
Design Preference Elicitation, Identification and
Estimation

by

Yi Ren

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in The University of Michigan
2012

Doctoral Committee:

Professor Panos Y. Papalambros, Chair
Professor Richard D. Gonzalez
Professor Noboru Kikuchi
Professor George Michailidis

c© Yi Ren 2012

All Rights Reserved

For my parents

ii

ACKNOWLEDGEMENTS

I would like to gratefully and sincerely thank Dr. Panos Papalambros for his

guidance, understanding, and friendship during my graduate studies. The Chinese

maxim says “It’s better to teach fishing rather than offering fish”. That is exactly

what you did, with great patience. It is your consistent intellectual and financial

support that allowed me to freely enjoy my research and my life in general. For

everything you have done for me, Dr. Papalambros, I thank you. I would also like

to acknowledge my committee members: Dr. Richard Gonzalez, Dr. Noboru Kikuchi

and Dr. George Michailidis for their valuable inputs. In particular, Dr. Gonzalez has

been generously sharing his expertise to enrich my research throughout years of my

graduate study.

I would like to give my special thanks to Dr. Yilun Chen. You not only broad-

ened my knowledge but more importantly, showed me the devotion, enthusiasm and

honesty a researcher should have. I also want to thank all of the members of the

Optimal Design Laboratory for their support and participation in my research.

Finally and most importantly, I would like to thank my parents for their under-

standing, patience and faith in me. They have always been supportive to my life path

and I truly appreciate their challenge on my research to keep me connected with the

real world. My last and special thank goes to my girlfriend Zhuqing. I want to thank

you for all your efforts to make me more matured and responsible in and outside of

research. Your heartful company during this special and busy year was an essential

force driving me forward.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xii

ABSTRACT . xiii

CHAPTER

I. Introduction . 1

1.1 Motivation . 1
1.2 Problem Definition . 3

1.2.1 Design space and features 3
1.2.2 Utility: A measure of preference 4
1.2.3 Interaction . 5
1.2.4 Subject response model 5
1.2.5 Preference identification 7
1.2.6 Preference elicitation 8
1.2.7 Preference estimation 8

1.3 Related Work . 9
1.3.1 Interactive evolutionary computation 10
1.3.2 Recommender systems 15
1.3.3 Conjoint analysis 19
1.3.4 Summary . 21

1.4 Dissertation Overview . 22

II. Literature Review . 24

2.1 Conjoint Analysis . 25
2.1.1 Utility and choice probability 25

iv

2.1.2 Likelihood models 27
2.1.3 Parameter estimation and its variance 30

2.2 Support Vector Machine (SVM) 31
2.2.1 Basic concepts . 32
2.2.2 Primal and dual problems 34
2.2.3 Kernel trick . 36
2.2.4 Soft margin formulation and complexity control . . 39

2.3 Conclusion . 41

III. Preference Elicitation . 42

3.1 Efficient Global Optimization (EGO) 43
3.1.1 Kriging modeling 45
3.1.2 Mean-squared error of the predictor 48
3.1.3 Expected improvement 48
3.1.4 Properties of the expected improvement 49
3.1.5 Optimization on the expected improvement 50

3.2 SVM Search . 51
3.2.1 The algorithm . 51
3.2.2 SVM Search Simulated Test Results 53

3.3 EGO Search . 57
3.3.1 The algorithm . 57
3.3.2 EGO Search versus SVM Search in simulated tests . 60

3.4 Discussion on the EGO Search Algorithm 60
3.4.1 Parameters used in the merit function 62
3.4.2 Dimensionality and user sensitivity 64
3.4.3 Computational cost 65
3.4.4 EGO Search versus GA plus SVM 65

3.5 Vehicle Exterior Styling Design Elicitation 67
3.5.1 Software development 67
3.5.2 Convergence test setup 68
3.5.3 User data analysis 70
3.5.4 Observed issues in user interactions 74

3.6 Concluding Remarks . 77

IV. Augmented Preference Elicitation 79

4.1 Preference Modeling with Comparison Tree 80
4.1.1 Terminology and definition 80
4.1.2 Learning based on pairwise comparison 81
4.1.3 Simulated test results and discussion 81

4.2 Variations of the Merit Function 83
4.2.1 Kushner’s criterion 86
4.2.2 Generalized Expected Improvement (GEI) 86
4.2.3 Lower Confidence Bounding function (LCB) 87

v

4.2.4 Locating the Regional Extreme (LRE) 87
4.2.5 Switching criterion 88
4.2.6 Computational difficulty 88

4.3 Fast EGO and Its Simulated Test Results 89
4.3.1 The geometric meaning of σ̂ 90
4.3.2 A computationally inexpensive merit function for EGO 90
4.3.3 Simulated test results 93
4.3.4 Discussion . 94

4.4 Concluding Remarks . 98

V. Preference Estimation and Identification 99

5.1 Active Learning Background 102
5.1.1 Non-adaptive query 102
5.1.2 Active learning in conjoint analysis 103
5.1.3 Active learning in machine learning 104

5.2 Preference Estimation . 111
5.2.1 Problem definition 111
5.2.2 Design features . 112
5.2.3 Estimation of w . 113
5.2.4 Active learning on preference estimation 115
5.2.5 Test setup . 118
5.2.6 D-optimal design setup 119
5.2.7 Performance of active learning, D-optimal and ran-

dom designs on 2D problems 120
5.2.8 Limitation of the linearity assumption 122
5.2.9 Identification of preference features 123
5.2.10 Robustness of active learning 124

5.3 Preference Identification . 126
5.3.1 Justification of the loss function 126
5.3.2 Application of active learning 129
5.3.3 Active learning on preference identification 132
5.3.4 Simulated tests and results 132

5.4 Concluding Remarks . 135

VI. Collaborative Filtering in Preference Elicitation 137

6.1 Problem Formulation . 137
6.2 Heuristics . 138

6.2.1 Simplification of a search tree (JUMP0) 139
6.2.2 Exploration of more efficient trees (JUMP1) 139
6.2.3 2D Demonstration of the exploration heuristic . . . 142
6.2.4 Enhancement to JUMP1 (JUMP2) 145
6.2.5 2D Demonstration of the enhanced heuristic 148
6.2.6 Update of initial guess (JUMP3) 149

vi

6.2.7 2D Demonstration of initial guess update 151
6.3 Discussion . 152
6.4 Relationship With Collaborative Filtering 156
6.5 Concluding Remarks . 157

VII. Conclusions . 158

7.1 Summary . 158
7.2 Contributions . 161
7.3 Assumptions and Limitations 162
7.4 Future Work . 163

7.4.1 Preference modeling with enriched user interaction
data . 163

7.4.2 Calibration on weighted search 164
7.4.3 Feature addition and subtraction 164
7.4.4 Linking user preferences and designer decisions . . . 165
7.4.5 Search towards a mutual target 166

BIBLIOGRAPHY . 167

vii

LIST OF FIGURES

Figure

1.1 General framework of an IGA . 11
1.2 Multi-armed roulette wheel parent selection 13
1.3 An example of crossover. Here the two grayed designs are parents

and the white one is a child. The child acquires the hood design of
the first parent and the silhouette design of the second parent. . . . 13

2.1 A separation hyperplane (ŵTx) for a two dimensional training set.
Figure from Cristianini and Shawe-Taylor (2000). 33

2.2 γ is the margin between two classes. Figure from Cristianini and
Shawe-Taylor (2000). 34

2.3 Mapping data to a different space where they can be linearly sepa-
rated. Figure from Cristianini and Shawe-Taylor (2000). 36

2.4 Two classes separated by a hyperplane in the feature space (Guassian
kernel). Figure from Cristianini and Shawe-Taylor (2000). 38

3.1 EGO operation concept. 44
3.2 SVM Search scattering and classification. 52
3.3 SVM Search design space reduction. 53
3.4 Proposed SVM Search algorithm . 54
3.5 Proposed EGO Search algorithm . 58
3.6 Comparison between EGO Search and SVM Search. 61
3.7 Comparison between EGO Search and GA plus SVM. 66
3.8 Online human-computer interaction interface and data visualization.

(a): The interactive environment at “/convergencetest.html” allows
the user to zoom, pan, rotate each design and updates the guesses
once the user hits the “Next” button; (b): The data visualization
window at “/log.html” has all user tests listed at the top, number of
iterations in the middle, and the cumulated data at the bottom. The
red curve represents the target design, the highlighted dark curve(s)
represent the preferred design at this point and the rest all not preferred. 69

3.9 Normalized Euclidean distance from each sampled design to the tar-
get in each test. The circled design is the one submitted by the user,
while the triangle design has the lowest Euclidean distance to the
target. 72

viii

3.10 Visual comparison between user test results and the targets from side
and perspective views. 73

3.11 Visual comparison between samples in the last iteration and the tar-
get. Data generated from Test0 on “log.html”. Euclidean distances
to the target are listed under the designs. 74

3.12 Designs labeled as preferred in the first four iterations, compared
with the target and the one with the minimum Euclidean distance
within all samples. Euclidean distances to the target are listed under
the designs. 75

3.13 Features that capture the roof design. 75
3.14 Samples from data “Test0” in the feature and Euclidean space. Mul-

tidimensional scaling is applied to both measures to create 2D visu-
alization of the data. 76

4.1 2D Six-Hump Camelback . 83
4.2 2D Branin . 83
4.3 10 dimensional Gaussian, λuser = 5 84
4.4 20 dimensional Gaussian, λuser = 5 84
4.5 31 dimensional Gaussian, λuser = 5 84
4.6 Violation rates at each iteration in each test 85
4.7 The computational costs at the first 30 iterations when optimizing

the 31-dimensional Gaussian in Equation (3.19). 89
4.8 Merit functions during the search on a Branin function (Equation

(3.17)). Bright areas indicate high function values. 91
4.9 Comparison between the mean-squared error function and the min-

imum distance function under a set of sampled designs (represented
as white crosses). Bright areas indicate high function values. 92

4.10 Convergence performance of searches with ffast and flcb as their merit
functions. 95

4.11 Computational cost of searches with ffast and flcb as their merit func-
tions. 96

4.12 Contour plot of the merit function at different r2 values. 97
5.1 Geometrical representation of the version space. In this 2D case,

the version space is the highlighted arc of the circle. Each normal
vector of a constraining hyperplane represents a sample point vi and
the label yi determines which side of the hyperplane is feasible for
w. The solution ŵ of a classification problem is the center of the
largest hypersphere within the gray cone yi(w

Tv) > 0, i = 1...n.
The bisection of the version space V can be approximated by cutting
through the current solution ŵ, i.e., ŵTv = 0. 106

5.2 PenaltyML and PenaltySL in the range u ∈ [−5, 5] for preference
realization; θ = 1, h = 1. 115

5.3 PenaltyML and PenaltySL in the range u ∈ [−2, 2] for preference
identification; σε = 1, h = 1. 128

ix

5.4 Demonstration of active learning for preference identification. Each
block on the 2D space represents a design. The black blocks represent
designs such that f(x) < 0 and the white ones represent f(x) < 0.
The circled blocks are designs with y = −1 and dotted ones with y = 1.134

6.1 We jump from vertex ns to vertex ns+δ if there is no alternative path
from ns and through ns+1. 140

6.2 Concept of JUMP1: Jumping to a conclusion (leaf vertex) based on
previous knowledge, and search from there. 141

6.3 JUMP1 algorithm: From the current status ns, find a set Ns from
Tt that is most similar to ns. Find the leaf vertex set N∗s accessible
from Ns. Pick the next query design as the one from N∗s that has
the highest average path length P̄ . 142

6.4 Setup of the 2D demonstration for JUMP1: The test optimal solu-
tions are uniformly distributed on the shaded locations. The indices
are of ascendant order starting from the left down corner as 1 and
ending at the top right corner as 100. 143

6.5 Average path lengths for 10 batches of random tests with and without
JUMP1. This comparison shows that JUMP1 can effectively reduce
the search cost with different d. 144

6.6 Histogram of path lengths from 200 random tests with and without
the search tree generated from the experiment in Figure 6.5. 144

6.7 The evolution of search path for a preference function optimized at
index 86. JUMP1 explores different paths and finds better ones than
from the original search algorithm. 146

6.8 The average query size of the two clusters (optimal solutions at
{x15,24,25,33,34,35,36,44,45,55} and in {x68,77,78,86,87,88,89,97,98}) along num-
ber of batches of tests. 146

6.9 JUMP2 algorithm: From the current status ns, find a set Ns from
Tt that is most similar to ns. Find the leaf vertex set N∗s accessible
from Ns. Pick the next query design as the one from N∗s that has the
lowest average path length to all other leaf vertices accessible from it. 147

6.10 Performance of JUMP1 and JUMP2 on 1000 random tests with up-
date frequency: 1, 10, 100 tests per update. Both algorithms switch
to heuristic search after every 2 iterations. For visualization purpose,
the 1000 test results are grouped and we show the average query size
of each group. 149

6.11 Performance of JUMP2 and JUMP3 on 1000 random tests. Both
algorithms update their search strategy after every test and switch
to heuristic search after every 2 iterations. The figure is segmented
to show performance of JUMP3 with different initial guesses. For
visualization purposes, the 1000 test results are grouped and we show
the average query size of each group. 150

x

6.12 Performance of JUMP3 with fixed and adaptive initial guess change
frequency on 1000 random tests. Both algorithms update their search
strategy after every test and switch to heuristic search after every 2
iterations. The figure is segmented to show performance with differ-
ent initial guesses. For visualization purpose, the 1000 test results
are grouped and we show the average query size of each group. . . . 152

6.13 Densities of the optimal designs along time. The five figures show
how the optimal designs are distributed at different stages of the
experiment. The grey scale indicates the frequency of occurence. . . 153

6.14 Performance of JUMP2, JUMP3 and the default algorithm on 1000
random tests. Both JUMP2 and JUMP3 update their search strategy
after every test and switch to heuristic search after every 2 iterations.
For visualization purposes, the 1000 test results are grouped and we
show the average query size of each group. 153

6.15 A situation where optimal designs are not clustered. The grey scale
indicates the frequency of occurence. 154

6.16 Performance of JUMP2, JUMP3 and the default algorithm on the
1000 random tests with optimal designs located in Figure 6.15. Both
JUMP2 and JUMP3 update their search strategy after every test and
switch to heuristic search after every 2 iterations. For visualization
purposes, the 1000 test results are grouped and we show the average
query size of each group. 155

6.17 Performance of JUMP2, JUMP3 and the default algorithm on the
1000 random tests on a design space with 5 dimensions and 3 levels
for each. The optimal designs of these random tests are uniformly
generated on the entire space. Both JUMP2 and JUMP3 update their
search strategy after every test and switch to heuristic search after
every 7 iterations. For visualization purposes, the 1000 test results
are grouped and we show the average query size of each group. . . . 155

6.18 Performance of JUMP2, JUMP3 and the default algorithm on the
1000 random tests on a design space with 5 dimensions and 3 levels
for each. The optimal designs of these random tests are uniformly
generated on a small set of indices of the space. Both JUMP2 and
JUMP3 update their search strategy after every test and switch to
heuristic search after every 7 iterations. For visualization purposes,
the 1000 test results are grouped and we show the average query size
of each group. 156

xi

LIST OF TABLES

Table

1.1 Overview of related work . 23
3.1 Means and standard deviations of the final error from SVM Search,

GA and Random Search (Lower values are better) 57
3.2 Impact of the weights of the weighted-sum merit function (Lower

values are better) . 63
3.3 Impact of the spread of the expected improvement merit function

(Lower values are better) . 64
3.4 Impact of dimensionality and spread of the utility (Lower values are

better) . 65
5.1 Generalization errors of active learning, D-optimal and random (Lower

values are better) . 121
5.2 Generalization errors under the linearity assumption 123
5.3 p-values of H0 : ŵi = 0 for estimators on linear and polynomial

preferences (Highlighted are significantly lower p-values) 124
5.4 Robustness of active learning (Lower values are better) 125
5.5 Preference identification test settings 135
5.6 Preference identification test results 135

xii

ABSTRACT

Understanding user preference has long been a challenging topic in the design

research community. Econometric methods have been adopted to link design and

market, achieving design solutions sound from both engineering and business per-

spectives. This approach, however, only refines existing designs from revealed or

stated preference data. What is needed for generating new designs is an environ-

ment for concept exploration and a channel to collect and analyze preferences on

newly-explored concepts. This dissertation focuses on the development of querying

techniques that learn and extract individual preferences efficiently. Throughout the

dissertation, we work in the context of a human-computer interaction where in each

iteration the subject is asked to choose preferred designs out of a set. The computer

learns from the subject and creates the next query set so that the responses from

the subject will yield the most information on the subject’s preferences. The chal-

lenges of this research are: (1) To learn subject preferences within short interactions

with enormous candidate designs; (2) To facilitate real-time interactions with efficient

computation.

Three problems are discussed surrounding how information-rich queries can be

made. The major effort is devoted to preference elicitation, where we discuss how

to locate the most preferred design of a subject. Using efficient global optimization,

we develop search algorithms that combine exploration of new concepts and exploita-

tion of existing knowledge, achieving near-optimal solutions with a small number of

queries. For design demonstration, the elicitation algorithm is incorporated with an

online 3D car modeler. The effectiveness of the algorithm is confirmed by real user

xiii

tests on finding car models close to the users’ targets. In preference identification, we

consider designs as binary labeled, and the objective is to classify preferred designs

from not-preferred ones. We show that this classification problem can be formulated

and solved by the same active learning technique used for preference estimation, where

the objective is to estimate a preference function. Conceptually, this dissertation dis-

cusses how to extract preference information effectively by asking relevant but not

redundant questions during an interaction.

xiv

CHAPTER I

Introduction

1.1 Motivation

Design is a heterogeneous topic, across diverse disciplines including art, engineer-

ing, psychology, marketing and many others. We call an artefact well designed when

it is not only well engineered but also calibrated to have a considerate interaction

interface, to fulfil the emotional needs of its user, to improve the social behaviour

of a population and more. In the design community, we have witnessed the devel-

opments in simulation, optimization and system engineering technologies, and from

there we have adopted the concept of building multidisciplinary design models and

obtaining optimal solutions that not only are viable from an engineering point of

view but also maximize their market shares (Michalek et al. (2005)). We have gone

even beyond a single design to find balanced solutions in a competitive environment

(Frischknecht (2009)) and in the presence of policy changes (Whitefoot et al. (2011)).

The power of mathematical abstraction of the real-world surroundings has allowed us

to design with better functionality, for improved social welfare and profit, and most

importantly, with rigorous justification of compromises on these objectives when they

compete.

Design is rooted in human preference. As a matter of fact, positive preference on

a design can improve the functionality of the design through enhanced brain activity

1

of its user (Norman (2002)). Incorporating human preference in the design process is

an ill-defined problem. The topic of extracting preference from humans has long been

studied in psychology and econometrics to understand the perceptual trade-off among

design features, e.g., price vs. performance metrics, and this line of research has been

adopted in the design community to complete the connection between engineering de-

sign and market performance (for example, see Wassenaar et al. (2005); Kumar et al.

(2007); Li and Azarm (2000); Michalek et al. (2005)). This research, however, can

only “refine” existing products since the features under preference test are controlled

by a relatively fixed product architecture. In other words, the framework we have

adopted from the econometrics provides only the best compromise within the testers’

vision rather than an opportunity to explore user preferences outside the prescribed

boundaries. Exploring possibilities to meet user preferences is at least as important

as understanding the trade-offs users make. This is what can make design research

unique and differentiated from econometric studies.

The computer science community has made one step forward in this direction.

Computer scientists share the desire to create attractive artefacts, but in most cases

virtually. Evolutionary algorithms have been applied to creation of images, music

and virtual creatures. Design researchers shall find this line of research appealing,

as it provides an entirely different and much more entertaining environment for ob-

taining user input, while getting rid of the possibly dreadful interfaces grafted from

economists. The defect of an evolutionary algorithm when applied to design, how-

ever, is that it evolves too slowly, and may not reach anything interesting before the

user gets tired and quits. This is especially the case when the search space has many

dimensions.

The major goal of the present research, therefore, is to develop an interaction

and its underlying search algorithm, that will be able to locate some near-optimally

preferred conceptual designs of a subject, within a small amount of time. The search

2

algorithm shall rely on statistical understanding of the subject’s responses instead

of “free” evolution. The interaction shall be accessible by a large population and

previous interactions by others shall enhance future searches. The computational

cost of each search shall be reasonable for real-time interactions. For completeness,

we should also understand how traditional preference modeling can be enhanced by

new developments from statistics and computer science. From a high-level viewpoint,

the theme throughout this dissertation is the balance between exploration for new

knowledge and exploitation of existing knowledge during a querying process. Con-

ceptually, this work is about how to ask relevant but not redundant questions during

a user-computer interaction and get close to a good answer quickly.

1.2 Problem Definition

This section transforms the real-life problems we try to solve into mathematical

ones. Inevitably, such a transformation introduces assumptions that may detract

from the value of solving these problems. Nonetheless, these assumptions are either

commonly adopted in related research or acceptable enough for the solutions to have

practical utility. We start with basic definitions and terminologies used throughout

the dissertation and then we introduce three fundamental problems we try to address,

namely, preference elicitation, identification and estimation.

1.2.1 Design space and features

Let D ⊂ Rp be the design space where any x ∈ D represents a design described

with p variables. The variables are usually defined by designers to represent features

of a design that they can control. For example, in a vehicle study, fundamental

engineering variables such as engine size and gear ratio form a design space, and

together they allow control of performance features such as miles per gallon and

acceleration. In a shape design problem, coordinates of the control points of a shape

3

form a design space, and together they control qualitative shape features such as

curvature, sportiness or environmentally friendly “looks” (see Reid (2010)). From

common sense, it is safe to say that subjects, i.e., consumers in a market or users of a

human-computer interaction, are usually unaware of the underlying design variables

and form their preference based on the design features. Therefore it is necessary to

introduce a mapping (to be more strict, a set of functions defined on D) that maps the

design space to the feature space F : v : D 7→ F . The tricky part here is that usually

this mapping is unknown to researchers or even to subjects, leaving v arbitrary. We

will show how this difficulty can be technically addressed in Chapter III as well as in

Chapter V. Throughout this dissertation we assume D to be rectangular, i.e., D has

simple bounds on each dimension but there is no constraint imposed on D.

1.2.2 Utility: A measure of preference

The classical measure of subjects’ preferences according to the econometrics and

marketing literature is the utility function. The utility of a design according to a

specific subject is a function of the design features v(x), parameterized by subject-

related parameters w:

f(x) = wTv(x) + ε. (1.1)

The error term ε is added to model the stochastic nature of the preference. With

this model, we have already assumed the existence of a constant w, meaning that the

subject has a fixed preference in mind before any questionnaire occurs. Literature,

however, showed that people may construct preference on an as-needed basis and

the underlying preference model may change along with the change of the designs

(MacDonald et al. (2009)). While acknowledging the flaw of this assumption, its

adoption here is supported by the reported success in econometrics and marketing

research. Notice that transitivity of preferences will also be assumed when the error

term is ignored, which, according to Petiot and Grognet (2006) may not hold in

4

reality, i.e., one can prefer A over B and B over C, but also C over A. We shall also

mention that the usage of f for utility is not common in the utility literature. We do

this to keep consistency of notation throughout the present writing.

1.2.3 Interaction

All of the problems discussed in this dissertation are set in the context of a human-

computer interaction described here. The interaction is between an individual subject

and the search algorithm. The purpose of the search may vary but from the subject’s

perspective, she is always assigned the same task: Choosing some preferred designs

from a set presented by the algorithm and submitting the choice result. Once the

result is submitted, the algorithm analyzes the accumulated information from this

subject and creates a new query with another set of designs. The iterations continue

until some termination criterion is met.

1.2.4 Subject response model

Assume that the subject is presented with q designs in each iteration and is asked

to select any number of designs as preferred and the rest as not preferred. Therefore

the response from the subject is always a binary vector with each element, 0 or 1,

being the choice decision on the corresponding design. However, the interpretation

of this binary vector can vary. In one case, the subject may only select those designs

that she prefers, and the implication is that she wants to see more designs with

similar features as the ones she chooses, although such features may not be explicitly

described; In the other case, the subject may select designs that are relatively better

than the others but not necessarily indicate that the chosen ones are preferred. The

difference may be subtle in words but as we discuss below, variation on the subject

response model behind its binary outcome leads to different mathematical problems.

We consider the process of generating a choice decision to start with utility cal-

5

culation. Denote the utilities of the set as {fi}qi=1, two different labeling processes

could follow:

• In the definite model, only such fis that exceed a threshold will be labeled

as ones, and the rest zeros. This is corresponding to the situation where the

subject only labels the preferred designs as ones.

• In the comparison model, {fi}qi=1 is grouped into two clusters. The cluster with

high values will be labeled as ones, and the other cluster as zeros. Therefore

the binary outcome represents the comparison within the set.

In both cases, the subject can assign multiple ones and zeros. It is also possible for

the subject to reject (all zeros) or accept (all ones) all designs. Therefore, these two

definitions largely extend the restriction of choosing only one design from a set in

the traditional choice-based conjoint analysis setup, and is more natural as a human-

computer interaction.

In practice, it is important to make sure that we use the right interpretation for

the user choice. For that purpose, we can remind the subject to use a fixed response

model by presenting a question along with the design set: For the definite model, the

question is:

“Are there any preferred designs in the presented set?”;

While for the comparison model, the question will be:

“Which design(s) in the set do you prefer more?”.

The underlying objective of asking these two questions is different: Under the

definite model, we would like to identify and describe the domain of preferred designs

(preference identification); under the comparison model, the objective is to either find

the most preferred design through the interaction (preference elicitation) or realize

the unknown utility parameters w (preference estimation). The following subsections

explain these problem definitions in detail.

6

1.2.5 Preference identification

In preference identification, the user is assumed to pick only preferred designs

rather than compare the designs in the set. Therefore each design within D is associ-

ated with a definite label and is independent of other alternatives. We can introduce

an indicator function on D that takes ones in a domain D+ and zeros otherwise:

f(x) , 1D+(x) =

 1, if x ∈ D+,

0, if x /∈ D+.
(1.2)

The objective of preference identification thereafter is to identify the domain D+

using queries and their labels, which is in fact a classification problem with two classes.

However, to accurately identify a classifier, one would usually need a large amount of

queries, which is not affordable in human-computer interaction when taking subject

fatigue into account. Therefore the underlying problem of preference identification

is to find a sequence of queries that would effectively help to identify the classifier.

The methodology for solving this problem exists in statistical learning. The term

“active learning” was first coined by Tong and Koller (2002) who showed that faster

classification can be achieved by querying samples iteratively. By formulating the

classification task using Support Vector Machine (SVM) (see Vapnik (1998)), they

proved that efficient queries can be made by cutting the space of the classifier coeffi-

cients into equal halves. Further research discussed the balance between exploration

(querying without using knowledge gained) and exploitation (like Tong and Koller,

querying with all knowledge gained) to achieve more stable performance on different

problems (Osugi et al. (2005) and Baram et al. (2004)). A “locking” problem, i.e., a

slow convergence in the classifier estimation, when using active learning in a contin-

uous space was reported by Basudhar and Missoum (2010) and a heuristic sampling

method was proposed to overcome it.

7

1.2.6 Preference elicitation

One practical flaw of the preference identification setup is that the active learning

mechanism requires to know at least one design from each class to create a classifier.

However, in a usually high-dimensional design space, it is difficult to find a preferred

design without thoroughly querying the space. Thus comes the need to introduce the

comparison model. Formally, let fcluster(fi, {fj}j 6=i) : R 7→ {0, 1} be a function of the

utility fi parameterized by the alternative utilities from the set. In the comparison

model we assume that the subject first evaluate the utilities of the design set and use

fcluster to label the designs.

The objective of preference elicitation is to find a design x∗ that optimizes the

deterministic part of the utility wTv(x) using the binary output under the compar-

ison response model. Indeed, when the stochastic part ε of the utility is ignored,

x∗ is such a design that for any set of alternatives from D that have utilities u,

fcluster(u
∗,u) = 1, or verbally, x∗ is a design that will always be chosen regardless of

other alternatives. When ε exists, x∗ has the least probability to be labeled as zero.

Therefore preference elicitation corresponds to a “black-box” optimization problem

with binary outputs. We discuss the basic and extended search strategies for prefer-

ence elicitation in Chapter III and IV. Further, we explore how search history from

different subjects can help to enhance future searches in Chapter VI.

1.2.7 Preference estimation

The objective of preference estimation is to estimate the utility parameter w (or

“part-worths” in econometrics), which is exactly the same objective of choice-based

conjoint analysis. However, instead of using non-adaptive queries designed before

a questionnaire, we investigate how effective queries should be created during the

interaction to achieve good estimation within a short query. As will be shown, this

problem can be transformed to the active learning problem as well. Therefore we

8

discuss preference identification and estimation together in Chapter V.

1.3 Related Work

The problems we defined above have been investigated in a variety of disciplines,

including econometrics, computer science and statistics. It is therefore essential for

us to review related work. In this section, we introduce, at a conceptual level, three

research areas that partially address the problems we defined.

• In computer science, interactive evolutionary computation refers to a broad

range of methods and applications that allow a population of virtual creatures

or artefacts to evolve according to a simulated environment which can be sub-

ject ratings. One classic realization of interactive evolutionary computation is

the Galapagos interactive exhibit created by Sims (1997) which evolves 3D crea-

tures based on user-computer interaction. This line of research partially solves

the preference elicitation problem we proposed.

• Another related branch of research mainly rooted in computer science and

statistics is called recommender system (Adomavicius and Tuzhilin (2005); Bala-

banović and Shoham (1997)). A typical recommender system proposes products

or services to the user based on specific user preference (content-based) and col-

laborated preferences from other users (collaborative filtering). The underlying

research question of a recommender system is similar to all of the three problems

we proposed: To understand the user preference. Nonetheless, the objective of

a recommender system is to propose items that a subject may prefer rather

than searching for the most preferred item of that subject. From a practical

perspective, the recommender system is usually applied on existing products

with a few semantic attributes while we are interested in extracting preferences

on non-existing concepts.

9

• The preference realization problem we proposed is identical to conjoint anal-

ysis in econometrics and marketing (McFadden (1973); Green and Srinivasan

(1978); Green et al. (2001)). With the development in human-computer in-

teraction, researches have been conducted to explore new forms of conjoint

analysis (Toubia et al. (2004, 2007a); Netzer et al. (2008)). Our focus is on how

questionnaire can be created adaptively during an interaction based on subject

inputs.

1.3.1 Interactive evolutionary computation

A prevalent approach to tackle the preference elicitation problem is Interactive

Evolutionary Computation (IEC), an umbrella term for evolutionary algorithms that

obtain fitness function values from subjects’ inputs through interactions rather than

through functions or simulations. Two major branches of IEC are interactive genetic

algorithm (IGA) and genetic programming (IEC). The former, which is more conve-

nient to employ and more prevalent, represents an artefact using a vector of values, or

in its own term, a chromosome, while the latter uses a structure as a representation.

The idea of IEC was originated from Dawkins and Pyle (1991) and was then propa-

gated to many disciplines where human knowledge is required to enable or enhance

an artefact of interest. Notable work include Sims (1991) for using interactive genetic

algorithm (IGA) to create virtual creatures that evolve according to human evalu-

ation or simulated environments, Johanson and Poli (1998) for interactive genetic

programming (IGP) on evolutionary music design, Kim and Cho (2000) for inter-

active dress design, and Tokui and Iba (2000) for combined IGA and IGP in music

design, to name a few. In the engineering design field, Kelly and Papalambros (2007)

introduced an IGA to elicit user preference on car silhouette design. The same author

also employed IGA to show the trade-off between shape preference and engineering

attributes of bottle design (Kelly (2008)).

10

Figure 1.1: General framework of an IGA

Below we briefly go over the most commonly accepted IGA framework and a

vehicle exterior design algorithm we developed using IGA. We then summarize the

pros and cons of the IGA approach.

1.3.1.1 General IGA framework

An IGA consists of the following elements: Chromosome is referred to as the

fundamental element of the object under evolution. In practice, a chromosome is a

binary or real-valued vector that is used to generate a phenotype, i.e., the artefact

under study. The one-to-one mapping between chromosomes and phenotypes is pre-

defined. A population is a group of chromosomes that is used to carry out parent

selection, crossover and mutation operations. The overall flow of IGA is illustrated in

Figure 1.1: A random population is first presented to the subject. Based on subject

response, fitness of the phenotypes is determined and those with high fitness will

have higher probability to be selected as parents. The chromosomes of these parents

are copied to the children and modified by crossover and mutation schemes. The

phenotypes of the offspring chromosomes are presented to the subject in the next

iteration for evaluation. The algorithm continues until terminated by the subject.

11

1.3.1.2 Vehicle exterior design study

We introduce the key operations of a genetic algorithm, namely, fitness calculation,

parent selection, crossover and mutation within the context of an earlier study on

interactive vehicle exterior design Ren (2009). The motivation of this study was to

evaluate how suitable IGA might be in interactive geometric design which usually

involves a large number of design variables. For this purpose a system was built that

takes real-valued vectors of 33 dimensions and outputs 3D vehicle models for each

of these vectors. Subjects are asked to evaluate these models based on their own

preference and select the preferred ones. The interaction is set up in the way that

subjects are able to see all sampled designs at once, so that a preferred design can

be re-emphasized in later iterations. The fitness of the population is the normalized

selection count. The program requires binary choices rather than ranking or rating

inputs based on the belief that this is a natural way for subjects to express their

preferences. The disadvantage of the scheme, however, is that it assumes a higher

count to correspond to a more preferred design. This may not be always the case.

As an example, Design A that appears early can be picked repeatedly because it is a

design relatively better than the others present; Once a better Design B comes into

play, the user may drop A and pick B which will have only one count.

Once fitness is determined, a multi-armed roulette wheel is used for parent selec-

tion. Figure 1.2 illustrates an example of this selection scheme where four parents,

represented by the four arms, are chosen from a candidate set of four. The size of

the pie segment represents the relative fitness of these candidates. According to the

figure, the parent set consists of one copy of Designs 1 and 2 and two copies of Design

4.

These parents are then paired in the pattern of (1, 3) and (2, 4) for crossover. We

use two random parameters j and α to perform the crossover on the parent pair a

12

Figure 1.2: Multi-armed roulette wheel parent selection

Figure 1.3: An example of crossover. Here the two grayed designs are parents and
the white one is a child. The child acquires the hood design of the first parent and
the silhouette design of the second parent.

and b, to create the children a′ and b′ in the form:

a′ = [αa1 + (1− α)b1, αb2 + (1− α)a2],

b′ = [αb1 + (1− α)a1, αa2 + (1− α)b2]. (1.3)

Here a1,b1 are vectors of the first j elements in the parents, and a2,b2 are the re-

maining part of the parents. This split and recombination scheme allows fusion of

design features from parents as illustrated in Figure 1.3. Mutation then takes place

by changing every variable in each child chromosome by a random amount while

maintaining all variable values within their bounds.

1.3.1.3 IGA drawbacks

Our experiment with the vehicle exterior design interaction shows that this IGA

setup is helpful at exploring the design space but is not efficient enough at converging

to a preferred design. Although appealing, the IGA framework has been criticized for

13

its value in practice. Some drawbacks of IGA are included below and they lead to our

motivation for developing more efficient search algorithms for preference elicitation.

• Convergence of IGAs is usually not guaranteed. This is mainly due to the

inevitable fluctuation in the subject’s preference during the interaction. There-

fore the fitness of designs will not be accurately obtained based on ranking,

rating or binary choice input from the subject. The optimal solution of the

IGA is considered to be a domain rather than an exact point due to the fact

that subjects cannot distinguish the difference between one design and another

when both fall below the level of least distinguishable difference. One attempt

to improve the convergence in practice is to allow human intervention during

the interaction. As Kosorukoff (2001) has shown, allowing manual modifica-

tion of chromosomes can essentially speed up the convergence of IGA in a color

matching experiment. This amendment however, does not prevent human fa-

tigue from fluctuating the preference, which is believed to be one of the major

factors frustrates IGA practices. Based on the review of a large variety of IEC

applications and developments in domains including art and design, data min-

ing, education and social systems, Takagi (2001) concludes that the growth in

the population size, number of generations and the dimensionality of the design

space will all cause the onset of human fatigue, thus limiting the performance

of an IEC.

• The IGA framework does not prevent designs close to the not-preferred ones

from reappearing in future iterations. Although not-preferred designs have low

probability to be selected as candidate parents, the stochastic nature of the

parent selection, crossover and mutation schemes will still produce unfavorable

designs regardless of user inputs, leading to a frustrating experience with IGA.

In fact, there is no theoretically “correct” schemes for crossover and mutation,

which makes the search almost pure random except for the parent selection

14

stage.

1.3.2 Recommender systems

Applications that utilize consumer preferences and provide recommendations are

abundant these days. The term “recommender system” refers to all intelligent sys-

tems including the Amazon product recommender (Linden et al. (2003)), the Google

personalized news feeder (Das et al. (2007)) and many others. A thorough review

of state-of-art recommender systems and researches is given by Adomavicius and

Tuzhilin (2005). In its most common formulation, the recommendation problem is a

problem of estimating the utilities of items that have not yet been seen by a subject,

based on the utilities the subject assigned to some other items, the personal profile

of the subject or even the utilities assign by other subjects. Formally, let V be an

item (feature) space where each item is represented as a set of features v. Let c be a

subject and C be the entire subject set. Let f(c,v) be the utility function of subject

c, i.e., f : C × V 7→ R. Then, for each subject c, we want to find such items that

maximize the user’s utility:

v∗ = arg max
v∗∈V

f(c,v). (1.4)

The central problem of recommender systems lies in that utility f is usually not de-

fined on the whole space C × V , but only on those items that have been evaluated.

Therefore a prediction of f is required based on the limited observations. Many differ-

ent ways can be employed for this purpose based on the structure of user evaluation

data, including machine learning and statistical approaches. Recommender systems

can be classified into the following categories based on how recommendations are

made (Balabanović and Shoham (1997)):

• Content-based recommendations: The user will be recommended items similar

15

to the ones the user preferred in the past;

• Collaborative recommendations: The user will be recommended items that peo-

ple with similar tastes and preferences liked in the past;

• Hybrid approaches: These methods combine collaborative and content-based

methods.

1.3.2.1 Content-based recommender systems

The content-based recommender system is the most similar to the preference elic-

itation problem we defined above. Although rooted in text-based applications, such

as documents, websites and news messages retrieval, the techniques developed for

content-based recommender systems can be applied to many other artefacts or ser-

vices, including movies, books, restaurants and other commercial products. In prac-

tice, for a certain subject, various candidate items that have not been seen by this

subject are compared to a previous set that has been viewed and utility measures

are calculated. More formally, a subject c is represented by a profile vector wc based

on the subject’s previous ratings where each element wic represents how much the

subject prefers the ith feature of the item. The utility of a candidate item is then

calculated as a function of the subject’s profile and the features of this item. One

commonly used form of utility in information retrieval literature (Baeza-Yates and

Ribeiro-Neto (1999); Salton (1989)) is the cosine similarity measure:

f(wc,v) , cos(wc,v) =
wT
c v

||wc||2||v||2
. (1.5)

The subject profile wc based on previous subject behaviour can be realized using

different techniques based on the type of the behaviour, e.g., labelling, rating, ranking

and others. For example, classifiers using Bayesian (Mooney et al. (1998); Pazzani

and Billsus (1997)), machine learning, decision trees and neural network (Pazzani

16

and Billsus (1997)) techniques can be used to realize the profile and thus the utility.

As reviewed in Adomavicius and Tuzhilin (2005), one of the major limitations of

content-based recommender systems is “overspecialization”, referring to the situation

where the system recommend only the items that are similar to those that have

already been rated. Therefore the subject will not be given recommendations of

possibly favorable items that are far away from those exposed in the feature space.

As an example given in Adomavicius and Tuzhilin (2005), a person with no experience

with Greek cuisine would never receive a recommendation for even the greatest Greek

restaurant in town. This problem is usually addressed by introducing randomness to

the system, e.g., genetic algorithm (Sheth and Maes (1993)). The other aspect of the

overspecialization problem is that recommended items can be too similar to things

that the subject has already seen. To address this, researchers proposed to not only

filter out the dissimilar items but also the most similar items (Billsus and Pazzani

(2000)) or only recommend items that have both high similarity and novel information

(Zhang et al. (2002)). As a conclusion, the diversity of recommendations is often

desirable and the subject should be presented with a range of options rather than

replicates of the previously viewed items. The other difficulty of a content-based

recommender system is that a newcomer to the system is not likely to get useful

information since the system has very limited information to capture his profile.

1.3.2.2 Collaborative filtering

Collaborative filtering is the opposite way of doing recommendation from the

content-based approach. In collaborative filtering, the subject receives recommenda-

tions that are rated well by other subjects similar to her. In memory-based collabo-

rative recommendations, the similarity between two people is measured as the cosine

or correlation between their profiles, which contain rating, browsing or purchasing

histories and demographic information (Pazzani (1999)). Taking a slightly different

17

approach, a model-based collaborative filter will first update a cluster model or a

Bayesian network of the cumulative subject rating data and predict ratings based

on that model (see Breese et al. (1998)). Billsus and Pazzani (1998) show that the

same modeling purpose can also be fulfilled with machine learning techniques. The

difference between memory-based and model-based collaborative filters is that while

the former rely on subject inputs as they are, the latter summarize these inputs with

a model before prediction. Instead of using similarities between people, Linden et al.

(2003) proposed to use item-to-item collaborative filtering in order to speed up a rec-

ommendation. The idea is to have an item-to-item similarity table computed offline

and find from this table only the correlated items with respect to the few items a

subject purchased or rated, by which means the computational cost is reduced and

the online shopping experience is enhanced.

By its nature, a collaborative filter can recommend products even when they are

not similar to the subjects’ profile, circumventing the overspecialization problem of a

content-based mechanism. However, the system will still need to get enough ratings

from a new subject before its recommendation can be accurate for that subject.

Similarly, a new product can be recommended only after being rated by a substantial

number of users.

1.3.2.3 Hybrid methods

Mixing features of both content-based and collaborative recommender systems

can avoid limitations of each of these methods. One simple hybrid approach is to

make recommendations with a linear sum of ratings from the two systems Claypool

et al. (1999). Another way is to add content-based characteristics to collaborative

models. Here, the similarity between two people is calculated not using their ratings,

but features of items which both subjects have rated. On the other hand, one can also

enhance a content-based algorithm by taking collaborative information into account.

18

For example, Soboroff and Nicholas (1999) shows that dimension reduction can be

used on a population of subject profiles and latent features can be derived, which

result in performance improvement.

1.3.3 Conjoint analysis

The last related research area we shall introduce is “conjoint analysis”, widely

adopted in econometric and marketing researches and practices. Conjoint analysis

and its variants have been the mainstream techniques for preference measurement

since its first appearance (GREEN and RAO (1971)). The general idea of conjoint

analysis is to collect preference data, e.g., ratings, rankings or choices on products,

from a population and summarize the data with a regression model. An introduction

in depth of its technical details is presented in the next chapter. Here we focus on

the conceptual properties of this method and more importantly, pointing out what

is missing in the current literature of conjoint analysis. As reviewed in Netzer et al.

(2008), a conjoint analysis study consists of three major components from a high-level

viewpoint: (1) the problem that the study is intended to address; (2) the design of the

preference measurement task and the data collection approach; (3) the specification

and estimation of a preference model. In the traditional conjoint analysis formulation,

the problem is to help firms predict market share and from there design products to

maximize profit; the data are usually collected through questionnaires online or offline

using consumer rating, ranking or choosing among hypothetical profiles designed

according to traditional statistical efficiency measures; and, the output prediction

models for a population or for individuals are commonly estimated using hierarchical

Bayes techniques under the assumption of a linearly additive utility model.

A well-acknowledged dilemma in conjoint analysis is the trade-off between bet-

ter estimating the preference and reducing the number of responses needed from

subjects. Therefore to understand the preference of a population on a complex prod-

19

uct, the researcher will need to conduct a survey that either asks subjects a large

number of questions or has a large pool of subjects. Some theoretical research has

been developed to alleviate this problem. Utilizing the concept of complexity con-

trol from machine learning, Cui and Curry (2005) and Evgeniou et al. (2005) used

a support vector machine (see Chapter II) approach to handle complex preference

measurement problems. The general idea here is to form a better estimation of the

preference by using some features which are nonlinear functions of the original design

variables. Another promising direction is to create questions adaptively according to

the previous responses from subjects. Investigations from Toubia et al. (2007b, 2004,

2003) show both theoretically and empirically that optimal questions with respect

to some statistical criteria can be produced adaptively to achieve better estimation

performance.

One divergent topic in conjoint analysis is preference modeling. The linearly ad-

ditive utility model has been dominant, due mainly to its mathematical simplicity

and intuitive interpretation. However, the linear additive model assumes features are

compensatory, meaning that lack in one feature can be made up by an increase in

other features. In addition, researchers have reported that subjects may very likely

resort to simplified heuristics instead of undertaking complex decision-making pro-

cesses before making a choice (see Lloyd (2003)). Todd and Gigerenzer (2000) show

that in reality, people adopt fast heuristics in decision-making that involve little com-

putation rather than trading between attributes. For example, in a pairwise choice

scenario, a subject will compare the two choices by one attribute at a time. If the

attribute can distinguish between the two choices then a decision is made on that

basis, ignoring other present information. Research has been conducted to incorpo-

rate these non-compensatory heuristics into conjoint analysis. Hauser et al. (2010)

proposed a generalization of non-compensatory decision rules called disjunction of

conjunctions, e.g., one would like either a heavy low-mileage car for safety considera-

20

tions or a light high-mileage car for fuel efficiency. The authors show that results of

a conjoint analysis using this consideration set model explain the user response data

better.

1.3.4 Summary

We reviewed work related to the questions raised in this dissertation across disci-

plines at a conceptual level. To summarize, each of these research directions has its

own practical motivation and usage; nonetheless, the underlying research questions

and developed techniques are shared in spite of the diversity in terminology. Both

conjoint analysis and recommender systems deal with preference modeling. The rec-

ommender system can be considered as a real-time application of conjoint analysis,

focusing more on scalability and real-time response of the algorithm, while in con-

joint analysis, the major difficulty is in reducing the number of questions needed

and make the interaction more adaptive. In terms of interaction, IGA has the most

flexibility and is arguably the most appealing algorithm to subjects, with its capa-

bility to create virtual artefacts in real time. Also, some of the preference modeling

techniques can be applied to fitness calculation in IGA as well. However, unlike the

other two research areas, IGAs have not been successful in real-world applications

due to slow convergence to an optimal solution and human fatigue resulting from

that. The preference elicitation problem we posed in this chapter is in a sense an

attempt to enhance the usability of IGA by relying more on rigorously modeling the

preference than using an arbitrary evolutionary scheme. This idea shares the IGA

challenge of finding an optimal solution in a small amount of iterations. The problem

is similar to a recommender system since the general goal is to guess what artefacts

people may like. However, a preference elicitation algorithm should be able to explore

non-existing designs of artefacts and thus create new opportunities for a design study

rather than promoting existing products as in a recommender system. We use Table

21

1.1 to summarize this section.

1.4 Dissertation Overview

The remainder of this dissertation is organized as follows: Chapter II provides

necessary background on traditional conjoint analysis and support vector machine.

Both are ways of creating models to explain data. We emphasize the key concepts

behind their derivation which will be used throughout this work. In Chapter III we

propose solutions to the preference elicitation problem. Both simulated tests and

real subject tests are conducted and their results analyzed. Chapter IV continues

this topic and provides two major improvements to the elicitation algorithm. We

switch topic in Chapter V to address both the preference identification and estima-

tion problems. Chapter VI discusses how collaborative filtering can be used in the

preference elicitation framework to improve search efficiency of one subject by using

search history of others. We conclude and discuss future directions in Chapter VII.

22

T
ab

le
1.

1:
O

ve
rv

ie
w

of
re

la
te

d
w

or
k

IG
A

R
ec

om
m

en
d
er

sy
st

em
C

on
jo

in
t

an
al

y
si

s
(P

re
fe

re
n
ce

id
en

ti
fi
ca

-
ti

on
an

d
es

ti
m

at
io

n
)

P
re

fe
re

n
ce

el
ic

it
at

io
n

P
ra

ct
ic

al
u
sa

ge
F

in
d

th
e

b
es

t
d
es

ig
n

or
to

ex
p
lo

re
th

e
d
e-

si
gn

sp
ac

e

F
in

d
re

le
va

n
t

it
em

s
E

x
p
la

in
an

d
p
re

d
ic

t
st

at
ed

or
re

ve
al

ed
p
re

fe
re

n
ce

s

F
in

d
th

e
b

es
t

d
es

ig
n

U
n
d
er

ly
in

g
p
ro

b
le

m
S
ea

rc
h

th
e

op
ti

m
al

so
-

lu
ti

on
in

a
gi

ve
n

sp
ac

e
E

st
ab

li
sh

ra
ti

n
g

p
re

-
d
ic

ti
on

m
o
d
el

s
E

st
ab

li
sh

a
p
re

fe
re

n
ce

m
o
d
el

,
an

d
es

ti
m

at
e

it
s

p
ar

am
et

er
s

S
ea

rc
h

th
e

op
ti

m
al

so
-

lu
ti

on
in

a
gi

ve
n

sp
ac

e

K
ey

d
iffi

cu
lt

ie
s

S
lo

w
co

n
ve

rg
en

ce
in

h
ig

h
d
im

en
si

on
s

S
ca

la
b
il
it

y
in

re
al

-
ti

m
e

ap
p
li
ca

ti
on

s
L

im
it

ed
d
es

ig
n

va
ri

-
ab

le
s

an
d

le
ve

ls
S
lo

w
co

n
ve

rg
en

ce
in

h
ig

h
d
im

en
si

on
s

A
rt

ef
ac

t
ty

p
e

V
ir

tu
al

ar
te

fa
ct

s
E

x
is

ti
n
g

ar
te

fa
ct

s
E

x
is

ti
n
g

ar
te

fa
ct

s
V

ir
tu

al
ar

te
fa

ct
s

R
es

p
on

se
ty

p
e

E
x
p
li
ci

t
or

im
p
li
ci

t
fi
t-

n
es

s
R

at
in

gs
,

ra
n
k
in

gs
or

la
b

el
s

R
at

in
gs

,
ra

n
k
in

gs
or

b
in

ar
y

ch
oi

ce
s

B
in

ar
y

ch
oi

ce
s

In
te

ra
ct

io
n

ty
p

e
S
h
or

t
te

rm
L

on
g

te
rm

S
h
or

t
te

rm
S
h
or

t
te

rm

23

CHAPTER II

Literature Review

In this chapter, we explore existing work related to preference elicitation from

different disciplines. A major established technique for understanding consumer pref-

erences is conjoint analysis (or discrete-choice modeling) from econometrics, which is

rooted to research as early as in the 1970’s (GREEN and RAO (1971); Green and

Srinivasan (1978)) and has maintained its influence throughout the past few decades

(Green et al. (2001)). Conjoint analysis uses survey responses from a large population

to create preference models for that population. The method has been broadly ap-

plied in marketing-related business practices to guide product and service design and

thus enlarge a firm’s market share. To the author’s knowledge, the usability of any

conjoint analysis mainly depends on the form of two core elements: Preference model

and survey observation. Throughout its history, conjoint analysis has adopted models

of preference to different degrees of complexity, as well as different types of survey

observations, which mainly includes ranking, rating and discrete-choice. In a ranking

or rating test, the subject assigns orders or rates to a set of products of different at-

tribute levels; while in a discrete-choice setting, the subject directly chooses the most

acceptable product (implying one) from the given set. It is widely acknowledged that

discrete-choice is more successful than other survey types since it closely simulates

human decision making in real life. Therefore we focus mainly on the discrete-choice

24

survey both in this review and in the dissertation work.

The other important background knowledge domain we shall cover in this chap-

ter is support vector machine (SVM). Originally introduced to the machine learning

community by Vapnik (1982), SVM became a state-of-art supervised-learning tool

broadly applied in industry (see Tong and Chang (2001); Tong and Koller (2002);

Chang et al. (2005); Joachims (2002) for example and references from Cristianini

and Shawe-Taylor (2000)) as well as various research disciplines including preference-

related studies (see Evgeniou et al. (2007); Chapelle and Harchaoui (2005)). In this

chapter, we will go over the theories behind SVM and derive its primal and dual prob-

lem formulations. We will cover its application to preference elicitation in Chapter

III and a deeper understanding of its geometric meaning in Chapter V.

2.1 Conjoint Analysis

Let us now consider designs as vectors of attribute levels. For example, one can

represent different car models with their 0-60 acceleration time, miles per gallon,

and safety performance. Hence we denote a design as a vector x, where its compo-

nents xi, for i = 1, ..., p, are levels for the p attributes. For a given set of n designs:

Xn , {xi}ni=1, a discrete-choice model provides the probability of each design being

chosen. To achieve this purpose, one usually requires observations from a popula-

tion of subjects, each of which represents a decision-making scenario where a certain

design is chosen from a discrete choice set Xn by a subject. We shall now derive

the mathematical model for a choice decision and list assumptions used during the

derivation.

2.1.1 Utility and choice probability

To interpret a choice decision, we introduce the utility fi as a real value assigned

to design i. For a pair of designs x1 and x2, f1 > f2 if and only if x1 is chosen against

25

x2. Therefore the utility is a way to measure preference, and by using the utility we

assume that preference differences always exist and are not introduced as responses

to choice sets. We acknowledge that a controversy for this assumption exists and is

discussed, for example, in MacDonald et al. (2009). For a design x, its utility can be

further written as the following:

f = V (x) + ε, (2.1)

where V (x) is a non-stochastic value and reflects the “representative” taste of the

population on the design x, and ε is stochastic and reflects the idiosyncracies of

subjects in tastes for the alternative with x (McFadden (1973)). V (x) is usually

considered a weighted summation of design features:

V (x) =
k∑
i=1

wivi(x), (2.2)

where v(x) are the k design features and wi are model parameters (usually called

“part-worths” in econometrics literature). We introduce the concept of design features

to be different from design variables because assuming variables to have a linear

effect on utility is often controversial. For example, the size of a MP3 player shall

be considered as a design variable but the preference is not likely to be linearly

dependant on this variable. Rather, a concave function of the size can be used as a

design feature that has linear relationship with the preference. We leave the discussion

on how features can be identified to Chapter V where we deal with the nonlinearity

of preference.

Let us now look into the probability of choosing one design from a pair. Denote

the conditional distribution of ε2 for a given ε1 be p(ε2|ε1). The probability of x1

26

being chosen against x2 has the following form:

Pr(f1 > f2) = Pr(V1 + ε1 > V2 + ε2)

= Pr(ε2 < V1 − V2 + ε1)

=

∞∫
ε1=−∞

V1−V2+ε1∫
ε2=−∞

p(ε2|ε1)dε2dε1. (2.3)

Extending to a general case with q designs in one query, the probability of choosing

design i will be

Pr(fi > fj, ∀j 6= i) = Pr(εj < Vi − Vj + εi, ∀j 6= i)

=

∞∫
εi=−∞

 Vi−V1+εi∫
ε1=−∞

Vi−V2+εi∫
ε2=−∞

· · ·
Vi−Vq+εi∫
εq=−∞

p(ε̂|εi)dε̂

 dεi,(2.4)

where ε̂ represents the set ε1, ..., εi−1, εi+1, ..., εq. Several different likelihood models

we discuss below are direct consequences of this choice interpretation.

2.1.2 Likelihood models

For a sequence of n queries each with a set of q designs xji for i = 1, ..., n and

j = 1, ..., q, let the chosen design in the ith query have index j∗i . Following Equation

2.4, the likelihood of such an observation is

L = Pr(fj∗i i > fj′i, ∀i = 1, ...n, j′ 6= j∗i)

=
n∏
i=1

Pr(fj∗i i > fj′i, ∀j′ 6= j∗i). (2.5)

27

Substituting utilities as a function of design features using Equation (2.2), the likeli-

hood can be rewritten as a function of the unknown feature parameters w:

L(w) =
n∏
i=1

Pr
(
εj′i < wT (vj∗i i − vj′i) + εj∗i i, ∀j

′ 6= j∗i
)
. (2.6)

When p(ε̂|εi) is a multivariate normal distribution, Equation 2.6 is called the multi-

nomial probit model. Clearly this model is not a closed-form function of w. To

circumvent this difficulty, it is further assumed that εji ∀i, j are independently and

identically distributed following the extreme value (Gumbel) distribution:

p(ε|θ) =
1

θ
e−ε/θe−e

−ε/θ
, (2.7)

from where we can derive the simplified choice probability:

Pr(fi > fj, ∀j 6= i) =
eVi/θ∑q
j=1 e

Vj/θ
. (2.8)

It is usually assumed that the the Gumbel distribution used here is standard, i.e.,

θ = 1, which leads to

Pr(fi > fj, ∀j 6= i) =
eVi∑q
j=1 e

Vj
. (2.9)

Inserting this into Equation (2.4), we arrive at the logit model for likelihood:

L(w) =
n∏
i=1

e
Vj∗
i
i∑q

j=1 e
Vji

=
n∏
i=1

e
wTvj∗

i
i∑q

j=1 e
wTvji

(2.10)

which now has a closed form. The advantage of this formula is that it gives an

intuitive interpretation of the choice probability in terms of the relative utilities of

alternatives. It also provides amenable computation for the likelihood. Nonetheless,

28

the logit model requires the assumption that a choice is “independent from irrelevant

alternatives” (IIA) and could be problematic in practice. The IIA assumption implies

that the ratio between choice probabilities of two designs, as shown in Equation (2.11),

will not be affected by the introduction of a new alternative.

Pr(f1 > fj, ∀j 6= 1)

Pr(f2 > fj, ∀j 6= 2)
=
eV1

eV2
. (2.11)

A classical example illustrates this problem (McFadden (1973)). Suppose we have a

(red) bus and a personal automobile as the two commuting options, and two-thirds of

the population choose to use the automobile. If we introduce a second (blue) bus that

is identical to the first one, intuitively, we expect that auto users will not switch to a

bus because of this change and bus users will split between the two buses. However,

if we calculate the share of automobile and bus usage according to the logit model,

we will find half of the population using the personal automobile and the other half

split between the two buses. The reason this is counter-intuitive is that we expect

individuals to make a choice between auto and bus before deciding which color bus to

choose (if they cared). Therefore the logit model is properly used only when designs

are distinct and evaluated independently in a query.

Variations of the multinomial logit model have been proposed to mitigate criti-

cisms related to the assumed IIA property, among which mixed logit is prevalent. In

fact McFadden and Train (2000) proved that the mixed logit model can approximate

any choice model including multinomial probit. The reverse, however, is not true

since multinomial probit model requires the error term to be normal. Mixed logit

assumes w to be random following a joint distribution p(w|θ) where θ are the fixed

parameters characterizing the distribution and w is defined on a set V . The likelihood

29

corresponding to Equation (2.10) under θ becomes

L(w,θ) =
n∏
i=1

∫
w∈V

e
wTvj∗

i
i∑q

j=1 e
wTvji

p(w|θ)dw. (2.12)

Examination of Equation (2.12) reveals that the choice probability is a linear mixture

of logit probabilities, with the weight of each logit probability determined by the

mixing distribution p(w|θ). The introduction of this mixing distribution relaxes the

IIA assumption since one can easily examine the following inequality:

Pr(f1 > fj, ∀j 6= 1)

Pr(f2 > fj, ∀j 6= 2)
=

∫
exp(wTv1)/

∑q
j=1 exp(wTvj)p(w|θ)dw∫

exp(wTv2)/
∑q

j=1 exp(wTvj)p(w|θ)dw

6=
∫

exp(wTv1)

exp(wTv2)
p(w|θ)dw. (2.13)

We only briefly introduced relaxations on the IIA property because the dissertation

mainly focuses on individual tests rather than the likelihood model for a population.

Readers may refer to McFadden and Train (2000) for details on the mixed logit model

and McFadden (1980) for a review on different likelihood models. Nonetheless, the

idea that the heterogeneous taste of a population can be described by a distribution is

important. In Chapter VI, we will investigate how preference elicitation on individuals

can be enhanced by previous search results.

2.1.3 Parameter estimation and its variance

Above we went through the derivation of several forms of the likelihood model.

We now turn our view to the estimation of the model parameters from observations.

For multinomial logit, the estimation of w can be found by maximizing the likelihood

in Equation (2.10) or, equivalently, minimizing the negative log-likelihood loss:

LML(w) , −
n∑
i=1

log

(
e
wTvj∗

i
i∑q

j=1 e
wTvji

)
. (2.14)

30

The Hessian matrix Ω of this loss is

Ω ,
∂LML(w)

∂w∂wT
=

n∑
i=1

q∑
j=1

(vji − v̄i)Pji(vji − v̄i)
T , (2.15)

where v̄i =
∑q

j=1 vjiPji and Pji = exp(wTvji)/
∑q

j′=1 exp(wTvj′i). Since Pji are

probabilities and thus always positive, the Hessian of the loss function is positive

semi-definite. Thus we can use existing convex programming techniques to find the

optimal solution ŵ. One shall however notice that since the choice observations are

probabilistic, i.e., replicates on the same choice set and the same subject may result

in contradictory observations, the outcome ŵ also has a variance around the true

parameter w. McFadden (1973) shows that the estimator is asymptotically normally

distributed with the true parameter as its mean and Ω−1 as its covariance. This

is an important statistical property of the maximum likelihood estimation for the

multinomial logit model since Ω indicates how much we shall trust the estimation,

i.e., smaller determinant of Ω indicates larger variance of ŵ. Examination of Ω

shows that its determinant is determined by (1) the number of queries made, (2) the

arrangement of v− v̄, and (3) the probability Pji which is a function of both vs and

ŵ.

Parameters of a mixed logit model can also be estimated using maximum likeli-

hood. The extra difficulty comes from the numerical integral in Equation (2.12). The

details on how numerical methods address the estimation on a mixed logit model is

not elaborated here. Readers may refer to Train (2001); McFadden and Train (2000)

for detailed techniques on calculating simulated choice probability.

2.2 Support Vector Machine (SVM)

This introduction aims to explain the motivation and development of SVM. SVM

was originally introduced by Vapnik (Vapnik (1982, 1998)) for the supervised learning

31

problem: Given a query set {xi}ni=1 sampled from a space D with the corresponding

label set {yi}ni=1, find a classifier f(x) such that it has both good testing performance

(i.e., f(xi) close to yi) and prediction power (i.e., for x ∈ D not yet queried, f(x)

shall be close to the true label y). When the y’s are categorical, the learning is called

“classification”; when they are real-valued, it is called “regression”. We mainly focus

on binary y’s and readers may refer to Drucker et al. (1997) for the regression case.

Cristianini and Shawe-Taylor (2000) provide a complete introduction of SVM.

2.2.1 Basic concepts

Formally, SVM finds a separation hyperplane of the two (or multiple) classes of

data X and y where X , {xi}ni=1 is a data matrix and y , {yi}ni=1 are the labels of

X, with yi ∈ {1,−1}. If these data are separable in D, we can derive a separation

hyperplane as shown in Figure 2.1 which has the following form:

f(x) = ŵTx, (2.16)

where ŵ is the estimator of the unknown true model. We also introduce the definition

of a “decision function”:

~(x) = sgn(f(x)). (2.17)

We call {x ∈ D|~(x) = 0} a “decision boundary”.

The problem of finding such a hyperplane is ill-defined since there is an infinite

number of qualified hyperplanes if the data are separable. Nonetheless, it is proved

that the hyperplane with the maximal “margin” will minimize the risk of overfitting

(Chapter 4 in Cristianini and Shawe-Taylor (2000)) and is a good choice for the

hyperplane. Here the “margin” is defined as the minimal distance from any query x

to the decision boundary, as is defined in Equation (2.18) and illustrated in Figure

32

Figure 2.1: A separation hyperplane (ŵTx) for a two dimensional training set. Figure
from Cristianini and Shawe-Taylor (2000).

2.2:

γ , min
i
{yiŵ

Txi
||ŵ||2

}. (2.18)

The samples that minimize γ (lie closest to the decision boundary) are called sup-

port vectors, hence the name support vector machine. The physical meaning of the

phrase “support vector” can be understood intuitively as the decision boundary is

“supported” only by the support vectors. This property of SVM will be explained

in more depth shortly. One shall also notice that with any nonzero scaling factor

α ∈ R, the margin will stay the same with any parameter set {αŵ, αb}. Therefore

it is necessary but also safe to normalize the hyperplane so that all support vectors

satisfy the equation set

yiŵ
Txi = 1, ∀i ∈ I. (2.19)

Here I is the index set of support vectors and has a length of m. Maximizing the

margin is then equivalent to minimizing the norm of the estimator ŵ, leading to the

primal and dual problems discussed next.

33

Figure 2.2: γ is the margin between two classes. Figure from Cristianini and Shawe-
Taylor (2000).

2.2.2 Primal and dual problems

We turn the problem of finding a classifier into the following quadratic problem:

min
ŵ

ŵTw, (2.20)

subject to yiŵ
Txi ≥ 1, i = 1, ..., n,

which has a Lagrangian:

L(ŵ,α) =
1

2
ŵT ŵ −

n∑
i=1

αi(1− yiŵTxi). (2.21)

From the KKT conditions we have:

ŵ =
∑n

i=1 αiyixi,

∑n
i=1 yiαi = 0.

(2.22)

34

Inserting (2.22) into (2.21) and including the other KKT conditions, we arrive at the

dual problem:

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
T
i xj (2.23)

subject to
n∑
i=1

αiyi = 0

αi ≥ 0, i = 1, ..., n.

Since the primal is convex and Slater’s condition holds (intuitively, one can always find

a classifier that separates the classes, see Subsection 2.2.3), this problem has strong

duality (no duality gap exists) and therefore solving the dual problem is equivalent

to solving the primal one. From the KKT conditions we also know that the optimal

solutions α∗i are only nonzero when yiw
Txi = 1. This means that only support vectors

will have nonzero α∗s and the estimator ŵ is a linear combination of the support

vectors. This justifies our intuition that the decision boundary is only “supported”

by the support vectors. Another important observation from the dual formulation is

that x appears only in an vector product form. Therefore the solution α∗ is affected

only by the vector product matrix {xTi xj}ni,j=1. This property of SVM leads to the

so-called “kernel trick” which enables the above primal and dual formulations for

linear classifiers tackle linearly non-separable data.

We shall also mention that in some of the SVM literature, instead of having an

affine classifier f(x) = ŵTx, one would have a linear classifier with bias b: f(x) =

ŵTx + b. The inclusion of b does not change the derivation of any algorithm but it

does change the performance of an SVM algorithm in practice. When it is included,

the optimal b can be computed once we have α∗:

b =
1

m

m∑
i=1

yi

(
1−

m∑
j=1

α∗jx
T
Ij

xIi

)
. (2.24)

35

Figure 2.3: Mapping data to a different space where they can be linearly separated.
Figure from Cristianini and Shawe-Taylor (2000).

2.2.3 Kernel trick

In the case where {xi}ni=1 are not linearly non-separable, we introduce a feature

space F with k dimensions and the mapping φ(x) : D 7→ F :

φ(x) = (φ1(x), ..., φk(x)), (2.25)

so that the mapped data can be separated by a linear classifier (hyperplane), see

Figure 2.3. Finding such a feature space and mapping is much easier than one might

think at first glance. As a matter of fact, the feature space can be of any high

dimensionality to ensure the linear separability of the data. To understand this

conceptually, we can acknowledge that humans can always accomplish a classification

task, with the least efficient but working strategy being circling every sample out

and defining the union of circles as the decision boundary. Cristianini and Shawe-

Taylor (2000) provides the numerical treatment that guarantees the existence of the

mapping, which is equivalent to the soft-margin SVM formulation in Subsection 2.2.4.

Once the data are mapped, the dual problem can be rewritten in the feature space

F with the matrix {xTi xj}ni,j=1 being substituted by the “kernel” matrix (also called

Gram matrix): {φ(xi)
Tφ(xj)}ni,j=1. Since φ are arbitrary, the kernel matrix is indeed

a matrix of generalized inner products of samples x. Therefore estimators of a linear

36

classifier in the feature space require solutions from the following augmented dual

problem:

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjKij, (2.26)

subject to
n∑
i=1

αiyi = 0,

αi ≥ 0, i = 1, ..., n,

where

Kij = φ(xi)
Tφ(xj)

,< xi,xj > (2.27)

The exact formulation ofKij can vary but the kernel matrix must acquire the following

properties:

• Be symmetric: Kij = Kji;

• Satisfy the Cauchy-Shwarz inequality: K2
ij ≤ KiiKjj;

• Obey Mercer’s Theorem: K must be positive semi-definite since it represents a

vector product of samples in the feature space; this property also ensures the

concavity of the dual problem.

Some commonly used kernels satisfying the above properties are the following:

• Polynomial (homogeneous): Kij = (xTi xj)
λ;

• Polynomial (inhomogeneous): Kij = (xTi xj + 1)λ;

• Radial basis (Gaussian): Kij = exp(−λ||xi − xj||22), λ > 0;

• Hyperbolic tangent: Kij = tanh(λ1x
T
i xj + λ2), λ1 > 0 and λ2 < 0.

37

Figure 2.4: Two classes separated by a hyperplane in the feature space (Guassian
kernel). Figure from Cristianini and Shawe-Taylor (2000).

Figure 2.4 illustrates how a linear separation in the feature space induced by a Gaus-

sian kernel can work for linearly non-separable data in the original design space.

The choice of kernel is usually case dependent although it is reported that the

Gaussian kernel usually performs well (Chang and Lin (2011)). This is also con-

firmed by most SVM application literature. The kernel parameters need to be tuned

before one can get close to optimal performance of the classifier. Theoretically, since

the optimal kernel parameters are solutions to the same maximum margin problem

we solve for ŵ, we could have a nested optimization where the optimal classifier

38

parameters and kernel parameters are solved iteratively:

max
λ

n∑
i=1

α∗i −
1

2

n∑
i=1

n∑
j=1

α∗iα
∗
jyiyjKij(λ)

subject to α∗ = arg max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjKij(λ)

n∑
i=1

αiyi = 0 (2.28)

αi ≥ 0, i = 1, ..., n.

While the maximum margin problem is concave with regard to the classifier parame-

ters (α), it is not so when it comes to the kernel parameters λ. Therefore in practice

it is suggested that a near-optimal λ can be found using a grid search (Chang and

Lin (2011)).

2.2.4 Soft margin formulation and complexity control

So far we assumed that there exists a hyperplane that perfectly separates the

two classes in the feature space. We argued that such a space and mapping can

always be found theoretically. In practice however, one would like to find a classifier

that not only performs well on the training data, but also does well in prediction.

In other words, a classifier should be preferred if it enlarges the margin a lot by

only violating a small amount of training observations, so that it avoids overfitting

the data and provides better prediction accuracy. The theoretical support for this

intuition is the proof given by Vapnik that the prediction error is bounded above by

the following inequality with probability 1−η, provided that test data are independent

and identically distributed as the training data:

errorpredict ≤ errortrain +

√
h(log(2n/h) + 1)− log(η/4)

n
. (2.29)

39

Here h is a measure of model complexity, and n is the training size. In the context

of SVM, the model complexity can be represented by the norm ||ŵ||2. To elaborate,

first recall that the decision boundary is determined by the support vectors and the

boundary is more complex when more support vectors are involved. It can also be

shown that adding data to the support vector set will increase the norm ||ŵ||2 which

has the formula

||ŵ||22 = αTKα (2.30)

from the KKT conditions. This explains the connection between a classifier margin

and its complexity. Examination of the inequality (2.29) reveals that decrease in the

prediction error requires smaller training error but also a less complex model, which

leads to the trade-off between model complexity and training performance because

increasing the complexity will usually lower the training error. To balance this trade-

off, we rewrite the maximum margin problem to include violations to observations:

min
ŵ

1

2
ŵT ŵ + C

n∑
i

ξi

subject to yiŵ
Txi ≥ 1− ξi, i = 1, ..., n

ξi ≥ 0, i = 1, ..., n. (2.31)

Here the parameter C controls the weights of complexity and training error, which can

also be tuned using a grid search or other methods (for example, see Chapelle et al.

(2002)). This formulation of a classification problem is called “soft margin SVM” and

was proposed by Cortes and Vapnik (1995). The difference between this formulation

and traditional training formulations, such as ordinary least square regression and

maximum likelihood estimation, is that while the latter optimize the training error,

soft margin SVM tries to optimize the overall performance of training and prediction,

or the so-called “generalization error”. The success of soft margin SVM shows that

when training a model, what matters is not just the training error but the model

40

complexity as well. Researches have applied complexity control to conjoint analysis

(Toubia et al. (2007a); Evgeniou et al. (2007)), and we will use the same technique

in Chapter V when dealing with pairwise choices.

2.3 Conclusion

Two technical reviews are provided in this chapter. In the first part we cov-

ered elementary concepts in conjoint analysis (discrete-choice modeling). Most of

the derivation techniques and terminologies will be repeatedly used in the following

chapters. A notable aspect of this topic we did ont discuss is the hierarchical Bayes

(HB) method used in mixed logit estimation (Train (2001)). This is because the

studies in this dissertation deal only with individual data where mixed logit is rarely

needed. It is also worth to mention that machine learning methods have been recently

introduced to deal with the aggregated subject choice data, and have been reported

to have overall better performance than HB (Evgeniou et al. (2007)).

One important idea to take away from this review is that the variance of a prefer-

ence model estimation is associated with the query size as well as the arrangement of

the queries (what question to ask). This leads to the practically important trade-off

between the quality of a questionnaire versus its length, as mentioned in the intro-

duction. We investigate this problem in Chapter V.

The second part of this review focused on the essential concepts of SVM: quadratic

maximum margin algorithm, kernel trick from the dual problem and most impor-

tantly, complexity control. Fundamentals such as the Vapnik-Chervonenkis theory

are avoided since they are beyond the scope and needs of the present work. Ref-

erences we cited in this section (e.g. Vapnik (1998); Cristianini and Shawe-Taylor

(2000)) provide more insights into these topics.

41

CHAPTER III

Preference Elicitation

This chapter is motivated by the observation that while consumer preference plays

an essential role in product design, its effective integration within design optimization

remains challenging. Research in linking preference models to engineering optimiza-

tion models for consumer product design (e.g., Wassenaar et al. (2005); Kumar et al.

(2007); Li and Azarm (2000); Michalek et al. (2005)) has demonstrated how these

different disciplines can be integrated. Most of these demonstrations utilize prefer-

ence models with only a small number of variables since the variance in coefficient

estimation of these models can be large and unfavorable when the dimensionality

of the design space becomes high. Yet, to capture the right design variables in an

essentially qualitative or holistic design problem (vehicle styling is an example) we

must have sufficient design freedom and thus a high-dimensional design space. This

“curse of dimensionality” is alleviated by static design of experiments (e.g., Kuhfeld

et al. (1994); Hoyle et al. (2009) on D-efficient sampling) as well as adaptive methods

(e.g Toubia et al. (2004); Abernethy et al. (2008) on adaptive sampling). However,

these methods are all model-based, i.e., tests are designed so that they can estimate

effectively the preference models. Utility models are prevalent in preference research,

but the validity of such models is still under discussion, see Netzer et al. (2008).

An alternative way to capture preferences without a preference model, as we

42

discussed in Chapter I, is through Interactive Evolutionary Computation (IEC) where

the computer gradually refines its assessment of people’s preferences based on user

feedback. Two drawbacks of IEC mentioned previously (Subsection 1.3.1.3) are:

• The fitness requests force users to assign values for each individual design, which

is not a natural way for people to express preferences and can cause user fatigue

and hamper convergence (Takagi (2001));

• Designs close to not-preferred designs presented earlier are likely to appear in

later iterations due to the stochastic nature of IEC schemes.

This chapter introduces an interaction similar to that in IEC but relieving the

burden on users by requiring only binary feedback. Users assign only “preferred” and

“not-preferred” labels to designs. The goal is to investigate how a search algorithm

should be designed to elicit effectively the most preferred designs using this binary

information with a tolerable interaction effort, namely, how to converge with a small

number of iterations. Like with IEC, the focus here is not preference modeling and

estimation but structuring the interaction to speed up convergence with limited elic-

itation (data collection). Two algorithms are proposed: 1) SVM Search is a heuristic

method that shrinks the search space by combining knowledge at different stages of a

questionnaire; 2) EGO search is a modification of the well-established Efficient Global

Optimization (EGO) algorithm that samples the design space based on the response

surface of current observations. Results from simulated tests will show that with only

binary feedback available, the SVM search algorithm is more effective than a genetic

algorithm, while EGO search is better than both.

3.1 Efficient Global Optimization (EGO)

EGO (Jones et al. (1998)) is a global optimization method designed for black-box

objectives and constraints. In a minimization problem, EGO queries a point that

43

Figure 3.1: EGO operation concept.

has low predicted objective value and high variance in the prediction. It is shown

that such a point has the highest expected improvement in minimizing the objective.

In this section, we provide an overview of the EGO algorithm followed by technical

details. The major steps that EGO takes are the following, as is also shown in Figure

3.1:

1. Build a kriging model for the given data.

2. Build the uncertainty function of the prediction using the kriging parameters.

3. Build and optimize the expected improvement function based on the kriging

and uncertainty model.

4. Query the optimal solution derived above and go back to Step 1.

Below we discuss the technical details of these steps.

44

3.1.1 Kriging modeling

The kriging modeling technique is usually more appropriate than ordinary linear

regression in applications related to deterministic computer simulations, where mea-

surement error or noise does not exist. Here, since kriging is not directly used in our

algorithms, we only lay out its derivation for completeness of the review and will not

go into its conceptual development. Readers may refer to Jones et al. (1998) for a

more detailed review on kriging. We shall also mention that this technique is identi-

cal to the generalized least square model in statistics, with a simple set of regressors

(usually a constant term).

Starting with a general model for real-valued responses:

f(x) = wTv(x) + ε, (3.1)

where f(x) is the response to x, w is the unknown regression parameter vector and

v(x) are functions of x and will be called features of designs throughout this work.

ε is the error term representing the unexplained part of the response. The kriging

model is a stochastic process model following these assumptions:

• The error term is a function of x with no measurement error or noise;

• Any two errors ε(xi) and ε(xj) have a correlation so that when ε(xi) is large,

ε(xj) is also likely to be large.

Following the second assumption, the correlation among errors can be represented in

the Gaussian form:

Corr[ε(xi), ε(xj)] = exp(−λkriging||xi − xj||22), (λkriging > 0). (3.2)

Here λkriging is a parameter that controls the Gaussian spread of the correlation: when

λkriging is large, the correlation between ε(xi) and ε(xj) gets weak more rapidly as the

45

xi and xi depart from each other. The kriging model predicts the response at some

x as an interpolation using the existing responses:

f̂(x) =
n∑
i=1

ai(x)f(xi)

= aT f(xi) (3.3)

where a are interpolation parameters which can be estimated by minimizing the

kriging variance, defined as the variance of the difference between the interpolation

and the random variable f(x). In the following derivation, we simplify the notation

of f(xi) as f .

Var(f(x)− f̂(x)) = E
[
(aT f − f − E(aT f − f))2

]
= E

[
(aT f − f)2

]
= E

[
aTffTa + f 2 − 2faT f

]
= E[aTffTa] + V ar(f)− 2E[faT f]

= aTE[ffT]a + σ2
ε − 2aTE[f f]

= aT



cov(f1, f1) cov(f1, f2) · · · cov(f1, fn)

cov(f2, f1) cov(f2, f2) · · · cov(f2, fn)

...
...

. . .
...

cov(fn, f1) cov(fn, fn) · · · cov(fn, fn)


a

−2aT



cov(f1, f)

cov(f2, f)

...

cov(fn, f)


+ σ2

ε

= σ2
ε

(
aTRa− 2aT r(x) + 1

)
. (3.4)

Here we used the vector r(x) to represent the correlation between the errors at every

46

sampled xi and the error at x and the matrix R to represent the correlation of the

errors among the sampled designs. The variance of ε is denoted as σε and can be

estimated by maximizing the likelihood of the current observation

L(b, σ2
ε , λ

kriging) =
1

(2π)n/2(σ2
ε)
n/2|R|1/2

exp

(
−(f −Vw)TR−1(f −Vw)

2σ2
ε

)
, (3.5)

where V is a matrix with each row being a feature vector for a sampled design.

This likelihood formulation is convex in both σε and w and can be maximized by its

estimators:

σ̂ε =
(f −Vw)TR−1(f −Vw)

n
, (3.6)

and

ŵ =
(
VTR−1V

)−1
VTR−1f . (3.7)

Notice also that E[f(x)] = E[f̂(x)] = wTv(x) leads to wTVTa = wTv(x). With

this constraint, minimizing the kriging variance in Equation (3.4) provides the optimal

estimator for a, as a function of x:

â(x) = R−1

(
r(x) +

ŵTv(x)− fTR−1r

fTR−1f
f

)
. (3.8)

Inserting Equation (3.8) into Equation (3.3) we derive the kriging prediction:

f̂(x) = ŵTv(x) + r(x)TR−1(f −Vŵ). (3.9)

One shall notice that the kriging parameter λkriging can also be estimated using

maximum likelihood. However, since the likelihood function is not convex in λkriging,

the estimation of λkriging is usually time consuming and is therefore pre-set in this

study.

47

3.1.2 Mean-squared error of the predictor

With the above derivation, we can now measure the uncertainty of prediction

by the kriging variance. r(x), â(x), f(x) and f̂(x) are simplified as r, â, f and f̂ ,

correspondingly.

Var(f − f̂) = σ2
ε

(
âTRâ− 2âT r + 1

)
= σ2

ε

(
1− rTR−1r +

(ŵTv − fTR−1r)2

fTR−1f

)
. (3.10)

The kriging variance here is also called the mean-squared error of the predictor, and

will be denoted as σ̂2 hereafter. Jones et al. (1998) explains the meaning of this

variance: The term −rTR−1r represents the reduction in prediction error due to the

fact that x is correlated with the sampled points. With no correlation, i.e., r = 0, this

adjustment would be zero; the term (ŵTv−fTR−1r)2/fTR−1f reflects the uncertainty

that stems from our not knowing w exactly, but rather having to estimate it from the

data. Geometrically, one can consider σ̂2 as a continuous minimum distance function

of x, that is, σ̂2(x) is high when x is not surrounded by existing samples and it is low

when x is close to an existing sample.

3.1.3 Expected improvement

The simplest way to use a response surface for “black-box” optimization is to

directly query the optimal solution of the response surface, i.e., f̂ . However, this

approach exploits the observation and can easily lead to a local optimum. The prob-

lem of this approach is that it does not consider the uncertainty of the response

surface, or in other words, it jumps to a conclusion before a thorough exploration of

the design space. The EGO approach tries to balance exploitation and exploration

by combining the prediction and uncertainty together when deciding where to query

next. With f̂ and σ̂2 available, EGO optimizes a merit function that evaluates the

48

expected improvement in the objective. The optimal solution to this merit function

will be chosen as the next query point, in other words, the algorithm picks the point

that is most likely to decrease the observed objective value further.

The expected improvement criterion is computed as follows. Let the current best

observed function value be fmin, assuming we face a minimization problem. Recall

that the response we try to predict at some query x is a random variable f . The

expected improvement of this new query is defined as follows:

E[Improvement(x)] = E[max{fmin − f, 0}]. (3.11)

To compute this expectation, let f follow a normal distribution N(f̂ , σ̂2) and also

denote Φ(·) and φ(·) as the cumulative distribution function and the probability

density function of a standard normal distribution. The expected improvement can

then be represented analytically as a function of x when σ̂ 6= 0:

fEI , E[Improvement(x)] =

fmin−f̂∫
−∞

(fmin − f̂ − ε)p(ε)dε

= (fmin − f̂)

fmin−f̂∫
−∞

p(ε)dε−
fmin−f̂∫
−∞

εp(ε)dε

= (fmin − f̂)Φ

(
fmin − f̂

σ̂

)
+ σ̂φ

(
fmin − f̂

σ̂

)
.(3.12)

When σ̂ = 0, by its definition, fEI = 0.

3.1.4 Properties of the expected improvement

One property of fEI is that it is monotonic with regard to f̂ and σ̂. To be more

specific, this expected improvement increases when f̂ decreases or σ̂ increases. This

property is consistent with the purpose of creating the merit function: to find such

49

queries that either have lower predicted function values or are away from current

samples.

The other important property is that fEI takes zeros in most places of the design

space except for a few promising regions. This is because fmin− f̂ is usually negative

since, by prediction, most f̂ will not be lower than the current lowest. Thus when σ̂

is small, the entire term (fmin − f̂)/σ̂ is a large negative number, resulting in almost

zero Φ
(

(fmin − f̂)/σ̂
)

and φ
(

(fmin − f̂)/σ̂
)

values. In case where σ̂ takes small

values compared to (fmin− f̂)/σ̂ on the entire design space, fEI will have zeros almost

everywhere in the design space except a few peaks.

3.1.5 Optimization on the expected improvement

Optimization on Equation (3.12) deserves special attention because (1) the func-

tion is nonlinear and usually has multiple local minima, and (2) the dimensionality of

the function can be high for design problems of interesting complexity. Jones et al.

(1998) proposed to tackle the nonlinearity with a branch-and-bound strategy. The

strategy divides the design space into subregions and finds their upper bounds. Due

to the monotonicity of fEI with respect to f̂ and σ̂, finding the upper bound of a

subregion is equivalent to finding the upper bound for f̂ and the lower bound for σ̂ in

that subregion, which involves relaxing the nonlinear problem to a linear one within

that subregion. A similar approach proposed by Siah et al. (2004) is to apply the DI-

RECT search algorithm on fEI. Here DIRECT, an acronym for DIvided RECTangles,

is by itself a “black-box” search algorithm (see Jones (2001)). It divides the design

space into subspaces and chooses to further divide the subspace that has the most

“potential” to contain the optimal solution. The potential is usually measured jointly

by the objective value at the center of the subspace and the size of the subspace.

As reported in Jones et al. (1998), these methods can enhance the search efficiency

for the nonlinear fEI. Nonetheless, the reported problems usually have a fairly small

50

number of dimensions, e.g., Jones et al. (1998) uses 2-dimensional examples and Siah

et al. (2004) uses applications with 3 and 4 variables. The reason is simple: When

the dimensionality goes up, the number of branches or subregions becomes larger and

eventually intractable. Therefore, in this chapter we resort to genetic algorithm to

optimize the expected improvement.

3.2 SVM Search

SVM Search is a heuristic algorithm that aims to shrink the design space during

the user interaction and thus force it to converge in a few iterations. The algorithm

attempts to address the problem that, when the dimensionality of the design space

becomes high, search convergence can become too slow for practical user-computer

interaction.

3.2.1 The algorithm

The proposed algorithm works as follows. Let the initial feasible design space

be D0 and that of iteration i be Di, where i = 1, ..., s. The algorithm starts with q

random samples in D0. An SVM decision boundary g1 = 0 is generated from the data

set {xi, yi}qi=1 once user feedback is collected. Suppose that q − q2 out of q samples

are labeled as y = 1; then for the second iteration, q2 samples are drawn from the

region D1 , g1 > 0. Each sample maximizes the minimum distance from all existing

samples. The user is asked to label the combination of these new samples and the

q − q2 preferred designs from the previous iteration. Once new labels are assigned

and old labels are updated, a new decision function g2 is generated upon the current

total data set {xi, yi}2q−q0
i=1 . We illustrate this process in Figure 3.2. Notice that not

preferred designs will not be presented in the future query again and thus require no

update.

To speed up convergence, the decision boundary is recorded after every s∗ iter-

51

Figure 3.2: SVM Search scattering and classification.

ations, where s∗ is an adjustable algorithmic parameter. Denote the design space

corresponding to a recorded decision boundary as Dr, the feasible design space at

any iteration s′ is the intersection of the design space defined by the current decision

boundary gs′ > 0 and Dr, i.e., Ds′ = {x ∈ D0, gs′(x) > 0} ∩ Dr. When s∗ is small,

the forced shrinkage of the feasible space occurs frequently and thus the algorithm

converges after a small number of iterations although it may miss the optimal solution

due to the shrinkage. On the other side, when s∗ has a large value, the algorithm

has more places to sample and thus has more exploration capability. Therefore s∗

balances exploitation and exploration of the algorithm. Figure 3.3 illustrates this

space reduction procedure. The algorithm terminates when a solution is found close

to the optimal solution within the tolerance set by a user or the maximum number of

iterations is reached. In either situation, the best design found will be taken as the

most preferred design x∗. The pseudo code of this algorithm is shown as Algorithm

1 in Figure 3.4.

The “Scatter” subroutine generates designs constrained by Dr ∩ Dc. Each design

is generated so that its minimum distance to all of the other labeled data, including

the designs that have just been created, is maximized. As an exception, the first call

of “Scatter” carries out a Latin Hypercube design on D0. The subroutine “Label”

52

Figure 3.3: SVM Search design space reduction.

refers to human evaluations in real subject tests and is treated as a function call in the

simulated tests; Once function values are obtained for each design, these values are

grouped into two clusters using the K-means algorithm in Matlab. The subroutine

“SVM” calls the LIBSVM package (Chang and Lin (2011)), and svm options stores

parameters required by the package. In this study, the soft margin SVM weight C is

set at 1e6 and no kernel parameter tuning is performed.

3.2.2 SVM Search Simulated Test Results

We compare results from simulated tests using SVM Search and the Matlab GA

toolbox with binary fitness. Results from a random sampling scheme are also pre-

sented as a baseline performance. This latter algorithm merely samples points ran-

domly during the process, keeping better points and dropping the rest. The com-

parison is conducted on the standard test functions including the 2D-Rosenbrock

(Rosenbrock (1960)), Six-hump Camelback (Hardy (1975)), and Branin (Dixon and

Szegö (1978)). These functions are used to simulate user preferences where the opti-

mal solutions represent the most preferred designs. Notice that since our objective is

53

Figure 3.4: Proposed SVM Search algorithm

54

to “maximize” the preference, we setup tests in the maximization context. Therefore

the tests maximize the negative of the original functions.

3.2.2.1 Test Function 1: Negative Rosenbrock function

The negative of the Rosenbrock function is defined as

f(x1, x2) = −
(
(1− x1)2 + 100(x2 − x2

1)2
)
, (3.13)

with

D = {(x1, x2), x1 ∈ [−1.5, 1.5], x2 ∈ [−0.5, 1.5]}, (3.14)

which has a unique global optimum at x∗ = [0, 0].

3.2.2.2 Test Function 2: Negative Six-hump Camelback function

The second function is called Six hump camelback function, the negative of which

is defined as:

f(x1, x2) = −
(

(4− 2.1x2
1 +

x4
1

3
)x2

1 + x1x2 + (−4 + 4x2
2)x2

2

)
, (3.15)

defined on the design space:

D = {(x1, x2), x1 ∈ [−3, 2], x2 ∈ [−3, 2]}. (3.16)

The negative Camelback function has two globally optimal solutions located at x∗1 =

[−0.0898, 0.7127] and x∗2 = [0.0898,−0.7127] with the same value of f = 1.0316. It

has another four local optima within this region and thus the name “six hump”.

55

3.2.2.3 Test Function 3: Negative Branin function

The third test function is the negative of the Branin function:

f(x1, x2) = −
(

(x2 −
5.1x2

1

4π2
+

5x1

π
− 6)2 + 10(1− 1

8π
) cos(x1) + 10

)
, (3.17)

defined on the design space:

D = {(x1, x2), x1 ∈ [−5, 10], x2 ∈ [0, 15]}. (3.18)

The three globally optimal solutions are at x∗1 = [3.1416, 2.2750], x∗2 = [9.4248, 2.4750]

and x∗3 = [−3.1416, 12.2750] and all have the identical optimum f = −0.3979.

3.2.2.4 Performance metric and results

The performance metric used here is the absolute minimum gap between the

(known) global optimum of the test function and the best sampled function values at

the end of each iteration. This metric is selected among others, such as the minimum

Euclidean distance from the optimal solutions, because all we care about in practice is

whether the search algorithm will lead us to a design with high preference. Therefore,

a design with near-optimal preference but away from the optimal solution in the design

space shall still be considered as close to the optimum and the corresponding search

as successful.

Due to the stochastic nature of the search algorithms, we run ten tests on each

combination of algorithms and test functions. Twenty iterations are conducted in

each test and within each iteration three designs are queried. Means and standard

deviations of the performances are reported in Table 3.1. The results suggest that

the proposed SVM search algorithm has the best overall performance.

56

Table 3.1: Means and standard deviations of the final error from SVM Search, GA
and Random Search
(Lower values are better)

Mean(Std) Rosenbrock Camelback Branin
SVM Search 4.12 (6.77) 0.19 (0.33) 1.40 (2.53)
GA 4.31 (3.76) 1.02 (0.83) 31.0 (7.45)
Random 19.8 (13.5) 18.3 (18.4) 23.0 (21.7)

3.3 EGO Search

The conceptual drawback of the SVM Search algorithm is the usage of the in-

tersection of spaces, which has no physical meaning. In fact, it is also numerically

difficult to find points within an intersection if the intersected space is small or has

irregular shape, which is often the case when SVM is used. By observing these flaws

in practice, we move on to explore alternative search algorithms.

3.3.1 The algorithm

It turns out that such a search algorithm that deals with binary subject choice

feedback can be built in the same fashion as EGO: In the first iteration, the computer

presents a random design set (based on a Latin Hypercube design). The user then

evaluates these designs and chooses the relatively preferred ones. The computer takes

in these binary choices as labels on the sample set. SVM is run to find the optimal

decision function. A merit function combining this decision function and the mean

square error function is then optimized, and its solutions along with the preferred

designs from the previous round are used as the samples for the next iteration. The

algorithm continues until the design set becomes identical to the user selection or the

maximum number of iteration is reached. Algorithm 2 provides a summary of the

steps for EGO Search, Figure 3.5.

57

Figure 3.5: Proposed EGO Search algorithm

58

Some details of this algorithm need to be clarified:

• The merit function we used is a weighted sum of the predicted utility f̂ and

the mean square error σ̂2, i.e., fmerit(x) = −(w1f̂ + w2σ̂
2). Although physi-

cally not meaningful, this is the simplest form of a merit that satisfies the goal

of balancing exploitation and exploration. The weight w1 is set to 1 and w2

decreases as s/i − 1, where s is the maximum iteration number and i is the

current iteration number. These weight values are empirically set to make the

two function values be of the same scale. A decreasing w2 is needed so that the

search starts with an emphasis on exploration and then shifts to exploitation

towards the end.

• When calculating σ̂2, the Gaussian spread parameter λkriging is set to 10; also

recall that the calculation of σ̂2 requires the estimation of the error variance

σε which involves the observed function values f at all sampled designs. Here

since we only have binary ys, we substitute f with the decision function values

provided by the SVM model.

• The weight C in the soft-margin SVM is set to a large value 106 since we

consider all user input to be correct and little training error is allowed; in real

user tests, this value shall be lowered to incorporate the stochastic error ε in

user preference and user choice mistakes.

• As we mentioned in the introduction of EGO, both f̂ and σ̂2 are non-convex

functions of x and thus optimizing the merit function can be costly. Also, a lo-

cally optimal solution shall be avoided since such a query will lead to low quality

estimations of the objective function and further undesired queries. Therefore,

an inevitable trade-off exists between finding the global solution of the merit

function and reducing the computational cost of the algorithm. Here we focus

mainly on the quality of queries and thus we use the Matlab GA toolbox (Chip-

59

perfield and Fleming (1995)) to optimize the merit function. The maximum

generation size is set at 1000 and the maximum population size at 100.

3.3.2 EGO Search versus SVM Search in simulated tests

Figure 3.6 shows results on test functions using EGO Search and SVM Search

following the same test setup from Section 3.2. In order to compare the performances

of these algorithms on high dimensions, we add to the test function set a multivariate

Gaussian function as defined in Equation (3.19).

f(x) = exp(−λuser

p∑
i=1

(xi − 0.9)2), xi ∈ [−1, 1], ∀i = 1, ..., p. (3.19)

The optimal solution of this function is set near a corner of the design space since

this is one of the most difficult cases for the search algorithm, considering the fact

that there are 2p corners in total. For each algorithm and each function, ten tests

are executed and the error is calculated as the current minimum gap from the known

optimum. The solid line and bars show the mean error and its standard deviation for

the EGO Search respectively, while the dotted ones show those for the SVM Search

algorithm. We can see from this comparison that EGO Search has more reliable

overall performance than SVM Search especially in higher dimensions.

3.4 Discussion on the EGO Search Algorithm

The pilot test results from the previous subsection leads to the following observa-

tions:

• The EGO algorithm relies on properly selecting the merit function and its pa-

rameters. How will the forms of the merit and their parameters affect the per-

formance of the algorithm in actual user interactions? Is there a set of “correct”

parameters?

60

(a) Rosenbrock (2 dimensions) (b) Six-Hump Camelback (2 dimensions)

(c) Branin (2 dimensions) (d) Gaussian (10 dimensions), λuser = 0.5

(e) Gaussian (13 dimensions), λuser = 0.5 (f) Gaussian (15 dimensions), λuser = 0.5

Figure 3.6: Comparison between EGO Search and SVM Search.

61

• How many dimensions can the algorithm handle effectively? This question is

essential since its answer determines the maximum number of variables we can

use in a user-computer interaction.

• Besides the dimensionality issue, it is also important to understand how user

preference sensitivity will affect the search. To explain, some users may have

strong preferences only in a small region of the design space and will not prefer

designs elsewhere. Some other users, on the contrary, may have broader range

of preferred designs. We will investigate the search efficiency on simplified

preferences using the multivariate Gaussian model from Equation (3.19), where

the preference sensitivity is controlled by the Gaussian spread λuser.

3.4.1 Parameters used in the merit function

We investigate the influence of the form of the merit function on the search result.

Two types of merit function are of interest. One form of merit function, as we used

in the previous section, is a weighted sum of the utility and the mean square error:

w1f̂ + w2σ̂
2. The other form, as we introduced in the review of EGO, evaluates the

expected improvement of a new query. In a maximization context, given fmax as the

best design sampled so far, this expected improvement has the following form:

E[max(F − fmax, 0)] = (f̂ − fmax)Φ

(
f̂ − fmax

σ̂

)
+ σ̂φ

(
f̂ − fmax

σ̂

)
. (3.20)

Notice that σ̂ is a function of x through the correlation R and r which are parame-

terized by λkriging.

We now investigate the influence of parameters of these two merit functions. For

the weighted sum function, we test a set of weights: w1 = 1, w2 = (s/i)r−1, r = 1, 2, 3,

where s is the maximum number of iterations and i is the current iteration number.

The weights are set this way to examine how much exploration is needed during

62

Table 3.2: Impact of the weights of the weighted-sum merit function
(Lower values are better)

error µ(σ) k = 1 2 3
Branin 0.140 (0.147) 0.233 (0.333) 0.427 (0.468)
Camel 0.578 (0.298) 0.588 (0.329) 0.584 (0.424)

Hartman3 0.167 (0.053) 0.173 (0.038) 0.149 (0.035)
Rosenbrock 2.582 (1.314) 1.175 (1.282) 3.777 (2.712)

the search and diminish the exploration emphasis towards the end of the process.

For the expected improvement merit function, we are interested in the Gaussian

spread λkriging used in evaluating the mean-squared error function. We test a set of

λkriging = 10/i, 100/i, 1000/i, 10000/i to see what scale of λkriging should be used. Also,

we notice that the correlation matrix R may become ill-conditioned when the spread

λ is small. This is because all values off the diagonal in R will be closer to 1 with a

small λkriging while the diagonal elements are always 1’s. Thus the minimum λkriging

during the process is empirically set to 1 (when the maximum iteration number is

set to 10). Again, λkriging decreases along the iteration to shift the priority from

exploration to exploitation.

Tables 3.2 and 3.3 show simulation results from various test functions using the

proposed merit functions. We run ten tests for each combination of function and

spread; each test contains ten iterations; within each iteration eight samples are

labeled. The reported numbers are the mean errors of the searches after the last

iteration and their standard deviations. From the results it can be concluded that

although some parameter values achieve better and more stable performance over

others, there is no universally recommended parameter values for the merit functions

at this point. Also, the sensitivity of the resulting error with regard to the parameters

is different for different test functions.

63

Table 3.3: Impact of the spread of the expected improvement merit function
(Lower values are better)

error µ(σ) λkriging = 10/i 100/i 1000/i
Branin 0.300 (0.122) 0.126 (0.102) 0.051 (0.039)
Camel 1.057 (0.554) 0.559 (0.356) 1.356 (0.704)

Hartman3 0.208 (0.065) 0.232 (0.038) 0.226 (0.067)
Rosenbrock 5.844 (5.686) 0.642 (0.135) 1.074 (0.771)

3.4.2 Dimensionality and user sensitivity

It is intuitive that when a design has many dimensions, the search will become

less effective. This is also the case if the utility function of a user takes high values

only within a small region. We are interested to see how the EGO Search algorithm

works for different dimensions and utilities. The test uses Gaussian functions with

10, 15 and 20 dimensions as the utilities with a set of spreads λuser ∈ [0.5, 1, 2, 4]. We

run ten tests for each combination of dimensionality and spread; each test contains

twenty iterations; within each iteration eight samples are labelled. The merit function

used here is f̂ + (s/i − 1)σ̂2, where s is the maximum iteration number and i is the

current iteration number. Table 3.4 shows the mean error that the algorithm reaches

at the 20th iteration and its standard deviation.

Although simulations are not direct reflection of how the algorithm will perform

in real situations, there are a few observations we can derive from these results: (1)

Noticing that the Gaussian function ranges from 0 to 1, the algorithm achieves an error

less than 10% only when the spread is large (low sensitivity of user preference) or the

dimensionality is low; the algorithm has very limited capability when dimensionality

increases beyond twenty; (2) the algorithm has fairly consistent performance since

the standard deviation of the error at the 20th iteration is low.

64

Table 3.4: Impact of dimensionality and spread of the utility
(Lower values are better)

error µ(σ) dim = 10 15 20
λuser = 0.5 0.026 (0.005) 0.041 (0.007) 0.066 (0.018)

1 0.046 (0.016) 0.074 (0.010) 0.221 (0.139)
2 0.068 (0.026) 0.149 (0.017) 0.305 (0.094)
4 0.147 (0.039) 0.265 (0.036) 0.481 (0.125)

3.4.3 Computational cost

For the proposed algorithm to work effectively, a solution close to the global

optimum must be found in each optimization of the merit function. Since the merit

function is non-convex, finding such a solution is difficult. Although the Matlab

GA toolbox provides a satisfactory solution for the tested problem dimensions, the

computational cost of such an implementation is less than acceptable for real human-

computer interactions. This problem will be discussed in detail in Section 4.3.

3.4.4 EGO Search versus GA plus SVM

Recall that one of the reasons that we abandoned GA for the purpose of prefer-

ence elicitation is the absence of fitness in binary choice data. However, with SVM

transforming binary choices into a decision function, this seems no longer a barrier,

and naturally one may wonder whether GA plus SVM will be competitive against

EGO. The answer to this is negative, as can be confirmed by the simulated test re-

sults shown in Figure 3.7 for comparisons between GA plus SVM and EGO with the

same SVM setup. The way we transform the decision function into fitness will be

described in the following paragraph.

The reason behind this result is that the decision function generated from SVM

is not suitable to represent the fitness of designs. Recall that all support vectors will

have decision function value either 1 or -1, while other non-support vectors could take

values much greater than 1 or much smaller than -1. Therefore using the decision

65

(a) Rosenbrock (2 dimensions)

(b) Six-Hump Camelback (2 dimensions)

(c) Branin (2 dimensions)

Figure 3.7: Comparison between EGO Search and GA plus SVM.

66

function values directly as fitness will be problematic and the resulting parents will

only be replicates of designs with high decision function values. On the other side, if

we use the ranking of the decision function values, which is what we did in the above

tests, the parent selection scheme will still not work since the support vectors with 1s

and -1s will now have similar fitness, making the algorithm very likely to choose those

not-preferred designs as parents. A third attempt, which is to choose only parents

from the preferred designs also has its own problem: With very limited number of

designs, only a few will be non-support vectors, leaving the fitness values of the

selection pool all 1s. This is especially the case when the dimensionality of the design

space is high. As a conclusion, the idea of using GA for the purpose of preference

elicitation is not effective because of the difficulty in getting fitness information, in

validating its crossover and mutation operations, and thereafter in converging to a

solution within a small number of queries.

3.5 Vehicle Exterior Styling Design Elicitation

Due to its observed performance in simulation, EGO Search is chosen for im-

plementation in an actual user study involving vehicle exterior styling design. The

purpose of the study is to investigate whether the algorithm can successfully help the

subjects to search for a design that is close to a given target.

3.5.1 Software development

To enable real-time online human-computer interactions on designing vehicle styles,

a parametric three-dimensional (3D) model incorporating 20 variables within the

range of [0, 1] is programmed in WebGL, which is a context of the canvas HTML

element that provides a 3D graphics API implemented in a web browser without the

use of plug-ins. A Java servelet implementing the proposed search algorithm runs

on the server side to parse user feedback and provide queries for the next iteration.

67

At the time of this writing, readers may access “http://yirenumich.appspot.com” for

the EGO Search implementation. A latest browser, e.g., Mozilla Firefox or Google

Chrome, is required to run these applications.

3.5.2 Convergence test setup

The test pages are set up at “/convergencetest.html” on the website and all user

data are submitted and can be retrieved at “/log.html”. In the test environment, a

random and a fixed target design are shown at the top of the web page. Six initial

random guesses are shown below the target, see Figure 3.8(a). The data retrieval

page shows in the top division how many tests have been conducted, followed by the

accumulated data from each iteration in that test. Each design sampled thus far is

visualized in the bottom division where the preferred ones are highlighted. The red

highlighted curve represents the target in that test. Figure 3.8(b) contains the data

visualization. The parameters set up in the implementation are: λSVM = λkriging =

0.05 and [w1, w2] = [1, 1000]. These parameters are set empirically and their value

should be further studied. Since Google Appengine limits the request time at 30

seconds, we set the population limit to 10 and the number of generations to 500 in

the GA implementation for the global search inside the EGO Search iterations. This

is a fairly low-cost setup for a 20-dimensional space.

This online environment was developed for mass data collection. As of this writ-

ing, more than six hundred anonymous interactions have been recorded. However,

looking at the collected data, we surmised that the anonymous users do not necessar-

ily follow the test instructions and thus, while interesting, the collected results cannot

be analyzed with confidence. Consequently, we conducted a pilot test in an interview

setting with eight subjects from the University of Michigan. Prior to initiating the

test, the subjects were instructed on how they can view, rotate, zoom, pan, synchro-

nize and reset the viewpoint of each design rendering. They were also made clearly

68

(a) Test environment

(b) Test data visualization

Figure 3.8: Online human-computer interaction interface and data visualization. (a):
The interactive environment at “/convergencetest.html” allows the user to zoom, pan,
rotate each design and updates the guesses once the user hits the “Next” button; (b):
The data visualization window at “/log.html” has all user tests listed at the top,
number of iterations in the middle, and the cumulated data at the bottom. The
red curve represents the target design, the highlighted dark curve(s) represent the
preferred design at this point and the rest all not preferred.

69

aware of their task which was to pick a set of designs that were relatively closer to

the given target in each iteration. Moreover, the subjects understood that they could

pick up to five designs as “preferred” and that they had the option to pick nothing

if none was relatively close to the target. After the subjects submitted their final

design, we asked them to state whether they were “satisfied” or “not satisfied” with

the test result. This information was also sent back to the server.

3.5.3 User data analysis

While all users were satisfied with the test result according to their responses,

we need to examine whether the interactions converged. We start by measuring

the Euclidean distance between each sampled design and the target in each test,

as illustrated in Figure 3.9, since no explicit objective function is available and the

gap between the optimum and the converged objective value at each sample cannot

be measured. In the figure, samples towards the end of each test curve are those

generated in later iterations. The plot shows that later samples do not necessarily

acquire lower distance values, and thus convergence is not observed.

Nonetheless, visual comparison between targets and user interaction results, as

shown in Figure 3.10, indicates that users did submit designs close to their targets.

One possible reason for this contradiction is that, when people compare two different

shapes, the difference is not measured in the design (variable) space but in some

feature space of the shape, i.e., the perceived difference of a pair can be small when

its distance in the design space is large. We can try to verify this reasoning by

examining one user’s test data (data “Test0” on the website). Figure 3.11 compares

the target design and samples in the last iteration (iteration 17) which hint that

the algorithm understands that the user prefers a roof curve design that has a steep

front wind shield and an extended hatchback. In fact, although distance-wise most

of these designs are off target, the first five have roof fashions visually close to that

70

of the target while the last one still meets the description but has some variation of

its own.

One then surmises that the user focuses mainly on matching the roof style, and

the algorithm indeed understands what the user is searching for. In Figure 3.12, we

show what the user selects in the first four iterations, and from these selections we

see a consistent user pursuit and convergence of the search. In the same figure we

also show that the design with minimum Euclidean distance does not acquire the roof

style the user is looking for and is in fact not picked in the iteration where it appears.

From the above observations, it appears that convergence cannot be shown by

the Euclidean distance to the target. Since the user focuses mainly on the roof style

design, we formulate a measure that differentiates the roof style as follows. We define

style features as seven lengths between key control points of the roof silhouette. The

lengths are denoted in Figure 3.13 and the measure of difference is defined as the

Euclidean distance in the feature space spanned by the seven lengths. With this new

measure definition, we examine our earlier conclusion quantitatively. Figure 3.14(a)

and 3.14(b) show scatter plots of the sampled designs in a reduced space corresponding

to the feature measure and the Euclidean measure accordingly. Each circle represents

a sampled design and the square represents the target. The inner radius of a circle

indicates when it first comes into existence while the outer radius shows when it is

abandoned, in both cases the smaller the radius the earlier the event occurs.

Two observations are made: Firstly, most of the thick circles, representing re-

peatedly selected designs, are close to the target. This verifies the assumption that

the user mainly focuses on matching the roof design; secondly, the feature map has

most of the larger circles around the target while smaller ones are away, while in the

Euclidean map some of the larger circles are scattered away from the target. The

implication is that while no knowledge about the user is posed on the algorithm a

priori, it “learns” what the user is looking for and generates designs close to the target

71

Figure 3.9: Normalized Euclidean distance from each sampled design to the target
in each test. The circled design is the one submitted by the user, while the triangle
design has the lowest Euclidean distance to the target.

in the unknown feature space, rather than in the explicit design space.

It should be noted that there are two factors that may affect convergence. Recall

that in EGO Search we have a balance between exploration and exploitation. Every

new sample is forced to be away from existing ones, and therefore it may not be close

to the target in the feature or the Euclidean space. In fact, in the highlighted test

data shown above, the final submitted design (the one with Euclidean distance to the

target of 1.55, as shown in Figure 3.11), appears as early as the fourth iteration but

nothing better is found afterwards. One can verify this from Figure 3.14(a) where

the final submission is shown by the thickest circle close to the target. Therefore,

while a balance clearly should be made, how the weights shall be tuned needs more

study. Further, the GA implementation in each EGO Search iteration uses a fairly

low number of generations with a small population. Therefore, the sampled point

may not be the optimum of the merit function and this can lead to an ineffective

search.

72

Figure 3.10: Visual comparison between user test results and the targets from side
and perspective views.

73

Figure 3.11: Visual comparison between samples in the last iteration and the target.
Data generated from Test0 on “log.html”. Euclidean distances to the target are listed
under the designs.

3.5.4 Observed issues in user interactions

There are a few issues we observed from the users in the pilot test. First, even with

a target given, the user can still exhibit inconsistent preference during the interaction.

For example, some of the users do not realize that they should rotate the designs when

evaluating them, though they have been told they can do it. Once they realize in the

middle of the interaction process that they can rotate the image, their perception of

the shapes changes, and so does their measure of difference between shapes. Second,

some users appeared to be rather insensitive to shape changes and would miss good

designs (following their own measure) during the interaction, while the interaction

does not allow them to make changes to already submitted choices. Both of these

“human mistakes” can confuse the algorithm and make it less effective. In addition, a

practical issue of collecting online interaction data from anonymous users is that it is

difficult to discriminate well-thought interactions against randomly-submitted ones.

74

Figure 3.12: Designs labeled as preferred in the first four iterations, compared with
the target and the one with the minimum Euclidean distance within all samples.
Euclidean distances to the target are listed under the designs.

Figure 3.13: Features that capture the roof design.

75

(a) Feature map

(b) Euclidean map

Figure 3.14: Samples from data “Test0” in the feature and Euclidean space. Mul-
tidimensional scaling is applied to both measures to create 2D visualization of the
data.

76

3.6 Concluding Remarks

This chapter investigated search algorithms behind an iterative human-computer

interaction to fulfil the purpose of preference elicitation. The SVM Search reduces

the design space and forces convergence. The EGO Search combines exploitation of

the observed comparisons and exploration of the unsampled space. The simulated

test results showed that both proposed methods are better than GA when only bi-

nary feedback is available and that EGO Search outperforms SVM Search when the

dimensionality of the design space is high. The EGO Search algorithm was imple-

mented for a 3D vehicle exterior design application and the pilot real subject tests

showed that subjects can successfully locate designs close to their targets.

There are several possibilities for improving and expanding this work. Proper

adaptive parameter setting within the merit function in EGO Search is desirable

and requires further testing. The computational cost of global optimization of the

merit function needs to be reduced further before the proposed algorithm can be used

effectively for extensive user interactions. It is also interesting to investigate whether

more accurate decision functions can be estimated by using more than two classes.

In fact, designs that are switched from preferred to not-preferred should be treated

differently from designs that are not preferred from the beginning. The rotation

matrices recorded during the interaction can also provide insights on what features

the user is sensitive to when she evaluates the difference between a target and the

samples. Such insights should be incorporated into the learning process to create

more accurate merit functions. We continue exploration in these aspects in Chapter

IV.

Another important direction of future investigation is how to utilize preferences

collected from different individuals. Investigation in Chapter VI shows that the search

can be made more efficient if the algorithm incorporates history from previous users

into a current session.

77

Finally, the data collected from an interactive session can be treated as revealed

choices from a simulated market, and so combining search process records from many

users may provide insights and possibly lead to preference models for groups of users

or market segments.

78

CHAPTER IV

Augmented Preference Elicitation

The EGO Search algorithm developed in the previous Chapter has three elements:

1) the decision function (prediction) f̂ , 2) the mean-squared error function σ̂ and 3)

the merit function that combines the first two. We devote this chapter to investigating

how the EGO Search algorithm can be enhanced. Two areas of improvement are

documented:

• The first improvement in Section 4.1 is modeling a preference function using

pairwise relationship of sampled designs rather than treating the entire data

as binary labelled. We will show that this modification in f̂ results in better

search performance especially for problems with high dimensions.

• The second improvement is about reducing the computational cost of optimizing

the merit function. Variations of the merit function are reviewed in Section 4.2.

We show that these functions have multiple local optima around the global one,

and this property causes the optimization on them to be slow. We then propose

new merit function in Section 4.3 and show empirically that this smoother

function can significant reduce the computational cost of an EGO Search in

high-dimensional spaces.

79

4.1 Preference Modeling with Comparison Tree

In previous studies, we treated the accumulated user feedback as binary labelled

data, i.e., a design may either be “preferred” or “not-preferred”. This is a rather

simplified interpretation of the subject response since a “once-preferred” query is not

differentiated from those that are “not-preferred on sight”. As we will show later in

the section, treating subject responses as binary labelled data will cause the decision

function f̂ to be inconsistent with the response, i.e., design A is considered better

than design B but f̂(xA) may be less than f̂(xB). The easy fix we propose here is to

create a complete comparison tree and formulate a learning problem that incorporates

this tree as constraints rather than treating data as binary. We elaborate below.

4.1.1 Terminology and definition

Let n and p be the number of sampled designs and their dimensionality. Denote

xi : p×1 as the ith sample, and X : n×p as the total sample set so far. Let G : n×n

be the unidirectional graph representing the pairwise comparison relationship between

samples, where Gij = 1 if f̂(xi) > f̂(xj). Introduce a decision function

f̂(x) = wTv(x), (4.1)

where w : n×1 is the parameter vector and vi(x) is defined as the correlation between

x and the ith sampled design xi:

vi(x) = exp(−λ||xi − x||22). (4.2)

The parameter λ is the spread of the Gaussian kernel and is set to 1/p as suggested

in Chang and Lin (2011).

80

4.1.2 Learning based on pairwise comparison

Infinite number of decision functions exist that are consistent with G. Similar to

the philosophy of SVM, here we form an optimization problem by finding a decision

function with the least complexity. In other words, the optimal decision function shall

have the parameter vector w∗ with the least possible norm. Therefore, the optimal

parameters can be found by solving the following quadratic problem:

min
w

1

2
wTw

subject to wT (v(xj)− v(xi)) ≤ a, ∀i, j such that Gij = 1, (4.3)

where a ≤ 0 is a user-defined parameter that controls the steepness of the decision

function. In the special case when a = 0, we have w∗ = 0 and thus the search becomes

a farthest-first search, i.e., the search depends only on the spatial arrangement of X.

The parameter a plays a role of scaling the norm of feasible w∗ and is empirically set

to −1 in this study.

4.1.3 Simulated test results and discussion

Below we test three different forms of decision functions: In the first case, we treat

subject responses as binary labelled data and train the data with SVM with C = 106

(indicating hard-margin). We call this method “binary classes”. In the second case,

we train the data using a comparison tree and solve the problem in Equation (4.3).

We call this method “comparison tree”. In the last case, we use the binary labels for

the first half of the search and switch to using the comparison tree in the second half.

This method is denoted as “hybrid”.

The test functions we used are 2D Camel, 2D Branin and multidimensional Gaus-

sian with 10, 20, 31 dimensions, as defined in Equations (3.15), (3.17) and (3.19),

respectively. To understand how these algorithm setups will work in a difficult situa-

81

tion, the spread in the Gaussian tests is set at λuser = 5, creating a function that has

only non-zero values close to the unique optimal solution. All tests are repeated 10

times due to the stochastic nature of the global search inside each iteration. Mean

errors from the corresponding known optimal objective values are reported for each

test as shown in Figures 4.1 to 4.5.

Results show that the comparison tree method is not appealing in a short run and

it in fact slows down the convergence speed for the first few iterations. However, when

the dimensionality of the search space is high, this method will eventually outperform

the binary classes method in a long run. Recalling that a good search strategy bal-

ances the exploration and exploitation, we can argue that the observation is resulted

due to the fact that while the binary classes method keeps the decision function fuzzy

enough to enhance exploration, the comparison tree method exploits the limited ob-

servation and may lead to an inefficient search in early stages. The hybrid approach

is fact inspired by this observation, and indeed has superior performances across all

test functions.

In addition to the above qualitative explanation of the simulated test results, we

present in Figure 4.6 the violation rates of the binary classes method in each test for

readers to have a better sense of its “fuzzyness”. The violation rate at some iteration

i is defined as follows:

violationi =
violations in constraintsi

constraintsi
. (4.4)

The violation rates data here show that (1) high violation rate at early stage of a

search will not hamper the searching efficiency; this is because exploration has more

weight than exploitation during that period and thus the accuracy of the decision

function does not contribute too much to the effectiveness of the search; (2) high

violation rate at late stage of the search will slow down the search and this is when

82

Figure 4.1: 2D Six-Hump Camelback

Figure 4.2: 2D Branin

comparison tree can be useful.

4.2 Variations of the Merit Function

In Chapter III we introduced two merit functions in the EGO algorithm to bal-

ance exploration and exploitation, namely, the linear weighted sum and the expected

improvement. In this section we review variations of the merit function from the lit-

erature (Sanena (2002); Kushner (1964); Cox and John (1992); Watson and Barnes

(1995); Locatelli (1997); Žilinskas (1981)) and discuss how they can help to improve

algorithmic performance on simulated tests. Although derived from different concepts

83

Figure 4.3: 10 dimensional Gaussian, λuser = 5

Figure 4.4: 20 dimensional Gaussian, λuser = 5

Figure 4.5: 31 dimensional Gaussian, λuser = 5

84

Figure 4.6: Violation rates at each iteration in each test

and disciplines, these variations all share the same functionality which is to balance

exploration and exploitation, and thus all require parameter tuning. To simplify the

notation, we use f̂ instead of f̂(x) and z instead of (fmin − f̂/σ̂), where fmin is the

current best sampled f̂ . Readers are reminded that z here shall not be confused with

Z and z in other chapters. Also we denote φ(·) and Φ(·) as the Gaussian probability

density function and the Gaussian cumulative distribution function, respectively.

To recall the context of the present discussion, the objective of creating and opti-

mizing the merit function is to find a design (query) that will be potentially close to

the optimal solution. When creating this merit function, we have at hand the decision

function f̂ representing the predicted preference of a subject, and the mean-squared

error of the prediction σ̂2. Since most optimization literature deals with minimization

problems, we follow this protocol in this section and denote the best queried design to

have value fmin, i.e., all merit functions introduced here are applied on minimization

problems but will be modified to fit maximization problems in the implementation.

85

4.2.1 Kushner’s criterion

Originally proposed by Kushner (1964), this criterion is to maximize the proba-

bility for the new query to be improved from fmin by an amount ε:

fKushner = P (f̂ < fmin − ε)

= Φ(
fmin − ε− f̂

σ̂
), (4.5)

where ε is a user-defined parameter controlling the balance between exploration and

exploitation. To explain, when ε is large, the effect of the term − 1
σ̂

in the cumulative

distribution function is amplified and thus a larger variance σ̂ is favorable; on the

other hand, when ε is small compared to fmin − f̂ , the merit function will favour an

x that has a small σ̂ and a large fmin − f̂ which is pure exploitation.

4.2.2 Generalized Expected Improvement (GEI)

The definition of generalized expected improvement directly comes from the ex-

pected improvement formula in Equation (3.12). Introducing a non-negative integer

parameter r, the expected improvement is now defined as:

E[Improvement(x)] = E[max{(fmin − f̂)r, 0}]. (4.6)

Expanding (fmin − f̂)r to its polynomials, one can get the recursive formula for the

generalized expected improvement

fGEI , E[Improvement(x)] = σ̂r
r∑
i=0

(−1)i
(

r!

i!(r − i)!

)
zr−iTi, (4.7)

where

Ti = −φ(z)zi−1 + (i− 1)Ti−2, (4.8)

86

starting with T0 = Φ(z) and T1 = −φ(z). The expected improvement function is a

special case of Equation (4.7) when r = 1. Although not obvious, here r plays the role

of balancing exploitation and exploration. To be specific, the merit function favors

more exploitation when r is low and more exploration when g is high. Notice that

the special case where r = 0 represents a pure exploitation equivalent to ε = 0 in

Kushner’s criterion.

4.2.3 Lower Confidence Bounding function (LCB)

The lower confidence bounding function employed in Cox and John (1992) is es-

sentially the weighted sum formula we used in Chapter III. In a minimization context,

this merit function can be written as:

fLCB , f̂ − bσ̂, (4.9)

where b is a weighting factor that controls the relative importance of f̂ and σ̂.

4.2.4 Locating the Regional Extreme (LRE)

This merit function proposed by Watson and Barnes (1995) is very similar to the

expected improvement merit function, except the additional f̂ term:

fLRE =


f̂ + (fmin − f̂)Φ

(
fmin − f̂

σ̂

)
+ σ̂φ

(
fmin − f̂

σ̂

)
, if σ̂ > 0

0, if σ̂ = 0.

(4.10)

Recalling that the expected improvement function usually has zeros in most places,

we see that this additional f̂ acts as a smoothing factor in the merit function.

87

4.2.5 Switching criterion

Instead of balancing exploitation and exploration, Sanena (2002) proposed a hy-

brid method that purely exploits or explores during the search process. The algorithm

starts with a few iterations of pure exploration, regardless of the observations, and

then switches to pure exploitation until the queries are close to each other in a se-

quence, at which point the algorithm goes back to exploration. Similar schemes can

also be found from Locatelli (1997) and Žilinskas (1981).

4.2.6 Computational difficulty

We reviewed different forms of the merit function used that can be in the EGO

framework. All of these formulations have the same practical purpose: Search by

balancing exploration and exploitation. Also, all merit functions rely on the prediction

f̂ and error σ̂. A performance comparison on two-dimensional functions including

Branin, Six-hump Camelback and others is presented in Sanena (2002) and will not

be repeated here. As we briefly mentioned in Chapter III, the major concern we have

about using these merit functions is their computational cost in high dimensional

problems. To illustrate, Figure 4.7 provides the recorded computational cost at each

iteration when finding the optimal solution of the 31-dimensional Gaussian function

in Equation (3.19). The test was run on an i5-460M CPU with 4G RAM computer.

The nonlinearity of the merit function and the use of a GA to optimize it are

major contributors to the computational cost, which becomes a great obstacle for

employing the algorithm in a user-computer interaction. In the following section, we

investigate how the computational cost can be reduced while maintaining the quality

of the search.

88

Figure 4.7: The computational costs at the first 30 iterations when optimizing the
31-dimensional Gaussian in Equation (3.19).

4.3 Fast EGO and Its Simulated Test Results

Our experiments on simulated tests with EGO show that the nonlinearity of the

merit function mainly comes from the error function σ̂ which takes low function values

(close to zero) around sampled designs and high values elsewhere. This property of

the error function causes the expected improvement function and other variations

of the merit function to have usually one or a few global optima and many local

ones. To illustrate this, Figure 4.8 shows the contour plots of variances of the merit

function during the search on a Branin function, where brighter areas indicate higher

function values. The crosses represent sampled designs at this moment, and they are

colored only to be differentiated from the background contour. In each sub-figure,

the bright stripe from the top left corner to the bottom right corner represents a zone

of high prediction value. The Kushner’s criterion in this case is pure exploitation

and is not preferable. In figures on the other merit functions, the scattered dark

areas represent regions close to the sampled designs and have lower merit values

than their surroundings. Notice that regions with the highest merit function values

(bright areas circled out) are irregular due to the low merit values around the sampled

89

designs, causing the region to have multiple local optima. Considering that the search

algorithm will gradually shift its focus from exploration to exploitation, a fairly large

amount of designs will be scattered in a small region close to the optimizer in later

iterations. We believe it is this phenomenon that deteriorates the efficiency of the

genetic algorithm searching on the merit function.

4.3.1 The geometric meaning of σ̂

With the above observation, and bearing in mind that the goal of a merit function

is to balance exploration and exploitation, it is natural to discuss alternatives for the

error function σ̂ that will potentially make the merit function to be easier to optimize.

Although not obvious from its definition in Equation (3.10), the geometric meaning

of σ̂ at a certain location x is nothing other than the minimum distance from x to all

sampled designs. Figure 4.9 compares the error function σ̂ and the minimum distance

function defined as:

fmin dist(x) = max
i
{exp(−λdistance||x− xi||2)}, (4.11)

where xi for i = 1, ..., n are sampled designs and λdistance plays the same scaling role

as λkriging. From this comparison, we see that these two ways to describe the geomet-

ric arrangement of the samples are almost equivalent under some proper settings of

λdistance and λkriging. This observation leads to the new merit function we propose in

the next subsection.

4.3.2 A computationally inexpensive merit function for EGO

The new merit function we propose has the following form:

ffast(r
2,x) = w1f̂(x) + w2r

2 −
n∑
i=1

exp
(
pi(r

2 − ||x− xi||22)
)
. (4.12)

90

(a) Kushner’s criterion, ε =
0.5fmax

(b) Expected improvement

(c) Generalized expected im-
provement, r = 2

(d) Lower confident bounding,
b = 1

(e) Locating the regional extreme

Figure 4.8: Merit functions during the search on a Branin function (Equation (3.17)).
Bright areas indicate high function values.

91

(a) mean-squared error function (b) Minimum distance function

Figure 4.9: Comparison between the mean-squared error function and the minimum
distance function under a set of sampled designs (represented as white crosses). Bright
areas indicate high function values.

Instead of defining the merit function on x, we introduce a new variable R2 to rep-

resent the squared minimum radius from x to all existing samples xi for i = 1, ..., n.

Following the goal of balancing exploration and exploitation, this merit function pre-

serves the two objectives: Maximizing the prediction f̂(x) and the prediction error

which can be represented by r2. The setting of the weights w1 and w2 determines the

focus on either exploration or exploitation and shall be calibrated according to the

scale of the two objectives. Given the geometrical meaning of r2, we set

w1 =

∑p
i=1(ximin − ximax)2

f̂max

, (4.13)

where ximin and ximax are the lower and upper bounds of the ith dimension of D. The

numerator of w1 represents the longest distance in D and its denominator f̂max is the

optimum of f̂ . Then w2 is set at 1 for the first 10 iterations of an interaction, and

is reduced to 0.01 afterwards. This setting ensures the two objectives have values of

the same scale in the early stages of the search and shifts the focus to exploitation to

improve convergence in the later stages.

The last term in Equation (4.12) serves as a penalty scaled by pis. The exponential

92

function shapes the penalty so that it comes into play when r2− ||x−xi||22 is greater

than zero. For r2 to precisely fulfil its physical meaning, one is required to repeat

optimization of the merit function by increasing pi if the corresponding term r2 −

||x − xi||22 is greater than zero, reducing the value of the penalty term to be less

than n. However, from our experiments, such an iteration is not necessary and the

approximated solution with pi = 1 for i = 1, ..., n is enough to provide satisfactory

search performances on high dimensional Gaussian functions.

We summarize the algorithm for optimizing this merit function below.

1. Optimize f̂ using sequential quadratic programming starting with a support

vector with label 1. This will not find the global optimum of f̂ but the local

solution is good enough for the purpose of weighting the two objectives. Also,

using a gradient-based algorithm with an initial guess that is close to a local

solution reduces the cost of this step.

2. Apply GA on the merit function with w1 and w2 set as described. The variable

x is bounded in D and the variable r2 is bounded below by

r2
l =

∑p
i=1(ximin − ximax)2

n2
, (4.14)

where n is the number of samples so far. This is set to force the solution x to

be sufficiently away from sampled designs.

3. If multiple designs are required for a query, the above two steps are repeated

for each new design needed. Once a new design is found, it is placed into the

sampled set so that the next new design will not replicate the previous ones.

4.3.3 Simulated test results

We compare the convergence performance and corresponding computational costs

of searches using ffast and flcb as their merit functions. The experiment is conducted

93

using the Gaussian functions from Equation (3.19) with 10, 20 and 31 dimensions

and λutility = 5. Throughout the experiment, the hybrid decision function introduced

in Section 4.1 is employed. The MATLAB genetic algorithm toolbox is used to solve

the merit function and the maximum generation number is set at 500. Figure 4.10

compares the convergence performance and Figure 4.11 compares the corresponding

computational costs. The result is encouraging, as the performance from using ffast is

not compromised and the computational cost is reduced significantly. In fact, when

using ffast, the computational cost does not grow with the growth of the sampled set,

which is the case when using flcb.

4.3.4 Discussion

Although we do not have a theoretical proof for the superior results of the pro-

posed Fast EGO algorithm, the following empirical discussion may provide some

explanation. The general argument is that Fast EGO can alleviate the nonlinearity

of the merit function by introducing the new variable r2 to the search space. At each

realization of r2, the merit function is smoother than the original one and a solution

can be obtained in fewer iterations. We illustrate an example in Figure 4.12.

Here we show several slices of the Fast EGO merit function with r2 = 0.1, 1, 1.2

and 1.5 during a search on the Branin function, Equation 3.17. Crosses in each figure

represent sampled designs at that moment and are colored only to be differentiated

from the background contours. Brighter areas indicate higher merit function values.

Recalling the physical meaning of r2, we can see that the change in the merit along

r2 is intuitive: When r2 = 0.1, the merit function almost coincides with the decision

function f̂ . When r2 increases, the optima gradually move to the regions that have

not been sampled. In general, we conclude that the genetic algorithm works better in

this expanded search space r2×D where the function is smoother than in the original

design space D where the function is highly nonlinear.

94

(a) 10-dimensional Gaussian, λutility = 5

(b) 20-dimensional Gaussian, λutility = 5

(c) 31-dimensional Gaussian, λutility = 5

Figure 4.10: Convergence performance of searches with ffast and flcb as their merit
functions.

95

(a) 10 dimensional Gaussian, λutility = 5

(b) 20 dimensional Gaussian, λutility = 5

(c) 31 dimensional Gaussian, λutility = 5

Figure 4.11: Computational cost of searches with ffast and flcb as their merit functions.

96

(a) r2 = 0.1, min: -11.39, max: 1.33 (b) r2 = 1, min: -14.85, max: 0.92

(c) r2 = 1.2, min: -16.63, max: 0.60 (d) r2 = 1.5, min: -23.60, max: -0.19

Figure 4.12: Contour plot of the merit function at different r2 values.

97

4.4 Concluding Remarks

This chapter focused on improvements of the EGO Search algorithm from two

aspects:

• We considered the accumulative user binary choice response as a tree structure

and from there reformulated the estimation problem of the utility function. The

estimation from this method can avoid violations to the observed responses and

is thus more accurate. We showed by simulation that a hybrid approach where

rough estimations of the utility is used during the first leg of querying and the

improved estimation during the second leg will improve the search performance,

and this improvement is significant in high dimensions.

• We proposed a new form of merit function by adding one more dimension to

the search space of the merit. The computational cost on this new Fast EGO

merit function is largely reduced using the same genetic algorithm as before due

to the smoothness of the new function. This idea has the potential to improve

also the efficiency of EGO in traditional “black-box” optimization problems.

There are two possible directions we still need to explore: (1) The chosen designs

from a set during any iteration shall have similar utilities compared to the rest. This

is so because we assume the subject clusters the utilities of the set into two groups

where the between-distance is larger than the within-distance. Incorporating this

information in utility estimation may further improve its accuracy. (2) The weights

in the proposed merit function, i.e., w1 and w2 are empirically set to tune the focus

of a search between exploration and exploitation. An automatic rule to achieve this

would be a useful further development.

98

CHAPTER V

Preference Estimation and Identification

This chapter discuss the solutions of the preference estimation and identification

problems defined in Chapter I. We reiterate the problem definitions below and will

show that they share the same solution.

1. In “preference estimation”, we still use comparative preference tests during the

interaction, i.e., given a choice set, the subject assigns “1” to the relatively

preferred designs and “-1” to the rest. Instead of optimizing the utility, the

goal here is to estimate the utility function such that the order of any design

pair x1 and x2 ∈ D will be consistent with the subjects’ true preference, i.e.,

f(x1) > f(x2) when x1 is more preferred than x2.

2. The “preference identification” problem uses definite preference tests where the

subject assigns “1”s only to those designs that they truly prefer and “-1”s

otherwise. The goal of this problem is to identify the decision boundary in D

between the preferred and not-preferred classes.

The preference estimation problem is usually known as parameter (part-worth) esti-

mation in conjoint analysis. Recall from Section 2.1 that the parameters w can be

estimated and used to model the utility

f(x) = wTv(x) + ε, (5.1)

99

where f is the utility for design features v(x) and ε is the unexplained error. The

probability for a subject to choose a certain design is modeled as a function of the

utility differences between the chosen design and all alternatives. An estimator ŵ of

the true parameters is then determined by maximizing the likelihood of all test re-

sponses from a population of subjects. Overall, the quality of a preference estimation

procedure is measured by the training and predictive performance of the estimator

and the amount of effort spent on collecting the data.

Most of the research effort from econometrics and the engineering design commu-

nity has been devoted to building specific models to explain the data better. Some

significant contributions include the early development of multinomial logit (McFad-

den (1973)), nested logit (Wen and Koppelman (2001)), mixed logit (McFadden and

Train (2000); Train (2001)) models and also non-utility-based models such as Hauser

et al. (2010). With regard to data collection (or questionnaire design in conjoint

analysis), the main idea is to design experiments (a set of queries) that will minimize

the variance of the estimator. Although theoretically sounding, queries (or sometimes

called questionnaires) for conjoint analysis are notoriously known for being prolonged

and repetitive. It is not until recently that this (non-adaptive) method has been

challenged by the concept of active learning (adaptive query) from both the econo-

metrics and machine learning communities, but with very limited recognition from

each community of the work in the other. To make terminology concise, we will use

the term “active learning” throughout this writing. The idea of active learning is to

create queries that maximize the information gain from the subject and also maintain

the diversity of the query in the feature space. Independent research in econometrics

and machine learning show that active learning can increase the convergence speed

of an estimation (see Toubia et al. (2004, 2003, 2007a); Abernethy et al. (2008); Tong

and Chang (2001); Chang et al. (2005); Tong and Koller (2002)) as well as enhance

the accuracy of the estimator (see Toubia et al. (2007a); Abernethy et al. (2008)).

100

The purpose of this chapter is to verify the usability of active learning in preference

estimation and identification.

Notation-wise, we discretize the design space D of p dimensions and l levels for

each dimension to have N = lp designs xi for i = 1, ..., N . The maximum number of

pairwise comparisons that can be used in preference estimation is M = (N2 −N)/2.

In preference identification, we use V (n× p matrix) to represent the sampled design

set where each row contains a feature vector v of a design x. In preference estimation,

we use Z as the sampled feature difference set where each row is the feature difference

between some design i and j:

z = vi − vj. (5.2)

We use VN in preference identification and ZM in preference estimation to represent

the entire candidate set. The term “questionnaire” is used interchangeably with the

term “interaction”, meaning a set of queries conducted on a subject.

The rest of the chapter is organized as follows: We review the traditional non-

adaptive query methods (Section 5.1.1), the development of active learning techniques

from econometrics (Section 5.1.2) and machine learning (Section 5.1.3), followed by

a summary of their commonalities and differences. We then switch the discussion to

how features shall be formulated in the active learning problem. Sections 5.2 and

5.3 on Preference Estimation and Identification, respectively, verify the application

and elaborate implementations of active learning in the two specific problems we are

interested in. We conclude with contributions and point out limitations of the current

study in Section 5.4.

101

5.1 Active Learning Background

5.1.1 Non-adaptive query

Non-adaptive methods are commonly used in traditional (Choice-based Conjoint)

questionnaires. Recall from the review in Section 2.1.3 that the maximum likelihood

estimator of w in a multinomial logit model is asymptotically normal with its mean

equal to its true value and covariance matrix equal to the inverse of the information

matrix Ω given by:

Ω =
N∑
i=1

Ri

Ji∑
j=1

(vji − v̄i)
TPji(vji − v̄i), (5.3)

where Ri, i = 1, ...N are the effective number of replicates (i.e., a query i answered

by Ri subjects); Ji is the number of designs v in each query and Pji is the probability

of design vji being chosen in query i. Without loss generality but to simplify the

theoretical development, we use Ji = 2 (pairwise comparison) for each query. For

individual questionnaire with n queries, Ω becomes

Ω = ZTdiag(e1, ..., en)Z, (5.4)

where ei for i = 1, ..., n have the form

ei =
exp(wTzi)

(1 + exp(wTzi))2
. (5.5)

The objective of designing queries is to minimize the volume of Ω−1 or equivalently

maximize the determinant (a measure of volume) of Ω. Notice that ei are functions of

the true parameters w which are yet to be estimated. Therefore a common practice

is to consider ŵ = 0 a priori (hence the probabilities of choosing each design are

equal) and reduce the problem to maximizing the determinant of ZTZ. This method

102

is called D-optimal design, see Arora and Huber (2001); Huber and Zwerina (1996);

Kuhfeld et al. (1994); Kuhfeld (2005) for example. Readers shall understand that the

term “design” here in “D-optimal design” is not the design x. Here “design” refers

to the choice of the candidate set Z to be used in a questionnaire (or an experiment

in general). When the resulting information matrix is proportional to the identity

matrix, the D-optimal designs are call orthogonal and balanced. Orthogonality refers

to each design being normal to the others, and balance refers to the information matrix

(or the covariance) being spherical. Such designs are denoted as D0-optimal designs

and are only available for specific combinations of the numbers of queries, designs per

query, dimensions and levels per dimension (Bunch et al. (1996); Huber and Zwerina

(1996); Kuhfeld et al. (1994); Kuhfeld (2005); Mitchell (1974)). Several authors have

proposed to use a non-zero estimator of w in D-optimal design with the estimator

derived from a set of pre-test subjects or from prior belief (Arora and Huber (2001);

Huber and Zwerina (1996); Kanninen (2002); Sándor and Wedel (2001)). With prior

knowledge ŵ0, one can minimize the covariance volume by choosing a pair of designs

that have balanced (equivalent) utilities. To elaborate, notice that in Equation (5.5),

ei achieves its maximum when the utilities of the pair are balanced (equal), i.e.,

ei ≤ 1 with the equivalence achieves if and only if wTv1i = wTv2i. In practice,

when the a priori knowledge ŵ0 is close to w, subjects will find the pair of designs

with balanced utility hard to differentiate. The queries generated this way are usually

called aggregate customization designs. The active learning method introduced below

is similar to aggregate customization, with the estimation updated in real time.

5.1.2 Active learning in conjoint analysis

Active learning (or adaptive query) was first introduced to choice-based conjoint

analysis in Toubia et al. (2004) to challenge the traditional non-adaptive D-optimal

design. Considering the constrained space containing all possible estimators ŵ as

103

a k-dimensional space V (see Equation (5.6)), and any further pairwise comparison

ŵTz > 0 to be a half-space in V , the procedure of querying and estimating w can

be treated as cutting V with hyperplanes in a sequence and using the center of the

remaining polyhedral as the estimator (ŵ). Therefore, increasing the convergence of

estimation depends on the cutting strategy and queries are more informative if they

reduce the volume of V more rapidly. Toubia et al. (2004) suggested that a query

normal to the current ŵ will approximately cut V into equal halves and has the most

expected volume reduction. One shall see that this is indeed utility balance, the

motivation of which is more rigorously proved in Tong and Koller (2002). Toubia

et al. (2003) then extended this work to address the zero volume V issue in practice

when subjects are prone to fault choices.

V = {w | wTw = 1, yi(w
Tz) > 0, i = 1...n}. (5.6)

The concept of adaptive choice-based conjoint was then further completed with the

introduction of statistical learning. Abernethy et al. (2008) proposed a two-step algo-

rithm for choosing the next query: (1) A regularized information matrix is projected

onto the hyperplane of the current estimator ŵ; and (2) the eigenvector associated

with the smallest eigenvalue of this projected matrix is chosen as the next query. One

can see that this is a mixed strategy taking into consideration both utility balance

(by step 1) and D-efficiency (by step 2, see Section 5.2.4 for more detail). It is shown

that this query strategy has robust performance under different subject fault choice

rates (Abernethy et al. (2008)). This is the main strategy we adopt in this chapter,

as we elaborate below.

5.1.3 Active learning in machine learning

In supervised machine learning, it is often the case that querying labels {yi}ni=1

from all candidate samples VN is expensive. Active learning is referred to as the

104

algorithm starting with a subset of VN and deciding the next best query to present

using the current classifier. This method potentially helps to reduce the number of

queries needed for converging the estimation of the classifier. Active learning was

first derived in the area of relevance feedback where the goal is to train a machine to

understand a human concept using interaction. For example, using active learning,

Tong and Chang (2001) and Chang et al. (2005) trained the search engine to generate

more relevant images based on input keywords, and Mandel et al. (2006) created a

music retrieval system. We provide the technical details of active learning mainly

following the derivations and terminologies in Tong and Koller (2002), which is in

turn rooted in SVM (see Section 2.2 for details on SVM).

To start with, we take a close look at the geometrical meaning of the space V

defined in Equation (5.6). In machine learning literature, V is called the “version

space”. It is part of a hypersphere in the feature space F with radius 1, constrained

by hyperplanes yi(w
Tvi) ≥ 0, as illustrated in Figure 5.1. Recall that the SVM ob-

jective can be considered as maximizing the margin mini{yi(wTvi)}. Geometrically,

this objective is equivalent to finding a ŵ corresponding to the center of the largest

hypersphere bounded in V . An informative query is made when its corresponding

hyperplane intersects with V . Tong and Koller (2002) proved that a query that cuts

V into two equal-sized halves will minimize the maximum expected size of V , where

the maximum is taken over all possible w. In other words, a query set that halves

V will never be the worst strategy when the true w is unknown. Noticing the geo-

metrical meaning of ŵ, it is reasonable to argue that w is approximately the center

of V . Therefore, a bisection can be approximated by cutting through ŵ. In other

words, the query v should be preferably normal to ŵ or at least minimize the angle

|ŵTv|. Such a strategy that approximates w as the center of V is called the “simple

algorithm” (Tong and Koller (2002)). This concludes the reasoning for utility balance

from a machine learning perspective.

105

Figure 5.1: Geometrical representation of the version space. In this 2D case, the
version space is the highlighted arc of the circle. Each normal vector of a constraining
hyperplane represents a sample point vi and the label yi determines which side of the
hyperplane is feasible for w. The solution ŵ of a classification problem is the center
of the largest hypersphere within the gray cone yi(w

Tv) > 0, i = 1...n. The bisection
of the version space V can be approximated by cutting through the current solution
ŵ, i.e., ŵTv = 0.

106

Besides the simple algorithm, Tong and Koller (2002) provided another two al-

gorithms rooted in the same motivation: (1) The “maxmin algorithm” approxi-

mates the area of two halves (m+ for y = 1 and m− for y = −1) resulting from

any query and then chooses a query that maximizes the minimum of the two, i.e.,

v = arg maxv min{m+(v),m−(v)}. (2) The “ratio” algorithm takes a similar route

as “maximin”. It chooses a query that maximizes the minimum of the area ratio and

its inverse, i.e.,

v = arg max
v

min{m+(v)/m−(z),m−(v)/m+(v)}. (5.7)

Tong and Koller (2002) show that all three algorithms outperform random queries.

While “simple” has the least computational cost, “maximin” and “ratio” have more

stable performance based on test data cross different domains.

Since multiple candidates may exist satisfying the condition ŵTv = 0 (indeed, an

infinite number of candidates exists when the query space Z is continuous), Chang

et al. (2005) investigated four heuristics for choosing a query set, namely, speculative,

batch-simple, error-reduction and angle-diversity.

The speculative heuristic recursively applies the simple algorithm on V , then the

resulting halves V+ and V−, and so on; The batch-simple heuristic chooses a set of

queries that are closest to the decision boundary and relatively apart from each other.

The error-reduction heuristic (also see Roy and McCallum (2001)) attempts to reduce

the expected error on future test examples. To this end, denote the current query set

and associated labels as L , {V,y}. The distribution of output P̂L(y|v) for a given

v can be estimated following the training of ŵ. If the unknown true distribution is

P (y|v), the expected error of the classifier can be written as

E[Error] =

∫
v

Loss(P (y|v), P̂L(y|v))P (z)dv, (5.8)

107

where the loss function measures the difference between the estimation and its true

distribution. Chang et al. (2005) and Roy and McCallum (2001) use the log-loss

function which has the form

Loss(P (y|v), P̂L(y|v)) =
∑
y∈−1,1

P (y|v) log(P̂L(y|v)). (5.9)

In practice, the unknown P (y|v is replaced by P̂L(y|v) in Equations (5.8) and (5.9).

The error-reduction heuristic selects a query v∗ if E[ErrorP̂L∪v∗] is smaller than

E[ErrorP̂L∪v] for any other query v. Finally, the angle-diversity heuristic has the

best empirical performance according to Chang et al. (2005). The idea of angle-

diversity is to select queries close to the decision boundary and also maintain their

diversity, which is measured by the angle between queries. The angle between two

queries v1 and v2 can be written as

| cos(∠(v1,v2))| = vT1 v2

||v1||2||v2||2
. (5.10)

Introducing a weighting parameter C, the angle-diversity algorithm chooses a query

that minimizes the merit function

Merit = |ŵTv∗|+ C

(
max
v∗∈V

vTv∗

||v||2||v∗||2

)
. (5.11)

In Equation (5.11), the first term requires the next query v∗ to be close to the decision

boundary and the second term maximizes the smallest angle between the next query

and all existing queries V. One can see that this strategy is consistent with the two-

step approach proposed by Abernethy et al. (2008) with the only difference being the

formulation of the diversity of queries.

The previous section reviewed the active learning literature from both the econo-

metric and the machine learning communities. One missing discussion is with regard

108

to the feature definition v (or the feature difference z in the preference estimation

problem). Let us first define the two subtly different terms: “Feature identification”

refers to the choice of a feature set that can be used for query design; “Feature Se-

lection” refers to the determination of a subset from the feature set that has the best

generalization error. The former is usually conducted by human expert knowledge

before data collection while the latter governed by parameter estimation after data

collection and provide more insights in the observations. Note that we intentionally

discriminate the features v from the design variables x. The theoretical and practical

motivation for this is as follows: First, it is often acknowledged in the econometrics

literature that the linearity assumption on the utility function is not always valid, i.e.,

the utility is not a weighted sum of the design variables. To circumvent this difficulty,

studies introduce design features as an arbitrary mapping of the variables to another

space where the utility can be linearized; From a practical point of view, choosing

the right features can improve the generalization error of a learning algorithm signif-

icantly, because the learning will be effective when the variables v truly explain the

outcome y. One can see that selecting v requires both identification of what features

are relevant and selection of features that provide the best generalization error.

In the machine learning literature, features are usually identified manually based

on expert knowledge, e.g., Chang et al. (2005) and Tong and Chang (2001) use color

and texture as features for images; Mandel et al. (2006) use a short-time spectral de-

composition of audio signals (called Mel-frequency cepstral coefficients) as features for

songs; Tong and Koller (2002) represent text documents as weighted word frequency

vectors; Joachims (2002) trains a ranking mechanism of a search engine based on user

click-through data and uses features such as the number of words that query and doc-

ument share, or page-rank of the document. Compared with feature identification,

feature selection gets more attention by the machine learning community. While a

good set of features can help train the data, irrelevant features may deteriorate the

109

trainer (Weston et al. (2001)). Hermes and Buhmann (2000) propose to use gradients

of a trained kernel machine as indications of the importance of features; Neumann

et al. (2005) extend the SVM formulation with an extra zero-norm regularization on

the estimator to systematically select features within training; Liu and Zheng (2006)

introduce an importance measure of features and recursively update the feature set

through training on the set.

In traditional conjoint analysis, features are identified from revealed (market)

data. For example, a civilian vehicle market study (Frischknecht et al. (2009)) identi-

fies features such as brands, demographic attributes (age, salary, height and gender),

performance attributes (price, horsepower, mpg and footprint) and others from a pri-

vate customer satisfaction survey. With regard to stated (survey) data, systematic

identification of features has also been studied. Lee and Bradlow (2007) conducted

research in text mining methods to identify features and levels from online customer

reviews. Similar to machine learning studies, identification and selection of features

will affect the training results in conjoint analysis as well. Regretably, use of linear

utility is prevalent, while rarely justified in practice. To circumvent this issue, Evge-

niou et al. (Evgeniou et al. (2007)) suggest to treat the estimation problem of choice

data in a machine learning fashion. By reformulating the maximum likelihood esti-

mation problem as a regularized regression problem, Evgeniou et al. (2007) showed

that kernel tricks can be deployed and the resulting estimation has overall better

prediction power than a standard hierarchical Bayes approach with a linear utility

model.

While there are established routines for feature selection, feature identification

in active learning is less investigated. On one hand, one would like to expand the

dimensionality of features so that training can be performed well (see Evgeniou et al.

(2007)); on the other hand, one would also like to maintain a query space with a

manageable size so that only limited feature parameters need to be estimated and

110

explained, and the determinant of the estimation covariance will be small. The angle-

diversity algorithm proposed in Chang et al. (2005) is a viable solution which uses

kernel SVM to deal with nonlinearity in training and enforces diversity in the kernel

space. However, there is a fundamental drawback of applying SVM to preference

estimation, as we will discuss in the next section.

5.2 Preference Estimation

5.2.1 Problem definition

Let us consider the problem of estimating a preference function using a sequence

of pairwise comparisons. In pairwise comparison tests, two designs are shown to the

user in turn and the user is asked to pick the better one according to her preference.

It is also allowed for the user to state that both designs are equally preferred. In

either case, a constraint is posed to limit the possible value of w, i.e.,

h− yŵT (v1 − v2) ≤ 0 (5.12)

when a preference choice is made or

ŵT (v1 − v2) = 0 (5.13)

when designs are indifferent. Here h > 0 is a scaling parameter and y = 1 when v1

is chosen over v2 or y = −1 in the opposite case. Since active learning methods de-

veloped for pairwise comparison can be easily extended to have queries with multiple

designs by treating them as sets of pairwise comparisons, it is safe for us to focus

on pairwise comparisons only. To reiterate the notations, we discretize the design

space D of p dimensions and l levels for each dimension to have N = lp designs xi for

i = 1, ..., N . The maximum number of pairwise comparisons is M = (N2 −N)/2.

111

5.2.2 Design features

As we discussed before, adopting kernel machines such as SVM let us use the

design variables directly as features even when the function under estimation is non-

linear. However, we show here that SVM is not suitable for preference estimation.

Let ŵ =
∑m

i=1 αivi be the SVM solution, where m is the number of support vectors

vi. The inequality constraint of a comparison requires

h− y
m∑
i=1

αi (K(vi,v1)−K(vi,v2)) ≤ 0, (5.14)

where K is the kernel function used in the training. However, if we examine the

constraints used in the SVM training, we actually have

h− y
m∑
i=1

αiK(vi,v1 − v2) ≤ 0. (5.15)

For the inequality constraint to reflect the observation, the first set of inequalities

(Inequalities (5.14)) should be applied rather than the second set (Inequalities (5.15)).

In fact, one can easily find violations to the observations from an estimator training

by SVM. To circumvent this difficulty, we propose to use polynomial and Gaussian

bases as features in active learning for preference estimation. For example, we can

model the utility as a linear summation of polynomial bases of x. Alternatively, we

can also use Gaussian bases to have

f(x) =
n∑
i=1

wi exp(−λ||xi − x||22). (5.16)

where xi, i = 1, ..., N are the N vertices (designs) on D and the number of coefficients

to estimate is equal to the number of vertices. Readers familiar with artificial neural

networks can recognize that this is exactly the RBF neural net formulation. We shall

emphasize that besides the capability of approximating nonlinear functions, the use

112

of polynomial and Gaussian bases has another important motivation in preference

estimation: Consider the fact that the training data involves only the differences of

features (denoted as Z) rather than the features V, it is possible to have two different

queries with the same expression. For example, given three different designs with

features v1, v2, v3, the difference vectors v1−v2 and v2−v3 can be the same. In the

case when both Designs 1 and 3 are more preferred than Design 2, the data will contain

contradictory observations on the same query expression, which may deteriorate the

performance of the training. High-order polynomial bases and Gaussian bases are

used in order to reduce the chance that the entire queried sample set Z contains

replicates.

5.2.3 Estimation of w

Let us go through the standard techniques in estimating w before discussing how

the estimation can be done actively. Following the assumptions to derive the logit

model (see Section 2.1 for the derivation), the negative log-likelihood for observations

y and Z can be written in the form of a loss function:

LML =
n∑
i=1

log
(
1 + exp(−θwTzi)

)
, (5.17)

where θ is the parameter for the extreme value distribution. An estimation of w can

be derived by minimizing LML. A machine learning approach can also be used for the

same purpose. A concise estimation proposed by Abernethy et al. (2008) minimises

the following regularized penalty (this is a ridge regression formulation, or called a

regularized network in Abernethy et al. (2008)):

LSL =
∑
i

(1− yiwTzi)
2 + CwTw. (5.18)

113

Here the index “SL” stands for statistical learning to differentiate this loss formulation

from the maximum likelihood one, and C is a weight on the regularization term wTw

that adjusts the balance between training error and model complexity. To offer a

more practical perspective of regularization, C controls the belief in observations

against prior knowledge. This is a necessary treatment to achieve robust training

since adaptive questionnaires can be subject to endogeneity: Questions are influenced

by the response errors to earlier answers, as noted in Abernethy et al. (2008). The

advantage of this estimation is that it has an analytical solution. However, it suffers

from the drawback that situations where yiw
Tzi > h should not be penalized. A

remedy to this is the following:

LSL =
∑
i

max{0, h− yiwTzi}2 + CwTw, (5.19)

where h is a parameter that controls the scale of w. We call this formulation SVM

training as it is similar to the soft-margin SVM formulation, and also note that this

formulation is close to the ranking SVM formulation in Joachims (2002). In this

study, we set C = 1/s where s is the number of queries (iterations) made so far.

This setup ensures that the importance of complexity control goes down as more

observations are available. The scaling parameter h is set at 1.

To justify the use of this formulation for conjoint analysis, we compare the penal-

ties used in maximum likelihood estimation (Equation (5.20)) and in machine learning

(Equation (5.21)) in the case of y = 1 and with u = −wTz. The penalties are inverted

to be bounded within 0 and 1. We show in Figure 5.2 that these two penalties from

LML and LSL are similar.

PenaltyML(u)−1 ,
1

1 + exp(θu)
(5.20)

PenaltySL(u)−1 , exp
(
−max{0, h+ u}2

)
(5.21)

114

Figure 5.2: PenaltyML and PenaltySL in the range u ∈ [−5, 5] for preference realiza-
tion; θ = 1, h = 1.

Above we discussed how w can be estimated for individuals. Obviously, if all

constraints (constraints in Equation (5.19) or penalties in Equations (5.18)) are ob-

served, the resulting ŵ will be able to estimate the preference function (the scale

of the function value is not determined though). However, the number of candidate

pairs to query, i.e., the number of rows in ZM is usually enormous and only a limited

number of queries can be made in any questionnaire. The focus of this study is to

understand which subset of the queries shall be used to make the estimation efficient.

Below we apply active learning to this problem.

5.2.4 Active learning on preference estimation

The drawback of non-adaptive methods is ignoring previous information about

w during the query process. As an improvement, adaptive query maximizes the

determinant of Ω sequentially with the updated knowledge about w obtained at each

iteration. The following approach is proposed in Abernethy et al. (2008).

To start with, we derive the closed-form solution for the regularization network

115

formulation (Equation (5.18)) at stage s:

ŵs = (ZT
s Zs + CsIs)

−1ZT
s 1n. (5.22)

We then choose the next query pair zs+1 in a way that es+1 in Equation (5.5) is

maximized according to ŵs which leads to ŵT
s zs+1 = 0. To elaborate, since ei = P1iP2i

where Pji is the probability of design j in the ith query being chosen and P2i = 1−P1i,

it is clear that ei ≤ 1/4 with the equality reached when P1i = P2i = 1/2. This leads

to ŵT
s zs+1 = 0, which is exactly utility balance. In other words, zs+1 must lie in

the space span by the projection matrix Ps , I − ŵsŵ
T
s /ŵ

T
s ŵs. A practical view

of utility balance, considering the definition of z being the difference between two

designs, is that we query the two designs that are believed to be indifferent according

to the current estimator ŵ.

Recall that the covariance of the estimators can be indicated by the Hessian of

the loss function (see subsection 2.1.3 or McFadden and Train (2000)). Considering

the Hessian as a ellipsoid in the space of z, a new query zs+1 will be preferable if

its existence morphs the Hessian towards a sphere, in which way the determinant

of the Hessian is increased. Taking utility balance into consideration, it is therefore

suggested that zs+1 should be the eigenvector associated with the second minimum

eigenvalue of the projected Hessian of the objective in Equation (5.18) onto span(Ps).

The Hessian can be analytically derived as

Hs = CsI + ZT
s Zs, (5.23)

and the projected Hessian is

Qs = PsHs. (5.24)

One thing we should clarify is that Qs has at least one zero eigenvalue because it is

116

projected to a subspace one dimension lower than the original space V . And ŵs/||ŵs||2

is the eigenvector associated with that zero eigenvalue. Obviously ŵs/||ŵs||2 is in-

appropriate to be zs+1 since we require utility balance. Therefore the eigenvector we

are looking for should have the second minimum eigenvalue (can be zero) and is thus

perpendicular to ŵs.

We show below that when the projection matrix is not changed by the new query,

i.e., ŵ stays the same so that Ps = Ps+1, this strategy of choosing zs+1 increases

Qs by 1: At the s + 1th iteration we have Qs+1 = Qs + Pszs+1z
T
s+1. Since zs+1

is the eigenvector of Qs associated with the second minimum eigenvalue λQ and

||zs+1||2 = 1, we have

Qs+1zs+1 = λQzs+1 + Pszs+1

= (λz + 1)zs+1. (5.25)

Since the projection matrix will usually be changed with new observations, this strat-

egy of choosing zs+1 is a heuristic that tries to increase of the determinant of a

matrix that is comparable to the information matrix. This step is called minimizing

maximum uncertainty.

In summary, the active learning method has two steps: 1) Compute the estimator

ŵ); 2) Find z as the eigenvector associated with the second minimum eigenvalue of the

projected Hessian
(
I− ŵsŵ

T
s /ŵ

T
s ŵs

) (
CsI + ZT

s Zs

)
. In practice, since the candidates

ZM are determined by the discretized design space and these may not be coincide with

the eigenvectors of Q, we choose z that maximizes the following similarity measure:

similarity =
|zT0 z|
||z||2

− |w
Tz|
||z||2

, (5.26)

where z0 is the eigenvector of Q with the second minimum eigenvalue. Notice that

this query strategy is similar to that of Chang et al. (2005) with the difference that

117

we explicitly minimize the estimation variance by increasing the determinant of the

information matrix while Chang et al. (2005) justifies a similar approach empirically.

Also, the two parts in this similarity measure can be weighted differently to achieve

search with biased focus on either utility balance or minimization of maximum un-

certainty. In the special case where the first term is neglected, we have a greedy

algorithm with pure utility balance.

5.2.5 Test setup

For tests in this section, we use a two-dimensional design with 5 levels for each

dimension which makes N = 25 and M = 300. Each dimension is bounded by [−1, 1].

We compare the performance of the active learning algorithm against random and

D-optimal designs. The set of functions we test includes a linear function in Equation

(5.27) (Fn. 1), a polynomial function in Equation (5.28) (Fn. 2), the Branin function

in Equation (3.17) (Fn. 3) and the Camelback function in Equation (3.15) (Fn. 4).

f(x1, x2) = x1 + x2. (5.27)

f(x1, x2) = x2
1 + x1x2 − x3

2. (5.28)

The performance of an algorithm is measured by the error rate of the estimated

function:

error rate =
number of pairs with wrong outcomes

total number of pairs
. (5.29)

The spread of Gaussian bases is set to λ = 1/N . With regard to polynomial bases,

we use polynomials of order 3 and arrange terms in the following order: x1, x2, x2
1,

x1x2, x2
2, x3

1, x2
1x2, x1x

2
2 and x3

2. For the random algorithm, we report the mean and

standard deviation of the error rate from 100 tests. The setup for D-optimal designs

is elaborated in Subsection 5.2.6. In all tests, the candidate set ZM is normalized so

that the candidates are centered around the origin and has compatible scales on each

118

dimension.

A set of tests for different purposes is provided: We start in Subsection 5.2.7 to

compare generalization errors on the test functions using active learning, D-optimal

and random query under 10, 20 and 50 queries; Subsection 5.2.8 illustrates how the

linearity assumption may fail when nonlinear preference is present. In these two

subsections we assume no faulty choice from the subject, i.e., the random error ε in

Equation (5.1) is zero and thus Design 1 is preferred over Design 2 if and only if

wT (v1−v2) > 0 and the two designs are labeled as indifferent if and only if wT (v1−

v2) = 0. Subsection 5.2.9 examines the number of queries required to statistically

identify the correct features based on a set of questionnaire. Here we introduce a

parameter θ into the choice decision that represents the subject’s faulty choice rate.

More specifically, following the choice model in Section 2.1, the probability of Design

1 being preferred over Design 2 is 1/
(
1 + exp(−θwT (v1 − v2))

)
, i.e., a smaller θ

represents higher chances of faulty choices. In all tests, the test function values on

the discretized space are normalized to have zero means and standard errors so that

θ will have equal effects on these test functions.

5.2.6 D-optimal design setup

Recall that D-optimal design requires to find such Z that the determinant of the

information matrix ZTZ is maximized. The physical meaning of maximizing this

determinant can be considered as to make the samples uncorrelated (orthogonal)

and having large variances. However, finding such optimal designs is not a convex

problem and heuristics have been proposed to achieve near-optimal designs. For

example, see approximation theory (Harman and Trnovska (2009)). In this study, we

produce near-optimal designs simply by enumerating over a large number of random

Z given the query sizes and pick the ones that have largest determinant. It shall

be mentioned that near-optimal Zs are produced separately for different query sizes,

119

i.e., Z with 10 queries is not a subset of that with 20 or 50 queries. One difficulty

we encounter is that while the minimum query size is 10, the dimensionality of Z

when using Gaussian bases is 25, leading to undetermined information matrices and

zero determinants under any design. However, we noticed that the rank of the entire

candidate set is much lower than its dimensionality, i.e., all candidate z lie in a small

subspace of the feature space. Therefore the dimensionality of all candidates can

be reduced by projecting them using the eigenvectors of the few largest eigenvalues.

The largest 5 eigenvalues are used in the following test using D-optimal designs with

Gaussian bases. In the case of polynomial bases, since the number of basis is 9 and

is lower than the minimum query size, dimension reduction is not necessary.

5.2.7 Performance of active learning, D-optimal and random designs on

2D problems

We test the algorithms in scenarios with known and unknown functional forms

of the preference functions. Both the linear and the polynomial preferences (Fn. 1

and 2) are tested under the premise that the functional form is known, in which

case we directly use the known features in the active learning process. For example,

x2, xy and y3 are used as features rather than the design variables during the test

on the polynomial preference. Under the realistic condition that functional forms

are unknown, we test the algorithms with both full polynomial bases of order 3 and

Gaussian bases. Training-wise, the analytic estimator proposed by Abernethy et al.

(2008) is used during the querying. The more accurate SVM training is applied when

all data are collected. The error data from all test settings (algorithm × function ×

scenario × number of query) are reported in Table 5.1.

The best performers among the three algorithms are highlighted under each test

setting. Several important observations from the tests are as follows:

• Regardless of the scenario (known or unknown functional form of the prefer-

120

T
ab

le
5.

1:
G

en
er

al
iz

at
io

n
er

ro
rs

of
ac

ti
ve

le
ar

n
in

g,
D

-o
p
ti

m
al

an
d

ra
n
d
om

(L
ow

er
va

lu
es

ar
e

b
et

te
r)

A
ct

iv
e

R
an

d
om

D
-o

p
ti

m
al

A
ct

iv
e

R
an

d
om

D
-o

p
ti

m
al

A
ct

iv
e

R
an

d
om

D
-o

p
ti

m
al

#
q
u
er

y
=

10
K

n
ow

n
U

n
k
n
ow

n
,

p
ol

y
n
om

ia
l

b
as

is
U

n
k
n
ow

n
,

G
au

ss
ia

n
b
as

is
F

n
.

1
0

0.
12

0(
0.

04
1)

0
0
.0

8
7

0.
36

57
(0

.1
24

)
0.

1
0.

14
3

0.
31

2(
0.

10
7)

0
.1

1
3

2
0
.0

3
0.

12
8(

0.
06

7)
0.

05
7

0
.1

3
0

0.
36

6(
0.

11
0)

0.
14

0
0
.1

4
3

0.
32

2(
0.

09
7)

0.
32

3
3

n
/a

n
/a

n
/a

0.
37

0
0.

36
1(

0.
11

8)
0
.2

0
7

0.
33

3
0.

33
3(

0.
10

2)
0
.2

3
3

4
n
/a

n
/a

n
/a

0
.2

2
0

0.
37

9(
0.

10
4)

0.
24

0
0
.2

2
7

0.
32

9(
0.

08
9)

0.
43

0
#

q
u
er

y
=

20 1
0

0.
00

1(
0.

01
3)

0
0

0.
19

5(
0.

05
2)

0.
16

0
0
.0

9
3

0.
27

2(
0.

07
1)

0.
10

7
2

0
0.

09
3(

0.
04

0)
0.

05
0

0
.1

0
7

0.
18

8(
0.

05
7)

0.
17

7
0
.0

5
7

0.
27

9(
0.

06
9)

0.
18

3
3

n
/a

n
/a

n
/a

0
.1

7
7

0.
20

0(
0.

06
0)

0.
24

7
0
.2

1
0.

23
6(

0.
05

6)
0.

26
7

4
n
/a

n
/a

n
/a

0.
27

3
0.

24
9(

0.
04

6)
0
.1

7
3

0
.1

4
3

0.
27

9(
0.

06
8)

0.
20

3
#

q
u
er

y
=

50 1
0

0.
10

1(
0.

00
2)

0
0

0.
12

4(
0.

01
7)

0.
10

0
0
.0

3
3

0.
18

1(
0.

02
7)

0.
11

7
2

0
0.

06
9(

0.
02

1)
0

0
0.

11
5(

0.
02

5)
0.

14
7

0
.0

1
3

0.
15

7(
0.

02
6)

0.
14

7
3

n
/a

n
/a

n
/a

0
.0

5
0

0.
12

6(
0.

02
5)

0.
15

7
0
.0

7
7

0.
13

8(
0.

02
6)

0.
26

0
4

n
/a

n
/a

n
/a

0
.1

2
7

0.
18

7(
0.

02
1)

0.
20

0
0
.0

4
3

0.
15

9(
0.

02
7)

0.
18

0

121

ence), the active learning and D-optimal methods are better than random in

most cases especially with large number of iterations (queries).

• In most cases, the error rate for active learning constantly goes down with more

queries. This is not achieved by D-optimal design since with a different iteration

number we have different sets of pairs (z) that maximize the determinant of the

information matrix. Such a set may not perform better than a set with fewer

queries on a specific problem. In the active learning case on the Camelback

function with 20 iterations (the underlined cell in the table), the performance

is worse than that with 10 iterations. This happens due to the choice of C,

which balances the complexity control and the training error. As a matter of

fact, tuning C to 1 from the original 106 will in this case result in an improved

error rate of 0.173. Further research on how the balancing parameter should be

tuned in the training is needed.

In summary, both active learning and D-optimal design outperform random in most

cases. The difference between the two will be investigated in Subsection 5.2.10 with

the existence of subject faulty choices.

5.2.8 Limitation of the linearity assumption

The limitation of the linearity assumption is rarely brought up in non-adaptive

questionnaires since it only provides estimates after the entire data collection is done.

Such a limitation results in poor training performance during active learning on non-

linear preferences, which is an indicator of incorrect features at the early stages of an

interaction. Table 5.2 shows the generalization error under the linearity assumption

for the various nonlinear functions can be even worse than flipping a coin.

122

Table 5.2: Generalization errors under the linearity assumption

#query = 10 Active D-optimal
2 0.337 0.293
3 0.457 0.367
4 0.530 0.940

#query = 50
2 0.337 0.337
3 0.367 0.360
4 0.940 0.940

5.2.9 Identification of preference features

We acknowledge that keeping the entire basis set as features in learning is cum-

bersome, especially with the fact that when the right features are used, convergence

of the estimation is much improved for the same query size, as indicated in Table

5.1. Adding to that, keeping the entire basis set causes higher computational cost

and simply introduces irrelevant features for estimation. Here we propose to identify

features after pretests, under the assumption of no subject heterogeneity, i.e., w is

a deterministic vector. The idea is to understand the importance of the bases by

analyzing the statistics of estimators derived from a set of questionnaires. In the

following simulated test, we conduct 1000 questionnaires and test the following null

hypothesis on each element of ŵ,

H0 : ŵi = 0. (5.30)

Since the mean of ŵ asymptotically equals the true parameter w, if the null hypothesis

is accepted then it is equally safe to accept wi = 0. Regarding the setup, we test

the linear function from Equation (5.27) and the polynomial function from Equation

(5.28). Active learning is applied to each test to get the estimators. Table 5.3 reports

the p-values of the hypothesis tests for each parameter under different number of

iterations (queries). For tests on the linear preference, p-values on the first two

123

Table 5.3: p-values of H0 : ŵi = 0 for estimators on linear and polynomial preferences
(Highlighted are significantly lower p-values)

#query pw1 pw2 pw3 pw4 pw5 pw6 pw7 pw8 pw9

Test on linear function, Low faulty choice rate (θ = 10)
50 0.001 0.001 0.907 0.875 0.921 0.197 0.134 0.121 0.208
20 0.001 0.000 0.800 0.767 0.863 0.716 0.620 0.321 0.508
10 0.055 0.000 0.832 0.082 0.786 0.749 0.715 0.081 0.091

Test on linear function, High faulty choice rate (θ = 2)
50 0.282 0.339 0.999 0.833 0.932 0.735 0.714 0.821 0.632
20 0.294 0.253 0.945 0.893 0.953 0.914 0.735 0.778 0.801
10 0.368 0.282 0.893 0.887 0.990 0.889 0.828 0.697 0.602

Test on polynomial function, Low faulty choice rate (θ = 10)
50 0.963 0.872 0.125 0.087 0.837 0.860 0.898 0.917 0.084
20 0.997 0.799 0.049 0.105 0.931 0.908 0.824 0.957 0.084
10 0.771 0.702 0.035 0.123 0.861 0.530 0.526 0.793 0.090

Test on polynomial function, High faulty choice rate (θ = 2)
50 0.963 0.946 0.437 0.487 0.820 0.929 0.888 0.960 0.374
20 0.874 0.749 0.374 0.513 0.818 0.825 0.862 0.942 0.685
10 0.960 0.946 0.570 0.665 0.849 0.891 0.972 0.753 0.431

elements of the estimator (representing bases x1 and x2) should have value close to

zero while others away from zero. With regard to the nonlinear preference, close-to-

zero p-values should occur on the 3rd, 4th and last element (representing bases x2,

x1x2 and x3
2). The results in Table 5.3 show that having more queries in each test is

beneficial for feature identification, and feature identification becomes more difficult

when subjects are prone to faulty choices.

5.2.10 Robustness of active learning

Remember that we implemented two attempts to improve the robustness of ac-

tive learning under subject faulty choices. One is to regularize the Hessian of the

loss function when only limited observations are available; The other is to minimize

maximum uncertainty, i.e., to diversify the queries. The first attempt aims to adjust

the Hessian so that it is close to the true unknown information matrix and the second

attempt tries to increase the determinant of the adjusted Hessian. Here we compare

124

Table 5.4: Robustness of active learning
(Lower values are better)

#query = 10 #query = 20 #query = 50
Low fault High fault Low High Low High

Fn. 1
active 0.092 0.293 0.004 0.197 0.000 0.018
D-opt. 0.114 0.200 0.160 0.223 0.101 0.255

Fn. 2
active 0.169 0.317 0.144 0.293 0.017 0.128
D-opt. 0.143 0.234 0.171 0.242 0.142 0.320

Fn. 3
active 0.348 0.348 0.219 0.310 0.083 0.189
D-opt. 0.207 0.207 0.250 0.253 0.157 0.157

Fn. 4
active 0.223 0.322 0.265 0.303 0.134 0.185
D-opt. 0.241 0.295 0.190 0.295 0.327 0.387

the performance of active learning algorithm and D-optimal design with the existence

of subject faulty choices to evaluate the robustness of the two. We conduct 1000 tests

on the four test functions we used before. Subject faulty choice is modeled in the

same way as in the previous test, with θ = 2 for high and θ = 10 for low fault rate.

The test function values on the discretized space are normalized to have zero mean

and standard error. Table 5.4 presents the performance comparison.

We highlighted every best performer among the three algorithms under a certain

test function and a certain level of faulty choice. The finding here is consistent with the

deterministic results from Subsection 5.2.7: D-optimal design has better performance

than the adaptive algorithms when the query size is small; while the adaptive ones

have an edge when a larger number of queries are made. Examine more closely, one

will find that while the performance of D-optimal design is not correlated with the

query size, that of the adaptive methods is almost always improved when the query

size is raised. The rationale behind these observations is that when only limited

query is available, D-optimal design ensures the diversity of queries and also prevents

mislead queries generated by faulty choices. On the other hand, when we can afford

a larger number of queries, active learning on the existing knowledge refines the

estimation more effectively, while it is not guaranteed for a D-optimal design with

more queries to work better than the ones with less queries. This is an important

125

finding that not only justifies the usage of D-optimal design in short questionnaires but

also indicates that when more queries are allowed, one should switch to an adaptive

algorithm to take its advantage.

5.3 Preference Identification

In preference identification, the subject is asked to identify the preferred designs

from a set of choices and thus the binary outcome is interpreted as the definite

preference for these choices, e.g., with a pair of Designs 1 and 2, the subject may assign

1 to Design 1 and 0 to Design 2, indicating that Design 1 is preferred independently

of Design 2 and Design 2 is not-preferred independently of design 1. Without loss of

generality, we query one design at a time. Let the preference model be

f(x) = wTv(x) + ε, (5.31)

where ε is a random error term not explained by x. It is safe to assume that the

subject prefers a design x when f(x) > 0 and vice versa, i.e. y = 1 ⇔ f(x) > 0

and y = 0 ⇔ f(x) < 0. The queries V and the observations y are then processed

in a learning algorithm to derive the estimators ŵ. The decision boundary is then

approximated as {x ∈ D|wTv(x) = 0}. Labeling the complete set of v will provide

a close approximation of the true parameters and the true decision boundary, but

is costly considering the enormous amount of candidates. Therefore this section

investigates how active learning can be applied to preference identification.

5.3.1 Justification of the loss function

We show in this subsection that the preference identification problem is mathe-

matically equivalent to the estimation problem. To do this, we derive the loss function

for training in preference identification. Let the data at hand be xi and yi for i = 1

126

to n. Assuming that εi for i = 1 to n are i.i.d. normal with zero mean and standard

deviation of σε, the probability of yi = 1 conditioned on xi and w is

P (yi = 1|w,xi) = P (wTv(xi) + εi > 0)

= P
(
εi > −wTv(xi)

)
=

∞∫
−wTv(xi)

1√
2πσε

exp

(
−(

τ 2

2σ2
ε

)

)
dτ

=
1

2

(
1− erf(−wTv(xi)√

2σε
)

)
, (5.32)

where erf(x) is the error function

erf(x) =
π√
2

x∫
0

exp(−τ 2)dτ. (5.33)

Therefore the negative log-likelihood of the observations is

LML(w) = −
∑
i: yi=1

log (P (yi = 1|w,xi))−
∑

j: yj=−1

log (P (yj = −1|w,xj))

=
n∑
i=1

log

(
1

2

(
1− erf(−yiw

Tv(xi)√
2σε

)

))−1

. (5.34)

The maximum likelihood estimator ŵ minimizing the loss LML. We can also consider

the problem from a machine learning perspective. For the same data set, we define a

loss function as

LSL(w) =
n∑
i=1

max{0, h− yiwTv(xi)}2. (5.35)

This loss function essentially penalizes violations of the inequality constraints

yiw
Tv(xi) ≥ h, (5.36)

127

Figure 5.3: PenaltyML and PenaltySL in the range u ∈ [−2, 2] for preference identifi-
cation; σε = 1, h = 1.

where h > 0 controls the magnitude of the norm of w. Using summation of logarith-

mic penalties, Equation (5.35) can be rewritten as

LSL(w) =
n∑
i=1

log exp
(
max{0, h− yiwTv(xi)}2

)
. (5.37)

Following the previous section, we compare the penalties used in maximum likelihood

estimation (Equation (5.38)) and in machine learning (Equation (5.39)) in the case

of y = 1 and with u = −wTz. The penalties are inverted to be bounded within 0 and

1. Figure 5.2 shows the similarity between these two penalties.

PenaltyML(u)−1 ,
1

2

(
1− erf(

u√
2σε

)

)
(5.38)

PenaltySL(u)−1 , exp
(
−max{0, h+ u}2

)
(5.39)

It should be noted that for PenaltyML, the shape within the transitional region

([−1, 1] in Figure 5.3) is controlled by the assumptions on ε, i.e., the mean of ε

controls the position of the transitional region on u while the standard deviation

controls the curvature. Similarly for PenaltySL, the position of the transitional region

128

is controlled by h and the curvature by the weight (or power) on the penalty term

max{0, h+ u}.

Both LML and LSL are convex in w and therefore have their unique globally op-

timal solutions. In addition, we may also include complexity control in this problem,

following Toubia et al. (2007a). For maximum likelihood estimation, let the prior

knowledge be that w follows a normal distribution with zero mean and covariance of

Σw. Thus the probability of observing yi = 1 will be

P (yi = 1|w,xi) =
P (wTv(xi) + εi > 0)P (w)∫
P (wTv(xi) + εi > 0)P (w)dw

∝ P (wTv(xi) + εi > 0)P (w)

∝ 1

2

(
1− erf(−wTv(xi)√

2σε
)

)
exp(−1

2
wTΣ−1

w w). (5.40)

When w are i.i.d. with standard deviation σw, we have

LML(w) = −
n∑
i=1

(
1

2

(
1− erf(−yiw

Tv(xi)√
2σε

)

))
+

1

2σ2
w

wTw. (5.41)

Similarly for machine learning with regularization, we also have

LSL(w) =
n∑
i=1

(
max{0, h− yiwTv(xi)}2

)
+ CwTw. (5.42)

Notice that this is exactly the same loss function as in preference estimation, with

the features v replacing the feature difference z. Therefore the identification and

estimation problem are mathematically equivalent.

5.3.2 Application of active learning

In the previous section, we followed two rules to adaptively learn preference: 1)

utility balance and 2) minimize maximum uncertainty. Let us now validate these two

rules for preference identification. The practical meaning of utility balance can be

129

instantly seen in the current problem setting: A design x has utility balance when it

is on the decision boundary {x ∈ D|wTv(x) = 0}, which means that the probabilities

of this query being labelled as 1 or −1 are equally 0.5 (one can verify this by inserting

wTv(x) = 0 into Equation (5.32)).

Recall that minimizing maximum uncertainty is equivalent to minimizing the vol-

ume of the variance ellipsoid of ŵ. Below we derive the form of cov(ŵ) and as we will

see, maximizing the information matrix VTV will be an approximation of minimizing

the variance of ŵ for both LML and LSL. First, for LML we have

∂LML

∂w
=

n∑
i=1

exp (−u2
i /(2σ

2
ε)) yiv(xi)√

2σε
∫∞
ui/σε

exp(−τ 2)dτ
, (5.43)

and

∂2LML

∂w∂wT
=

n∑
i=1

exp (−u2
i /(2σ

2
ε))

2σ2
ε

∫∞
ui/σε

exp(−τ 2)dτ

(
exp (−u2

i /(2σ
2
ε))∫∞

ui/σε
exp(−τ 2)dτ

−
√

2ui
σε

)
v(xi)v(xi)

T ,

(5.44)

where ui = −yiwTv(xi). If we approximate ŵ with one Newton step with the initial

guess being ŵ0 = 0, we will arrive at

ŵ = −(
∂2LML

∂w∂wT
)−1∂LML

∂w

=

√
π

2
σε
(
VTV

)−1
VTy. (5.45)

To formulate the covariance of ŵ, first notice that yi is binary with probability P (yi =

1) = pi and P (yi = −1) = 1−pi, where pi is determined by w,xi and the distribution

of εi. With the assumption that εi for i = 1 to n are i.i.d., it is easy to show

that yis are uncorrelated and thus cov(y) is diagonal. To be more specific, we have

cov(y) = diag(4p1(1− p1), ..., 4pn(1− pn)). Therefore, the covariance of ŵ is

cov(ŵ) =
πσ2

ε

2

(
VTV

)−1
VT cov(y)V

(
VTV

)−1
. (5.46)

130

Treating cov(y) will our null knowledge, i.e., pi = 0.5 for all i, we come to

cov(ŵ) =
πσ2

ε

2

(
VTV

)−1
. (5.47)

Therefore, at any level of noise σε and before any observation is made, one shall

design the queries V to have large determinant so that the covariance of the resulting

estimator will be small. Readers shall also find this conclusion similar to the discussion

in Section 2.1.

We can now derive the same conclusion for LSL. Since LSL is not differentiable

everywhere, the gradient and Hessian only exist when ŵTv(xi) 6= h:

∂LSL
∂w

=
n∑
i=1

1ŵTv(xi)<h − (1− yiŵTv(xi))yiv(xi), (5.48)

∂2LSL
∂w∂wT

=
n∑
i=1

1ŵTv(xi)<hv(xi)v(xi)
T , (5.49)

where 1ŵTv(xi)<h is an indicator function which has ones when ŵTv(xi) < h and zeros

otherwise in D. Taking one Newton step from ŵ0 = 0, we have

ŵ =

(
n∑
i=1

1ŵTv(xi)<hv(xi)v(xi)
T

)−1 n∑
i=1

1ŵTv(xi)<hyiv(xi). (5.50)

Notice that Equation (5.50) is similar to Equation (5.45) with a few rows in V missing.

Therefore, maximizing the determinant of the information matrix can be used with

both estimation formulations during active learning.

It is important to mention that the inverse of VTV usually does not exist due

to the high dimensionality of features and the limited number of queries, in which

case Equation (5.41) and Equation (5.42) are used for training and the regularized

information matrix H = CI + VTV is used for choosing the next query, where I is

an identity matrix.

131

5.3.3 Active learning on preference identification

Following the above discussion, the strategy for identification is almost the same

as that for estimation:

1. At iteration 0, an initial set V0 is generated and labelled as y0; ŵ0 is trained

using either maximum likelihood or machine learning.

2. At iteration s,

(a) Regularize the Hessian matrix to be H = CsI+VT
s Vs, where Cs is set to be

1/s so that the impact of regularization decreases when more observations

are available.

(b) Denote the plane perpendicular to ŵs−1 as Ps = I−ŵs−1ŵ
T
s−1/ŵs−1)T ŵs−1.

Project the Hessian to Ps: Qs = PsHs.

(c) Find the eigenvector of the second minimum eigenvalue of Qs, and denote

it as v0.

(d) Find vs+1 that maximizes the similarity: |vT0 vs+1| − |ŵTvs+1|.

3. Make a query with vs+1 to get ys+1; train with the new data and go back to 2

until maximum iteration number is reached.

5.3.4 Simulated tests and results

To start with, we show how the active learning algorithm works in a simple pref-

erence identification problem with two dimensions, five levels on each dimension, and

with the polynomial preference function defined in Equation (5.28). Gaussian bases

are used as features in this demonstration. Figure 5.4 illustrates the identification

process of finding the decision boundary f(x) = 0 on this function. In this figure,

each block on the 2D space represents a design. The black blocks represent designs

such that f(x) < 0 and the white ones f(x) < 0. The circled blocks are designs with

132

y = −1 and dotted ones y = 1. The true boundary under discretization is shown in

the last subfigure. The corresponding testing errors at each iteration are listed under

each sub-figure. These errors are defined as rates of misclassified designs over the

total number of designs.

We now compare performance of the proposed algorithm against D-optimal design

on 2D, 3D and 5D tests. All test functions are represented by weighted sums of

Gaussian bases where one of the basis parameter is set to a higher value compared

to the others to model a spherical preferred set in the corresponding space. We call

the vertex associated with the high value parameter the preference center, e.g., with

2 dimensions and 10 levels on each dimension, a preference center at [5,4] represents

the vertex at the 5th level on the first dimension and at the 4th on the second. We

enable subject faulty choices using the choice probability model in Equation (5.32)

with σε =
√

2/4 (low faulty choice rate) and σε = 1 (high faulty choice rate). With

each test setup, we conduct 100 tests and #query amount of queries. Table 5.5

summarizes test settings. The performances are reported in Table 5.6 as the means of

generalization errors and their standard errors in the bracket. The better performance

in each test setting is highlighted. This results show that the active learning algorithm

provides better generalization errors than D-optimal design when the dimensionality

of the design space is low or only a unique preference center exists. D-optimal, on

the other hand, is shown to be more useful when multiple preference centers exist in

high dimensional space. The similar result is also reported in Osugi et al. (2005) and

Baram et al. (2004) as an inevitable tradeoff between exploitation and exploration.

The strategy we take here is combining utility balance (exploitation) and minimization

of maximum uncertainty (exploration) together as a unified criterion. However, how

these two considerations should be weighted in the query process is yet to be explored.

133

(a) Iteration 3, error = 0.2 (b) Iteration 4, error = 0.2 (c) Iteration 5, error = 0.2

(d) Iteration 6, error = 0.24 (e) Iteration 7, error = 0.16 (f) Iteration 8, error = 0.16

(g) Iteration 9, error = 0.16 (h) Iteration 10, error = 0.12 (i) Iteration 11, error = 0.12

(j) Iteration 12, error = 0.08 (k) Iteration 13, error = 0.04 (l) Iteration 14, no error

Figure 5.4: Demonstration of active learning for preference identification. Each block
on the 2D space represents a design. The black blocks represent designs such that
f(x) < 0 and the white ones represent f(x) < 0. The circled blocks are designs with
y = −1 and dotted ones with y = 1.

134

Table 5.5: Preference identification test settings

test ID #dim #level #parameter preference center #query
1 2 10 100 [5,5] 20
2 2 10 100 [1,1][5,5][10,10] 20
3 5 3 243 [2,2,2,2,2] 50
4 5 3 243 [1,1,1,1,1][2,2,2,2,2][3,3,3,3,3] 50

Table 5.6: Preference identification test results

test ID active learning error D-optimal error

Low faulty choice rate (σ =
√

2/4)
1 0.000(0.000) 0.050(0.021)
2 0.070(0.000) 0.078(0.015)
3 0.066(0.003) 0.108(0.018)
4 0.091(0.000) 0.059(0.017)
High faulty choice rate (σ = 1)
1 0.001(0.003) 0.044(0.018)
2 0.070(0.000) 0.094(0.016)
3 0.075(0.018) 0.133(0.026)
4 0.089(0.003) 0.071(0.018)

5.4 Concluding Remarks

In this chapter we provided a thorough technical review of the active learning liter-

ature from both the economics and machine learning communities. The core concept

of active learning is to select queries that achieve both high information gain (using

utility balance) and high diversity of the queried samples (to minimize maximum

uncertainty). We argue that feature identification requires more attention in active

learning research and the challenge still remains as how to find a balance between

two conflicting interests: The need to increase the feature size to handle nonlinearity

in the preference and the need to limit the feature size for manageable parameter

estimation. We proposed to use polynomial and Gaussian bases as features rather

than using kernel tricks in preference estimation since the former approach achieves

fewer violations to observations in training. We showed that the same bases can also

be applied to preference identification to handle nonlinear decision boundaries.

135

The simulated tests for preference estimation showed that active learning has

more robust performance in most linear and nonlinear tests when a large number

of queries is available while D-optimal design has an edge under a limited query

size. The simulated tests for preference identification showed that the active learning

algorithm outperforms D-optimal design when a single preference center exists or

the dimensionality of the space is low. The results from both studies are consistent:

Active learning is more favorable when we have some knowledge about the model

or the model is easy to estimate; D-optimal design, as a conservative option, should

be used when little knowledge has been obtained or when we cannot afford a large

number of queries.

136

CHAPTER VI

Collaborative Filtering in Preference Elicitation

The motivation of this chapter naturally follows the previous discussion on prefer-

ence elicitation. We have investigated querying strategies for individuals, and strate-

gies will be repeated for a large number of tests. Considering that preference from a

population many well be clustered, would it be possible for the query algorithm to

learn from previous successes and failures and improve itself over time? In this chap-

ter, we focus on the preference elicitation problem and discuss a variety of heuristics

that may help to improve the search algorithm. The problem is formulated in Section

6.1, followed by the main discussion on heuristics in Section 6.2. Section 6.3 evalu-

ates the effectiveness of these heuristics with empirical tests. Section 6.4 discusses the

difference between this work and other collaborative filtering literature. We conclude

with Section 6.5.

6.1 Problem Formulation

We consider a black-box optimization problem with binary outputs. Without loss

of generality, we focus on pairwise comparisons for each query, i.e., a query contains

two designs and the output will be two binary digits representing the preference

order of the pair. Slightly different from the settings in Chapter III and IV, here

we consider a discrete design space and thus optimization of a merit function can

137

be substituted by enumeration over all valid candidates and the search algorithm

becomes deterministic. Notation-wise, let the design space be D, with p dimensions

and l levels for each dimension. All candidate designs form the set X , {xi}Ni=1, where

N = lp. A query is a set of two designs {xi,xj}, where i, j ∈ {1, ..., N}. A path for

test t, denoted as It, is defined as a sequence of indices of the queried designs, i.e, It

is a permutation of a subset of {1, ..., N}. Notice that the last element in It has the

best preference value among all queried designs. Let the tth test preference function

be ft , f(x,wt), parameterized by wt following some unknown distribution. We are

interested in finding a search algorithm A which evolves its strategy depending on

previous search history: It+1 = A(ft+1, {Iτ}tτ=1) so that the average length of paths,

or equivalently, the query size, goes down along t. We elaborate the development of

some heuristics below.

6.2 Heuristics

We first show that the path set {Iτ}tτ=1 on t tests actually forms a tree Tt if in all

tests the search algorithm starts with the same pair. Here the root vertex represents

the initial query and each following vertex represents a query generated from the

previous user responses. The leaf vertices represent optimal solutions of these tests.

To be specific, in the context of pairwise comparison, the root vertex contains the first

pair of designs and it leads to two edges, either Design 1 better than Design 2 or the

other way, when designs are always differentiated. Each following vertex contains the

information table of what designs have been queried and which ones are preferred.

The estimator ŵ can be directly derived from this table. A path to a vertex is a

sequence of vertices and edges from the root vertex to that vertex. Associated with

each vertex is a set P of path lengths from previous searches that reached this vertex

during a search. For example, a vertex with P = {6, 8, 9} says that three searches

have arrived at this vertex after 6, 8 and 9 queries.

138

6.2.1 Simplification of a search tree (JUMP0)

We propose a straightforward heuristic as follows:

1. During search t and sth query, we compare the current estimator ŵs to all

recorded estimators from previous searches to see if the current search status

already exists in the record.

2. If ŵs exists, let the current vertex be ns and the next vertex to query be n(s+1).

Let n(s+δ) be the vertex following ns that first leads to more than one vertices,

then directly query ns+δ and remove ns+1, ..., ns+δ−1 if they exist. Figure 6.1

illustrates this strategy.

3. If ŵs does not exist, then update the tree with this new vertex and proceed

using the default EGO Search algorithm.

The logic of this heuristic approach is easy to understand: The search algorithm

is designed to balance exploration and exploitation so that it does not jump to a

false conclusion too soon. However, with the observation Tt, it would be effective

if we simplify the search by eliminating the unnecessary exploratory queries. The

limitation of this heuristic is obvious: On one hand, with limited tests, jumping to

conclusion can derive inefficient heuristics; on the other hand, with abundant tests,

vertices that have single input and output edge can be rare, rendering the heuristic

less attractive.

6.2.2 Exploration of more efficient trees (JUMP1)

Still working with the search tree and denoting all possible leaf vertices (optimal

solutions) be {n∗i }ri=1, we now propose an algorithm that explores alternative paths

from n0 to {n∗i }ri=1 that will not be generated by the initial search algorithm. The

basic idea, as illustrated in Figure 6.2, is to jump to a leaf vertex after every d

139

Figure 6.1: We jump from vertex ns to vertex ns+δ if there is no alternative path
from ns and through ns+1.

normal queries to establish new paths from that leaf vertex to other leaf vertices.

For clustered optimal solutions, it could be more efficient for the search algorithm to

query a near-optimal design and then search locally from there, reducing the average

of search path lengths of that cluster. Let the current vertex be ns which has a

set of leaf vertices accessible from it. We propose to pick a leaf vertex to jump to

that has the highest average path length P̄ associated with the vertex. The intuition

here is that P̄i represents the penalty one had by not using this leaf vertex n∗i as the

jump vertex in the previous tests. Therefore jumping to this vertex could potentially

lead to better overall search performance. Using this heuristic, the average path

length P̄ on each leaf vertex changes dynamically. This creates more opportunities

for exploration. One can see that this algorithm is similar in concept to JUMP0 but

has a more advantageous jump. We summarize this algorithm as follows:

1. During search t and some sth query such that mod(s, dt) = 0 where dt is an

algorithm parameter, evaluate and rank the similarity between the current ŵst

and all estimators from previous searches at the s:

similarityτ =
ŵT
stŵsτ

||ŵst||2||ŵsτ ||2
. (6.1)

2. Form a candidate set Ns of all vertices from previous tests at the sth query

140

Figure 6.2: Concept of JUMP1: Jumping to a conclusion (leaf vertex) based on
previous knowledge, and search from there.

that have the highest similarity value. Very likely, these vertices are identical

to the current vertex if Tt is based on abundant tests.

3. Let N∗s be the set of unique leaf vertices that is accessible from Ns. Let P∗s

be the set of average path length from Ns to N∗s. Choose the leaf vertex from

N∗s that has the largest average path length from P∗s as the next query design

(Recall that only one design is needed in a pairwise comparison scenario with

the assumption that indifferent designs do not exist). See Figure 6.3 for an

illustration.

4. Update Tt with the new paths.

5. If mod(s, dt) 6= 0, proceed using the default EGO Search algorithm.

141

Figure 6.3: JUMP1 algorithm: From the current status ns, find a set Ns from Tt that
is most similar to ns. Find the leaf vertex set N∗s accessible from Ns. Pick the next
query design as the one from N∗s that has the highest average path length P̄ .

6.2.3 2D Demonstration of the exploration heuristic

For visualization purposes, we demonstrate the effect of JUMP1 on a 2D design

space with 10 levels on each dimension. The designs associated with each vertex on

D are numbered following Figure 6.4. The test preference is parameterized by w in

the form:

f(x) = wTv(x), (6.2)

where v(x) are the Gaussian bases at x:

vi(x) = exp(−||x− xi||22). (6.3)

Here w has all zeros except one element, whose index is drawn uniformly from the set

{15, 24, 25, 33, 34, 35, 36, 44, 45, 55, 68, 77, 78, 86, 87, 88, 89, 97, 98} and magnitude is 1.

This setup creates preference functions that have unique optimal solutions distributed

on the given set. Figure 6.4 shows the locations of the optimal solutions generated

from this setup, mimicking the situation where two clusters of preferences exist.

142

Figure 6.4: Setup of the 2D demonstration for JUMP1: The test optimal solutions
are uniformly distributed on the shaded locations. The indices are of ascendant order
starting from the left down corner as 1 and ending at the top right corner as 100.

We use an experiment to show that applying JUMP1 can successfully reduce the

search cost over time. The experiment consists of a sequence of 1000 random tests

generated from the above setup to mimic the preference elicitation tasks occurring

along the time line. These tests are divided into 10 batches, where each contains 100

tests. The algorithm updates its strategy after every batch of tests is executed. After

an initial batch using the original search algorithm, every following batch uses the

heuristic search once every three queries, i.e., d = 3. For each heuristic search step,

it uses the accumulated knowledge from history, i.e., all history paths towards one

leaf vertex are used for heuristic decision making. The initial query for each test is

set as {1, 100}. Figure 6.5 compares the average search path lengths of each batch

of tests with and without JUMP1. To see the effect of how search path lengths are

shifted, we show the comparison in Figure 6.6 of the last 200 tests with and without

using the knowledge generated from the previous experiment. It is clear that by using

knowledge from previous searches, a new search can be done more efficiently.

143

Figure 6.5: Average path lengths for 10 batches of random tests with and without
JUMP1. This comparison shows that JUMP1 can effectively reduce the search cost
with different d.

Figure 6.6: Histogram of path lengths from 200 random tests with and without the
search tree generated from the experiment in Figure 6.5.

144

To better understand the behaviour of JUMP1, we show in Figure 6.7 the evolu-

tion of the search path for a specific preference optimized at x86 from the previous

experiment result. This sequence of searches demonstrates how JUMP1 explores dif-

ferent possible leaf vertices and finds search paths more effective than the original

one. The behaviour of JUMP1 is similar to JUMP0 when all vertices between the

current vertex and the leaf vertex have one input and output.

One shall also notice that although a good search path is found during the ex-

periment (at Steps 3 and 5), it is not guaranteed to be preserved in future tests due

to the dynamic change of P at each vertex, i.e., a search strategy maybe effective

for one specific target. For example, in this case, going directly to x86 is effective

since the optimal solution is at x86, but the strategy may be not effective for other

preferences. Therefore, the heuristic may change once P̄s on leaf vertices are updated

upon the next batch of tests. We observe, however, that through batches of tests,

the average query size (path length) over random tests from a given distribution of

w decreases by adopting JUMP1. For instance, Figure 6.8 shows the average query

size of the two clusters (i.e., optimal solutions in {x15,24,25,33,34,35,36,44,45,55} and in

{x68,77,78,86,87,88,89,97,98}) from the experiment.

6.2.4 Enhancement to JUMP1 (JUMP2)

Although JUMP1 achieves its purpose, we observed that it does not book-keep

effective searches due to the dynamic change of P̄ at each leaf vertex. Addressing

this problem leads to the following algorithm (JUMP2):

1. During search t and some sth query such that mod(s, dt) = 0 where dt is

an algorithm parameter, rank the similarity between the current ŵst and all

estimators from previous searches at the s. Same as JUMP1.

2. Form a candidate set Ns of all vertices from previous tests at the sth query

that have the highest similarity value. Same as JUMP1.

145

Figure 6.7: The evolution of search path for a preference function optimized at index
86. JUMP1 explores different paths and finds better ones than from the original
search algorithm.

Figure 6.8: The average query size of the two clusters (optimal solutions at
{x15,24,25,33,34,35,36,44,45,55} and in {x68,77,78,86,87,88,89,97,98}) along number of batches of
tests.

146

Figure 6.9: JUMP2 algorithm: From the current status ns, find a set Ns from Tt that
is most similar to ns. Find the leaf vertex set N∗s accessible from Ns. Pick the next
query design as the one from N∗s that has the lowest average path length to all other
leaf vertices accessible from it.

3. Let N∗s be the set of unique leaf vertices that is accessible from Ns. Denote the

ith leaf vertex from N∗s to be n∗is. Let c∗jis be the path length occurred when

the optimal solution is some nj and the search passes through n∗is. Let c̄∗is be

the average length of c∗jis for all j. Choose the leaf vertices from N∗s that have

the smallest c̄∗is as the next query points. See Figure 6.9 for an illustration.

4. Update Tt with the new paths. Update c̄∗is if leaf vertex n∗is is queried.

5. If mod(s, dt) 6= 0, proceed using the default EGO Search algorithm.

The only difference from JUMP1 is the criterion of which vertex to jump to. Rather

than querying the designs that have the largest average query size if they are not

queried at iteration d, we instead query the ones that have the best overall per-

formance explored so far. Notice that c̄∗is are zeros at initialization, therefore this

algorithm will explore possible leaf vertices and gradually converge to the strategy

with near-optimal performance.

147

6.2.5 2D Demonstration of the enhanced heuristic

We use the same experiment setup as before (d = 3). To demonstrate the differ-

ence between JUMP1 and JUMP2 as well as to show how algorithm update frequency

will affect both algorithms, we present in Figure 6.10 the performance of JUMP1 and

JUMP2 under different update frequencies (1, 10 and 100 tests per update) over the

same 1000 random tests. For visualization purposes, the results are shown in groups

of 50 tests where each group represents a certain stage of the evolution of the heuristic

strategy. The performance at each stage is presented by the average of the means

of the query sizes of each test function. The performance of the default algorithm

is also shown for comparison. Notice that the default performance is not constant

throughout all the stages since not every test function is realized during a single stage.

A few observations from this comparison are as follows:

• Both heuristics outperform the default search algorithm throughout the ran-

domized test.

• While JUMP2 converges to a fixed strategy almost instantly after the initial-

ization of the first 200 tests, performance of JUMP1 does not converge; JUMP2

also has overall better performance than JUMP1.

• Both JUMP1 and JUMP2 are affected by the strategy update frequency. Nonethe-

less, the performance of JUMP1 is affected more drastically than that of JUMP2.

Also notice that JUMP2 converges to slightly different strategies under differ-

ent update frequencies. This could happen when a large path length is first

recorded on a leaf vertex that has optimal performance on average, leading to

the false impression that this vertex is inferior to other alternatives and is not

used in future tests.

148

Figure 6.10: Performance of JUMP1 and JUMP2 on 1000 random tests with update
frequency: 1, 10, 100 tests per update. Both algorithms switch to heuristic search
after every 2 iterations. For visualization purpose, the 1000 test results are grouped
and we show the average query size of each group.

6.2.6 Update of initial guess (JUMP3)

All of the experiments we conducted so far use the fixed initial pair {x1, x100}.

It is quiet intuitive that updating the initial guess during the experiment could help

to improve further the overall performance since such a move potentially reduces

the need for exploration. As a pilot experiment, we add to the previous algorithm

a mechanism that changes the initial pair of designs to the most visited two after

every 200 tests. Along with that, the default search algorithm is switched to pure

exploitation mode after the first change of initial guess, i.e., the EGO merit function

is the decision function without consideration of the variance of predictions. As the

last modification to the previous algorithm, we blank the knowledge once the initial

guess is changed. This is required since the knowledge from previous searches are

irrelevant and will confuse upcoming searches. Figure 6.11 compares the result of

this setup and that of JUMP2, both updating the algorithm after every test.

Examination of this performance figure reveals that the benefit of changing the

initial guess is usually not instant. In fact, the performance almost always gets worse

149

Figure 6.11: Performance of JUMP2 and JUMP3 on 1000 random tests. Both al-
gorithms update their search strategy after every test and switch to heuristic search
after every 2 iterations. The figure is segmented to show performance of JUMP3 with
different initial guesses. For visualization purposes, the 1000 test results are grouped
and we show the average query size of each group.

right after the changes. However, its benefit eventually appears as the average query

size gradually goes below the performance of JUMP2 without changing the initial

guess. We also noticed from this pilot experiment that fixing the frequency of the

change may not be the best strategy since the entire knowledge needs to be rebuilt

every time the initial guess is changed. We propose a simple strategy to address this

difficulty. The key idea is to keep the current initial guess if there is no significant

change in the distribution of the leaf vertices. Formally, for a certain number of tests

(200 tests in the following experiment), we group the leaf vertices into q clusters based

on their design variables. Recall that q is the number of designs in a query. For the

ith cluster, we assume that the observed leaf nodes are realized according to some

normal distribution centred at x̄i, which can be derived by maximizing the likelihood

of the current realization, as shown in the following derivation. The variance of the

normal distribution is neglected in the following derivation since it will not affect the

150

solution.

x̄∗i , arg max
x̄i

∏
j∈clusteri

exp(−||xj − x̄i||22)

= arg max
x̄i

∑
j∈clusteri

−||xj − x̄i||22

=

∑
j∈clusteri

xj

number of designs in cluster i
. (6.4)

We then find a set of leaf nodes {x∗i }
q
i=1 that are closest to their corresponding x̄∗i for

each cluster. Let the current initial guess be a set {xi}qi=1. We compute the change

in the likelihood of the observation as follows.

4L ,

∣∣∣∣L({x∗i }
q
i=1)− L({xi}qi=1)

L({xi}qi=1)

∣∣∣∣ , (6.5)

where

L({x∗i }
q
i=1) =

q∑
i=1

∑
j∈clusteri

−||xj − x∗i ||22. (6.6)

We only change the initial guess when 4L is over a threshold (0.2 in the following ex-

periment). Also remember that when the initial guess is changed, the previous search

history will be discarded. Figure 6.12 compares this adaptive initial guess change

strategy with the previous fixed one. The improvement is obvious and expected,

since there is no need to frequently change the initial guess in this 2D experiment

once we settle the initial pair close to the center of the two clusters. Indeed, the

adaptive strategy only changed its initial guess once.

6.2.7 2D Demonstration of initial guess update

The major purpose of changing the initial guess is to start an interaction (ques-

tionnaire) with more relevant queries. We have shown above that this strategy can

be useful when we have a fixed distribution of optimal designs. Its deployment, how-

151

Figure 6.12: Performance of JUMP3 with fixed and adaptive initial guess change
frequency on 1000 random tests. Both algorithms update their search strategy after
every test and switch to heuristic search after every 2 iterations. The figure is seg-
mented to show performance with different initial guesses. For visualization purpose,
the 1000 test results are grouped and we show the average query size of each group.

ever, is more meaningful in a situation where the distribution changes over time,

which is often the case with regard to human preference. Below we show the effect

of JUMP3 with adaptive initial guess change in an experiment where the locations

of optimal designs (leaf vertices) gradually move in the 2D design space as shown in

Figure 6.13. Figure 6.14 compares the average query size of JUMP3, JUMP2 and the

default search algorithm. The improvement using JUMP3 is significant.

6.3 Discussion

Throughout the development of the heuristics, we used a simple 2D problem

with clustered optimal designs. It is natural to wonder what performance can the

heuristic algorithm achieve in other situations. Below we present a situation, still in

2D, where the optimal designs from different subjects are scattered all around the

design space, as shown in Figure 6.15. Figure 6.16 shows the performance of JUMP2,

JUMP3 and the default search algorithm. From here we can see that improvements

152

Figure 6.13: Densities of the optimal designs along time. The five figures show how
the optimal designs are distributed at different stages of the experiment. The grey
scale indicates the frequency of occurence.

Figure 6.14: Performance of JUMP2, JUMP3 and the default algorithm on 1000
random tests. Both JUMP2 and JUMP3 update their search strategy after every test
and switch to heuristic search after every 2 iterations. For visualization purposes, the
1000 test results are grouped and we show the average query size of each group.

153

Figure 6.15: A situation where optimal designs are not clustered. The grey scale
indicates the frequency of occurence.

in the performance are still visible by using JUMP2 and JUMP3. However, the

difference between JUMP2 and JUMP3 is negligible, which leads to the implication

that changing the initial guess is only valuable when the optimal designs are clustered.

To further understand the usability of the proposed heuristics, we conducted two

experiments on a design space with 5 dimensions and each with 3 levels. A total of

1000 random tests is conducted on the default algorithm, JUMP2 and JUMP3. In the

first experiment, we randomize the optimal designs using a uniform distribution on

the entire space, representing the worst scenario for the heuristic to perform. In the

other experiment, the optimal solutions are generated uniformly from the small set of

indices {64, 65, 66, 222, 223, 224} to represent the scenario where almost every subject

falls into confined categories of preferred designs. Figure 6.17 and 6.18 compare the

performances in the first and second experiment accordingly. The comparison here

shows that the heuristics we proposed do not have universal application. They will be

favorable only when the optimal designs from the population are clustered, and their

value becomes marginal when possible optimal designs scatter in a high dimensional

space. This observation, however, is not counter-intuitive, as the performance of any

collaborative filter will rely on the commonality among subjects.

154

Figure 6.16: Performance of JUMP2, JUMP3 and the default algorithm on the 1000
random tests with optimal designs located in Figure 6.15. Both JUMP2 and JUMP3
update their search strategy after every test and switch to heuristic search after every
2 iterations. For visualization purposes, the 1000 test results are grouped and we
show the average query size of each group.

Figure 6.17: Performance of JUMP2, JUMP3 and the default algorithm on the 1000
random tests on a design space with 5 dimensions and 3 levels for each. The opti-
mal designs of these random tests are uniformly generated on the entire space. Both
JUMP2 and JUMP3 update their search strategy after every test and switch to heuris-
tic search after every 7 iterations. For visualization purposes, the 1000 test results
are grouped and we show the average query size of each group.

155

Figure 6.18: Performance of JUMP2, JUMP3 and the default algorithm on the 1000
random tests on a design space with 5 dimensions and 3 levels for each. The optimal
designs of these random tests are uniformly generated on a small set of indices of
the space. Both JUMP2 and JUMP3 update their search strategy after every test
and switch to heuristic search after every 7 iterations. For visualization purposes, the
1000 test results are grouped and we show the average query size of each group.

6.4 Relationship With Collaborative Filtering

One may recall that in Chapter I we reviewed collaborative filtering as one pop-

ular form of recommender system. The work we presented in this chapter is very

similar to a collaborative filter in that every heuristic search is based on the similar-

ity between the current subject preference model and all previous subject models. A

heuristically queried design is indeed a recommended item from other subjects with

similar interests. There is, however, a crucial difference between the objectives of the

two. The purpose of a recommender system is to provide new items to the subject,

here in preference elicitation, the purpose of an interaction is to find out the most

preferred design. Therefore, the heuristically queried design is not only likely to be

preferred by the subject, but also likely to reduce the query size the most. On the

other hand, while most collaborative filters operate on millions of items and users,

we have not explored the scalability issue of the proposed algorithm.

156

6.5 Concluding Remarks

This chapter investigated how collaborative preference elicitation could work to

reduce the query size by incorporating information from previous searches. Four

algorithms were proposed. The key concept of these algorithms is to jump to a likely

conclusion at the lowest average penalty. Using simulated tests, we showed that our

most refined algorithm (JUMP3) can reduce the average query size of a population

from the default EGO Search algorithm. This reduction is especially significant when

the preferences of a population are clustered.

157

CHAPTER VII

Conclusions

7.1 Summary

Understanding user preference has long been a challenging topic in the design re-

search community. We have adopted econometric survey and data analysis methods

to link engineering design and marketing, achieving design solutions that are sound

from both engineering and business perspectives. This approach, however, only re-

fines existing design from historical data while what we really need is to allow users

to explore concepts and express their preferences through rich media, and create a

channel for those user preferences to reach and inform the designers. With rapid de-

velopments in machine learning and virtual reality, this ambition is not only possible

in research but also for employment in practice. The underlying research problem we

are interested in is how to extract preferences from humans interactively and how to

capture these preferences precisely within short time. This dissertation focused on

addressing this problem essentially as a mathematical problem.

Throughout the dissertation, we worked in the context of a human-computer in-

teraction where in each iteration, the subject is queried with a set of designs and

required to choose a few preferred ones out of the set. The computer learns from the

accumulated knowledge and creates the next set of designs to query, the responses

upon which will be the most informative with respect to the subject’s preferences.

158

We also use the assumption that preference can be expressed as a function of the

designs, with or without random errors.

Three problems were discussed surrounding how effective queries can be made:

1. The objective of preference elicitation is to locate the most preferred design of a

subject. Thus, making queries is equivalent to an algorithmic search to optimize

a preference function.

2. In the preference identification problem, we consider designs as binary classified,

i.e., a design is either preferred or not-preferred. Therefore capturing preferred

designs is equivalent to finding a classifier for these two classes.

3. In preference estimation, we discussed how to estimate the entire preference

function with adaptive queries.

The major effort was devoted to preference elicitation, which was shown as a

unique “black-box” optimization problem with only binary choice data, instead of

real-valued ones. We developed in Chapters III and IV a search algorithm that

queries the next design that has high predicted preference and high uncertainty in

its prediction. To predict user preference from binary choices, we first introduced a

classification method in Chapter III by treating designs as binary classified. We then

proposed a more accurate preference prediction method in Chapter IV by modeling

accumulated binary choices as a comparison tree. The search algorithm developed

in Chapter III can be computationally expensive when the dimensionality of the

design space is high, making the algorithm less usable in real-time interactions. We

identified that the cause to this is the high nonlinearity of the merit function on which

new queries depend. This nonlinear function has multiple local optima in the high

preference prediction region which causes the employed genetic algorithm to converge

slowly (up to 1000 generations). An alternative merit function was thus developed

that has one extra dimension but greater smoothness. We empirically showed that

159

this new form of merit function enhanced the computational efficiency of the search

algorithm significantly.

The preference elicitation algorithm was then incorporated with an online 3D

vehicle exterior modeling program. This combination allows free access to the devel-

oped interaction. Using this setup, we deployed a convergence test where the user is

assigned a target design and is asked to find the target using the interaction. Our

results showed that users can successfully find the target within 10 to 20 iterations,

and that, although the underlying design features that users consider are unknown

to the algorithm, it can still work well thanks to the kernel trick employed from the

machine learning literature.

We then showed in Chapter V that preference estimation and preference iden-

tification problems are mathematically equivalent. While the former estimates the

preference parameters in the feature space, the latter does so in the feature difference

space, i.e., a space defined by the difference between features. The shared difficulty

for both problems is to adaptively pick the most informative queries from an enor-

mous set of candidates. We provided a thorough review of how preference estimation

is done, starting in Chapter II and continued in Chapter V. The review showed that

this difficulty can be addressed by the active learning technique separately developed

in econometrics and computer science. The core concept of active learning is to se-

lect queries that achieve both high information gain (using utility balance) and high

diversity of the queried samples (to minimize maximum uncertainty).

In Chapter VI we investigated how collaborative preference elicitation can work

to reduce the query size by incorporating information from previous searches. Four

algorithms were proposed. The key concept of these algorithms is to jump to such a

conclusion at the lowest average penalty. Using simulated tests, we showed that our

most refined algorithm (JUMP3) can reduce the average query size of a population

from the default EGO Search algorithm. This reduction is especially significant when

160

the preferences of a population are clustered.

From a high-level viewpoint, the theme throughout this dissertation is the balance

between exploration and exploitation during a querying process. Conceptually, this

work is about how to ask relevant but not redundant questions during an interaction.

7.2 Contributions

1. The major contribution of this work comes along with the solution to the pref-

erence elicitation problem. As we discussed, preference elicitation is indeed a

unique optimization problem with binary responses. The engineering commu-

nity has researched how a real-valued “black-box” function shall be optimized

using statistical methods, and the econometric community has studied how to

build preference models based on binary choice data. Nonetheless, this combi-

nation of “black-box” optimization and binary choice response is put together

here for the first time.

2. In addition to formulating and proposing search algorithms to elicit prefer-

ence, the improvement in the computational cost of the search algorithm itself

against existing approaches used for real-valued “black-box” optimization is an

important contribution, also for solving traditional simulation-based optimiza-

tion problems.

3. We incorporated the proposed search algorithm in an online human-computer

interaction to extract subjects’ preferences on three-dimensional vehicle exterior

designs in real time. This is the first such development for a highly complex

design problem. The preliminary convergence test results from real subject

tests show convergence of these interactions. The experiments conducted using

the test website along with the implementation of the search algorithm open a

promising avenue for connecting engineering design and human-computer inter-

161

action.

4. Collaborative preference elicitation was introduced to speed up a querying pro-

cess by taking into account search histories from previous subjects. We pro-

posed heuristic algorithms that gradually evolve and converge to search rules

that minimize the average query size of a population. This is a novel way for

capturing mathematically the popular “crowdsourcing” processes.

5. We showed that the preference identification problem can be mathematically

formulated and solved in the same way as the preference estimation problem

using active learning. We showed with simulated tests that active learning can

enhance the performance in both estimation and identification problems within

some level of subject faulty choice rate. More importantly, the introduction of

the kernel trick from the machine learning research to the solution of these prob-

lems improves performance when the underlying models are nonlinear, therefore

eliminating the controversial linearly additive utility assumption. Introducing

this technique to the design community will help marketing researchers to im-

prove validity of models from stated (survey) data.

7.3 Assumptions and Limitations

Assumptions used in this dissertation lead to limitations of the proposed methods.

One of the major assumptions is the definition of preference in the form of a function

defined on a design variable space. Although widely adopted, this assumption can

be easily challenged at different levels: From a high level view point, it is still under

question whether human preference can be measured. Taking this for granted, it is

yet to be justified whether the preference can be defined on the given design space

and whether the features introduced are appropriate. Leaving these aside, a great

limitation still remains the fact that preference usually changes through time rather

162

than staying fixed as it was before the interaction happens. Therefore, it is important

to review, establish and evaluate more reasonable and sophisticated human decision

making models to improve our understanding of user preferences based on the inter-

action data. With these limitations of the current work, there is still plenty of room

for justifying and improving the proposed query algorithms for real-world use. Some

of the specific items are discussed in the following section.

7.4 Future Work

7.4.1 Preference modeling with enriched user interaction data

One important feature of the online interaction environment is to allow rotation,

panning and zooming of individual 3D models. These user actions can be recorded

and are helpful in understanding what design features the user is looking at. For

example, by analyzing what perspective the user is using before she made a choice,

we can not only know what designs are judged better than the others but also on what

basis this judgement is made. The mathematical interpretation of user actions will

help to refine the prediction of preference by refining the weights on features involved

in the training. Formally, let S, n × n be such that Sij is the index of the iteration

when item i and j are compared by the subject. Let eSij , k × 1 be a binary vector

of the length of design features; eκ takes 1 when the κth feature is considered by the

user in iteration Sij. Introducing an element-wise product operator ⊗, the training

problem in Equation (4.3) can then be refined as:

min
w

1

2
wTw

subject to wT
(
(r(X,xj))− r(X,xi)))⊗ eSij

)
≤ a, ∀i, j such that Gij = 1,(7.1)

163

Although mathematically simple, the practical difficulty in incorporating user actions

in learning is visible: User action may involve a sequence of rotation, panning and

zooming. The challenge is to justify by the recorded data what parts of the model

the user is indeed looking at. Collaborative knowledge may also be helpful in this

context. By analyzing user actions from a population, heuristics may be derived to

interpret future user actions more efficiently.

Another important information we should utilize in the search is the demographic

profile of users. Data including gender, age, and semantic description of design taste

can be incorporated with search results, i.e., optimal designs, and together create a

classifier for the population, so that future search will be able to start with designs

potentially close to the subject’s preference by classifying the subject according to

his demographic data.

7.4.2 Calibration on weighted search

As we show in Chapter III, failure to set the weights on exploration and exploita-

tion properly can lead to much deteriorated search performance. However, throughout

this dissertation, these weights are set manually based on repeated experiments and

thus they are only in an empirical sense “optimized”. In real-world interactions, the

weights may be different for different people and thus manually fixing the weights can

lead to sub-optimal performance on average. One easy way to fix this is to provide

the user a tuning slider in the interface. Collecting information on how users tune

the weights may also help us to design the weights better in the first place.

7.4.3 Feature addition and subtraction

Throughout this dissertation we assumed that the preference is defined on the

space of a fixed set of variables and can be represented as a linear summation of

design features. While making such assumptions is questionable, as we mentioned,

164

the opportunity is that we may find ways to refine the set of variables we use by

examining their influences on preference once some interaction data are collected.

Variables will be subtracted if they have trivial impact and new variables related to

those important existing ones shall be added to future interactions. For example,

in the vehicle exterior design case, if we observe that users’ preferences are affected

mainly by the changes in the side silhouette design, more variables shall be introduced

to enrich the variety of this aspect of the design so that more accurate preference can

be captured in future tests.

7.4.4 Linking user preferences and designer decisions

Besides preference estimation, which has been widely applied, the solutions to the

other two problems we discussed can help design decision making in their own ways:

1. We consider preference elicitation as both a data collection tool for designers

to understand user preference trends and a convenient design tool for users to

create and share their own creations. The data collected from user participation

can be analyzed for specific interests. For example, one can analyze how user

preferences are clustered and changing along time.

2. A preference identification implementation will help designers to create design

constraints that cannot be explicitly expressed. For example, an experienced

automobile exterior designer can train the algorithm so that it learns what

car shapes are allowed and what are not. This expert knowledge will then be

propagated as design constraints to other engineering departments.

The algorithms proposed in this dissertation must be calibrated and implemented

in real-life design decision making scenario so that their usability can be evaluated

better.

165

7.4.5 Search towards a mutual target

The last topic of great research interest but also practical usage is how to facilitate

searches not just for individuals but for a group of designers to achieve a mutually

preferable target design. In a real interdisciplinary design environment, the preference

of one designer can be affected by inputs from other designers with different knowledge

sets and focuses. Thus the optimal design of each individual changes throughout the

design process. Adding complexity to it, the design team usually has a structure,

meaning that the opinions of some members may have more priority than the others

and shall be elicited and broadcast to other members. It would be interesting to

investigate how a coordination as well as search mechanism can be developed to

extract preferences of a group of designers in real time.

166

BIBLIOGRAPHY

167

BIBLIOGRAPHY

Abernethy, J., Evgeniou, T., Toubia, O., and Vert, J. (2008), Eliciting consumer pref-
erences using robust adaptive choice questionnaires, IEEE Transactions on Knowl-
edge and Data Engineering, 20 (2), 145–155.

Adomavicius, G., and Tuzhilin, A. (2005), Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions, IEEE
Transactions on Knowledge and Data Engineering, 17 (6), 734–749.

Arora, N., and Huber, J. (2001), Improving parameter estimates and model prediction
by aggregate customization in choice experiments, Journal of Consumer Research,
28 (2), 273–283.

Baeza-Yates, R., and Ribeiro-Neto, B. (1999), Modern information retrieval, Addison-
Wesley, New York.

Balabanović, M., and Shoham, Y. (1997), Fab: content-based, collaborative recom-
mendation, Communications of the ACM, 40 (3), 66–72.

Baram, Y., El-Yaniv, R., and Luz, K. (2004), Online choice of active learning algo-
rithms, The Journal of Machine Learning Research, 5, 255–291.

Basudhar, A., and Missoum, S. (2010), An improved adaptive sampling scheme for the
construction of explicit boundaries, Structural and Multidisciplinary Optimization,
42 (4), 517–529.

Billsus, D., and Pazzani, M. (1998), Learning collaborative information filters, in
Proceedings of the 15th International Conference on Machine Learning, pp. 46–54,
Morgan Kaufmann Publishers Inc.

Billsus, D., and Pazzani, M. (2000), User modeling for adaptive news access, User
Modeling and User-adapted Interaction, 10 (2), 147–180.

Breese, J., Heckerman, D., and Kadie, C. (1998), Empirical analysis of predictive
algorithms for collaborative filtering, in Proceedings of the 14th Conference on Un-
certainty in Artificial Intelligence, pp. 43–52.

Bunch, D., Louviere, J., and Anderson, D. (1996), A comparison of experimental
design strategies for multinomial logit models: The case of generic attributes, Uni-
versity of California Davis Graduate School of Management Working Paper, pp.
11–96.

168

Chang, C., and Lin, C. (2011), Libsvm: a library for support vector machines, ACM
Transactions on Intelligent Systems and Technology (TIST), 2 (3), 27.

Chang, E., Tong, S., Goh, K., and Chang, C. (2005), Support vector machine concept-
dependent active learning for image retrieval, IEEE Transactions on Multimedia,
2.

Chapelle, O., and Harchaoui, Z. (2005), A machine learning approach to conjoint
analysis, Advances in Neural Information Processing Systems, 17, 257–264.

Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. (2002), Choosing multiple
parameters for support vector machines, Machine Learning, 46 (1), 131–159.

Chipperfield, A., and Fleming, P. (1995), The MATLAB genetic algorithm toolbox,
in Colloquium Digest-IEEE, pp. 10–10, Citeseer.

Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., and Sartin, M.
(1999), Combining content-based and collaborative filters in an online newspaper,
in Proceedings of ACM SIGIR Workshop on Recommender Systems, pp. 40–48,
ACM.

Cortes, C., and Vapnik, V. (1995), Support-vector networks, Machine Learning,
20 (3), 273–297.

Cox, D., and John, S. (1992), A statistical method for global optimization, in IEEE
International Conference on Systems, Man and Cybernetics, pp. 1241–1246, IEEE.

Cristianini, N., and Shawe-Taylor, J. (2000), An introduction to support vector ma-
chines: and other kernel-based learning methods, Cambridge University Press New
York, NY, USA.

Cui, D., and Curry, D. (2005), Prediction in marketing using the support vector
machine, Marketing Science, pp. 595–615.

Das, A., Datar, M., Garg, A., and Rajaram, S. (2007), Google news personaliza-
tion: scalable online collaborative filtering, in Proceedings of the 16th International
Conference on World Wide Web, pp. 271–280, ACM.

Dawkins, R., and Pyle, L. (1991), The blind watchmaker, Penguin Harmondsworth.

Dixon, L., and Szegö, G. (1978), The global optimization problem: an introduction,
Towards Global Optimization, 2, 1–15.

Drucker, H., Burges, C., Kaufman, L., Smola, A., and Vapnik, V. (1997), Support
vector regression machines, Advances in Neural Information Processing Systems,
1 (June), 155–161.

Evgeniou, T., Boussios, C., and Zacharia, G. (2005), Generalized robust conjoint
estimation, Marketing Science, 24 (3), 415–429.

169

Evgeniou, T., Pontil, M., and Toubia, O. (2007), A convex optimization approach to
modeling consumer heterogeneity in conjoint estimation, Marketing Science, 26 (6),
805–818.

Frischknecht, B. (2009), Market Systems Modeling for Public versus Private Tradeoff
Analysis in Optimal Vehicle Design, PhD Thesis, University of Michigan, Ann
Arbor.

Frischknecht, B., Whitefoot, K., and Papalambros, P. (2009), Methods for evaluating
suitability of econometric demand models in design for market systems.

GREEN, P., and RAO, V. (1971), Conjoint measurement for quantifying judgmental
data, Journal of Marketing Research, 8, 355–63.

Green, P., and Srinivasan, V. (1978), Conjoint analysis in consumer research: issues
and outlook, Journal of Consumer Research, 5 (2), 103.

Green, P., Krieger, A., and Wind, Y. (2001), Thirty years of conjoint analysis: Re-
flections and prospects, Interfaces, 31 (3), 56–73.

Hardy, J. (1975), An implemented extension of branin’s method, Towards Global
Optimization, pp. 117–142.

Harman, R., and Trnovska, M. (2009), Approximate d-optimal designs of experiments
on the convex hull of a finite set of information matrices, Math. Slovaca, 59, 693–
704.

Hauser, J., Toubia, O., Evgeniou, T., Befurt, R., and Dzyabura, D. (2010), Dis-
junctions of conjunctions, cognitive simplicity, and consideration sets, Journal of
Marketing Research, 47 (3), 485–496.

Hermes, L., and Buhmann, J. (2000), Feature selection for support vector machines,
in 15th International Conference on Pattern Recognition, vol. 2, pp. 712–715, IEEE.

Hoyle, C., Chen, W., Ankenman, B., and Nanxin, W. (2009), Optimal experimen-
tal design of human appraisals for modeling consumer preferences in engineering
design, ASME Journal of Mechanical Design, 131 (7), 071,008.

Huber, J., and Zwerina, K. (1996), The importance of utility balance in efficient
choice designs, Journal of Marketing Research, 33 (3), 307–317.

Joachims, T. (2002), Optimizing search engines using clickthrough data, in Proceed-
ings of the 8th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 133–142, ACM.

Johanson, B., and Poli, R. (1998), Gp-music: An interactive genetic programming
system for music generation with automated fitness raters, Genetic Programming,
pp. 181–186.

170

Jones, D. (2001), The DIRECT global optimization algorithm, Encyclopedia of Op-
timization, 1, 431–440.

Jones, D., Schonlau, M., and Welch, W. (1998), Efficient global optimization of ex-
pensive black-box functions, Journal of Global Optimization, 13 (4), 455–492.

Kanninen, B. (2002), Optimal design for multinomial choice experiments, Journal of
Marketing Research, 39 (2), 214–227.

Kelly, J. (2008), Interactive genetic algorithms for shape preference assessment in
engineering design, Ph.D. thesis, University of Michigan, Ann Arbor, Michigan.

Kelly, J., and Papalambros, P. (2007), Use of shape preference information in product
design, in International Conference on Engineering Design, Paris, France, Citeseer.

Kim, H., and Cho, S. (2000), Application of interactive genetic algorithm to fashion
design, Engineering Applications of Artificial Intelligence, 13 (6), 635–644.

Kosorukoff, A. (2001), Human based genetic algorithm, in 2001 IEEE International
Conference on Systems, Man, and Cybernetics, vol. 5, pp. 3464–3469, IEEE.

Kuhfeld, W. (2005), Marketing research methods in sas, Experimental Design, Choice,
Conjoint, and Graphical Techniques. Cary, NC, SAS-Institute TS-722.

Kuhfeld, W., Tobias, R., and Garratt, M. (1994), Efficient experimental design with
marketing research applications, Journal of Marketing Research, 31 (4), 545–557.

Kumar, D., Hoyle, C., Chen, W., Wang, N., Gomez-Levi, G., and Koppelman, F.
(2007), Incorporating customer preferences and market trends in vehicle package
design, in Proceedings of the ASME International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference, pp. 571–
581.

Kushner, H. (1964), A new method of locating the maximum of an arbitrary multipeak
curve in the presence of noise, Journal of Basic Engineering, 86, 97–106.

Lee, T., and Bradlow, E. (2007), Automatic construction of conjoint attributes and
levels from online customer reviews, University Of Pennsylvania, The Wharton
School Working Paper.

Li, H., and Azarm, S. (2000), Product design selection under uncertainty and with
competitive advantage, ASME Journal of Mechanical Design, 122 (4), 411–418.

Linden, G., Smith, B., and York, J. (2003), Amazon. com recommendations: Item-
to-item collaborative filtering, Internet Computing, 7 (1), 76–80.

Liu, Y., and Zheng, Y. (2006), Fs sfs: A novel feature selection method for support
vector machines, Pattern Recognition, 39 (7), 1333–1345.

171

Lloyd, A. (2003), Threats to the estimation of benefit: are preference elicitation
methods accurate?, Health Economics, 12 (5), 393–402.

Locatelli, M. (1997), Bayesian algorithms for one-dimensional global optimization,
Journal of Global Optimization, 10 (1), 57–76.

MacDonald, E., Gonzalez, R., and Papalambros, P. (2009), Preference inconsistency
in multidisciplinary design decision making, ASME Journal of Mechanical Design,
131 (3), 79–92.

Mandel, M., Poliner, G., and Ellis, D. (2006), Support vector machine active learning
for music retrieval, Multimedia Systems, 12 (1), 3–13.

McFadden, D. (1973), Conditional logit analysis of qualitative choice behavior, Fron-
tiers in Econometrics, pp. 105–142.

McFadden, D. (1980), Econometric models for probabilistic choice among products,
Journal of Business, 53 (3), S13–29.

McFadden, D., and Train, K. (2000), Mixed mnl models for discrete response, Journal
of Applied Econometrics, 15 (5), 447–470.

Michalek, J., Feinberg, F., and Papalambros, P. (2005), Linking marketing and engi-
neering product design decisions via analytical target cascading, Journal of Product
Innovation Management, 22 (1), 42–62.

Mitchell, T. (1974), An algorithm for the construction of “d-optimal” experimental
designs, Technometrics, 16, 203–210.

Mooney, R., Bennett, P., and Roy, L. (1998), Book recommending using text cate-
gorization with extracted information, in Recommender Systems Papers from 1998
Workshop, Technical Report WS-98-08.

Netzer, O., et al. (2008), Beyond conjoint analysis: Advances in preference measure-
ment, Marketing Letters, 19 (3), 337–354.

Neumann, J., Schnörr, C., and Steidl, G. (2005), Combined svm-based feature selec-
tion and classification, Machine Learning, 61 (1), 129–150.

Norman, D. (2002), Emotion & design: attractive things work better, Interactions,
9 (4), 36–42.

Osugi, T., Kun, D., and Scott, S. (2005), Balancing exploration and exploitation: A
new algorithm for active machine learning, in Proceedings of the 5th IEEE Inter-
national Conference on Data Mining, pp. 330–337, IEEE Computer Society.

Pazzani, M. (1999), A framework for collaborative, content-based and demographic
filtering, Artificial Intelligence Review, 13 (5), 393–408.

172

Pazzani, M., and Billsus, D. (1997), Learning and revising user profiles: The identi-
fication of interesting web sites, Machine Learning, 27 (3), 313–331.

Petiot, J., and Grognet, S. (2006), Product design: a vectors field-based approach for
preference modelling, Journal of Engineering Design, 17 (3), 217–233.

Reid, T. (2010), Quantifying Perception-Based Attributes in Design: A Case Study
on the Perceived Environmental Friendliness of Vehicle Silhouettes, PhD Thesis,
University of Michigan, Ann Arbor, Michigan.

Ren, Y. (2009), An interactive modeling environment for automotive exterior design,
MS Thesis, University of Michigan, Ann Arbor.

Rosenbrock, H. (1960), An automatic method for finding the greatest or least value
of a function, The Computer Journal, 3 (3), 175.

Roy, N., and McCallum, A. (2001), Toward optimal active learning through sampling
estimation of error reduction, in Proceedings of the 18th International Conference
on Machine Learning, pp. 441–448, Citeseer.

Salton, G. (1989), Automatic Text Processing: The Transformation, Analysis, and
Retrieval of, Addison-Wesley.

Sándor, Z., and Wedel, M. (2001), Designing conjoint choice experiments using man-
agers prior beliefs, Journal of Marketing Research, 38 (4), 430–444.

Sanena, M. (2002), Flexibility and efficiency enhancements for constrained global de-
sign optimization with kriging approximations, Ph.D. thesis, University of Michi-
gan, Ann Arbor, Michigan.

Sheth, B., and Maes, P. (1993), Evolving agents for personalized information filtering,
in Proceedings of the 9th Conference on Artificial Intelligence for Applications, pp.
345–352, IEEE.

Siah, E., Sasena, M., Volakis, J., Papalambros, P., and Wiese, R. (2004), Fast param-
eter optimization of large-scale electromagnetic objects using direct with kriging
metamodeling, IEEE Transactions on Microwave Theory and Techniques, 52 (1),
276–285.

Sims, K. (1991), Artificial evolution for computer graphics, Computer Graphics,
25 (4), 319–328.

Sims, K. (1997), Galápagos, Information online at: http://www. genarts.
com/galapagos.

Soboroff, I., and Nicholas, C. (1999), Combining content and collaboration in text
filtering, in Proceedings of the International Joint Conferences on Artificial Intel-
ligence, vol. 99, pp. 86–91.

173

Takagi, H. (2001), Interactive evolutionary computation: Fusion of the capabilities
of EC optimization and human evaluation, Proceedings of the IEEE, 89 (9), 1275–
1296.

Todd, P., and Gigerenzer, G. (2000), Précis of simple heuristics that make us smart,
Behavioral and Brain Sciences, 23 (5), 727–741.

Tokui, N., and Iba, H. (2000), Music composition with interactive evolutionary com-
putation, in Proceedings of the 3rd International Conference on Generative Art.

Tong, S., and Chang, E. (2001), Support vector machine active learning for image
retrieval, in Proceedings of the 9th ACM International Conference on Multimedia,
pp. 107–118, ACM.

Tong, S., and Koller, D. (2002), Support vector machine active learning with appli-
cations to text classification, The Journal of Machine Learning Research, 2, 45–66.

Toubia, O., Simester, D., Hauser, J., and Dahan, E. (2003), Fast polyhedral adaptive
conjoint estimation, Marketing Science, 22 (3), 273–303.

Toubia, O., Hauser, J., and Simester, D. (2004), Polyhedral methods for adaptive
choice-based conjoint analysis, Journal of Marketing Research, 41 (1), 116–131.

Toubia, O., Evgeniou, T., and Hauser, J. (2007a), Optimization-based and machine-
learning methods for conjoint analysis: Estimation and question design, Conjoint
Measurement: Methods and Applications, p. 231.

Toubia, O., Evgeniou, T., and Hauser, J. (2007b), Optimization-based and machine-
learning methods for conjoint analysis: Estimation and question design, Conjoint
Measurement, pp. 231–258.

Train, K. (2001), A comparison of hierarchical bayes and maximum simulated likeli-
hood for mixed logit, University of California, Berkeley.

Vapnik, V. (1982), Estimation of dependences based on empirical data, NY: Springer-
Verlag.

Vapnik, V. (1998), Statistical learning theory, vol. 2, Wiley New York.

Wassenaar, H., Sudjianto, A., Cheng, J., and Chen, W. (2005), Enhancing discrete
choice demand modeling for decision-based design, ASME Journal of Mechanical
Design, 127 (4), 514–523.

Watson, A., and Barnes, R. (1995), Infill sampling criteria to locate extremes, Math-
ematical Geology, 27 (5), 589–608.

Wen, C., and Koppelman, F. (2001), The generalized nested logit model, Transporta-
tion Research Part B: Methodological, 35 (7), 627–641.

174

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., and Vapnik, V.
(2001), Feature selection for svms, Advances in Neural Information Processing Sys-
tems, (13), 668–674.

Whitefoot, K., Fowlie, M., and Skerlos, S. (2011), Product design response to in-
dustrial policy: Evaluating fuel economy standards using an engineering model
of endogenous product design, Energy Institute at Haas Working Paper WP-214.
Berkeley, CA: University of California Energy Institute.

Zhang, Y., Callan, J., and Minka, T. (2002), Novelty and redundancy detection in
adaptive filtering, in Proceedings of the 25th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 81–88,
ACM.

Žilinskas, A. (1981), Two algorithms for one-dimensional multimodai minimization,
Optimization, 12 (1), 53–63.

175

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Motivation
	Problem Definition
	Design space and features
	Utility: A measure of preference
	Interaction
	Subject response model
	Preference identification
	Preference elicitation
	Preference estimation

	Related Work
	Interactive evolutionary computation
	General IGA framework
	Vehicle exterior design study
	IGA drawbacks

	Recommender systems
	Content-based recommender systems
	Collaborative filtering
	Hybrid methods

	Conjoint analysis
	Summary

	Dissertation Overview

	Literature Review
	Conjoint Analysis
	Utility and choice probability
	Likelihood models
	Parameter estimation and its variance

	Support Vector Machine (SVM)
	Basic concepts
	Primal and dual problems
	Kernel trick
	Soft margin formulation and complexity control

	Conclusion

	Preference Elicitation
	Efficient Global Optimization (EGO)
	Kriging modeling
	Mean-squared error of the predictor
	Expected improvement
	Properties of the expected improvement
	Optimization on the expected improvement

	SVM Search
	The algorithm
	SVM Search Simulated Test Results
	Test Function 1: Negative Rosenbrock function
	Test Function 2: Negative Six-hump Camelback function
	Test Function 3: Negative Branin function
	Performance metric and results

	EGO Search
	The algorithm
	EGO Search versus SVM Search in simulated tests

	Discussion on the EGO Search Algorithm
	Parameters used in the merit function
	Dimensionality and user sensitivity
	Computational cost
	EGO Search versus GA plus SVM

	Vehicle Exterior Styling Design Elicitation
	Software development
	Convergence test setup
	User data analysis
	Observed issues in user interactions

	Concluding Remarks

	Augmented Preference Elicitation
	Preference Modeling with Comparison Tree
	Terminology and definition
	Learning based on pairwise comparison
	Simulated test results and discussion

	Variations of the Merit Function
	Kushner's criterion
	Generalized Expected Improvement (GEI)
	Lower Confidence Bounding function (LCB)
	Locating the Regional Extreme (LRE)
	Switching criterion
	Computational difficulty

	Fast EGO and Its Simulated Test Results
	The geometric meaning of
	A computationally inexpensive merit function for EGO
	Simulated test results
	Discussion

	Concluding Remarks

	Preference Estimation and Identification
	Active Learning Background
	Non-adaptive query
	Active learning in conjoint analysis
	Active learning in machine learning

	Preference Estimation
	Problem definition
	Design features
	Estimation of w
	Active learning on preference estimation
	Test setup
	D-optimal design setup
	Performance of active learning, D-optimal and random designs on 2D problems
	Limitation of the linearity assumption
	Identification of preference features
	Robustness of active learning

	Preference Identification
	Justification of the loss function
	Application of active learning
	Active learning on preference identification
	Simulated tests and results

	Concluding Remarks

	Collaborative Filtering in Preference Elicitation
	Problem Formulation
	Heuristics
	Simplification of a search tree (JUMP0)
	Exploration of more efficient trees (JUMP1)
	2D Demonstration of the exploration heuristic
	Enhancement to JUMP1 (JUMP2)
	2D Demonstration of the enhanced heuristic
	Update of initial guess (JUMP3)
	2D Demonstration of initial guess update

	Discussion
	Relationship With Collaborative Filtering
	Concluding Remarks

	Conclusions
	Summary
	Contributions
	Assumptions and Limitations
	Future Work
	Preference modeling with enriched user interaction data
	Calibration on weighted search
	Feature addition and subtraction
	Linking user preferences and designer decisions
	Search towards a mutual target

	BIBLIOGRAPHY

