
radical cell can be constructed around the sphere. 167

9.5 (a) A cross section of the density map of a unit cell of a monodisperse
gyroid based on the radical tessellation and (b) based on a Voronoi
S tessellation. Shading indicates the volume fraction of the Voronoi
cell cut in the cross section. 172

9.6 (a) A cross section of the density map of a unit cell of a double
gyroid with polydispersity 24% based on the radical tessellation, (b)
and based on a Voronoi S tessellation. Shading indicates the volume
fraction of the Voronoi cell cut in the cross section. 173

9.7 (a) The radical volume of a monodisperse gyroid domain in a unit
cell as a function of temperature. (b) The packing fraction of the
monodisperse gyroid domain as a function of temperature, as cal-
culated by dividing the volume of the nanoparticles by the radical
volume of the gyroid. As expected, lowering the temperature causes
the NS to pack tighter. (c) The packing fraction of the monodisperse
gyroid domain based on a Voronoi S tessellation. 174

9.8 (a) The average NS coordination based on a radical tessellation of
monodisperse DG as function of increasing temperature. Increasing
temperature causes a slight downward trend in the average number
of neighbors. (b) The average NS coordination based on a Voronoi S
tessellation. 175

10.1 A terminal N -cluster with an octahedral structure (N = 6) is self-
assembled from a bath of HP and a CP. This cluster has applica-
tions as a anisotropic building block, could be used to manufacture
a “patchy particle” by imparting patches on the CP at the contact
points, or could be locked into a nanocolloidal cage structure. 178

10.2 The arrangement of points (pink) that correspond to each spherical
code solution for 1 ≤ N ≤ 12. The point group of each arrangement
is shown to the upper right of each arrangement, and the densest
packing diameter ratio Dc/Dh = ΛN is shown to the lower right.
For N = 5, the triangular bipyramid configuration is shown. Other
N = 5 configurations are shown and discussed in Figures 10.10-10.9 . 180

10.3 (a) A mathematically ideal hard particle interaction is shown in solid
black compared to the hard particle interaction (in dashed blue) given
by the WCA potential (Eqn. 2.6). (b) A sticky sphere with a kissing
contact potential when δ → 0 is compared to a model sticky sphere
(in dashed blue) given by the Morse potential (Eqn. 2.7). 183

xv

10.4 Top: The N clusters that self-assemble as a function of Λm and tem-
perature is shown. The average N of the self-assembled cluster at
T ∗ = 0.02 is shown as a black line. The maximum and minimum N
in the simulation is shaded grey. The average N of the self-assembled
cluster at T ∗ = 0.1 is a red solid line. The maximum and minimum
N in the simulation is shaded pink. Bottom: Accounting for bond-
stretching and the effective diameter of the HP, the lowest ratio where
a cluster of size N observed in the quasi-statically decreasing simu-
lation (blue triangles) and for the self-assembled simulations (black
circles) are compared to the spherical code predictions (pink star).
Error bars for the quasi-static simulation ratios are generated from
the contact range of two HP. 191

10.5 The distributions of cluster sizes as a function of temperature and
Λ as given by the free energy calculation and the BD simulations
are compared. Bottom left corner: phase diagram of the free energy
prediction of the most probable cluster size. Lower right and upper
left corners: in-page slices of the probability of finding each cluster
size PN as predicted by the free energy calculation and BD simulation
at the high and low temperature. Upper right corner: the three most
common clusters found in the BD simulation at the high temperature
and Λm = 0.46. 192

10.6 The distribution of angular displacements n(θ) for each cluster. The
n(θ) shows a structural fingerprint particular to each cluster. 196

10.7 Cluster mobility as a function of the ∆Λc = Λc − ΛN . Note that for
the N = 6 and N = 12 clusters, the HPs do not become measurably
mobile for ∆Λc >> 0. At the other extreme, N = 5 and N = 10 are
mobile for ∆Λc < 0. 197

10.8 The rearrangements of clusters N = 5-12. N = 12 has two rearrange-
ments. 201

10.9 (a) The order parameter χ is constructed by measuring the angle
of the particles on the equator. Scattered points from a simulation
overlay an image of an SP configuration. Red circles indicate the
sphere centers of a TBP configuration. In (b) and (c) the distribution
of χ sampled in from a BD simulation is shown as a function of the
diameter ratio Λc = 0.4142 and 0.4 respectively. 204

10.10 (a) The square pyramid (SP) and (b) the triangular bipyramid (TBP)
N = 5 spherical codes. The jammed and unjammed kissing spheres in
each configuration are colored dark grey and pink, respectively. The
path that the unjammed spheres can follow is traced on the central
sphere. For (b) the central sphere is transparent so the full path
around the equator can be seen. In the graph at the bottom, at the
low temperature, T ∗ = 0.02, the preference for the SP (black solid)
over the TBP (red solid) is evident as the HP diameter approach the
limiting packing diameter. This preference (black and red dashed
lines) is even stronger at high temperature, T ∗ = 0.1. 205

xvi

A.1 The area shaded in green is the uncovered area between two discs of
the same radius and the polygon edge. 214

A.2 (a) The area shaded in green is the uncovered area between two discs
of different radius and the polygon edge. (b) The area between two
small circles and (c) two large circles provide and upper and lower
limit for the shaded area. 216

A.3 The area shaded in green is the uncovered area between two discs of
the different radius and the polygon edge along a parabolic path. . . 217

A.4 The uncovered area between two discs on a branch of constant radius
function, constant curvature. 219

A.5 The geometric n-dimensional pieces of the inclusion exclusion formula
include a spherical cone, a positive ice cream cone and a negative ice
cream cone. (Bottom) We solve for the shaded region, the volume
between two n-balls in a n-dimensional hypercone. 224

A.6 Labeled spherical code lattice points for N=5 in the square pyramid
configuration. 227

A.7 Labeled spherical code lattice points for N=6. 228
A.8 Labeled spherical code lattice points for N=7. 229
A.9 Labeled spherical code lattice points for N=8. 229
A.10 Labeled spherical code lattice points for N=9. 230
A.11 Labeled spherical code lattice points for N=10. 231
A.12 Labeled spherical code lattice points for N=11. 232
A.13 Labeled spherical code lattice points for N=12 233

xvii

LIST OF APPENDICES

Appendix

A. Mathematical Derivations . 214

B. Codes . 234

xviii

ABSTRACT

Self Assembly Problems of Anisotropic Particles in Soft Matter

by

Carolyn Louise Phillips

Chair: Sharon C. Glotzer

Anisotropic building blocks assembled from colloidal particles are attractive building

blocks for self-assembled materials because their complex interactions can be exploited

to drive self-assembly. In this dissertation we address the self-assembly of anisotropic

particles from multiple novel computational and mathematical angles.

First, we accelerate algorithms for modeling systems of anisotropic particles via

massively parallel GPUs. We provide a scheme for generating statistically robust

pseudo-random numbers that enables GPU acceleration of Brownian and dissipative

particle dynamics. We also show how rigid body integration can be accelerated on

a GPU. Integrating these two algorithms into a GPU-accelerated molecular dynam-

ics code (HOOMD-blue), make a single GPU the ideal computing environment for

modeling the self-assembly of anisotropic nanoparticles.

Second, we introduce a new mathematical optimization problem, filling, a hybrid

of the familiar shape packing and covering problem, which can be used to model

shaped particles. We study the rich mathematical structures of the solution space

and provide computational methods for finding optimal solutions for polygons and

convex polyhedra. We present a sequence of isosymmetric optimal filling solutions for

xix

the Platonic solids. We then consider the filling of a hyper-cone in dimensions two to

eight and show the solution remains scale-invariant but dependent on dimension.

Third, we study the impact of size variation, polydispersity, on the self-assembly

of an anisotropic particle, the polymer-tethered nanosphere, into ordered phases. We

show that the local nanoparticle packing motif, icosahedral or crystalline, determines

the impact of polydispersity on energy of the system and phase transitions. We

show how extensions of the Voronoi tessellation can be calculated and applied to

characterize such micro-segregated phases. By applying a Voronoi tessellation, we

show that properties of the individual domains can be studied as a function of system

properties such as temperature and concentration.

Last, we consider the thermodynamically driven self-assembly of terminal clusters

of particles. We predict that clusters related to spherical codes, a mathematical se-

quence of points, can be synthesized via self-assembly. These anisotropic clusters can

be tuned to different anisotropies via the ratio of sphere diameters and temperature.

The method suggests a rich new way for assembling anisotropic building blocks.

xx

CHAPTER 1

Introduction

1.1 Nanotechnology

Nanotechnology is a very old technology. The functioning of all biological life has

been based on the successful application of nanotechnology for at least 3.5 billion

years. We humans are late in entering the field and have quite some work ahead of

us to begin to compete with the beautiful and intricate inventions of Nature. What

we have to our advantage is the directed application of knowledge and inventiveness

as compared to the slow stumbling advances of evolution.

humans have been manipulating the nanoscopic properties of materials since the

bronze age. The Japanese artisans who manufactured samurai swords in the 6th cen-

tury, for example, were masters of metallurgy with elaborate techniques for create

masterpieces of composite steels8. Their methods, however, were passed down as

sacred arts, without a true understanding of how and why each part of the process

worked. The human adventure into nanotechnology only truly began in the last cen-

tury, when we finally gained the capacity to peer inside materials with the discovery

of atomic theory and the invention of progressively more powerful microscopes.

The potential of nanotechnology can be gauged by the diversity of ordered struc-

tures, life, and almost-life that can be found at scales smaller than 10−6 meters, from

DNA to viruses to bacterium. As proclaimed by physicist Richard Feynman in a talk

1

in 1959, “There’s plenty of room at the bottom”9. The human body is 1010 times

larger than a hydrogen atom. The Earth, in comparison, is only 107 times larger than

a human. And on one third of the surface of our plane we fit houses, economies, and

nations. A grain of sand contains an enormous amount of space for structure and

design.

Gaining engineering control over these microscopic scales is a technological chal-

lenge. In the same talk, Feynman offered a $1000 prize to the first person who could

construct an operating electric motor that fit in a 1/64 inch cube. In this case, the

prize was collected only one year later by William McLellan, who, over two and half

months, constructed the tiny motor using a microscope, a watchmakers lathe and a

toothpick.

However, rather than assembling microscopic to nanoscopic structures by labo-

rious direct manipulation of atoms, molecules, nanoparticles, colloidal particles, or

top-down assembly, it has been proposed to let the particles do the work for you.

Instead of optical tweezers or mask lithography, it has been proposed to synthesize

nano-scale building blocks that assemble into structures spontaneously, motivated by

the driving forces of equilibrium and non-equilibrium thermodynamics, or bottom-up

assembly or self-assembly. However, this method presumes, first, the ability to design

and synthesize cooperative nanoparticles, and second, knowledge of the “recipes” for

different targeted structures.

Glotzer and Solomon10 point out that nanoparticle synthesis is becoming maturing

powerful tool and, as a result, there is now an unprecedented diverse spectrum of

particle types to consider. They characterize these building blocks by different axes

of anisotropy or design features that differentiate a particle from a simple isotropic

sphere. The axes of particle anisotropy include the fraction of the surface area covered

by patch material, aspect ratio, faceting, interaction patchiness via surface pattern

quantization, branching, chemical ordering, shape gradient, particle roughness, and

2

chirality. These anisotropic designed particles become the “ingredients” of material

design and assembly. This vast menagerie of anisotropic particle possibilities has

grown beyond analogy to the periodic table of elements and its mere 118 elements.

With each anisotropic degree of freedom, the dimensionality of the design space of

nanoparticles increases. Also whole new avenues of creative design become possible

that previously had no physical realization. The fundamental questions of nanoscale

self-assembly thus range from the thermodynamics of self-assembly to the engineering

questions of designed materials. How can novel ordered structures be self-assembled

thermodynamically from designed nanoscale building blocks? Can we discover design

rules for the engineering of new materials? Can we make fast and reliable predictions?

The field of nanoscale self assembly exists at the nexus of soft matter physics,

chemistry, complexity theory, computational geometry, computational science, and

material science. In this work we address questions above primarily through the tool

of computer simulation.

1.2 Computer Simulation

The two traditional paradigms of scientific investigation are theory and observa-

tion/experiment where science advances due to the fruitful cooperation and tension

between the two. Computational simulation of physical systems is now considered to

be the third paradigm of scientific investigation. Computational simulation can pro-

vide unique insights when the system is too small (atoms), too large (galaxies), too

dangerous (nuclear explosions), or too expensive (nuclear reactors) to directly phys-

ically create in experiment. Simulations also become important contributors when

the parameter space is too large to directly physically explore (material discovery)

or when the emergent behavior of a simply described system cannot be discovered

by mathematical analysis alone (complex fluids). In investigating nanoscale self-

assembly, computer simulation is useful to explore the connection between the simple

3

agents, rule sets, or building blocks and the emergent larger structure.

The computational method used primarily in this dissertation is Molecular Dy-

namics. Molecular Dynamics is an N-body method11 whereby a population of par-

ticles is simulated moving in space following Newtonian trajectories due to the force

interactions between the particles. Molecular Dynamics simulations of particles at

equilibrium can be used to sample ensembles of the particles and extract statistically

relevant properties. In 1964, Aneesur Rahman, the father of molecular dynamics,

modeled 864 liquid Argon atoms for a simulated time length of 10−11 seconds on a

CDC 3600 capable of 150,000 calculations per second, or 150 kiloflops. Argon atoms

were modeled by a truncated Lennard-Jones pair potential12. The success of this

simulated system in modeling the properties of a real Argon fluid is governed by how

well the essential physics of interacting Argon atoms is modeled, the number of atoms,

and the time length of the simulation. Even in this first simulation experiment, good

agreement was found between the simulation and experimentally observed values. The

Lennard-Jones pair potential used by Rahman is a computationally efficient potential

for modeling a hard core repulsive interaction and long range attraction, emulating

Pauli repulsion and Van der Waals interaction of atoms. As a result the properties of

a fictitious material called “Lennard-Jonesium”, have become an independent topic

of study as a computational surrogate for a range of possible physical systems.

The field of computational simulation has, of course, been inextricably linked to

growing capability of computer technology. Driven by Moore’s “Law” regarding the

density of transistors in silicon, computational speed and memory has been improv-

ing at roughly exponential rates since the middle of the 20th century. The heroically

massive computations of one generation are performed on the personal computers of

the next. And as length and size of simulations have improved, so has the under-

standing the simulated systems being. For example, at one time a rapidly cooled

and uncrystallized fluid of Lennard-Jonesium was considered to be a good model for

4

a structural glass. In 1998, Schneidman and Uhlmann wrote a letter entitled ”Does

a Lennard-Jones glass exist?” In this letter they identified that the theory that any

physical liquid could turn into a structural glass if quenched sufficiently rapidly had

been falsely supported by simulations.

The existing data which support the formation of an LJ glass are mainly
based on monitoring the structure of an undercooled fluid for times of the
order of 10−12−10−11s. Unfortunately, this provides very little information
whether the fluid will remain a glass on a laboratory time scale 13.

While glasses are still a complicated and mysterious topic in physics, it is no

longer thought that any fluid can form one, and single-component Lennard-Jonesium

is certainly no longer considered to be a reasonable glass model∗.

One of the powerful uses of Molecular Dynamics (MD) is its ability to model

objects much larger than atoms. The classical Newtonian physics at the core of

MD does not care what “particles” are as long as the forces acting on them can be

expressed mathematically and in a continuously differentiable manner. Molecular

Dynamics has been used to model various types of complex fluids such as granular

flow15, liquid crystals16,17, polymers18, colloidal suspensions19–21, and even theoretical

models of swarms22,23.

The Glotzer research group, where research focuses on understanding the emer-

gence of ordered structures in soft matter and nanoscale systems, has used molecular

dynamics to model tethered nanospheres24–26, nanorods5,27,28, and plates29, and shape

shifting nanoparticles30.

The Argon atoms of the first MD computer experiment are now anisotropic col-

loidal particles, but the basic needs have remained the same. How can a simulation

experiment be performed with current computing technology so that results on suffi-

ciently sized systems can be achieved in a reasonable amount of researcher time? How

can the “atoms” be modeled so that the essential physics of interaction is captured?

∗binary component Lennard Jonesium, composed of two types of LJ particles, is another matter14

5

And then, the new question that has arisen, what if you can design the “atom”?

What new mesoscopic ordered structures can emerge?

This dissertation is organized into three parts addressing three questions:

I. How can current computing technology be used to make simulations faster?

II. How can new types of building blocks be modeled?

III. How can building blocks be designed to self-assemble into novel structures?

1.3 How Can Current Computing Technology Be Used to

Make Simulations Faster?

In modern computing, the current paradigm for accelerating computation is not

improving processor speed, but parallelizing computation over many processors or

cores11. The challenge of running large computations is determining the optimal way

to parallelize the computation so that work can be allocated over many resources.

A decade ago, “massively parallel” computations implied clusters of thousands of

CPUs that were available at large government laboratories or large companies. How-

ever, fueled by the video game industry and the demand to render physically realistic

video game images in real time, companies such as NVIDIA, Intel, and ATI, manufac-

tured commodity specialized processors that perform massively parallel computation,

namely graphics cards or GPUs.

As these devices became programmable and as accessible programming languages

such as CUDATMand OpenCL became available to the general research community,

these devices brought affordable massive parallelization to the academic and small

business communities.

In turn, they have influenced the world of large-scale super computing. At the

time of the writing of this dissertation, three of the top five fastest supercomputers in

6

the world are hybrid GPU/CPU clusters (Tianhe-1A, Nebulae, and TSUBAME 2.0),

with more, even faster, hybrid systems being planned to be operational in the next

year (ORNL’s “Titan” using the NVIDIA Kepler GPU, predicted to peak at 10-20

petaflops.).

However, designing calculations and algorithms to be massively parallelized so

that they can be implemented on these specialized computing devices is far from

trivial. In the first part of this dissertation, we review the algorithms and methods

of Molecular Dynamics as used in this research in chapter and the basics of the GPU

parallelization paradigm in chapter 2,, and work done in building the capability of

GPU-accelerated MD for modeling anisotropic nanoparticles in chapters 3 and 4.

In chapter 3 we discusses how a rigid body constraint algorithm is incorporated

into HOOMD-blue, a massively parallel GPU-accelerated MD application. Two case

studies are presented in this chapter where HOOMD-blue consistently executes a fac-

tor of 2.5–3.6 times faster than the peak performance of the LAMMPS code package31

parallelized over any number of cores. The HOOMD-blue software is primarily de-

veloped by Dr. Joshua Anderson, in collaboration with myself, Dr. Trung Nguyen,

and Dr. Aaron Keys, as well as other contributors from around the world. The work

of this chapter was done in collaboration with Dr. Joshua Anderson and Dr. Trung

Nguyen.

Two extensions of MD used to model soft matter at colloidal scales are Brownian

dynamics (BD) and dissipative particle dynamics (DPD). In chapter 4, we discuss

the generation of massively parallel pseudorandom numbers to support BD and DPD

simulations in HOOMD-blue. By deploying a novel scheme for generating pseudo-

random numbers on the GPU, the force calculation step of BD is made modestly

faster (10%) but the force calculation step of DPD is made five times faster. To date,

HOOMD-blue is still the only MD code package with true GPU-accelerated DPD.

This work was done in collaboration with Dr. Joshua Anderson.

7

1.4 How Can New Types of Building Blocks Be Modeled?

In Part II of this dissertation, we introduce a method for optimally generating the

volume-excluding shape in molecular dynamics simulations.

In an MD simulation, one way to model a ”shaped” particle is to treat it as a

body composed of a rigidly connected set of points, where each point has an isotropic

pair potential interaction with all the points in other bodies. If the pair potential is

solely repulsive, with a rapid transition from infinite to zero and a tunable distance of

interaction, the body is essentially a set of hard spheres, or balls, (that may or may

not overlap) of varying diameters rigidly bonded together.

While in MD, many aspects of a simulation contribute to the computational per-

formance, in general it is desirable to model a system with as few point particles as

possible. A natural question to ask, then, is

Given a “shaped” particle one wishes to model with N point particles that act as

overlapping balls, what is the best arrangement of the points to represent the shape?

We propose that the best arrangement is the one that has the maximal filling

value, where filling is defined as the fraction of the volume of the shape the spheres

cover, without any of the spheres crossing the boundary of the shape. We now can

think of the shape, itself, as a container that we are placing objects inside of in an

optimal way so to fill that container.

As so defined, filling is distinctly different from spatial distribution problems such

as packing, the arrangement of non-overlapping objects inside a container, and cov-

ering, the arrangement of overlapping shapes whose union contains the container.

Filling may be thought of as a hybrid of packing and covering, where the objects are

packed inside the container, but are free to overlap within it.

Chapters 5-7 represent the first description of this novel mathematical problem.

The properties of optimal solutions are explored and true optimal solutions are con-

structed by multiple numerical methods.

8

In chapter 5 we consider the question above in an N-dimensional space, and derive

universal properties of filling solutions. In chapter 6, we consider the properties of

a filling solution in 2D. For polygons, we construct a heuristic algorithm capable of

generating optimal solutions, which is compared to a genetic algorithm authored by

Dr. Joshua Anderson. We also derive the distribution of discs in the continuum

solution (N → ∞) for a polygon. In chapter 7, we show an algorithm that can

generate filling solutions in three dimensions for polyhedra. We then discuss the

interesting properties of the filling solutions found for the platonic solids in three-

dimension and the isosymmetric solutions where the filling solution has the same

symmetry as the Platonic solid.

This work was performed in collaboration with Dr. Joshua Anderson, who de-

veloped the genetic algorithm, and Dr. Beth Chen, who assisted in the creation of

the phase diagrams of the reduced three-disc problem and derived the hypercone

equations. Both also provided invaluable contributions discussing and reviewing the

correctness of the mathematical content. We also acknowledge useful discussions

with Dr. Greg Huber of the University of Connecticut at the initiation of this project

regarding the novelty of the mathematical question.

1.5 How can building blocks be designed to self-assemble into

novel structures?

In Part III, we use the methods and software discussed in Part I to study the

self-assembly for specific anisotropic particle systems.

In chapter 8, we consider how nanoparticle polydispersity impacts the self-asembly

of ordered phases of anistropic nanoparticles. One difference between a system of

Argon atoms and a system of anisotropic nanoparticle “atoms” is that while in the

former case, every atom is physically identical to every other atom, in the latter case,

9

this is never exactly true under even the most stringent manufacturing conditions.

Each “atom” is composed of thousands to millions of physical atoms and no two

is composed precisely identically. If the anisotropic building blocks are predicted to

self-assemble into a mesoscopic structure when they are identical, how much variation

in the building block can be tolerated?

In this work, we focus primarily on the variation in shape of the building block.

The building block is a polymer-tethered nanosphere, which simulation predicts to

assemble into hexagonally packed cylinder, double gyroid, perforated lamallae, and

crystalline lamellar bilayers24,25. We study the impact of polydispersity, or variation

in the nanosphere diameter, on these phases. In general we show that the more

ordering in the nanosphere domain of the phase, the more sensitive the phase is to

polydispersity. This study was done in collaboration with Dr. Chris Iacovella.

In chapter 9 we discuss a method for measuring the packing density of a sub-

region of a microsegregated phase, such as what is formed by the polymer-tethered

nanosphere. By performing a Voronoi tessellation on a snapshot of the system, the

aggregate packing fraction of the Voronoi cells associated with a single component

can be measured. In systems composed of or modeled by spheres of bidisperse or

polydisperse diameters, the Voronoi tessellation, which does not take into account

diameters, can generate conflicting results. Instead an extension to the Voronoi tes-

sellation in the form of a Voronoi S tessellation, or a radical tessellation32,33 (also

referred to as a power diagram34,35 or Laguerre tesselation36) is needed. We show

how these tessellations can be calculated by extending a plane-cutting Voronoi cell

method37. While the Voronoi S tessellation is a more physically intuitive tessellation,

the radical tessellation shows the same density trends as a function of polydispersity

and is far more computationally efficient to calculate.

In chapter 10, we study small clusters of two types of particles that can be self-

assembled to create anisotropic particles. Colloidal anisotropic particles are attractive

10

building blocks for self-assembled materials because their complex interactions can be

exploited to drive self-assembly. We show how clusters can be robustly self assembled

from simple spherical particles of controllable diameters. Clusters of three to thirteen

such spheres are self-assembled with spherical code 38 point arrangements around one

of the spheres at a range of temperatures. These clusters are studied using both

molecular dynamic and free energy methods. The method introduce for assembling

these clusters suggests a rich new way for assembling anisotropic clusters.

This work was done in collaboration with Eric Jankowski, who authored the free

energy calculation method. This work was also assisted in its early stages by Michelle

Marval, an undergraduate in Material Science and Engineering.

All the work above was done under the advisement of Prof. Sharon C. Glotzer.

11

CHAPTER 2

Molecular Dynamics Methods

2.1 Molecular Dynamics

Molecular dynamics (MD) simulations and related methods are powerful tools for

modeling systems of particles39. The basic MD technique computes the trajectory of

n particles under the influence of a potential V (~x1, ~x2, ..., ~xn), the negative gradient

of which gives a conservative force ~F = −~∇V , by integrating Newton’s equations

of motion over discrete time steps that each advance the state of the system from

[~xi(t), ~vi(t)] to [~xi(t+ ∆t), ~vi(t+ ∆t)]. The quantities ~xi and ~vi are the position and

velocity of the i-th particle, respectively, t is the current simulation time, and ∆t

is the step size. Classical MD breaks the potential into pair-wise and bond terms

V =
∑

pairs i,j Vp(xij) +
∑

bonds i,j Vb(xij).

We use a velocity-Verlet integration scheme40 to update the system at each time

step. This integration scheme breaks the integration into three substeps.

1. Initial Integration

~vi

(
t+

∆t

2

)
= ~vi(t) + ~fi(t)

∆t

2m
(2.1)

~xi(t+ ∆t) = ~xi(t) + ~vi

(
t+

∆t

2

)
∆t (2.2)

12

2. Force Calculation ~fi(t+ ∆t, ~x(t+ ∆t))

3. Final Integration

~vi(t+ ∆t) = ~vi

(
t+

∆t

2

)
+ fi(t+ ∆t)

∆t

2m
(2.3)

2.1.1 Brownian dynamics

An NVT canonical ensemble is modeled by a thermostat added to the system40.

The Brownian Dynamics (BD) thermostat models the solvent-colloidal particle in-

teraction by applying a non-momentum conserving Langevin force40,41. In BD, a

temperature dependent random force and a drag force proportional to the particle

velocity is applied to each particle at each time step of the simulation. The force F

applied to each spatial component of particle i is

Fi = −γvi +Ri

√
3

√
2kBTγ

∆t
(2.4)

where γ is a coupling constant, T is the temperature of the solvent, ∆t is the time

step size, vi is the velocity of the particle, kB is the Boltzmann constant, and Ri is a

random number uniformly distributed in the range [-1,1].

Simulations using a BD thermostat are referred to as Brownian Dynamics (BD)

simulations. We use BD to simulate the self-assembly of particles in chapters 8 and

10.

2.2 Coarse-Grained Pair Potentials and Bonds

2.2.1 Shifted potentials

We use minimal phenomenological coarse-grained molecular models for the in-

teractions between particles. Different models of the potential energy for pairs of

particles have certain convenient features for desired minimal models. A primary

13

interest in this work, however, is modeling the interactions of particles with differ-

ent diameters. Any of the potentials mentioned above can be modified to handle a

collection of particles with different diameters by shifting the potentials radially by

a distance parameter αij that is determined for each particle pair. Each of the fol-

lowing potentials has a singularity which is then shifted by αij. For two particles of

modeled diameter σi and σj, αij = (σi + σj) /2 − σ, where σ is the unit of length of

each potential. Accordingly, the radial range over which each potential is evaluated,

or cutoff, must be increased by αij.

2.2.2 Shifted Lennard-Jones

Shifted Lennard-Jones includes a short range volume excluding interaction com-

ponent (r−12) and middle-range attraction interaction component (r−6) between two

particles of diameters σi and σj. It is modeled using a radially shifted 12-6 Lennard-

Jones potential (LJ), which is also truncated and shifted to zero at rcutoff . This

potential can be used to model solvent selectivity for nanoparticles for which the

solvent is poor, which results in a condition where nanoparticles tend to aggregate.

ULJS =


4ε

((
σ

r−αij

)12

−
(

σ
r−αij

)6
)

−4ε
((

σ
2.5

)12 −
(
σ

2.5

)6
)

r < rcutoff

0 r ≥ rcutoff

(2.5)

where, rcutoff = 2.5σ + αij. The cut off of 2.5σ is a commonly chosen cutoff distance

where the potential is 1/60th of its minimum value.

2.2.3 Shifted WCA

The purely repulsive Weeks-Chandler-Andersen (WCA) soft-sphere potential42 is

used to model to short-range, excluded volume interactions. This potential can be

14

used to model solvent selectivity for polymer tethers for which the solvent is good.

This potential can also be used to model “hard” spheres. In this case, by shift-

ing the potential, the interaction between spheres of diameter (α + σ) can be made

arbitrarily hard.

UWCA =


4ε

((
σ

r−αij

)12

−
(

σ
r−αij

)6
)

+ ε r < rcutoff

0 r ≥ rcutoff

(2.6)

where rcutoff = 21/6σ + αij. The cut off of 21/6σ truncates the potential at UWCA =

0.

2.2.4 Shifted Morse

The Morse potential43 was originally formulated to model diatomic bonds. How-

ever, it can be used to model a variety of coarse-grained particle-particle bonds. A

convenience of this potential is that the well depth and width can be explicitly con-

trolled by the parameters E0 and β, respectively. E0 has units of ε and β has units

1/σ.

UMorse =

 E0

(
e−2β(r−σ−αij) − 2e−β(r−σ−αij)

)
r < rcutoff

0 r ≥ rcutoff

(2.7)

where rcutoff = 2.5σ+αij. The cutoff of 2.5σ is specified here because, as parameter-

ized in this dissertation, the Morse potential has a similar range to the Lennard-Jones

potential.

15

Figure 2.1: A collection of “rods” composed of five beads integrated as a rigid unit.

2.2.5 Shifted FENE

Polymer tethers are modeled as bead-spring chains Bonds between polymer tether

beads are modeled via a finitely extensible non-linear elastic (FENE) spring44.

UFENE = −1

2
kr2

0 ln

(
1−

(
r − αij
r0

)2
)

+ UWCA (2.8)

where r0 is the minimum distance of the bond.

2.3 Rigid Body Models

One way to model anisotropic nanoparticles in MD is to create a composite body

out of point particles with isotropic pair potentials as done by Zhang and Glotzer2.

Directly rigid composite bodies by connecting point particles via steep, “hard” po-

tentials, such as bonds with stiff spring constants, requires using a prohibitively small

step size to maintain accuracy and stability. Potentials with infinitely steep interac-

tion terms can only be achieved with extensions to the basic MD framework.

One such extension is SHAKE45. The SHAKE algorithm enforces fixed bond

16

distances between two particles. Via an iterative method, any number of bonds in

the system can be constrained. A set of particles may be combined into a single

rigid body with an appropriate choice of bond constraints while taking special care

not to over-constrain the system. However, certain rigid shapes, such as planar and

linear molecules, cannot be created in three dimensions by setting bond distances

alone because the constraint matrix is singular. Although the SHAKE algorithm has

been extended to handle arbitrary shapes, for example, via angle and dihedral angle

constraints,46,47 the computational cost of these algorithms often becomes prohibitive

for parallel simulation codes as the number of constraints per cluster increases.

Modeling large or generic rigid arrangements of particles can also be achieved by

treating each defined set of particles as a single rigid body with only three transla-

tional and three orientational degrees of freedom (or two and one, respectively, for 2D

simulations)48. Such a method can be added to a MD package with minimal mod-

ifications by taking advantage of the existing code that computes particle-particle

interactions. Rigid body constraints are available in MD software packages such as

DLPOLY49 and LAMMPS50, and have been used to model cubes, rods, bent rods,

jacks, plates, bumpy spheres, water molecules and ions, and Buckyballs.51–58.

First we introduce the terminology of a system of rigid and non-rigid bodies and

then show how rigid body constraints are incorporated into an MD scheme. A system

contains n particles, each of which may belong to one rigid body or none at all, for a

total of Nbodies rigid bodies such that Nbodies ≤ n. The center of mass and velocity in

the space frame shall be indicated by lowercase ~r and ~v for a particle and uppercase

~R and ~V for a rigid body with appropriate subscript indices.

Consequently, each rigid body b is composed of Nb particles indexed by Bbk =

[Bb1, Bb2, ...BbNb]. The center of mass of body b is located at position ~Rb, moving at

a velocity ~Vb. Body b has a mass Mb and moment of inertia Ib. The orientational

degrees of freedom include its angular momentum ~Lb and a normalized quaternion

17

qb representing its orientation. In the body frame, a body’s center of mass is at the

origin and Ib is diagonal.

Thus, the position and velocity of a particle in the space frame can be calculated

as follows:

~rBbk = ~Rb + R(qb) · ~Dbk (2.9)

~vBbk = ~Vb + ~ωb × (R(qb) · ~Dbk), (2.10)

where ~Dbk is a displacement vector that defines the position of the particle relative

to the center of mass (COM) in the body frame and ~ωb = R(qb)I
−1
b RT (qb)~Lb is the

body’s angular velocity about its COM. R(q) is a 3x3 matrix that rotates vectors

from the body frame to the space frame59.

The net force ~F and torque ~τ acting on body b in the space frame are the sums

of the individual forces and torques resulting from the particle-particle forces ~fi com-

puted by existing algorithms. The sums

~Fb =

Nb∑
k=1

~fBbk (2.11)

and

~τb =

Nb∑
k=1

[R(qb) · ~Dbk]× ~fBbk (2.12)

are performed over all constituent particles.

18

2.3.1 NVE integration scheme

In the microcanonical NVE ensemble, Newtonian mechanics59 governs the motion

of rigid bodies with the following equations

~̇Rb = ~Vb (2.13)

~̇Vb = ~Fb/Mb (2.14)

~̇Lb = ~τb (2.15)

q̇b =
1

2
A(~ωb) · qb, (2.16)

where A(~ωb) is a 4x4 matrix defined in reference59.

These equations are numerically integrated in a way analogous to the velocity

Verlet discretization scheme used for unconstrained particles39. The velocity and

angular momentum of each rigid body are first updated to t+ ∆t/2, and the position

and orientation are updated to t+ ∆t by the equations

~V (t+ ∆t/2) = ~V (t) +
∆t

2M
· ~F (t) (2.17)

~R(t+ ∆t) = ~R(t) + ∆t · ~V (t+ ∆t/2) (2.18)

~L(t+ ∆t/2) = ~L(t) + ∆t/2 · ~τ(t) (2.19)

q(t+ ∆t) = Q
(
q(t),∆t, ~L(t+ ∆t/2), I

)
, (2.20)

where the function Q is an application of the Richardson method60.

Forces and torques are then calculated based on the updated positions and orien-

tations, and the velocity and angular momentum are advanced fully to t+ ∆t,

~V (t+ ∆t) = ~V (t+ ∆t/2) +
∆t

2M
· ~F (t+ ∆t) (2.21)

~L(t+ ∆t) = ~L(t+ ∆t/2) +
∆t

2
· ~τ(t+ ∆T) (2.22)

19

2.3.2 NVT and NPT integration schemes

One method to model a system of rigid bodies in a canonical NVT ensemble is

to combine a Langevin thermostat with an NVE integration scheme, also known as

Brownian dynamics (BD)39. The thermostat is applied to each individual particle in

the system, which effectively thermalizes the rigid bodies without momentum conser-

vation. This thermostat is also not a physically accurate model of the interaction of a

solvent with a rigid body, as the random molecular and viscous forces act isotropically

on each particle of the body.

Simulations in the NVT ensemble, as well as isothermal-isobaric NPT ensemble,

can also be accomplished with the application of a Nosé-Hoover thermostat (and for

NPT, a barostat) with an extended Hamiltonian. Miller and coauthors59 derive a

Hamiltonian formulation of the NVE rigid body equations of motion by introducing

the conjugate quaternion momentum. Kameraj and coauthors61 extend it with req-

uisite thermostat and barostat and derive the resulting numerical integration steps

similar to Equations 2.17–2.22.

2.4 GPU Computing

In recent years GPUs have become affordable, easily programmable, general-

purpose massively parallel processors. Originally designed for rendering graphics,

the massively parallel architecture of GPUs makes them well suited for many scien-

tific computing problems. Algorithms that exploit fine-grained parallelism have been

accelerated by orders of magnitude including financial models62, computational fluids

dynamics63, linear algebra performed by the GPU accelerated BLAS, LAPACK, and

sparse matrix libraries64,65, and Fast Fourier Transforms64,65.

The GPU hardware is unlike a CPU in many ways. First and foremost, while a

CPU core executes a single instruction at a time, a GPU executes hundreds. The

20

processor chip on the NVIDIA R© GeForce R© GTX 480 (GF100), for example, contains

480 individual CUDA cores. Each core is capable of processing one single precision

floating point or integer operation per clock tick. The CUDA cores on the GTX 480

are grouped into 15 multi-processors (MPs), which perform instruction scheduling

and are each capable of maintaining up to 1536 independent computation streams or

threads in flight at any one time. Thus the GPU is only fully occupied when more

than 23 thousand threads are executing on the device.

GPUs are Single-Instruction-Multiple-Thread (SIMT) parallel devices. In a GPU

environment, algorithms with fine-grained parallelism distribute calculations over

thousands of simultaneous threads, each sharing instructions but operating on differ-

ent data. A kernel is a launch of a large group of these threads scheduled in blocks

across a number of multiprocessors on the GPU device. Each thread has access to a

fraction of the resources of its multiprocessor, can share a small amount of memory

with other threads in the same block, but cannot communicate directly with other

running threads. GPUs have a hierarchy of memory structures, from global memory,

which is large, accessible by all threads and has a high bandwidth but a long latency,

to shared memory, which is relatively small and low latency, but shared only by the

threads in the same block. Recent GPU models have a L1/L2 cache hierarchy which

improves the performance of spatially and temporally local accesses among threads.

While the specifics of the GPU design change from one model to the next, the hier-

archy of memory resources and the limited ability to communicate are likely to be

common to most future SIMT architectures.

The performance of functions executed on the GPU, or kernels, can be limited by

either the memory bandwidth between the processor and device memory, or the rate

at which arithmetic instructions are retired. In most molecular dynamics applications,

the bottleneck is the device memory bandwidth. Optimal performance is obtained in

these cases by carefully minimizing the amount of memory accessed and by tuning

21

the access pattern to maximize cache hits.

While the device memory bandwidth is fast, transfers between host memory (ac-

cessible by the CPU) and device memory are typically between two and six gigabytes

per second, depending on the hardware configuration. Thus, in order to maximize

overall application speed, transfers between the host and device must be avoided

whenever possible.

Many applications of MD, such as soft matter self-assembly6,51,66 and protein fold-

ing67–69, necessitate running hundreds of millions of time steps per run and thousands

of individual runs. Accelerating the rate at which time steps are performed reduces

the time to discovery and enables better predictions through the use of higher fidelity

models.

The CUDA C programming environment, which was the first to enable truly

general purpose computing on massively parallel GPUs, was released in 2007. GPU-

accelerated MD methods were developed shortly thereafter70–72. GPU-accelerated

implementations of molecular dynamics (MD) have proven to be very fast compared

to running a simulation on a single CPU core, achieving two orders of magnitude

speed-ups70,73. There is a great interest in expanding the algorithms and methods

that can be accelerated by GPUs. However, reformulating methods developed for

a serial environment, or even a parallel computing environment where work is dis-

tributed over many CPU cores, to a massively parallel SIMT environment is not

always straightfoward. If a method cannot be effectively implemented in a multi-

threaded environment, because of either communication requirements or a stubbornly

serial step, the GPU speedup can be lost.

2.5 HOOMD-Blue

HOOMD-Blue73 is a GPU accelerated Molecular Dynamics Code package orig-

inally developed as HOOMD70 at Ames Laboratory and Iowa State University by

22

Dr. Joshua Anderson, and now being primarily developed within the Glotzer re-

search group at the University of Michigan. It is available under an open source

license73 and implements the standard algorithms employed by classical MD frame-

works. HOOMD-blue differs from most other GPU-accelerated MD methods in that

it implements every step of the computation on the GPU and avoids all host/device

transfers, except when needed for disk I/O. By avoiding both serial code bottlenecks

and slow memory transfers between the host and device, HOOMD-blue reaches max-

imum performance on a single GPU. In typical benchmarks of Lennard-Jones particle

fluids, HOOMD-blue on a current generation GPU is about 80-100 times faster than

on a single CPU core.

In each MD time step, the state of system is updated in Θ(N) time in a number

of phases. First, the particles are (1) binned into a cell list. From this cell list (2)

a neighbor list is constructed for each particle that contains the indices of all the

particles within the specified interaction range. The neighbor list is consulted when

(3) computing the pair forces between all interacting pairs of particles. Finally, (4)

the computed forces are used to update the particles forward to the next time step.

Each phase (1–4) consists of one or more kernels that are executed on the GPU, and

all necessary data structures are stored in device memory70,73. Different versions of

each phase can be interchanged to implement numerous force fields and ensembles,

thereby enabling diverse simulation possibilities in a single code package.

2.6 Other Software Resources

Rapid and reliable research depends upon using the computational tools developed

by others. In this section, we acknowledge and credit the software tools developed

with or by others to do this work.

23

1. Building Block Builder (BBB) BBB is a python interface to HOOMD-blue that

allows rapid design of complicated building blocks from sub-building blocks and

initialization of a simulation. This software was primarily authored by Joshua

Anderson, with contributions from the author as well as other Glotzer Group

members.

2. Freud Freud is a python interface to HOOMD-blue that allows easy access to

and analysis of simulation data. This software was primarily authored by Joshua

Anderson, with contributions from the author, as well as other Glotzer Group

members.

3. Large-scale Atomic/Molecular Massively Parallel Simulator, (LAMMPS) LAMMPS

is a classical molecular dynamics code distributed by Sandia National Labo-

raties31 which runs on single processors or in parallel. The Glotzer group wrote

and contributed several modules for this code, including the fix/rigid nve and

nvt modules and the fix ttm module.

4. Packmol Packmol74 is a software that generates initial configurations for MD

simulation by packing building blocks into a defined regions of space with flexible

constraints. It is developed by Leandro Martnez, State University of Campinas,

Brazil.

5. Visual Molecular Dynamics (VMD) VMD75 is a molecular visualization pro-

gram for displaying, animating, and analyzing large biomolecular (or soft mat-

ter) systems using 3-D graphics and built-in scripting. All system snapshots

in this dissertation were generated using VMD and rendered with Tachyon76

or Povray. VMD is developed with NIH support by the Theoretical and Com-

putational Biophysics group at the Beckman Institute, University of Illinois at

Urbana-Champaign.

24

6. Vorlume - Vorlume is a computational geometry library developed by F. Cazals,

The Algorithms Biology Structure team, INRIA Sophia-Antipolis. Vorlume

computes the volume of the domain occupied by the union of balls, as well as

the area of the surface bounding the domain.

7. Voro++ Voro++ is an open source software library for the computation of the

Voronoi diagram authored by Dr. Chris Rycroft of UC Berkeley and Lawrence

Berkeley Laboratory with contributions from this author.

8. MedialAxisGenerator MedialAxisGenerator is a matlab file provided by Suresh

Krishnan, University of Wisconsin, that generates the medial axis structure of

simple polygons.

Most analysis was done using licensed software packages such as Matlab or Math-

ematica.

2.7 Computational Resources

Simulations used locally authored code and the GPU-based HOOMD-Blue code

package under development in our group, which permitted rapid exploration via sim-

ulation. The latter simulations were run on our GPU cluster at the University of

Michigan and on the 32-node GPU cluster, AC, at the National Center for Super-

computing Applications on NVIDIA Tesla S1070s. The former simulations using our

CPU-based code were run on 2.0 Ghz G5 nodes at the University of Michigan and

2.2 Ghz Opteron Nodes (Jacquard Cluster at National Energy Research Scientific

Computing Center).

25

CHAPTER 3

Rigid Body Calculations on the GPU

The results of this chapter were published in:

Nguyen, Phillips, Anderson, Glotzer, Rigid body constraints realized in massively-

parallel molecular dynamics on graphics processing units, Computer Physics Commu-

nications, 182 (11), pp 2307-2313, November 2011

Nguyen, Trung, ”Computer-aided design of nanostructures from self-and directed-

assembly of soft matter building blocks,” Dissertation, 2011.

Molecular dynamics (MD) methods compute the trajectory of a system of point

particles in response to a potential function by numerically integrating Newton’s

equations of motion. Extending these basic methods with rigid body constraints

enables composite particles with complex shapes such as anisotropic nanoparticles,

grains, molecules, and rigid proteins to be modelled. Rigid body constraints are added

to the GPU-accelerated MD package, HOOMD-blue, version 0.10.0. The software can

now simulate systems of particles, rigid bodies, or mixed systems in microcanonical

(NVE), canonical (NVT), and isothermal-isobaric (NPT) ensembles. It can also apply

the FIRE energy minimization technique to these systems. In this paper, we detail

the massively parallel scheme that implements these algorithms and discuss how our

26

Algorithm 1 Update bodies, step 1

Require: dNbodies/blockDime blocks are run on the device
1: b← blockIdx · blockDim + threadIdx
2: if b ≤ Nb then
3: Mb ⇒M
4: Ib ⇒ I
5: ~Rb ⇒ ~Rold

6: ~Vb ⇒ ~Vold

7: ~Lb ⇒ ~Lold

8: qb ⇒ qold

9: ~Fb ⇒ ~F
10: ~τb ⇒ ~τ
11: ~V ← ~Vold + ∆t

2M
· ~F

12: ~Vb ← ~V
13: ~Rb ⇐ ~Rold + ∆t · ~V
14: ~L← ~Lold + ∆t/2 · ~τ
15: ~Lb ⇐ ~L
16: qb ⇐ Q(qold,∆t, ~L, I)
17: end if

design is tuned for the maximum possible performance. Two different case studies

are included to demonstrate the performance attained, patchy spheres and tethered

nanorods. In typical cases, HOOMD-blue on a single GTX 480 executes 2.5–3.6 times

faster than LAMMPS executing the same simulation on any number of CPU cores in

parallel. Simulations with rigid bodies may now be run with larger systems and for

longer time scales on a single workstation than was previously even possible on large

clusters.

3.1 Implementation

Augmenting HOOMD-blue to include rigid body constraints is accomplished in

two parts. First, the following data structures are added to hold the dynamic, static,

and computed properties for each body: ~Rb, ~Vb, qb, ~Lb, Mb, Ib, Nb, Bbk, ~Dbk, ~Fb,

and ~τb. Each quantity with a single subscript is stored in a simple array. Those

with two subscripts are stored in rectangular matrices where the second index is the

27

Algorithm 2 Update particles

Require: Nbody blocks are run on the device

Require: N I, ~R, q, ~V , and ~ω are stored in shared memory.
1: b← blockIdx
2: if threadIdx == 0 then
3: Nb ⇒ N
4: Ib ⇒ I
5: ~Rb ⇒ ~R
6: qb ⇒ q
7: ~Vb ⇒ ~V
8: ~Lb ⇒ ~L
9: ~ω ← RT (q)I−1R(q)~L

10: end if
11: syncthreads()
12: for w = 1 to dN/blockDime do
13: k ← w ∗ blockDim + threadIdx
14: if k ≤ N then
15: Bbk ⇒ i
16: ~Dbk ⇒ ~D
17: ~ri ⇐ ~R + R(q) · ~D
18: ~vi ⇐ ~V + ~ω × (R(q) · ~D)
19: end if
20: end for

fastest varying index. Dimensions are sized to the largest body and the leftover space

padded with zeroes. Second, new routines are written that integrate the equations of

motion of the rigid bodies in the system, with separate versions for the NVE, NVT,

and NPT ensembles.

To optimize performance, all data structures are stored in device memory and all

integration steps are carried out on the GPU. No communication is required between

the host and the device to advance the system. Although padded matrices waste some

memory in systems where different bodies contain different numbers of particles, they

enable contiguous memory accesses in the integration kernels.

28

3.1.1 NVE integration kernels

In HOOMD-blue, the integration of Newton’s equations of motion for rigid bodies,

equations 2.17–2.22, is distributed over five kernels. The first two kernels update the

state of the body and its constituent particles. Next, one kernel sums the force and

torque on each body from the forces applied to its particles. Finally, two kernels

apply the second half of the update to the state of the body and its particles.

Pseudocode describing the basic structure of these kernels is provided in Algorithm

1 and 2. Within the pseudocode, device memory reads/writes are indicated by a

double arrow ⇒/⇐ and local memory writes by a single arrow ←. The performance

of each of these kernels is bound by device memory bandwidth. Memory accesses are

ordered to be contiguous so as to best utilize the cache hierarchy on the GF100 and

maximize their performance.

The first kernel, detailed in Algorithm 1, updates the state of the rigid body at the

beginning of the time step. Each thread loads state data for its assigned body from

global memory, updates the position, orientation, velocity, and angular momentum

following Equations 2.17–2.20, and writes the updated state back to global memory.

All memory transactions made by Algorithm 1 are contiguous.

The second kernel, detailed in Algorithm 2, sets the constrained position and

velocity of each particle that belongs to a rigid body. One block of threads is assigned

to each body. At the beginning of the kernel, one thread loads the state of the rigid

body into shared memory and a barrier synchronization is performed. Then, all

threads participate in computing ~ri and ~vi. Each thread computes these quantities

for several particles i, where i = Bbk and k = threadIdx + w · blockDim, in a loop

over w = 0, 1, 2, 3, This sliding window construction handles bodies of arbitrary

size with a single fixed block size. The matrices Bbk and ~Dbk are stored with k as

their fast index so that the reads on lines 15 and 16 of Algorithm 2 by neighboring

threads are contiguous in memory. The writes on lines 17 and 18 may or may not be

29

contiguous, depending on the order in which particle indices are stored in Bbk. To

avoid this potential performance hit, all particles in body b are grouped together and

listed in order in Bbk.

Next, particle-particle forces are computed via the standard MD force calculation

kernels. Then the net force ~Fb and torque ~τb on each body are calculated in the third

kernel. As in Algorithm 2, one block of threads is assigned to each body. Each thread

i loads Bbk, ~Dbk, and the force ~fk from global memory and the net force and torque

are summed using a standard parallel reduction performed in shared memory. The

resultant ~Fb and ~τb are then written out to global memory.

In the fourth kernel, the velocity and angular momentum of each rigid body are

updated again via equations 2.21 and 2.22. One thread is assigned to each rigid body

in a manner analogous to Algorithm 1.

Finally, in the fifth kernel, each body’s particles are set to their updated con-

strained velocity. One block of threads is assigned per body. The kernel is nearly

identical to Algorithm 2, except that only the particle velocity is calculated and

written to global memory.

All particles that are not part of a rigid body are updated to the next step by

the existing standard MD integration kernels. Validation and performance results for

these rigid body integration algorithms are provided in Section 3.2.

3.1.2 FIRE energy minimization

The FIRE algorithm77 works in conjunction with any MD integrator to compute

a trajectory to a local energy minimum. At each iteration step, the integrator is

used to advance the positions and velocities for all the particles in the system, given

the computed forces. FIRE modifies velocities and the step size by the following

prescription. As long as the particles in the system are moving in directions that

lower the energy of the system as a whole, and have been for a sufficient number of

30

Figure 3.1: (left) Initial configuration of randomly placed rods (blue) intermixed
with free particles (green). Rods are attracted to rods and free particles are attracted
to free particles. (right) Final configuration after the FIRE energy minimization
converges. This image was originally published in reference1.

steps, particle velocities and the step size are increased, subject to limits. As soon

as the particles are no longer moving so as to lower the energy of the whole system,

all particles are brought to a halt, the step size is decreased, and new velocities are

generated in the direction of the force on each particle. Convergence to a minimum

energy is attained when the root mean square force and change in the energy of the

system are below set tolerances. In reference77, FIRE is demonstrated to be effective

and surprisingly fast compared to competing schemes, even for systems with millions

of degrees of freedom.

We extend FIRE to a system containing rigid bodies by adding the orientation of

the rigid bodies to the degrees of freedom and use the rigid body NVE integrator to

advance the positions, velocities, orientations, and angular velocities of the bodies.

Both the center of mass velocities and the angular velocities of all the bodies are

reset to zero if the energy of the system stops decreasing. Convergence is reached

when the root mean square force, root mean square torque, and change in the energy

of the system are below set tolerances. Reference77 points out that all degrees of

freedom must be comparable for the algorithm to work. In practice, we find that the

orientation is a sufficiently comparable degree of freedom and that it does not require

31

Figure 3.2: A system of 225 patchy spheres, each composed of 90 particles. The red
and blue particles are attractive patches on the surface of the body. A single patchy
sphere is shown in the upper right for reference. As shown by Zhang2, these bodies
self assemble into rings of six spheres. The spheres have been made invisible in the
frontmost octant so that the ring structure formed by the invisible spheres can be
shown in green. This image was originally published in reference1.

special handling.

Figure 3.1 demonstrates FIRE applied to an arrangement of rods and free particles.

The rods are rigid bodies composed of five particles arranged linearly. Rod particles

interact with other rod particles by the attractive Lennard- Jones (LJ) potential. Free

particles also interact by the attractive LJ potential as well. Rod particles and free

particles interact by a WCA volume excluding potential. An energy minimization is

performed with a force tolerance of 1e-4, a torque tolerance of 0.1, and a change in

32

HOOMD-blue

HOOMD-blue

HOOMD-blue

LAMMPS

LAMMPS

LAMMPS

Number of cores

P
er
fo
rm

a
n
ce

(t
im

e
st
ep
s
p
er

se
co
n
d
)

1 16 32 64 128
0

1000

2000

3000

4000

Figure 3.3: Performance in time steps per second obtained while running a simulation
of 225 (dotted lines), 667 (dashed lines), and 2000 (solid lines) rigid bodies consisting
of 20250, 60030, and 180000 particles respectively. LAMMPS performance on 1,
2, 4, 8, 16, 32, 64, and 128 CPU cores is compared to HOOMD-blue performance
on a single NVIDIA GTX 480 (indicated by the horizontal lines). This image was
originally published in reference1.

energy tolerance of 1e-12. The FIRE energy minimization causes the rods to collapse

into a hexagonally packed bundle and the free particles to collect into a droplet outside

of the rod bundle after 60,684 iterations. Only the first five percent of the time steps

are spent collapsing the rod bundle. The rest are needed to collect the dispersed LJ

droplets into a single droplet.

3.2 Validation and Performance

The rigid body constraint algorithm is well established in serial and parallel CPU

codes49,60 and is mathematically no different when implemented on the GPU. How-

ever, to verify the correct function of our code, various quantities are checked for

validity including energy and momentum conservation in the NVE ensemble, as well

33

Figure 3.4: A system of one thousand tethered nanorods that have self-assembled
into a lamellar bilayer. The upper right inset depicts a single tethered nanorod for
reference. Each tethered nanorod is modeled by five particles rigidly connected in a
line, attached to a flexible tether of nine particles. Bonds, both rigidly constrained
and unconstrained, are shown as cylinders. Tethers have been removed from view in
the right half of the image. This image was originally published in reference1.

as temperature and pressure stability and the correct distribution of energy over the

degrees of freedom in the NVT and NPT ensembles. Numerous rigid body systems

are also simulated side-by-side on both the CPU and GPU to compare the results

and evaluate their relative performance.

The performance scaling of the GPU-accelerated algorithm is tested with simula-

tions of a system of “patchy particles” studied by Zhang et al.2. These rigid bodies

shall be subsequently referred to as “patchy spheres” to avoid confusion with our

usage of the word “particle” referring to the smallest simulation unit. Each patchy

sphere is a rigid body composed of 90 particles distributed on the surface of a sphere.

34

Performance (time steps per second)

43.7

282

617

717

212

824

1415

1791

1 CPU core
E5540

8 CPU cores
E5540

32 CPU cores
E5540

64 CPU cores
E5540

128 CPU cores
E5540

1 GPU
S1070

1 GPU
S2050

1 GPU
GTX 480

HOOMD-blue

LAMMPS

0 350 700 1050 1400 1750 2100 2450

Figure 3.5: Performance in time steps per second obtained while running a simula-
tion of one thousand tethered nanorods (14000 total particles) on various hardware
configurations. Each benchmark is performed 50 times. Bars are plotted at the me-
dian value and error bars display one standard deviation of variability. This image
was originally published in reference1.

Two attractive patches, each constructed from two linear arrangements of particles

that interact with Lennard-Jones pair potentials, are placed at an angle θ = 2π/5

with respect to the center of the body. Per Zhang et al.2, this system self- assembles

into rings containing six patchy spheres. The chosen benchmark systems consist of

225, 667, and 2000 patchy spheres resulting in 20250, 60030, and 180000 individ-

ual particles, respectively. Each system was annealed to an equilibrium structure at

kBT = 1.0ε. Figure 3.2 shows the system of 225 patchy spheres.

Each simulation is executed using both the LAMMPS and HOOMD-blue code

packages. LAMMPS simulations are deployed in parallel over 1, 2, 4, 8, 16, 32, 64,

and 128 cores on the Nyx cluster at the University of Michigan. The nodes used

are HP ProLiant DL1000 models with Intel R© Xeon R© e5540 processors operating at

2.53 GHz and connected via 20Gb/s Infiniband. All nodes have identical software

configurations, running an x86 64 install of RHEL 5.5, CUDA 3.0, and NVIDIA

drivers 195.36.24. The HOOMD-blue simulations were performed on a custom built

workstation with a single NVIDIA GTX 480. It also contains an AMD AthlonTM II

35

X4 630 processor operating at 2.8 GHz and runs CentOS 5.5, CUDA 3.0, and NVIDIA

drivers 260.19.21.

Performance results are measured by the number time steps that are executed

per second and are shown in Figure 3.3. For the 20K and 60K particle systems,

LAMMPS achieves peak performance at 32 and 64 cores, respectively. For the 180K

particle system LAMMPS no longer scales well at 128 cores; the performance is only

11% faster than it is at 64 cores. The reason for the poor scaling is the inter-node

communication of the rigid body data structures during the time step. LAMMPS uses

spatial decomposition to parallelizes a MD simulation over many cores. In simulations

of rigid bodies on a CPU cluster, the particles of a given body can be distributed

over an arbitrary number of cores. The force and torque summation is performed

in LAMMPS by an all-reduce operation that returns results from all nodes to each

node60. In comparison, the GPU-accelerated implementation is deployed on a single

GPU and requires no inter-node or even host-device communication. The equivalent

operation to the all-reduce operation is performed within a block on a single streaming

multiprocessor. Consequently, HOOMD-blue attains a level of performance for rigid

body simulations that cannot be reached with a parallel CPU-only code. For these

patchy sphere benchmarks in particular, over a wide range of system sizes HOOMD-

blue is 2.5–3.6× faster than LAMMPS at its peak performance for any number of

cores.

We also tested systems that mix rigid bodies and unconstrained particles. One

example, shown in Figure 3.4, is a system of polymer-tethered nanorods originally

studied in reference51 using LAMMPS. In this simulation, each tethered rod is com-

posed of a five particle rigid rod and a nine particle flexible tether. One thousand

tethered rods, for a total of 14000 particles, are placed in a box with packing fraction

of 0.22. Rod particles are attracted to each other via a shifted Lennard-Jones pair

potential with an interaction cutoff of 2.5 distance units. All other particle interac-

36

tions are WCA volume excluding. The system is in an NVT ensemble with a kinetic

temperature of kBT = 1.4ε. At these parameters the tethered nanorods self assemble

into lamellar bilayers51.

Simulations are executed with HOOMD-blue on three modern NVIDIA GPUs, a

GTX 480, a Tesla S1070, and a Tesla S2050. The Tesla S1070 and S2050 are installed

in the Nyx cluster environment where they are hosted by IBM System x3455 nodes

each with two AMD OpteronTM 2356 processors operating at 2.3 GHz. The LAMMPS

simulations were deployed over 1, 8, 32, 64, and 128 cores of the Nyx cluster in the

same configuration used for the patchy sphere runs.

The results of this side-to-side comparison is shown in Figure 3.5. HOOMD-blue

running on a GTX 480 executes the tethered nanorod simulation at 1791 time steps

per second, which is 2.5× faster than LAMMPS running at peak performance in

parallel on 64 CPU cores.

3.3 Conclusion

This chapter discusses how a rigid body constraint algorithm is incorporated into

HOOMD-blue, a massively parallel GPU-accelerated MD application. All data struc-

tures are stored on the GPU in order to attain the highest level of performance

possible by avoiding costly transfers between the host and device. The performance

of the kernels implementing the rigid body integration steps is limited only by the

device memory bandwidth. This is achieved by carefully avoiding unnecessary device

memory accesses and arranging the access patterns so as to make optimal use of the

cache hierarchy on the GF100.

Methods for simulating NVE, NVT, and NPT ensembles of rigid bodies are im-

plemented in HOOMD-blue version 0.10.0, which is available free and open source73.

While two orders of magnitude increases in computational speed over a single CPU

core have already been documented for this code package running basic MD simu-

37

lations70,73, the GPU is especially well-suited for rigid body constraints. Two case

studies are presented in this chapter where HOOMD-blue consistently executes a fac-

tor of 2.5–3.6 times faster than the peak performance of the LAMMPS code package

parallelized over any number of cores.

This chapter also introduces a modest adaptation to the FIRE energy minimiza-

tion algorithm that makes it suitable for use with rigid bodies. To our knowledge,

HOOMD-blue is the first MD code to allow energy minimization to be applied to

systems with rigid body constraints.

With GPU acceleration, MD simulations of systems of rigid bodies can now be

carried out on larger systems and for longer time scales on a single workstation than

was previously possible even on large clusters. This advance will allow simulations

of diverse systems, from molecules and proteins to nanoparticles and colloids, and

explorations of previously inaccessible phase spaces.

38

CHAPTER 4

Massively Parallel Pseudo Random Number

Generation for Brownian Dynamics and

Dissipative Particle Dynamics

The results of this chapter were published in:
Phillips, Anderson, Glotzer, Pseudo-random number generation for Brownian

Dynamics and Dissipative Particle Dynamics simulations on GPU devices, Journal
of Computational Physics, 230 (19), 7191-7201, August 2011

Two extensions of the molecular dynamics algorithm are Brownian Dynamics

(BD)41, also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD)78,79.

BD and DPD are implicit solvent methods commonly used in models of soft matter

and biomolecular systems40. BD and DPD enable longer simulation time-scales and

larger systems to be studied by abstracting the interaction between the bath of solvent

molecules and the larger particles of interest. Simulating the ballistic energy of the

numerous solvent particles is replaced by a randomized coarse-grained force controlled

by system temperature. Functionally, the interaction acts as a thermostat. BD and

DPD are used to model polymers, proteins, nanoparticles, and colloidal systems80–84.

BD and DPD both require random numbers to be generated at a rate of ∼ kp per

time step, where p is the number of particles in the system and k is a constant. In a

serial environment, these random numbers are typically drawn from a single stream of

random numbers generated by a pseudo-random number generator (PRNG). Ignoring

all issues of how the numbers generated would be delivered to or from the host CPU

39

and GPU, using the test hardware of this paper, the GPU is capable of generating

more than 140 times as many random numbers per second as the CPU. In general, it

is the most efficient for random numbers to be generated as close in the hardware to

their intended usage as possible. In a SIMT parallel computing environment where

each particle calculation is assigned to a single short-lived thread, small batches of

random numbers must be distributed over thousands of threads and millions of kernel

calls.

In this chapter, we introduce a novel scheme for generating such widely distributed,

small batches of random numbers and then show how this scheme supports BD and

DPD simulations. Our scheme, henceforth referred to as one-PRNG-per-kernel-call-

per-thread (pK−pT) uses a disposable PRNG to produce a micro-stream of random

numbers in each thread. The advantage of our scheme over other GPU PRNG schemes

is that it does not use the GPU global memory and can accommodate a wide range

of PRNG numerical algorithms. We implement our scheme with the Saru PRNG

package85 and the Tiny Encryption Algorithm, TEA86,87. Given statistically robust

sub-algorithms, our scheme is statistically robust, is moderately faster than other

schemes for the BD thermostat, and enables a significantly faster algorithm for the

DPD thermostat. The pK−pT scheme is currently used to implement BD and DPD

in the HOOMD-blue GPU-accelerated MD code package73.

In Section 4.1, we discuss prior work implementing PRNGs in parallel environ-

ments and introduce our pK−pT scheme. In Section 4.2, we briefly introduce how

HOOMD-blue accelerates MD, the BD and DPD methods, and how each method

uses PRNG schemes. In Section 4.3, we introduce a particular implementation of the

pK−pT scheme based on the Saru PRNG and TEA, address how we validated our

pK−pT scheme, and discuss two micro-benchmarks that we used to measure the per-

formance of the pK−pT scheme against a one-PRNG-per-thread scheme. In Section

4.4, we provide concluding remarks.

40

4.1 Pseudo-Random Number Generation

Generating robust pseudo-random number streams on a CPU is a well-studied

topic88–90. In general, most algorithm design choices involve making a trade-off be-

tween the statistical robustness of the random number stream and the computational

cost of generating the stream. Most trade-off discussions focus on the generation of

the PRNG stream without much consideration of how the stream is initialized. With

the advent of massively parallel architectures, however, new questions arise regard-

ing how to handle random number generation and both of these considerations are

important.

4.1.1 Parallel processor PRNG schemes

In prior work in multi-processor parallel computing environments, a commonly

used scheme is the one-PRNG-per-processor scheme. In this scheme, each processor

maintains a uniquely seeded and therefore independent random number stream. For

example, for MD methods that require random numbers, the Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS) code package31 uses a Marsaglia PRNG91

with a unique seed generated for each processor. Alternatively, Matsumoto and

Nishimura92 proposed that rather than create independent seeds for each instance

of their Mersenne Twister PRNG, instead the processor id could be encoded into the

characteristic polynomial used to generate the random number stream.

Another common scheme has been one-PRNG-for-all-processors93. Here, a leap-

frogging or blocking method is used to partition a single random number stream over

many processors. This PRNG scheme is limited to using sufficiently robust PRNGs

that also have an efficient method for advancing the state.

In a GPU SIMT environment, these methods, respectively, become one-PRNG-

per-thread and one-PRNG-for-all-threads. Multiple approaches have been considered

for the generation of random numbers in different types of applications87,94–97. Ref-

41

erence94 focuses on either generating a bank of random numbers written to global

memory or for use with long calculations executed over a single long kernel call.

Langdon95 proposes using a Parker-Miller PRNG, seeding each thread with a master

seed plus the thread number, and discarding the first three random numbers gener-

ated. For a BD application, Zhmurov et al.96 proposes using a separate PRNG on

the CPU to generate a sequence of random seeds used to initialize a PRNG, such as

Hybrid Tau or Ran2, in each thread. The drawback of these methods for BD is that

the random stream of numbers is used over many very short kernel calls. The state

of the PRNG associated with each thread is loaded from memory at the beginning

of the kernel call and stored to memory at the end of the kernel call. Per-thread

resources, possibly even global memory, may be exhausted when storing large PRNG

state vectors, thus making their use in real applications impractical. Ran2, for exam-

ple, has a state size of 35 long integers (64-bits) or 280 bytes per thread, mandating

either small thread blocks or expensive repeated reads and writes to global memory96.

The Marsaglia PRNG used by LAMMPS has an even larger state size of 100 doubles

and two integers per stream and, thus is also impractical for a one-PRNG-per-thread

scheme. Nearly all of the robust serial PRNGs also have huge state sizes, making

them also unsuitable for a one-PRNG-per-thread scheme90.

For one-PRNG-for-all-threads schemes, either the PRNG must be computation-

ally efficient to advance or partition, or a separate kernel must be called to periodically

generate random numbers and “bank” them in global memory for later use. As an ex-

ample of a stream that can be shared amongst the threads, Zhmurov et al.96 consider

the use of a lagged Fibonacci algorithm. For this PRNG, each thread must still load

and store state information, albeit storing far fewer total variables than if this PRNG

was used in a one-PRNG-per-thread scheme. Banking random numbers requires a

data management scheme in the simulation kernel for expending and refreshing the

bank. Also, without a parallel implementation of the PRNG, banking random num-

42

bers in global memory94 will become a bottleneck in a massively parallel algorithm.

And even if pre-generating such a bank had no computational cost, merely loading a

random number into a thread takes more time than generating it in the thread from

state information.

4.1.2 One-PRNG-per-kernel-call-per-thread scheme, pK−pT

In the pK−pT scheme, instead of loading, modifying, and storing the PRNG

state in global memory, we propose to create a per-thread PRNG state by applying a

hash-based PRNG to data unique to each thread and kernel call and then applying a

streaming PRNG to generate a micro-stream of random numbers. At the end of the

thread lifetime, the PRNG state can be discarded. In other words, the state of the

PRNG is not stored in global memory.

A hash-based PRNG is a function that applies a sequence of integer operations

to an input vector so as to generate a single deterministic output that is effectively

decorrelated from the input. In order to achieve a sufficient degree of decorrellation,

a large number of operations are applied to the input. In comparison, most streaming

PRNGs use few integer operations to efficiently generate statistically random streams.

The usual purpose of a hash-based PRNG is for message encryption. A block

of data is passed through a cryptographic hash such as the Secure Hash Function,

SHA, with variants SHA-0,-1, or -2, the Message Digest Function 5 (MD5), or the

Tiny Encryption Algorithm (TEA) and its extension XTEA, to generate encrypted

text that cannot be decrypted without knowledge of the key used. The demands on

cryptographic hash functions are very similar to the demands of streaming PRNGs,

as any measurable patterns in the output makes the encryption vulnerable to attack.

Using a cryptographic hash alone to generate a small set of random numbers in

a massively parallel GPU environment was explored in references97 and87. Tzeng

and Wei97 used MD5 as a random number generator on a GPU for graphics appli-

43

cations and demonstrated that it produces a high quality set of random numbers.

Subsequently, Zafar et al.87 compared the use of TEA and XTEA against MD5 on a

GPU as a random number generator and found that TEA and XTEA also produce

random number sets of comparable statistical quality with fewer computations. The

limitation of using a hash-based PRNG alone is that the number of random numbers

that can be generated in the thread is restricted to the size of the algorithm out-

put, unless the computationally-heavy hash-based PRNG is applied multiple times.

By using the hash-based PRNG to create the state for a streaming PRNG, an arbi-

trary length micro-stream of quality random numbers can be produced for reasonable

computational effort.

As long as the micro-stream of random numbers for each calculation can be as-

sociated with a unique set of integers, a hash-based PRNG can be applied once to

the set to create a unique PRNG state for a micro-stream. References97 and87, for

example, use lattice point coordinates as inputs. For a MD application, an example

of a unique set of input integers is (1) a global user chosen seed, (2) an integer that

is incremented in each subsequent kernel call (e.g. the time step), and (3) an inte-

ger unique to each micro-stream across a single kernel call (e.g. the thread index).

Seeds (1), (2), and (3) define each micro-stream uniquely over a set of simulations,

sequence of time steps, and sequence of threads. No memory bandwidth is spent

accessing these three integers since seeds (1) and (2) are broadcast to all threads, and

since seed (3) uses data already available in the thread.

This scheme takes advantage of the massive parallelism of a GPU, whereby the

long memory latencies can be hidden by arithmetic instructions performed in other

concurrently running threads. An ideal ratio of arithmetic to global memory accesses

enables full utilization of both the memory bandwidth and instruction throughput64.

While the ideal ratio is device dependent, the value for one specific GPU, the NVIDIA

Tesla C2050, is 27.8 instructions per 32 bits loaded. In a simulation large enough

44

that the streaming multiprocessors are sufficiently occupied, a hash-based PRNG

that requires 28 instructions to initialize the state vector for a streaming PRNG can

be just as computationally efficient as a one-PRNG-per-thread scheme that loads a

small 32-bit state.

Also, as the computational throughput in GPU devices is currently increasing

faster than the memory bandwidth, trading loads and store for computations is likely

to remain a winning strategy. For a kernel that is memory bound without considering

the generation of random numbers, the pK−pT scheme will generally outperform any

scheme requiring memory accesses.

4.2 SIMT Molecular Dynamics, Brownian Dynamics, and

Dissipative Particle Dynamics

In molecular dynamics (MD) algorithms, the trajectory of a system of particles

is generated by solving Newton’s equations of motion repeatedly for suitably small

time steps. HOOMD-blue, which implements all computations on the GPU, realizes

a classical MD algorithm by employing a velocity Verlet integration scheme. The

calculation and summation of short-range forces between pairs of particles is reduced

to an Θ(N) calculation by using cell lists and neighbor lists. A given particle’s

neighbor list contains the indices of all particles within interaction range of that

particle. The net pair-wise force acting on a particle can be determined by consulting

only those particles in that particle’s neighbor list.

In HOOMD-blue, the basic kernels deployed over a single time step are (1) a first

update of the position and velocity of the particles (2) the calculation and summation

of the forces on each particle, and (3) a second update of the velocity of the particles.

When needed (typically every 9 time steps), (4) the cell list for the system is recalcu-

lated and (5) the neighbor list for each particle is built. All the kernels are handled

45

by assigning a thread to each particle70,73.

One significant difference between SIMT MD algorithms and a streaming serial

MD algorithm is how the pair-wise force summation is handled. On the CPU, the

calculation and summation of pair-wise forces is generally made more efficient by

calculating the force only once per particle pair40. If particleA and particleB interact,

the interaction force can be calculated while looping over the neighbors of particle

A, and then the equal and opposite force acting on particle B can be written to a

globally stored force array. In contrast, most massively parallel molecular dynamics

algorithms that employ one thread per particle have each thread calculate all the

forces acting on a given particle70,98–101, with a the texception of references102 and103.

This doubles the number of non-bonded force computations, but converts a gather-

scatter memory access pattern to a simple gather memory access pattern104 leading

to an overall faster algorithm.

4.2.1 Brownian dynamics

The BD thermostat models the solvent-colloidal particle interaction by applying a

Langevin force40,41. In BD, a temperature dependent random force and a drag force

proportional to the particle velocity is applied to each particle at each time step of

the simulation. The force F applied to each spatial component of particle i is

Fi = −γvi +Ri

√
3

√
2kBTγ

∆t
(4.1)

where γ is a coupling constant, T is the temperature of the solvent, ∆t is the time

step size, vi is the velocity of the particle, kB is the Boltzmann constant, and Ri is a

random number uniformly distributed in the range [-1,1]. To compute this force for

a given particle, three random numbers (one for each x, y, and z component) and the

velocity of the particle are required. We choose to incorporate the force calculation

46

into the second update of the velocity of the particles, kernel (3).

The one-PRNG-per-thread, -for-N-threads, and -for-all-thread schemes are all

suitable for generating the single micro-stream of three random numbers required

per particle per time step. Algorithm 3 provides a description of a BD kernel using a

one-PRNG-per-thread scheme.

To use the pK−pT scheme for BD, the hash-based PRNG is applied to (1) a

global seed, (2) the time step of the simulation, and (3) the particle index (i.e. the

thread index) to generate an initialized state vector for the streaming PRNG. The

PRNG state data is created and discarded inside the thread, and therefore does not

need to access global memory. Algorithm 4 provides a description of a BD kernel

using a pK−pT scheme.

4.2.2 Dissipative particle dynamics

The net sum of all the Langevin forces applied to a system for the BD thermostat

is not zero because the random forces are not computer pairwise, so momentum is

not conserved and therefore hydrodynamic behavior is not preserved (without the

introduction of interaction tensors105). In contrast, the DPD thermostat method

models the solvent-colloidal particle or bead interaction by applying the Langevin

force to all pairs of interacting particles. Equal and opposite random and drag forces

are applied to particle pairs, so the momentum is conserved both locally and system-

wide. The force F applied to a pair of particles i and j in DPD, where rij < rinteraction

is

Fij = Fc(rij)− γ[ω(rij)]
2(~vij · r̂ij)

−Rijω(rij)
√

3
√

2kbTγ
∆t

47

where Fc is a conservative force, γ is a coupling constant, T is the temperature of the

solvent, dt is the time step size, ~vij is a velocity difference vector ~vij = ~vi−~vj, r̂ij is a

unit vector r̂ij = (~ri−~rj)/|~ri−~rj|, ω(rij) is a function of the distance between particle

i and j, and Rij is a random number uniformly distributed in the range [-1,1]. A

single random number is required for each pair-wise applied Langevin force between

interacting particles. Depending on the density of the system and the interaction

radius, this may require generating ∼50-100 random numbers per particle.

While the DPD algorithm effectively applies a pair-wise force to the system of

particles, that force cannot be simply incorporated into the existing pair-wise force

summation kernel (2) using a one-PRNG-per-thread, per-N-threads, or for-all-threads

scheme. In kernel (2), the same random force must be applied in both threads that

compute the ij interaction. This implies that either some model of communication

between threads, some method of two threads (and only those two threads) loading the

same random number from a bank, or for this algorithm and only this step, a separate

fine-grained decomposition based on one-thread-per-force calculation, with all the

accompanying data structures, must be implemented. The first option, modifying

kernel (2) to include a scatter communication using atomic operations to write to a

global force array, is the simplest. This communication significantly slows the kernel

execution time, as shown by our later benchmarks. Algorithm 5 provides a description

of such a DPD kernel using a one-PRNG-per-thread scheme.

The DPD pair-wise force can be simply incorporated into the existing pair-wise

force summation kernel (2) if using the pK−pT scheme. The pK−pT scheme enables

two threads to generate the same random number, and thus the same stochastic force,

without requiring coordination between the threads. To use the pK−pT scheme for

DPD, the hash-based PRNG is applied to (1) a global seed, (2) the time step of the

simulation, and (3) the index of the first (4) and second particle in the interaction.

This generates an initialized state vector for the streaming PRNG that is the same

48

in both threads. Algorithm 6 provides a description of a DPD kernel using a pK−pT

scheme.

Algorithm 3 One-PRNG-per-thread (Brownian Dynamics)

if tid ≤ nparticles then
load RNGstate← d RNGstate[tid]
load v ← d velocity[tid]
load f ← d force[tid]
Rx ← callRNG()
Ry ← callRNG()
Rz ← callRNG()
f = f + F(v,Rx, Ry, Rz)
v = update velocity(v, f)
store d RNGstate[tid]← RNGstate
store d velocity[tid]← v
store d force[tid]← f

end if

Algorithm 4 One-PRNG-per-kernel-call-per-thread (Brownian Dynamics)

Require: timestep, seed are broadcast
if tid ≤ nparticles then

load v ← d velocity[tid]
load f ← d force[tid]
RNGstate← hashRNG(timestep, seed, tid)
Rx ← callRNG()
Ry ← callRNG()
Rz ← callRNG()
f = f + F(v,Rx, Ry, Rz)
v = update velocity(v, f)
store d velocity[tid]← v
store d force[tid]← f

end if

4.3 Validation

4.3.1 SaruSaru and SaruTEA PRNG

For performance testing the pK−pT scheme we considered two combinations of a

hash-based and streaming PRNG. The PRNG package Saru 85contains both a hash-

49

Algorithm 5 One-PRNG-per-thread (Dissipative Particle Dynamics)

if tid ≤ nparticles then
load v ← d velocity[tid]
load x← d position[tid]
load nlist length← d nlist length[tid]
fnet ← 0
load RNGstate← d RNGstate[tid]
for i < nlist length do

load nid← d nlist[tid, i]
load vneigh ← d velocity[nid]
load xneigh ← d position[nid]
R← callRNG()
ftid,nid = F(v, x, vneigh, xneigh, R)
fnet ← fnet + ftid,nid
atomic force[nid]← force[nid]− ftid,nid

end for
atomic force[tid]← force[tid] + fnet
store d RNGstate[tid]← RNGstate

end if

Algorithm 6 One-PRNG-per-kernel-call-per-thread (Dissipative Particle Dynam-
ics)

Require: timestep, seed are broadcast
if tid ≤ nparticles then

load v ← d velocity[tid]
load x← d position[tid]
load f ← d force[tid]
load nlist length← d nlist length[tid]
for i < nlist length do

load nid← d nlist[tid, i]
load vneigh ← d velocity[nid]
load xneigh ← d position[nid]
RNGstate← hashRNG(timestep, seed, tid, nid)
R← callRNG()
ftid,nid = F(v, x, vneigh, xneigh, R)
f ← f + ftid,nid

end for
store force[tid]← f

end if

50

based and streaming PRNG. The streaming PRNG of Saru was used in conjunction

with its native hash-based PRNGs and with an implementation of TEA with eight

rounds (TEA8) as recommended by reference87. These two combinations will be

referred to as SaruSaru and SaruTEA respectively.

Streaming PRNGs are tested for statistical randomness by applying a large set of

theoretical and practical tests to its output stream. Hash-based PRNG can be tested

by applying the same tests to concatenations of their outputs while systematically

varying the inputs. TestU01 is a software library offering a collection of utilities for

the empirical statistical testing of uniform random number generator90 (other test

batteries include DIEHARD, NIST, Rabbit, and Gorilla). Each independent PRNG

component we considered has been tested and found statistically robust.

Saru provides a choice of three hash-based PRNGs, able to transform one, two or

three seeds (s1, s2, s3) into a two integer state for its streaming random number gener-

ator, using bitwise xor, multiplication, addition, bit shifting, and type conversion, via

12, 30, and 45 issued instructions, respectively. The hash-based PRNG for Saru was

tested successfully by its author against TestU01’s Crush85,90. The streaming PRNG

in Saru has a state of two 32-bit words, and it uses a linear congruential generator

(LCG) and an Offset Weyl Sequence (OWS) to advance the two words. Saru mixes

the words and further transforms the output by xors and a multiply. This streaming

PRNG has a period of 3666320093·232 ≈ 263.77 and requires 13 issued instructions

to advance the state and generate an output. The streaming PRNG for Saru was

tested successfully by its author against DIEHARD, Rabbit, Gorilla, and TestU01’s

SmallCrush, Crush, and BigCrush85,90.

The Tiny Encryption Algorithm86, TEA, has a 64-bit input and uses a 128 bit key

to generate a 64 bit output. Each round, or unit set of integer and bitwise operations,

of TEA uses bitwise xor, multiplication, addition, and bit shifting to mix the input

with the key. Each round of TEA involves 17 issued instructions, for a total of 136

51

issued instructions for TEA8. In reference87, eight rounds were sufficient to produce

high quality random numbers when tested against NIST and DIEHARD. As TEA

was designed to minimize memory footprint while maximizing speed, it is particularly

ideal for GPU applications.

The hash-based PRNGs are seeded as follow. For the Saru hash-based PRNG, we

premix certain inputs so as to reduce three (or four) unique integers to two (or three)

integers and then used the two (or three) input hash-based PRNG. For both BD and

DPD, the global seed, gs, provided by user is hashed once by gs = gs×0x12345677 +

0x12345; gs = gs ∧ (gs >> 16); gs = gs × 0x45679. This hash is performed as a

precaution as users tend to use a very restricted set of seeds. For BD, seed s1 is set

to the particle index. Then we add the time step and the global seed to generate s2.

For DPD, s1 is set to the smaller particle index, and s2 is set to the larger particle

index, then we again add the hashed global seed and the time step to generate s3.

For the TEA8 hash-based PRNG, we use the key provided by reference87, or {k1

= 0xA341316C, k2= 0xC8013EA4, k3= 0xAD90777D,k4 = 0x7E95761E }. For BD,

the two inputs are set to the particle id and the time step. The first part of the

key, k1 is then set to the hashed global seed. For DPD, the two inputs are set to

the smaller and larger particle index, in that order, and the first and second part of

the key are set to the time step and hashed global seed. Using parts of the key for

the extra inputs allows a single application of TEA8 to be used rather than using a

nested hash function which requires further iterations of TEA8.

Both the Saru hash-based PRNG and TEA8 output two 32-bit words. The state

of the Saru streaming PRNG is simply set to the output.

Even if the hash-based PRNG and the streaming PRNG are individually statisti-

cally robust, we must also validate statistical randomness between multiple streams

generated by this scheme. This is effectively a validation of the hash-based seeding

of the PRNG, insuring that different, highly correlated seed values do not generate

52

correlations. This is also a validation that the streaming PRNG does not inadver-

tently undo the mixing of the hash-based PRNG. It is also important to test PRNG

streams in a manner that reflects their use. The PRNG output used by a massively

parallel simulation might best be visualized as a matrix. Each column represents the

PRNG stream of a single thread over sequential kernel calls. Each row represents the

PRNG values generated over a single time step. We want to analyze the randomness

of this matrix both across the rows and across the columns. In practice, this matrix

of values could be considered not just 2D, but 3D or 4D since the seeding values

themselves are multidimensional. PRNGs in parallel environments should be sliced

and concatenated into an appropriate single stream for testing. The same tool set

can be applied to streams formed by reading through the matrix by different paths.

The two implementations used for the pK−pT scheme were tested in three ways.

First, we assumed 16,000 particles and generated micro-streams of three random

numbers per particle. The micro-streams of all the particles were concatenated and

then concatenated again over subsequent time steps in order to test for whole system

correlations. Second, we concatenated the micro-streams for a single particle over

many time steps to test for correlations in the stochastic force that may be applied

to a single particle. Third, to model the DPD stream, we assumed that a single

particle was interacting with the same 50 particles for all time, and concatenated

those random numbers over time. We applied the TestU01 SmallCrush, Crush, and

BigCrush to each stream, generating a net total of 319 test statistics and p-values per

stream. All three of these stream types passed the TestU01 SmallCrush, Crush, and

BigCrush test batteries, with only spurious non-systemic failures of a few sub-tests

for some seed values, a failure rate in the range of the expected number of failures for

TestU01.

53

4.3.2 Benchmarks

To test the performance of the pK−pT scheme we used micro-benchmarks that

emulate the kernels of the MD code70,73. We compared the performance of the pK−pT

scheme against a one-PRNG-per-thread (pT) scheme, where the small state (two 32-

bit unsigned integers) of the Saru streaming PRNG is loaded and stored during each

kernel call. The pT scheme used represents a best case memory access pattern rela-

tive to the per-thread, per-N-threads, or for-all-threads schemes. We also compared

the pK−pT scheme using SaruSaru and SaruTEA to a pT scheme using the XOR-

WOW PRNG provided in the recently released CURAND library, available in the

CUDATM3.2 toolkit. As the current seeding method provided in the CURAND li-

brary for XORWOW is very slow (requiring ≈ 50 times longer than what is needed

to load and store the state), a pK−pT scheme with the XORWOW PRNG was not

considered.

All benchmarks were performed on a custom built workstation with an AMD

AthlonTMII X4 630 CPU operating at 2.8GHz on a mainboard with the nForce 980a

chipset, 4GB of DDR3 RAM operating at 1333MHz, and an NVIDIA R© GeForce R©

GTX 480 operating at stock settings with a processor clock of 1401MHz and a memory

clock of 1848MHz. The system runs an x86 64 installation of CentOS 5.5, the CUDA

toolkit version 3.2.9 and corresponding GPU device driver 260.24. The GTX 480

is the latest ”Fermi” architecture which is the first generation of NVIDIA GPUs to

include atomic operations for floats, enabling Algorithm 5.

4.3.2.1 Brownian dynamics

For the BD micro-benchmark kernel, (Algorithm 3 and 4), the current force and

velocity vectors for a particle are retrieved from memory, the Langevin force is cal-

culated and added to the force vector, the velocity of the particle is updated, and

both the force and velocity vector are written back to memory. This minimal ker-

54

nel requires 48 bytes of memory transfer in each thread (presuming the force and

velocity vector are both three 32-bit floats). Retrieving and storing the state of the

Saru streaming PRNG and XORWOW PRNG requires an additional 16 bytes and

80 bytes, respectively, of memory transfer. The threads are synchronized at the end

of each kernel call and the kernel is called a thousand times to average out statistical

variation.

The SaruSaru and SaruTEA pK−pT scheme reduces the memory access by 25%

relative to the Saru pT scheme. In Figure 4.1, the average time spent per kernel

invocation is shown for systems of 10,000 to 100,000 particles. The SaruSaru and

SaruTEApK−pT scheme out-performs the pT scheme over the entire range. For

systems of 100,000 particles, the SaruSaru pK−pT scheme is 16% faster than the Saru

pT scheme. The SaruTEA scheme, with its three times larger hash-based PRNG, is

only 7% faster than the Saru pT scheme. In contrast, the XORWOW PRNG in a

pT scheme is three times slower than the Saru PRNG pT scheme due to loading and

storing the larger PRNG state.

4.3.2.2 Dissipative particle dynamics

For the DPD micro-benchmark, the DPD thermostat is applied to each particle as

in a MD force summation kernel70, as described in Algorithm 5 and 6. Each thread

loads its particle’s neighbor list one entry at at time. The position and velocity of

each neighbor is then loaded via texture reads, and the pair-wise Langevin forces are

computed. For this benchmark, the conservative force is not computed. The threads

are synchronized at the end of each kernel call and the kernel is called a thousand

times to average out statistical variation.

For the pT scheme, the current velocity and position is loaded at the beginning

of the kernel, and a half-neighbor-list is used. Half-neighbor-lists are neighbor-lists

where, if particles i and j are neighbors, particle i is in particle j’s neighbor-list or

55

0 20000 40000 60000 80000 1e+05
Number of particles (threads)

0

0.05

0.1

0.15

0.2

m
illi

se
co

nd
s

pe
r k

er
ne

l c
al

l pT XORWOW
pT Saru
pK-pT SaruTEA
pK-pT SaruSaru

Figure 4.1: For a Brownian Dynamics micro-benchmark, a one-PRNG-per-thread,
pT , scheme using the Saru and XORWOW streaming PRNG, is compared to a one-
PRNG-per-kernel-per-thread, pK−pT , scheme using SaruSaru and SaruTEA com-
bined PRNGs. This image was originally published in reference3.

vice-versa, but not both. Floating point atomic adds are used for all writes to the

force array in global memory and are bundled load-add-store operations. The PRNG

state is loaded at the beginning of the kernel, a single stream is used during the

kernel, and the PRNG state is stored at the end of the kernel. The total average

memory transfer per thread is 72 bytes + (N/2)*60 bytes, where N is the number of

neighbors per particle∗ .

For the pK−pT scheme, the current velocity, position, and force of the particle

is loaded at the beginning of the kernel call and a full neighbor-list is used for each

particle. Full neighbor-lists are neighbor lists where, if particles i and j are neighbors,

particle i is in particle j’s neighbor list, and vice versa. The PRNG is continually

re-seeded for each for each pair as described above. At the end of each kernel call,

∗velocities and positions accessed by texture reads and therefore are float4’s

56

0 20000 40000 60000 80000 1e+05
Number of particles (threads)

0

5

10

m
illl

is
ec

on
ds

 p
er

 k
er

ne
l c

al
l

pT Random Neighbors (XORWOW)
pT Random Neighbors (Saru)
pK-pT Random Neighbors (SaruTEA)
pK-pT Random Neighbors (SaruSaru)
pT Nearby Neighbors (XORWOW)
pT Nearby Neighbors (Saru)
pK-pT Nearby Neighbors (SaruTEA)
pK-pT Nearby Neighbors (SaruSaru)

Figure 4.2: For a Dissipative Particle Dynamics micro-benchmark, a One-PRNG-per-
thread, pT , scheme using the Saru and XORWOW streaming PRNG, is compared to
a one-PRNG-per-kernel-per-thread, pK−pT , scheme using SaruSaru and SaruTEA
combined PRNGs. Two types of neighbor lists, with different topologies and there-
fore different patterns of memory usage, are shown to bound actual simulation per-
formance. This image was originally published in reference3.

the net force on the particle is written to global memory. The total memory transfer

of each thread is 56 bytes +N*36 bytes, where N is the number of neighbors per

particle.

In simulations of diffusive particles, after a certain amount of time there is no

correlation between the indices of nearby particles. HOOMD-blue solves this by

periodically reorganizing particle data so that nearby particles are likely to have

nearby indices70. Therefore, two topologies of neighbor list were constructed to bound

the possible neighbor lists. In one case, particles are assumed to only interact with

neighbors with nearby indices (±N/2) . In the other case, the neighbor list was

randomly constructed. In both cases the half-neighbor list was constructed so that

each particle is assigned roughly (or for the case of sequential neighbors, exactly)

57

the same number of neighbor calculations to balance the load of work among threads.

The two types of neighbor lists lead to significantly different patterns of cache use and

data collisions in global memory accessed by the computation kernel. The number of

neighbors, N , was set to 50.

The pT scheme, which uses both a gather and scatter memory access pattern, has

15% fewer memory transfers than the pK−pT scheme, which only uses a gather mem-

ory access pattern. This is because the pT scheme uses half-neighbor lists. However,

a quarter of the memory transfers for the pT scheme are significantly slower atomic

operations.

In Figure 4.2, the average time spent per kernel invocation of this micro-benchmark

is shown for systems of 10,000 to 100,000 particles. The SaruSaru and SaruTEA

pK−pT scheme out-performs the pT scheme over the entire range. For nearby neigh-

bors, the SaruSaru pK−pT scheme is 3 to 4 times faster than the pT scheme. For

randomly dispersed neighbors, the SaruSaru pK−pT scheme is 2 to 7 times faster

than the pT scheme. The SaruTEA pK−pT is 60-70% slower than the SaruSaru

pK−pT scheme for nearby neighbors, but performs equivalently for randomly dis-

persed neighbors. In effect, the inefficient memory operations necessary to load data

for randomly dispersed particles interleave with arithmetic operations on the GPU

multiprocessor so as to completely hide the larger TEA8 hash-based PRNG.

Unlike the BD kernel, the time to load and store the PRNG state is negligible

relative to the length of the kernel. Thus, the performance difference of the kernels

using the pT scheme and the Saru or XORWOW PRNG is indistinguishable.

4.4 Conclusion

In this chapter, we introduce a one-PRNG-per-kernel-per-thread scheme, which

allows the generation of millions of micro-streams of random numbers in a SIMT mas-

sively parallel computing environment without having to load and store a PRNG state

58

vector in each thread. This scheme is currently used in HOOMD-blue to support BD

and DPD simulations. The one-PRNG-per-kernel-per-thread scheme uniquely sup-

ports DPD simulations without changing the one-thread-per-particle fine grained par-

allelism used for the MD algorithm or requiring communication and coordination be-

tween threads via atomic operations. By eliminating the need to load and store PRNG

state information in the kernel, the one-PRNG-per-kernel-call-per-thread scheme is

moderately faster than other schemes for calculating small batches of random num-

bers in the BD algorithm. By eliminating the need to communicate and coordinate

between threads, the one-PRNG-per-kernel-per-thread scheme is 2-7 times faster than

a one-PRNG-per-thread scheme for the DPD thermostat.

The one-PRNG-per-kernel-per-thread scheme utilizes both a hash-based and a

streaming PRNG in each kernel call. While for our simulation software package we

chose the SaruSaru PRNG, which has both PRNG functionalities, the components

of the PRNG scheme can be changed to meet the needs of the application. Replacing

the Saru hash-based PRNG with TEA8, for example, is a reasonable alternative that

more naturally handles up to six unique inputs. Replacing the streaming PRNG with

a one that has a longer period may also be more suitable for some applications. This

PRNG scheme also allows for a mix of different types of PRNGs to be used in a

massively parallel application if desired.

To our knowledge, HOOMD-blue is the only GPU MD code package that can

perform Dissipative Particle Dynamics simulations. An example of a full DPD bench-

mark simulation comparing GPU and parallelized CPU performance is shown in Fig-

ures 4.3 and 4.4. Figure 4.3 shows a block copolymer system of 2400 A3B7 poly-

mers (24,000 particles) that have self-assembled into the hexagonally packed cylinder

phase4,5 simulated using the DPD method. In Figure 4.4, we compare the perfor-

mance, measured in time steps per second, of HOOMD-blue and a optimized parallel

multiprocessor (CPU) MD code package LAMMPS31 in simulating this system. The

59

Figure 4.3: Pictured is the full benchmark system for the DPD simulation method,
a A3B7 block copolymer system of 2400 polymers (24,000 particles) self-assembled
into the hexagonally packed cylinder phase. Details on this system can be found in
reference4,5. This image was originally published in reference3.

GPU code run on a single NVIDIA GTX 480 is significantly faster than the CPU code

parallelized over 64 cores. By enabling BD and DPD to be performed in HOOMD-

blue, a broad range of mesoscale coarse-grained simulations can now be accelerated

in a massively parallel architecture, thus also accelerating the understanding of soft

matter and biomolecular systems and discovery of new materials.

60

Performance (time steps per second)

27.9

171

435

652

450

689

940

1 CPU core
E5540

8 CPU cores
E5540

32 CPU cores
E5540

64 CPU cores
E5540

1 GPU
S1070

1 GPU
S2050

1 GPU
GTX 480

HOOMD

LAMMPS

0 200 400 600 800 1000 1200

Figure 4.4: Benchmarks comparing HOOMD-blue to LAMMPS, a parallelized CPU
molecular dynamics code package, for the DPD Benchmark of Figure 4.3. This image
was originally published in reference3.

61

CHAPTER 5

Filling - A New Shape Packing and Covering

Optimization Problem

The results of this chapter and the next will be published in:
Phillips, Anderson, Huber, Glotzer, The Filling Problem; Combining Packing and

Covering to Optimally Fill Shapes, Preprint
Phillips, Anderson, Chen, Glotzer, Optimally Filling Polygons with Discs, Preprint

The properties of packing non-overlapping objects, such as monodisperse or poly-

disperse, spheres, ellipsoids, or tetrahedra in an optimal, random, flowing, or jammed

configuration, has been long-studied by physicists106–116. The question of how a lat-

tice or space can be covered is also a fundamental question to many physics prob-

lems117–121.

In this chapter, we present a new problem of spatial subdivision that is a hybrid

of the familiar packing and covering problems. We define filling as the problem of

packing overlapping objects inside of a defined shape such as to optimally cover the

interior volume without extending beyond the boundary of the shape (Figure 5.1).

We are primarily interested in the optimal filling of an n-dimensional shape with a

well-defined n− 1 surface with n-dimensional polydisperse balls. This question arises

in our research in the modeling of anisotropic nanoparticles as a rigid body composed

of a sum of isotropic volume-excluding potentials2,5,30,122,123.

By using a shifted WCA potential and defining a set of points as a rigid body,

a filling solution of a shape can be used to model the volume-excluding potential of

62

“hard” extended objects, including faceted shapes. In Figure 5.2 below, for example,

each “pentagon” is actually composed of 31 discs. Using a BD simulation, the pen-

tagons were compressed and formed the same striped phase composed of alternating

rows of oppositely pointing particles as shown by Schilling et al124 using a Monte

Carlo simulation of hard pentagons. Using a BD Simulation in Figure 5.3, “tetrahe-

dra” composed of 81 balls and attractive patches on three faces and one vertex have

self-assembled into icosahedral clusters.

The filling problem as defined here also has applications to the problem of irra-

diating a tumor with the fewest number of beam shots, while controlling the beam

diameter, but without damaging surrounding tissue125, using time-delayed sources to

create shaped wave fronts, combining precision placed explosives with tunable blast

radii, positioning proximity sensors with defined radii, or any problem of ablation or

deposition where one has a sharp impenetrable boundary and a radially tunable tool

with a cost per use. It also may be related to coarsened (due to Ostwald ripening)

wet foams packed in containers with non-wetting surfaces.

In the deceptively simple problem of determining the optimal set of discs to fill an

arbitrary planar shape, we find a surprisingly rich problem, with many open questions.

We define filling as the problem of packing overlapping objects inside of a defined

shape such as to optimally cover the interior volume without extending beyond the

boundary of the shape. We are primarily interested in the optimal filling of an n-

dimensional shape with a well-defined n− 1 surface with n-dimensional polydisperse

packing covering�lling

Figure 5.1: The problem of filling a shape, such as a triangle, can be viewed as a
combination of a packing and covering problem.

63

Figure 5.2: Each pentagon is actually composed of 31 discs.

Figure 5.3: Each tetrahedron is composed of 81 balls. Sticky atches on the tetrahedra
cause them to assemble into icosahedral clusters.

balls.

The filling problem can be expressed by the following two questions:

Given a compact region G (having non-empty interior and no holes in

the interior) and a fixed positive integer N, how can N balls be placed

completely interior to G so as to maximize the total volume covered?

64

Overlaps of the N balls are permitted.

and

In general, for each fixed shape G, what is the best strategy for maximizing

the fraction of volume covered by balls in G?

5.1 General Properties of the Medial Axis of G and Filling

Solutions

5.1.1 Definitions and theorems

Let G be a compact (closed and bounded), simply-connected region with a non-

empty interior. Let S be the boundary of G: S = δ G. We use the notation M(G)

for the medial axis of G.

As in reference126, we restrict S to have a tangent and curvature defined every-

where but at a finite number of points. At these points sided curvature exists from

any direction along the boundary. For simplicity, we do not consider G with holes,

nor G with a boundary that abuts itself.

The medial axis of an object, originally defined by Blum in reference127, and also

known as topological or medial skeleton, is the set of all points having more than one

closest point on the object’s boundary. The medial axis is a transformation of an

n dimensional shape into an n-dimensional hypersurface defined by the locus of the

centers of all n-balls that are tangent to the boundary at two or more points, where

all such n-balls are contained in the shape. Such n-balls are maximal balls, where a

maximal ball is also defined as a ball contained completely in G that is not a proper

subset of any other ball also contained in G. A shape is the logical union of all its

maximal n-balls.

The radius function of a medial axis is the radius of the maximal ball associated

with each point. The medial axis and the radius function together are a complete

65

shape descriptor and can be used to reconstruct the shape.

Definition 5.1.1. Let RN be a set containing N balls Di with radii ri and centers

xi that are completely contained in G. RN is a filling solution of G. Let φ(RN , G) be

the fraction of G that is covered by RN . φ is the filling value of the set RN over G.

For a shape G, φ ≤ 1 by definition. The coverage φ is equal to unity for N <∞

only if G is equivalent to a finite number of overlapping balls.

Definition 5.1.2. A set RN is all-covering if, for all Di ∈ RN , φ(RN − {Di}, G) <

φ(RN , G). In other words, each ball in RN uniquely covers a non-zero volume of G.

Definition 5.1.3. A set RN is an optimal filling solution of G if there is no other set

R′N that satisfies φ(R′N , G) > φ(RN , G).

The function φ can be defined over the space of all RN for a shape G and fixed

positive N . Our objective is to find the set RN with the maximum value of φ.

For an arbitrary shape G, there is no guarantee that such optimal solution sets

must be unique. For example, Figure 1 shows how a long rectangle can have an infinite

number of N = 1 solutions. All discs added to the middle of the rectangle have the

same diameter. When sufficiently many discs have been added to the rectangle so

that discs must overlap, this form of degeneracy disappears. Degenerate solutions also

occur in symmetrical shapes with asymmetrical optimal filling solution sets, such as

the N = 2 solution shown for the triangle in Figure 1 . This form of degeneracy does

not disappear as N →∞. It is also possible for a shape with no symmetries to have

two distinct optimal filling solution sets with the same filling area. The likelihood of

two distinctly different sets of discs to both be optimal and cover the same measured

area is unlikely, and thus this form of degeneracy is also likely to be extremely rare.

Theorem 5.1.1. For G, there exists optimal filling solutions RN that contain only

maximal balls.

66

Figure 5.4: Two examples of degenerate solutions. In the case of the rectangle, a
single maximal ball can be placed in infinitely many locations. For the symmetrical
triangle, the asymmetrical solution can be reflected to generate a degenerate solution.

Proof. From any filling solution set that has a ball that is not on the medial axis, we

can construct a solution set that contains only balls on the medial axis. Assume we

have a solution set RN that contains a ball D that is not tangent to S at any point.

That ball is completely contained inside a concentric ball that is tangent to at least

one point of S. And that ball is completely contained inside a larger cotangent ball

that is also tangent to a second point of S. This last ball D′ has its center on some

part of the medial axis by construction and is thus a maximal ball. Let R′N be the

set of balls where D is replaced by D′. It must be that φ(R′N , G) ≥ φ(RN , G). So if

RN is an optimal filling solution, then so is R′N .

While Theorem 5.1.1 implies that filling solutions can be restricted to sets of

maximal balls, it does not follow that optimal solutions must be composed of maximal

balls for all shapes. Shapes that have boundaries with concave points of infinite

curvature can have optimal filling solutions with non-maximal balls. Figure 5.5(a)

shows such a shape. The outer boundary of the shape in Figure 5.5(a) is defined by

four circular arcs. The dashed (green online) line is the medial axis of this shape. If

the four discs at the extreme points of the medial axis have been placed, then there

67

is no need for the final disc placed inside the shape to be a maximal disc.

Even if restricted to optimal solutions of maximal balls, the entire medial axis

need not be occupied as N → ∞. Figure 5.5(b) is an example of a concave shape

with two concave points. The portion of the medial axis between the two circle centers

(red online) need not be occupied by disc centers to fill the shape as N →∞.

Theorem 5.1.2. If S contains no concave points of infinite curvature, then optimal

fillings RN composed of maximal balls are also all-covering. Only fillings solution sets

of maximal balls can be optimal. The entire medial axis is occupied for optimal filling

solutions as N →∞.

Proof. Assume there is an all-covering filling solution RN for a shape G that contains

a ball D that is not a maximal ball. The operations from Theorem 5.1.1 are used

to construct a maximal ball D′ on the medial axis from the ball D. The disc D′ by

construction, is tangent to the boundary of S in at least one location that D was not.

Assuming that S has no concave points of infinite curvature (e.g a reflex vertex for a

polytope), then the point of tangency is smooth and there is a small region around

the point of tangency that D′ covers that D did not (Figure 5.6). That region can

only already have been covered by a ball in RN if a ball contained in RN of equal

or larger radius, was tangent to S the same point. But since disc D′, and therefore

D, would be completely contained in that ball, then RN would not be all-covering.

So φ(R′N , S) is strictly greater than φ(RN , S). If each point on the boundary S is

tangent to a maximal ball at a smooth point, then there is one maximal ball tangent

to S at that point, so each point of S maps to a one and only one point on the medial

axis. Also, a unique infinitesimal volume is covered by that maximal ball, so the

entire medial axis must be occupied for the optimal fillings as N →∞.

Theorem 5.1.1 shows that to construct filling solutions, the search space can be

restricted to the space of maximal balls. Theorem 5.1.2 shows that for G with S

68

Figure 5.5: The construction on the left has optimal solutions without maximal balls.
The center of the red disc need not be on the medial axis (dashed green) for the shape
to be completely covered. The construction on the right need not have all of its medial
axis (dashed green) filled. A disc added to the red portion fills no additional area.

Figure 5.6: If the point of tangency is smooth in any direction, the largest ball tangent
to the point covers more volume than any smaller ball tangent to the point.

without concave points of infinite curvature, optimal filing solutions consist only of

maximal balls. Finding optimal fillings has been reduced from find points in an

n + 1 dimensional space (disc center position and radius) to finding points on an

n-dimensional hypersurface, or a problem of dimension n− 1.

In practice, this hypersurface is better described as a set of bounded connected

hypersurfaces. A planar shape, for example, has a medial axis that forms a planar

graph, a connected set of curves that meet at points. In three dimensions, a medial

axis is composed of sheets, seams, and junctions128–130.

In the following sections we shall implicitly assume all RN solution sets being

discussed are all-covering.

69

5.1.2 Filling contribution of a single ball

The contribution of a single ball to the total filling is equal to the volume of the

ball offset by its fractional share of the volume of any overlap with other balls. More

explicitly, the contribution of a single ball is the volume it uniquely covers plus 1/i of

the volume it shares with exactly i other balls. Let V ′i (Dk) be the domain that a ball

Dk shares with exactly i other balls, including itself. LetMV (V) be the measure the

volume of a domain. Note that V ′1(Dk) is the domain uniquely covered by the ball

Dk. The contribution C(Dk) is,

C(Dk) =
∞∑
i=1

1

i
MV (V ′i (Dk)) (5.1)

and,

φ(RN) =
1

MV (G)

N∑
k=1

C(Dk). (5.2)

In general, if the overlap between ball P and Q is completely contained inside of

the overlap between ball Q and R, then locally adding, removing, or locally displacing

ball P cannot uncover any of that overlap volume. So if a ball P is added, removed,

or locally displaced, the contribution of other balls may change but the only term

that changes in the summed contributions of all the balls is MV (V ′1(P)).

70

CHAPTER 6

Filling Solutions in 2D

6.1 Planar Shapes and Polygons

We now restrict the problem to regions, or shapes, G that are planar shapes,

whose medial axis are the locus of the centers of maximal discs. Various algorithms

exist to compute the medial axis of simple polygons and planar regions bounded by

line segments, circular arcs, and general nonuniform rational B-splines131–133.

We define the terminology and review the properties for a M(G) of a planar shape

introduced by Blum and Nagel126. M(G) consists of connected subsets of points that

form a 1-D planar graph. Most points of M(G) are normal points, whose maximal

disc is in contact with the boundary at two separate but contiguous sets of points.

M(G) also contains a finite number of branch points, each of which has a maximal

disc in contact with the boundary at three or more separate but contiguous sets of

points, and a finite number of end points, whose maximal disc is in contact with the

boundary at only one contiguous set of points. For all but a finite numbers of discs,

the contiguous set of points is a single point of contact. The contact point consists

of more than just a single point if the radius of curvature the disc and boundary

are the same. As long as G has no holes, then the graph M(G) forms a tree with

no loops. M(G) can be divided into sets of contiguous normal points bounded by

branch or end points, such that the division is unique, disjoint, and complete. Sets of

contiguous normal points shall be referred to as a branch. The boundary of S can be

71

divided into parts associated with each branch by the intersection of S with the set of

maximal discs defined over a branch. This division of S is also unique, disjoint, and

complete126. The shape and radius function of any branch of M(G) is determined by

the parents of the branch, that is, the two contiguous sections of S associated with

the given branch.

Given a contiguous set of normal points defining a branch, two separate but con-

tiguous sections of S are associated with the branch. We note that given a sequence of

maximal discs on the branch, their respective points of contact with S and their cen-

ters on the branch are traversed in the same order (assuming the branch is traversed

in the correct direction relative to S).

A

Figure 6.1: Each point represents the center of a maximal disc on M(G). The neigh-
bors of the disc A are circled.

Definition 6.1.1. Given a filling solution RN , and D ∈ RN for a M(G) planar graph,

we can define the neighbors of a maximal disc D, as the maximal discs whose centers

are the closest along paths in M(G) originating at the center of D.

In other words, if there is a path in M(G) that connects the center of disc D to

the center of disc D′ without traversing another disc center, then disc D and disc D′

are neighbors (Figure 6.1). For G with no holes, where M(G) has no loops, there

is only one path connecting any two disc centers. If a branch of the medial axis

was populated with many maximal discs, most of the discs would have exactly two

72

neighbors, the disc to the left and right of them in sequence. If a branch point has

connectivity n, then, in a densely populated M(G) the disc closest to that branch

point would have n neighbors. A disc can theoretically have as many neighbors as

M(G) has end points with connectivity 1.

Theorem 6.1.1. Any overlap of D with any disc that is not a neighbor of disc D

must be contained inside the overlap of disc D with one of its neighbors.

Thus to measure MV (A′1(D)) for a disc D, only the position of the neighbors of

D need be accounted for. To show the latter is true, we draw upon the properties of

a planar medial axis.

Proof.

AC

b

Ifar

Iclose

ac

Quadrant 2 Quadrant 1

Quadrant 3 Quadrant 4

forbidden
 region

Figure 6.2: The construction of three discs A, B, and C that lie along a medial axis
path.

Assume that the centers of three maximal discs A, B, and C, are on a path of

M(G). Let their centers be denoted by a, b, and c. The edges of discs A, B, and

C are simply the circles with centers at a, b, and c of the same radii as the discs.

Assuming M(G) has no loops, then the path is the only path in M(G) connecting

the center of A to C. Suppose that there is an intersection between maximal disc

A and C as constructed in Fig. 6.2. Two circles intersect in a region shaped like

an asymmetric lens. Label the two points where the edge of disc A and C intersect

73

Ifar and Iclose. Divide the plane into four quadrants defined by the line connecting a

and c and the line connecting Ifar and Iclose. Now construct disc B. Without loss of

generality, we assume the center b is in the bottom right (Quadrant 4) of the figure.

We also observe that b is a normal point or a branch point, but not an end point, as

it is between a and c on a path. As disc B is constructed, there are restrictions on

both where its center can be placed within Quadrant 4 and on its radius.

First, the point Ifar must be contained in the disc B. We observe that as one is

traversing the boundary S of the shape, the edge of A, B, and C must be encountered

in the following order: a continuous set of disc A edge points, a continuous set of disc

B edge points, a continuous set of disc C edge points, another continuous set of disc C

edge points, another continuous set of disc B edge points, and another continuous set

of disc A edge points. Other continuous sets of other disc edge points may interleave

the sets specified, however, the specified order of encountering continuous sets of

points of A, B, and C must still be followed. If the radius function along the medial

axis path is redefined to exactly trace the boundary of A, B, and C, then this ordering

must still hold. Therefore, the intersection points (labeled Ifar and Iclose in the figure

below) between the edge of disc A and disc C must be contained in disc B.

Second, the radius of disc B cannot be larger than the distance between point b

and the farthest point on the edge of disc A. Otherwise all of disc A will be inside

disc B, making disc A not a maximal disc.

Third, the points on the edge of disc A not contained in disc B must include

points not part of the edge of the asymmetric lens, or else disc A will be completely

interior to disc B and disc C and not a maximal disc.

The remainder of the argument reduces to the following. Given a point b in

Quadrant 4, what points on the edge of disc A are farther from point b than Ifar?

If a line is drawn connecting point b to point a then the line intersects the edge

of disc A in two locations, one in Quadrant 1 or 2, the other in Quadrant 3 or 4.

74

The intersected edge point in Quadrant 1 or 2 is the farthest point on the edge of

disc A to b. Tracing around the edge of disc A to the other intersection point, each

point encountered is closer to point b than the last. Consider the region above a line

intersecting Ifar and point a in Quadrant 4. If point b was in this region, then only

points on the intersection lens edge of disc A are farther from point b than Ifar This

violates the third rule above, so this region cannot contain b. If point b is restricted

to the remaining region of Quadrant 4, then the distance to Ifar is alway greater

than any other point on the lens. Therefore, it is the case that the entire intersection

overlap region of disc A and disc C is contained in disc B.

The following theorem immediately derives from Theorem 6.1.1,

Theorem 6.1.2. Let RN be a the set of maximal discs on M(G). Let M(G) be divided

into two locii of connected points P1 and P2 such that the only points P1 and P2 have

in common are a finite set of points occupied by maximal discs RN,boundary ⊂ RN . Let

RN,1 be the maximal discs whose centers are are on P1 but do not include RN,boundary.

Likewise, Let RN,1 be the maximal discs whose centers are are on P2 but do not

include RN,boundary. The area covered only by the set of discs in RN,1 is the same for

all possible RN,2, and the area covered by only by the set of discs in RN,1 is the same

for all possible RN,2.

This theorem is illustrated in Figure 6.3.

6.1.1 Properties of an optimal planar filling

We make some observations about the function φ(RN , G), where the discs of RN

have centers at points xi ∈M(G).

Per equation 5.2, φ is a function of the area of discs and the area of overlap

between discs. As the radius function is continuous over M(G) and the area of overlap

between shapes is continuous with respect to inflating or translating the shape, φ is

75

A

part 1

part 2

Figure 6.3: If disc A is kept fixed in position, then it divides M(G) from Fig. 6.1
into two parts, indicated as solid and dashed lines. There is no intersection between
discs on the two parts of M(G) that is not covered completely by disc A per Theorem
6.1.1. The two parts, therefore, act as independent spaces.

a continuous function.

The change in φ due to moving a single disc center is equal to the change in the

area uniquely covered by the disc. This uniquely covered area can be expressed as

the area of the disc minus the overlap between the disc and its neighbors, On(x, r),

where x is the position of the center of the disc D and r is the radius of the disc. If

the disc center is moved along a path parametrized by t, then

∂φ

∂t
=
∂MV (V ′1(D))

∂t
= 2πr

∂r

∂t
−
(
∂On(x, r)

∂x

∂x

∂t
+
∂On(x, r)

∂r

∂r

∂t

)
. (6.1)

The function ∂φ
∂t

is discontinuous when ∂r
∂t

, ∂x
∂t

, ∂On(x,r)
∂x

, or ∂On(x,r)
∂r

is discontinuous.

The radius function can be first-order discontinuous at a finite number of points, (e.g.

branch points) as can x(t) (e.g. branch points or any point of infinite curvature). At

these points φ(t) can also be first-order discontinuous.

If a point of first-order discontinuity is also a local maximum (i.e. ∂φ
∂t

changes

in sign at the point), then small displacements of the neighbors may shift the sided

values of the discontinuity without affecting the sign change or shifting the position

of the maxima. The point of first-order discontinuity creates a center trap. The local

maximum at a center trap tends to stay stationary unless there are large rearrange-

76

ments of the points in its neighborhood. As a result, unlike other points on M(G),

a center trap tends to be a commonly occupied point in locally maximal filling solu-

tions, optimal filling solutions, and even a fixed feature of filling solutions when N is

large.

One type of point of first-order discontinuity is the point where one disc first

contacts another. These are the points where ∂On(x,r)
∂x

or ∂On(x,r)
∂r

is discontinuous.

Here the overlap area with another disc changes continuously from zero to positive.

As a sign change cannot occur at this point, it cannot be an isolated local maximum

and does not act as a trap.

We now introduce a new term, junction point.

Definition 6.1.2. A junction point is a point in M(G) where, relative to some path

in M(G) that includes the point, either the radius function or the path itself is first-

order discontinuous, or both. Junction points can act as center traps.

φ(t), therefore, is a continuous, piece-wise first-order continuous function. Insights

into the structure of φ and M(G) permit the design of an efficient heuristic with a

high likelihood for finding an optimal filling solution.

6.1.2 Polygons

For a convex polygon, M(G) is only composed only of line segments. For a simple

polygon, M(G) is composed of line segments and parabolic curves (Figure 6.4). For

a convex polygon, the parents are always two straight edges. For a simple polygon,

parents can be two straight edges, a straight edge and a reflex point, or two reflex

points. The resultant branches of M(G) and corresponding radius functions are then,

• Case 1 (Figure 6.5a): two straight edges A line segment with a linear (or con-

stant) radius function. The path and radius function can be parameterized as

(x(t), y(t)) = ~At+ ~B, and r(t) = ct+ r0, for t ≥ 0, for constants c, r0 ≥ 0.

77

Figure 6.4: Shown are the M(G) of two simple polygons (green online). The dots
(red online) represent junction points

Parent 1

Parent 2

θ d

r = d tan(θ/2)

Parent 1

Parent 2

d(t) = a(t(1+t2)1/2+ sinh-1(t))

r(t) = a(1+t2)

a

a

r(0) = a Parent 1

Parent 2

d
a

r(t) = (a2 +d2)1/2

(a) (b) (c)

Figure 6.5: (a) Case 1, (b) Case 2, and (c) Case 3.

• Case 2 (Figure 6.5b): a straight edge and a reflex point A parabolic curve

with a non-linear radius function. The path and the radius function can be

parameterized as (x(t), y(t)) = (2r0t, r0t
2) and r(t) = r0(t2 + 1), where r0 is

the minimum of the radius function. The curvature can be parameterized as

κ(t) = (1/2r0) (1 + t2)
−3/2

.

• Case 3 (Figure 6.5c): two reflex points A line segment with a non-linear radius

function. The path can again be parameterized as (x(t), y(t)) = ~At + ~B. If

t = 0 is the point on the medial axis halfway between the two reflex points,

then r(t) =
√
a2 + (axt2 − bx)2 + (ayt2 − by)2, where a is the distance from the

halfway point to the reflex point, ~A = (ax, ay) and ~B = (bx, by).

78

For simple polygons, the point where a line segment meets a parabolic curve (or a

parabolic curve joins another parabolic curve) is not a branch point, but does involve

a change in the geometry of M(G)131. In Figure 6.5, the three cases are illustrated

with the parents labeled and the radius function shown as a function of the path or

segment length, d, or of parameter t. Only branch points in simple polygons are

junction points.

6.1.3 Center-occupied junction points and optimal solutions

Covered Area

5.109767

Covered Area

5.123657

θ1 θ2
L R

M

J

LR LJ

(a) (b) (c)

fixed disc

center

polygon

vertex

polygon

vertex

Figure 6.6: In (a) the labeled diagram of the isolated medial axis structure created
by three connected polygon edges and a fixed disc is shown. For θ1 = θ2 = 2π/3 and
t = 0.2, two locally maximal solutions, (b) a symmetrical solution with a disc on the
L and R branch and (c) an occupied junction LJ solution are shown. The second
solution is the global maximum.

The strategy of the optimization algorithms in the subsequent sections is to find

the optimal filling solution, or the global maximum of φ, by generating a population

of local maxima. Junction points are special points that need to be handled separate

from branches by a maxima finding search method.

To demonstrate the diverse landscape of these maxima, and the role of junction

points therein, we employ the following numerical experiment.

79

MM

MJ

LJ=RJ

LR

1a

1b

3a

3b

4

1a MM
1b MJ
3a MJ > LJ=RJ
3b LJ=RJ > MJ
4 LR > LJ=RJ > MJ
5 LR(asym) > LJ=RJ > MJ
6a LR > LJ=RJ > LL=RR > MJ
6b LR > LL=RR > LJ=RJ > MJ

6a

6b 5

θ

θ

π

0

π
0

t 1

0 t 1

Figure 6.7: Case (A): For the constructed problem of Figure 6.6, θ = θ1 = θ2, on the
top left is shown the type of the global maximum as a function of θ and t. On the
right the topological structure of the global maximum is shown. On the bottom left,
the number and form of the maxima in each part of the phase diagram is indicated.

A section of a polygon G is constructed from a ray, a segment, and a ray. The

medial axis of this shape is two straight branches (parents are a ray and the segment)

and a straight branch that is a ray (parents are the two rays) that meet at a junction

point, shown in Figure 6.6. The ray branch is parameterized by setting t = 1 at the

point on the ray branch where a maximal disc would be just tangent to a disc sitting

80

MM

MJLJ

RJ

RR

LR

LL LM

θ

0

π

t 1 0 t 1

Figure 6.8: Case (B): For the constructed problem of Figure 6.6, but with θ1 = π/2,
θ = θ2, on the left is shown the type of the global maximum as a function of θ and t.
On the right the topological structure of the global maximum is shown.

on the trap junction point, and t = 0 be the trap junction point itself. For 0 ≤ t ≤ 1

and θ, we fix a disc on the t position on the ray branch. This region of the polygon is

now completely isolated from the rest of polygon per Theorem 6.1.2. We now search

for all the local maxima of adding two discs to the region by using simple gradient

methods. We perform this search for two cases, (A) angles θ1 and θ2 between each

ray and the segment are set identically to θ, and (B) θ1 = π/2 and θ2 = θ. In Figure

6.6b and 6.6c, an example case (A) is shown for θ1 = θ2 = 2π/3 and t = 0.2. The

red circle with an × at its center is the fixed center. Figure 6.6a shows the graph

structure defined by the medial axis of this construction, with branches labeled L,

R, and M, connected by junction point J. All local maxima of this construct can be

classified by the branches or junction point that contain a disc.

Figure 6.6b and 6.6c are two local maxima. The figure 6.6b is a local maximum

without an occupied junction point or an LR maxima. Figure 6.6c is a local maxima

81

with an occupied junction, or an LJ maxima. Because for case (A), θ1 = θ2, the

maxima of this case often are symmetrical or degenerate. Consider, for example,

an LR maxima. If the solution is symmetrical (i.e. the left and right disc have the

same radius) then it represents a single maximum of this type. However, if the LR

maximum is not symmetrical (i.e. left and right disc have different radii), then there

are two degenerate maxima of this type. For case (A), the LJ type maximum is always

symmetrically equivalent to an RJ maximum. In top left of Figure 6.7 a diagram of

the form and region of the global maximum are shown for case (A) for θ = 0.0 to

π radians and t = 0 to 1. The junction point is occupied for a large region of the

phase diagram (LJ=RJ and MJ). In the top right of Figure 6.7 the topological form

of the global maxima is shown, each shaded a different color. The dotted circle is the

fixed disc. The MM and MJ each have one form of topological intersection between

the three discs, the LJ=RJ has two forms, and the LR region has five. The global

maximum found in the LR region is symmetrical everywhere except for high t. In

this region, one of the L or R discs is larger and overlaps the fixed disc, while the

other is smaller and does not. In the bottom left of Figure 6.7 the number and type

of local maxima found in each part of the diagram is shown. The number of maxima

range from one to six. On the bottom right is a key for indicating which types of local

maxima can be found in each region. For example, in region 6b, there are six local

maxima. The symmetrical LR maximum has a higher filling than a LL maximum,

which is identical to an RR maximum. The LL maximum has a higher filling than

an LJ maximum which is identical to an RJ maximum. An MJ maximum has the

lowest filling of all the local maxima in this region. Notably, the MJ local maximum

is present everywhere on the phase diagram, except in region 1a, where MM is the

single only maximum.

In the left of Figure 6.8 the form of the global maximum is shown for case (B)

where θ1 = π/2 and θ2 = θ = 0.0 to π radians and t = 0.0 to 1. For case (B), there

82

is no symmetrical solution region (aside from a region of zero area where θ2 = π/2

The space is divided into eight types of global maximum. The only global maximum

solution form that is not found is the RM solution type. On the right of Figure 6.8,

the topological form of the global maximum is shown. The solution regions MM,

MJ, RR, and LL have a single topological type, the solution regions LJ, RM, and RJ

each have two, and the solution region LJ has three. Interestingly, the case (B) LR

region has two fewer topological types that the case (A) LR region. For case (B),

the mapping of the number of local maxima is not shown, as the landscape proved

extremely complicated and difficult to map.

The number of maxima and solution type landscapes in both Figure 6.7 and 6.8

are surprisingly complicated. While the boundaries between different solution type

regions may correspond to some form of analytical expression, the expression is not

known. If the number of possible types is small, it is simplest to check each possible

solution type to find the global maximum. The junction point on M(G) is occupied in

the global maximum solution a large fraction of the time. This numerical experiment

justifies the treatment of junction points as special points in the medial axis point

set.

6.2 Algorithms for Generating Filling Solutions

We know of no analytical method for finding the optimal filling solution for a

given N . Instead we introduce two algorithms that explore the objective function

landscape of φ to search for the global maximum.

6.2.1 Genetic algorithm

A genetic algorithm (GA) is employed to find the optimal filling solution for

polygons. The benefit of the GA is that it uses a minimal number mathematical

assumptions about the space of the filling solutions, although the computational time

83

required is prohibitively long for N > 20.

6.2.1.1 Algorithm Description

GAs start with an initial random population of solutions which are combined and

mutated until no better solutions are found after a fixed number of iterations.

For this implementation, 100N to 400N population members are initialized. Each

member is an ordered set of coordinates of N discs. If a disc is randomly generated

outside the polygon, it is moved inside.

Without loss of generality, but with dramatic improvement of the efficiency and

accuracy, the GA assumes that solutions will consist of maximal discs and attempts to

construct them. First, the radius of each disc is grown to touch the nearest edge in the

polygon. Second, if it can be determined that the disc is in a corner of the polygon,

e.g. the nearby medial axis is a straight branch terminating in an end point, then the

disc is moved to the nearest point on the medial axis, constructed by generating the

bisector of the corner’s internal angle.

These constraints are applied to the entire population and then φ is computed

for each member. The population is then sorted by φ to produce a list of ranked

solutions from best to worst. Members of generation g are randomly chosen as parents

for generation g + 1. The relative probability p of a given member being chosen is

weighted by its rank r, p = 1/
√
r. The next generation of members is created from the

current generation as follows. (1) Best The best members, unmodified, are included.

(2) Mutation One “parent” member is randomly chosen and is randomly mutated by

either moving a disc completely randomly, displacing a disc up to 1/2 the polygon’s

width, w, displacing a disc up to 1/200th of w, or moving a disc to a junction point.

The mutated “child” member is included. (3) Crossover Two parent members are

selected and their discs are spatially sorted by x ∗ w + y, where (x, y) is the position

of a disc. A crossover point C ∈ [1, N] is randomly determined. The child member

84

contains the discs with indices from 1 to C from the first parent and the discs from

C + 1 to N from the second. The child member is then included.

The fraction of the next generation generated by method (1), (2), and (3) can be

modified to improve the outcome of the algorithm.

Even with the GA’s capability of exploring many local maxima to find the global,

it can still get trapped in a local maximum. The GA is run with different random

number seeds ten or more times for each shape and value of N . The best of the best

solutions obtained over all these runs is selected as the GA’s final answer.

The mathematical assumptions the GA uses are first, per Theorem 5.1.1, that

solutions should consist of maximal discs. Second, the GA also randomly places

discs centers on junction points. As discussed in sections 6.1.1 and 6.1.3, junction

points can act as center traps, are occupied as part of many local maxima. However,

the basin of attraction around the junction point can be small enough that without

including a random mutation to try occupy the junction, a solution with an occupied

junction point can be too rarely found by the GA.

6.2.2 Heuristic algorithm for filling a polygon

In this section we introduce a heuristic algorithm that generates a putatively

optimal N filling solution, by exploiting the properties of the M(G) structure to

generate a collection of unique local maxima. If enough are generated, the global

maximum is among them. For the two-dimensional filling problem, we propose a

local maxima generating strategy whereby centers are distributed onto M(G) and

the local filling maxima for that initial guess is found by simple gradient methods

(e.g. active set or sequential quadratic programming optimization schemes). We also

propose a method for reducing the number of such distributions needed to find an

optimal solution by using the N − 1 filling solution to generate the N filling solution.

The first step is to intelligently divide up M(G). The medial axis is divided

85

into K pieces, maximally long branch sections with monotonically increasing radius

functions and the junction points connecting them. To generate these pieces for a

polygon, Case (2) and Case (3) may need to be divided into separate sections and

joined with other branch sections. The medial axes of the left and right polygons

depicted in Figure 6.4 are composed of seven and seventeen pieces respectively.

Definition 6.2.1. A way, W , is a distribution of N discs over the K pieces (branch

sections and junction points), W = {ni}K1 where N =
∑K

i ni and ni ∈ N. If the i-th

piece is a junction point then ni ∈ {0, 1}.

Conjecture 6.2.1. There is at most one local maxima per way.

If Conjecture 6.2.1 holds, then to find the optimal N filling solution, a maximum

must be generated for every way of N discs and K pieces. If J is the number of

pieces that are junction points, then the number of maxima to be searched is of order

O
(
NK−J−1

)
(see A-4).

Conjecture 6.2.2. Given the optimal way of distributing N − 1 discs, {n′i}K1 , the

optimal way of distributing N discs is nearby, where nearby means,
∑K

1 | ni− n′i | is

small, and that if the discs assigned to a given piece is decreased, the pieces that have

discs increased have a minimal distance (counted by number of connecting pieces) to

the decreased piece.

Conjecture 6.2.3. For a given G and M(G), there is an N ′, such that for N ≥ N ′,

the junction points are always occupied in the optimal filling solutions.

Given the way of theN−1 filling solution, the heuristic generates the local maxima

of the nearby ways using a local maxima finding technique. The best local maximum

found is presumed to be the optimal N filling solution for the shape. This heuristic

is made more efficient by taking advantage of center occupied junction points and

the dependence of the filling function on the nearest neighbors. We implement this

86

heuristic for polygons, which have a limited set of medial axis parameterized pieces

to be handled.

6.2.2.1 Detailed Description of Heuristic

Following is a more detailed description of the Heuristic Algorithm.

Auxillary Algorithms The following sub-algorithms are needed to deploy the HA.

1. Generating and Dividing M(G) into K pieces. The medial axis of the polygon

is generated∗. Parabolic curves (Case 2) and straight curves (Case 3) that

include a minimum in the radius function are split at the minimum. The split

branches are then recombined to form maximally long paths with monotonically

increasing radius functions. Branch points are separated from branch pieces as

junction point pieces.

2. Calculating the Area of a Union of Discs. The total area of the union of the discs

is determined analytically by dividing the space into intersection regions defined

by boundary arcs and calculating the area of each region135. The method can

be applied to the entire set of discs, or far more efficiently, by dividing the

calculation over the discs on each piece. In this latter method, first the area

of the union of discs on each piece is calculated and summed. This sum over-

counts the overlaps between union of discs of different pieces. Second, the

overlap between the disc at the end of a piece and its the neighboring discs on

other pieces, is subtracted from the total, once for each time it was over-counted.

This latter method is more complicated, but also more computationally efficient

because the areas of smaller sets of discs are calculated.

∗using the matlab software package MatlabMedialAxis-Version 2.0 provided by Suresh Krish-
nan134

87

3. Partitioning a Graph by Occupied Junction Points. By taking advantage of

regions of the M(G) graph isolated by occupied junction points, per Theorem

6.1.2, filling solutions can be divided into solutions of independent sub-spaces

of M(G). Using the topology of the M(G) graph and a set of maximal discs

RN , this algorithm step divides the graph into parts, or sets of pieces isolated

from each other by occupied junction points.

4. Finding the Local Maxima. A solution set of discs can be uniquely represented

by the way W = {ni}K1 and a set of parameters {ti,j} where i ∈ [1, ni] and

j ∈ [1, K] and ti,j ∈ [0, 1]† Given an initial guess way and a parameter set,

an optimization method (e.g. active set or sequential quadratic programming

optimization schemes136) is applied by using φ as the objective function. If the

initial guess includes a trial disc insertion into a piece of a given part of M(G),

then all ti,j parameters of the part are free parameters. All ti,j parameters

outside the part are fixed.

Heuristic Algorithm Given the N − 1 solution:

I. For each part of the M(G) graph isolated by occupied junction points, a new

disc is inserted into each piece and the best solution for the part is found.

II. For each occupied junction point of the N−1 solution, the disc center is removed

from the junction point and a initial guesses are generated by inserting two discs

into nearby pieces and finding the local maximum. The more combinations of

nearby pieces are tried, the larger a neighborhood is considered.

III. The N Solution is constructed from the best trial solution found. If a piece k has

a parameter value t = 0 or 1, indicating that the junction, piece k′, at the end of

the piece has been occupied, then the disc is moved to junction point piece. If a

†if a piece terminates in a junction point at t=0 or 1 or both, then ti,j ∈ (0, 1], ti,j ∈ [0, 1), or
ti,j ∈ (0, 1), respectively.

88

solution was generated for a part of M(G) and not included in the best solution,

and the part is found in both the N solution and the N − 1 solution, then the

solution is cached.

6.2.2.2 Algorithmic efficiency

1
2

3
4

5

_ _ _ _ _
1 2 3 4 5

(a) (b)

(c)

10000 01000

11000 00011

01001

20000

00200

00000

00100 00010 00001

01100 10100 10010

00110 10001 0010100002 01010

(d)

10000 01000

11000 00011

01001

20000

00200

00000

00100 00010 00001

01100 10100 10010

00110 10001 0010100002 01010

10000 01000

11000 00011

01001

20000

00200

00000

00100 00010 00001

01100 10100 10010

00110 10001 0010100002 01010

10000 01000

11000 00011

01001

20000

00200

00000

00100 00010 00001

01100 10100 10010

00110 10001 0010100002 01010

N=0

N=1

N=2

N=0

N=1

N=2

Figure 6.9: At the top of the figure is a medial axis with 5 pieces, three branches and
two junction points. (a) The full table of ways is shown for N=0, 1, and 2. In (b)
the search space is reduced using the greedy assumption that the next best solution
is related to the last best solution. (c) We also add searches that deoccupy junction
points and inserts discs onto nearby branches. (d) If the best 1-way was not searched,
two of the four remaining 1-ways would have searched the best 2-way on the next
iteration.

Using Greediness to Reduce the Search Space The heuristic exploits Conjec-

ture 6.2.2 to reduce the number of ways to search for local maxima (i.e. number of

initial guesses) from O
(
NK−J−1

)
to O(N(K + J)). Figure 6.9 depicts a hypothetical

medial axis with two junction points and three branch pieces. Figure 6.9(a) shows a

table of all possible ways for N=0, 1, and 2. Rather than search each way of N = 2,

89

1
2

3
4

5

31413

41413 31513 31414

41513 31613 31514

Figure 6.10: Assume that the junction points 2 and 4 stay occupied. To generate the
N=13 solution, three ways are searched for a local maximum. To generate N=14,
only one additional way, 31613, needs to be searched. The ways 41513 and 31514,
can be created by combining the search of branch 1 and 5 with the solution of branch
3 for N=13. The occupied junction points isolate the solutions on each branch from
solutions on the rest of the medial axis.

a reduced set is searched. That set is generated as follows, given the best N − 1

way, one disc is added to each piece (that is not an occupied junction) Figure 6.9(b).

Then, for each occupied junction point in the N − 1 best way, the junction point is

deoccupied and disc is inserted into two of the branches nearby the junction, Figure

6.9(c). The maximum number of ways that will be searched, given the best found

N −1 way, is K+AJ , where A is a constant dependent on how large a neighborhood

of a junction point one chooses. While this heuristic is not guaranteed to find optimal

solutions, it finds a putatively optimal N filing solutions with only a O(N(K + J))

number of searches.

For example, for a triangle with K=4, finding the best arrangement of N = 10

discs means searching 121 ways, and the best arrangement of N = 100 discs requires

searching 10,201 ways. By using a heuristic that exploits Conjecture 6.2.2, to finding

the best arrangement of N = 10 discs requires searching only 70 ways, and for N =

100 discs, only 700 ways.

90

Applying optimization techniques to N ′ discs where N ′ < N The computa-

tional effort to calculate the analytically exact area of the union of a set of N discs is

super-linear in N , as can be optimization methods of N parameters. The exact order

of the computational effort is dependent on the arrangements of the discs and the

details and convergence rate of the optimization algorithm. The greedy heuristic of

section 6.2.2.2 not only requires searching fewer ways, but also mostly searches ways

of N ′ discs where N ′ < N . This significantly improves the computational efficiency

of finding a solution.

Efficiently Sub-Dividing the Search Space The heuristic also improves effi-

ciency by exploiting the properties of the solution space per Theorem 6.1.1 and 6.1.2

and the behavior of center traps as discussed in section 6.1.1.

When a junction point is occupied by a disc center in the N−1 solution, the center

is usually trapped and the phase space of centers can be divided into independent

sub-spaces. If it is known (or guessed) that the best solution for N also includes a

center at the junction, then the sub-parts of M(G) connected only by the junction

point can be searched independently. Per Theorem 6.1.2, rearrangements of centers

in one sub-part cannot affect the best arrangement of centers in another if they are

connected only by a center-occupied junction.

This means that searches can be performed on a subset of the N discs (efficient per

section 6.2.2.2) and that solutions of independent sub-spaces of M(G) can be cached.

Figure 6.10 shows how, when junction points are presumed to remain occupied, only

one additional search of a way is needed to generate the next putatively optimal

N filling solution. Per Conjecture 6.2.3, at sufficiently large N , junction points are

occupied. This implies that for large N , generating the optimal N filling solution

from the optimal N − 1 filling solution requires a search of only one additional way,

reducing the complexity of the HA to O(N) searches.

91

6.2.2.3 Self-correcting

One weakness of a method that uses the N − 1 solution to find the N solution

is that if the optimal N ′ solution is not found, all solutions for N > N ′ may not

be optimal as well. However, in most cases where the HA does not find the optimal

N ′ filling solution, by some N > N ′, the HA will be generating the optimal solution

again. That is, even if the wrong solution is found, the solution finding method will

tend to self-correct at a higher N .

In Figure 6.9(d), for example, if the optimal N=1 way was omitted from the

search, the optimal N=2 way would still be searched by two of four alternate N=1

ways. If, because of the neighborhood size chosen for deoccupying junction points,

the heuristic fails to search the optimal way, per Conjecture 6.2.3 the junction point

will eventually be occupied again in the optimal solution. Thus the optimal solution

and the heuristic’s solution will likely match again.

6.2.2.4 When the heuristic algorithm fails

Even if the Conjectures 6.2.1, 6.2.2, and 6.2.3 above hold, in practice this Heuristic

Algorithm may still fail to find the optimal solution for the following reasons.

(1) Assuming a way has no local maximum While searching for the local

maximum associated with a way, it is common to generate the local maximum of

a nearby way instead (e.g a junction point becomes occupied). This leads to the

conclusion that the way has no local maximum. However, the search may simply

have been initiated outside the basin of attraction of the local maximum of the way.

(2) Searching in too small a neighborhood As discussed above, some optimal

N solutions require looking in a larger neighborhood of the N − 1 solution. Tradeoffs

that balance confidence in finding the optimal solution against the computational

92

cost of searching larger neighborhoods may result in optimal solutions being missed.

(3) Solutions are only as good as the optimization method applied Lastly,

local maxima finding techniques can have trouble converging. This is not a failure of

the Heuristic Algorithm, per se, but occasionally affects the HA solution. Switching

which nonlinear constrained minimization optimization technique is being applied

generally solves the problem.

6.2.3 Heuristic vs. genetic algorithm filling solutions

To assess the capability of the heuristic algorithm (HA) vs. the GA, solutions were

generated for N=1 to 21 for a selection of five convex polygons and twenty-one con-

cave polygons. The putative best solutions produced by this HA match the solutions

generated by the GA well. Specifically, the HA almost always produces solutions of

the same way as the GA. The gradient optimization technique employed by the HA

is usually better at converging to a final set of disc positions for a given way than

the GA. On rare occasions the HA and GA find different way. When the HA way is

better, the GA has usually become trapped in the wrong local maximum. When the

GA way is a better solution, we find that the way was outside the neighborhood that

was searched by the HA. Examples of filling solutions are shown in Figure 6.11.

HA and GA Way Match Best Way: HA Best Way: GA Best φ : HA

Convex 98.1% 1.9% 0% 100%

Concave 92.97% 3.4% 3.63% 96.37%

6.3 Continuum Solutions in a Polygon

An alternate perspective for understanding filling solutions is to ask how to opti-

mally distribute infinitely many centers over M(G) and how optimal solutions con-

verge to the total area. As discussed in reference83, the continuum solution can be

93

N =1

N =2

N =5

N =8

N =21

N =1

N =3

N =5

N =10

N =21

N =1

N =3

N =6

N =10

N =21

N =1

N =6

N =9

N =13

N =21

N =1

N =3

N =7

N =10

N =21

Figure 6.11: Examples of the optimal filling solutions of three convex and two concave
polygons for N=1-21. The top row shows the medial axis of each polygon.

94

solved exactly for simple polygons by analyzing the three types of branches found in

simple polygons (Case (1), (2) and (3) of Figure 6.5). For the Case (3) type, no disc

centered on such a curve fills any more area than what is filled by placing two discs

at the ends of the curve. So in optimal solutions, Case (3) type curves are empty

except for their ends.

Let ρ(t) represent the density of centers along a parameterized path of M(G), r(t)

be the radius function, and κ(t) be the local curvature of the path, where (x(t), y(t))

is the parameterization t ∈ [ta, tb]. Given an expression for the unfilled area Ai along

the path i of M(G) of the form,

Ai =

tb∫
ta

Ci(κ, r
′, r)

dt

ρ2
, (6.2)

where Ci is a function to be determined, we would like to determine the function ρ

that minimizes this area constrained by

N =

tb∫
ta

ρdt. (6.3)

Note that if we sum the unfilled areas Ai over all of M(G), then filling value φ =

1−
∑

(Ai/AG), where AG is the area of G. This variational problem can be solved by

forming the Lagrangian

L[ρ(t);λ] =

tb∫
ta

(
Ci(κ, r

′, r)
1

ρ2
+ λρ

)
dt (6.4)

and taking the pointwise derivative with respect to ρ(t),

∂L
∂ρ

=

tb∫
ta

(
−2Ci(κ, r

′, r)

ρ3
+

∂

ρ2∂ρ
Ci(κ, r

′, r) + λ

)
δ(t− τ)dt. (6.5)

95

This relationship is satisfied by functions ρ that satisfy

−2Ci(κ, r
′, r) + ρ

∂

∂ρ
Ci(κ, r

′, r) + ρ3λ = 0 (6.6)

Solutions of the form

ρ =

(
Ci(κ, r

′, r)

λ

)1/3

(6.7)

satisfy this equation.

For Case (1), where (x(t), y(t)) = At+B, r = r0t, and ta > 0,

C =
(
1− r′2

)3/2
/(12r) (6.8)

as shown in Appendix A-1. It follows that ρ =∝ r−1/3.

For Case (2), where (x(t), y(t)) = (2r0t, r0t
2), r = r0(t2 + 1), r0 is the minimum

of the radius function, and κ(t) = (2r0)−1 (1 + t2)
−3/2

,

C =
1

12

(r0κ

r

)
=

1

24r0

(
1

1 + t2

)5/2

(6.9)

as shown in Appendix A-2. It follows that ρ = ρ0

(
1

1+t2

)5/6
or ρ ∝ r−5/6.

For both Case (1) and Case (2), the distribution of centers follows a power law

with respect to the local radius function. Centers on M(G) will be distributed more

densely where the radius function is smaller. Given ρ = ρ0r
−α, for α = 1/3 or 5/6,

ρ0 can be determined from Equation 6.3,

ρ0 = N
(∫ ta

tb
r−αdt

)−1

(6.10)

ρ0 = N/R0. (6.11)

R0 is then a constant determined by the radius function of branch section of M(G).

For Case (1), the distribution of centers on the medial axis path is also scale-free.

96

The distribution of centers also follows a power law with respect to the distance from

the vertex (where t = 0) of the polygon.

Equation 6.2 becomes,

A =
1

N2

tb∫
ta

R2
0C(κ, r′, r)dt =

1

N2
C. (6.12)

Thus, in the continuum limit the filling converges to the area of the shape with an

asymptotic error proportional to N−2 for ideally distributed centers. We presume that

all shapes that can be approximated by simple polygons with an increasing number

of sides also converge with an N−2 error term.

If we divide M(G) into k branch sections we can predict what fraction of the discs

(Ni/N) will be distributed over each branch i as N →∞.

A =
k∑
1

Ai(Ni) (6.13)

N =
k∑
1

Ni (6.14)

Since we have distributed our discs optimally, we can treat Ai(N) as continuous

function and

∂Ai
∂Ni

− ∂Aj
∂Nj

= 0, ∀j 6= i (6.15)

Arbitrarily setting j = k,

∂Ai
∂Ni

− ∂Ak
∂Nk

= −2
Ci
N3
i

+ 2
Ck
N3
k

= 0 (6.16)

and

Ni =

(
Ci
Ck

)1/3

Nk. (6.17)

97

And the fraction of discs on a given branch i is,

fi =
Ni

N
=

(Ci)1/3

(C1)1/3 + (C2)1/3 + ..(Ck)1/3
. (6.18)

For a triangle, which is always composed of three Case (1) branches, the fraction

of the discs on a given path can be solved analytically to be

fi =
cot(θi)

cot(θ1) + cot(θ2) + cot(θ3)
(6.19)

where θi is an internal angle of the triangle, each of which is associated with a branch.

From equation 6.19, it is clear that the optimal solution preferentially populates

medial axis branches associated with smaller internal angles.

In Figure 6.12, the HA of Chapter 6.2.2 was used to optimally fill an irregular

arbitrary triangle. On the right of Figure 6.12 the fractional distribution of N disc

centers over the triangles pieces, for N = 1-100, is compared to the prediction of

Eqn. 6.19. At N > 20, the prediction based on the continuum solution is a very

good approximation. Even at N < 20, the predicted distribution is still a fairly good

estimate.

In Figure 6.13, on the left, a log-log plot of the unfilled area of the triangle is

shown as N increases. On the right the slope of the log is shown. In both the left

and the right, the HA solution (blue) appears to approach a slope of -2 initially but

then diverges at N ≈ 45. A more “constrained” version of the HA was then applied

to the triangle, where the relational spacing d between centers on a piece was fixed

as per 1/d =∝ r−1/3. The “constrained” solution, with fewer parameters to optimize,

is converging to a slope of -2 until N ≈ 75 and then also diverges. The divergence

appears to be caused by the accumulation of numerical error in the placement of the

disc centers by the optimization scheme of the HA. However, the numerical evidence

of the optimal filling of this triangle is consistent with the continuum predictions

98

derived from considering N →∞.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N

fr
a

c
ti
o

n
 o

f
d

is
c
s

1

2

3
f
1

f
2

f
3

Figure 6.12: The triangle on the left is filled with 100 discs. On the right is the
fraction of the discs on each branch for N = 1-100, compared to the prediction per
equation 6.19

An illuminating case to consider is a branch of M(G) where both the curvature

of the path and the radius function are constant. In Appendix A-3, we find, C =

1
12

(
κ2r + 1

r

)
, or a constant over the branch. It immediately follows that ρ = N/T ,

where T is the length of the branch. As expected, centers are distributed evenly over

the branch. For this case, C = T 3C. Thus, via equation A.33 M(G) that can be

divided into branches of constant curvature and radius functions also have known

distributions as N → ∞, and branches with higher curvatures will be more densely

populated with disc centers.

6.4 Conclusion

In this chapter we investigated the mathematical structure of the solution of a

two-dimensional filling problem. By restricting the problem to simple polygons, the

medial axis structure falls into one of three cases.

99

10
0

10
1

10
2

10
−2

10
−1

N

F
ra

c
ti
o

n
 U

n
c
o

v
e

re
d

 A
re

a

Slope :−1.821

Constrained HA

HA

20 40 60 80 100

−2

−1.8

−1.6

−1.4

−1.2

−1

s
lo

p
e

 o
f
lo

g

window of 10 about N

HA

Constrained HA

Figure 6.13: On the left is a log-log plot of the unfilled area of the triangle of Fig. 6.19
converging to zero as N increases. On the right, the slope of the log-log plot is shown.

We then introduced two methods by which the optimal filling solutions can be

determined: a genetic algorithm that uses almost no assumptions about the structure

of the solution, and a heuristic algorithm that exploits the mathematical structure.

We then solved for how infinitely many discs optimally fill a polygon, or the

continuum solution. The continuum solution allows optimal fillings to be estimated

as N →∞. The continuum solution also demonstrates the scale invariance of optimal

fillings in the corner of a polygon.

In the deceptively simple problem of determining the optimal set of discs to fill an

arbitrary planar shape, we have found a surprisingly rich problem, with many open

questions, such as how to find optimal solutions for a generalized shape G, or whether

for some N , N > N ′ junction points are always occupied in optimal solutions. By

understanding this problem for simple polygons, we found a solution space structure,

namely first-order continuous manifolds that join at lower dimension manifolds where

centers are trapped, that we expect to find in more generalized and higher dimensional

shapes. We predict, for example, that higher dimensional polyhedron shapes will also

have manifolds with scale-free solutions. Although originally posed as a method to

model anisotropic nanoparticles, filling solutions may have many possible applications

100

in studies of foams, electromagnetic wave shaping, ablation, and sensor placement.

101

6.5 Filling Problem Glossary

maximal ball A ball contained completely in a shape G, that is not a proper subset

of any other ball also contained in G. Also, a ball tangent to the surface of G at least

two points, that completely contained in G. In a 2D planar shape, a maximal ball is

a maximal disc.

medial axis M(G), The locus of the centers of all maximal balls of G.

radius function The radii of the maximal balls of a shape G.

normal point A point on M(G) that is the center of a maximal disc in contact

with the boundary S at exactly two separate but contiguous sets of points.

end point A point on M(G) that is the center of a maximal disc in contact with

the boundary S at exactly one contiguous sets of points.

branch point A point on M(G) that is the center of a maximal disc in contact

with the boundary S at three or more separate but contiguous sets of points.

branch A set of contiguous normal point in a medial axis.

parent of a branch the two contiguous parts of S from which the normal points

of the branch are derived. For a simple polygon, parents can be a polygon edge or a

reflex point.

neighbor If a maximal disc has a disc center that can be reached by a path along

M(G) starting at the center of maximal disc A without traversing a third disc center,

then it is the neighbor of maximal disc A.

102

center trap A point on M(G) where a first-order discontinuity coupled with a

local maximum in φ (all centers fixed) creates a local maximum that is stationary

with respect to small changes in the position of the neighboring discs.

junction point A point on M(G) that can act as a center trap. For a polygons,

branch points are junction points. A generalized planar graph can have junction

points that are not branch points.

piece A junction point or a section of a branch.

way A distribution of N discs over the K pieces that compose M(G).

part A connected set of pieces only connected to pieces not of the set by disc-center

occupied junction points.

103

CHAPTER 7

Isosymmetric Filling Solutions for Platonic Solids

and Hypercone Filling

The results of this chapter will be published in:
Phillips, C.L., Anderson, J.A., Chen, E., Glotzer, S.C., Magic Number Filling

Solutions for Platonic Solids, Preprint
Phillips, C.L, Chen E., Glotzer, S.C., Scale invariance in an n-dimensional cone

fillings for n=2-8 as N→∞, preprint

It is unclear if the heuristic algorithm presented in the previous chapter for finding

optimal filling solutions of a two-dimensional polygon could be, in principle, extended

to a three-dimensional polyhedron. In three dimensions, a medial axis is composed of

sheets, seams, and junctions128–130. We could divide the sheets, seams, and junctions

into pieces, analogous to the junction point and branch pieces of Chapter 6.2.2, but

will Conjecture 6.2.1, that distributions of balls over these pieces can have at most

one local maximum, still hold?

On a more pragmatic level, while algorithms have been proposed129,130, software

that can produce the medial axis of a polyhedron is not readily available, let alone a

straight-forward way to parameterize the cut curved surfaces that would result.

Instead in three dimensions, we rely on a genetic algorithm or simulated annealing

algorithm to find local maxima of convex polyhedra. For a restricted number of

polyhedra, such as the Platonic solids, where the medial axis structure is immediately

evident, we improve on the solutions of the genetic algorithm or simulated annealing

104

by exploiting the known geometric details of the solution space.

In this chapter we will first describe the algorithms used to find solutions and then

discuss the properties of the solutions found for the Platonic solids.

7.1 Platonic Solids

The Platonic solids are convex regular polyhedra, each with faces of only one

type of single regular polygon and with the same number of faces meeting at each

vertex. The five (and only five) Platonic solids are the tetrahedron, cube, octahedron,

icosahedron, and dodecahedron. The Platonic solids are highly symmetrical. The

tetrahedron, which is self-dual, has the point group T. The cube and icosahedron,

which are duals, have the point group O. The icosahedron and the dodecahedron,

which are duals, have the point group I.

The medial axis structure of a Platonic solid naturally reflects the symmetry of

the polyhedron. The medial axis contains one junction, the center of the Platonic

solid. It has as many seams as vertices, each defined as the segment connecting the

vertex to the center and it has many sheets as edges, each defined by the two vertices

of the edge and the center point. Each seam of a Platonic solid is symmetrically

identical to every other seam and as each sheet is symmetrically identical to every

other sheet.

The high symmetry of the medial axis of a Platonic solid provides two benefits.

The first is that the medial axis structure can be immediately known. The second is

that it is natural to suspect that for each Platonic solid there will be isosymmetric

solutions where the filling solution has the same symmetry as that of the polyhedron.

7.2 Algorithm

The filling solutions of the 3D Platonic solids were obtained as follows.

105

A genetic algorithm or simulated annealing was used to coarsely place balls in the

polyhedron. This step can be considered analogous to generating a way from Chapter

6.2.2, in that the result is a distribution of centers of balls of junctions, seams, and

sheets. This coarse step tends to avoid shallow local maxima, but may also miss deep

local maxima with small basins of attraction.

Taking advantage of our explicit knowledge of the medial axis structure, each

coarse solution is then maximized as follows. (1) Each ball center is mapped to

the closest junction, seam, or sheet. It is assumed that each mapped center is now

“trapped” on that manifold. (2) A steepest gradient method is now used to find the

local maximum. The gradient of each center is approximated by a central difference

calculation only along the manifold the center is mapped to. That is, a center in a

junction does not move, a center along a seam can slide along the seam, a center on

a sheet can move along the 2-manifold of the sheet. In any other direction off the

manifold, the radius function has a first-order discontinuity and the gradient should

not be calculated. When the steepest gradient has converged such that the changes

in the filling are below a threshold, we assume a local maximum has been found.

For each N a population of 20-60 local maxima were generated via this method.

An additional set of maxima were generated by creating “symmetrical solutions”.

Symmetrical solutions were generatedd by creating a pool of distributions of centers

on junctions, seams, and sheets, and then creating a new coarse solution by mapping

a single seam distribution to all the seams, a single sheet solution to all the sheets,

occupying or not occupying the junction. Using the steepest descent method, the

local maxima of each new symmetrical combinations is found.

To calculate the objective function, the volume of the union of the balls, the

software Vorlume 137,138 was used. Vorlume calculates the volume of the union of

balls using a certified algorithm, that is, the solution is provided as an interval and

the exact volume belongs to the interval computed, so the numerical error in the

106

calculation is also known. The computational time of this algorithm is linear relative

to the number of balls in the system under typical use conditions. The algorithm

decomposes the volume into convex regions and returns an interval. The center of

the interval was used as the ball volume. The algorithm offers three levels of precision,

with increasing computational time per precision level137. We tracked the size of the

interval of the volume, and switched to a higher level of precision if the interval was

too larger (> 10−13). All cases where the final interval was larger than 10−10 were

recorded and if the interval exceeded 10−6, the calculation was terminated and the

solution discarded. The latter cases were found to be extremely rare.

7.3 Results

We define a isosymmetric solution as a filling solution that has the same symme-

try as the Platonic solid. In figure 7.1, we show the first eight putatively optimal

filling solutions for the tetrahedron. Dashed boxes indicate the isosymmetric filling

solutions. Non-isosymmtric solutions usually appear as an incomplete or a subset of

a particular isosymmetric number filling solution. The N = 3 solution, for example,

is the N=5 solution minus two small balls.

Given a Platonic solid with E edges and V vertices, isosymmetric filling solutions

can only occur when,

N = J + V · Sm + E · St (7.1)

where N is the number of balls in the solution, J = {0, 1} (i.e. whether the center is

occupied), Sm the number of ball centers on a single seam, and St the number of ball

centers on a single sheet.

In this section we show the isosymmetric solutions that were found for each Pla-

tonic solid. While we cannot rule out that at each N shown, a non-isosymmetric solu-

tion may be the true global maximum, we can affirm that each solution shown is the

107

N=1 N=2 N=3 N=4

N=5 N=6 N=7 N=8

Figure 7.1: The N=1-8 putative global filling solutions are shown for the tetrahedron.
The isosymmetric solutions are in dashed boxes.

largest maximum we found. For each Platonic solid, the balls filling the polyhedron

are colored on a red-green-blue spectrum so that the largest ball of the polyhedron,

or the insphere, is colored red and the smallest (theoretically of radius zero) is dark

blue75. Each solution is labeled with its N and the (J, Sm, St) of the solution. The

solutions for the tetrahedron, cube, octahedron, icosahedron, and dodecahedron are

shown in Figures 7.2, 7.3, 7.4, 7.5, and 7.6, respectively.

One observation we make is that isosymmetric solutions do not exist for every

triple of natural numbers (J, Sm, St). When N is small, isosymmetric solutions that

one might expect to be present are not. For example, only the tetrahedron has (0,1,0)

as a isosymmetric solution. As N becomes large, we observe that the distribution of

the centers on a junction, two seams, and the triangular sheet between them, forms

a self-similar triangular-like structure, and thus the number of ball centers on the

combined structure is near a triangular number, or (J, Sm, St) = (1, n,K), where

K ≈ Tn − (2n− 1), Tn =
(
n+1

2

)
.

A surprising result is that, for the cube, the N=8 optimal filling solution is neither

a isosymmetric solution, nor is it simply the N=9 solution minus a single small ball.

The N=8 optimal filling solution has tetrahedral symmetry instead of octahedral

symmetry. In Figure 7.7 we compare the best octahedral symmetry N=8 filling

108

N=4

0,1,0

N=5

1,1,0
N=8

0,2,0

N=9

1,2,0

N=15

1,2,1

N=31

1,3,3

N=53

1,4,6

N=81

1,5,10

N=115

1,6,15

N = J + 4Sm + 6St

seam

sheet

junction

N=1

1,0,0

Figure 7.2: For a regular tetrahedron, the medial axis consists of six triangular sheets
that join at four seams and at a single junction equal to the center of the tetrahedron.
Each isosymmetric configuration is labeled with its (J, Sm, St).

solution to the best tetrahedral symmetry solution. The color scheme in Figure 7.7 is

renormalized so that the two ball sizes of the tetrahedrally symmetric solution are the

limits of the color spectrum to make the difference in ball radii more clear. On the left,

the two best solutions are overlaid on each other. On the right side the filling value

φ of all the octahedrally symmetric N=8 solutions of the form (0,1,0) are generated

as a function of their offset from the center along a unit-length seam. At an offset of

zero, the 8 balls cover the same volume as the in-sphere and φ = π/6. At an offset of

1.0, the 8 balls have radius zero and φ = 0. We observe that the difference between

the best octahedral and tetrahedral solution is ∆φ ≈ 10−5. On closer examination,

we find that the best octahedral symmetry point is a saddle-point.

We also observe that different Platonic solids demonstrate different trends with

regard to occupying or not occupying the junction at the center of the shape. The

109

seam
sheet

junction

N=8*

0,1,0

N=17

1,2,0

N=21

1,1,1

N=9

1,1,0

N=29

1,2,1
N = J + 8Sm + 12St

N=1

1,0,0

Figure 7.3: For a regular cube, the medial axis consists of twelve triangular sheets
that join at eight seams and at a single junction equal to the center of the cube. Each
isosymmetric configuration is labeled with its (J, Sm, St). *The N=8 case is not a
isosymmetric and is discussed in more detail.

icosahedron, for example, seems to show a strong preference for maxima without oc-

cupied junctions. We see no simple logic to explain this, given that the dodecahedron

does not show this preference.

7.4 Scaling and Convergence

In chapter 6.3, we were able to make considerable progress in understanding how

discs ideally pack in different arrangements found in polygons by finding the lowest

order terms of the uncovered area between overlapping discs as N → ∞. Numer-

ical data at finite N supported the continuum predictions. However the numerical

evidence showed both that a sufficient number of discs were needed before numeri-

110

N=7

1,1,0
N=12

0,2,0

N=13

1,2,0
N=19

1,3,0

N=27

1,2,1

N=31

1,3,1

N=49

1,4,2

N=55

1,3,3

N=61

1,4,3

N=67

1,5,3

N = J + 6Sm + 12St

seam

junction

sheet

N=1

1,0,0

Figure 7.4: For a regular octahedron, the medial axis consists of twelve triangular
sheets that join at six seams and at a single junction equal to the center of the
octahedron. Each isosymmetric configuration is labeled with its (J, Sm, St).

cal data approached continuum predictions, and that as N increased, the numerical

data accumulated errors causing it to diverge from continuum predictions. In three-

dimensions, it is reasonable to expect both that even higher N is required to converge

to continuum solutions and that the method used to find solutions will be prone to

accumulating numerical error.

In Figure 7.8, we show the convergence towards zero of the unfilled volume of

the tetrahedron from Fig. 7.2 as N increases. As one would intuitively expect, the

convergence of the filling in a tetrahedron appears slower (≈ N−0.53) than in a polygon

(≈ N−2), and the numerical evidence is insufficient to indicate at what rate the filling

converges to as N →∞. First, N is likely too low for the high order terms to vanish.

Second, as N becomes high, the numerical method used will accumulate more errors

in finding ideal coordinates for each ball.

111

seam

junction

sheet

N=13

1,1,0

N=24

0,2,0
N=25

1,2,0
N=36

0,3,0

N=37

1,3,0
N=54

0,2,1

N=55

1,2,1
N=66

0,3,1

N=67

1,3,1

N=85

1,2,2
N=96

0,3,2

N=97

1,3,2

N = J + 12Sm + 30St

N=1

1,0,0

Figure 7.5: For a regular icosahedron, the medial axis consists of thirty triangular
sheets that join at twelve seams and at a single junction equal to the center of the
icosahedron. Each isosymmetric configuration is labeled with its (J, Sm, St).

In the next two sections we consider a few very simple geometries where we can

derive both continuum convergence laws and scaling laws in lower and higher dimen-

sions.

7.4.1 Filling between two infinite parallel planes

In this subsection we consider the question of the convergence of a filling of balls

between two infinite parallel planes. Assume you have two infinite parallel planes

of distance two units apart. The medial axis of the two parallel plane is an infinite

parallel planar sheet halfway between the planes with a radius function of one unit.

To fill the space between the planes with balls, we fill the space with a hexagonal

lattice of unit radii balls with a lattice spacing of d. The uncovered volume is the

wedges between three neighboring balls on an equilateral triangle. We approximate

this volume as an irregular tetrahedron whose base is the equilateral triangle of contact

112

seam

junction

sheet

N=21

1,1,0

N=41

1,2,0

N=51

1,1,1
N=71

1,2,1

N = J + 20Sm + 30St

N=1

1,0,0

Figure 7.6: For a regular dodecahedron, the medial axis consists of thirty triangular
sheets that join at twenty seams and at a single junction equal to the center of the
dodecahedron. Each isosymmetric configuration is labeled with its (J, Sm, St).

points of the three balls with the plane and whose fourth vertex is the point of

intersection of the three balls closest to the plane. The height of the fourth vertex

is h = 1 −
√

1− d2/3, so Vt =
√

3d2

4
(1 −

√
1− d2/3) For small d, using a Taylor

expansion, we find Vt ≈ d4

12
√

3
. Assume there are N balls per unit area. The density

of these tetrahedra is 2N and d ∝
√

1
N

. So summing all the tetrahedra, the total

uncovered volume in the unit area is proportional to N/(N1/2)4 = 1/N . This implies

that the filled volume converges to the total volume with an error proportional to

1/N as N →∞ between two parallel planes.

To test this approximation numerically, a triangular lattice of N lattice points was

constructed within an equilateral triangle of side 1.0. Balls of radius 1 were placed

on the lattice points. The volume of the puffy triangle being filled is the volume of

the triangular plate, three half cylinders, and a sphere, or
√

3/2 + 3π/2 + 4π/3. The

113

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

φ

offset from center along seam

Best Tetrahedral Solution

Octahedral Solution

0.348 0.349 0.35

0.71532

0.71533

Figure 7.7: On the left, the best tetrahedral solution and best octahedral solution are
overlaid on each other. In the plot on the right, the φ of the best tetrahedral solution
is compared to the φ of all octahedral solutions. As can be seen in the inset, the
best tetrahedral solution fills the cube by ∆φ = 10−5 more than the best octahedral
solution.

log-log plot of the uncovered volume as a function of N and the numerical evidence

of the convergence of the slope to -1 is shown in Figure 7.9.

This filling scheme between two planes is trivially scale-invariant. The appearance

of the distribution is invariant if the density of centers is increases in linear proportion

to the unit area.

Having considered the case of the infinite parallel planes, we naturally would like

to understand how balls will first, fill, and second, converge between two planes that

intersect at an edge. By examining the N=115 tetrahedron, we suspect that a local

hexagonal motif will still be present. Will the height of the hexagonal lattice simply

diminish according to a power law as the filling approaches the edge? Will additional

balls be inserted into the lattice like an infinite binary tree or a hyperbolic fractal

as the filling approaches the edge? We don’t know. This is an open question of 3D

filling.

114

10
0

10
1

10
2

10
3

10
−0.9

10
−0.6

10
−0.3

10
0

N

U
n

fi
lle

d
 V

o
lu

m
e

 F
ra

c
ti
o

n
Slope :−0.53

20 40 60 80 100
−0.6

−0.5

−0.4

−0.3

−0.2

s
lo

p
e

 o
f
lo

g

window of 10 data points about N

Figure 7.8: On the left is a log-log plot of the unfilled area of the tetrahedron of
Fig. 7.2 converging to zero as N increases. On the right, the slope of the log-log plot
is shown.

7.4.2 Filling in a cone in two to eight dimensions

Consider a n-dimensional infinite cone filled with an infinite number of n-balls.

The unfilled volume between two n-balls of radius r and s whose centers are distance d

apart can be expressed as and inclusion-exclusion formula (Figure 7.10 and Eqn. 7.7)

as derived in Appendix A.6,

115

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N=231

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
−5

10
−3

10
−1

N

U
n

fi
lle

d

0 0.5 1 1.5 2

x 10
4

−1.2

−1.1

−1

s
lo

p
e

 o
f
lo

g

N

(b)

Figure 7.9: (a) The arrangement of the centers of unit balls inside a triangle. (b) The
unfilled volume of the triangle (top) and the convergence of the slope to -1 (bottom)
as a function of N balls.

V =
π
n−1
2(

n−1
2

)
!

d

n

sn − rn

s− r
cos (θ/2)n−1 (7.2)

− π
n
2(

n
2

)
!
rn (7.3)

− π
n−1
2(

n−1
2

)
!
(sn − rn)

n− 1

n

π
2
−θ/2∫
0

sin(a)n−2da (7.4)

+
π
n−1
2(

n−1
2

)
!
sn
n− 1

n

ArcCos
(
d2+s2−r2

2sd

)∫
0

sin(a)n−2da (7.5)

+
π
n−1
2(

n−1
2

)
!
rn
n− 1

n

ArcCos
(
d2+r2−s2

2rd

)∫
0

sin(a)n−2da (7.6)

π
n−1
2(

n−1
2

)
!

d

n

cos (θ/2)n−1

2n−1

(
(s+ r)2 − d2

)n−1
2 (7.7)

The lowest order terms of d of this equation found for dimension n = 2,3,4,5,6,7,

116

chevron

sphere

sector 1

sector 2

sector 3

sector 4

two cones

Unfilled = chevron -(sphere - sector 1) - sector 2 + (sector 3 + sector 4 - two cones)

(7.2)

(7.3)

(7.4)

(7.4)

(7.5)

(7.6)

(7.7)

Figure 7.10: (a) The geometric pieces of the inclusion-exclusion formula of Eqn. 7.7.

and 8 are as follows:

n = 2; V2 ≈
cos(θ/2)3

12

d3

r
= C2d

3 (7.8)

n = 3; V3 ≈
πcos(θ/2)4

12
d3 = C3d

3 (7.9)

n = 4; V4 ≈
πcos(θ/2)5

6
rd3 = C4d

3 (7.10)

n = 5; V5 ≈
π2cos(θ/2)6

12
r2d3 = C5d

3 (7.11)

n = 6; V6 ≈
π2cos(θ/2)7

9
r3d3 = C6d

3 (7.12)

n = 7; V7 ≈
π3cos(θ/2)8

24
r4d3 = C7d

3 (7.13)

n = 8; V8 ≈
2π3cos(θ/2)9

45
r5d3 = C8d

3 (7.14)

As in Chapter 6.3, to solve for the ideal density distribution, ρ of n-ball centers

along the one-dimensional hypercone medial axis as the number of balls, N →∞, we

sum the unfilled volumes along the length of the hypercone (d = 1/ρ, the density of

117

volumes locally is ρ).

Vuncovered =

ta∫
tb

Vnρdt =

ta∫
tb

Cn
1

ρ2
dt (7.15)

As this equation fits the form of 6.2, in the continuum limit the filling converges

to the volume of the hypercone with an asymptotic error proportional to N−2 for

ideally distributed centers

The form of ρ is known per 6.7,

ρ ∝ C1/3
n . (7.16)

We now can determine the dependence of ρ on the only part of Cn that changes

along the medial axis of the hypercone, the radius.

n = 2; ρ ∝ r−1/3 (7.17)

n = 3; ρ ∝ 1 (7.18)

n = 4; ρ ∝ r1/3 (7.19)

n = 5; ρ ∝ r2/3 (7.20)

n = 6; ρ ∝ r (7.21)

n = 7; ρ ∝ r4/3 (7.22)

n = 8; ρ ∝ r5/3. (7.23)

The relationship of ρ relative to the radius function changes with increasing di-

mension. While in a two-dimensional cone (two intersecting lines), discs are found

more densely at smaller the smaller radii, in a three-dimensional cone, centers are

evenly distributed along the entire length of the cone. In higher dimensions, centers

118

are more densely distributed at the larger end of the hypercone.

Also, notably, the convergence to the shape in a cone versus between two parallel

planes in three dimensions is different (N−2 vs. N−1).

The relationship of scale-free packing of n-balls in a hyper-cone can be acquired

from

N =

T∫
0

ρ(t)dt = ρ0

T∫
0

r(n−3)/3dt (7.24)

where T is the height of the cone. In the cone, r(t) = tsin(θ/2), thus

N = ρ0(3/n)tan(sin /2)(n−3)/3T n/3 (7.25)

or if the height of the cone is scaled by λ, e.g. T ′ → λT , and the number of centers

is scaled by λn/3, e.g N ′ = λn/3N , or the scaling dimension is −n/3.

For comparison, consider the scaling law that would have resulted from packing

N hard non-overlapping n-balls in a cone with centers on the medial axis, where

d = r + r + ∆r, or d = At for A = 2(sin(θ/2))/(1− sin(θ/2). In this case,

N =

Ta∫
Tb

ρ(t)dt =

Ta∫
Tb

t−1dt = A−1 · ln(Ta/Tb) = A−1 · ln(1 + T/Tb). (7.26)

We see that if T → λT and Ta → λTa, N is the same, or N → λ−0N . The

packing of hard n-balls in a hypercone is naturally scale invariant, but unlike filling,

the scaling dimension is independent of the dimension n.

7.5 Conclusion

In this chapter we show the first optimal filling solutions of 3D polyhedra. We

focus on the filling solutions of the Platonic solids, first because their medial axis can

be readily identified, and second, because their solutions are expected to evidence high

119

symmetry at for certain optimal fillings, or at isosymmetric solutions. We identify

ten, five, eleven, thirteen, and five isosymmetric solutions for the tetrahedron, cube,

octahedron, icosahedron, and dodecahedron.

Magic numbers higher than what we found are expected, however, our method is

computationally limited due to both the impressive but non-negligible precision of our

objective function calculation and the high computational cost of high N solutions.

The methods demonstrated in this chapter could be applied to generalized poly-

hedra, if the medial axis structure could be identified.

We also consider the filling scaling and convergence between two infinite two-

dimensional planes and hypercones from dimension two to seven. We find that in

the third dimension, balls filling the volume between two infinite planes and in a

hypercube converge to the volume at different rates and follow different scaling laws.

We find that from dimension two to seven, all hypercones converge at the same rate,

but that the distribution as a function of the radius function changes. At dimension

four and higher, ball centers are found more densely at the larger end of a hypercone

than the smaller.

We see that there are many open questions as to how spaces are filled in higher

dimensions. The lattice formed by the centers filling two intersecting planes, for

example, is still an open question. We propose that the convergence of the filling

between two planes can probably be extended to higher dimensional hyperplanes,

and presume that the best n− 1 dimensional lattice packing fills the volume between

the hyperplanes. We see this as an area of mathematics with many fruitful directions

and open questions.

120

CHAPTER 8

Effect of Nanoparticle Polydispersity on the Self

Assembly of Polymer Tethered Nanospheres

This chapter corresponds to publications:
Phillips, C.L., Iacovella, C.R., Glotzer, S.C., Stability of the double gyroid phase

to nanoparticle polydispersity in polymer-tethered nanosphere systems, Soft Matter,
6, 1693 - 1703, 2010

Phillips C.L., Glotzer S. C., Effect of nanoparticle polydispersity on the self as-
sembly of polymer tethered nanospheres, Preprint

The ability of block copolymers to phase separate into periodic micro-domains

makes them attractive building blocks for engineering self-assembled nanomateri-

als139–141. Possible applications of the periodic nanometer-sized domains include

microelectronics142 and high-density storage media143, photonic band gap materi-

als144,145, and drug delivery systems146,147. Recent attention has focused on the use of

polymer-tethered nanoparticles as a means to create novel nano-materials by exploit-

ing the block copolymer-like immiscibility between nanoparticle and tether5,29,122,148.

Several techniques exist to create composite polymer-nanoparticles. Westenhoff and

Kotov, for example, used poly(ethyleneglycole) PEG polymer to tether a CdTe nanopar-

ticle to a surface149. Several groups have created gold or SiO2 nanoparticles function-

alized with polymers or DNA linkers150–152 Even more advanced techniques are be-

ing proposed to create nanoparticles with multiple functionalizations with controlled

placements for creating self-assembled structures153,154. Polymer tethered nanosphere

amphiphiles122 are thus currently realizable.

121

Iacovella and coworkers24,25,155 predicted using computer simulations that polymer-

tethered nanospheres (NS) (fig. 8.1) form, under suitable conditions, phases similar

to block copolymers156–158. The ordered phases found when the NS head group is in

poor solvent are hexagonally packed cylinders (H), the double gyroid (DG), perfo-

rated lamellae (PLH), and lamellar bilayers (L), as shown in Figures 8.2, 8.3, and 8.4.

At temperatures outside the stability range of these phases the tethered nanoparticles

still aggregrate, but no ordered structure is found. This region is characterized by

disordered wormy micelles (DWM).

Figure 8.1: A polymer functionalized nanosphere of diameter 2. The polymer is
modeled as 8 soft sphere (WCA) beads connected by FENE springs.

The phase diagram predicted by Iacovella et al. was based on monodisperse

tethered nanospheres (TNS) with uniform diameter NS. In all nanoparticle synthe-

sis approaches, the polydispersity is non-zero, and in some cases can be apprecia-

122

Figure 8.2: Two views of a simulation cell containing 2000 TNS in the H phase. NS
are blue; Tethers are not shown. The NS in this system have polydispersity ∆ =
20%.

ble. State-of-the-art techniques are able to achieve nanoparticles with polydispersity

values as low as 6%159–161. For other self-assembling liquid crystal or hard sphere

systems, it has been recognized that certain crystalline orderings can only tolerate a

certain level of polydispersity and still be a stable phase; that is, they exhibit termi-

nal polydispersity162. For example, Pusey (1987) argued that crystallization of hard

sphere colloids would have a terminal polydispersity between 6-11%163, a range sup-

ported by subsequent experiments164. Terminal polydispersity for different systems

has been studied experimentally165, analytically166, and computationally162,167.

In this chapter, we consider the how polydispersity affects all the ordered phases of

the phase diagram of the tethered nanosphere system. We consider, for example, how

polydispersity influences the order-disorder temperature T ∗ODT between the DWM

phase and ordered phases, and whether, beyond a “terminal polydispersity”, a differ-

ent phase may be stabilized. We are also interested in how increasing polydispersity

affects internal properties of the phase, such as the local packing structure and pack-

ing fraction. Understanding the influence of polydispersity on these properties may

explain why phases become stabilized or destabilized by increasing polydispersity,

123

Figure 8.3: The left panel shows 8 unit cells of a double gyroid (DG) phase. The NS
are monodisperse and shown in blue and white. Tethers are not shown. The right
panel shows the same 8 unit cells from a side perspective.

and provide insight into the internal structure of materials created from polydisperse

TNS. We pay special attention to the exotic DG phase. The DG is a triply periodic

structure of space group Ia3d where space is divided into three regions: two interpen-

etrating but identical networks (here, the NS domain) and a matrix (polymer tether

domain). The surface separating the domains is approximately a surface of constant

mean curvature and minimizes the interfacial area subject to a volume constraint168.

Analysis of phase stability is based on using two separate “paths” through the

phase diagram to identify the stable state. For one path the system is initialized and

equilibrated at a high temperature to a random disordered state. The simulation is

then cooled and reequilibrated at the new temperature. Ordered phases that form at a

given temperature via different cooling schedules represent free energy minima. This

“path” through the phase diagram resembles actual self-assembly of a physical system,

albeit using a cooling schedule that is likely accelerated by several orders of magnitude

relative to a physical system. This path shall be subsequently referred to as the

Conventional Path (CP). The second path considers polydispersity as a perturbation

to the monodisperse state. Polydispersity is introduced to a monodisperse ordered

124

Figure 8.4: The left panel shows 2000 TNS that have self-assembled to the L phase by
a Conventional Path. The NS in this system have polydispersity ∆ = 3%. The right
panel shows 2000 TNS that have self-assembled to the PLH phase by a Alternate
Path. The NS in this system have polydispersity ∆ = 10%.

phase by “growing” the NS to a target diameter distribution while at low temperature.

The system is then heated and equilibrated to determine if the phase remains stable.

This path shall be subsequently referred to as the Alternate Path (AP).

In the thermodynamic limit, these two “paths” through the phase diagram should

produce identical free energy minima. In practice, however, at state points where both

a disordered arrangement and an ordered arrangement may locally minimize the free

energy, the CP is biased towards being kinetically trapped in the disordered phase

and the AP is biased towards being kinetically trapped in the ordered phase. Further

analytical tools would be required to determine which of the two phases minimizes

the free energy globally, and which represents a metastable phase. Thus we use these

two paths in this Chapter to bound the possible phase diagrams of the TNS system

subject to polydispersity.

In section 8.1 of this chapter, we describe the method we use to model polydis-

perse TNS and how the polydispersity of a system can be changed continuously in a

molecular dynamics simulation. In section 8.2 we describe the analytical techniques

we use to study the packing properties of polydisperse nanospheres, namely (1) the

125

use of the structure factor to identify the double gyroid phase, (2) the RY LM structure

analysis used to identify the local ordering of particles within the phase, and (3) the

Voronoi tessellation, extended to handle polydisperse spheres and used to identify

how increasing the polydispersity affects the net packing of nanospheres. In section

8.3 we present the results of our simulations and analysis. In subsection 8.3.1, we

consider the CP phase diagram of the DG in detail. In subsection 8.3.2, we compare

the phase diagrams generated by CP and AP of all the phases. In subsection 8.3.3,

we consider how properties of the system, such as internal structure, packing fraction,

potential energy, and coordination number are affected by polydispersity. In section

8.4, we discuss the the various results of the structure analyses to determine how

polydispersity affects the local icosahedral packing and analyze why a low level of

polydispersity promotes local icosahedral structure. We focus on the DG phase. In

section 8.5 we provide concluding remarks.

8.1 Methods

8.1.1 Simulation methods

Simulations are modeled as per the method outlined in 2, using Brownian Dynamic

and modeling the TNS as SLJ spheres with eight bead FENE polymer tethers.. For

this system, the BD drag force scales with the size of the particle.

A set of polydisperse NS is created by sampling from a Gaussian distribution of

particle diameters σ:

P (σ) =
1

δ
√

2π
exp

[
−1

2

(
σ − σ̄
δ

)]
(8.1)

The non-dimensionalized polydispersity, ∆, is defined as 100δ/σ̂, where δ is the stan-

dard deviation and σ̂ is the average diameter. Normally distributed populations of

diameters are generated. The population of diameters is then shifted or scaled so

that the net volume of the nanoparticles is kept constant in order to prevent the bulk

126

system volume fraction from deviating as polydispersity is introduced. The diameter

distribution is also truncated at a minimum value of 1.0 so that all the NS are at least

as large as a tether bead. The NS are polydisperse in size only. The mass of each

nanoparticle is kept fixed at mNS = 27mtether to minimize the number of variables in

the system. Since any simulation contains a finite set of NS drawn from this distri-

bution, the nominal polydispersity of the distribution, i.e. the polydispersity of the

distribution being sampled, and the actual polydispersity of the set generated differ

slightly. In this chapter, the nominal polydispersity of the distribution is presented as

an integer value. When the polydispersity has a decimal component, this represents

the actual polydispersity of the distribution. Polydispersity values reported on plots

are actual ∆ values.

8.1.2 Bounding the phase diagram

At a given volume fraction, φ, upper and lower bounds can be established for T ∗ODT

and the terminal value of ∆ for ordered phases on a polydispersity vs. temperature

phase diagram by using different themodynamic paths. Specifically, we explore the

phase diagram by changing the variables of temperature T ∗ and polydispersity ∆. A

diagram of an example of a CP and AP is shown in Figure 8.5. For both paths, sim-

ulations are initiated at a high temperature disordered monodisperse NS state. For a

Conventional Path, we first slowly adjust the diameters of the NS to a polydisperse

distribution. As the change to the diameters is performed while the system is hot, dif-

fusive, and disordered, the state of the simulation when the polydisperse distribution

is reached is indistinguishable from a simulation initialized with a polydisperse NS

distribution. The simulation is then cooled via a cooling schedule to avoid kinetically

trapped states. In studies of self-assembly using molecular dynamics (including BD),

using a cooling schedule from a hot disordered state is a standard way the ordered

phases of phase diagrams are generated. Cooling a system from a disordered state also

127

emulates how physical particles self-assemble into an ordered state. Usually, when an

ordered state is produced repeatably, by different cooling schedules, or for different

simulation sizes, cooling from a disordered state is considered to have produced the

free energy minimizing state point. However, for kinetic reasons, or due to sensitivity

of a phase to simulation box size, the free energy minimizing phase for a given state

point may not be found in simulation. In this chapter we will compare the phase

diagram generated by the CP to an alternate thermodynamic path (AP). For the AP,

we start with a monodisperse disordered high temperature system at a given φ. The

temperature is lowered by a cooling schedule to a T ∗ < T ∗ODT , so that the system is in

the mondisperse ordered phase. In practice, only simulations with a minimal amount

of defects in the ordered phase are retained for the next step. Polydispersity of the

NS is then slowly increased to the desired ∆. The simulation is then heated via a

schedule to a desired T ∗.

The AP provides a different thermodynamic path for approaching a state point.

For phases that are challenging to self-assemble (e.g. the DG phase), an advantage

of the AP over the CP is that many independent simulations of the ordered phase at

a given ∆, φ, and T ∗ can be rapidly and reliably generated. The sensitive phase may

self-assemble only rarely using a CP method. The disadvantage of the AP is that it

provides no information as to kinetic difficulty in forming the ordered phase from a

disordered state.

8.1.3 Low temperature response to polydispersity

We introduce a method for calculating the properties of a system as a contin-

uous function of ∆ without requiring a large number of computationally-intensive

independent CP simulations at fixed values of ∆ intervals. To study ∆ as a con-

tinuous variable, polydispersity is continuously added to the NS extremely slowly,

or quasi-statically. The polydispersity is changed slowly enough that the system is

128

T*

Δ ΔHigh

THigh

TLow
Δ0

Alternate Path

Conventional Path

Figure 8.5: Schematic showing the two paths used in the present study

able to relax in response to the change and the properties of the system, (barring

kinetically-trapped phase transition regions) calculated as a function of time, closely

approximate those of the equilibrated system.

We will use this method to study the H, PLH, DG, and L phase. At φ = 0.25, 0.3,

and 0.4, we start with an ordered monodisperse system at T ∗ = 0.25, (i.e. H, DG,

and L phase). The polydispersity of the NS is slowly increased (e.g. 0.3% δ∆/million

timesteps) until a target ∆=30% is reached. This path through the phase diagram

is referred to as Quasiequilbrated ∆ Increasing, (QE∆ ↑). Then the polydispersity

is decreased at the same rate until the system is monodisperse. This path through

the phase diagram is referred to as Quasiequilbrated ∆ Decreasing, (QE∆ ↓). The

two paths (QE∆↑ and QE∆↓) used are illustrated in Figure 8.6. The simulation is

thermostated to a low temperature T ∗ = 0.25 over the entire evolution. Properties,

calculated as a function of time, closely approximate those of a CP or AP equilibrated

system for a given polydispersity. In regions at T ∗=0.25 where the CP and AP phase

diagrams differ, the properties calculated by the QE∆ ↑ compare favorably to the

129

AP system and properties calculated by the QE∆ ↓ compare favorably to the CP

system. If, at a given ∆, the system undergoes a phase transition via nucleation and

growth, then this quasi-static method will generally fail to reproduce the equilibrated

properties of the system except in the limit where the rate of changing ∆ per time

step approaches zero. Regions where the quasi-static method fails for this reason will

be indicated.

Another reason this method is superior to collecting and averaging a large number

of computationally-intensive independent CP simulations at fixed ∆ values is the

degeneracy found between independent simulations of ordered phases due to finite-

size effects. For the H, L, and PLH phase, which do not have triply periodic unit cells,

finite simulation sizes allow for the phase to arrange itself inside the simulation box

in more than one way (e.g. orientation, distribution of perforations), and at slightly

different energies. These differences should disappear at the thermodynamic limit.

The self-assembled L phase is also susceptible to bilayer crystal defects, which should

also disappear at the thermodynamic limit, but introduce slight energy differences

between simulations.

These structural differences between different simulations of the same ordered

phase confound the determination of the influence of polydispersity. However, if

independent CP polydisperse systems are evolved along a QE∆ ↓ path to obtain

a desired property value at ∆ = 0, the systems all follow identical curves relative

to the monodisperse value. The quasi-static method therefore, correctly captures the

perturbation polydispersity introduces to properties of the system at its monodisperse

thermodynamic limit. The potential energy, packing fraction, and coordination are

thus reported as offsets from the ∆ = 0 value. This also allows these properties to be

more directly compared across volume fractions, φ.

130

8.1.4 Adjusting thermodynamic variables, T ∗ and ∆

For CP and AP simulations, the thermodynamic variables, T ∗ and ∆ are adjusted

as follows.

Temperature is changed by resetting the BD thermostat or (equivalently) by reset-

ing the ε pair interaction parameter to change T ∗ a small amount and then permitting

the system to relax to its local equilibrium.

The simulation system sizes studied are large enough that polydispersity can be

considered a global system variable. To change the polydispersity, the diameters of

every particle in the system is adjusted only a small amount per time step to prevent

high energy particle overlaps from occurring. Also, at each time step, the net volume

of all the particles is kept fixed so φ remains constant as ∆ is changed.

To accomplish this, the diameter of each particle i is made a function of λ, di(λ),

where the set of functions {di} are chosen to be individually monotonically increasing

(or decreasing) and to satisfy a constant volume constraint or,

N∑
i

di(λ)3π

6
= V0. (8.2)

The variable λ is increased as a function of time from 0 to 1. The polydispersity thus

becomes a function of λ, where

∆(λ) =
100δ({di(λ)}
σ̂({di(λ)})

, (8.3)

where δ and σ̂ are the standard deviation and average of the set of diameters, respec-

tively. In practice, a target distribution {di(λ = 1)} at a given target polydispersity

(e.g. 30%) is generated. Then at interim points, 0 < λ < 1, a set of diameters are

generated using linear interpolation between initial and final diameter for each par-

ticle. The set is then uniformly shifted or scaled at each interim point to satisfy the

131

volume constraint. Other constraints, such as a minimum NS diameter, can then be

imposed, but may necessitate multiple iterations before all constraints are satisfied.

Polydispersity can then be changed by adjusting λ by small increments.

T*

Δ ΔHigh

THigh

TLow
Δ0

Quasi-equilibrated
Increasing Δ Path (QE Δ)

Conventional Path

Quasi-equilibrated
Decreasing Δ Path (QE Δ)

Figure 8.6: Schematic of paths used in determining the quasiequilibration properties
of polydispersity

8.2 Analysis techniques

8.2.1 Identification of the double gyroid by the structure factor

To identify the DG structure in our simulations we calculate the structure factor

in addition to using visual inspection. The structure factor in a simulation cell with

a periodic structure is calculated following169 for the nanoparticle component of the

system:

S(~q) =

(∑
j cos(~q · ~r)

)2

+
(∑

j sin(~q · ~r)
)2

N
(8.4)

where the wave vector, q, is restricted to an integer number of wavelengths within

the simulation box, q = 2π
(
nx
Lx
, ny
Ly
, nz
Lz

)
. A structure is considered to be the DG if

132

peaks are identified at m =
√

6 and
√

8156,157,170 where m =
√
n2
x + n2

y + n2
z. Peaks

at higher frequencies that are also associated with the DG, namely
√

20 and
√

22

were generally not clearly visible in our systems as they were obscured by noise in

the structure factor, however excluding these higher order peaks is reasonable as our

calculations are supplemented by visual inspection.

0 1 2 3 4 5
m

In
te

ns
ity

√6

√20

√8

Figure 8.7: The structure factor of a double gyroid with 20% polydispersity is shown
as a function of m, the modulus of the integer wavelengths scaled wave vector, which
is independent of the unit cell size. The characteristic gyroid peaks at

√
6,
√

8, and√
20 are clearly visible. This image was originally published in reference6.

8.2.2 RY LM local structure analysis

To analyze the local configurations of the nanospheres, we performed the RY LM

local structure analysis first introduced in Iacovella et al.25 and further discussed in

references155. The RY LM method relies on creating a rotationally invariant spherical

harmonic fingerprint of the central particle of a cluster of particles (for harmonics l

= 4, 6, 12) and then matching this fingerprint to a library of known structures. A

133

cluster is identified as the reference configuration that minimizes the residual value, R,

where R =
√∑12

i=4 (Qi −Qref)
2 +

∑12
i=4 (wi − wref)2, or it is classified as disordered

if it exceeds a certain cutoff. In the definition of R, Qi, and wi are two metrics of

local ordering based on evaluating a set of spherical harmonic functions Ylm(θ, φ)

and defined in Steinhardt et al171. For our system, the local packing of nanospheres

is divided into clusters by grouping each NS and its nearest-neighbor nanospheres.

Nearest neighbors are considered to be those with a surface-to-surface distance less

than or equal to 0.5 , such that each neighbor would be within the potential well

of the central NS. In turn, each NS in the system is considered as a central NS to

determine the distribution of cluster types. This method characterizes the bond angles

in the local structures rather than the radial distance. The RY LM method permits

recognition of the fact that the internal structure of a domain may be composed of

many different local structures, not just one dominant structure type. In general, local

structures are characterized by the family to which they belong, namely icosahedral,

crystalline, or disordered. Each family of structure types contains multiple reference

structures with different coordination numbers. To characterize local icosahedral

packing, we incorporated into our reference database a series of partial icosahedral

clusters that maintain the same bond angles as the full icosahedral cluster, but with

0-4 particles removed. These local structures are almost identical to the LJ minimum

potential energy clusters found by Wales and Doye172, which were also included in the

reference database. The local structure is considered to be icosahedral if it matches

the partial clusters from Wales and Doye172 or a partial icosahedral cluster.

The library also includes a family of crystalline structures composed of full and

partial coordination clusters with face-centered-cubic and hexagonal-close-packed bond

angles.

For the study of binary LJ clusters in section 8.4.2 of this chapter, clusters are also

compared to a family of Frank-Kasper (FK) polyhedra with coordinations 8 through

134

16, referred to as ZN, where N is the coordination number. The Z12 structure is the

basis of the icosahedral family. Partial Frank-Kasper polyhedra were not included,

as these local configurations, in practice, generally have similar structure and thus

similar spherical harmonic fingerprints to partial icosahedra.

The local structure of the DG was analyzed at T ∗ = 0.25 with a residual cutoff of
√

0.1 ≈0.316. Any cluster with an R value greater than 0.316 is considered disordered.

8.2.3 Voronoi tessellation

To examine packing density (compactness) and nearest neighbor trends as a func-

tion of polydispersity we use an extension of the Voronoi tessellation. The Voronoi

cell around a point is generally defined as the region of space that is closer to the

given point than any other point. In a three-dimensional space, the Voronoi tessel-

lation for a set of points uniquely divides the space into irregular polyhedra with

flat faces and straight edges. If each point is the center of a sphere in a system of

non-overlapping monodisperse spheres, then each sphere will be completely contained

within its Voronoi cell. The volume fraction of the sphere inside its Voronoi cell has

been proposed as a local measure of density. For polydisperse spheres, a standard

Voronoi tessellation is no longer a suitable tessellation since it is possible for the

Voronoi cell to be completely embedded inside of a sphere. Instead a radical tessel-

lation, an extension of the Voronoi tessellation, is used to study the packing of the

polydisperse head groups. Like the Voronoi tessellation, the radical tessellation also

decomposes space into irregular polyhedra with flat faces and straight edges. Each

sphere of the polydisperse set will be completely contained within its radical cell.

The packing fraction of the head groups is measured by dividing the volume of the

NS by the sum of the volumes of the tessellation cells that contain the NS. How this

method can be used to study phase separated soft matter systems with complicated

geometries is further discussed in Part III, Chapter 9.

135

We also use the radical tessellation to measure the local coordination or neighbor

shell of each NS. We are interested only in the NS neighbors of a NS, and not the

tether component, since the NS-NS interaction represents the important energetic

interaction in the cooled system. Two NS are considered to be neighbors if the radical

cells of the two nanospheres share a facet. We use this definition to calculate both

how the system average NS coordination number (CN) is affected by polydispersity.

8.3 Results

8.3.1 Detailed CP phase diagram of Double Gyroid

Cooling tethered nanospheres generated self-assembled DG systems for φ from

0.285 to 0.315. To remove any artificial bias from our system, we started from high

temperature disordered configurations of polydisperse TNS. Nominal polydispersity

values of ∆ = 0, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 24, 25, and 30% were considered.

SA polydisperse DGs formed at values of ∆ = 0, 2, 4, 5, 6, 8, 10, 12, 14, 15, 18,

20, 24 and 25% on cooling. For ∆ > 20%, the DG phases generally disassembled

within 10 million time steps unless cooled to below T* = 0.26. Systems that did

not form the DG were generally found to form hexagonally close packed cylinders

(H), perforated lamellae (PL), an intermediate cylinder/perforated lamellae phase

(H/PLH), or disordered wormy micelles (DWM). Both H and PL are the neighboring

phases for the DG phase in the monodisperse TNS system25 and they are found

at polydispersity levels where the gyroid did not form. The presence of H/PLH

and DWM appears to be a TNS system kinetically trapped in a disordered state or

oscillating between the H and PL phase. The order-disorder temperature of the SA

polydisperse double gyroids for D<10% occurs at T ∗ = 0.3 ± 0.1. The order-disorder

temperature of the SA polydisperse DG for ∆ >10% drops to T ∗ = 0.26 for ∆ ≥

25%.

136

0 5 10 15 20 25 30
polydispersity, Δ

0.28

0.29

0.3

0.31

0.32
C

on
ce

nt
ra

tio
n

0%

10%

30%

20%

40%

50%

Figure 8.8: A survey of the TNS phase diagram for 0.285 ≤ φ ≤ 0.315 and 0% ≤
∆ ≤ 30%, indicating the probability of observing the DG phase. The darkness
of the shading indicates the fraction of the ten trials for which the DG phase was
found. If multiple simulation box sizes were considered, the box size that produced
most instances of the DG phase was used. This image was originally published in
reference6.

Figure 8.8 shows the results of the phase diagram survey for 0.285 ≤ φ ≤ 0.315

and 0% ≤ ∆ ≤ 30%, plotted in grid fashion with steps 0.005 in volume fraction and

5% in ∆. The relative proportion of the DG phase found at each concentration and

(nominal) polydispersity is shown by darkness of shading. To be considered stable,

we required that the phase in question persist for a minimum of 10 million time steps.

In this study, a single phase is almost never exclusively found at a state point

due to kinetics and metastability. The distribution of alternate phases found (H, PL,

and a intermediate H/PLH phase) can be found in the supplemental material. If the

assembled structure in a simulation cell contained too many flaws (for example, screw

dislocations, non-ordered connections between the cylinders or layers), the simulation

137

was discarded as being not clearly identifiable. This is consistent with studying

the self assembly of small systems very close to the boundaries between phases. In

the thermodynamic limit, we would expect only a single phase to be present. We

observe that the H phase appears predominantly at lower volume fractions and the

PL phase appears predominantly at higher volume fractions in the range examined.

As polydispersity is increased, the cross-over volume fraction from H phase to PL

phase, as alternate phases, increases.

The DG phase appears to have a stability range of φ = 0.3± 0.01. We observe

a peak in the presence of the DG phase for ∆ between 5-10%. We also observe that

for ∆ > 15%, the DG phase self assembled more rarely, even when using a cooling

schedule targeting self-assembly at T ∗ = 0.25. This may indicate that the ideal box

size has shifted slightly, that DG with ∆ > 15% are kinetically difficult to form, or

that the DG phase is no longer the free energy minimum phase for the system.

8.3.2 CP and AP phase diagrams

To determine the impact of ∆ on the TNS phase diagram, the system was studied

at volume fractions that represent each of the self-assembled phases of the monodis-

perse TNS system studied in Iacovella et al.25, or the H, DG, PLH and L phases. A

volume fraction of φ = 0.25 was chosen to study the H phase. The PLH and L phase,

for the monodisperse system, are found at the same volume fraction, but at differ-

ent temperatures, so the volume fraction φ = 0.4 was chosen to study both of these

phases. Small investigations at nearby φ confirmed that the behavior of the phase

at a single φ snapshot is generalizable to other volume fractions where the phase is

present. The DG phase is studied at φ = 0.3± 0.015. These results are provided for

comparison. To generate the phase diagram, simulations of 505 and 2000 TNS were

simulated for φ = 0.25 and 0.4. For the H phase, nominal polydispersities of ∆ = 0,

10, 20, and 30% were considered. For the L and PLH phase, nominal polydispersities

138

of ∆ = 0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 20, and 30% were considered. For each

nominal polydispersity a minimum of 5 different random NS diameter distributions

were considered. The DG phase was considered at nominal polydisperties of ∆ = 0,

2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 24, 25, and 30 % and for 0.285≤ φ ≤ 0.315,

or 5% above and below where the DG phase was found for the monodisperse case in

Iacovella et al.25 These results are provided for comparison to the rest of the phase

diagram.

For the CP and AP phase diagram, a “phase” was considered stable if the phase

persisted for a minimum of 10 million time steps. For parts of the phase diagram

where the AP and CP phase diagram differed, this criteria was extended to 100 million

time steps.

0.2

0.3

0.4

0.5
T
*

DG

Conventional/Alternate
Alternate

DWM

φ = 0.25 φ = 0.3 +/- 0.01

0 5 10 15 20 25 30

0.2

0.3

0.4

0.5

T
*

H

Conventional/Alternate
Alternate

DWM

Δ
0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

F
ra

c
ti
o

n
 o

f
s
e

lf
a

s
s
e

m
b

le
d

 D
G

(a) (b)

Figure 8.9: The CP and AP phase diagrams (T ∗ versus ∆) are shown in overlay for
the volume fraction (a) φ = 0.25 and (b) φ = 0.3 ± 0.01. The region where the CP
indicates the phases to be stable is contained within the region where the AP indicates
the phase to be stable. Thus the darker shaded region is labeled both Conventional
and Alternate. The bottom right graph (b) shows for DG the relative likelihood of
the DG phase self assembling via the CP as a function of polydispersity.

Using the CP method to generate a phase diagram, a single phase is almost never

exclusively found at a state point due to kinetics and metastability. At each volume

fraction where an ordered phase is found, some fraction of the simulations become

139

0 5 10 15 20 25 30

0.2

0.3

0.4

0.5

T
*

L

DWM

PLH

0 5 10 15 20 25 30

Δ

0.2

0.3

0.4

0.5

T
*

PLH

DWM

L

L/PLH

φ = 0.40 φ = 0.40

(a) (b)

Figure 8.10: The (a) CP and (b) AP phase diagrams (T ∗ versus ∆) is shown for the
volume fraction φ = 0.4. The arrows illustrate the path used to explore the phase
diagram.

kinetically trapped in disordered states or ordered phases with defects (e.g. screw

dislocations, non-ordered connections between the cylinders or layers). For the DG

phase, which exists in a small region of the phase diagram, close to both the H, PLH,

and L phase, some fraction of the simulations produce the neighboring phases, or

even an intermediate phase with planar connections between the hexagonally packed

cylinders. In the thermodynamic limit, we would expect only a single phase to be

present. In Figures 8.9 and 8.10, the CP phase diagrams show the most ordered phase

found at each state point, where the H and PLH phase are considered more ordered

than DWM, L is considered more ordered than PLH, and DG is considered more

ordered than H, L, or PLH. The likelihood of forming the DG phase using a CP was

found to be a strong function of polydispersity. Therefore, extra consideration is given

to the frequency of finding the DG phase relative to polydispersity in determining an

“effective” terminal polydispersity.

Using the AP method, a single phase is almost always found at a given state point.

The only exception is close to the order-disorder temperature T ∗ODT where a small

amount of deviation in T ∗ODT of individual simulations may occur. This uniformity is

140

a natural consequence of initializing the simulation in the assumed ordered state for

a given T ∗, φ, and ∆. In figures 8.9 and 8.10, the AP phase diagram show the least

ordered state found at each state point.

In Figure 8.9, the CP and AP phase diagrams (T ∗ versus ∆) are shown in overlay

for the volume fraction φ = 0.25 and φ = 0.3± 0.01. For both the H and DG phase,

the region where the CP indicates the phases to be stable is contained within the

region where the AP indicates the phase to be stable. Thus the darker shaded region

is labeled both Conventional and Alternate.

Considering up to ∆ = 30%, the H phase has no terminal polydispersity. However,

the AP phase diagram indicates that for ∆ ≥ 20%, increasing ∆ lowers T ∗ODT . From

∆ = 20% to 30%, T ∗ODT decreases from 0.28 to 0.25.

For the DG phase, the CP and AP phase diagram indicates that increasing ∆

lowers T ∗ODT for ∆ >10 and ∆ >20% respectively. The CP and AP phase diagram

shows the DG phase to be stable up to ∆ = 25 and 30%, respectively. However, a

study of DG formed by CP indicates that polydispersity can have significant impact

on the likelihood of the DG phase forming. In Figure 8.9, the relative likelihood of

finding the DG phase at a given polydispersity is determined by dividing the number

of DG phase found in simulation at a given polydispersity by the total number of

DG phases found in all simulations for 0.29≤ φ ≤ 0.31. This data is based on 350

simulations from ∆ = 0% to 30%, of which 56 formed the DG phase. The data is

presented this way to separate the influence of polydispersity on formation of the DG

phase from the general kinetic difficulty of forming the DG phase. We observe that

a small amount of polydispersity (≈ 5%) helps the DG to form, while for ∆ > 10%,

increasing ∆ decreases the likelihood of the DG phase forming. For comparison,

while fewer total independent simulations were considered for the CP-generated H

and lamellar phases, the simulations consistently showed the likelihood of finding the

two phases from 0 to 15% was the same as from 15% to 30%.

141

In Figure 8.10, the CP and AP phase diagram for a TNS system of φ = 0.4

are shown. Arrows indicating the path through the CP and AP phase diagram are

provided for illustration.

The CP phase diagram indicates that both the PLH and L phases are present at

low ∆, at high and low temperatures respectively, but that increasing ∆ lowers T ∗ODT

and that only PLH is found for ∆ >5%. Specifically, as found in reference24 for the

monodisperse system, the CP phase diagram indicates that for 0.375 ≤ T ∗ ≤ 0.4,

the PLH phase is present. For T ∗ ≤ 0.35, the L phase is present. Over the range

3% ≤ ∆ ≤ 5%, the T ∗ODT for the L phase decreases from 0.35 to 0.3. For ∆ > 5%,

the L phase is no longer present, and only the PLH phase is found. For ∆ > 7%, the

T ∗ODT for the PLH phase also decreases with increasing ∆.

In contrast, for the AP phase diagram, only the L phase is present for low ∆,

while for intermediate levels of ∆, a coexistence phase is found at low temperatures

and a PLH phase is found at higher temperatures. At high levels of ∆, only a PLH

phase is present. Specifically, the AP phase diagram shows the L phase to be present

for T ∗ <0.475 at ∆ = 0. For increasing ∆, the T ∗ODT for the L phase decreases to

0.4. Between ∆ = 6% and 12%, at T ∗ = 0.25, the TNS system the L and PLH phase

are in coexistence (subsequently referred to as L/PLH), with an increasing fraction

of the system in the PLH phase with increasing ∆. For ∆ ≥ 12%, only the PLH

phase is present. For ∆ increasing from 6 to 12%, the T ∗ODT of the coexistence region

decreases from 0.4 to 0.25. For ∆ > 15%, increasing ∆ decreases the T ∗ODT of the

PLH phase. The cause of the substantial difference between the CP and AP phase

diagrams at φ = 0.4 is discussed in Section 5.

A special concern for the AP phase diagram at φ=0.4 is that the starting point

state for increasing the polydispersity of the NS is a crystal phase. For the H, DG,

and PLH phase, the NS are diffusive. For the L phase, where the NS form a bilayer

crystal, the NS usually stay fixed in a lattice position over the simulation and the

142

individual system cannot explore different arrangements of NS. However, we find

that by randomly distributing the growth schedules over the NS, the properties of

one sampling is not measurably different from another. For example, there is no

significant impact on phase boundaries found.

8.3.3 Polydispersity perturbation functions

The stability of a phase is affected by the potential energy of the NS packing, which

is, in turn, affected by the average number of NS neighbors, or coordination number,

and packing fraction of the phase. Therefore, we are interested in understanding how

polydispersity influences these properties. We are also interested in characterizing

the composition of local NS ordering, (e.g. crystalline vs icosahedral) as a function

of ∆. Also we are interested in characterizing the coexistence region in the AP phase

diagram as a function of increasing ∆. To determine how polydispersity perturbs

the properties of the monodisperse TNS system, we calculate the properties of a

quasi-static system where polydispersity is first slowly increased (QE∆ ↑) and then

decreased (QE∆↓).

Figure 8.11 show how polydispersity perturbs the potential energy, packing frac-

tion, average coordination number, crystalline ordering, and icosahedral ordering of

the TNS at φ =0.25, 0.3, and 0.4, respectively. For potential energy, packing fraction,

and coordination number, these properties are shown as the deviation or offset from

the monodisperse system value. For coordination number and potential energy, these

properties are shown as intensive properties by scaling by the number of NS in the

system.

For φ = 0.25, the two quasi-static paths, QE∆ ↑ and QE∆ ↓, have a minimal

amount of hysteresis relative to each other, so the two paths have been combined

for each property. Also, the system is in the H phase over the entire polydispersity

range. The same minimal hysteresis and presence of a single (DG) phase holds true

143

-1

-0.8

-0.6

-0.4

-0.2

δC
oo

rd
in

at
io

n

0

0.1

0.2

0.3

0.4
Ic

os
ah

ed
ra

l
 O

rd
er

 P
ar

am
et

er

-0.1
0

0.1
0.2
0.3
0.4
0.5

δP
E

pe
r N

S

0 5 10 15 20 25 30
Δ

-0.005

0

0.005

0.01

0.015

δP
ac

ki
ng

 F
ra

ct
io

n

0

0.2

0.4

0.6

0.8

1

C
ry

st
al

O
rd

er
 P

ar
am

et
er φ=0.4 QE Δ (L, L/PLH, PLH)

φ=0.4 QE Δ (PLH)
φ=0.25 (H)
φ=0.3 (DG)(a)

(b)

(c)

(d)

(e)

Figure 8.11: The effect of polydispersity on (a) the crystalline vs (b) icosahedral local
packing, (c) the potential energy of the NS-NS interaction, and (d) the coordination
and (e) packing fraction of the particles, as determined by a radical tessellation, is
compared at φ=0.25, 0.3, and 0.4. The phases found along each curve are indicated
in parentheses in the legend. The dashed arrows indicates the collapse of QE∆↓ data
onto QE∆↑ data at φ = 0.4.

at φ=0.3, and so the two quasi-static paths have also been combined .

For φ = 0.4, the L, PLH, or L/PLH phase can each be present as both a function of

∆ and path. Subsequently, at φ = 0.4, the two quasi-static paths, QE∆↑ and QE∆↓,

144

have a minimal amount of hysteresis for ∆ > 12% (where both CP and AP phase

diagrams indicate the PLH phase is present), but a significant amount of hysteresis

for ∆ < 12%. For ∆ < 12%, properties calculated from QE∆↑ compare favorably to

the AP phase diagram and properties calculated from QE∆ ↓ compare favorably to

the CP phase diagram. However, for the QE∆ ↓ path, for ∆ <5%, crystallization L

phase occurs so slowly relative to the rate of decreasing the polydispersity, that the

quasi-static method proves poor for generating statistics. Therefore, for QE∆↓ ∆ <

5%, data is not shown. A grey dashed line is used to indicate that the properties

of the system transition to the QE∆ ↑ curve, which was verified at a few points by

changing the rate of decreasing polydispersity to zero and permitting the system to

equilibrate. For each figure, properties of the φ= 0.25 (H phase) and φ = 0.3 (DG

phase) are shown as blue circles and green squares respectively. The φ = 0.4 QE∆↑

data is shown as black triangles pointed up. The φ=0.4 QE∆↓ data is shown as red

triangles pointed down. For the φ= 0.4 QE∆ ↑ data, by ∆ = 12%, the system is in

the PLH phase. All of the φ=0.4 QE∆↓ data shown is in the PLH phase.

In Ref.25, Iacovella et al. divided the TNS phase diagram into two general regions,

one characterized by liquid-like icosahedral NS packing, (i.e. DWM, H, DG, and PLH

phase), with the fraction of icosahedral local ordering increasing with increasing φ,

and a second characterized by crystalline NS packing region (L phase). In Figures

8.11(a) and (b) the impact of ∆ on the crystalline and icosahedral local ordering

is considered, respectively. In fig. 8.11(a), a crystalline order parameter of ≈0.2

indicates a non-crystalline system for this parameterization of the RY LM analysis

(e.g. residual cutoff, library of structures, temperature of system). As expected,

the φ = 0.25 and φ = 0.3 systems (H and DG phase) have no crystalline structure.

The local crystalline ordering of these two systems is measured at ≈0.2 for all ∆.

For, QE∆ ↑ the φ = 0.4 system has crystalline structure until 6%. The fraction of

the system in local crystalline ordering then decreases until by ∆ ≈ 12%, no local

145

crystalline structure is measured for increasing ∆. For QE∆↓, no crystalline structure

is measured for 5%< ∆ <30%.

In Figure 8.11(b), local icosahedral ordering is shown to be promoted slightly at

∆ = 5% for the H and DG phase. Increasing ∆ greater than 5% disrupts the local

icosahedral motif. The φ = 0.4 QE∆ ↑, shows no icosahedral local ordering until

6%. Consistent with the decreased presence of the crystalline phase in Fig.8.11(a),

icosahedral ordering increases until ∆ ≈ 12% and then decreases with increasing ∆.

For 5%< ∆ <30%, increasing ∆ decreases the icosahedral local ordering for φ = 0.4

QE∆ ↓. Figures 8.11(a) and (b) clearly indicate the coexistence of L and PLH for

φ = 0.4 QE∆ ↑, as well as the lack of a coexistence region found for φ = 0.4 QE∆ ↓

data.

In Figure 8.12, snapshots of the system at φ = 0.4 are shown in the coexistence

region. NS that are identified as having a crystalline, icosahedral, and unidentified

bond ordering by the RY LM measure are colored red, dark blue, and light blue re-

spectively. As ∆ increases from 0 to 12%, we observe the icosahedral/liquid regions

emerging initially along grain boundaries and defects. At ∆ = 10%, the crystal region

has become an “island” in disordered PLH regions.

In Figures 8.11(c)-(e), we see that the impact of ∆ on system properties is pri-

marily determined by the composition of the local packing structure, icosahedral or

crystalline, as measured by Figures 8.11(a) and(b). The properties of phases with a

liquid-like, icosahedral local ordering behave similarly upon an increase in ∆ and dis-

tinctly differently from the L phase with local crystalline ordering. Properties of the

coexistence phase behave as an average of the properties of icosahedral and crystalline

phases, weighted by their proportional presence, with increasing ∆.

In Figure 8.11(c), we consider the contribution to the potential energy of the sys-

tem from the NS-NS interactions for the various polydisperse phases. This energetic

interaction, which neglects the NS-tether and tether-tether energetic interactions, will

146

be subsequently referred to as the potential energy (PE) of the system. In Figure

8.11(c), the average offset to the PE per NS is shown as a function of ∆. For φ =0.25

and 0.3 (the H and DG phase), the PE of the NS first decreases with increasing ∆

and then, between ∆ = 6 − 8%, the potential energy increases with increasing ∆.

In contrast, for the φ = 0.4 QE∆ ↑ data, PE increases with increasing ∆. There is

no observable trend change in PE at the transition from the L to the L/PLH coexis-

tence phase. However, between ∆ = 8% and 12%, the PE increases more slowly. For

∆ > 12%, when the system is in the PLH phase, the PE increases with increasing ∆

at the same slope as the H and DG phase at φ = 0.25 and 0.3. The QE∆ ↓ (PLH

phase), although offset, shows the same trend relative to increasing ∆ as the H and

DG phase.

In Figure 8.11(d), the deviation to average NS coordination number from the

monodisperse value is shown for φ = 0.25, 0.3, and 0.4. For the H and DG phase, the

average coordination number smoothly decreases with increasing ∆. For the φ = 0.4

QE∆↑, increasing ∆ has a small impact for 0< ∆ <6%. For 6< ∆ <12%, the average

coordination number decreases strongly, and then continues to decreases a less steep

slope for 12 <∆< 30%. For the φ = 0.4 QE∆↓, the deviation to average coordination

number decreases with increasing ∆. Although offset, the trend of the φ = 0.4 QE∆↑

data, for 15 <∆< 30%, and the φ = 0.4 QE∆ ↓ data, for 5< ∆ <30% is similar to

the H and DG phase data. We conclude that impact of polydispersity on the average

coordination number (relative to the monodisperse value) is invariant to phase, but

that the average coordination of the icosahedral liquid-like PLH phase at φ = 0.4 is

≈0.6 less than the crystaline bilayer phase at the same ∆.

In Figure 8.11(e), the deviation to packing fraction of the NS domain relative to

the monodisperse value is shown for φ=0.25, 0.3, and 0.4. For φ = 0.25 and 0.3 (the

H and DG phase), the NS domain becomes denser with increasing ∆. For the φ = 0.4

QE∆↑ data, increasing ∆ causes the NS domain in the L phase to become less dense,

147

or swell, between 0%< ∆ <6%. For 6%< ∆ <12%, in the coexistence phase, the

differences between swelling crystalline and densifying icosahedral liquid components

results in a net packing fraction mimimum to occur at ≈ 9% and then increase for

9%< ∆ <30%. For the φ = 0.4 QE∆↓, the packing fraction increases with increasing

∆. Although offset, the trend of the φ = 0.4 QE∆ ↑ data, for 15< ∆ <30%, and

φ = 0.4 QE∆ ↓ data, for 5< ∆ <30% is similar to the H and DG phase. No gray

drop-line is provided at ∆ = 5% for the φ = 0.4 QE∆ ↓ data, as it is apparent that

the onset of crystallization is coincident with the two phases (L and PLH) being at

the same approximately density.

8.3.3.1 Discussion of coexistence between L and PLH phase

Figure 8.12: A series of snapshots of the L phase is shown at polydispersity 0%,
6%, 10%, and 12% as polydispersity is grown into a monodisperse cooled system.
At each polydispersity, the system was allowed to relax for 10 million time steps.
Nanospheres are colored red if locally crystalline, light blue if unidentifiable, and
dark blue if icosahedral. Tethers are not shown. Initially the system is in a totally
crystalline state, with a few non-crystal NS found at grain boundaries and defects
in the lamallae. At 6%, the system is still crystal, although the number non-crystal
NS at grain boundaries and lamellae defects has increased. At 10%, the lamallae is
mostly liquid and disordered, with a few small islands of crystal bilayer remaining.
At 12%, the system is fully in the PLH phase. Note that although ”red” particles are
still present, they are not spatially correlated and represents the limitations of the
identification algorithm.

In comparing the AP and CP phase diagrams at φ=0.25, 0.3± 0.01, and 0.4, the

H, DG, and PLH (for ∆ > 12%) phases show only slight path dependence. Each

phase is present up to a higher T ∗ in the AP phase diagram, and the DG phase is

148

present at a higher ∆. The crystalline bilayer, L phase, in comparison, has a clear

path dependence. The L phase is present over a larger area of the AP phase diagram

and a L/PLH coexistence region is present on the AP phase diagram, but not the

CP phase diagram. To understand why the coexistence region is present in the AP

phase diagram but not the CP phase diagram we consider the literature on the phases

found in polydisperse sphere systems.

Most studies of polydispersity have focused on hard disc and hard sphere sys-

tems162,166,173–176 with a few exceptions177. As the repulsive 1
r6

term of the LJ poten-

tial acts similar to a hard sphere, polydisperse hard-sphere literature can be appealed

to as a first order approximation of a system of Lennard-Jones spheres confined to

lamellar domains.

The maximum polydispersity of the solid crystalline phase in systems of 2D hard

discs has been shown to be around 8%178 with a possible coexistence region between

8% and 15%173. In comparison, a study of a two dimensional lattice of LJ particles

found a terminal polydispersity at 6% for a low density crystalline solid that increased

to 9.7% as density was increased. For a 3D system of hard spheres, Kofke and Bol-

hius162,174 found the solid phase has a terminal polydispersity of ∆ = 5.7%, but could

coexist with a liquid phase of up to 11.8% polydispersity at increased pressure. For

hard spheres, Kofke and Bolhius found stable coexistence regions of liquid and crystal,

Auer and Frenkel175 found that, above 5%, polydispersity increasingly inhibits the

formation of critical crystalline nuclei. In experiments, the formation of crystallites

in a polydisperse (>5%) system has been observed albeit in a sheared suspension and

when permitted to equilibrate over hours to days179,180.

The bilayer crystalline system has a combination of the characteristics of a two-

dimensional and a three-dimensional system of hard spheres. It is strongly constrained

in two directions parallel to the lamellar plane and softly constrained in the direction

perpendicular to the lamellar plane. However, the bilayer lamella is also capable of

149

reorienting inside the simulation cell (within limits) to relieve stress in the planar

directions.

Using a Conventional Path, the crystalline bilayer did not self-assemble for ∆ >

5% polydispersity. For ∆ > 3%, the amount of simulation time required to self-

assemble the crystalline bilayer noticeably increased. Using the Alternate Path, the

crystalline bilayer was stable up to 6%, and, at low temperature a stable crystal/liquid

phase was present until 12%. We hypothesize that the coexistence phase found by the

AP represents the free energy minimizing state, but that the polydisperse NS kineti-

cally inhibit the phase from forming within the times accessible to our simulations. In

an experimental realization of this system with access to longer equilibration times,

the coexistence of liquid and crystalline lamellar phases may be found.

While the coexistence region of the AP phase diagram are found over the same

ranges of polydispersity predicted by Kofke and Bolhius for hard spheres, we rec-

ognize that the composition of the phase may be different from a spontaneously

self-assembled state. Kofke and Bolhius predicted fractionation in the liquid/crystal

system. That is, the solid phase was predicted to be composed of slighly larger

spheres. Other researchers166,176 have also predicted that a polydisperse fluid could

fractionate and crystallize into two crystals, each with sufficiently low polydispersity

to nucleate. Growing polydispersity in a frozen system excludes size fractionation.

Also, unlike the liquid phases (H, PLH, DG) which have measurable diffusion coef-

ficients, all relaxation is local and there is rearrangement of the NS beyond original

lattice sites. However, multiple runs with different random starting distributions all

showed a nearly identical response to a quasi-equilibrated increase in ∆. And in the

portion of the CP and AP phase diagrams where the same phase in predicted (e.g.

∆ < 5% and ∆ > 12% ∆), all measurements were identical.

150

8.4 Local Structure Analysis of the Double Gyroid

We can better understand the trends in polydispersity by analyzing the effect of

polydispersity on the packing properties of the NS. We use the RY LM analysis to

identify the local structure, and calculate the average packing properties of the DG

domain using a Voronoi (radical) tessellation.

8.4.1 The RY LM local structure analysis

It was observed that in monodisperse TNS icosahedral structures are favored in

systems of NS confined to cylindrical geometries where the relative diameter of the

cylinder is less than 5, otherwise hcp/fcc crystalline arrangements form22. As pre-

viously noted, the DG phase is essentially composed of a series of interconnected

cylindrical tubes. In the TNS system, the tether sterically restricts particle packing

and the NS tend to pack into icosahedral and crystalline clusters with partial coordi-

nation (i.e. one coordination position of an ideal cluster must be unoccupied so that

the central particles tether can escape the local structure). The RY LM method is used

to match the pattern of bond angles between a particle and its nearest neighbors, or

coordination shell, with a library of structural motifs. Iacovella et al.25 showed using

the RY LM method with a residual cutoff R = 0.316 that at T ∗ = 0.256, about 30% of

the NS are central particles of a local structure that resembles an icosahedral cluster

with partial coordination. Since Iacovella et al. also proposed that the local icosa-

hedral packing stabilized the DG structure, it is of interest to consider how adding

polydispersity to the system affects the local packing.

In Fig. 8.11a and 8.11b, the local structure analysis of polydisperse gyroids is

shown at T ∗= 0.25. We observe a distinct peak in icosahedral ordering at ∆ = 68%

and almost no icosahedral ordering at ∆ = 20%. For ∆ > 20%, the icosahedral

packing motif is disrupted by polydispersity.

In general we note that polydispersity increases the dimensionality of the energy

151

landscape for the NS. Individual NS are no longer interchangeable. However, for low

levels of polydispersity most of the NS are still the same size and are approximately in-

terchangeable, i.e. the energy difference caused by interchanging the particles should

be small. We find the formation of icosahedral local packing is still dominant at low

polydispersity. In fact, a low level of polydispersity promotes well-ordered icosahe-

dral local structure, with the degree of icosahedrality peaking at approximately ∆ =

68%. At higher polydispersity, the formation of local icosahedral packing is rapidly

suppressed. We note that this trend is consistent with the idea that local icosahedral

packing stabilizes the DG structure as local icosahedral packing becomes suppressed

at roughly the same polydispersity level where the DG ceases to self-assemble readily

from a disordered configuration (i.e. ∆ > 15%).

8.4.2 Analysis of low polydispersity promotion of local icosahedral pack-

ing.

Figure 8.13: A cluster analysis is performed on the energy minimizing binary clusters
of Doye 20057 and the Cambridge Cluster Database. For each binary cluster, an I is
indicated if the cluster best matched a full or partial icosahedral cluster, or a Z for
best matching a Frank-Kasper polyhedra. The c value of the cluster match is also
shown. For a coordination of 12, note that an icosahedral cluster and the Frank-
Kasper polyhedra are identical. This image was originally published in reference6.

In Figures 8.11b we observe that a low polydispersity promotes the icosahedral

packing motif. Locally, in a fluid, a low level of polydispersity implies most particles

152

are the same size, with an occasional larger or smaller particle present. As such,

we consider the impact of the presence of a single larger or smaller particle on the

isolated icosahedral cluster.

Doye and Meyer studied the energy minimizing arrangements of isolated binary

clusters, i.e. clusters of LJ particles of two different sizes7. They found that up to a

diameter ratio of 1.1, the low-energy binary cluster formed by 9 - 13 LJ particles is

a partial to full icosahedral cluster with all large particles in the shell and the small

particle at the center. This arrangement is because the distance between atomic

centers for neighboring atoms in the shell of an icosahedral monodisperse cluster is

5.15% larger than that for a central atom and a nearest neighbor atom. A 9.79%

reduction in the diameter of the central atom relieves this strain,7,181 and an energy

minimum of the binary icosahedral cluster occurs around this value. However, a

further increase in the ratio of the diameters of the two species causes a change in

the lowest-energy LJ cluster structure,7 i.e. small particles begin appearing in the

shell as well∗, or the partial icosahedral structure becomes distorted. In Table 1

(Figure 8.13) , we perform a RY LM analysis on the lowest-energy binary LJ clusters.

We find the clusters progressively deviate from icosahedral bond angles and begin

resembling other Frank-Kasper polyhedra as the binary ratio increases.

Following the work of Doye and Meyer, we would expect that for an icosahedral

cluster with a single large particle, the large particle would tend to occupy the shell

and not the center of the cluster; we would also expect the resulting cluster to be

lower energy than an equivalent monodisperse cluster as the larger particle would

help relieve strain.

We test this hypothesis by growing a set of NS with discrete binary polydispersity

into a monodisperse DG structure. One binary DG was created with 10% of the NS

∗The full icosahedral cluster (coordination 12) has a shell of large particles around a small particle
up to a binary diameter ratio of 1.15. At a ratio of 1.2, four of the shell particles become small, as
the central particle is now too small for twelve large particles to fit around comfortably.

153

having radii 10% larger and a second was created with 10% of the NS having radii

10% smaller. These binary DGs were created identically to the artificially grown

DGs described in Section III at T ∗ = 0.256, and equilibrated at this temperature

until the NS had, on average, diffused at least halfway across the simulation box.

We find that small NS are 16 times more likely to be found at the center of local

icosahedral structures than the large NS. The large NS were 1.3 times more likely to

be found in a coordination shell than a small NS. Small NS and large NS promote local

icosahedral structure by 2% and 15%, respectively. Small NS may also promote local

icosahedral structures with slightly higher coordination; quenched local icosahedral

structures had 4% higher coordination. In general, we find that the presence of small

NS lowers the potential energy of a given local icosahedral structure by creating a

lower-energy, higher-coordination structure, while large NS, which relieve the strain

in the coordination shell, encourage more local icosahedral structures to form. Thus,

for a DG formed at low polydispersity levels, the minor fraction of smaller and larger

NS are working in concert to lower the energy and further stabilize the DG structure.

Fig. 8.11d shows that the fraction of well-ordered icosahedral clusters peaks at around

a polydispersity of 6%. At this level of polydispersity, we find that a NS in the center

of the local icosahedral structure is 5.6% smaller than its coordination shell NS.

8.4.3 Studying the average structure properties with the Voronoi tessel-

lation

We use a generalized Voronoi tessellation, specifically the radical tessellation32, to

determine how polydispersity affects the average volume fraction of the gyroid domain

and the average NS coordination number (see section IIIC and the supplemental ma-

terial for more details). As shown in Fig. 8.11e, we find that as the polydispersity of

the system is increased, the gyroid domain becomes more densely packed, increasing

by 0.015 from ∆=0% to ∆ = 24%. This increase is a result of the extra degree of

154

freedom in particle size, which permits the NS to locally arrange in tighter configu-

rations. This is in good agreement with simulations of hard spheres, where variation

in particle size is shown to increase the packing fraction182. Like the measure of

potential energy, calculating the packing fraction of the DG is indifferent to how the

polydisperse gyroid is formed. We note that while in monodisperse systems tighter

sphere packing is associated with lower energy configurations, the ability of a polydis-

perse system to pack tighter than a monodisperse system does not necessarily imply

that the polydisperse system must also have a lower energy than the monodisperse

system. We find that packing fraction increases over the entire range of polydispersity

(Fig. 8.11e) while potential energy initially decreases with increasing ∆ up to ∆=8%

and then increases with increasing ∆ (Fig. 8.11c).

Fig. 8.11d shows that increasing polydispersity lowers the average NS coordina-

tion number of the system. Linear fits of the NS coordination as a function of the

polydispersity below and above 8% are shown to illustrate the slope change that oc-

curs with increasing polydispersity. The potential energy of the NS is a function of

two properties, the coordination number of NS and the distance to each neighbor in

the coordination shell. For ∆ < 8% we previously observed that PE decreases with

increasing ∆ (Fig. 8.11c); we additionally observe that the packing fraction of the

DG increases rapidly but the average NS coordination number drops only slightly

with increasing ∆. We conclude the system is lowering its PE by finding tighter

configurations where more NS are sitting in the bottom of the potential energy wells

of their neighbors, in a manner analogous to the isolated icosahedral cluster with a

9.7% smaller particle at its center. As the average NS coordination begins to drop

more rapidly, the effect of this drop can be seen in the increase of potential energy

shown in Fig. 8.11c.

Although the average NS coordination decreases with increasing polydispersity,

this decrease is not universal for all NS sizes, but represents a net effect. The fact

155

6
8

10
12
14
16

co
or

di
na

tio
n

NS diameter

-5

-4

-3

-2

po
te

nt
ia

l e
ne

rg
y

Δ=2

Δ=10

1 1.5 2 2.5 3

Δ=24

NS diameter

-5

-4

-3

-2

-5

-4

-3

-2

1 1.5 2 2.5 3

Δ=24

Δ=10

6
8

10
12
14
16

6
8

10
12
14
16

Δ=2

(a) (b)

Figure 8.14: Increasing polydispersity induces a spreading in the coordination number
and potential energy of the NS in the DG as a function of NS diameter. In (a), the
number of NS neighbors (averaged over 2× 106 time steps) for each NS is shown. In
(b), the potential energy (averaged over 2 × 106 time steps) for each NS is shown.
This image was originally published in reference6.

that the net effect is negative may be due to sphere packing in a DG structure. In

Fig. 8.14a, we show the coordination number for the NS in different polydisperse

systems averaged over 20,000 time units and plotted against the diameter of each

particle. As the polydispersity increases, the coordination number becomes a strong

function of NS diameter. In Fig. 8.15, we show how average coordination trends with

polydispersity and how the coordination becomes a stronger function of sphere size

as polydispersity increases. The correlation coefficient, which measures the strength

of the linear relationship between diameter and number of neighbors, increases sig-

nificantly between ∆ = 2, 10, and 24%. As the potential energy of a shifted Lennard-

156

Figure 8.15: An analysis is performed on the influence of polydispersity on the average
coordination and the correlation between NS diameter and coordination for the data
shown in Fig. 8.14.This image was originally published in reference6.

Jones NS is a strong function of its coordination, in Fig. 8.14b we see that the average

PE of each NS, averaged over the same elapsed time, decreases with NS diameter.

It is also clear that for the more polydisperse DG, the vertical spread of potential

energy values for a given diameter is a function of the particle diameter. This reflects

the different diffusion coefficients for large and small particles in the same system, as

shown in Fig. 8.16. That is, smaller NS, in shallower potential energy wells, diffuse

faster through the system and also explore the range of possible energy configurations

faster, resulting in less spread in the measured potential energy for a small diameter.

We conclude that for low levels of polydispersity, the system is able to relieve

internal packing frustration, i.e. NS are able to adjust so that more spheres are

sitting in the bottom of the potential energy wells of other particles, lowering the

energy of the system. For larger values of polydispersity, the net decrease in average

NS coordination is responsible for the net increase in the potential energy of the

system.

8.5 Conclusion

For the DG, we find that a small amount of polydispersity (∆ = 5%) encourages

the formation of the DG phase, but a large amount (∆ > 10%) may kinetically prevent

the phase from forming. In comparison, for the H and PLH phase, we conclude that

157

0 5 10 15 20 25
polydispersity, Δ

0

0.5

1

1.5

2

di
ffu

si
on

 c
oe

ffi
ci

en
t x

 1
00

0

All
Biggest 10%
Smallest 10%

Figure 8.16: The diffusion coefficients of the average, 10% smallest, and 10% largest
NS of the DG are shown as a function of polydispersity. The y-axis is scaled by a
factor of 1000. The dimensionless units are in

√
ε/m. This image was originally

published in reference6.

there is no terminal polydispersity. Considering as high as ∆=30%, these two phases

were found to be present on both the CP and AP phase diagram. The AP phase

diagram, however, suggests that above a threshold polydispersity for each phase, the

T ∗ODT may decrease with increasing ∆. For the PLH phase, a minimal amount of

polydispersity (∆ = 6− 12%) may be necessary for the phase to be present. For the

L phase, we find that the crystalline bilayer phase has a terminal polydispersity of

≈ 6%. For 6%<∆<12%, an L/PLH coexistence region or the PLH phase may be

present.

One consequence of the minimal and terminal polydispersity ranges identified

above is that a manufactured population of TNS at a given polydispersity value may

not be able to form all the ordered phases.

The use of the Alternate Path, AP, phase diagram proves a useful way to study

perturbations to a phase diagram. In this case, the perturbation was NS polydisper-

158

sity. Rather than independently self-assembling perturbed systems, self-assembled

ordered systems can be slowly adjusted to the perturbed state. In the case of poly-

dispersity, this easily allows the impact of the perturbation to be studied continuously.

Compared to CP phase diagrams, or phase diagrams generated by self-assembly from

a disordered system, we found the AP method to reproduce the same phase bound-

aries with some small deviations. Even features particular to the CP phase diagram,

such as the larger PLH region, can be reproduced by the AP method by considering

an AP phase diagram where the polydispersity is increased to a terminal value, and

then decreased again. This method is most valuable for studying phases that are

difficult to self-assemble for kinetic reasons, such as the DG phase or the L/PLH

coexistence region.

More generally, it is apparent that polydispersity can have subtle but important

impacts on the properties of sphere packing, especially in unusual domain geome-

tries. A relatively small amount of polydispersity can disrupt internal structures

and change the per-particle energy of the packing. The local packing character of

the nanoparticles was the dominant consideration in determining how polydispersity

influenced the properties of the phase. In general, the phases with the more disor-

dered packing were more tolerant of polydispersity than the more ordered phases. For

sensitive phases that occupy a narrow volume fraction range of the phase diagram,

such as the DG phase, or phases that occupy a wide volume fraction range but with

internal crystalline ordering, such as the L phase, it can be critical to consider how

much polydispersity a phase can tolerate before assuming the phase will be found in

experimental systems.

159

CHAPTER 9

Voronoi Tessellation for Characterizing

Microphase Separated Soft Matter Systems

This chapter corresponds to publication:
Phillips, Glotzer, Voronoi Tessellation for Characterizing Microphase Separated

Soft Matter Systems, Preprint

Voronoi cells33 have a rich history of use in the characterization and analysis of

soft matter systems183–190. They have been used to characterize liquid and solid phase

structure by considering the statistics of the Voronoi network183 and by considering

the distribution and shape of the Voronoi polyhedra184,186 and the distribution of

the neighbor statistics185. Voronoi cells have been used to measure liquid and vapor

densities and identify interfaces in systems with coexistence187–189. They have also

been used to study structure and dynamics in glass-forming liquids190.

In this chapter, we propose how Voronoi tessellations can be used to study systems

with microphase separation. In microphase separated systems, an ordered mesophase

emerges when amphiphiles, or chemical compounds created from immiscible com-

ponents, minimize their free energy. Classic examples of microphase separation

are found in block copolymer systems191–193. However recent studies have consid-

ered how shape amphiphiles, created by functionalizing anisotropic nanoparticles,

may assemble into more complex structures with liquid crystal-like internal order-

ing5,29,122,148,155,194. When studying these microphase separated systems, it is useful

160

to be able to understand how different state points and variation in particle param-

eters affect properties such as the density of the different domains or the internal

coordination of particles in a domain. Individual amphiphiles in these systems are

usually modeled as a collection of spheres connected by a combination of rigid and

soft bonds. Some amphiphiles are also modeled by spheres of two or more different

sizes. We introduce how a Voronoi tessellation can be used to study such systems. In

Section 9.1, we review the Voronoi tessellation and consider applications of the tes-

sellation to an example systems, a double gyroid phase self-assembled from tethered

nanorods155. In Section 9.2, we discuss a practical method for extending the Voronoi

tessellation to systems with a distribution of sphere sizes using existing open source

software. In Section 9.3, we will consider a case study of a double gyroid phase formed

from particles with a distribution of sphere sizes from Part III, Chapter 8. We will

demonstrate how the extended Voronoi tessellation measure provides a useful tool for

understanding how the system density responds to temperature and for comparing

this DG phase to other self-assembled DG phases. In Section 9.4, we make concluding

remarks regarding the use of this measure.

9.1 Voronoi Tessellation

The Voronoi cell around a point is generally defined as the region of space that is

closer to the given point than any other point in the system. In a three-dimensional

space, the Voronoi tessellation for a set of points uniquely divides the space into

irregular polyhedra with flat faces and straight edges. For a system of monodisperse

spheres, a set of points can be defined by the center of each sphere, and the resulting

Voronoi tessellation can be used to study the packing properties of the system. If

the monodisperse spheres are non-overlapping then each sphere will be completely

contained within its Voronoi cell and the volume fraction of a sphere inside its cell

has been proposed as local measure of density37,187,195. In a system of spheres packed

161

in a face-centered-cubic or hexagonally-close-packed arrangement, for example, the

volume fraction of an individual sphere in its Voronoi cell reflects the bulk volume

fraction of the packing. Also, counting the faces of a spheres Voronoi cell provides a

measure of the local coordination, or neighbors, of an individual sphere in a packing.

Voronoi cells are additive. If a structure, for example, is composed of multiple

spheres, then the region of space that is closest to the structure in the space is simply

the union of the Voronoi cells formed around each sphere that composes the structure.

This is true, even if the multiple spheres are overlapping. We exploit this principle

to define the Voronoi volume of a microphase-separated systems domain. In Section

9.2, we will exploit this principle again to approximate a polydisperse, or diameter

distribution, generalization of the Voronoi tessellation, the Voronoi S tessellation.

(a) (b)

Figure 9.1: (a) A double gyroid phase self-assembled from tethered nanorods. (b) A
double gyroid phase self-assembled from 18% polydisperse tethered nanopheres

In a microphase separated system, where different components of the system have

separated into different domains, the net Voronoi tessellation of each domain can

be used as a measure of the volume of each domain. The net Voronoi volume of

a domain is defined as the sum of the Voronoi volumes of each component member.

162

These Voronoi cells are usually connected to each other, forming the domain, although

this is not a necessary requirement. The convenience of this measure is that it is

indifferent to the topology of a particular domain, it is rigorously defined, and it

can be used to measure how changing parameters such as temperature or particle

size impacts the compactness or packing fraction of different domains in the system.

Also, the external facets of a tessellation around a domain can be thought of as

approximating the intermaterial dividing surface (IMDS) between the phase separated

domains. By considering the volume of the entire domain, the packing fraction of just

the component in the domain can be characterized. By considering individual Voronoi

cells, the local packing fraction of a part of the domain can be characterized at the

most meaningful degree of resolution.

In a microphase separated system where one interaction is attractive and all other

interactions are essentially volume excluding, it is expected that the aggregating com-

ponent will represent the densest part of the domain and that as temperature is low-

ered or epsilon is increased, that the volume occupied by the aggregating component

will decrease. Equivalently, as temperature is lowered, it is expected that the packing

fraction of the aggregating component domain will increase. Often the packing frac-

tion trend is difficult to quantify in microphase separated systems by creating a simple

envelope of a domain. For example, in the case of the double gyroid, a triply periodic,

tricontinuous phase, trying to separately characterize the packing fraction of the node

versus a channel25,156 is onerous. The common method of measuring local density by

calculating the particle intersections within a cutting sphere envelope, which involves

arbitrary choices of sphere size and placement, work best when the cutting sphere

envelope is significantly larger than the particles, but smaller than the structure the

particles compose. A domain in a microphase separated system may only be a few

particles in cross section, causing this method to be inexact. The Voronoi tessellation

is indifferent to these issues.

163

We generated standard three-dimensional Voronoi cells by using the open-source

software vor++∗, which uses a plane cutting algorithm37,195 to rapidly and robustly

calculate Voronoi cells for three-dimensional systems.

In the left panel of Figure 9.1, we show an example of a microphase separated

soft matter system155, a double gyroid phase that has self-assembled from a system

of rods (5 beads, σ = 1.0) functionalized by a tether at one end (2 beads, σ =

1.0). More details on this phase can be found in Iacovella, 2008155. By considering

the union of the Voronoi cells comprising a single domain, it is possible to simply

measure the volume fraction of a domain relative to the whole system. Previously

the IMDS of DG phases have been modeled using level surfaces or constant mean

curvature (CMC) surfaces196. The volume fraction of a minority component domain

in experiments has been measured by comparing TEM images to level surface or CMC

surface models157. Using a Voronoi tessellation, and studying a single snapshot of the

tethered rod system, we find that the volume fraction of a single minority component

of the tethered rod DG phase is 21.8%. The volume fraction measured is higher than

the experimentally observed range for block copolymers (13-19%)196. The packing

fraction in the rod domain, defined as particle volume divided by rod domain volume

is 0.343, which is roughly three times as dense as the packing in the tether domain,

(packing fraction of 0.107).

In Figure 9.2, we consider the distribution of packing fractions and coordinations

for individual rods in a single snapshot of the system. In this case, the packing

fraction of each rod is measured as the volume of the spheres composing each rod,

5σ3π
6

, divided by the sum volumes of the Voronoi cells for the the spheres. The rod

coordination is measured as the number of neighboring rods that create the facets of

the union of the set of Voronoi cells for the spheres. In Figure 9.2(a), we observe that

the nanorods are not tightly packed, significantly below the fcc/hcp packing fraction

∗http://math.lbl.gov/voro++/

164

0 5 10 15
Coordination

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5
Packing Fraction

0

0.1

0.2

0.3

0.4

(a) (b)

Figure 9.2: (a) The distribution of packing fractions for the rods. (b) The rod-rod
coordination for the nanorods

of 0.7405, and, at the densest, approaches the packing fraction of a simple cubic

system at 0.52. The outlier, lowest packing fraction nanorods, are nanorods that

failed to join the channels and nodes of the DG phase, and are floating in the tether

region. Figure 9.2(b), we find that there is a significant distribution of coordinations,

but that the distribution is strongly peaked around 6 and 7 rods, as would be expected

from a hexagonal rod packing. We find that the average coordination of a rod in the

nanosphere domain is 7.215.

In Figure 9.3, a density map cross-section of a unit cell of the tethered rod DG

is shown based on the standard Voronoi tessellation. For the nanorods and the teth-

ers, the local densities are shown per-sphere rather than per-rod or per-tether. The

high-density regions correspond to the aggregating nanorod component. The high-

est packing fraction an individual Voronoi cell can achieve in a monodisperse sphere

system is the Voronoi cell of a sphere at the center of a local fully-coordinated icosa-

hedral structure197, or approximately 0.7547. The nanorod domain which is densest

at the center of the domain, has peak packing fractions at 0.572. We observe that the

relatively larger nanosphere domain compared to other DG phases may be explained

by the range of local densities found within the nanorod domain, which is tightly

packed towards its center but loosely packed towards the surface of the domain, due

165

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 9.3: A cross section of the density map of a unit cell of a tethered rod double
gyroid based on the standard Voronoi tessellation.

to the twisting and skewing of the rods. The tethers, on the other hand, are loosely

packed and a considerable amount of void space is present in the tether domain.

Another self-assembled double gyroid phase, shown in the right panel of Figure

9.1, was introduced in25, and further studied in155. This DG phase, which self-

assembles from polymer tethered nanospheres where the nanospheres are aggregating,

is modeled by a minimum of two different sphere sizes. In order to study this DG

phase shown in the right panel of Figure 9.1 the standard Voronoi tessellation must be

extended. In the following sections we will show how known extensions of the standard

Voronoi tessellation can be practically calculated, and use these tessellations to study

the tethered nanosphere double gyroid phase.

166

(a) (b)

(c) (d)

Figure 9.4: (a) We consider a sphere of diameter 2.0 surrounded by smaller spheres of
diameter 1.0. (b) A conventionally defined Voronoi cell is embedded inside the large
sphere, which has been made partially transparent so the Voronoi cell is apparent.
(c) Alternately a Voronoi S cell can be constructed around the sphere, which is shown
with a mesh to make the curvature of each face more apparent. (d) Or a radical cell
can be constructed around the sphere.

9.2 Voronoi S Cell and Radical Tessellation

In a system of polydisperse spheres, the standard Voronoi tessellation is not a

physically appropriate tessellation. Consider, for example, a large sphere surrounded

by smaller spheres, as shown in Figure 9.4a. The faces of the Voronoi cell, calcu-

lated as bisecting planes between the centers of each pair of spheres, will cut through

the larger sphere’s surface (fig. 9.4b). In a system of non-overlapping polydisperse

167

spheres, it is possible, therefore, to obtain a local volume fraction greater than one.

Two generalizations of the Voronoi tessellation that have been proposed for systems

with polydisperse spheres include the Voronoi S cell, or additively-weighted Voronoi

diagram, and the radical tessellation198 which are illustrated in Figure 9.4c and 9.4d,

respectively. The Voronoi S cell of a sphere includes all points that are closer to the

surface of the sphere than any other sphere surface. The radical tessellation32 in-

cludes all points whose tangential distance to the surface of the sphere is smaller than

the tangential distance to any other sphere surface. While the Voronoi S cell32,199

has a more physically useful definition, the surfaces of the Voronoi S cell are curved

hyperboloids and therefore, volumes must be approximated. The radical tessellation,

on the other hand, decomposes space uniquely into flat-faced polyhedra and is there-

fore simply calculated and its volume can be exactly determined. In a system of

monodisperse spheres, both the Voronoi S tessellation and radical tessellation reduce

to the standard Voronoi tessellation.

To generate a radical tessellation we made minor modifications to the plane cut-

ting algorithm developed by Rycroft. The plane cutting algorithm calculates the

Voronoi cell around a central point by first, initializing the cell as the size of the en-

tire space, and then considering points (cutting points) in successive concentric shells

around the initial point and making plane cuts to the cell. When the next concentric

shell to be considered is farther from the central point than twice the maximum dis-

tance, rV oronoi max, from the central point to a vertex of the current Voronoi cell, the

bisecting plane of any subsequently considered point cannot cut the Voronoi cell, and

the algorithm is terminated. Note, subsequent versions of the vor++ improved this

algorithm with an extra directional test, that can be ignored for the purpose of this

discussion. We extend this algorithm to calculate a radical tessellation by projecting

each cutting point radially from the central point by a factor γ times the distance

between the cutting and central points. The resultant Voronoi cell cut is equivalent

168

to the radical cell. The factor γ is defined as follows:

γ =

(
1 +

r2
c − r2

i

R2

)
(9.1)

where rc is the radius associated with the central point, ri is the radius associated

with the cutting point being projected, and R is the nominal distance between the two

points. The criteria for terminating the algorithm must be adjusted, since it is possible

that a more distant cutting point could be projected inwardly. In our modification,

the algorithm now terminates when rshell is greater than twice rV oronoimax, where

rshell is defined as

r′shell

(
1 +

r2
c − r2

max

r2
shell

)
(9.2)

Here rmax is the maximum radius of any sphere in the system, and rshell is the distance

to the next concentric shell.

The ability to calculate radical tessellations has been incorporated into the vor++

open-source code.

To approximate the Voronoi S cell of spheres in a polydisperse system, each sphere

is decomposed into roughly 800-1500 overlapping smaller spheres, embedded inside

the larger sphere and touching the surface of the larger sphere at points distributed

evenly over the surface of the larger sphere, using the golden section spiral method to

distribute the points200,†. A single small sphere is placed at the center, to prevent the

creation of a single highly degenerate vertex. The size of the small spheres used for

the decomposition is chosen to be the size of the smallest sphere in the system. This

decomposed system now consists of monodisperse spheres (albeit, overlapping) and a

standard Voronoi tessellation can be applied. Here we employ the principle that the

Voronoi cell for an object that can be decomposed into elements whose Voronoi cells

can be calculated is equal to the union of the Voronoi cells of the individual elements.

†For an explanation as to why to use a golden section based generalized spiral, see
http://www.ogre.nu/pack/pack.htm

169

The Voronoi S cell for the original large sphere is approximated as the union of all

the standard Voronoi cells of the small spheres into which it was decomposed. As the

number of smaller spheres in the decomposition is increased, their union converges

to a Voronoi S cell. For each face of the Voronoi S cell dividing the space between

the central spheres and a neighboring sphere, it theoretically would be sufficient to

decompose the larger of the two into a collection of spheres the size of the smaller of

the two. This, however, adds complexity to the algorithm.

The convergence of this approximation to a Voronoi S cell was verified by com-

paring the location of the vertices generated with those generated by a corrected

implementation of an algorithm by Medvedev‡ 199. In a non-degenerate system of

polydisperse spheres, three and only three edges and faces meet at vertex. Each ver-

tex of the Voronoi S network is equivalent to the center of a constructed interstitial

sphere that is simultaneously tangent to four spheres. Medvedevs algorithm con-

structs an initial vertex and then follows the curved edges of the network, assuming

it is simply connected, until all vertices have been found. Medvedev’s algorithm does

not generate individual Voronoi cells from which a volume could be simply calculated.

The Medvedev algorithm was applied to a unit cell, of length 23.8031 on each side,

of a double gyroid phase consisting of large spheres of σ = 2.0 and a small spheres

of diameter σ = 1.0. The ratio of large to small spheres was 1:8. To approximate

the Voronoi S cell tessellation, each of the large spheres was decomposed into 720

overlapping spheres of σ = 1.0. Medvedevs algorithm199 identified 30,083 unique

vertices in the binary sphere system. Of the vertices generated by the decomposition

methods, 99.88% were generated by both the same quadruple of spheres and were

within a distance of 3e-3 of the vertex generated by Medvedevs algorithm199.

In general, the calculation of a Voronoi S cell tessellation required the calculation

‡Correspondence with Dr. Medvedev clarified that the vector l, whose dot product with vector
tijk is used to determine the correct direction to proceed along the Voronoi S-Channel, should be
drawn from the tangent point of the interstitial sphere centered on the site with the first ball i, to the
tangent point of this sphere with the fourth ball l . A misprint in the text omitted this explanation.

170

of approximately two orders of magnitude more standard Voronoi cells as compared to

the radical tessellation. Also, the termination criterion for the Rycroft plane-cutting

algorithm described above is optimal for nearly-spherical Voronoi cells. When a large

sphere is decomposed into numerous small spheres, the shape of the standard Voronoi

cell around each small sphere is extremely oblong in shape in the large sphere radial

direction. This increases the number of iterations of the plane-cutting algorithm

before termination.

In the next section, we will show that the radical tessellation and the Voronoi S

cell tessellation behaved similarly with regard to the properties being studied (Figure

9.7 and Figure 9.8) with, generally, a fixed offset between the two measures.

9.3 Characterizing the Microphase Separated Domain of a

Double Gyroid with the Voronoi Tessellation

Iacovella et al.,25, showed that a tethered nanosphere, modeled as a large sphere

of σ = 2.0 (the nanosphere) attached to a string of eight small spheres of diameter

σ = 1.0 (the tether beads), self assembles into a double gyroid (DG) phase at a

system concentration of 0.3 when the larger spheres are aggregating. Further details

of the model assumptions can be found in Iacovella et al. 25 . A question of interest is

how nanosphere polydispersity effects this phase. Note that a “monodisperse” TNS

system is a binary, not monodisperse, system of spheres, as the tether beads and

nanospheres are different sizes. We will now contrast the radical tessellation to the

Voronoi S tessellation for studying such a system.

In Figure 9.5 and 9.6, a density map cross-section of a unit cell of a monodis-

perse and polydisperse DG, ∆ = 24%, is shown based on both the radical tessellation

and the Voronoi S tessellation. The high-density regions correspond to the aggre-

gating nanosphere component. The highest packing fraction an individual Voronoi

171

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) (b)

Figure 9.5: (a) A cross section of the density map of a unit cell of a monodisperse
gyroid based on the radical tessellation and (b) based on a Voronoi S tessellation.
Shading indicates the volume fraction of the Voronoi cell cut in the cross section.

cell can achieve in a monodisperse system is the Voronoi cell of a sphere at the cen-

ter of a local fully-coordinated icosahedral structure, or approximately 0.7547197. In

the monodisperse density cross-section, cross-sections of a local partial icosahedral

structure can be observed. In a polydisperse system, the local packing fraction in a

volume cell can theoretically approach 1.0 as polydispersity increases, though these

configurations are unlikely to form in a DG. In the monodisperse DG system, where

generally only partially coordinated local icosahedral structures are possible due to

the steric constraints, the peak packing fraction (i.e. local density) is approximately

0.650, if measured by a Voronoi S tessellation, or 0.659, if measured by a radical

tessellation. In block copolymer systems, the formation of voids in the node is be-

lieved to destabilize a double gyroid phase. The node of a block copolymer double

gyroid is composed of many aggregating monodisperse spheres (beads) tethered to

each other. The concentration profile of the node of a block copolymer system in

the double gyroid phase156, can locally approach the fully coordinated icosahedral

structure packing fraction, but not across the entire node. The DG node in a TNS

system is composed of fewer, larger spheres with different steric constraints than a

node composed of chains of six monodisperse polymer beads from the aggregating

172

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) (b)

Figure 9.6: (a) A cross section of the density map of a unit cell of a double gyroid
with polydispersity 24% based on the radical tessellation, (b) and based on a Voronoi
S tessellation. Shading indicates the volume fraction of the Voronoi cell cut in the
cross section.

portion of a diblock copolymer. Namely, the DG node in a TNS system is not large

enough, relative to the particles comprising it, to form voids in the node.

In Figure 9.7, the impact of temperature on the volume of the entire DG domain

in a monodisperse DG is considered. As expected, this measure shows that the DG

domain becomes more compact as the temperature of the system is lowered; that is,

the volume occupied by the aggregating component decreases. Conversely, the pack-

ing fraction of the aggregating component within its domain increases with decreasing

temperature. A Voronoi S tessellation and a radical tessellation demonstrate similar

trends with regard to packing fraction, just offset by a fixed difference. From Fig-

ures 9.5 and 9.6, it is apparent that the Voronoi S tessellation generally assigns more

volume to the large sphere at a large-NS/small-tether-sphere interface. Therefore,

since in this system the aggregating NSs are always larger than the tether spheres,

the Voronoi S tessellation will always calculate a lower packing fraction, with respect

to the DG domain, than the radical tessellation. The two tessellations show similar

trends, with a fixed difference between their calculations.

As in Section 9.1, we use the union of the Voronoi cells comprising a single domain

to simply measure the volume fraction of a domain relative to the whole system. The

173

0 0.05 0.1 0.15 0.2 0.25 0.3
Temperature, T*

3450

3500

3550

3600

3650

3700

D
o

u
b

le
 G

y
ro

id
 V

o
lu

m
e

Radical Tessellation

0 0.05 0.1 0.15 0.2 0.25 0.3
Temperature, T*

0.52

0.53

0.54

0.55

0.56

P
a

c
k
in

g
 F

ra
c
ti
o

n

Radical Tessellation

0 0.05 0.1 0.15 0.2 0.25 0.3
Temperature, T*

0.47

0.48

0.49

0.5

0.51

P
a

c
k
in

g
 F

ra
c
ti
o

n

Voronoi S Tessellation

(a) (b)

(c)

Figure 9.7: (a) The radical volume of a monodisperse gyroid domain in a unit cell as a
function of temperature. (b) The packing fraction of the monodisperse gyroid domain
as a function of temperature, as calculated by dividing the volume of the nanoparticles
by the radical volume of the gyroid. As expected, lowering the temperature causes
the NS to pack tighter. (c) The packing fraction of the monodisperse gyroid domain
based on a Voronoi S tessellation.

radical tessellation measures the volume fraction of one of the two minority compo-

nents as 13-14%, varying as a function of temperature. The Voronoi S tessellation,

which assigns slightly more volume to the large sphere at a large NS sphere/small

tether sphere interface, measures the same minority component volume fraction as

14-15%. The volume fraction measured is near the lower bound of the experimentally

observed range for block copolymers (13-19%)196.

The measure of the average packing fraction of a domain can be sensitive to even

small changes to the system. For example, a monodisperse gyroid with nanospheres

174

1.07% smaller in diameter than the standard diameter of 2.0, was grown and equi-

librated in a simulation cell with an unchanged box length, effectively lowering the

volume of the net nanospheres by 3.2% and the concentration of the system to 0.295.

As the DG is periodic in all three dimensions, the DG cannot reorient within its

simulation box to relieve the stress, so the DG has to stretch. This DG was measured

to have domain density of 0.531 +/- 0.002, or 0.8% less dense than the DG with the

standard sized nanospheres.

0.1 0.15 0.2 0.25 0.3 0.35
Temperature T*

8

8.1

8.2

8.3

8.4

8.5

co
or

di
na

tio
n

Radical Tessellation

0.1 0.15 0.2 0.25 0.3 0.35
Temperature T*

8.2

8.3

8.4

8.5

co
or

di
na

tio
n

Voronoi S Tessellation

(a) (b)

Figure 9.8: (a) The average NS coordination based on a radical tessellation of
monodisperse DG as function of increasing temperature. Increasing temperature
causes a slight downward trend in the average number of neighbors. (b) The average
NS coordination based on a Voronoi S tessellation.

In Figure 9.8 we show the average neighbors, or coordination, of a nanosphere

in a monodisperse gyroid as a function of temperature. Neighboring nanospheres

are identified by the internal facets of a union of Voronoi cells comprising a domain,

and is a measure that is specific to the tessellation used. As the temperature of

the system decreases, the average nanosphere coordination slightly increases. Again,

the radical tessellation and the Voronoi S tessellation have similar trends, but with

a fixed difference between them. The Voronoi S tessellation assigns approximately

0.1 more neighbors per nanosphere than the radical tessellation, consistent with also

175

assigning a slightly larger cell. We have observed that the two tessellations showed

similar trends, with a fixed difference between their calculations, as a function of

polydispersity as well.

In Part III, Chapter 8, we studied a polydisperse tethered nanosphere system.

The radical tessellation is used to study the influence of polydispersity on the packing

fraction of the NS domain.

9.4 Conclusion

We conclude that a Voronoi tessellation is a useful tool for studying the properties

of individual domains in a microphase separated system. A Voronoi tessellation pro-

vides the ability to measure domain volume, create an interfacial surface, and measure

the coordination of spheres of the same domain. It can be used to simply measure the

packing fraction and neighbors of particles modeled by multi-site spheres. We have

also shown that the numerically efficient radical tessellation is an effective substitute

for the Voronoi S tessellation for systems containing multiple sphere sizes. In Part

III, Chapter 8, we found this measure to give critical insight as to the stability of the

polydisperse TNS DG phase.

We also see potential for this method to provide other useful statistics for a soft

matter system, such as studying the statistics of the Voronoi cells of the tethers to

estimate configurational entropy, or measuring the net interfacial area, that we have

not demonstrated here.

176

CHAPTER 10

Self Assembling Clusters Related to Mathematical

Extremal Points on the Surface of a Sphere

This chapter corresponds to publication:
Phillips, C.L., Jankowski, E.R., Marval, M., Glotzer, S.C., Self Assembled Clus-

ters of Spheres Related to Spherical Codes, Preprint

Anisotropic particles are compelling building blocks for self-assembled materials

because their directional interactions can be exploited to create complicated and use-

ful patterns10,201–206. One way to create anisotropic building blocks is to self-assemble

them from simpler particles, where the building block represents a free-energy mini-

mizing structure. Recently a number of papers have been published synthesizing and

simulating compound building blocks that are clusters of sphere2,205,207–212. Colloidal

spheres are attractive candidates for assembly because they can be made from a wide

variety of polymers and metals, and their interaction potentials can be tuned with

organic ligands, solvents, and salts.

Here we consider a class of self-limiting, or ”terminal”, colloidal clusters created

by self-assembling a small population of one type of particle, the “halo” particle (HP),

around a second type of particle, the central particle (CP). The clusters are terminal

because the only attractive interaction is between the HP and CP, which are dilute

in the fluid of HP, and therefore steric restrictions among co-adsorbed HPs inhibit

further growth. The resulting clusters have structures determined by the interactions

177

among the adsorbed HPs, which self-organize around the CP to minimize their free

energy.

anisotropic

building

block

patchy

particles

nanoparticle

cages

HPHP

HP

HP
HP

HP

CP

terminal cluster

Figure 10.1: A terminal N -cluster with an octahedral structure (N = 6) is self-
assembled from a bath of HP and a CP. This cluster has applications as a anisotropic
building block, could be used to manufacture a “patchy particle” by imparting patches
on the CP at the contact points, or could be locked into a nanocolloidal cage structure.

Arrangements of HPs on the surface of a CP have been studied extensively by

mathematicians in the context of optimal arrangements of points on a sphere38,213–215.

The solutions provide a library of anisotropic clusters that can in principle be created

with properly designed interactions among the constituent particles. In this work we

study hard sphere HPs that are attractive only to dilute CPs and not to other HPs,

thereby producing clusters of HPs around a single CP. The arrangements of these HPs

bear comparison to a particular set of solutions, the spherical codes, for certain ratios

of particle diameters. We investigate the self-assembly of these clusters as a function

of temperature, where entropy controls the equilibrium structure of the cluster, and

in a semi-open system, where HP are free to bind and unbind from the CP surface.

We also consider the effect of temperature on the cluster structures and dynamics

at deviations from the perfectly dense packings that correspond to solutions of the

spherical code.

178

This paper is organized as follows. In Section 1 we briefly review sphere surface

extremal point problems. In Section 2, we introduce the methods we use to study

the terminal N -clusters, including Brownian dynamics simulations, free energy cal-

culations, and metrics for cluster structure and mobility. In Section 3, we report

the results of our simulations, free energy calculations, and analyses. We find that

terminal N -clusters self assemble across a range of diameters and temperatures and

the structure of these clusters resemble spherical code solutions. These findings are

supported by free energy calculations, which predict cluster sizes and distributions.

Using Brownian dynamics and free energy calculations, we explain the surprising ob-

servation of a dominant low-symmetry N = 5 cluster, a deviation from the spherical

code prediction. We calculate changes in cluster structure across a range of diame-

ter ratios and investigate the dynamics for different cluster sizes, including collective

modes. We find that the dynamics for clusters of different sizes are different. In

Section 4, we discuss several ways this work can be extended to create more types of

anisotropic particles via tuning of the particle interactions, constructing additional

shells of particles, and creating structurally reconfigurable particles. In Section 5 we

conclude with a summary of our findings.

10.1 Sphere Surface Extremal Points and Spherical Codes

The problem of finding extremal points obtained by optimally distributing points

on the surface of a sphere to minimize a function f has been well studied in the field

of mathematics214–216. The problem is typically posed as follows:

Given N points on the surface of a sphere of radius R, what arrangement of the

N points minimizes a function f ?

If f = k
∑N

i 6=j r
−n
i,j , where ri,j is the Euclidean distance between the points i and

j, and n = 1, minimizing f corresponds to the Thomson problem, whose solution

describes the distribution of identical point charges on the surface of a sphere. As

179

2 3

4 5 6

7 8 9

10 11 12

1 D 8 h
D
3h

T
d

O
h

C
3v

D
4d

D
3h

D
2v

D
5v

I
h

D
3h

C
4v

C 8

0 0 0.1547

0.2247 0.4142 0.4142

0.5912 0.6453 0.7321

0.8325 0.9021 0.9021

Figure 10.2: The arrangement of points (pink) that correspond to each spherical code
solution for 1 ≤ N ≤ 12. The point group of each arrangement is shown to the upper
right of each arrangement, and the densest packing diameter ratio Dc/Dh = ΛN is
shown to the lower right. For N = 5, the triangular bipyramid configuration is shown.
Other N = 5 configurations are shown and discussed in Figures 10.10-10.9 .

n → ∞, the problem corresponds to the spherical code, (also known as the Fejes

Tóth, or Tammes problem), whose solution maximizes the minimum distance between

any two sets of points38,213–215. Other possible choices for f include minimizing the

maximum distance of any point to its closest neighbor, also known as the sphere

covering problem, and maximizing the volume of the convex hull of the points. For

each of these problems solutions are exactly known for some values of N , while various

numerical searches have suggested best solutions for other N . For the functions

180

mentioned, tables of putative solutions up to at least N = 130 can be found in Ref.38.

Fig. 10.2 depicts the spherical code solutions for 1 ≤ N ≤ 12. The arrangement

of points for N = 4 corresponds to the vertices of a regular tetrahedron, N = 6 an

octahedron, N = 8 a square anti-prism, and N = 12 an icosahedron. The point

arrangement of N = 11 is equal to the N = 12 solution minus a single point, or an

icosahedron with one truncated pentagonal face. For each N , the point group – the

group of isometries that keeps one point fixed – of the arrangement214 is shown in

the upper right corner. Each optimal arrangement of N points on the surface of the

sphere is unique except for N = 5 which has a continuum of solutions ranging from a

triangular bipyramid (point group D3h, shown in Fig. 10.2 and Fig. 10.10b) to a square

pyramid (point group C4v, shown in Fig. 10.10a). All solutions in the continuum have

two points at opposite poles of the central sphere and differ by the positions of the

three remaining points on the equator. The square pyramid arrangement is equal to

the N = 6 solution minus a single point. We discuss these structures in detail in

Chapter 10.3.4.

If the N points represent sphere centers, the spherical code solution corresponds

to the densest packing of N hard halo spheres that all “kiss” a central sphere. For any

packing of spheres around a central sphere, we define Λ to be the ratio of the central

sphere diameter, Dc, to the halo sphere diameter, Dh. We denote the minimal possible

diameter ratio for N spheres, which corresponds to the spherical code solution, as ΛN .

In Fig. 10.2, ΛN of each arrangement is shown to four significant digits in the bottom

right corner. Notably, ΛN=5 = ΛN=6 and ΛN=11 = ΛN=12. In one of mathematics’

most famous debates, Isaac Newton and David Gregory argued whether the kissing

number of unit spheres (Λ = 1) is 12 or 13. Had it been known that a central unit

sphere can only be kissed by 13 spheres if their radii is r ≤ 0.9165, or Λ13 = 1.091138,

this would have settled the question. Isaac Newton’s conjecture that the kissing

number is 12 was not proven until 1953197.

181

We also note that the spherical code solutions for N = 3-12, exceptN = 5, are rigid

or jammed. They contain no “rattlers”, defined as spheres not in isostatic contact

with other spheres217,218, and cannot be deformed other than global isometries217,218.

10.2 Methods

To predict and compare the terminal N -clusters of halo particles bonded to central

particles we use computational tools that sample equilibrium statistical mechanical

ensembles. In particular, Brownian dynamics simulations of model particles are used

to perform computer experiments of self-assembly and the results of these simulations

are compared against cluster probabilities calculated from a free energy analysis based

upon numerical partition function calculations206. We also calculate detailed struc-

tural and dynamic quantities for each cluster.

10.2.1 Hard Sphere and Sticky Sphere Model

In a semi-open system, the spherical code solutions of Section II correspond to

perfectly hard spheres adsorbed on a perfectly sticky sphere. Mathematically, per-

fectly hard spheres are points interacting via a function that steps from infinity to

zero (Fig. 10.3a) and perfectly sticky spheres are points interacting via the same

function plus an infinitely narrow square well function (Fig. 10.3b). In this work

we use radially-shifted Weeks-Chandler-Andersen (WCA) and Morse models of hard

and sticky spheres, respectively, which allow for computational efficiency as well as

direct comparison with their ideal mathematical counterparts (Fig 10.3). They also

capture, in a general sense, the repulsive and attractive interactions of the constituent

particles we have in mind. As nanoparticle synthesis continues to mature, the types

of interactions that can be used to guide the self-assembly of small particles can be

precisely tuned over wide ranges of length and energy scales, and the models used in

simulations can be suitably adjusted.

182

−E0

0

U

r

ideal

Morse

0

U

r

ideal

WCA

δ

8
8

(a)

(b)

Figure 10.3: (a) A mathematically ideal hard particle interaction is shown in solid
black compared to the hard particle interaction (in dashed blue) given by the WCA
potential (Eqn. 2.6). (b) A sticky sphere with a kissing contact potential when δ → 0
is compared to a model sticky sphere (in dashed blue) given by the Morse potential
(Eqn. 2.7).

The radially-shifted WCA potential is given by42 Eqn. 2.6 of Chapter 2.2.3. The

shifting parameter α is defined as α = σh − σ, where σh is the WCA “diameter”

of the HP, and rcutoff = 21/6σ + α. The interaction between two HPs can be made

arbitrarily hard relative to their size by increasing σh. The cost of increasing σh is

that the dimensionless time τ that elapses over each time step is reduced as τ ∝ 1/σh.

We choose σh = 3σ for its computational efficiency and its relatively “hard” modeling

of spheres. The energy parameter ε also determines the “hardness” of the HP, as a

larger energetic penalty to overlapping corresponds to a “harder” potential. The cost

of increasing ε is that a smaller simulation time step is needed to model a steeper

function. The energy parameter is set to ε = (0.1/T), where T is the temperature of

the simulation, so that the hardness of the HP is independent of temperature.

183

Using Eqn. 2.6 to model hard HPs is effective because of the large potential energy

penalty associated with two HPs approaching closer than 3σ. However, due to the

soft nature of the potential, spheres with sufficient kinetic energy can, in principle,

approach as close as 2σ. It is therefore useful to determine the effective hard particle

diameter of HP modeled by Eqn. 2.6. We use the Barker-Henderson equation219 to

calculate the effective diameter

Dh,e =

σBH∫
0

(1− e−βu(r))dr ' 3.0786σ (10.1)

where β = 1/kBT , u(r) = UWCA and the potential is zero at σBH = 21/6σ + α. For

the purpose of assessing the error in our calculations based on the effective diameter,

we can characterize two HPs as contacting when the interaction energy between them

is in the range 0 < UWCA < 10kBT , which corresponds to 3.0σ < Dh,e < 3.1225σ.

The radially-shifted Morse potential43, Eqn. 2.7 of Chapter 2.2.4, used to model

the “kissing” contact potential between the HP and CP. The parameters of the po-

tential are E0 = 5 which determines the depth of the energy well, β = 5.0/σ which

determines the width of the energy well, and r0 which determines the radial displace-

ment of the bottom of the energy well. The Morse potential interaction range is

truncated at rcutoff = 2.5σ+ (r0−σ). An effective CP diameter can be calculated by

defining an HP and CP as bonded when the distance between the two particle centers

is at the minimum of Eqn. 2.7. More properly, an HP and CP are bonded when they

remain positionally correlated because the HP remains within a given displacement

of the CP. We use the minima of Eqn. 2.7 and the effective diameter of Eqn. 10.1

to define an effective CP diameter Dc,e = 2r0 − Dh,e. The ratio of the CP to HP

diameter is therefore Λm = Dc,e/Dh,e, (m for molecular dynamics). We choose to

keep the hardness of the HP-HP interaction constant for all the MD simulations by

holding Dh,e (i.e. σh) constant while varying r0 to change Dc,e.

184

The non-infinitesimal potential well width of Eqn. 2.7 permits the bond between

the CP and HPs to stretch a small amount while remaining bonded. At some Λm

ratios, this stretching, though small, may be enough to accommodate an additional

HP bond to the CP. It is therefore useful to define the CP bond-stretched effective

diameter Dbs,c,e = 2R̄hc − Dh,e, where R̄hc is the average center-to-center distance

between a bonded HP and CP measured in a simulation. The bond-stretched diameter

ratio is defined as Λbs = Dbs,c,e/Dh,e (bs for bond-stretched). Λbs is always greater than

Λm. When the cluster is loosely packed, the difference between the two measures

converges to zero.

10.2.2 Brownian Dynamics

To model mixtures of halo particles and central particles assembling in a thermal

bath we perform Brownian dynamics (BD) simulations, implemented in HOOMD-

blue73. The natural units of this system are: the effective diameter of the HP, Dh,e =

3.0786σ; the mass of a HP, m; and the depth of the HP-CP energy well, E0. The

volume fraction, φ, is defined as the ratio of the total volume of the HPs and CPs to

the simulation box volume, the dimensionless time is t∗ = t/(Dh,e

√
m/E0) , and the

dimensionless temperature is T ∗ = kBT/E0. We use periodic boundary conditions.

Each particle is subjected to conservative, random, and drag forces, and its motion

is governed by the Langevin equation discussed further in24,122,155. We use a value

for the drag coefficient γ = 0.726 m/t∗. The same drag coefficient is applied to HPs

in both the free and bound state. The conserved forces between particles are per

Eqns. 2.6 and 2.7 above.

10.2.3 Free Energy Calculations

The relative probability of finding a particular cluster of N HPs bound to a CP

can be predicted using free energy calculations detailed in references206,220,221. For a

185

given Λ, the partition function is defined by the appropriately weighted sum over all

possible configurations of N HPs bound to a CP for N = 1 to ∞. The contributions

of the distinguishable microstates to the partition function are calculated numerically.

The partition function is calculated assuming ideal hard spheres and sticky spheres

(Fig. 10.3). Given HPs of diameter Dh and a CP of diameter Dc, the interaction

potential between ideal HPs is defined as,

UH−H(r) =

 ∞ r < Dh

0 r ≥ Dh

(10.2)

and the interaction potential between an ideal HP and an ideal CP is defined as

UH−C(r) =


∞ r < (Dc +Dh)/2

−E0 r = (Dc +Dh)/2

0 r > (Dc +Dh)/2

(10.3)

We define Λf = Dc/Dh (f for free energy calculation). As in Chapter 10.2.1, to

vary Λf , Dh is held constant (set to Dh,e from Eqn. 10.1) and Dc is changed.

If ΛN=M ≤ Λf < ΛN=M+1, then configurations of M HPs bonded to the CP

minimize the potential energy and configurations with more than M HPs have infinite

potential energy (zero probability). Configurations with fewer than M HPs bonded

to the CP increase the entropy of the cluster. When kBT ≈ E0, the free energy can

be minimized by clusters with fewer than M HPs, because the entropy gained by the

remaining HPs on the CP balances the increase in potential energy. In the grand

canonical ensemble, at a fixed Λf , the probability of observing a particular cluster s

is given by the Boltzmann distribution:

Ps = e−βFs =
Ωse

−β(Us−µN)

Z
(10.4)

186

where Z =
∑

s Ωs exp(−β(Us − µN)) is the partition function and Us − µN = NE0.

Without loss of generality, we treat µ =0. (A non-zero µ will only induce a uniform

temperature shift in our final results.)

In practice, calculating Z exactly is difficult, but by assuming that only a small

number of clusters contribute to Z 206,220,221, the relative probabilities of these clusters

can be determined. As in206,220,221, the degeneracy Ωs can be written as a product

of three independent terms, the translational, Zt, rotational, Zr, and vibrational Zv

partition functions. The translational partition function is approximately equal for

all the clusters because they are all small compared to the accessible volume, and

thus contributes equally to the Ωs of each cluster.

To calculate the rotational and vibrational partition functions for an N -cluster, we

first assume an equilibrium configuration defined by N HPs in a spherical code config-

uration at a radial displacement of (Dc + Dh)/2 from the CP. The rotational partition

function is then calculated as Zr = cr
√
I
κ

, where cr is a temperature-dependent con-

stant that is the same for all the clusters, I is the determinant of the moment of

inertia tensor, and κ is the symmetry number of the spherical code configuration un-

der rotation. Each sphere is given a unit mass. The vibrational partition function is

proportional to the product of the vibrational freedom, or freedom to rattle, of each

sphere in the cluster. The vibrational freedom of each HP can be measured as the

fractional area of the surface of the CP it has access to, subject to the restrictions

imposed by its neighboring spheres. We approximate the vibrational area available to

a given HP in a particular configuration by using a Monte Carlo numerical approach

whereby new positions for the HP are randomly generated and accepted if the HP

does not overlap another HP. The accessible vibrational area is proportional to the

total number of accepted positions that are part of a contiguous area that includes

the HP’s original position divided by the total number of random trials. If Λf = ΛN ,

when the diameter ratio matches the spherical code ratio, then most, if not all, of the

187

spheres in an N -cluster are jammed and have no vibrational freedom.

The free energy calculation is approximate, as it does not consider the contribution

of collective modes of HP motion to Z, which, in certain systems can help stabilize

one configuration over another222. As we show in Chapter 10.3.3, each cluster has

a small Λ range, Λ > ΛN where collective modes are not present, and only local

rattling is observed. Outside this range, we expect some error in the calculation of

relative probabilities to accumulate. The benefit of this free energy approximation is

demonstrated by both its favorable comparison to predictions made by BD simulations

and by its ability to rapidly predict the entire phase diagram. Applying a more

computationally intensive method to perform an exact free energy comparison would

be an interesting topic for future study.

10.2.4 Structure and mobility measures of a cluster

The HPs in an N -cluster for Λ = ΛN are confined to a unique N spherical code

solution and cannot rearrange or even rattle for N = 3 to 12, excepting N = 5. For

Λ >> ΛN , the HPs are free to randomly arrange on the surface of the CP. We aim to

understand the structure and dynamics of the N -cluster between these extremes. We

perform BD simulations of pre-assembled clusters wherein the HPs are restricted to

the surface of the CPs, a constraint imposed during the integration of the equations

of motion. This allows the dynamics of HP rearrangement to be isolated from the

dynamics of assembly and disassembly and prevents any stretching of bonds from

influencing the structures observed. Similar to Chapter 10.2.1 the CP diameter is

defined as Dc,e = 2r0 −Dh,e, where r0 is the fixed distance between the CP and HP

centers and Dh,e is the same as defined in Eqn. 10.1. The CP to HP diameter ratio

in the constrained system is thus Λc = Dc,e/Dh,e (c for constrained) and varied by

changing r0. Λc is initialized such that the HP can be sparsely randomly distributed

on the surface (i.e. Λc >> ΛN), and then slowly decreased over the course of a

188

simulation to a target Λc.

The angular displacement between two HP bound to the same CP, or θ = ∠ACB

is defined by the centers of two HPs A and B and the CP C. To characterize the

structure of the cluster, the distribution of angular displacements between pairs of

HPs, n(θ) for θ = [0, π] are measured for a fixed N and Λc over all HP pairs every

104 time steps during a simulation with 109 total time steps. The value of n(θ) for a

given N and Λc represents the likelihood of finding an HP at an angle θ relative to a

given HP, and
∫
n(θ)dθ = N − 1. n(θ) is analogous to a pair correlation function.

To characterize the dynamics we calculate the time scale over which θ is no longer

correlated with itself. We define the mobility parameter τ from

C(θ(t), θ(t+ δt)) = e−τt (10.5)

where C(θ(t), θ(t + δt)) is the normalized angular autocorrelation function and t is

time. In this work, τ has units of 1/10,000 time steps. The more mobile an HP is

on the surface of the CP, the more rapidly its angular displacement with respect to

other HP decorrelates. When the rate of decay of angular correlations is zero, all the

HP in the cluster are fully caged. We only calculate τ for clusters that display more

than one distinct peak in their n(θ) distributions so that position swapping can be

distinguished from local rattling. The lower bound on the τ measurement is 1.5 ·10−4

because below this the HP position swaps occur too infrequently over a 109 time step

simulation for accurate values of τ to be measured. We calculate τ as a function of

N and ∆Λc = Λc−ΛN , or the difference between the diameter ratio of the N -cluster

and the N spherical code solution ratio. Because the HPs in the simulation are not

perfectly hard and are constrained to the CP surface, it is possible for meaningful

measurements to be made when ∆Λc < 0.

189

10.2.5 The calculation of Λ

In this paper, to elucidate different properties of N -clusters, several calculation

methods are used, necessitating four different ways to determine Λ = Dc/Dh, the

ratio of the central particle diameter, Dc, to halo particle diameter, Dh. Each way

was chosen to best represent the effective diameters of the HP and CP in the particular

method. These Λs are comparable to each other and to the spherical code solution

ratios, ΛN of Fig. 10.2. We indicate the calculate type by the superscript x of Λx,

where x ∈ {m, bs, c, f}, where the m, Brownian (molecular) dynamics; bs, bond-

stretched; c, constrained; and f , free energy calculation, as defined above.

10.3 Results

10.3.1 Self-assembly and free energy of N-clusters

Using Brownian dynamics we simulate the self-assembly of clusters as a function

Λm and at two different temperatures to investigate the effect of thermal noise on the

distribution of stable terminal N -clusters. We compare these results to the known

spherical code solutions and to free energy calculations.

Brownian dynamics simulations of self-assembly are initialized by placing 1000

CPs on a cubic lattice, spaced so as to behave as independent systems. The lattice

is embedded in a bath of HPs at a total volume fraction of φ = 0.24 − 0.27. The

bath contains a minimum of four times as many HPs per CP as the maximum cluster

size observed for that Λm. We perform a total of 760 simulations of 20×106 time

steps, with time step size ∆t∗ = 0.00363 at low (T ∗ = 0.02) and high (T ∗ = 0.1)

temperatures. With this set of simulations, we calculate the cluster size distribution

as a function of Λm.

At the low temperature we observe that the cluster sizes are highly monodisperse

as a function of Λm. In Fig. 10.4, the mean cluster size assembled at the low tem-

190

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3
4
5
6
7
8
9

10
11
12

Λ
bs

N
h

a
lo

Self−Assembled

Quasi−statically Decreased

Spherical Code

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2
3
4
5
6
7
8
9

10
11
12

Λm

N
h

a
lo

N at T*=0.02

N at T*=0.1

Figure 10.4: Top: The N clusters that self-assemble as a function of Λm and temper-
ature is shown. The average N of the self-assembled cluster at T ∗ = 0.02 is shown
as a black line. The maximum and minimum N in the simulation is shaded grey.
The average N of the self-assembled cluster at T ∗ = 0.1 is a red solid line. The
maximum and minimum N in the simulation is shaded pink. Bottom: Accounting for
bond-stretching and the effective diameter of the HP, the lowest ratio where a cluster
of size N observed in the quasi-statically decreasing simulation (blue triangles) and
for the self-assembled simulations (black circles) are compared to the spherical code
predictions (pink star). Error bars for the quasi-static simulation ratios are generated
from the contact range of two HP.

191

N=4 N=5 N=6

20.0 +/- 1.1% 20.0+/-1.2%59.7 +/- 1.6%

0.2 0.4 0.6 0.8 1
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

2

3
4

5

6

7

8 9 10

11

12

Λf

T
* P

N

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1

2 3 4

5

6

7 8 9
10

Λm

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1

2
3 4

5

6
7

8
9

10

Λf

0 0.2 0.4 0.6 0.8 1
0

0.5

1
2 3 4

5

6 7 8 9 10

11

12

Λm

0 0.2 0.4 0.6 0.8 1
0

0.5

1 2 3 4

5

6 7 8 9 10

11

12

Λf

fr
e

e
 e

n
e

rg
y

c
a

lc
u

la
ti
o

n

S
im

u
la

ti
o

n
fr

e
e

 e
n

e
rg

y

c
a

lc
u

la
ti
o

n

S
im

u
la

ti
o

n

P
N

T* = 0.1

T* = 0.02

Λm = 0.46

Figure 10.5: The distributions of cluster sizes as a function of temperature and Λ as
given by the free energy calculation and the BD simulations are compared. Bottom
left corner: phase diagram of the free energy prediction of the most probable cluster
size. Lower right and upper left corners: in-page slices of the probability of finding
each cluster size PN as predicted by the free energy calculation and BD simulation at
the high and low temperature. Upper right corner: the three most common clusters
found in the BD simulation at the high temperature and Λm = 0.46.

192

perature, T ∗ = 0.02 for 0.01 < Λm < 1 is shown as a black solid line. Grey shading

indicates the range of cluster sizes observed at a particular Λm. Over this range of Λm

clusters are uniform in size except when Λm is near a value where there is a transition

from one mean cluster size to another. At these transitions, we observe a narrowly

distributed mixture of cluster sizes; e.g., at Λm = 0.71 for the T ∗ = 0.02 curve, we

find equal numbers of clusters containing 8 or 9 HPs.

In comparison to the low temperature data, the clusters at high temperature are

both smaller on average, and have a broader distribution of sizes as a function of

Λm. In Fig. 10.4, we show the distribution of clusters assembled at high temperature,

T ∗ = 0.1 (red). The region shaded pink represents the range of cluster sizes measured

at a given Λm at T ∗ = 0.1. At Λm = 0.71 for the T ∗ = 0.1 curve, we now observe

clusters of 5, 6 7, and 8 HPs. We also observe that the N = 5 and N = 11 clusters are

not stable at any Λm at low temperature but are present in the broader distribution

of clusters at high temperature.

To test the stability of the self-assembled clusters at low temperature, we perform

a simulation wherein the diameters of the CPs in large pre-assembled clusters are

slowly decreased. A single system with Λm = 0.9489 is equilibrated for 20×106 time

steps at T ∗ = 0.02, at which time every CP is bonded to 12 HPs. Subsequently

Dc,e is decreased at a rate of 4.833 × 10−8σ/∆t until Λm = 0.0101. As discussed in

Chapter 8.1.3, this decrease in the diameter is slow enough that the system remains

quasi-static, i.e. the system is approximately in equilibrium. For this system, as Λm

approaches a transition ratio, 1-3 HPs detach from a given CP and re-enter the bath,

until only two HP are bonded to each CP. In effect, this quasi-statically decreased

Dc,e simulation disassembles the clusters as a function of Λm.

If bond-stretching is taken into account, we find that at a low temperature (T ∗ =

0.02) the N -clusters self-assemble at the Λ ratio predicted by the spherical code

solutions. In tightly packed clusters, bond stretching makes Λbs > Λm. In the bottom

193

plot of Fig. 10.4, the lowest Λbs at which a cluster of size N is observed for the self-

assembled (black circles) and quasi-statically decreased (blue triangles) simulation

data is shown and compared to the spherical code ΛN ratio (pink stars). Blue error

bars indicate the Λbs ranges from quasi-statically decreased simulations, generated by

assuming that the true diameter of an HP is the limits of the contact range defined in

Chapter 10.2.1. Good correspondence between the predicted and measured ratios is

observed when bond-stretching and the appropriate effective diameters of the particles

is accounted for.

We calculate the free energies of all clusters from N = 2 to N = 12 over a

temperature range of 0.02 ≤ T ∗ ≤ 0.2 and diameter ratio range of 0.05 ≤ Λf ≤ 1.09.

In the bottom left plot of Fig. 10.5, we report a “phase diagram” of the most probable

cluster at each combination of T ∗ and Λf . The plots in the bottom right and top

left of Fig. 10.5 show data from an in-page slice of the phase diagram at the low

and high temperature, T ∗ = 0.02 and T ∗ = 0.1, and directly compare it to cluster

distributions from the BD simulation data of Fig. 10.4. For example, the three clusters

and probabilities depicted in the upper right of Fig. 10.5 are from a single high

temperature BD simulation with Λm = 0.46.

We see that the free energy calculations support the findings of the BD simulations.

At high temperature and at a given Λ, both show a decrease in cluster size relative

to the low temperature data, as well as a broadening in the distribution of cluster

sizes. Discrepancies in peak height and shape between the two predictions in Fig. 10.5

are likely due to the soft sphere approximation, not accounting for the change in the

contact energy or effective diameter due to bond-stretching, and also to neglecting

the collective vibrational modes in the free energy calculations. However, the free

energy calculation shows that most of the features of the BD simulations at higher

temperatures can be attributed to the offsetting of the increase in potential energy

(i.e. fewer bonded HPs) by the commensurate increase in vibrational freedom of the

194

remaining bonded HPs.

Consistent with the BD simulation data, the free energy calculation also predicts

that N = 5 clusters are not stable at low (T ∗ < 0.06) temperatures. Spherical

code solutions indicate that the densest N = 5 clusters occur at the same Λ as the

densest N = 6 cluster. Thus, at low temperature, when the free energy is dominated

by the potential energy term, the N = 6 cluster is always stable over an N = 5

cluster. However, the free energy calculation predicts that at T ∗ > 0.06 there is

a Λ range where an N = 5 cluster is the most probable cluster. This Λ range is

observable in the high temperature BD simulation data. The stabilization of the

N = 5 cluster over the N = 6 cluster at higher T ∗ arises from the non-negligible

contribution of the vibrational partition function, the only term in the partition

function that significantly differs between the two clusters. The N = 11 cluster

is similarly predicted to be unstable at low temperatures but stable over the N = 12

cluster at a higher temperature. The free energy calculation also predicts an entropic

stabilization of the N = 7 and 9 clusters over the N = 8 and 10 clusters, respectively,

at higher T ∗ and “triple points”, at which the probabilities of three clusters (e.g. 4,

5, and 6; or 7, 8, and 9) are equal.

10.3.2 Structure of N-clusters

We next consider how the structure of each N -cluster changes as Λ > ΛN . Clusters

that have a large range of Λ over which their structure is ordered and stable are

desirable targets for synthesis. We investigate the structure and dynamics of the

clusters by modeling HPs constrained to the surface of a CP, as described in Chapter

10.2.4 for different N and Λc.

In simulation, we observe that a cluster of size N generally exhibits three different

dynamics over different ranges of Λc. In the first range, each HP remains locally

caged. Each HP of the N -cluster can be assigned to one point of the N spherical

195

 π/2 π

Λc
 =0.07192

 π/2 π

Λc
 =0.1206

 π/2 π

Λc
 =0.1547

Λc
 =0.1547 Λc

 =0.1694 Λc
 =0.2247

Λc
 =0.2247 Λc

 =0.2668 Λc
 =0.4142

Λc
 =0.4142 Λc

 =0.4617 Λc
 =0.5912

Λc
 =0.4142 Λc

 =0.4617 Λc
 =0.5912

Λc
 =0.5912 Λc

 =0.6176 Λc
 =0.6453

Λc
 =0.6453 Λc

 =0.6956 Λc
 =0.732

Λc
 =0.732 Λc

 =0.7735 Λc
 =0.8325

Λc
 =0.8325 Λc

 =0.8807 Λc
 =0.9021

Λc
 =0.9021 Λc

 =0.9489 Λc
 =1.095

 π/2 π

Λc
 =0.9021

 π/2 π

Λc
 =0.9489

 π/2 π

Λc
 =1.095

2

3

4

5

6

7

8

9

10

11

12

ΛN
ΛN+1Λmid

θ θ θ

Figure 10.6: The distribution of angular displacements n(θ) for each cluster. The
n(θ) shows a structural fingerprint particular to each cluster.

196

−0.1 0 0.1 0.2 0.3 0.4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

5

6

7
8

9
10 11 12

ΔΛc

m
o

b
ili

ty
 p

a
ra

m
e

te
r,

 τ

Figure 10.7: Cluster mobility as a function of the ∆Λc = Λc−ΛN . Note that for the
N = 6 and N = 12 clusters, the HPs do not become measurably mobile for ∆Λc >>
0. At the other extreme, N = 5 and N = 10 are mobile for ∆Λc < 0.

code solution of Fig. 10.2 and that mapping remains invariant under the dynamics of

the cluster. Like an atom in a crystal lattice, each HP rattles about its point. In the

second range, each HP can almost always be assigned to one point of the spherical

code solution, however the mapping does not remain invariant under the dynamics

of the cluster. The HPs sporadically rearrange but are still generally found rattling

about the points of the spherical code solution. In the third range, the HPs cannot

be assigned to points of the spherical code solution and move freely on the surface.

Between the second and third range, we suspect that there is no distinct measurable

boundary, but simply an increasing likeliness of a cluster being in “transitional”

states. Below we show how the two measures introduced in Chaper 10.2.4 capture

the signature features of these ranges.

In Figure 10.6, the distribution of angular displacements, n(θ), is shown for 2 ≤

N ≤ 12 HPs constrained to the surface of a CP at T ∗ = 0.02. For each N , n(θ), is

shown for three different Λc, corresponding to ΛN , ΛN+1 and a midpoint between the

197

two. These three distributions are shown in order of increasing Λc from left to right.

Note that for N = 2, ΛN=2 is zero, as it is always possible to add a second HP to a

CP with one bound HP, regardless of CP size. In this case, we arbitrarily choose the

minimum Λc = ΛN+1/2.

For each cluster we observe a unique n(θ) structure fingerprint that softens as

Λc increases. For N ≤ 4, each HP has one equidistant ring of neighbors, resulting

in n(θ) having a single peak that broadens as Λc increases. For N > 4, each n(θ)

has multiple peaks. For N > 4 except N = 5 and N = 10, the first peak at ΛN is

narrow and not connected to other peaks, indicating HPs are locally caged at their

spherical code points223. The width of a peak is proportional to the rattling of a

HP within its local cage. As Λc increases, the peaks broaden and eventually become

connected. This broadening and overlapping is associated with the degradation of the

well-defined structure by increased rattling and sporadic rearranging. In no case did

we find any evidence of new structures emerging. We note that for the clusters N = 5

and N = 10 the peaks are not distinct at the smallest Λc considered. For all N , if

Λc >> ΛN , then the HPs sample uniformly random arrangements on the CP surface

and the n(θ) distribution is a cosine function of θ, truncated to zero when θ is less

than the angular diameter of the HP (e.g. in Fig. 10.6, N = 2, n(θ) is a truncated

cosine function for each Λc). In Fig. 10.6 for N > 2, insofar as the distributions

are far from converged to a cosine function, we observe structure derived from the

underlying spherical code solution over the entire range of Λ considered

10.3.3 Mobility of N-clusters

We next consider the dynamics of the HPs on the CP surface. As described in

Chapter 10.2.4, we can measure how rapidly the angular displacements of the HPs

decorrelate at a given Λc. We call this measure the mobility parameter, τ . When

τ = 0, the HPs are in the first dynamical range; that is, each HP is fully caged and the

198

angular displacement between any two HPs does not decorrelate. When τ > 0, but

small, the HPs are in the second dynamical range. In Figure 10.7, the τ of different

clusters are calculated as a function of increasing Λc relative to the ratio at which the

cluster is predicted to assemble, ∆Λc = Λc−ΛN . We observe that the size of the first

dynamical range varies widely among clusters. Noticeably, the N = 6 and N = 12

clusters are not measurably mobile until ∆Λc is large. Note that in Fig. 10.6, the

midpoint n(θ) data of both N = 6 and N = 12 still have distinct separated peaks.

In contrast, the N = 11 cluster becomes mobile at a much lower ∆Λc than N = 12

cluster, despite having nearly the same spherical code solution and ΛN=11 = ΛN=12.

Comparing the N = 11 and N = 12 distributions in Fig. 10.6, at Λc = 0.9021 the

two clusters have nearly identical n(θ) distributions. At Λc = 0.9489, N = 11 is

measurably mobile (τ = 1.5 · 10−4)) but still has distinct peaks in n(θ) that are only

slightly softer than that of N = 12. By Λc = 1.095 the n(θ) peaks are noticeably

softened for the N = 11 cluster relative to that of the N = 12 cluster and the peaks

are connected. At this ratio, the mobility of the N = 11 cluster is τ = 0.19 while

the N = 12 cluster is just measurably mobile (τ = 4 · 10−4). In comparison, the N

= 10 cluster is mobile even at the ratio at which it first self-assembles. The rapid

increase of the mobility as a function of increasing Λc in Fig. 10.7 is consistent with

the connected peaks and the rapid softening of the peak structure for N = 10 in

Fig. 10.6.

The fact that HP mobilities for a particular cluster depend upon the cluster’s

structure is not surprising. However, it is not obvious that clusters of different sizes

should have such variation in the widths of the first dynamical range indicated in

Fig. 10.7. There is little correlation, for example, between the mobility of the N clus-

ter and the range of Λ over which the N cluster is stable in Fig. 10.4. We find that

the HPs in the N = 5 and N = 10 clusters are never fully caged, while the HPs for

N = 6 and N = 12 are fully caged for a large range of Λc. The mobilities for N = 7,

199

8, 9, and 11 lie between these extremes. Note that N = 6 and N = 12 clusters have

highly symmetrical spherical code point arrangements with octahedral and icosahe-

dral structures, respectively. Their HP centers define the vertices of Platonic solids

with equilateral triangle faces. For N = 7, 8, 9, 10, and 11, the convex polyhedra

defined by the centers of the HP have pentagonal (N = 11), square (N = 8 and 10)

or nearly square (N = 7, 9, and 10) faces. We hypothesize that these non-triangular

“defects” in the spherical code solutions are responsible for the increased mobility of

these clusters by providing locations where the barrier to rearrangement is low. How-

ever, for such small systems, the rearrangements of HPs in a mobile cluster is more

appropriately viewed as a rearrangement of the entire cluster rather than a localized

rearrangement.

As discussed above, in the second dynamical range, the HPs in an N cluster

can almost always be mapped to the points of the N spherical code solution, but

that mapping does not remain invariant. We examine the N = 5-12 clusters at the

Λc at which each cluster is first observed to be measurably mobile per Fig. 10.7 to

understand how the HPs in a cluster rearrange. We find (Fig. 10.8) that the N = 5-11

clusters each have a single unique (discounting reflections or rotations) rearrangement,

which permutes the HPs over the spherical code points. The N = 12 cluster has two

unique rearrangements. Short movies of these rearrangements can be found online in

the supplemental material. For the N = 5 and N = 11 clusters, which have structures

equivalent to the N + 1 spherical code minus a single point, a rearrangement consists

of a single HP “hopping” a gap to the available N + 1 point. (The reason the N = 5

is found in this particular configuration is discussed in the next section.) The clusters

N = 6, 10, and 12 exhibit a permutation whereby a ring of HPs rotate relative to

the cluster in a manner resembling a twist of a Rubik’s CubeTM. The clusters N

= 7, 8, 9, and 12 exhibit a permutation whereby the cluster “buckles” into a new

permutation of the spherical code points. We find that the addition of the rearranging

200

N=5

N=6

N=7

N=8

N=9

N=10

N=11

N=12A

N=12B

front

back

Figure 10.8: The rearrangements of clusters N = 5-12. N = 12 has two rearrange-
ments.

action for N = 5-12 is sufficient to make each cluster ergodic. That is, every possible

assignment of each HP to the spherical code points can be explored by the cluster

with no inaccessible microstates. This ergodicity is shown, using group theory, in the

supplemental materials.

For clusters N = 6, 7, 8, 9, 10, and 12, the rearranging action is a collective motion

of particles in the cluster. Although this entropic contribution is not considered by

the free energy calculation in Secton 10.2.3, the free energy calculations compare well

201

with the BD simulations, demonstrating that local rattling is more important than

collective modes for some ranges of Λ.

10.3.4 Breaking the degeneracy for N = 5

10.3.4.1 BD simulations

The N = 5 spherical code has a continuum of solutions ranging from the vertices

of a square pyramid to a triangular bipyramid. For dense N = 5 clusters at non-

zero temperature, we seek the relative likelihood of the cluster adopting particular

configurations from the solution continuum. For this, we construct an order parameter

that can distinguish between different configurations in our BD simulations.

All N = 5 spherical code solutions have two points at opposite poles of the central

sphere and differ by the positions of the three remaining points on the equator. The

order parameter is constructed by, first, dividing the five HPs into “pole” HPs and

“equator” HPs. The neighbor distances, or distance between each HP and the four

other HPs is measured. HPs that do not have one neighbor distance that > 1.2 times

the distance of the other three neighbor distances are “equator” HPs. Second, the

“equator” HP that is closest to other “equator” HPs or has the minimum summed

neighbor distances is selected and and its center is labeled A.

Finally, an angle measurement is constructed in the plane of the equator as follows.

The centers of the pair of “pole” HPs are labeled P1 and P2. The points A, P1, and P2

define a plane S1. The centers of the two remaining HP are labeled E1 and E2. The

line through E1 and E2 intersects S1 at ES and n̂ is the normal vector to S1. A plane

S2 orthogonal to S1 is constructed from the point ES, A, and A+ n̂. The coordinates

are translated and rotated so that A and ES are both on the y-axis of S2 and A has x-y

coordinates (0, r0), where r0 is the distance between the center of an HP and the CP.

The origin corresponds to the center of the CP. The points E1 and E2 are projected

to the plane S2 and the angles (< π/2) to the x-axis of S2 is measured. The order

202

parameter χ is defined as this angle, sampled twice per configuration. Each angle

pair uniquely specifies a configuration in the solution continuum. A perfect square

pyramid configuration corresponds to two measurements of χ = 0 and a perfect

triangular bipyramid configuration corresponds to two measurements of χ = π/6

(≈ 0.524) radians. Fig. 10.9a illustrates how the order parameter was constructed,

and shows a sampling of the HP positions in the S2 plane from a simulation at

Λc = 0.4. The red circles correspond to the triangular bipyramid positions.

We performed BD simulations of clusters of 5 HP at Λc = 0.4142 and 0.400

with T ∗ = 0.02. Two histograms are shown of the sampled χ at the two ratios,

0.4142 and 0.4 in Fig. 10.9a and 10.9b, respectively. The figures show that the

degenerate continuum of N = 5 spherical code solutions is broken by the introduction

of thermal noise. Surprisingly, we find that the square pyramid is the preferred

structure, even over the more symmetrical triangular bipyramid. As the cluster is

packed tighter, an even stronger preference for the square pyramid configuration over

other configurations emerges.

10.3.4.2 Free Energy

To understand the preference for the square pyramid configuration in the BD

simulation we use a free energy calculation, which elucidates the role of entropy in

breaking the degeneracy. The more symmetrical triangular bipyramid configuration

is used as the reference configuration.

The square pyramid and triangular bipyramid HP clusters are shown in Fig. 10.10(a)

and Fig. 10.10(b). In Fig. 10.10(c), using a free energy calculation, the probability

of observing the square pyramid relative to the triangular bipyramid is shown at

two temperatures as the HP diameter, Dh, approaches the diameter of spheres corre-

sponding to the densest possible packing, Dh,N=5. For dense clusters, we observe the

square pyramid is always the most likely configuration at nonzero temperature. We

203

0 π/6 π/3
0

2

4

6

8

χ

re
la

ti
v
e

 f
re

q
u

e
n

c
y

0 π/6 π/3
0

1

2

3

4

χ

re
la

ti
v
e

 f
re

q
u

e
n

c
y

χ

(a)

(b)

(c)

π/6

π/6

Λc = 0.4142

Λc = 0.4000

ŷ

x

Figure 10.9: (a) The order parameter χ is constructed by measuring the angle of
the particles on the equator. Scattered points from a simulation overlay an image of
an SP configuration. Red circles indicate the sphere centers of a TBP configuration.
In (b) and (c) the distribution of χ sampled in from a BD simulation is shown as a
function of the diameter ratio Λc = 0.4142 and 0.4 respectively.

204

(c)

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

−log(D
h,N=5

−D
h
)

P
ro

b
a

b
ili

ty

SP (T*=0.02)

TBP (T*=0.02)

SP (T*=0.1)

TBP (T*=0.1)

(a) (b)

Figure 10.10: (a) The square pyramid (SP) and (b) the triangular bipyramid (TBP)
N = 5 spherical codes. The jammed and unjammed kissing spheres in each config-
uration are colored dark grey and pink, respectively. The path that the unjammed
spheres can follow is traced on the central sphere. For (b) the central sphere is trans-
parent so the full path around the equator can be seen. In the graph at the bottom, at
the low temperature, T ∗ = 0.02, the preference for the SP (black solid) over the TBP
(red solid) is evident as the HP diameter approach the limiting packing diameter.
This preference (black and red dashed lines) is even stronger at high temperature,
T ∗ = 0.1.

find this preference is because the square pyramid has the most vibrational freedom.

In Fig. 10.10(a) and Fig. 10.10(b), the locally unjammed HP in a cluster at Λ = ΛN=5

are colored pink and the HP that are locally jammed are colored grey. In the degen-

erate continuum of N = 5 spherical code solutions, only the square pyramid has only

one locally jammed HP, and thus, the highest vibrational freedom.

In Fig. 10.7, the N = 5 cluster becomes decreasingly mobile as the cluster is

205

packed tighter, i.e. on decreasing ∆Λc. Unlike clusters for other values of N , as

τ → 0, the HPs in the N = 5 cluster become locally caged for entropic, rather than

energetic, reasons.

10.4 Discussion

There are a number of ways the sticky sphere assembly method described above

can be extended to create interesting new species of anisotropic particles.

For example, we can now ponder a more general question. Given a desired ar-

rangement of points, what HP-CP interactions and HP-HP interactions will result in

self-assembly of the arrangement? The analogous mathematical question was posed

by L.L. Whyte in 1952, “What spherical arrangements [of points] possess extremal

properties of any kind?” 215 Ideally, we seek HP-HP interactions and HP-CP interac-

tions that self-assemble repeatable and desirable patterns of HPs on the CP.

Cohn and Kumar224 show that all potential energy functions of distance that are

completely monotonic, such as inverse power laws, share a subset of universally op-

timal solution configurations. If the function is strictly completely monotonic, then

the universally optimal solution is also unique. For points on the surface of a sphere,

the only known universally optimal solutions are224,225 N = 1-4, 6, and 12; that is,

a single point, antipodal points, points forming an equilateral triangle on the equa-

tor, and tetrahedral, octahedral, and icosahedral arrangement of points. For our

purposes, this means certain desired point arrangements (e.g. a ring of 12 points

distributed around the equator of a sphere such as modeled in reference2) are likely

to be inherently difficult to achieve from HP-HP interactions. Restricting themselves

to isotropic pair potentials and identical particles, Cohn and Kumar226 constructed

separate decreasing convex potential energy functions that have cubic (N=8) and

dodecahedral (N=20) configurations as their minimum. Thus references224–226 im-

ply that to assemble certain clusters, it will be necessary to use more complicated

206

HPs with carefully constructed potentials, including non-completely monotonic or

anisotropic interactions.

Using an alternative approach, complex clusters may also be possible by simply

adding stages to the assembly process. For example, if, after the terminal N -cluster

of Fig. 10.1 is created, the bath of HPs is replaced by a bath of new HPs coated with

the same complementary material as the CP, a second shell of spheres can be added

to the first. The structure of this shell will also depend on the entropy and energy of

the cluster at a given temperature. If the HPs in the second shell preferentially sit

in the interstices of the first shell, the polyhedron they form will be the dual of the

polyhedron of the first shell. This can make new types of point arrangements possible.

For example, the dual of the octahedron is the cube. A cubic arrangement of eight

points on the surface of a sphere is not found as a minimum among most common

spherical surface functions38. A second shell of HPs that preferentially assemble the

dual of the first shell of HPs may be a physically more viable method of assembling a

cubic arrangement of spheres without requiring the elaborately constructed HP-HP

interaction potential of Cohn and Kumar226.

The results presented here may also be used to guide the synthesis of reconfigurable

N = 5 clusters. As shown in Chapter 10.3.4 above, a small change in the packing

fraction of the N = 5 cluster introduces a significant change in the structure of the

cluster. Thus, changing the effective diameter of the central particle by a modest

amount induces a switch between a relatively isotropic disordered cluster and an

anisotropic square pyramidal cluster.

10.5 Conclusion

In this paper we have demonstrated that hard and sticky spheres can self-assemble

into terminal N -clusters with interesting and, in some cases, unexpected, anisotropies.

These clusters have predictable preferred structures that depend on temperature and

207

sphere diameter ratio. If assembled directly from a bath at low temperature, certain

cluster sizes (e.g. N = 4, 6, 12) form robustly, while other clusters occur only over

small ranges with relatively mobile structures (e.g. N = 7,9,10) and still others

cannot be formed at all (e.g. N = 5,11). A “multi-step” process that assembles

the clusters from a bath at a higher temperature, removes the bath, and lowers the

temperature may enable these hard-to-form clusters to be formed robustly as well. It

may even be possible to adjust the effective diameter of the HP or CP as a step in the

assembly process. Our free energy calculations and Brownian (molecular) dynamics

predictions of cluster structure provide a guide for designing such a process for optimal

yield of a desired cluster size with a well-ordered structure. Clusters fabricated in this

way may find use as building blocks for subsequent self-assembly, as templates for

manufacturing precisely placed circular patches on the surface of a spherical particle,

creating nanocolloidal cages, or fabricating reconfigurable particles.

208

CHAPTER 11

Conclusion and Outlook

11.1 Conclusion

Using computer simulations to study scientific topics via mathematical models is

inherently interdisciplinary work. There is arguably no technology that has advanced

as fast as the technology of automated computation over the last half-century. As the

tools of computational science are far from mature or static, the interplay between

the tools and the science are ignored at a scientist’s own peril∗.

In contrast, the field of mathematics is arguably the most mature discipline. After

all, there is no scientific theory of the Ancient Greeks that has gone uncorrected, but

every school child is still taught the Pythagorean Theorem. However, mathematics

has still only ever answered the questions that somebody has thought to ask. It is not

uncommon to pose a calculation, and then consult the literature for the shoulders of

the giants to stand upon, only to discover an empty land.

The intention of this dissertation was to advance the field of the study of the

self-assembly of anisotropic nanoparticles by integrating advances in both computa-

tional sciences and mathematics. We accelerated Molecular Dynamics simulations,

an important modeling tool for studying self-assembly, via GPU computing. In Part

I, Chapters 3 and 4 we devised, validated, and demonstrated the performance ca-

∗Although jumping on every new promised architectural breakthrough is equally perilous, I have
been assured.

209

pability of methods for modeling anistotropic nanoparticles on a GPU, by designing

algorithms for implementing rigid body calculations and Brownian dynamics and dis-

sipative particle dynamics simulations in massively parallel computing environments.

These algorithms have applications far exceeding the work of this dissertation and

are currently openly available in the HOOMD-blue code package.

In Part II, Chapters 5, 6, and 7, we introduced a new method, filling, for opti-

mally modeling anistropic particles from a collection of isotropic rigidly connected

potentials. In the problem of optimally filling an arbitrary container, we find a novel

mathematical problem for the optimal placement of objects in space. In this work

we made considerable headway in understanding this problem. We investigated some

of the universal mathematical structures that underly the filling solution space. In

two-dimensions, both a heuristic and genetic algorithm were designed to find low N

optimal solutions for simple polygons. The heuristic algorithm, which exploits the

known and conjectured mathematical structure of the solution space, is able to find

higher N optimal solutions efficiently. We also derived solutions for filling polygons

as N → ∞ from which approximate high N solutions can be constructed. In three

dimensions, we investigated the isosymmetric filling solutions of Platonic solids. We

also made some progress in understanding the scaling laws and rates of convergence

of filling solutions in three and even higher dimensions for some simple geometries.

This mathematical foray also has applications that far exceed the work of disserta-

tion, or mere application to modeling anisotropic nanoparticles. This mathematical

optimization has applications in any field where optimized removal or deposition of

a material is required.

In part III, we studied specific problems of anisotropic nanoparticle self-assembly.

In Chapter 8, we studied the question of the impact of natural variation, or poly-

dispersity, on the spontaneous formation of ordered structures in polymer tethered-

nanospheres. We found that the packing motifs in the domain of the attractive

210

nanosphere domain determined the tolerance of the mesoscale structure to polydis-

persity. In Chapter 9, we introduced a mathematical technique for modeling and

then studying the packing density of these domains in these mesoscale structures.

And finally, in Chapter 10 we investigated the thermodynamically driven packing of

spheres around a central sphere. Using both MD simulations and free energy calcu-

lations, we showed that the finite terminal clusters which have structures that can be

predicted from a well-known mathematical sequence, are a viable way to self-assemble

anisotropic clusters.

We now address several areas of further work, focusing primarily on Part II and

III of this dissertation.

11.2 Outlook

11.2.1 Filling in two and three dimensions and beyond

As discussed in chapters 6 and chapters 7 there are still many open mathematical

question regarding filling. Here is a brief list.

1. Can conjectures 6.2.1, 6.2.2, and 6.2.3 be proven regarding the properties of

optimal filling solutions for polygons or generalized 2D shapes?

2. Can an expression for the unfilled area between two discs along a generalized

medial axis path (changing radius function and curvature) be derived?

3. In three dimensions, how do centers optimally pack between two intersecting

planes? In an intersection lens? In the sheet structures found in a concave poly-

hedra? In a generalized medial axis structure of an arbitrary three-dimensional

container?

4. Is there a deeper mathematical way to understand why the N=8 solution of a

cube has tetrahedral, but not octahedral, symmetry? Are there other exam-

211

ples of non-trivial optimal solutions that belong to symmetry groups that are

subgroups of the symmetry of the shape but not C1?

5. Can a heuristic be devised that can optimally fill a three-dimensional shape?

Do the theorems and conjectures developed in two dimensions have three-

dimensional parallels that can also be exploited to find optimal solutions rapidly?

11.2.2 Packing of attractive 3D particles

The research of Chapter 8 was a small exploration in the field of tethered nanopar-

ticles. Research in the Glotzer group has investigated a number of geometrically sim-

ple tethered nanoparticles, such as plates, spheres, rods, and even rudimentary cubes.

As tethered particles become more complicated, e.g. are tethered to one another and

even have different shapes from their tether partners, what mesoscale structures re-

sult? The landscape of possibility has the potential to be richer and more diverse

than that of block copolymers. This work is currently being carried on in the Glotzer

group. The methods of Part II, will be used to model more complicated nanoparticle

geometries. However, more efficient ways to automate the search of a vast number of

possible dimensions are still waiting to be realized.

11.2.3 Packing of shaped objects around a central sphere

In Chapter 10, hard sphere halo particles which interact isotropically were packed

around a sticky sphere central particle. Restricted to such, solutions could be com-

pared to a known mathematical sequence. However if the central or halo particle are

no longer spheres, then the packing does not correspond to any mathematical sequence

of points that we are aware of. A limited number of computational experiments sug-

gests that even slightly perturbing the spherical structure of the halo particles can

have a significant impact on the packing structure, the diversity of structures, and

the role of entropy in determining the dominant structure.

212

APPENDICES

213

APPENDIX A

Mathematical Derivations

A.1 Distribution function along a medial axis branch with

no curvature and a linear radius function

r

d

Figure A.1: The area shaded in green is the uncovered area between two discs of the
same radius and the polygon edge.

We will calculate the area between two discs along a medial axis branch generated

by two polygon edge parents as the two discs approach each other.

Figure A.1 shows two overlapping maximal discs, of the same radius, separated

by a distance d, and one of the two lines tangent to both discs. The green region is

214

the uncovered area in between the discs and the tangent line. As d→ 0, what is the

area, A of the green region?

A = rectangle− 2 quarter circles + 1
2
lens (A.1)

= dr − π

2
r2 + r2cos−1

(
d

2r

)
− dr

2

√
1−

(
d

2r

)2

(A.2)

Using a Taylor Expansion of acosine and the square root

A = dr − π

2
r2 + r2

(
π

2
− d

2r
− 1

6

(
d

2r

)3

− 3

40

(
d

2r

)5
)

(A.3)

− dr

2

(
1− 1

2

(
d

2r

)2

− 1

8

(
d

2r

)4
)

(A.4)

A =
d3

24r
+O(d5) (A.5)

We now will approximate the uncovered area between two discs and the polygon

edges for a radius function is that is not a constant, by bounding the answer between

and upper and lower bound. Make one of the discs of Figure A.1 larger by ∆r = dr′,

as per the Figure A.2(a). The distance between the two centers is still defined as

d. Put a cotangent disc of radius R at the point of tangency of the both discs

per Figure A.2(b) and Figure A.2(c). If R = r or if R = r + dr′, the centers are

now d
√

1− r′2 apart. The uncovered area of Figure A.2(a) is bound between Figure

A.2(b) and Figure A.2(c) or between 1
24
d3(
√

1−r′2)3

r
and 1

24
d3(
√

1−r′2)3

r+dr′
. As d → 0, the

area uncovered is

Auncovered =≈ 1

24

d3(
√

1− r′2)3

r
. (A.6)

The area is then doubled to account for the identical uncovered piece on the other

side due to the other tangent line (i.e. polygon edge).

We now observe that d = 1
ρ

where ρ is the density of disc centers along the branch.

215

r r

r+Δrr

Δr

Δr
d

d

r

dx

r

Δrd

polygon edge

d sqrt(1-r’
2
)

upper

bound

lower

bound

(a)

(b)

(c)

Figure A.2: (a) The area shaded in green is the uncovered area between two discs of
different radius and the polygon edge. (b) The area between two small circles and (c)
two large circles provide and upper and lower limit for the shaded area.

To determine the total uncovered area along a branch of length T , we would sum all

the uncovered areas that are at density ρ along the branch, or

A =

T∫
0

(1− r′2)
3/2
ρdt

12rρ3
=

T∫
0

(1− r′2)
3/2
dt

12rρ2
(A.7)

216

A.2 Distributions along the parabolic medial axis branch of

a Polygon

r

dx

r

Δr
d

reflex

point

polygon edge

Δs

Figure A.3: The area shaded in green is the uncovered area between two discs of the
different radius and the polygon edge along a parabolic path.

For concave polygons, the medial axis branch associated with discs tangent to the

reflex point and an edge of the polygon is a parabolic curve. The reflex point forms

the focus of the parabola and the polygon edge the directrix. If the ends of such

a parabolic curve are occupied, all the uncovered area is between the directrix and

the set of overlapping discs distributed along the branch. The parabola has both a

changing radius function and changing curvature along the branch.

First we note that for two discs that have centers of distance d apart, the uncovered

area between the discs and the directerix is the same as Equation A.6.

Area ≈ d3

24r

(
1− r′2

)3/2
(A.8)

The local density of centers is ρ = 1/∆s, where ∆s is the arc-length between the

two centers. However, as d→ 0, d ≈ ∆s so,

Area ≈ 1

24ρ3r

(
1− r′2

)3/2
. (A.9)

217

Using a parameterization of the parabola, where y = at2, x = 2at, r = at2 +a, the

arc length s(t) = a
(
t
√

1 + t2 + sinh−1t
)
, and the curvature κ(t) = 1

2a
(1 + t2)

−3/2
.

then,

dr

ds
=
dr

dt

dt

ds
=

2at

2a
√

1 + t2
=

t√
1 + t2

(A.10)

Note that r′ < 1, which is a general property of r′ of a medial axis.

So

(1− r′2)3/2 =

(
1

1 + t2

)3/2

= 2aκ. (A.11)

Now Equation A.9 is equal to

Area ≈ 1

24ρ3

(
2r0κ

r

)
(A.12)

where r0 is the smallest radius of the parabola, or r0 = a. Or,

Area ≈ 1

24r0ρ3

(
1

1 + t2

)5/2

. (A.13)

If the parabola is defined from ta to tb, then the total uncovered area is

tb∫
ta

Area · ρdt =

tb∫
ta

1

24r0ρ2

(
1

1 + t2

)5/2

dt. (A.14)

A.3 Constant curvature, constant radius function

Consider the case of two identical discs are separated by a branch of length d and

curvature ≈ κ. What is the uncovered area between them? See Figure A.4. The

uncovered area is the the area swept between the two arcs tangent to the discs minus

the area covered by the discs within the area swept, or twice the green area of Figure

A.4b. Let θ be the angle ∠ABC, θc be angle ∠DCE. Let dcl be the chord length

between A and C. Then θ = dκ, dcl = 2
κ
sin
(
dκ
2

)
, and θc = 2cos−1

(
1
κr

sin
(
dκ
2

))
. The

218

area of the green region of Figure A.4b, is equal to the half disc minus the grey area,

or πr2

2
− r2

2
(θc − sin(θc)).

D

A

B

C

E

A

B

C

D

E

(a)

(b)

Figure A.4: The uncovered area between two discs on a branch of constant radius
function, constant curvature.

Auncovered =

((
1

κ
+ r

)2

−
(

1

κ
− r
)2
)
dκ

2
− πr2 + r2(θc − sin(θc)) (A.15)

= 2rd− πr2 + r2(θc − sin(θc)) (A.16)

219

Expanding the third term

r2θc − r2sin(θc) (A.17)

2r2cos−1
(

1
κr

sin
(
dκ
2

))
− r2sin

(
2cos−1

(
1
κr

sin
(
dκ
2

)))
(A.18)

2r2cos−1
(

1
κr

sin
(
dκ
2

))
− 2r2sin

(
cos−1

(
1
κr

sin
(
dκ
2

))) (
1
κr

sin
(
dκ
2

))
(A.19)

2r2

(
cos−1

(
1
κr

sin
(
dκ
2

))
−
√

1−
(

1
κr

sin
(
dκ
2

))2 (1
κr

sin
(
dκ
2

)))
(A.20)

Substituting a Taylor series expansion for the inverse cosine and square root

2r2
(
π/2−

(
1
κr

sin
(
dκ
2

))
− 1

6

(
1
κr

sin
(
dκ
2

))3 −
(

1− 1
2

(
1
κr

sin
(
dκ
2

))2
) (

1
κr

sin
(
dκ
2

)))
(A.21)

2r2
(
π/2−

(
2
κr

sin
(
dκ
2

))
+ 2

3

(
1
κr

sin
(
dκ
2

))3
)

(A.22)

So

Auncovered = 2rd− 4r

κ
sin

(
dκ

2

)
+

1

κ3r

4

3

(
sin

(
dκ

2

))3

(A.23)

Substituting a Taylor series expansion for the the sine terms.

Auncovered = 2rd− 4r

κ

((
dκ

2

)
− 1

6

(
dκ

2

)3
)

+
1

κ3r

4

3

(
dκ

2

)3

(A.24)

=
1

12
d3κ2r +

1

12

d3

r
(A.25)

So the uncovered area along the whole length of the branch is (d = 1
ρ
)

A =

T∫
0

1

12

(
κ2r +

1

r

)
dt

ρ2
=

T 3

12N2

(
κ2r +

1

r

)
(A.26)

where N is the total number of discs distributed over the branch section. Using

equation (10) and (14) of the main paper, if M(G) can be broken into branch sections

220

with approximately constant r and curvature, then the fractional distribution of the

N discs over each section can be determined such that the fraction fk discs distributed

over a section k of length Tk is

fk ∝ Tk

(
κ2
krk +

1

rk

)1/3

(A.27)

We observe that, in general, the density of discs is higher in regions of high cur-

vature.

A.4 Deriving distribution of circles

If we divide a M(G) into k branches we can predict what fraction of the discs

(Ni/N) will be distributed over each branch i as N →∞.

A =
k∑
1

Ai(Ni) (A.28)

N =
k∑
1

Ni (A.29)

Since we have distributed our discs optimally, we can treat Ai(N) as continuous

function and

∂Ai
∂Ni

− ∂Aj
∂Nj

= 0, ∀j 6= i (A.30)

Arbitrarily setting j = k,

∂Ai
∂Ni

− ∂Ak
∂Nk

= −2
Ci
N3
i

+ 2
Ck
N3
k

= 0 (A.31)

Ni =

(
Ci
Ck

)1/3

Nk (A.32)

221

fi =
Ni

N
=

(Ci)1/3

(C1)1/3 + (C2)1/3 + ..(Ck)1/3
. (A.33)

A.5 How many ways?

Per conjecture 6.2.1, to find the optimal N filling solution, a maximum must be

generated for every way of N discs and K pieces. How many maxima searches is this?

Assume that the K pieces have J junctions, J < K. For m ∈ N, 0 ≤ m ≤ J , there

are
(
J
m

)
ways to occupy the junctions, leaving N −m remaining discs to allocate over

the K − J remaining pieces. A weak composition is a way of partitioning an integer

into a sequence of non-negative integers, where order matters. The number of weak

compositions of N −m discs over K − J pieces is
(
N−m+K−J−1

K−J−1

)
.

Thus the number of ways to be searched is equal to
∑min(J,N)

m=0

(
J
m

)(
N−m+K−J−1

K−J−1

)
.

min(J,N)∑
m=0

(
J

m

)(
N −m+K − J − 1

K − J − 1

)
=

J∑
m=0

J !(N −m+K − J − 1)!

m!(J −m)!(K − J − 1)!(N −m)!
(A.34)

∈ O
(
NK−J−1

)
(A.35)

A.6 Unfilled volume between two balls in a hypercone

To derive an expression for the unfilled volume between two balls of radii r and

s in a hypercone, as shown in Figure A.5, we first establish the following expressions

and definitions. All expressions below are generalized to n dimensions.

volume of n-sphere of radius r,

π
n
2

n
2
!
rn (A.36)

222

volume of (n-1)-sphere of radius r,

π
n−1
2

n−1
2

!
rn−1 (A.37)

The volume of a cone is 1/2 height · (n-1)-sphere

Per Figure A.5, A “spherical cone” is the surface of revolution obtained by cutting

a conical ”wedge” with vertex at the center of a sphere out of the sphere. It is therefore

a cone plus a spherical cap.

volume of spherical cone of n-sphere of angle ϕ of radius r,

π
n
2

n
2
!
rn
∫ β

0
(sinϕ)n−2∂ϕ∫ π

0
(sinϕ)n−2∂ϕ

=
π
n
2

n
2
!
rn
∫ β

0
(sinϕ)n−2∂ϕ
n−3
2

!
n−2
2

!

√
π

=
π
n−1
2

n−1
2

!

n− 1

n
rn

β∫
0

(sinϕ)n−2∂ϕ

(A.38)

A positive “ice cream cone” is a cone attached to half a sphere, such that the cone

and sphere is tangent. Namely, positive ice cream = cone + sphere - spherical cone

A negative “ice cream cone” is a cone minus half a sphere, such that the cone edge

and missing half sphere is tangent. Namely, negative ice cream = cone − spherical

cone

A lens is the intersection between two spheres. The volume of a lens can be

expressed as the sum of two spherical cones minus two flush cones, that is, a revolved

triangle.

Let, β = θ/2, and observe that s− r = d sin β.

In figure A.5, the uncovered volume can now be expressed as

uncovered volume = negative ice cream − positive ice cream + lens

223

r s

dθ

β
spherical

cone

positive

ice cream cone

negative

ice cream cone

volume

between two balls

Figure A.5: The geometric n-dimensional pieces of the inclusion exclusion formula
include a spherical cone, a positive ice cream cone and a negative ice cream cone.
(Bottom) We solve for the shaded region, the volume between two n-balls in a n-
dimensional hypercone.

A.6.0.1 negative ice cream cone

Negative Ice Cream Cone = 1
n

height · sphere[n−1, s cos β] - spherical cone[n, s, π
2
−

β]

1

n
(
s

sin β
)(
π
n−1
2

n−1
2

!
(s cos β)n−1)− π

n−1
2

n−1
2

!

n− 1

n
sn

π
2
−β∫

0

(sinϕ)n−2∂ϕ (A.39)

224

A.6.0.2 positive ice cream cone

Positive ice cream = 1
n

height · sphere[n−1, r cos β] − spherical cone[n, r, π
2
−β] +

sphere[n, r]

1

n
(
r

sin β
)(
π
n−1
2

n−1
2

!
(r cos β)n−1)− π

n−1
2

n−1
2

!

n− 1

n
rn

π
2
−β∫

0

(sinϕ)n−2∂ϕ+
π
n
2

n
2
!
rn (A.40)

A.6.0.3 lens

lens = spherical cone[n, s, cos−1 d2+s2−r2
2ds

] + spherical cone[n, r, cos−1 d2+r2−s2
2dr

] −

revolved triangle.

spherical cone[n, s, cos−1 d2+s2−r2
2ds

] = π
n−1
2

n−1
2

!
n−1
n
sn
∫ cos−1 d

2+s2−r2
2ds

0
(sinϕ)n−2∂ϕ

spherical cone[n, r, cos−1 d2+r2−s2
2dr

] = π
n−1
2

n−1
2

!
n−1
n
rn
∫ cos−1 d

2+r2−s2
2dr

0
(sinϕ)n−2∂ϕ

area of triangle[d, r, s] = 1
4

√
(d+ r + s)(−d+ r + s)(d− r + s)(d+ r − s)

= 1
4

√
((r + s)2 − d2)(d2 − (s− r)2)

= 1
4

√
((r + s)2 − d2)(d2 − (d sin β)2)

= d
4
(cos β)

√
(r + s)2 − d2

revolved triangle = 1
n

height · sphere[n−1, 2
d

area of triangle[d, r, s]]

= 1
n
(d)(π

n−1
2

n−1
2

!
(1

2
(cos β)

√
(r + s)2 − d2)n−1)

A.6.0.4 Uncovered volume

Putting the above expressions together.

uncovered volume

= π
n−1
2

n−1
2

!
1
n
sn−rn
sinβ

(cos β)n−1 − π
n−1
2

n−1
2

!
n−1
n

(sn − rn)
∫ π

2
−β

0
(sinϕ)n−2∂ϕ− π

n
2
n
2

!
rn

+π
n−1
2

n−1
2

!
n−1
n
sn
∫ cos−1 d

2+s2−r2
2ds

0
(sinϕ)n−2∂ϕ+ π

n−1
2

n−1
2

!
n−1
n
rn
∫ cos−1 d

2+r2−s2
2dr

0
(sinϕ)n−2∂ϕ

−π
n−1
2

n−1
2

!
d
n

(cosβ)n−1

2n−1 ((r + s)2 − d2)
n−1
2

= π
n−1
2

n−1
2

!
d
n
sn−rn
s−r (cos β)n−1 − π

n−1
2

n−1
2

!
n−1
n

(sn − rn)
∫ π

2
−β

0
(sinϕ)n−2∂ϕ− π

n
2
n
2

!
rn

225

+π
n−1
2

n−1
2

!
n−1
n
sn
∫ cos−1 d

2+s2−r2
2ds

0
(sinϕ)n−2∂ϕ+ π

n−1
2

n−1
2

!
n−1
n
rn
∫ cos−1 d

2+r2−s2
2dr

0
(sinϕ)n−2∂ϕ

−π
n−1
2

n−1
2

!
d
n

(cosβ)n−1

2n−1 ((r + s)2 − d2)
n−1
2

A.7 Proving the N=5-12 clusters are ergodic when mobile

Consider the N -th spherical code as having N lattice positions 1,2,3,...N and the

spheres on the lattice having identities A,B,C,... In a single snapshot of the system,

each sphere is assigned to a lattice point (e.g. 1: A, 2: B, 3: C, ...). The possible ways

to permute the assignation of the spheres to lattice points form a permutation group.

For a finite set of N elements, the symmetric group of the set is the set of all possible

arrangements or all permutations of set, which has N ! members. Each permutation

group is a subgroup of the symmetric group. If the cluster is not mobile, i.e. all HP are

locally caged, then the permutation group of the cluster is the rotational symmetry

group of the cluster. When the cluster is mobile, there is are additional group actions

that permute the cluster. For N=5-12 below, we show that the permutation group

generated by the new action found when the cluster is first observed to be mobile and

the rotational symmetry group is the symmetric group. We show this by identifying

the generators of the permutation group using disjoint cyclic notation, and then use

the software of reference227 to generate the whole group. If the group generated is

the same size as the symmetric group, then it is the symmetric group. In each case,

we find that the generated group is the symmetric group.

Thus we show that the mobile N=5-12 clusters are ergodic. That is, over time,

every possible configuration of spheres is generated. There is no arrangement that

cannot be reached by the permuting move alone. For comparison, this property is not

true for the corner and edge cubes of a Rubik’s cube. There are configurations of a

Rubik’s cube that can only be generated by illegally disassembling and reassembling

the cube.

226

A.7.1 N=5

Figure A.6: Labeled spherical code lattice points for N=5 in the square pyramid
configuration.

Elements 1,2,3,4,5

The new generator is

• (1,2)(3,1)

Rotational Symmetry Group has generator

• (2,4,3,5)

The resultant permutation group has 120 elements or is equivalent to S5

A.7.2 N=6

Elements 1,2,3,4,5,6

The new generator is

• (1,2,5)

227

Figure A.7: Labeled spherical code lattice points for N=6.

Rotational Symmetry Group has generator

• (1,5,3,6)

• (2,5,4,6)

• (1,2,3,4)

The resultant permutation group has 720 elements, or is equivalent to S6.

A.7.3 N=7

Elements 1,2,3,4,5,6,7

The new generator is

• (3,4)(5,6)(7,2)

Rotational Symmetry Group has generator

• (1,4,6)(2,3,5)

The resultant permutation group has 5040 elements, or is equivalent to S7.

228

Figure A.8: Labeled spherical code lattice points for N=7.

A.7.4 N=8

Figure A.9: Labeled spherical code lattice points for N=8.

Elements 1,2,3,4,5,6,7,8

229

The new generators are

• (5,6,4,8,7)(2,3)

• (4,6,5,7,8)(2,3)

Rotational Symmetry Group has generator

• (1,6,7,4)(8,3,2,5)

The resultant permutation group has 5040 elements, or is equivalent to S8.

A.7.5 N=9

Figure A.10: Labeled spherical code lattice points for N=9.

Elements 1,2,3,4,5,6,7,8,9

The new generator is

• (7,3,2,8)(4,1,9,6)

Rotational Symmetry Group has generators

230

• (9,4)(3,8)(2,7)

• (9,2,8)(4,3,7)(1,5,6)

The resultant permutation group has 362880 elements, or is equivalent to S9.

A.7.6 N=10

Figure A.11: Labeled spherical code lattice points for N=10.

Elements 1,2,3,4,5,6,7,8,9,10

The new generator is

• (5,4,2)(10,1,9)(7,8,3)

Rotational Symmetry Group has generator

• (4,6)(1,2)(5,9)(7,10)(8,3)

The resultant permutation group has 3628800 elements, or is equivalent to S10.

231

Figure A.12: Labeled spherical code lattice points for N=11.

A.7.7 N=11

Elements 1,2,3,4,5,6,7,8,9,10,11

The new generator is

• (7,9,1,2,8)(11,4,10,3)

Rotational Symmetry Group has generator

• (5,4,2,8,10)(11,1,6,7,3)

The resultant permutation group has 39916800 elements, or is equivalent to S11.

A.7.8 N=12

Elements 1,2,3,4,5,6,7,8,9,10,11,12

The new generators are

• (11,4,2,12,6)

232

Figure A.13: Labeled spherical code lattice points for N=12

• (4,3,5,12,6,11)

Rotational Symmetry Group has generators

• (11,4,2,12,6)(9,3,5,7,8)

• (11,4,3,10,8)(1,2,5,7,6)

• (9,4,2,5,10)(11,1,12,7,8)

• (8,6,12,5,10)(11,1,2,3,9)

• (9,8,6,1,4)(10,7,12,2,3)

Note that first new generator (the Rubik’s Cube twist) and the generators of the

rotational symmetry group are not sufficient to generate the symmetric group. How-

ever, the second generator and the rotational symmetry group is sufficient to generate

the symmetric group. The resultant permutation group has 479001600 elements, or

is equivalent to S12.

233

APPENDIX B

Codes

B.1 Chapter 2

Code for performing GPU-accelerated rigid body simulations and FIRE energy

minimizations can be found in the open-source code package HOOMD-blue version

0.10.073 and later.

B.2 Chapter 3

Code for performing GPU-accelerated Brownian dynamics and dissipative parti-

cle simulations can be found in the open-source code package HOOMD-blue version

0.9.173 and later.

B.3 Chapter 4,5,6

All code for performing the genetic algorithm on simple polygons in 2D is con-

tained in the codeblue.umich.edu repository http://codeblue.umich.edu/index/projects/gap-

ga in gap-ga/2D.

234

All code for performing the genetic algorithm and simulated annealing simula-

tions on convex polygons in 3D is contained in the codeblue.umich.edu repository

http://codeblue.umich.edu/index/projects/gap-ga in gap-ga/3D.

All code for performing the heuristic algorithm on simple polygons in 2D is con-

tained in the codeblue.umich.edu repository http://codeblue.umich.edu/index/projects/gap-

ha

B.4 Chapter 7

The following python script can be run with HOOMD-blue and the ”particle grower”

plugin.

B.4.1 Polydisperse tethered nanosphere script

from hoomd script import *

from hoomd plugins import particle grower

import math

#Generate a startup file from scratch

parameters

phi P = 0.4

n particle = 2000

myT = 0.3

myPD = 10.0

One Head

head num = 1

head diam = 1.94

235

8 Tail

tail num = 8

tns = dict(bond len=1.0, type=[’Head’]*head num + [’Tail’]*tail num, bond=”linear”,

count=n particle)

perform some simple math to find the length of the box

N = len(tns[’type’]) * tns[’count’]

Nhead = head num*tns[’count’]

Ntail = tail num*tns[’count’]

L = math.pow(math.pi * (Nhead * (head diam*head diam*head diam) + Ntail) /

(6.0 * phi P), 1.0/3.0)

generate the polymer system

init.create random polymers(box=hoomd.BoxDim(L), polymers=[tns],

separation=dict(Head=0.35, Tail=0.35), seed=12345)

pair potential setup

eps=1.0

bonds

myfene = bond.fene()

myfene.set coeff(’polymer’, k=30.0, r0=1.5, sigma=1.0, epsilon=eps)

pair interaction between head and tail groups (initially made WCA)

sljWCA = pair.slj(r cut=2**(1.0/6.0))

236

sljWCA.pair coeff.set(’Head’, ’Head’, epsilon=eps, sigma=1.0)

sljWCA.pair coeff.set(’Head’, ’Tail’, epsilon=eps, sigma=1.0)

sljWCA.pair coeff.set(’Tail’, ’Tail’, epsilon=eps, sigma=1.0)

sljWCA.set params(mode=”shift”)

dump every few steps

mol2 = dump.mol2()

mol2.write(filename=”TNS.mol2”)

dump.dcd(filename=”TNS.dcd”, period=1000000)

integrate NVT for a bunch of time steps

bd=integrate.bdnvt(dt=0.01, T=myT, use diam=True, seed=54321)

start scaling particle size

grow em=update.diameter scaler(r cut=2**(1.0/6.0))

heads=group.type(’Head’)

grow em.add group(group=heads,growtime=2000, finalD=head diam)

run(4000)

#Polydisperse the head groups

pd em=particle grower.update.pdgrower(r cut=pow(2.0,1.0/6.0))

pd em.add group(group=heads, minD=1.0, PD=myPD, seed=12345)

pd em.add move(group=heads, growtime=2000, startf=0.0, stopf=1.0)

pdlog=analyze.log(filename=’polydispersity.log’, quantities=[’polydispersity’, ’aver-

age diameter’], period=100000)

237

logger = analyze.log(filename=’log cooldown.pe’, period=1000, quantities=[’pair lj energy’])

outputxml=dump.xml(filename=”TNSinit”, period=1000000)

outputxml.set params(position=True, velocity=True, mass=True, diameter=True,

type=True, bond=True)

run(1000000)

#Turn Off WCA head interaction, PD Log and PD’er

sljWCA.disable()

pdlog.disable()

pd em.disable()

pair interaction between head and tail groups (heads now attract)

slj = pair.slj(r cut=2.5))

slj.pair coeff.set(’Head’, ’Head’, epsilon=eps, sigma=1.0)

slj.pair coeff.set(’Head’, ’Tail’, epsilon=eps, sigma=1.0, r cut=2**(1.0/6.0)

slj.pair coeff.set(’Tail’, ’Tail’, epsilon=eps, sigma=1.0, r cut=2**(1.0/6.0)

slj.set params(mode=”shift”)

run(100000000)

B.5 Chapter 8

The radical tessellation code has been incorporated into vor++ software library

maintained by Dr. Chris Rycroft and can be found at , http://math.lbl.gov/voro++/

.

238

B.6 Chapter 9

The following python scripts can be run with HOOMD-blue and the ”parti-

cle grower” and ”spherical code pairs” plugin and using BBB

B.6.1 Spherical code self-assembly code

#! /usr/bin/env hoomd

from hoomd script import *

from hoomd plugins import spherical code pairs

import numpy

import math

from bbb import basic blocks, packmol, lattice

import copy

import os

Where the transition occurred using the nominal Dc/Dh

transition = [[0.1, 3], [0.166,4], [0.364, 6], [0.592, 7], [0.649, 8], [0.745, 9], [0.853, 10],

[0.943, 12]]

get the job index from PBS ARRAYID, or return 0 if it is not specified (for

test jobs)

def get array id():

pbs arrayid = os.getenv(’PBS ARRAYID’);

if pbs arrayid is None:

return 0

else:

return int(pbs arrayid)-1;

239

setup derived parameters

id = get array id();

minimal ratio of HP to CP ratio = 4;

#Number of Central Particles

N A= 1000

ratio of CP Diameter to HP Diameter

CPoverHP = id*(1-0.1)/300 + 0.1;

Determine what the multiplier is

multiplier = 1;

for val in transition:

multiplier = val[1];

if val[0] >= CPoverHP:

break

#Number of Particles

N B= multiplier*ratio*N A

Halo Sphere

Halo Diameter = 3.0;

Central Sphere

Central Diameter = CPoverHP*Halo Diameter;

240

seed = 98749874

setup the output directory

out dir = ’R’+ str(CPoverHP).ljust(10,’0’) + ’ D’ + str(Central Diameter) + ’d’ +

str(Halo Diameter)

if os.path.exists(out dir):

if not os.path.isdir(out dir):

raise RuntimeError(out dir + ’ exists and is not a directory’)

else:

os.mkdir(out dir);

Box Length

Write formula for 25% dense box

phi = 0.25

box vol = (N A*(1.0/6.0)*math.pi*math.pow(Central Diameter,3.0)

+N B*(1.0/6.0)*math.pi*math.pow(Halo Diameter,3.0))/phi

box length = box vol**(1.0/3.0)

Make the Sphere A particles

Making a single lattice of particles that will be fixed

sphereA = basic blocks.Rod(N=N A, r0 = 1.0, diameter=Central Diameter,type=’A’);

sphereB = basic blocks.Sphere(diameter=Halo Diameter,type=’B’);

Make the Simulation Box

box = packmol.ConstraintSimulationBoxHOOMD(box length, box length, box length,

241

tolerance = max([Halo Diameter, Central Diameter]))

Setup the generator and pick a seed

g = packmol.GeneratorXML(simulation box=box, seed=1, tolerance = max([Halo Diameter,

Central Diameter]), unique suffix=str(id));

Put Spheres in the box subject to Constraints

g.addBuildingBlock(sphereB, N B)

l = int(math.ceil(N A ** (1.0/3.0)))

num A=0

inset=box length/10.0;

for i in xrange(0,l):

for j in xrange(0,l):

for k in xrange(0,l):

if N A > num A:

sphereA.getParticle(num A).position = (i*box length/l-box length/2.0+inset,

j*box length/l-box length/2.0+inset, k*box length/l-box length/2.0+inset)

num A = num A+1

g.addBuildingBlock(sphereA, 1, constraints=[packmol.ConstraintFixed(0,0,0)])

Step 3.4: generate the xml file (will overwrite if it already exists!)

g.writeOutput(open(out dir+’/Init.xml’, ’w’));

system = init.read xml(filename=out dir+”/Init.xml”)

242

#Pairwise Interaction Force

lj = pair.slj(r cut = 2**(1.0/6.0), d max = max(Central Diameter,Halo Diameter))

lj.pair coeff.set(’A’, ’A’, epsilon=0.0, sigma=1.0)

lj.pair coeff.set(’B’, ’B’, epsilon=1.0, sigma=1.0)

lj.pair coeff.set(’A’, ’B’, epsilon=0.0, sigma=1.0)

#Pairwise Interaction Force morse = spherical code pairs.pair.shiftedmorse(r cut=2.5,

d max = max(Central Diameter,Halo Diameter))

morse.pair coeff.set(’A’, ’B’, D0=5.0, alpha=5.0, dr0 = 0)

morse.pair coeff.set(’A’, ’A’, D0=0.0, alpha=5.0, dr0 = 0)

morse.pair coeff.set(’B’, ’B’, D0=0.0, alpha=5.0, dr0 = 0)

neighbor list exclusions

#nlist.reset exclusions(exclusions = [’bond’, ’diameter’])

anchor = group.type(type=’A’)

halo = group.type(type=’B’)

groupAB = group.union(name=”ab-particles”, a=anchor, b=halo)

integrate.mode standard(dt=0.005)

bd=integrate.bdnvt(group=halo, T=1.0, seed=seed)

bd.set params(T = variant.linear interp(points = [(0, 1.0), (2e5, 0.1)]))

dump.dcd(filename=out dir+”/trajectory.dcd”, period=int(1e5), overwrite=True)

243

#imd = analyze.imd(port=12345, period = 100)

xml=dump.xml()

xml.set params(all=True)

dump.bin(file1=out dir + ’/restart.1.bin.gz’, file2=out dir + ’/restart.2.bin.gz’, pe-

riod=1e4)

analyze.log(filename=out dir+’/mylog.log’, quantities=[’temperature’, ’kinetic energy’,

’potential energy’], period=100, header prefix=’#’, overwrite =True)

warm up run

run(int(20e6))

xml.write(filename=out dir+’/Final.xml’)

Last Dump

bin = dump.bin()

bin.write(filename=out dir + ’/continue.bin.gz’)

B.6.2 HP constrained to a CP surface

from hoomd script import *

from hoomd plugins import particle grower

from hoomd plugins import spherical code pairs

import numpy

import math

244

from bbb import basic blocks, packmol, lattice

import copy

import pickle

import sys

One Sphere in the Middle of type A

N spheres attached to it

N B =int(sys.argv[3])

Ratio CPoverHP = float(sys.argv[2])

convert

CPoverHP = (CPoverHP*3.0786 +(3.0786-3.0))/3.0;

T=0.1;

grow time = int(1e5)

sample time = int(1e4)

num samples = 10000

Halo Sphere Halo Initial Diameter = 1.0;

Halo Diameter = 3.0;

Central Sphere

Central Diameter = CPoverHP*(Halo Diameter)

Radial Offset = (Central Diameter + Halo Diameter)/2.0;

245

sphere = basic blocks.Sphere(diameter = Halo Initial Diameter, type = ’B’);

sphere constraint1 = packmol.ConstraintSphere(’inside’, 0,0,0, Radial Offset + 0.1,

applyto = [0])

sphere constraint2 = packmol.ConstraintSphere(’outside’, 0,0,0, Radial Offset, ap-

plyto = [0])

box = packmol.ConstraintSimulationBoxHOOMD(140, 140, 140,

tolerance = Halo Initial Diameter)

g = packmol.GeneratorXML(simulation box=box, seed=1,

tolerance = Halo Initial Diameter);

Put the Central Sphere in the box

g.addBuildingBlock(sphere, N B, constraints = [sphere constraint1, sphere constraint2])

g.addBuildingBlock(basic blocks.Sphere(type=’A’, diameter = Central Diameter),1,

constraints = [packmol.ConstraintFixed(0,0,0)])

g.writeOutput(open(’Init.xml’, ’w’));

#Start Simulation

system = init.read xml(”Init.xml”)

#Pairwise Interaction Force

lj = pair.slj(r cut = 2**(1.0/6.0),d max =Halo Diameter)

lj.pair coeff.set(’A’, ’A’, epsilon=0.0, sigma=1.0)

lj.pair coeff.set(’B’, ’B’, epsilon=0.1/T, sigma=1.0)

lj.pair coeff.set(’A’, ’B’, epsilon=0.0, sigma=1.0)

anchor = group.type(type=’A’)

246

halo = group.type(type=’B’)

groupAB = group.union(name=”ab-particles”, a=anchor, b=halo)

#Constrain Sphere

constrain.sphere(group=halo, P=(0,0,0), r=Radial Offset)

integrate.mode standard(dt=0.005)

bd=integrate.bdnvt(group=halo, T=T, seed=1234)

Grower!

run(int(1e4))

grower = particle grower.update.diameter scaler(period = 1)

grower.add group(group = halo, finalD = Halo Diameter, growtime = grow time)

run(grow time)

grower.disable()

del grower

#Dump an example of what the system looks like at the end of the grow.

xml = dump.xml()

xml.set params(all=True)

xml.set params(image=False)

xml.write(filename=’Small.xml’)

#Save Data

filename = ’trajectory ’ + str(Central Diameter/(Halo Diameter)) + ’ 0.dcd’

247

datadcd = dump.dcd(filename=filename, period=sample time, overwrite = True)

run(sample time*num samples)

248

BIBLIOGRAPHY

249

BIBLIOGRAPHY

[1] Trung Dac Nguyen, Carolyn L. Phillips, Joshua A. Anderson, and Sharon C.
Glotzer. Rigid body constraints realized in massively-parallel molecular dynam-
ics on graphics processing units. Computer Physics Communications, 182(11):
2307 – 2313, 2011.

[2] Zhenli Zhang and Sharon C. Glotzer. Self-assembly of patchy particles. Nano
Letters, 4(8):1407–1413, 2004.

[3] Carolyn L. Phillips, Joshua A. Anderson, and Sharon C. Glotzer. Pseudo-
random number generation for brownian dynamics and dissipative particle dy-
namics simulations on gpu devices. Journal of Computational Physics, 230(19):
7191 – 7201, 2011.

[4] R. D. Groot, T. J. Madden, and D. J. Tildesley. On the role of hydrodynamic
interactions in block copolymer microphase separation. J. Chem. Phys, 110:
9739–9749, May 1999. This paper was shown incorrect by5.

[5] MA Horsch, ZL Zhang, and SC Glotzer. Self-assembly of polymer-tethered
nanorods. Physical Review Letters, 95(5), 2005.

[6] Carolyn L. Phillips, Christopher R. Iacovella, and Sharon C. Glotzer. Stability
of the double gyroid phase to nanoparticle polydispersity in polymer-tethered
nanosphere systems. Soft Matter, 6(8):1693–1703, 2010.

[7] P K Doye, Jonathan and Lars Meyer. Mapping the magic numbers in binary
lennard-jones clusters. Phys Rev Lett, 95(6):063401, 2005.

[8] Cyril Stanley Smith. A History of Metallography: The Development of Ideas
on the Structure of Metals before 1890. MIT Press, 1988.

[9] ”There’s Plenty of Room at the Bottom” by Richard P. Feynman, lecture at
APS meeting, December 29, 1959.

[10] Sharon C. Glotzer and Michael J. Solomon. Anisotropy of building blocks and
their assembly into complex structures. Nature Materials, 6(7):557–562, August
2007.

[11] Krste Asanovic, Ras Bodik, Bryan C. Catanzaro, Joseph J. Gebis, Parry Hus-
bands, Kurt Keutzer, David A. Patterson, William L. Plishker, John Shalf,

250

Samuel W. Williams, and Katherine A. Yelick. The landscape of parallel com-
puting research: a view from Berkeley. Technical Report UCB/EECS-2006-
183, Electrical Engineering and Computer Sciences, University of California at
Berkeley, December 2006.

[12] A. Rahman. Correlations in the motion of atoms in liquid argon. Phys. Rev.,
136:A405–A411, Oct 1964.

[13] V.A Shneidman and D.R Uhlmann. Does a Lennard-Jones glass exist? Journal
of Non-Crystalline Solids, 224(1):86 – 88, 1998.

[14] W. Kob and H. C. Andersen. Testing mode-coupling theory for a supercooled
binary Lennard-Jones mixture i: The van Hove correlation function. Phys. Rev.
E, 51(5):4626–4641, May 1995.

[15] G. H. Ristow. Simulating Granular Flow with Molecular Dynamics. J. Phys.
I, 2(6):649, 1992.

[16] Go Watanabe, Jun-Ichi Saito, Nobuyuki Kato, and Yuka Tabe. Orientational
correlations in two-dimensional liquid crystals studied by molecular dynamics
simulation. 134(5):054513, 2011.

[17] Michael P. Allen, Mark A. Warren, Mark R. Wilson, Alain Sauron, and William
Smith. Molecular dynamics calculation of elastic constants in gay berne nematic
liquid crystals. J. Chem. Phys., 105(7):2850–2858, 1996.

[18] Kurt Kremer and Gary S. Grest. Dynamics of entangled linear polymer melts:
A molecular dynamics simulation. J. Chem. Phys., 92(8):5057–5086, 1990.

[19] E. S. Boek, P. V. Coveney, H. N. W. Lekkerkerker, and P. van der Schoot.
Simulating the rheology of dense colloidal suspensions using dissipative particle
dynamics. Phys. Rev. E, 55:3124–3133, Mar 1997.

[20] Makoto Fushiki. Molecular dynamics simulations for charged colloidal disper-
sions. J. Chem. Phys., 97(9):6700–6713, 1992.

[21] Kristen A. Fichthorn and Yong Qin. Molecular-dynamics simulation of colloidal
nanoparticle forces. Industrial & Engineering Chemistry Research, 45(16):5477–
5481, 2006.

[22] M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, and L. S. Chayes. Self-Propelled
Particles with Soft-Core Interactions: Patterns, Stability, and Collapse.
Physical Review Letters, 96(10):104302+, March 2006. doi: 10.1103/Phys-
RevLett.96.104302.

[23] M. Shimizu, A. Ishiguro, T. Kawakatsu, Y. Masubuchi, and M. Doi. Coherent
swarming from local interaction by exploiting molecular dynamics and stokesian
dynamics methods. In Intelligent Robots and Systems, 2003. (IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference on, volume 2, pages
1614 – 1619 vol.2, oct. 2003.

251

[24] CR Iacovella, MA Horsch, Z Zhang, and SC Glotzer. Phase diagrams of self-
assembled mono-tethered nanospheres from molecular simulation and compar-
ison to surfactants. Langmuir, 21(21):9488–9494, 2005.

[25] CR Iacovella, AS Keys, MA Horsch, and SC Glotzer. Icosahedral packing of
polymer-tethered nanospheres and stabilization of the gyroid phase. Phys Rev
E, 75(4), 2007.

[26] Christopher R. Iacovella and Sharon C. Glotzer. Phase behavior of ditethered
nanospheres. Soft Matter, 5:4492–4498, 2009.

[27] Trung Dac Nguyen, Zhenli Zhang, and Sharon C. Glotzer. Molecular simulation
study of self-assembly of tethered v-shaped nanoparticles. J. Chem. Phys., 129
(24):244903, 2008.

[28] Trung Dac Nguyen and Sharon C. Glotzer. Switchable helical structures formed
by the hierarchical self-assembly of laterally tethered nanorods. Small, 5(18):
2092–2098, 2009.

[29] SC Glotzer, MA Horsch, CR Iacovella, Z Zhang, ER Chan, and X Zhang.
Self-assembly of anisotropic tethered nanoparticle shape amphiphiles. Current
Opinion in Colloid and Interface Science, 2005.

[30] Trung Dac Nguyen, Eric Jankowski, and Sharon C. Glotzer. Self-assembly and
reconfigurability of shape-shifting particles. ACS Nano, In Press, 2011.

[31] http://lammps.sandia.gov.

[32] S Sastry, DS Corti, PG Debenedetti, and FH Stillinger. Statistical geometry
of particle packings.1. algorithm for exact determination of connectivity, vol-
ume, and surface areas of void space in monodisperse and polydisperse sphere
packings. Phys Rev E, 56(5):5524–5532, 1997.

[33] A Okabe. Spatial Tessellations: Concepts and Applications of Voronoi Dia-
grams. Wiley, New York, 2000.

[34] F. Aurenhammer. Power Diagrams: Properties, Algorithms and Applications.
SIAM Journal on Computing, 16(1):78–96, 1987.

[35] M. Gavrilova and J. Rokne. An efficient algorithm for construction of the
power diagram from the voronoi diagram in the plane. International journal of
computer mathematics, 61(1-2):49–61, 1996.

[36] Hiroshi Imai, Masao Iri, and Kazuo Murota. Voronoi diagram in the laguerre
geometry and its applications. SIAM J. Comput., 14(1):93–105, 1985.

[37] CH Rycroft, GS Grest, JW Landry, and MZ Bazant. Analysis of granular flow
in a pebble-bed nuclear reactor. Physical Review E, 74, 2006.

252

[38] N. J. A. Sloane, with the collaboration of R. H. Hardin, W. D. Smith and
others, Tables of Spherical Codes, Coverings, Maximum Volume of Con-
vex Hulls, and Minimal Energy Arrangements published electronically at
www.research.att.com/ njas/.

[39] D. Frenkel and B. Smit. Understanding Molecular Simulations. Academic Press,
2nd edition, 2002.

[40] Mirjam E. Leunissen and Daan Frenkel. Numerical study of dna-functionalized
microparticles and nanoparticles: Explicit pair potentials and their implications
for phase behavior. The Journal of Chemical Physics, 134(8):084702, 2011.

[41] Allen, M. P. and Tildesley, D. J. Computer Simulation of Liquids. Oxford
science publications. Oxford University Press, USA, June 1989.

[42] John D. Weeks, David Chandler, and Hans C. Andersen. Role of repulsive
forces in determining the equilibrium structure of simple liquids. The Journal
of Chemical Physics, 54(12):5237–5247, 1971.

[43] Philip M. Morse. Diatomic molecules according to the wave mechanics. ii.
vibrational levels. Phys. Rev., 34:57–64, Jul 1929.

[44] GS Grest and K Kremer. Molecular-dynamics simulation for polymers in the
presence of a heat bath. Phy Rev A, 33(5):3628–3631, 1986.

[45] JP Ryckaert, G Ciccotti, and HJC Berendsen. Numerical-integration of the
cartesian equations of motion of a system with constraints: Molecular dynamics
of n-alkanes. J. Comput. Phys., 23(3):327–341, 1977.

[46] David Dubbeldam, Gloria A. E. Oxford, Rajamani Krishna, Linda J. Broadbelt,
and Randall Q. Snurr. Distance and angular holonomic constraints in molecular
simulations. J. Chem. Phys., 133(3), JUL 21 2010.

[47] Peter Eastman and Vijay S. Pande. Constant constraint matrix approximation:
A robust, parallelizable constraint method for molecular simulations. J. Chem.
Theory Comput., 6(2):434–437, 2010.

[48] D.J. Evans and S Murad. Singularity free algorithm for molecular dynamics
simulation of rigid polyatomics. Molecular Physics, 34(2):327–331, 1977.

[49] DLPOLY. http://www.ccp5.ac.uk/DL POLY/, Nov 2010.

[50] S Plimpton. Fast parallel algorithms for short-range molecular-dynamics. J.
Comput. Phys., 117(1):1–19, March 1995.

[51] Trung Dac Nguyen and Sharon C. Glotzer. Reconfigurable assemblies of shape-
changing nanorods. ACS Nano, 4(5):2585–2594, May 2010.

253

[52] David R. Heine, Matt K. Petersen, and Gary S. Grest. Effect of particle shape
and charge on bulk rheology of nanoparticle suspensions. J. Chem. Phys., 132
(18), May 2010.

[53] Mark A. Horsch, Zhenli Zhang, and Sharon C. Glotzer. Self-assembly of end-
tethered nanorods in a neat system and role of block fractions and aspect ratio.
Soft Matter, 6(5):945–954, 2010.

[54] Trung Dac Nguyen and Sharon C. Glotzer. Switchable helical structures formed
by the hierarchical self-assembly of laterally tethered nanorods. Small, 5(18):
2092–2098, September 2009.

[55] Trung Dac Nguyen, Zhenli Zhang, and Sharon C. Glotzer. Molecular simulation
study of self-assembly of tethered V–shaped nanoparticles. J. Chem. Phys., 129
(24), December 2008.

[56] JA Elliott and AH Windle. A dissipative particle dynamics method for modeling
the geometrical packing of filler particles in polymer composites. J. Chem.
Phys., 113(22):10367–10376, December 2000.

[57] Raymond Mountain. Solvation structure of ions in water. Int. J. Thermophys.,
28:536–543, 2007. ISSN 0195-928X.

[58] Scott D. Johnson, Raymond D. Mountain, and Paul H. E. Meijer. Simulation
of C-60 through the plastic transition temperatures. J. Chem. Phys., 103(3):
1106–1108, 1995.

[59] T. F. Miller, M. Eleftheriou, P. Pattnaik, A. Ndirango, D. Newns, and G. J.
Martyna. Symplectic quaternion scheme for biophysical molecular dynamics.
J. Chem. Phys., 116(20):8649–8659, 2002.

[60] LAMMPS source code. http://lammps.sandia.gov/, Nov 2010.

[61] H. Kameraj, R. J. Low, and M. P. Neal. Time reversible and symplectic inte-
grators for molecular dynamics simulations of rigid molecules. J. Chem. Phys.,
122:224114–30, 2003.

[62] A. Gaikwad and I. M. Toke. GPU based sparse grid technique for solving
multidimensional options pricing pdes. In Proceedings of the 2nd Workshop on
High Performance Computational Finance, WHPCF ’09, pages 6:1–6:9, New
York, NY, USA, 2009. ACM.

[63] J. C. Thibault and I. Senocak. Cuda implementation of a Navier-Stokes solver
on multi-GPU desktop platforms for incompressible flows. 47th AIAA Aerospace
Sciences Meeting. Orlando, FL, January 2010.

[64] D. B. Kirk and W. W. Hwu. Programming Massively Parallel Processors: A
Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2010. ISBN 0123814723, 9780123814722.

254

[65] http://www.nvidia.com/cudazone, http://developer.nvidia.com/getcuda (cuda
toolkit).

[66] J. A. Anderson, R. Sknepnek, and A. Travesset. Design of polymer nanocom-
posites in solution by polymer functionalization. Phys. Rev. E, 82(2), August
2010.

[67] Yong Duan and Peter A. Kollman. Pathways to a Protein Folding Intermediate
Observed in a 1-Microsecond Simulation in Aqueous Solution. Science, 282
(5389):740–744, 1998.

[68] Christopher D. Snow, Houbi Nguyen, Vijay S. Pande, and Martin Gruebele.
Absolute comparison of simulated and experimental protein-folding dynamics.
Nature, 420(6911):102–106, October 2002.

[69] Peter L. Freddolino, Christopher B. Harrison, Yanxin Liu, and Klaus Schulten.
Challenges in protein-folding simulations. Nat. Phys., 6, 2010.

[70] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General purpose
molecular dynamics simulations fully implemented on graphics processing units.
J. Comput. Phys., 227(10):5342–5359, May .

[71] J. A. van Meel, A. Arnold, D. Frenkel, S. F. Portegies Zwart, and R. G. Belle-
man. Harvesting graphics power for MD simulations. Molecular Simulation, 34
(3):259–266, 2008.

[72] John E. Stone, James C. Phillips, Peter L. Freddolino, David J. Hardy,
Leonardo G. Trabuco, and Klaus Schulten. Accelerating molecular modeling
applications with graphics processors. J. Comput. Chem., 28(16):2618–2640,
December 2007.

[73] HOOMD-blue. http://codeblue.umich.edu/hoomd-blue/, Nov 2010.

[74] L. Mart́ınez, R. Andrade, E. G. Birgin, and J. M. Mart́ınez. PACKMOL: a
package for building initial configurations for molecular dynamics simulations.
Journal of computational chemistry, 30(13):2157–2164, October 2009.

[75] VMD is developed with NIH support by the Theoretical and Computational
Biophysics group at the Beckman Institute, University of Illinois at Urbana-
Champaign.

[76] John Stone. An efficient library for parallel ray tracing and animation. Master’s
thesis, Computer Science Department, University of Missouri-Rolla, April 1998.

[77] Erik Bitzek, Pekka Koskinen, Franz Gaehler, Michael Moseler, and Peter Gumb-
sch. Structural relaxation made simple. Phys. Rev. Lett., 97(17), October 2006.

[78] P. J. Hoogerbrugge and J. M. V. A. Koelman. Simulating microscopic hydro-
dynamic phenomena with dissipative particle dynamics. Europhysics Letters,
19:155, 1992.

255

[79] J. M. V. A. Koelman and P. J. Hoogerbrugge. Dynamic simulations of hard-
sphere suspensions under steady shear. Europhysics Letters, 21:363, 1993.

[80] K. Huang, C. Lin, H. Tsao, and Y. Sheng. The interactions between surfactants
and vesicles: Dissipative particle dynamics. J. Chem. Phys., 130(24):245101,
2009.

[81] M. Kenward and K. D. Dorfman. Brownian dynamics simulations of single-
stranded DNA hairpins. J. Chem. Phys., 130(9):095101, 2009.

[82] C. Singh, A. M. Jackson, F. Stellacci, and S. C. Glotzer. Exploiting substrate
stress to modify nanoscale sam patterns. J. Am. Chem. Soc., 131(45):16377–
16379, 2009.

[83] C. L. Phillips and S. C. Glotzer. Effect of nanoparticle polydispersity on the
self assembly of polymer tethered nanospheres. preprint.

[84] L. Gu, S. Xu, Z. Sun, and J. T. Wang. Brownian dynamics simulation of the
crystallization dynamics of charged colloidal particles. J. Colloid Interface Sci.,
350(2):409 – 416, 2010. ISSN 0021-9797.

[85] Steve Worley. private communication, and Saru code package.

[86] David Wheeler and Roger Needham. TEA, a tiny encryption algorithm. pages
97–110. Springer-Verlag, 1995.

[87] F. Zafar, A. Curtis, and M. Olano. Gpu random numbers via the tiny encryp-
tion algorithm. HPG 2010: Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on High Performance Graphics, June 2009.

[88] D. E. Knuth. The art of computer programming, volume 2 (3rd ed.): seminu-
merical algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1997.

[89] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling. Numerical Recipes in
C: The Art of Scientific Computing. Cambridge University Press, 1992.

[90] P. L’Ecuyer and R. Simard. Testu01: A C library for empirical testing of
random number generators. ACM Trans. Math. Softw., 33(4):22, 2007. ISSN
0098-3500. doi: http://doi.acm.org/10.1145/1268776.1268777.

[91] G. Marsaglia, A. Zaman, and W. W. Tsang. Toward a universal random number
generator. Statistics & Probability Letters, 9(1):35 – 39, 1990.

[92] M. Matsumoto and T. Nishimura. Dynamic creation of pseudorandom number
generators. In Monte Carlo and Quasi-Monte Carlo Methods, pages 56–69.
Springer, 1998.

256

[93] B. L. Holian, O. E. Percus, T. T. Warnock, and P. A. Whitlock. Pseudorandom
number generator for massively parallel molecular-dynamics simulations. Phys.
Rev. E, 50(2):1607–1615, Aug 1994.

[94] H. Nguyen. GPU Gems 3. Addison-Wesley Professional, 2007.

[95] W. B. Langdon. A fast high quality pseudo random number generator for
graphics processing units. In In IEEE Congress on Evolutionary Computation,
2008. CEC 2008, pages 459–465, 2008.

[96] A. Zhmurov, K. Rybnikov, Y. Kholodov, and V. Barsegov. Generation of ran-
dom numbers on graphics processors: Forced indentation in silico of the bacte-
riophage hk97. The Journal of Physical Chemistry B, 115(18):5278–5288, 2011.

[97] S. Tzeng and L. Wei. Parallel white noise generation on a gpu via cryptographic
hash. I3D 2008, Association for Computing Machinery, Inc., October 2007.

[98] W. Liu, B. Schmidt, G. Voss, and W. Müller-Wittig. Accelerating molecular
dynamics simulations using graphics processing units with cuda. Comput. Phys.
Commun., 179(9):634 – 641, 2008.

[99] J. Davis, A. Ozsoy, S. Patel, and M. Taufer. Towards large-scale molecular
dynamics simulations on graphics processors. In Sanguthevar Rajasekaran, ed-
itor, Bioinformatics and Computational Biology, volume 5462 of Lecture Notes
in Computer Science, pages 176–186. Springer Berlin / Heidelberg, 2009.

[100] D. C. Rapaport. Role of reversibility in viral capsid growth: A paradigm for
self-assembly. Phys. Rev. Lett., 101(18):186101, Oct 2008.

[101] A. Sunarso, T. Tsuji, and S. Chono. GPU-accelerated molecular dynamics
simulation for study of liquid crystalline flows. J. Comput. Phys., 229(15):5486
– 5497, 2010.

[102] M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A. L.
Beberg, D. L. Ensign, C. M. Bruns, and V. S. Pande. Accelerating molecular
dynamic simulation on graphics processing units. J. Comput. Chem., 30(6):
864–872, April 2009.

[103] P. Eastman and V. S. Pande. Efficient nonbonded interactions for molecular
dynamics on a graphics processing unit. J. Comput. Chem., 31(6):1268–1272,
October 2010.

[104] J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and K. Schulten. GPU-accelerated
molecular modeling coming of age. J. of Molecular Graphics and Modelling, 29
(2):116 – 125, 2010.

[105] D. L. Ermak and J. A. McCammon. Brownian dynamics with hydrodynamic
interactions. J. Chem. Phys., 69(4):1352–1360, 1978.

257

[106] Rémi Lespiat, Sylvie Cohen-Addad, and Reinhard Höhler. Jamming and flow
of random-close-packed spherical bubbles: An analogy with granular materials.
Phys. Rev. Lett., 106(14):148302, Apr 2011.

[107] Hugo Jacquin, Ludovic Berthier, and Francesco Zamponi. Microscopic mean-
field theory of the jamming transition. Phys. Rev. Lett., 106(13):135702, Mar
2011.

[108] Cang Zhao, Kaiwen Tian, and Ning Xu. New jamming scenario: From marginal
jamming to deep jamming. Phys. Rev. Lett., 106(12):125503, Mar 2011.

[109] A. Mughal, H. K. Chan, and D. Weaire. Phyllotactic description of hard sphere
packing in cylindrical channels. Phys. Rev. Lett., 106(11):115704, Mar 2011.

[110] Robert S. Hoy and Corey S. O’Hern. Minimal energy packings and collapse
of sticky tangent hard-sphere polymers. Phys. Rev. Lett., 105(6):068001, Aug
2010.

[111] Alexander Jaoshvili, Andria Esakia, Massimo Porrati, and Paul M. Chaikin.
Experiments on the random packing of tetrahedral dice. Phys. Rev. Lett., 104
(18):185501, May 2010.

[112] Randall D. Kamien and Andrea J. Liu. Why is random close packing repro-
ducible? Phys. Rev. Lett., 99(15):155501, Oct 2007.

[113] Aleksandar Donev, Frank H. Stillinger, and Salvatore Torquato. Do binary hard
disks exhibit an ideal glass transition? Phys. Rev. Lett., 96(22):225502, Jun
2006.

[114] Charles Radin and Lorenzo Sadun. Structure of the hard sphere solid. Phys.
Rev. Lett., 94(1):015502, Jan 2005.

[115] R. Mahmoodi Baram, H. J. Herrmann, and N. Rivier. Space-filling bearings in
three dimensions. Phys. Rev. Lett., 92(4):044301, Jan 2004.

[116] Tomaso Aste. Circle, sphere, and drop packings. Phys. Rev. E, 53(3):2571–2579,
Mar 1996.

[117] S. Torquato. Reformulation of the covering and quantizer problems as ground
states of interacting particles. Phys. Rev. E, 82(5):056109, Nov 2010.

[118] C. Messenger, R. Prix, and M. A. Papa. Random template banks and relaxed
lattice coverings. Phys. Rev. D, 79(10):104017, May 2009.

[119] C. Anteneodo and W. A. M. Morgado. Critical scaling in standard biased
random walks. Phys. Rev. Lett., 99(18):180602, Nov 2007.

[120] K. R. Coutinho, M. D. Coutinho-Filho, M. A. F. Gomes, and A. M. Nemirovsky.
Partial and random lattice covering times in two dimensions. Phys. Rev. Lett.,
72(24):3745–3749, Jun 1994.

258

[121] Alain Verberkmoes and Bernard Nienhuis. Triangular trimers on the triangular
lattice: An exact solution. Phys. Rev. Lett., 83(20):3986–3989, Nov 1999.

[122] ZL Zhang, MA Horsch, MH Lamm, and SC Glotzer. Tethered nano building
blocks: Toward a conceptual framework for nanoparticle self-assembly. Nano
Letters, 3(10):1341–1346, 2003.

[123] Ting Chen, Zhenli Zhang, and Sharon C. Glotzer. A precise packing sequence for
self-assembled convex structures. Proc Natl Acad Sci, 104(3):717–722, January
2007.

[124] Tanja Schilling, Sander Pronk, Bela Mulder, and Daan Frenkel. Monte Carlo
study of hard pentagons. Phys. Rev. E, 71:036138, Mar 2005.

[125] J. D. Bourland and Q. R. Wu. Use of shape for automated, optimized 3d radio-
surgical treatment planning. In Proceedings of the 4th International Conference
on Visualization in Biomedical Computing, pages 553–558, London, UK, 1996.
Springer-Verlag.

[126] H. Blum and Roger N. Nagel. Shape description using weighted symmetric axis
features. Pattern Recognition, 10(3):167–180, 1978.

[127] Harry Blum. A Transformation for Extracting New Descriptors of Shape. Mod-
els for the Perception of Speech and Visual Form, pages 362–380, 1967.

[128] D.J. Sheehy, C.G. Armstrong, and D.J. Robinson. Shape description by medial
surface construction. Visualization and Computer Graphics, IEEE Transactions
on, 2(1):62 –72, Mar 1996.

[129] Tim Culver, John Keyser, and Dinesh Manocha. Accurate computation of the
medial axis of a polyhedron. In Polyhedron, Fifth ACM Symposium on Solid
Modeling, pages 179–190, 1998.

[130] Tim Culver, John Keyser, and Dinesh Manocha. Exact computation of the
medial axis of a polyhedron. Comput. Aided Geom. Des., 21:65–98, January
2004.

[131] Josep Vilaplana. Computing the medial axis transform of polygonal objects by
testing discs, 1996.

[132] F. P. Preparata. The medial axis of a simple polygon. Proc. 6th Symp. Math.
Foundations of Comput. Sci., pages 443–450, September 1977.

[133] H. Nebi Gürsoy and Nicholas M. Patrikalakis. An automatic coarse and fine sur-
face mesh generation scheme based on medial axis transform: Part i algorithms
and part ii implementatio. Engineering with Computers, 8:121–137, 1992.

[134] Suresh K. Generalization of the mid-element based dimensional reduction. Jour-
nal of Computing and Information Science and Engineering, 3, December 2003.

259

[135] Vakulenko A. Circles intersection, Technical report, 2004, from MATLAB Cen-
tral File ExchangeFile id: 5313. http://www.mathworks.com/.

[136] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 2006.

[137] Frederic Cazals, Harshad Kanhere, and Sebastien Loriot. Computing the vol-
ume of a union of balls: a certified algorithm. ACM Transactions on Mathe-
matical Software, 38(1), 2011.

[138] private correspondence with Frederic Cazals.

[139] C Park, J Yoon, and EL Thomas. Enabling nanotechnology with self assembled
block copolymer patterns. Polymer, 44(22):6725–6760, 2003.

[140] TP Lodge. Block copolymers: Past successes and future challenges. Macro-
molecular Chemistry and Physics, 204(2):265–273, 2003.

[141] MJ Fasolka and AM Mayes. Block copolymer thin films: Physics and applica-
tions. Annual Review of Materials Research, 31:323–355, 2001.

[142] CT Black, KW Guarini, R Ruiz, EM Sikorski, IV Babich, RL Sandstrom, and
Y Zhang. Polymer self assembly in semiconductor microelectronics. IBM Jour-
nal of Research and Development, 51(5), 2007.

[143] MP Stoykovich and PF Nealey. Block copolymers and conventional lithography.
Materials Today, 9(9):20–29, 2006.

[144] J Yoon, W Lee, and EL Thomas. Self-assembly of block copolymers for
photonic-bandgap materials. MRS Bulletin, 30(10):721–726, 2005.

[145] Y Fink, AM Urbas, MG Bawendi, JD Joannopoulos, and EL Thomas. Block
copolymers as photonic bandgap materials. Journal of Lightwave Technology,
17(11):1963–1969, 1999.

[146] B Jeong, YH Bae, DS Lee, and SW Kim. Biodegradable block copolymers as
injectable drug-delivery systems. Nature, 388(6645):860–862, 1997.

[147] GS Kwon. Block copolymer micelles as drug delivery systems. Advanced Drug
Delivery Reviews, 54(2):167–167, 2002.

[148] SC Glotzer and MJ Solomon. Anisotropy of building blocks and their assembly
into complex structures. Nature Materials, 6:557–562, 2007.

[149] Sebastian Westenhoff and Nicholas A. Kotov. Quantum dot on a rope. Journal
of the American Chemical Society, 124(11):2448–2449, 2002.

[150] Kie-Moon Sung, David W. Mosley, Beau R. Peelle, Shuguang Zhang, and
Joseph M. Jacobson. Synthesis of monofunctionalized gold nanoparticles by
fmoc solid-phase reactions. Journal of the American Chemical Society, 126(16):
5064–5065, 2004.

260

[151] F Huo, AKR Lytton-Jea, and CA Mirkin. Asymmetric functionalization of
nanoparticles based on thermally addressable dna interconnects. Advanced Ma-
terials, 18(17):2304–2306, 2006.

[152] JG Worden, AW Shaffer, and Q Huo. Controlled functionalization of gold
nanoparticles through a solid phase synthesis approach. Chemical Communica-
tions, (5):518519, 2004.

[153] GA DeVries, M Brunnbauer, Y Hu, AM Jackson, B. Long, B. T. Neltner,
O. Uzun, B. H. Wunsch, and F. Stellacci. Divalent metal nanoparticles. Science,
315(5810):358–361, 2007.

[154] FA Aldaye and HF Sleiman. Dynamic dna templates for discrete gold nanopar-
ticle assemblies: Control of geometry, modularity, write/erase and structural
switching. Journal of the American Chemical Society, 129(14):4130–4131, 2007.

[155] CR Iacovella and SC Glotzer. Local ordering of polymer-tethered nanospheres
and nanorods. Journal of Chemical Physics, 129, 2008.

[156] FJ Martinez-Veracoechea and FA Escobedo. Lattice monte carlo simulations
of the gyroid phase in monodisperse and bidisperse block copolymer systems.
Macromolecules, 38(20):8522–8531, 2005.

[157] DA Hajduk, PE Harper, SM Gruner, CC Honeker, G Kim, EL Thomas, and
LJ Fetters. The gyroid - a new equilibrium morphology in a weakly segregated
diblock copolymers. Macromolecules, 27(15):4063–4075, 1994.

[158] MA Horsch, ZL Zhang, CR Iacovella, and SC Glotzer. Hydrodynamics and
microphase ordering in block copolymers: Are hydrodynamics required for or-
dered phases with periodicity in more than one dimension? Journal of Chemical
Physics, 121(22):11455–11462, 2004.

[159] MM Maye, WX Zheng, FL Leibowitz, NK Ly, and CJ Zhong. Heating-induced
evolution of thiolate-encapsulated gold nanoparticles: A strategy for size and
shape manipulations. Langmuir, 16(2):490–497, 2000.

[160] MY Ge, HP Wu, L Niu, JF Liu, SY Chen, PY Shen, YW Zeng, YW Wang,
GQ Zhang, and JZ Jiang. Nanostructured ZnO: from monodisperse nanoparti-
cles to nanorods. Journal of Crystal Growth, 305(1):162–166, 2007.

[161] WL Pei, S Kakibe, I Ohta, and M Takahashi. Controlled monodisperse Fe
nanoparticles synthesized by chemical method. IEEE Transactions On Mag-
netics, 41(10):3391–3393, 2005.

[162] P G Bolhuis and D A Kofke. Monte carlo study of freezing of polydisperse hard
spheres. Phys Rev E, 54(1):634–643, 1996.

[163] PN Pusey. The effect of polydispersity of the crystalization of hard spherical
colloids. Journal de Physique, 48:709–712, 1987.

261

[164] PN Pusey. Colloidal suspensions. In Hansen JP, Levesque D, and Zinn-Justin
J, editors, Liquids, Freezing, and Glass Transition, pages 763–942.

[165] F M van der Koolj, K Kassapidou, and H N W Lekkerkerker. Liquid crystal
phase transition in suspensions of polydisperse plate-like particles. Nature, 406:
868–871, 2000.

[166] RP Sear. Phase separation and crystallisation of polydisperse hard spheres.
Europhys. Lett., 44(4):531–535, 1998.

[167] M A Bates and D Frenkel. Influence of polydispersity on the phase behavior of
colloidal liquid crystals: A monte carlo simulation study. J. Chem. Phys, 109,
1998.

[168] M Maldovan, AM Urbas, N Yulfa, WC Carter, and EL Thomas. Photonic
properties of bicontinuous cubic microphases. Phys Rev B, 65(16), 2002.

[169] AJ Schultz. Modeling and Computer Simulation of Block Copoly-
mer/Nanoparticle Composites. PhD thesis, North Carolina State University,
2003.

[170] M Nonomura, K Yamada, and T Ohta. Formation and stability of double gyroid
in microphase-separated diblock copolymers. Journal of Physics - Condensed
Matter, 15(26):L423–L430, 2003.

[171] PJ Steinhardt, DR Nelson, and M Ronchetti. Bond-orientational order in liquids
and glasses. Phys Rev B, 28(2):784–805, 1983.

[172] DJ Wales and JPK Doye. Global optimization by basin-hopping and the lowest
energy structures of lennard-jones clusters containing up to 110 atoms. Journal
of Physical Chemistry A, 101(28):5111–5116, 1997.

[173] Ludger Santen and Werner Krauth. Liquid, glass and crystal in two-dimensional
hard disks. 2001.

[174] David A. Kofke and Peter G. Bolhuis. Freezing of polydisperse hard spheres.
Phys. Rev. E, 59(1):618–622, Jan 1999.

[175] Stefan Auer and Daan Frenkel. Suppression of crystal nucleation in polydisperse
colloids due to increase of the surface free energy. Nature, 413(6857):711–713,
October 2001.

[176] Paul Bartlett. Freezing in polydisperse colloidal suspensions. Journal of
Physics: Condensed Matter, 12(8A):A275–A280, 2000.

[177] M. Reza Sadr-Lahijany, Purusattam Ray, and H. Eugene Stanley. Dispersity-
driven melting transition in two-dimensional solids. Phys. Rev. Lett., 79(17):
3206–3209, Oct 1997.

262

[178] Sander Pronk and Daan Frenkel. Melting of polydisperse hard disks. Phys.
Rev. E, 69(6):066123, Jun 2004.

[179] Stephen Martin, Gary Bryant, and William van Megen. Observation of a smec-
ticlike crystalline structure in polydisperse colloids. Phys. Rev. Lett., 90(25):
255702, Jun 2003.

[180] S. Martin, G. Bryant, and W. van Megen. Crystallization kinetics of poly-
disperse colloidal hard spheres: Experimental evidence for local fractionation.
Phys. Rev. E, 67(6):061405, Jun 2003.

[181] S Cozzini and M Ronchetti. Local icosahedral structures in binary-alloy clusters
from molecular-dynamics simulation. Phys Rev B, 53(18):12040–12049, 1996.

[182] D He, NN Ekere, and L Cai. Computer simulation of random packing of unequal
particles. Phys Rev E, 60(6), 1999.

[183] N N Medvedev, A Geiger, and W Brostow. Distinguishing liquids from amor-
phous solids: Percolation analysis on the voronoi network. J. Chem. Phys., 93
(11):8337–8342, 1990.

[184] JC Gil Montoro and JLJ Abascal. The Voronoi polyhedra as tools for structure
determination in simple disordered systems. J. Phys. Chem., 97:4211–4215,
1993.

[185] VS Kumar and V Kumaran. Voronoi neighbor statistics of hard-disks and hard-
spheres. J. Phys. Chem., 123(7):074502, 2005.

[186] V S Kumar and V Kumaran. Voronoi cell volume distribution and configura-
tional entropy of hard-spheres. J. Chem. Phys., 123(11):114501, 2005.

[187] JT Fern, DJ Keffer, and WV Steele. Measuring coexisting densities from a two-
phase molecular dynamics simulation by voronoi tessellations. J. Phys. Chem.
B, 111(13):3469–3475, 2007.

[188] JT Fern, DJ Keffer, and WV Steele. Vapor-liquid equilibrium of ethanol by
molecular dynamics simulation and voronoi tessellation. J. Phys. Chem. B, 111
(46):13278–13286, 2007.

[189] FB Usabiaga and D Duque. Applications of computational geometry to the
molecular simulation of interfaces. Physical Review E, 79(4):046709, 2009.

[190] FW Starr, S Sastry, JF Douglas, and SC Glotzer. What do we learn from the
local geometry of glass-forming liquids? Phys. Rev. Lett., 89(12):125501, Aug
2002.

[191] L Leibler. Theory of microphase separation in block copolymers. Macro-
molecules, 13(6), 1980.

263

[192] IW Hamley, editor. Developments in Block Copolymer Science and Technology.
Wiley, New York, 2004.

[193] IW Hamley. The Physics of Block Copolymers. Oxford University Press, Oxford,
1999.

[194] A Jayaraman and KS Schweizer. Effective interactions, structure, and phase
behavior of lightly tethered nanoparticles in polymer melts. Macromolecules,
41(23):9430–9438, 2008.

[195] CH Rycroft. Multiscale Modeling in Granular Flow. PhD thesis, Massachusetts
Institute of Technology, 2007.

[196] CA Lambert, LH Radzilowski, and EL Thomas. Triply periodic level surfaces
as models for cubic tricontinuous block copolymer morphologies. Philosophical
Transactions of the Royal Society A, 354(1715):2009–2023, 1996.

[197] T Aste and D Weaire. The Pursuit of Perfect Packing. Institute of Physics
Publishing, 2000.

[198] A Gervois, P Richard, L Oger, and JP Troadec. A model of binary assemblies
of spheres. The European Physical Journal E - Soft Matter, 6(4):295–303, 2001.

[199] NN Medvedev, VP Voloshin, VA Luchnikov, and ML Gavrilova. Algorithm for
three-dimensional voronoi s-network. Journal of Computational Chemistry, 27
(14):1676–1692, 2006.

[200] EB Saff and ABJ Kuijlaars. Distributing many points on a sphere. Mathematical
Intelligencer, 19(1):5–11, 1997.

[201] Stefano Sacanna and David J. Pine. Shape-anisotropic colloids: Building blocks
for complex assemblies. Current Opinion in Colloid & Interface Science, Jan-
uary 2011.

[202] Matthew R. Jones, Robert J. Macfarlane, Byeongdu Lee, Jian Zhang, Kaylie L.
Young, Andrew J. Senesi, and Chad A. Mirkin. Dna-nanoparticle superlattices
formed from anisotropic building blocks. Nature Materials, 9:913–917, 2010.

[203] Szilard N. Fejer, Dwaipayan Chakrabarti, and David J. Wales. Emergent com-
plexity from simple anisotropic building blocks: Shells, tubes, and spirals. ACS
Nano, 4(1):219–228, 2010.

[204] Szilard N. Fejer, Dwaipayan Chakrabarti, and David J. Wales. Self-assembly of
anisotropic particles. Soft Matter, 7:3553–3564, 2011.

[205] Alexander J. Williamson, Alex W. Wilber, Jonathan P. K. Doye, and Ard A.
Louis. Templated self-assembly of patchy particles. Soft Matter, 7:3423–3431,
2011.

264

[206] E Jankowski and SC Glotzer. Calculation of partition functions for the self-
assembly of patchy particles. Journal of Physical Chemistry B, 2011.

[207] Francesco Sciortino and Emanuela Zaccarelli. Reversible gels of patchy particles.
Current Opinion in Solid State and Materials Science, In Press, Uncorrected
Proof:–, 2011.

[208] Emanuela Bianchi, Ronald Blaak, and Christos N. Likos. Patchy colloids: state
of the art and perspectives. Phys. Chem. Chem. Phys., 13:6397–6410, 2011.

[209] Young-Sang Cho, Gi-Ra Yi, Shin-Hyun Kim, David J. Pine, and Seung-Man
Yang. Colloidal clusters of microspheres from water-in-oil emulsions. Chemistry
of Materials, 17(20):5006–5013, 2005.

[210] Young-Sang Cho, Gi-Ra Yi, Jong-Min Lim, Shin-Hyun Kim, Vinothan N.
Manoharan, David J. Pine, and Seung-Man Yang. Self-organization of bidis-
perse colloids in water droplets. Journal of the American Chemical Society, 127
(45):15968–15975, 2005.

[211] Young-Sang Cho, Gi-Ra Yi, Shin-Hyun Kim, Mark T. Elsesser, Dana R. Breed,
and Seung-Man Yang. Homogeneous and heterogeneous binary colloidal clusters
formed by evaporation-induced self-assembly inside droplets. Journal of Colloid
and Interface Science, 318(1):124 – 133, 2008.

[212] Eva G. Noya, Carlos Vega, Jonathan P. K. Doye, and Ard A. Louis. The sta-
bility of a crystal with diamond structure for patchy particles with tetrahedral
symmetry. The Journal of Chemical Phyics, 132(23):234511, 2010.

[213] Fejes Tóth. Regular Figures. The Macmillan Company, 1964.

[214] Theodor William Melnyk, Osvald Knop, and William Robert Smith. Extremal
arrangements of points and unit charges on a sphere: equilibrium configurations
revisited. Canadian Journal of Chemistry, 55(10):1745–1761, 1977.

[215] L. L. Whyte. Unique arrangements of points on a sphere. The American
Mathematical Monthly, 59(9):pp. 606–611, 1952.

[216] J. R. Edmundson. The distribution of point charges on a unit sphere. Acta
Cryst., A48:60–69, 1992.

[217] H. Cohn, Y. Jiao, A. Kumar, and S. Torquato. Rigidity of spherical codes.
ArXiv e-prints, February 2011.

[218] T. Tarnai and Gáspár Zs. Improved packing of equal circles on a sphere and
rigidity of its graph. Mathematical Proceedings of the Cambridge Philosphical
Society, 93:191–218, 1983.

[219] J. A. Barker and D. Henderson. Perturbation Theory and Equation of State
for Fluids. II. A Successful Theory of Liquids. Journal of Chemical Physics, 47:
4714–4721, December 1967.

265

[220] David J. McGinty. Vapor phase homogeneous nucleation and the thermody-
namic properties of small clusters of argon atoms. J. Chem. Phys., 55(2):
580–588, 1971.

[221] Guangnan Meng, Natalie Arkus, Michael P. Brenner, and Vinothan N. Manoha-
ran. The free-energy landscape of clusters of attractive hard spheres. Science,
327(5965):560–563, 2010.

[222] Amir Haji-Akbari, Michael Engel, and Sharon C. Glotzer. Phase diagram of
hard tetrahedra. The Journal of Chemical Physics, 135(19):194101, 2011.

[223] Eric R. Weeks and D. A. Weitz. Subdiffusion and the cage effect studied near
the colloidal glass transition. Chemical Physics, 284(1-2):361 – 367, 2002.

[224] Henry Cohn and Abhinav Kumar. Universally optimal distribution of points
on spheres. J.AMER.MATH.SOC., 20:99, 2007.

[225] Brandon Ballinger, Grigoriy Blekherman, Henry Cohn, Noah Giansiracusa,
Elizabeth Kelly, and Achill Schürmann. Experimental study of energy-
minimizing point configurations on spheres. Experimental Mathematics, 18(3):
257–283, 2009.

[226] H. Cohn and A. Kumar. Algorithmic design of self-assembling structures. ArXiv
e-prints, June 2009.

[227] GAP. GAP – Groups, Algorithms, and Programming, Version 4.4.12. The
GAP Group, 2008. URL (http://www.gap-system.org).

266

