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Abstract

The solution of the coupled field equations for nuclear reactor analysis has typically
been performed by solving separately the individual field equations and transferring
information between fields. This has generally been referred to as operating splitting
and has been applied to a wide range of reactor steady-state and transient problems.
Although this approach has generally been successful, it has been computationally
inefficient and imposed some limitations on the range of problems considered. The
research here investigated fully implicit methods which do not split the coupled field
operators and the solution of the coupled equations using Neutron-Krylov methods.
The focus of the work here was on the solution of the coupled neutron and temper-
ature/fluid field equations for the specific application to the high temperature gas
reactor. The solution of the neutron field equations was restricted to the steady-state
multi-group neutron diffusion equations and the temperature fluid solution for the gas
reactor involved the solution of the solid energy, fluid energy, and the single phase
mass-momentum equations.

In the research performed here, several Newton-Krylov solution approaches have
been employed to improve the behavior and performance of the coupled neutronics /
porous medium equations as implemented in the PARCS/AGREE code system. The
Exact and Inexact Newton’s method were employed first, using an analytical Jacobian,
followed by a finite difference based Jacobian, and lastly a Jacobian-Free method was
employed for the thermal-fluids. Results in the thermal fluids indicate that the Exact
Newton’s method outperformed the other methods, including the current operator
split solution. Finite difference Jacobian and Jacobian-Free were slighty slower than
the current solution, though fewer outer iterations were required. In the coupled
solution, the exact Newton method performed the best. The finite difference Jacobian
with optimized perturbation integrated into the GMRES solve also performed very
well, which represented the best iterative solution to the coupled problem. Future

analysis will consider the transient problem.

xi



Chapter 1

Introduction

1.1 Motivation

The solution of the coupled field equations for nuclear reactor analysis has typically
been performed by solving separately the individual field equations and transferring
information between fields. This has generally been referred to as operating splitting
and has been applied to a wide range of reactor steady-state and transient problems
M 2] 3] 4] [5] [6]. Although this approach has generally been successful, it can be
computationally inefficient and has imposed some limitations on the range of problems
considered. The research here investigated fully implicit methods which do not split
the coupled field operators and the solution of the coupled equations was performed
using Neutron-Krylov methods. The focus of the work here was on the solution of
the coupled neutron and temperature/fluid field equations for the specific application
to the high temperature gas reactor. The solution of the neutron field equations
was restricted to the steady-state multi-group neutron diffusion equations and the
temperature fluid solution for the gas reactor which involved the solution of the solid

energy, fluid energy, and the single phase mass-momentum equations.

1.2 Current Coupled Code Solution Methods

The focus of most previous research in coupled code solution methods has been for
the Light Water Reactor (LWR) [7] [8] [9]. It has long been recognized that the
steady-state and transient analysis of a LWR core is a complex multi-physics problem,
involving the simulation of neutron production and transport, heat transfer throughout
the structures, and the description of the coolant flow field throughout the system
[10] [11] [12] [I3]. Such analysis has involved the coupling of separated simulation

codes, with each one devoted to the solving of one of the coupled physics problems



[T4]. Because of the complexity of the individual field solutions, most of the existing
coupled code systems have applied an Operator Splitting (OS) coupling technique,
where one code is iterated first to provide boundary conditions to the second code and
so on until the last code of the simulation system completes one overall temporal step
[15] [14]. The accuracy of such coupling is generally driven by the one code that uses
the least accurate numerical scheme and therefore traditional OS coupling methods
have been limited to 1st order accuracy. The computational efficiency has further been
limited because the non-implicit nature of this step-by-step decomposition required
the use of small times steps to ensure the stability of the solution [16] [I7]. Some
methods have been developed to improve the efficiency of these methods, but the
fundamental inefficiency and limitations of operated splitting methods remain. The
use of an iterative approach to solve a loosely coupled non-linear set of field equations
has generally resulted in long computation times and imposed some limitations on
the range of problems that could be solved [I8] [19] [20].

The most commonly used thermal-fluid codes in the industry today, such as
TRACE [21], RELAP5 [22], or RETRAN [23] and originally TRAC [24], generally
apply a mixture of explicit and implicit equation formulations. The numerical ap-
proach is generally chosen to minimize stability issues inherent with the first order
formulations [25]. The solution of the linear reactor physics problem is generally more
straightforward, particularly for the steady-state condition which is the focus of the
work here [26] [27]. The methods implemented in the codes SIMULATE-3K [28] and
PARCS [29] are representative of the current generation of reactor physics methods in
the industry today [30].

The most common technique to couple the thermal-fluid and neutronics equations
is depicted in Figure[l.1]in which one field is solved while holding constant the unsolved
equations variables in the other field. The simplest example for the temperature/fluid
and neutronics equations is a staggered update between three field equation subsets
in which the energy equation steps forward, and the n + 1 time step solution is used
to solve the fluid pressure equation. The solution is passed back to time n, where the
neutronics is solved and the time step is advanced to n+1. Experience has shown this
method to be relatively stable for most practical reactor applications.

This method has been used for several years to couple reactor systems codes such
as RELAP5 and TRAC to reactor neutronics codes such as PARCS. The coupling
of these codes is shown in Figure which shows there is a slight difference in the
sequence in which the fields are updated. In the RELAP5/PARCS coupling the heat
conduction precedes the fluids solution whereas in the TRACE/PARCS coupling the
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sequence is reversed. These two schemes represent different physics considerations as
well. The conduction driven scheme in RELAPS repsents the assumption that power
will generally change and in term drive the other fields, while the momemtum driven

scheme in TRACE, assumes a pressure driven transient, more likely in a BWR.
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Variations on the staggered operator splitting method have been proposed over
the years and generally involve slight variations such as a simultaneous update of the
fields as shown in Figure [I.3] In this method, the neutronics and thermal-fluids time
advance together, but between time steps, several data transfers and recalculations are
performed to converge the fields. This is the method currently used in the coupling of
the U.S. NRC HTR fluids code AGREE to the neutronics PARCS which provided the
framework for the research here. Ideally, this simultaneous update method allows for
larger time steps, but at the cost of additional computational time.

There has been considerable analysis of the current practice of coupled codes
for reactor applications. One of the most comprehensive studies was performed by
the OECD [31]. Because there have been only minor advances for practical reactor
applications during the last several years, the OECD report still provides a reasonable
assessment of the current state-of-the-art. A detailed description of the basic issues
of Neutron-Kinetics/Thermal-Hyrdaulic (N-K/T-H) coupling is given in the report,
followed by a description of some of the coupling issues which include:

Coupling approach - integration algorithm or parallel processing
Ways of Coupling - internal or external

Spatial mesh overlays

Coupled time step algorithms

Coupling numerics - explicit, semi-implicit or implicit schemes
Coupled convergence schemes



The two first items refer to the different methods than can be used to couple two
existing solvers, either integrating one code into the other one (thus resulting into
one code), or establishing a dynamic data exchange routine (PVM or MPI based)
between the two codes, thus corresponding to a black-box interfacing where only
limited modifications to the two solvers are needed. The third item, which corre-
sponds to the problem of exchanging coupling fields computed on different meshing
schemes was not an issue for the HTR application here. The review provided of the
last three items did provide some useful background, for example the development
of the SIMTRAN 3D core dynamics code [32] where staggered alternate time step
advancement and extrapolation strategies were used between the two physics (N-K
and T-H). This provided the ability to transfer the T-H feedback variables in a nearly
implicit manner for the core power calculation. The work summarized in the OECD
report addressed primarily the coupling problem for the Light Water Reactor which
was not the principal focus of the research here. However, this work did provide a
comprehensive perspective on previous coupled code approaches provides and a basis
for the investigation of methods to improve the convergence of the existing coupling
techniques (OS based).

The presentation of the work performed in this research is organized as follows.
The next chapter will summarize the field equations which are currently used in the
U.S. NRC codes AGREE and PARCS for High Temperature Gas Reactor analysis and
which provided the basis for the research here. Chapter 3 will provide an overview of
the implicit methods that were used in the work here, and Chapter 4 will describe
the development of these methods for the coupled temperature/fluid and neutronics
HTR problem as solved in AGREE/PARCS. Chapter 5 will introduce the test prob-
lems used for the thermal-fluids, neutronics, and coupled analysis. Chapter 6 will
present the results of applying these methods to practical HTR problems and summary
and conclusions are provided in Chapter 7. The principal original and significant
contribution of this research is the development of a fully implicit, Newton-Krylov
method for the solution of the coupled temperature/fluid and neutronics equations
and the application of these methods within the framework of the U.S. NRC code
system AGREE/PARCS for the regulatory level analysis of the High Temperature

Gas Reactor.



Chapter 2

Current AGREE/PARCS
Formulation

The solution of the temperature/fluid equations for the gas reactor problem used in
the work here was based on the methods implemented in the U.S. NRC code AGREE
which solves three separate field equations: a mass-momentum equation, a fluid energy
equation, and a solid energy equation. These are solved separately and explicitly, and
several iterations are typically required to converge the TH solution. The converged
temperature/fluid solution was then coupled explicity to the PARCS code which solves
the multigroup neutron diffusion equation. The equations are given in the following
sections.

The application here is to the pebble bed design of the High Temperature Gas
Reactor which is described using a cylindrical coordinate system as shown in Fig-
ure 2.1l The finite difference method is used to discretize both the neutronics and
temperature/fluid equations which provides for coupling to six neighbors as shown in
the Figure. The spatial coupling convention of N, S, E, W, T, B for the neighbors will
be used throughout the work here.

2.1 Thermal Fluids

The solid energy equation used in AGREE for Pebble Bed applications is the conven-
tional porous medium conduction equation. Because of the pebble contact and mesh
size, the conductivity definition is expanded to include other heat transfer mechanisms
such as radiative heat transfer. The fluid energy solution also utilizes the porous
medium approach and the calculation of the fluid velocity and convective terms requires
specialized definitions which will be summarized in the following sections. Finally, the
fluid pressure is calculated by combining the mass and momentum equations which

considerably simplifies the final form of the equations.
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Figure 2.1: AGREE / PARCS Nodalization

The formulation of the three thermal fluid equations results in three nine-stripe
matrices. The typical three dimensional finite difference seven stripes which include
the node of interest and six neighbors, has two extra stipes to model the periodic
boundary condition of the azimuthal direction. After the coefficients of the matrix are
determined, the coefficient matrix is constructed for each equation, and then matrices
are solved in the following order: pressure, fluid energy, and solid energy. An iterative
loop is repeated several times until convergence. Mass flow rate and velocity are
calculated after each outer iteration. The velocity is used to calculation Relynolds

number, which is used to calculate several coefficients in the system.

2.1.1 Solid Energy Equation

The fuel in the pebble bed reactor is in the form of a pebble and therefore the field
equation for the solid energy begins with the spherical conduction equation as shown
in equation , which utilizes the conventional definition of the porosity, epsilon,
as the ratio of the fluid volume to the total volume. The LHS represents the time

dependent change in the energy stored in the solid. The first three terms on the



RHS describe the radial conduction, azimuthal conduction, and axial conduction,
respectively. The heat transfer to the fluid is then given, which depends on the solid
and fluid temperatures. Lastly, Q) is the heat generation, which in the coupled system

is the kappa-fission reaction rate total.

0
E ((1 - E) pscp,sTs)

10 T 10 ks 0T 0 T}
=t (0mome ) < g (00 5% ) + g (0 -9m)

—a(Ts—=Tp) +Q (2.1)

The finite-volume method is used to solve this problem, and therefore the equation
is integrated in space over the discretized geometric grid. The coefficients for the
radial conduction terms are given below in which the derivative terms are a function

of the underlying grid geometry.

De = (1 E) ks’eA_reAeAZ (22&)
r
D, = (1 — AHA 2.2
w = ( €) ksvarw 0Nz (2.2b)
Dy = (1) kyptt" ArA (2.2¢)
n - € snrn Aen r < .zC
1 r
D, =(1- —— ArA 2.2
s = ( €) ks’srs ) rAz (2.2d)
1 rz—rfv
Db = (1 - 6) k&bA—% 5 A6 (226)
1 r2—r?
Dy=(1—¢€)k,,—-= YAG 2.2f
= ( €) S’tAze B ( )

The conductivity is a strong function of the solid temperature, and therefore must
be updated during the outer iterations in the finite difference scheme. Using these
variables, and integrating in time, the final form of the equation can be written as

equation ([2.3])
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Equation is the basis for solution of the time dependent heat conduction
problem in AGREE. The primary variable is the solid temperature, including the
primary node and its neighbors. The solution also depends on the fluid temperature
in the primary node. The coefficients depend on the geometry, the node ”"P” solid

temperature, fluid temperature, and fluid pressure.

2.1.2 Fluid Energy Equation

This field equation begins as the conduction / convection for a single phase fluid in

cylindrical coordinates and is provided in equation ([2.4]).

0
5% (eprepsTy)

10 10 . J .
— gy iy Tp) = — o (iocy ; Ty) — - (1hacp £ Ty)

0z
10 T\ 10 [ kpdTy\ 0 oT;
*FE(*”E)*F%(TYE)*%<%3Z

—a(Ty=T)) (24)

The LHS term is the time dependent energy stored in the fluid. The terms on
the RHS are the radial, azimuthal, and axial convection, or movement of heat by the
fluid. The next set of terms are the radial, azimuthal, and axial conduction of energy
through the fluid. The final term is the heat exchange between the fluid and solid
which couples the fluid and solid energy equations.

The conventional finite-volume method is used to solve this problem, therefore the

equation must be integrated in space to be used on the discretized geometric grid. The



coefficients for the conduction terms are given in equation ([2.5a)) and equation ([2.6al).
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In order to treat the convective terms, the velocity must be calculated during the
outer iteration. The differencing scheme is a user option in AGREE which provides for
upwind, central, and hybrid differencing. The general form is given in equation ([2.7a)).
For purposes of testing and comparison of the solvers developed in the research here,

the upwind differencing scheme was used exclusively. This means A(| P |) is equal to

10



one in all cases.

Ap = DpA(| Pg |) + (|| = FE, 0] (2.7a)
Aw = DwA(| Pw |) + [[|Fw, O] (2.7b)
An = DNA(| Py [) + [l = Fn, 0[] (2.7¢)
As = DsA(| Ps |) +[[|Fs, 0[] (2.7d)

Ap = DrA(| Pr )+ || — Fr,0l] (2.7¢)
Ap = DpA(| Pp ) + [||F, 0] (2.71)

The final equation is then given in equation ({2.8]) which is used to solve the time
dependent conduction / convection equations in AGREE. The coefficients depend on
the solid temperature, fluid temperature, and the fluid pressure. During the transient,

it also depends on the time step and the previous fluid temperature.

1 .
epseps 57 (Trp = Tjp') AV

=A. (Trg —Trp)+ Aw (Trw — Thp)
+ Ay (Tyn — Typ) + As (Trs — Ty,p)
+ Ay (Ty,p — Typ) + A (Trr — Typ)
—a(Trp—Top) AV (2.8)

2.1.3 Fluid Momentum Equation

This field equation is a combination of the mass conservation and momentum con-

servation equations. This is achieved by inserting the continuity equation into the
momentum equation which is given in equation ([2.9)).

d (e{ps)! (vs)’) -

g = — 7 (p) +e{ps) G — Welps) (v)! (2.9)

The time dependent momentum of the fluid is given by the LHS term of equa-

tion (2.9) and the pressure gradient is the first term on the RHS. The next term on

the RHS is the change in momentum resulting from gravity, and the final term is

pressure loss due to the motion of the fluid through the porous medium which utilizes
the resistivity as shown in equation (2.10)). For the pebble bed HTR application shear

11



and convection are usually small and can be neglected.

320 6 \1—ecl|(p)/{vy) |
W = + — 2.10
( Re Re&l) €3 dp 2<Pf>f ( )

1—e 1—e¢
The flow rate definition from the continuity equation can be used to replace the

time dependent terms in the momentum equation as shown in equation ([2.11)).

0 (elps)’ (vp)?) _ 1 0m

ot A ot

The final form of the continuity/momentum field equation is given by equa-

tion , which can then be applied to the finite difference formulation used as in
the other field equations.

(2.11)

—— = ——1h
A ot A

The momentum contribution through each face under the discretization scheme

above is given by equation ([2.13al). A similar spatial integration is used as in the other

field equations.

1o W . (dp, 10ps  Op. ‘-
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QPA—SQS me _Azng—l _ rpA—ETngmg _ % A pl (2.13d)

ZPA—BZB Mg —AT%—l _ rpA—BTB Wi — Ap + G A zp /rhol, (2.13e)
ZPA—TZT iy —Alﬁ%—l _ rpA—TTT Wil — Apl — G A 2 /rho® (2.13f)

Each equation is solved for the m™ terms. These terms are then summed, and the
above definition of the continuity equation is used to solve for the time-dependent
mass flow in terms of the change in the density. This can then be expanded as the
partial derivative with time for the temperature and pressure to give the final form of

the equation below which is solved for the change in pressure for each neighbor and

12



the node of interest.

Ap

VAl
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2.1.4 Fluid Mass Flow Rate and Velocity

The mass flow is calculated on the face of each node, and is a function of the resistivity

and pressure. The equation is given in the axial direction is shown in equation ([2.16)).

((p = pp) — GAzpy) (2.16)

where G is a geometric constant, W is the resistivity, ¢ is the gravitational constant,
and py is the fluid density. In the solution approach used here, this is calculated after
the pressure equation is solved. The mass flow rates are then used to calculate the
velocity, which is stored at the cell center. For the axial direction, the velocity is given

in equation ([2.17)).
v, = 1G—(mT+mB) (2.17)

2 py

The velocity can be expressed directly in terms of pressure and is the quantity
which is actually used in the correlations and empirical relationships. The mass flow

rate is generally only used for benchmarking and comparison to external data.

2.1.5 Matrix Structure of Theoretical Problem

In order to understand the matrix structure, a small model was used as shown in

Figure [2.2] Because the application here is to the Pebble Bed Reactor, the problem is

13



Figure 2.2: Theoretical 3 x 3 x 3 Problem
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Figure 2.3: Theoretical 3 x 3 x 3 Matrix

modeled in cylindrical geometry and as shown is a 3 x 3 x 3 problem.

As indicated, there are three nodes in each direction and with a numbering scheme
of radial, inner to outer, azimuthal, counter-clockwise, and axial, bottom to top, the
matrix structure is as shown in Figure for a single field equation.

The current solution method in AGREE solves the equations in the following order:
Pressure (pys), Fluid Temperature (7), and Solid Temperature (75). Because each
equation is solved separately, there is no coupling between equations as shown in
Figure 2.4

This can be improved by coupling the available fields together. For example, the
heat transfer coefficient is common to the solid energy and fluid energy equations.
This represents the off diagonal elements in each equation. Also, the convection terms
in the fluid energy equation can be expressed in terms of pressure and the density in
the pressure equation can be expressed in terms of fluid temperature. This is shown
in Figure [2.5] This represents the tightest coupling possible for the conventional
operator split approach currently used in AGREE. In the Newton method which

will be described in the following sections, the dependence of the coefficients will be
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Figure 2.4: Actual Structure of Current AGREE Linear System
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Figure 2.5: Theoretical Structure of Coupled AGREE Linear System

expressed directly which will fill in the off-diagonal elements and provide for tighter

coupling of the equations.

2.2 Neutronics

The multigroup neutronics equations for PARCS are a finite difference formulation
of the standard diffusion equation in cylindrical geometry. Energy groups are solved
independently from each other using a group sweep, and therefore coupled only through

the source terms of the other groups.
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2.2.1 Multigroup Neutron Diffusion

The diffusion approximation to the transport equation in cylindrical geometry is
integrated in space and angle. As in the usual diffusion approximation depicted in
equation the surface currents are approximated using Fick’s law to relate the
currents with the fluxes and the diffusion coefficient has the usual relation with the
transport cross section defined by the P1 equations [33]. The conventional multigroup
approach is used in which the cross sections and group fluxes are defined over a suitable

energy range with isotropic fission and scattering sources.

Ldo, _ x

ve dt k:p’g Z Vpg2fgPe + Xag Z MGl + Z Vs ggPg — Xt ghg+ oDy V &g
Ug eff g=1 k=1 g’:l(;ﬁg)

(2.18)

The LHS of equation indicates the change in neutron flux with respect to
time and the RHS contains the source, loss, and migration terms. First is the fission
source contribution, with k.¢; to scale the source and adjust the balance equation.
The second term is the delayed neutron source, the third term is the scattering into
group g from all other groups. The next term represents the loss of neutrons to
absorption and scattering into other groups. Finally, the movement of neutrons into
or out of the node of interest is given in the final term. Discretizing in space with the
finite difference grid, the diffusion terms become function of the neighbor fluxes. The

diffusion coefficients are given in equation ([2.19al).

Te
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= Dig (2.191)

The LHS of equation ([2.18]) is also expanded in time and the final discretized form
of the diffusion equation in cylindrical geometry is given in equation ([2.20)).
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In steady state, the LHS becomes zero and all neutron production is assumed to be
prompt, so the delayed neutrons precursors are also zero. Finally, the delayed neutron
fraction becomes one. The value ﬁ is replaced by A, which is a more practical value

to calculate as a primary variable.

2.2.2 Eigenvalue

For the homogeneous, steady-state problem, the eigenvalue is introduced to scale the
fission reaction rate over successive iterations and upon convergence provide a unique

solution to the neutron diffusion equation. In the methods used here the eigenvalue is

defined as in equation ([2.21])

G
AE N unPgl) = )\OZVZ (2.21)
g=1

During the iterations, the equation is actually solved only for A®), with the cross
sections, fluxes, and \° fixed from previous iterations or the flux solve. In practice,
higher order methods (e.g. Chebyshev acceleration) can accelerate convergence, but

the form used here is the most practical for implementation of Newton’s Method.

2.3 Physics Coupling of AGREE / PARCS

When the temperature fluid solution in AGREE is coupled to PARCS, the neutronics

solution is solved separately which is similar to the simultaneous updated method
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discussed in Chapter 1. However, in practice some implicitness can be introduced
into the temperature fluid solution by employing a staggered scheme in which some
of the coefficients are evaluated outside the iteration loop. For example, because the
mass-momentum equation does not contain the solid or fluid temperature variables,
the heat transfer coefficients can be outdated during the iteration. The dependence of
the primary coefficients are the primary variables is given in Table 2.1} As can be seen,
the equivalent conductivity in the solid energy equation depends only on the solid
temperature. However, the heat transfer coefficient depends on both temperature
fields, pressure, and all three velocity fields. The mass momentum equation is coupled
through the fluid density, conductivity, and other parameters. Some coefficients or

components are not listed, which include Reynolds number and Prandlt number.

Table 2.1: AGREE / PARCS Coefficient Depedence

Coefficient Symbol Dependence
Equivalent Conductivity k T,

Heat Transfer Coefficient ! Ts,Ts,pf, Vg, Uy, Vs
Flow Resistance W% T5,T¢,ps, Vg, Uy, U,
Cross Section >, D Ty, T,

The solution of the spherical conduction equation is used to determine the moder-
ator temperature and Doppler temperature. Because this is a separate calculation
requiring boundary conditions, the cross sections actually depend on all the thermal-
fluid fields. When coupled to PARCS, the current one-dimensional conduction equation
is used to update the cross sections, and then the next iteration uses the new fluxes in

the heat generation term.

2.3.1 Matrix Structure of Theoretical Problem

Using the same model problem as used in the previous section for the thermal-fluids,
the matrix structure can be represented for the coupled fields as shown in Figure
and Figure 2.7, Although the coupled problem is not solved in AGREE/PARCS
exactly as shown in this representation, the coupling depicted in the figure is the
tighest coupling possible with the conventional approach. The most significant draw-
back is the operator split coupling approach is an absence of coupling between the
thermal fluids and neutronics. Specifically, the cross sections strongly depend on the

conduction solution, but the cross section temperatures are calculated separately from
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Figure 2.6: Theoretical AGREE / PARCS Symbolic Structure

the neutronics. The inclusion of a direct coupling between the fields is one of the

strengths of the Newtons Method which is described in the subsequent chapters.
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Figure 2.7: Theoretical AGREE / PARCS Matrix Structure
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Chapter 3

Implicit Coupling Techniques

3.1 Introduction

Previous researchers have investigated the use implicit numerical techniques for reactor
analysis applications. In general, these efforts have been restricted to a single set of
field equations, such as a thermal fluids code [34], but implicit methods for coupled
codes have been demonstrated using reduced order methods and test codes in a variety
of fields [35]. On a larger scale, a recent effort was made to form the complete implicit
formulation for PARCS / TRACE [36]. This achieved noticeable speedup for some
test problems but the work is still in the development phase. Packed beds and the
porous medium equation have received some interest over the years [37] [38] [39] as
well. Several researches have outlined the mathematical approaches [40] [41] [42] [43]
[44] [45], but as yet there has not been a successful implementation in an engineering
grade reactor analysis code. Newton’s method has been studied in other fields as well,
with multiphysics modeling the common goals.

One of the principal reasons for the limited success of previous implicit coupling
methods has been the considerable expense of forming the Jacobian for practical
applications. Only recently, methods have been developed to form the analytical
Jacobian [46] [47], with increased interest in automatic differentiation. Several code
have been developed to use Finite Difference based Jacobians, mainly for the purposes
of Uncertainty quantification and sensitivity analysis [48] [49] [50] [51]. Because of
the expense of forming and storing the Jacobian, the largest area of research the
last several years has been in Jacobian-Free Newton Methods [52] [53] [20] [54] [55].
In these methods, the effect of the Jacobian is approximated using a Taylor series
expansion of a matrix-vector product [56]. Many fields are considering these methods,
and these include thermal-fluids [57] [58] [59] [60] [61] [62] [63], radiation [64] [65]
[66], neutronics [67] [68] [69] [70] [71], structural mechanics [72], fuel performance
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Figure 3.1: Coupling Technique - Fully Implicit

[73], and several other fields [74] [75]. Research into this method has been underway
for the PARCS code as well [53]. It is important to note that convergence is not
guaranteed with these methods [76] and stagnation has been a problem [44] with
approximate methods using Krylov solvers [77] [78] [79]. In order to address potential
non-convergence and stagnation issues, the research here will include both the exact
and inexact Newton’s methods.

A fully implicit solution should solve all the field equations together, and it should
also converge the coefficients before time stepping. In general, this is similar to
the simultaneous update described in Chapter 1, but there need not be an inner
iteration between the coefficient updates and field equation solutions. This is depicted
in Figure [3.1| in which the linear system is first solved with an initial guess of the
coefficients and after convergence of the linear system the coefficients are updated and
a new linear system is constructed. In this scheme, the time steps size can change
which can be dictated by the change in coefficients with respect to the field primary

variables.
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The principal obstacle to the widespread use of implicit coupling of the multiphysics
field equations for reactor analysis has been the difficulty in integrating existing legacy
physics codes. Additionally, there have been concerns with the cost of maintaining
such an integrated code which have been typically validated using an extensive set
of benchmarks for the individual fields. Arguments for a more widespread use of
implicit methods include a truer physics representation, improved convergence speed,
simplification or elimination of code coupling, increasing demand for coupled physics
analysis, reduced computational costs, and a simplified method for the quantification
of uncertainties.

The majority of coupled physics solutions begin with a linearization of the system of
equations, because the system is inherently nonlinear. This enables the use of reliable
linear solvers and simple fixed point iteration schemes. There has been considerable
research on improved non-linear solvers, but these have not been implemented in
production level codes. The impact of non-linearity can be demonstrated using a term,
equation , of the momentum equation in the TRACE code. The value of the
density, p, is evaluated at time step n-1, as is the first value of the velocity, v. The
second value of v is the variable for the field equation, which created a linear field

equation representation for the non-linear problem.

i=lvp 7] (3.1a)

PV = a1,171 (3.1b)

(pv) =a1y v=um (3.1c)
(pv)v = (a11)x1 (3.1d)

In this case, the mathematical system is non-linear, but can be represented by
a linear system. Numerically, this can introduce stability issues and an increased
computational costs. This example is representative of many cross section feedback
effects, heat generation terms, heat transfer coefficients, etc. Understanding and
addressing these terms is important to achieving an improvement in the convergence

of the coupled field solutions in both steady state and transient simulations.
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3.2 Newton Iteration

Newtons method has been well established as a method to achieve second order con-
vergence to a non-linear problem. In contrast, operator split approaches can generally
only achieve linear convergence. The so-called Newton Iteration is really a Taylor
expansion of the primary field variables and coefficients, in which only the first order

derivative term is used and the higher order terms ignored.

7 =F+ AT (3.2a)
F(@o + AF) = f(&0) + AT () + %(Af)? (&) + . (3.2b)
A(Fy + AF) = A(Ty) + AZA'(Z,) (3.2¢)

This expansion for the coefficients is similar, but a second step is used as shown in
equation (3.3a) in which the (k) represents the previous Newton iteration, and the §

terms are solved for in the current Newton step.

il = [y z} (3.3a)
A (k) A (k)
54 4 5y + 24 5z (3.3b)
ay z=const. 82 y=const.
A (k) A (k)
A— AW ¢ o4 0y + o4 0z (3.3¢)
a z=const. aZ y=const.

The earlier example from the momenetum equation can be expanded and as shown
in equation (3.4a)), with an assumed source term. Instead of solving for the velocity
directly, the solution variable is the change in the velocity which provides a second
order convergent approach. The actual velocity is computed by adding the solution to
the previous iteration. The coupling between field equations is also much tighter since
the non-velocity variables are considered through the expansion of the coefficients.

This method therefore has the advantage of not only improving convergence, but also
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more tightly coupling the field equations.

il = [v P T] (3.4a)
(p+ 6p)(v + 0v) (v + 6v) = (b) (3.4b)
Spov + 2pvév = (b) — pvv (3.4¢)
ap op. =
2pvév + vvﬁéT + vva—pép = (b) — pvv (3.4d)

In principle, the method is straightforward, but the there are some drawbacks
which were alluded to previously. The partial derivatives must be either approximated
by a perturbation / difference method, or formulated by symbolically taking the
derivative of the coefficient equation. Evaluating these partial derivatives is more
expensive in either case. The true impact of this increase on the computational time

must be included in assessing the value of improved convergence from the Newton
Method.

3.3 Implementations of Newton’s Method

3.3.1 Analytical Jacobian

The most robust implementation of Newtons method is the Exact Newton’s method
in which the Jacobian operator is formed completely for all equations. No finite
difference is used to approximate the coefficients, rather each coefficient is formed from
the analytical derivatives of each component of the matrix A. Ideally, the derivatives
of any empirical relationships which could potentially introduce discontinuities are
smoothed to prevent oscillations in convergence. The Jacobian is then inverted, and
an exact Newton step is performed and repeated until the solution is converged. A
diagram of the algorithm is given in Figure [3.2]

Inexact Newton’s method [80] is simply a variation on the direct solution of the
linear system. Because Iterative solvers, such as GMRES or BiCGStab, provide an
approximate solution, the term ”inexact” is used to characterize this variation of the
Newtons method. Because the size of the linear system can be large for practical
reactor problems, the cost of the linear system solution can be considerable and Inexact

Newton methods are more commonly used for most applications.
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Figure 3.2: Exact Newton’s Method Logic

3.3.2 Finite Difference Jacobian

A noted above, the exact Newton’s method usually based on the analytical Jacobian.
If this is too expensive and if Jacobian-Free methods are ineffective, a finite difference
based derivative provides an alternative. In this approach, the routines for calculating
a given A matrix coefficient are run twice. The primary variable is perturbed, and a
simple linear approximation to the first derivative is obtained. The overall structure
of the Jacobian is the same but an analytical derivative step is replaced by the finite
difference calculation. Again, either a direct or Krylov solver can be used to solve the
system. However, since the Jacobian is an approximation, it is more consistent to use

an inexact linear solver such as a Krylov method.

3.3.3 Jacobian-Free / Approximate Block Newton

The achievement of near second order convergence without forming the Jacobian
matrix is the goal of using Jacobian-Free approach. Neither the Jacobian-Free nor
Approximate Block Newton [81] require the formation of the actual Jacobian, but
rather use an approximation based on a first order Taylor expansion. Because the
Jacobian is not needed, coding for analytical derivatives or finite difference calcuations
are not necessary and in principle the existing formulation can almost be used as
implemented. This method does have some drawbacks, which include susceptibility
to instabilities and divergence. A diagram of the Jacobian-Free method is shown in
Figure [3.3

The JFNK algorithm is given below and detailed descriptions of the JFENK method
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Figure 3.3: Jacobian-Free Method Logic

. Compute ro = b — Az, B: =||roll2 v1i: =ro/B
. Define the (m + 1) x m matrix H,, =0
.Forj=1,2...m
Compute w;: = Jv;
Fori=1,..,j

hiJ: = (wj,vi)
= wj; — hiﬂ"Ui

. Compute y,, the minimizer of ||fe; — Hpyll2 and dz,, = dz0 + Vintm

Step 4 in the algorithm would normally require the full Jacobian matrix, but a

finite difference step can approximate the action of the Jacobian on the vector. This

matrix-vector operation will induce the residual in the conventional sense, so the same
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change must be induced. This is given in equation (|3.5al)

7) — A(D)T (3.52)

I

<
<y
X

w (3.5Db)

Therefore, evaluation of the residual is completed for each new vector w, which is
required to fill the subspace. The general approach is straightforward and has been
implemented without major code modifications for some applications. One of the
principal requirements is to have access to the residuals of each subfield which is not

always available for some of the legacy codes.

3.4 Summary

The objective of the research here was to examine both the exact and inexact Newtons
method, as well as the Jacobian Free Newton Krylov method in order to assess their
effectiveness for practical HTR applications. The overall metric for performance was
the robustness of the algorithm and the overall computational time to achieve a
converged solution. The following section will describe the methods used to implement
Newtons method within the framework of the equations used in the AGREE/PARCS

code system which were described in Chapter 2.
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Chapter 4

Implicit Formulation for
AGREE/PARCS

The most complex and computationally demanding aspect of the Newton Method is
the formation of the Jacobian. This chapter will describe the form of the Jacobian for
the coupled field equations and then the details of the methods used in this research
to construct the Jacobian first for the thermal-fluid equations in AGREE, and then
for the coupled field solution in AGREE/PARCS. The exact Jacobian is typically not
constructed for practical applications, however, it has been used in some cases.

The Jacobian is formed for the complete set of field equations of the coupled field
solution using a Taylor expansion for both the primary variables and coefficients of
the systems equations. The matrix elements represent the partial derivatives of each
equation with respect to each variable. The full Jacobian is given in Figure for the
AGREE/PARCS equations described in Chaper 2. Some terms may be zero since the
coefficients in an equation may not depend on all primary variables. A red box denotes
the thermal-fluid sub-matrix, which will be described first. The RHS is denoted by r,,
which is the residual of each field equation. The LHS coefficient matrix is therefore

the partial derivative of each residual with respect to each variable.

4.1 Derivation of Jacobian for the Thermal-Fluids

Equations

The Jacobian matrix components for the fully implicit coupled thermal-fluid equations
is given in Figure . The primary variables are the multigroup neutron flux (¢,), solid
temperature (7), fluid temperature (7), fluid pressue (py),x-velocity (V), y-velocity
(Vy), z-velocity (V,), 1-d conduction (T, or 1d), moderator temperature (7,,,), Doppler

temperature (7y), lambda (A). One of the major differences between the operator
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Figure 4.2: Symbolic Representation of AGREE Jacobian

split matrix structure shown in Chapter 2 and the fully implicit Jacobian shown here
is the inclusion of the velocity equations as primary variables in the fully implicit
formulation. As noted previously, the heat transfer coefficients are a function of the
Reynolds number which depends on velocity. Therefore in order to achieve a fully
implicit solution the velocity must be included as a primary variable and analytic
derivates of the velocity must be included in the Jacobian. There is no difference
in the striping around the primary diagonal, but additional stripes can be seen in
Figure in the off-diagonal blocks. These stripes provide coupling of the equations
through the coefficient expansions and importance of these terms will become evident
when comparing solutions of the operator split and fully implicit methods.

The structure of the Jacobian matrix for the thermal-fluid equations is shown in
Figure |4.3| for the same 3x3 model problem used to demonstrate the structure of the

operator split matrix in Chapter 2.

4.2 Derivation of Jacobian for AGREE/PARCS

The coupled steady state equation system currently solved in AGREE/PARCS was
shown previously in Chapter 2. The Jacobian for the fully coupled thermal-fluid and
neutronics system is shown in Figure [4.4]

The Jacobian matrix structure for the same 3-D, 3x3x3 model problem described
in Chapter 2 is shown in Figure 4.4, Because of the complexity of neutron spectrum
in a graphite moderated system, the number of energy groups used in the neutronics
solution is typically more than twenty. However, the structure here only shows two en-
ergy groups since the additional groups will have a structure similar to the two groups

shown here. The highest and lowest energy group will have down- or up-scattering
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Figure 4.5: Matrix Structure of AGREE/PARCS Jacobian

only, respectively.

Construction of the Jacobian will be shown separately for the thermal-fluids and
the neutronics equations. After each subsystem is solved and tested separately, the
systems are then coupled to include the off-diagonal coupling terms. The steady state
problem is formulated as an eigenvalue problem and the eigenvalue itself is treated
as a variable in the Newton iteraction scheme. This provides for an acceleration of
the convergence in a fashion similar to conventional Wielandt shift or Chebyshev
acceleration methods. In total, the system includes six thermal-fluids equations (mass,
energy, and momentum for gas and solid), g neutron diffusion equations, three cross
section feedback equations, and one eigvenvalue equation. The following subsection
will provide the form of elements for each of the field equations, but the full derivations

are given in the appendices.

4.2.1 Newton’s Method Neutronics Equations

The derivation for the neutronics equation begins with the diffusion equation in
cylindrical geometry given in equation (2.20) and equation (2.21)). As noted earlier,
the basis for this approach is the Taylor expansion of both the primary variables, the

33



flux and eigenvalue, and the coefficients, the cross sections and diffusion coefficients.

Because only steady state is considered, the time dependent terms are ignored.

by — &) + 69, (4.1a)
A= A® 45 (4.1b)
¥ — 2® 4 6% (4.1c)
D — D® 16D (4.1d)

Inserting these into the diffusion equations

(D + 6Dq) (8% + 865,p — 041 — 66.1)
+ (Dgw + 5D97W) (¢97 ) 45y o — ¢(k) S
4 (DX +6D,n ) (80 + 500 — 6% — 6,
+ (DY +0D,5) (8% +800,p — 8l - (5%5)
+ (DY +6Dy5) (6% + 66,0 — 6% — 56,)
+ (D;k% + 5D9T) <¢  Syp — ¢ng B 5¢97T>

G
+ (Ea]f; + 52@79) + Z <Zikgﬁg’ + 628 g—g' > <¢(k) + 59259 P>
)
G
k) k
- V;’ Z (Zg g'—g + 52379'*9) (gb;/,)P + 5¢g’,P>
g'=1(#9)

— VoAXpyg Z <V2§“],€g)' + 5’/21‘,9’) (qﬁélf’)P + 5¢g’7P> =0 (4.2)

g'=1

The diffusion coefficient and cross sections must be expanded as well. The 02

and 6D can be expanded into a partial derivative, to accomodate the underlying
dependence.

0x X

After some algebra, shown in the Appendicies, the final form of the diffusion
equation is given as
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el () (S (Ze) ) Yo
=1(#9)

9'=1(#g
G n—1 G n—1
825 / k 61/2]0 /
+Vp Z Qb;’,)P ( aT;g + XgpA(k) (Z (bg(y’,)P < oT . ) ) 0Tp,p
9'=1(g) g'=1
Vol [ (222)7 ZG: e\ ) ) o1
G n—1 G n—1
825 / k 81/Zf /
| X ‘ﬁé’v)P( ory ) T (Z ¢§',)P( aTMg) ) iy
g'=1(#g) g'=1
(4.4)

An important difference from the standard diffusion equation is that the eigen-
value is now a primary variable. This allows the eigenvalue to change in reponse to
changes in the flux, and vice versa. Another difference is inclusion of the cross section
temperature dependence. In the standard diffusion equation formulation, the cross
sections dependence on temperature are not included within the neutronics solution,
but are included after a thermal-fluids solve. Therefore, in the Newton’s Method it is

expected the nonlinear coefficients will converge more quickly.
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G G
k k
-V Z Eg,g)'g(5¢g/,P + XgpA(k) Z VZ(,;/(W)QCP

g'=1(#g) g'=1
G
k) . (k
— VioXop Z (VESC’;,(b;,’)P) oA
g'=1

— (D860, + Dy 86gw + DiNdx + Difo6,s + Dihoogs + DYoo,
= Sk
(4.5)

In the absense of thermal-fluids feedback, the cross sections are fixed, and the
equation is much simpler. This was the form implemented for neutronics only solutions

given in Section 2 of Chapter 6.

4.2.2 Newton’s Method Thermal-Fluids Equations

In the conventional O.S. solve, the solution is governed by three field equations. As
noted above, the dependence of Relynold’s number on the velocity requires that the
Jacobian include these equations. This augments the original three equations with
three more velocity equations. In this sense, the thermal-fluids are better represented
by the momentum and continuity equations.

The solid energy equation derivation begins with the form given above. The time

dependence is ignored.

0
a [(1 - €)pscpsTs] AV

= DeTs,E + DwTs,W + DnTs,N + DsTs,S + Dth,T + Dst,B
—(De +Dy+ Dy + D+ Dy + Dy)Ts p — a(Ts.p — Ty, p) AV + QAV  (4.6)

Inserting expansion for the thermal-fluid coefficients and primary variables. In-

cluding the heat generation expansion as well.
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+ K (Ts(k’) —Ts(k)> ( ’ ) 0Tyn + K (TS — T ’ 0T,
N P N 8T5,N N S P .S 8Ts,s S
e\ ks \" "
k k s,T k k s,B
vk (1 -19) (G52)  oTr+ ko (19 -18) (552) o7

ks " (k) W\ [ Oksw \"
: Kwl|\T: 5 —T :
<3TS,P) + Kw < s,P s,W> oT,.p

dap\"! dap\"! dap\" !
v av (18- 189) (( ) g (B) o+ (%) (svz)
— AVP, o <¢§’“>5521 + Pk, + ¢§k)6/£23)
— (KpkoTop + .+ K0T, B)
<K KO+ K k®), + Knk®y + Kok + Krk®) + Kph! >5TS,P
+ AVa¥§T, p — AVa¥6T; p
— AVP, fu (ng’“)aqﬁ 4 k2P 6, + ﬁzg’”wg) =S, (4.7)

Where the source is the residual, given as,

S

S8 = (KpkyTl + .+ Kk} T(k)>
(KEk: + Kwk®)y + Kk, + Kok®) + Kok + K k! ) ")
« k)AVTSg + af AVTf’P
SN (ng’%g’f) + ruPF el 4 ng%g“) (4.8)

Expanding the cross section terms,
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ks " (k) W\ [ Oksw \"
: Kwl|\T: 5 —T :
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8:‘121 n-l (k) 8/{22 nl (k) 8&23 n-l
— T
< Ty > + ¢y o7y + @3 ot 0T p
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. = (k) aﬁz}l (k) @RZQ (k) 8:‘123
AVPn,fuel (‘bl ( aTM ) + (bz (—8TM + de aTM (ST&M

- (KEkgkgaTs ot + Kpk®oT, B)

(KEk: + Kwk®), + Knk®), + Kok®) + Krk®) + Kokl )5T5p
+ AVa¥oT, p — AVa¥ 6Ty p
— AV P, fuel (/-;Egk)&;ﬁ + kS 60y + kD605 + ng’%@) =S (4.9)

The heat generation can be expanded in terms of the flux and kappa fission cross

section, shown to depend on the cross section temperature

kY = f (T, Tn)
kY = ((g%) 5T + (8@) nl 5TM> (4.10)

After some algebra and collecting of terms, the final form is given, with some

shorthand for brevity.
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- A‘/pn,fuel

- A‘/pn,fuel

The final equation depends on the neighbor solid temperatures and fluid tempera-
ture as before. However, the heat transfer coefficient derivatives increase the coupling
to the other fields. Also, the flux and kappa fission terms tightly couple the heat
generation. Because there is no heat assumed to be generated in the fluid, this is the
primary coupling between the flux and thermal-fluids.

The fluid energy equation is actually the more complex field equation. The pres-
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ence of the conduction, convection, and heat transfer terms, increases the number of
terms and complexity of the equation. As noted above, only upwind differencing was
considered, but further analysis could consider higher order schemes. Beginning with

the conventional derivation,

0
57 [£sep, Tr] AV =
AT+ AwTrw + ANTin + AsTs s + AT + ATy

— (AE + AW + AN + AS + AT + AB)Tf’p — Oé(Tﬁp — Ts,P>AV (412)

Expanding the primary variables,

(Ap+Aw + Ay + As + Ar + Ap) (Typ + 01%,p)
— A (T + 0Tsp) — Aw (Trw + 0Trw) — An (Trn + 6T N)
—As (Tss+ 0Ty5) — Ap (Tyr + 6Ty7r) — Ap (Trp + 614 B)
+ ((Typ+ 0Ty p) — (Tsp + 0Tsp)) AVSa =0 (4.13)

Expansions for the coefficients,

N———"

Fe = GE (C](o’j”),E + 5Cpf,E> (m(;) + 5mE) De = KE k;]j%' + 5kf,E
Fo = G (el + dcppa ) (1ily) + o) Dy = Koy ({5 + oy

Fy = Gs (s + 5cpf75§ il +dig) Dy = Ks () + kg s

o

(4.14)

4+ 5mT) Dy = Ky (K9 + 6k
Fy= Gy (¥, +6c0m (mg“) + 5mB> Dy = Kg (k' + 6kpp

N———

The final form is then given as,

40



Tep—T K oT — 4T —) )
(Typ —Ty5) K <8Tfp P+ Ty 50 L1 + Jppp VI + 7 p Pf,E)
. aC E 80 E 80 E de E
Tip—Trg)G 0Ty p oT ) B2y
+ (Tt,p — Ty,p) Gemng ( Ty p O LiF aT e+ Ips p VI P+ A PﬁE)
+(Tf7p - Tf’E> GECp,E (aTS P5Ts p+t..+ 6?)2 P6UZ P+ aTS E(5T5 Bt ..+ avz’E 51}2 E)
+ ...+
ok ok ok Okgp
(Typ—Trp)Kp <8TBP 0Ty p + —anBB 0Ty B + 8pr opsp + —0pf opy, B)
. dc, B dc, B dc, B ey B
+ (Trp—Tr )G <——£L—5T’ + 22 65Ts g+ —2Z6psp + ) )
(Ty.p — Tt.5) Gping s 0 L gy 0 Tre g, S 0Pne g 0P
Omp Omp Oomp Omp
‘Hﬂf_ﬂﬁﬂh%ﬁ<mhfﬂp+ +8%PMﬂwyﬂthB+ +8%£MMQ

oo Oa
+ AV (Tf}p - Tsyp) (ﬁT&P + ...+ av P5Uz7p)

+ Ap (0T p — 6Tsg) + Aw (0T;p — 6Trw) + An (6T p — 6Ts n)
+As (6T p — 0Ty,5) Ar (0Tsp — 6Ty7)+Ap (6T p — 6Ty )+ (0T p — 6T p) AV =
= Ag (Typ = Trp) — Aw (Tr,p — Tyw) — An (Trp — Tyn)
—As(Ty.p —Tys) — Ar (Typ — Tyr) — Ap (Typ — Typ) — (Typ — Top) AVa
(4.15)

As noted earlier, the fluid energy depends on all primary variables, with all
neighbors. This creates tight coupling between the fluid energy and every other
equation.

The pressure equation is generally simple in form. However, the coefficients depend
on every primary variable, including the velocities. The equation written in terms of

pressure, is given as,

e ~G —Gy
k+1 2 k+1 3 k+1 k1
0= T A A G A G
+IVMJ(Aﬂ#1+9AZpM4)+LVM4(AHH1+QAZPM4) (4.16)
z5 26

where W represents the flow resisitivity in each geometric direction, respectively.
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Using some coeflicients for convenience,

G G G G
Rr,E = Wk}'rl RT,W = Wkil Ra,N = Wkil Ra,S - Wkil
rl r2 03 04 (4.17)
_ G _ G _ k+1 _ k+1
Rip =y e =t bip = gAzps™ by = gAzeps
26

The equations are then given as,

- RT,EAp:ff_l - RT,WApf;l - Ra,NAplgg_l - Rr,SApgjl
— RZ,B (Aplzcgl -+ bva) — RZ,T (Ap’;;rl + bf}B) =0 (418)

Expanding the primary variables, and coefficients,
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— Ry goby g — Ry 1dbs
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— R ((pr.p — p18) = bp.8) — Rur ((prp — prr) — bps)  (4.19)

The final form is given, with some short hand for brevity,
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(4.20)
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The pressure equation now depends on all primary thermal-fluid variables. This
more tightly couples the equation to the other fields, which is drastically different from
the convetional implementation. The velocity equations are simple compared to the
above field equations, and therefore, the derivations are provided in the appendicies

only.

4.2.3 Newton’s Method Cross Section Feedback Equations

The cross section feedback for the PBMR is governed by three field equatiosn. The
primary equation is a special 1-D conduction solve which is appled to an average
power pebble within each material mesh. Along with the 1-D conduction and heat
conduction to the fluid, heat transfer through the pebble is included as well. Beginning

with the 1-D conduction equation in steady state,

Or ox

Integrating over space, the finite difference form is given as,

0 [kAa—T] ) (4.21)

kznAzn (Tsur - En) + koutAout (Tsur - Tout) = q;;‘/;n + q(l)/q;t‘/out (422>

Expanding all of the coefficients, heat generation terms, and primary variables,

akout ak'out
Aou Tsur - Tou —5Tsur 5T‘ou
- t( t) (aTsur i ajﬂlout t)
ngroup

ngroup
- (fm‘/m + fout‘/;)ut core <( Z (bgalixf) < Z (bgaﬁzf) 5Td>

+ kznAzn (5 sur 57—’171) + koutAout (5 sur 5Tout)

"

(fzn‘/;n + fout‘/out) qpeb kznAzn ( sur ~ zn) + koutAout ( sur ~ Tout) (423)

Keeping only the first order terms, the final form is given as
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As can be seen, the solution depends on the fluid temperature and all solid tem-
perature neighbors. The results of this calculation are used to determine the cross
sections temperatures for each node.

The next cross sections temperature equation is the Moderator temperaure. This
is actually a simple volume weighting of the 1-D conduction solution given above. The
inclusion of this equation results from a need to reduce the spatial complexity of the

cross section dependence. The fundamental equation is given as,

nshell
Tsn + T
VesTo = 3 v% (4.25)
sh=1

Expanding the 1-D condution temperature and Moderator temperature, the final
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form is given as,

nshell nshell
5Tsh + 5Tsh 1 Tsh + Tsh 1
‘/pebéTm - § V;# = E V;T+ — (V;?ebTm) (426)
sh=1 sh=1

The final equation for cross section feedback is the Doppler temperature calculation.
This equation is similar to the Moderator temperature calculation, with an added
empirical heat generation term, f — pueb, used to approximate the peaking within the

triso particles. The basic equation is given as,

nshell(fuel)

Tsp + T
Vfuele = E (%% + stpuepreb) (427)
sh=1

Expanding the temperature and heat generation term, the expanded form is given

as,

nshell(fuel nshell(fuel)

)

0T, + 0T

Vfuel(STd - E ‘/5 i 9 il E ‘/sfpuebaneb
sh=1 sh=1

nshell(fuel)

T + T
= Z (Vs% + ‘/sfpuepreb) - (Vfuele)
sh=1

(4.28)

Including the cross section dependence, the final form is given as,
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(4.29)

The Doppler temperature depends on the 1-D condution solve, the neutron flux,

Moderator temperature, and the Doppler temperature.

4.3 Solution of Newton’s Methods

As noted in Chapter 3, the Jacobian was solved in this research using both exact and
inexact methods. The exact solution provided a reference solution whereas practical
solutions of the Jacobian are typically performed using linear solver libraries similar
to the GMRES [82] [83] [84] which was used here from the INTEL-MKL library. A
routine was developed to convert the different parts of the Jacobian into the required
format for the MKL library but could easily be extended to include the formats needed

for other libraries.

4.3.1 Solution Methods

The direct solver used in the exact Newton method was PARDISO which is a state-
of-the-art direct solver used throughout the scientific community. In PARDISO the
standard Gaussian elimination is replaced by an LU decomposition produced using

pivoting and iterative refinement. In this way, PARDISO attempts to minimize the
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truncation and roundoff error produced during a standard matrix inversion. The
resulting solution is a very reliable and accurate exact solution. Several of the advanced
features will be disabled to allow a clearer comparison to the iterative method.

The iterative solver used in the inexact Newton method was the GMRES solver
from the INTEL-MKL library. The solver is composed of three main routines. The
first generates the orthogonal basis for the given vector. The second routine is used to
perform the Jv matrix-vector operation, and lastly, a third routine performs the least
squares problem to obtain the solution for the given Newton step. The orthogonal
basis is constructed using the Arnoldi process with Householder transformations. An
incomplete LU factorization is also available to precondition the GMRES iterations.
In the work here the restarted GMRES solution was also tested since the memory
requirements can become considerable for the large coupled problems. This was
found to be somewhat successful for the thermal fluids problem, but not for the
coupled problem. Along with a fixed convergence strategy, a dynamic strategy was
implemented as well allow the inner iterations to converge relative to the Newton
residual calculated in the previous iteration. In this way, the GMRES inners would

not converge tightly to an inaccurate solution early in the nonlinear iterations.

4.3.2 Convergence Testing

There are several possible methods to evaluate the convergence of the Newton itera-
tions. The first method typically used is to evaluate the magnitude of the shift of each
solution variable in successive iterations. This can evaluate convergence within the
Newton iteration itself, but does not necessarily indicate the convergence of the overall
non-linear system. For a system with constant coefficients this is typically sufficient,
but a higher order estimate of the error is required for systems with non-constant
coefficients which is the more practical case.

The second approach typically used to evaluate convergence is to compare the
magnitude of the nonlinear residuals after coefficient updates. This provides a more
accurate estimate of the error for the case here in which the coefficients are not
constant. A variation on this approach is to evaluate the change in the coefficients
together with a test of the primary system variables. This can include either or both
the standard coefficients or the partial derivatives. The goal is to therefore drive the

residuals to zero, or a small as possible with machine percision.
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Chapter 5
Models Used in Analysis

This chapter describes the problems used to test and evaluate the Newton’s method
developed in this work. The problems are based on the OECD PBMR-400 Benchmark
problem which was developed to assess the performance of coupled codes for the
steady-state and transient analysis of the Pebble Bed High Temperature Gas Reactor.
The following section will introduce the problem specifications and the subsequent
sections will provide the detailed coupled code solution. All results presented in this
section are the validation basis for the Newton’s Method calculations, and were taken
from Seker [85].

5.1 Problem Specifications

The development of the PBMR concept began in South Africa in 1993. The Pebble
Bed Modular Reactor (Pty) Ltd Company was established in 1999 to complete the
design study and carry out the construction of the first PBMR module. The PBMR is
a pebble bed type high temperature gas reactor with a direct cycle gas turbine power
conversion system which achieves a thermodynamic efficiency of about 42 %. The
reactor operates at a thermal power of 400MW?t with inlet and outlet temperatures of
500 °C and 900 °C, respectively. The major design and operational characteristics are
summarized in Table 5.1]

The reactor has an annular core with an outer diameter of 3.7 meters and an
effective core height of 11 meters. The solid graphite reflector with a diameter of
2 meters is located in the center of the core and a graphite side reflector with a
thickness of 90 cm surrounds the fuel region. The layout of the reactor unit is shown
in Figure |5.1]

The helium gas enters the reactor unit from the inlet plenum, flows upwards in the

helium flow channels which are located in the side reflector and downwards through
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Table 5.1: PBMR Characteristics

PBMR Characteristic Value

Thermal Power 400 MW
Electric Power 165 MW
Capacity Factor >95%

Core Configuration

Vertical with Inner Reflector

Fuel

TRISO Coated Graphite Spehers

Primary Coolant Helios
Reactor Pressure 9 MPa
Moderator Graphite
Core Outlet Temp 900 °C
Core Inlet Temp 500 °C
Cycle Type Direct
Cycle Efficiency ~ 42 %

the pebble bed before leaving the reactor from the outlet plenum. The reactor control
system consists of 24 control rod positions in the side reflector. 12 control rods operate
at the upper part of the core serving as control rods while the other 12 rods operate
at the lower part of the core as shut down rods.

The fuel is loaded online into the core from the three positions located above the
core and removed from the three defueling chutes located below the core and positioned
equidistant to the centre of the fuel annulus. The core contains approximately 452000
fuel pebbles with a packing fraction of 0.61. The fuel pebble has a diameter of 6 cm.
The inner 5 cm of the fuel contains about 15 million U0, TRISO particles embedded
in a graphite matrix and is surrounded by an outer graphite shell with a thickness
of 0.5 cm. The form of the fuel pebble is represented Figure [5.2] Each fuel pebble
contains 9 grams of Uranium with a U-235 enrichment of 9.6 wt %.

The PBMR design is primarily based on the German AVR and THTR reactors.
The tools and methods to perform the design and safety analyses of the reactor lagged
behind the state of the art compared to other reactor technologies. This has motivated
the testing of existing methods for pebble bed reactor concept. The first attempt
for this verification and validation effort was the benchmark problem defined for the
PBMR 268MW reactor design. A test case for the PBMR 400MW design was also
defined and accepted as an international benchmark problem by the OECD/NEA /NSC.
The main objective of the benchmark is to establish a well defined problem based on a
common set of cross-sections to compare the methods and tools in the core simulation

and thermal hydraulic analysis.
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The reference design for this benchmark is derived from the 400MW PBMR shown
in Figure [5.1 The reactor core is modeled in two-dimensions (r,z) with some simplifi-
cations such as flattening the pebble beds upper surface and removal of the bottom
cones and the de-fuel channels which results in a flat bottom reflector, which simplified
the input model. The effect of this simplification was not quantified, but would be
neccesary in futher validation efforts. The pebble flow is simplified to be in parallel
channels and at equal speed. The control rods in the side reflector are modeled with
a given B-10 concentration as a cylindrical skirt. In order to analyze some specific
cases such as a single rod or a segment of rods ejections, a three-dimensional (r,0,7)
model is also employed. In the thermal-fluids design, the stagnant helium and air is
specified between the core barrel and RPV and RPV and heat sink, respectively. The
details of the benchmark problem such as the core geometry, material properties, fuel
and structural material specifications and etc. are given in the official benchmark
description document [86].

The core layout of the PBMR-400 is shown in Figure [5.3 A set of cross-sections
in two energy groups and five state parameters dependent is provided as a part
of benchmark specification. The cross sections are dependent on fuel temperature,
moderator temperature, xenon concentration, fast and thermal bucklings. The 5-D
interpolation method implemented in PARCS was used to update the cross section
data.

5.2 Validation Basis

This section will summarize the AGREE-PARCS results of the steady-state cases and
compare the results with those of other benchmark participants. These results were
previously completed, and are not Newton-Krylov methods results. There are three
steady-state cases that were performed which include

e (Case S-1: Neutronics Solution with Fixed Cross Sections

e Case S-2: Thermal Fluid solution with given power / heat sources

e Case S-3: Combined neutronics thermal fluids calculation starting condition for
the transients

The first three cases were performed to verify the standalone neutronics, stan-
dalone thermal-fluids and coupled neutronics/thermal-fluids. The comparison of the

eigenvalue, maximum power density and axial/radial thermal flux profiles for the Case

S-1 are shown in Figure [5.4] through Figure 5.7
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In case S-2 the power profile obtained from the equilibrium calculation is set in the
standalone thermal fluids calculation. The comparison of various average values and
profiles are given in Figure through Figure . The coupled neutronics/thermal-
fluids problem Case-3 was solved and the results were compared with those obtained
by the CAPP/MARS coupled code system.

These three steady-state problems were used to evaluate the performance of the
Newtons method described in the previous chapters. The following chapter will show
the comparisons of the convergence history of the Newtons methods with the existing

solver for each of the three steady state cases.

Table 5.2: Case S-3 Eigenvalue Comparison

Code ker; (HEP) | koss (HZP)
CAPP/MARS | 0.99270 -
PARCS 0.99283 1.04099
PARCSx 0.99282 1.04090

5.3 The Jacobian Matrix

The general guideline is that larger matricies are more costly to solve, however, the

sparsity of the matrix is also very important. Table gives the dimensions and
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Figure 5.16: Partial Filling of Practical Matrix

sparsity of the three matrices used in the test problems. The large increase in the size
of the coupled system results from the large number of 1-D conduction problems that
must be solved for the XS feedback. In all cases, the percent of non-zero elements is
about 0.05%.

Table 5.3: Resulting Jacobian Linear Systems

System Neutronics | Therm-Flu | Coupled
Dimension 1161 8772 61825
Non-Zeros 6591 36559 207747

Because of the computational cost of building the Jacobian, the performance of
the Newton’s Method will depend largely on the size of the system analyzed. An
estimation of the required operation counts was useful also performed. Because these
systems are very sparse, as shown above, the commonly held assumptions regarding
performance of direct vs iterative system may not be valid. Another important con-
sideration is the storage convention used in the coding. Figure shows that not
all nodes contain a calculation for all variables. The boundary nodes have only a
conduction solve and do not generate heat and therefore, the Jacobian matrix will
contain identity submatrices, as illustrated in Figure [5.16]

The second and third submatrices are smaller than the first submatrix. This means

that both the direct solve and iterative solve will have some zero elements in the RHS.
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This is not a significant issue for the direct solver but represents a potential problem for
the iterative solver. Each time a subspace vector is generated, operations are wasted on
these zero residuals, which then results in poor performance for GMRES. An estimate
of the required operations is shown in Table The direct solve statistics were taken
from PARDISO, and the iterative estimate was adapted from Sosonkina [87]. N is
the matrix dimension, Ny is the number of non-zero elements in the Jacboian, K
is the number of stored Krylov vectors, and I is the number of inner iterations per

Newton step.

1
WGMRES%4I(NN2+(NNZ—N)))+§NK[+O(I> (5.1)

Table 5.4: Estimate of Solve Operations

Operations Neutronics | Therm-Flu | Coupled
Per Newton

Direct Flops 1.308e6 1.000e7 6.972e8
GMRES Inners 22 29 114
GMERS Flops 1.407e6 1.009e7 6.973e8

The number of inners iterations was calculated to obtain similar total operations
per outer iterations. The results here indicate that if GMRES requires more than 22,
29, and 114 iterations for the neutronics, thermal-fluids, and coupled field solution,
respectively, then the direct solver can be expected to perform better than the iterative
method.

These esimates depend on the number of stored vectors as well, which varies
between the neutronics, thermal-fluids, and coupled calculations. The current imple-
mentation could be improved in several ways, which include storing the residual more
efficiently, reducing N, storing less subspace vectors, reducing K, or improving the

preconditioner, reducing /.
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Chapter 6

Analysis of Implicit Formulations

This chapter provides the results and analysis of applying the Newton Method to the
HTR problem described in the preceding chapter. First the application of Newtons
method to the individual field solutions will be presented with the temperature-fluid
solution presented in Section 6.1 and the neutronics in section 6.2. The analysis of
the individual field solution was important to verify the accuracy of the Jacobian
since errors in the Jacobian itself would not always prevent convergence. The solution
of the coupled field solution are then presented in section 6.3. In order to obtain a
reasonable initial guess for the Newton iteration, the conventional solvers were run
for a few iterations. The primary variables were then used to form the Jacobian and
initiate the Newton iteration until convergence.

The fundamental expansion of the primary variables and coefficients serves as the
foundation for the Jacobian matrix. In order to test each derivative and determine the
“importance” of individual coefficients, the Jacobian could be modified to include or
exclude any coefficient expansion. However, the Jacobian with all analytic derivatives

was the basis for the Exact Newton’s method.

6.1 Newton-Krylov Thermal-Fluid Analysis

6.1.1 Exact Newton

The problem described in the previous chapter was used with a fixed power in order
to analyze the solution of the thermal-fluid equations. This problem required the
solution of all six field equations, which allowed testing of the coupling terms among
the field equations. In the fully implicit method all field equations are solved together

and therefore the convergence is generally different from the conventional solution
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which uses a nested iteration scheme in which the heat transfer coefficient is updated
in an outer iteration.

The first Newton method studied was the Exact Newton’s Method in which the
Jacobian was formed with analytical derivatives as described in Chapter 3. A compar-
ison of the convergence of the energy and pressure equations using the operator split
and Exact Newtons Method is shown in Figure [6.1] and Figure[6.2] for the 2-norm and
infinite norm, respectively. The superlinear convergence and the considerable decrease
in the number of outer iterations observed with the Exact Newtons Method compared
to the operator split method is indicative of the performance expected of the Exact
Newton’s Method. The normalized change in each variable is a practical measure
of convergence, but the convergence of the residuals is also shown in Figure [6.3| and
Figure [6.4]

The pressure appears to converge much quicker than either energy equation. This
results from the decoupling of the pressure from energy equations, as well as the
limited effect of fluid temperature on fluid density. The flow resistivity, the primary
coefficient in the pressure equation, is a strong function of pressure, as it depends on
several empirical, and unit less constitutive relationships, which drives the convergence
of the pressure equation. The convergence of the energy equations is very similar.
This is due to the heat transfer coefficient, alpha, but also the definition of the wall
temperature, uses to evaluate several coefficients in the energy equations. Coupling

the energy equation considerably improves convergence.
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The physical derivatives were also compared. Each residual has different units,
and therefore are at different levels. However, each residual should converge to the
same level between the conventional solution and the Newton’s Method.

The results in Figure through Figure indicate that the Exact Newton’s
method converges more quickly than the conventional operator split method. The
expected "2nd Order” convergence is apparent with each of the norms. However,
also as expected, because of the overhead to form the Jacobian, the decrease in
the computational time for the Exact Newtons method is not as significant as the
decrease in the number of iterations. The number of iterations and the wall time are
given in Table for the O.S. and Exact Newtons method. As indicated there is an
order of magnitude reduction in the number of outer iterations but only a factor of
two reduction in the computational time. The increased computational expense of
calculating the derivatives and solving the large matrix equations offsets much of the
potential increase in performance.

A comparison between the convergence of individual solution variables obtained
from the Exact Newton and Operator Split method is shown in Table[6.2} As indicated
there is very little difference between the two solutions which provides confidence in
the accuracy of the Newtons method solution.

A closer analysis of the individual solution variables in the Exact Newton’s Method
was also performed as shown in Figure and Figure [6.6] As indicated a similar rate
of convergence is observed for each of the variables with the exception of the fluid

pressure which converges slightly faster than the temperatures and velocities.
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Table 6.1: Thermal-Fluids Performance Comparison

Method | Current/O.S. | Exact Newton
Time [3) 1.901 1.074
Outer Itr 83 7

Table 6.2: Thermal-Fluids Results Comparison

Variable

Ts

Tf

pPf

Vx

Vz

% Err Max

6.98E-04

6.71E-04

3.96E-06

7.95E-06

1.35E+01

% Err RMS

1.03E-05

1.84E-05

2.48E-07

6.81E-07

3.95E-01

Abs Err Max

6.44E-03

6.31E-03

3.65E-04

1.00E-06

6.00E-05

Abs Err RMS

9.01E-05

1.70E-04

2.28E-05

8.57TE-08

1.82E-06

67




10°
_\—\_‘% —O—TS
T Tf
102 P
B SUN Ny Vx|
\\ ——Vz
€ 10"
>
&
X q0®
X
O
o 8
10 \
=
107
1 2 3 4 5 6 7

[teration [-]

Figure 6.5: Thermal Fluids Exact Newton Del-X / X Comparison

T ——Ts
Tf
< Pf
5 VX
10 ——Vz]|
eg_\_agﬁ\
Ty
‘h\_\\

Normalized Residual 2-Norm

107
J e o
< \

107 \%

|
—
6

1 2 3 4 5
Iteration [-]

Figure 6.6: Thermal Fluids Exact Newton Residuals Comparison

68



6.1.2 Inexact Newton

The inexact Newton method was then analyzed with the inner iteration performed
using an ILU preconditioned GMRES solver as discussed in Chapter 4. Two methods
were used to determine the convergence of the inner iteration. First, the same fixed
tolerance of 10™® was used for all inner iterations and then a more practical algorithm
was used in which the convergence tolerance of the inner iteration was determined by
the residual of the outer iteration.

The first method using a tight convergence of each inner iteration is useful to
evaluate the numerical performance of the Exact and Inexact Newtons method. The
convergence of the solid temperature and fluid velocity is shown in Figure [6.7] and
Figure [6.8] respectively, and as indicated the rate of convergence of the 2-norm and
infinite norm are very similar. The residuals are shown in Figure and Figure [6.10

In the second inexact method the tolerance of the inner iteration was determined
by the residual of the outer iteration. During the initial outer iterations the inner
iteration convergence was relaxed and then increased as the outer residual reduced
during the final iterations. As shown in Figure [6.11] this considerably reduced the
overall number of GMRES iteration compared to the first method of using a fixed
tolerance throughout the Newton iteration.

The impact of the dynamic inner iteration convergence on the convergence of the
Inexact Newton method is shown in Figure and Figure As expected there
is some decrease in the rate of convergence, but as shown in Table [6.3], there is only
a slight increase in the number of outer iterations. However, as also shown in the
Figure [6.11] even the slight increase in the number of outer iterations leads to only a

slight reduction in the overall computational time.

Fixed Convergence: rel. tol = (10e-6 vO0 = v1), abs tol = 0.0
Dynamic Convergence: rel tol = (10e-5 vO = v1), abs tol = 10e-4*r0

One of the most important observations from Table is that even with the
dynamic inner convergence method the computational time of the inexact Newton
method is considerably higher than the exact Newton method.One of the primary
reasons for this was discussed in Chapter 5 which estimated the breakeven performance
of the direct and iterative solvers. As shown in Figure [6.11] even with dynamic inner
iteration tolerance, the number of GMRES iterations is above the breakeven threshold,

and Exact Newton with the direct solver should be expected to perform better.
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Figure 6.13: Thermal Fluids Inexact Newton Normalized Vz Residual

Table 6.3: Thermal-Fluids Inexact Newton

Method Exact Newton | Inexact Newton | Inexact Newton
Tight Conv. Dynam. Conv.
Time [s] 1.104 1.167 1.177
Newton Itr 7 7 8
Flops / Nwt. 1.00e7 1.009e7 1.309e7
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6.1.3 Finite Difference Jacobian

The next phase of the research was to investigate a finite difference method for calcu-
lating the elements of the Jacobian. Two methods were used to form the perturbation
size for the finite difference evaluation. The first method was to simply use a fixed
perturbation size and the second method was to use an algorithm to determine the
perturbation size which depended on the matrix properties. Both methods were
evaluated using both the inexact and exact Newtons method.

The first method of fixed perturbation size was first evaluated using the Exact
Newtons method and as expected the rate of convergence was reduced. Figure [6.14]
and Figure [6.15| compares the convergence of the Exact Newton method with analytic
derivates and with finite derivatives and the overall performance is summarized in
Table [6.4] As indicated in the Table, the required number of outer iterations was
slightly higher than the Exact Newtons method with analytic derivates. The increased
computational cost reflects both the increased number of outer iterations but also the
slightly higher cost to calculate the finite difference derivatives than in the analytical
approach. Also shown in the Table is the result of applying the first method of fixed
perturbation size to the Inexact Newtons method. As indicated both the number of
outer iteration and the overall computational time are higher than for the Inexact

Newtons method with analytic derivates.
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The second method evaluated was to allow the perturbation size to vary based
upon an optimized pertubation. Because the finite difference is an approximation,
GMRES was used as the basis for the perturbation. This approach was suggested by
Xu [55] and depends on the norms of the Jacobian which are estimated using methods
described in [55].

. 2|| F(zkt1)
fY Y= w 7]N€N252N222 16

S \/ I 20UF) 62

The rate of convergence of the Finite Difference method with the optimized method

(6.1)

for evaluating the perturbation size shown in Figure and Figure|6.17, and sum-
marized in Table As indicated, the optimized method does not perform as well as
the fixed perturbation size. However, the fixed perturbation size used in this work
was chosen after several sensitivity studies, and it is therefore highly susceptible to
errors. Although the optimized perturbation method does not perform as efficiently
as the fixed perturbation used here, it may provide a more robust method for a wider

range of problems.

76



-4 T I |
10 \.k ——Anl. Jac. 2-Norm ||
Anl. Jac. Inf-Norm
8 — F.D. Jac. 2-Norm
10 —%\\ | I F.D. Jac Inf-Norm ||
© 10° + \@ .
3
S -
o 10
g 10
10—127 N
e
0
107" 5
2 4 6 8 10

Iteration [-]

Figure 6.15: Thermal Fluids F.D. Jac Vz Residual

Table 6.4: Thermal-Fluids F.D. Jac Direct Solve

Method Anl. Jacobian | F.D. Jacobian
Direct Solve Direct Solve
Time [s] 1.014 1.528
Newton Itr 7 11

Table 6.5: Thermal-Fluids F.D. Jac with Optimized Pert.

Method Anl Jacobian | F.D. Jacobian | F.D. Jacobian
Fixed Pert. Opt. Pert.
Time [s] 1.177 1.914 2.004
Newton Itr 8 13 15
Flops / Nwt. 1.309e7 1.783e7 1.515e7
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Figure 6.18: Thermal Fluids Jac-Free Normalized Ts Residual

6.1.4 Jacobian-Free

The final method evaluated for the thermal fluids was the Jacobian Free method which
has been studied extensively in recent years as discussed in Chapter 4. The GMRES
solver was used as the basis for the Jacobian-Free method and the formation of the
residual for the six thermal fluids equations was performed similarly to the methods
used in the previous sections. As will be evident in evaluating the performance of the
method, the cost of computing the residual was significant and one of the areas for
future research will be to investigate more efficient methods to compute the residuals.

The residuals are given in Figure and Figure below, which compares
the Exact Newton, F. D. Jacobian, and Jacobian-Free methods. As indicated in the
Figure, the Jacobian-Free converges in fewer Newton steps than the F.D. Jacobian,
but all methods show superlinear convergence performance.

The computation time is shown in Table and as indicated, the number of
Newton iterations for the Jacobian-Free method is comparable to the other methods,
however the overall computational time is much higher. As noted above, this is
primarily because of the high cost of forming the residual which may be reduced
with a more compact residual representation. However, it is not expected that any

reduction would be larger than 50
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Figure 6.19: Thermal Fluids Jac-Free Normalized Vz Residual

Table 6.6: Thermal-Fluids Jacobian-Free

Method Anl. Jacobian | Anl. Jacobian | F.D. Jacobian Jac.-Free
Direct Dynam. Conv. | Dyn. / Opt. | Dyn. / Opt.
Time [s] 1.074 1.177 2.004 5.883
Newton Itr 7 8 15 11
Flops / Nwt. 1.000e7 1.309e7 1.515e7 1.057e7
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Figure 6.20: Neutronics Exact Newton Fission Source

6.2 Newton-Krylov Neutronics Analysis

6.2.1 Exact Newton’s Method

The neutronics solution was analyzed using the test problem described in Chapter 5
with a fixed temperature-fluid field solution and therefore no cross section feedback.
The Jacobean of the multigroup neutronics equations was first computed using analytic
derivates as described in Chapter 4 and solved exactly using the same direct solver as
described in the previous section. The Exact Newton solution was then compared to
the solution using the standard fission source and power iterations. The fluxes and
eigenvalue were essentially identical but the convergence performance was very different
as shown in Figure As indicated, the Newton’s method reduces significantly
the required number of iterations compared to the standard power iteration. The
primary reason for this significant difference is that the eigenvalue is solved directly
as a primary variable in the Newtons method whereas the standard power iteration
involves an inner and outer iteration. The computational time is summarized in
Table [6.7 which also shows the small difference in the fluxes.
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Table 6.7: Neutronics Performance Comparison

Method Current | Exact Newton
Power Itr.
Solver Direct Direct
Time [s] 2.324 0.265
Outer Itr 406 6

6.2.2 Inexact Newton’s Method

The neutronics problem was then solved with the same GMRES method and inexact
Newtons method used in the previous section for the Thermal-Fluids equations. A
fixed tight convergence 10~% was used to converge GMRES. As shown in Figure [6.23]
a similar convergence behavior was observed in the convergence of the flux between
the inexact and exact Newtons method. However, some stagnation of the GMRES
solution was observed in the residual as shown in Figure [6.24] A comparison of the
computation time is shown in Table [6.8] As indicated the same number of iterations
are used in the Exact and Inexact Newtons method, but similar to the trend observed
in the thermal-fluids solution there is an overall increase in the computational time
required for the inexact Newton method, primarily because of the increased cost of

the GMRES iterations compared to the direct solver, as noted in Chapter 5.

Table 6.8: Neutronics Results Comparison

Method Current | Exact Newton | Inexact Newton
Power Itr.

Solver Direct Direct GMRES
Time [s] 2.324 0.265 0.405
Outer Itr 406 6 6

% Err RMS - 3.09e-6 2.86¢-6
% Err Max - 9.46e-4 2.25e-3
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6.3 Newton-Krylov Coupled Analysis

The final phase of the research was to apply the Newton’s method to the coupled
thermal-fluids and neutronics solution. The same coupled steady state problem was
used as described in Chapter 5 and applied to the individual field solutions in the
previous sections. As discussed in Chapter 2, the conventional operator split solution
first achieves a converged thermal-fluid solution by iterating between the separate
solution of each thermal fluids equation and then updates the neutron cross section
and solves the neutronics equations. Upon convergence of the neutronics equations,
the temperature fluid coefficients are updated and the thermal fluid equations are
solved again. The iteration strategy is repeated until convergence.

The operator split method was compared with the same three variations of the
Newton solution applied to the thermal fluid equations in Section 6.1. One of the
essential differences for the coupled field is that the analytical Jacobian was expanded
to include the derivatives of the cross section to the temperature fluid variables. This
significantly increased the size of the problem since several submesh are required to
calculate the temperature distribution in the pebble and it was necessary to represent
this explicitly in the Jacobian.

In the following subsections, results will be presented sequentially for the exact
Newton method, the inexact Newton method, and then for the inexact Newton method

with a finite difference Jacobian.

6.3.1 Exact Newton

One of the important advantages of the Exact Newton’s method is the rapid con-
vergence of the flux source as shown in Figure [6.25] The more rapidly the flux is
converged the sooner a converged power and heat source distribution can be obtained
for the thermal-fluids solution. Therefore, the accelerated fission source convergence
considerably improves the convergence of the coupled system. The two-norm and
infinite-norm of the solid temperature and pressure are shown in Figure [6.20] and
Figure [6.27]

The residuals of the coupled field solution are given below. After about eight
iterations, the Newton’s method begins to converge superlinearly as expected. This
is similar to the convergence observed in the thermal-fluids. Also, because of the
tighter coupling between the fields the residuals are generally much smaller in the

Exact Newton’s method than in the conventional solution method.
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A comparison of the performance of the exact Newton and the operator split
method is given in Table [6.9] The considerable reduction in the total number of
iterations is similar to the thermal-fluids case. However, the increased size of the
system results in a higher computational burden to form the Jacobian which offsets

the savings in the reduced number of iterations.

Table 6.9: Coupled Performance Comparison

Method | Current/O.S. | Exact Newton
Time [s] 23.275 14.508
Outer Itr 495 17

The convergence of the 2-norm of the solution variables and the residuals is shown
in Table [6.31] and Table [6.32] All of the residuals are normalized to converge to
below double precision error, but execution terminates as the stopping criteria is met.
Some oscillations are introduced from the discontinuous derivatives, but the solution
stabilizes after about five iterations. The overall convergence behavior is similar to
what was observed in the thermal fluids.

A detailed comparison of the converged coupled field solution variables is shown in
Table [6.10] and Table [6.11] As indicated there is very little difference in the solution

variables.

Table 6.10: Coupled Results Comparison Neutronics

Variable Phi-1 Phi-2 Tm Td
% Err Max 1.25E-05 | 1.19E-05 | 4.48E-06 | 8.82E-06
% Err RMS | 9.93E-04 | 9.98E-04 | 2.86E-04 | 2.70E-04
Abs Err Max | 4.30E+06 | 6.33E+06 | 3.84E-05 | 8.01E-05
Abs Err RMS | 1.00E+09 | 1.00E+09 | 2.66E-03 | 2.52E-03

* Extremely Small Values Increase Percent Error
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Table 6.11: Coupled Results Comparison Thermal Fluids

Variable Ts Tf Pf Vx Vz*
% Err Max 4.48E-06 | 9.89E-06 | 1.23E-07 | 5.39E-04 | 1.84E+00
% Err RMS 2.86E-04 | 2.88E-04 | 2.07E-06 | 8.34E-03 | 5.69E+01
Abs Err Max | 3.84E-05 | 8.73E-05 | 1.14E-05 | 9.54E-07 | 2.27E-04
Abs Err RMS | 2.66E-03 | 2.68E-03 | 1.92E-04 | 1.30E-05 | 6.90E-03
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6.3.2 Inexact Newton

The inexact Newtons method was then applied to the coupled field. As determined in
the thermal-fluids analysis, the most efficient convergence strategy with GMRES was
to use a dynamic tolerance for the inner iterations and this was used in the analysis
of the coupled system. A comparison of the number of GMRES iterations for each
Newton iteration for the fixed and dynamic tolerance is shown in Figure [6.33]

As dicussed in Section 5.3, the number of inner iterations for the coupled calculation
considerably exceeds the breakeven to which the iterative solver would be competative
with the direct solver. Therefore, the inexact Newton’s method cannot be expected to
perform better than the Exact Newton’s method.

The convergence of the coupled field residuals are shown in the following Figures
for the exact Newton method and inexact Newton with a fixed and dynamic tolerance.
As indicated the fixed tolerance performance is similar to the Exact Newton method
but the dynamic tolerance converges more slowly. However, as shown in Table
because of the reduced number of inner iterations the overall computational time of

the dynamic tolerance is less than the fixed tolerance inexact Newton method.

Table 6.12: Coupled Inexact Newton Performance

Method Exact Newton | Inexact Newton | Inexact Newton
Tight Conv. Dynamic Conv.
Time [s] 14.508 48.030 49.829
Newton Itr 17 17 25
Flops / Nwt. 6.972e8 1.391e9 8.180e8
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6.3.3 Finite Difference Jacobian

The final phase of the research was to investigate the behavior of the Finite Difference
Jacobian, which can be particularly attractive because of the expense of forming
analytic derivates when code methods change. The finite difference Jacobian was
analyzed using both exact and inexact Newtons method. The residuals for the finite
difference based Jacobian are given in Figure through Figure [6.39 As can be
observed, Newtons method with the analytical Jacobian converges more quickly than
the finite difference Jacobian.

The finite difference Jacobian was then compared to the analytic Jacobian using
the inexact Newton method. The results are shown in Figure through Figure [6.42
As indicated the rate of convergence achieved with finite difference derivates is slightly
less than the analytic derivates and in both cases the convergence is slower than the
finite difference derivatives with the direct solver.

The computational performance is summarized in Table [6.13] As indicated the
number of iterations of the finite difference Jacobian is higher than the Jacobian with

analytic derivates for both the exact and inexact Newton method.

Table 6.13: Coupled F.D. Jac with Fixed Pert.

Method Anl. Jacobian | Anl. Jacobian | F.D. Jacobian
Direct Solve | Dynam. Conv. | Dynam. Conv.
Time [s] 14.508 49.829 46.101
Newton Itr 17 25 29
Flops / Nwt 6.972e8 8.180e8 7.484e8

The optimized perturbation size that was analyzed for the thermal-fluid solution
was also tested for the coupled neutronics / thermal fluid solution. The results are
shown in Table for the Inexact Newton case and the optimized perturbation finite
difference method was found to converge in fewer iterations than the finite difference
with a fixed perturbation size. If the analytic Jacobian is not available, then the
results here indicate that finite difference Jacobian with the optimized perturbation

method would be an attractive option.
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Table 6.14: Coupled F.D. Jac with Dynamic Pert.

Method Anl. Jacobian | F.D. Jacobian | F.D. Jacobian
Fixed Pert. Opt. Pert
Time [s] 49.829 46.101 39.794
Newton Itr 25 29 26
Flops / Nwt. 8.180e9 7.484¢e8 7.139¢8
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Figure 6.37: Coupled F.D. Jac Flux Residual
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Chapter 7

Summary and Conclusion

7.1 Summary of Work

The solution of the coupled field equations for nuclear reactor analysis has typically
been performed by solving separately the individual field equations and transferring
information between fields. This has generally been referred to as operating splitting
and has been successfully applied to a wide range of reactor steady-state and transient
problems. Although this approach has generally been successful, it has been computa-
tionally inefficient and imposed some limitations on the range of problems considered.
The research here investigated fully implicit methods which do not split the coupled
field operators and which solves the coupled equations using Newton-Krylov methods.

The focus of the work here was on the solution of the coupled neutron and tem-
perature/fluid field equations for the specific application to the high temperature gas
reactor. However, the reserach here also investigated the application of the Newton’s
Method to the individual field equations. The solution of the neutron field equations
was restricted to the steady-state multi-group neutron diffusion equations and the
temperature fluid solution for the gas reactor involved only the single phase fluid
which was adequate for the gas reactor. The results here indicate that steady state
convergence of the coupled field equations can significantly improve both the stand
alone neutronics and thermal fluid using Newton methods.

A large part of the improvement in the convergence in the neutronics was the
inclusion of the eigenvalue as a primary variable in the Jacobian. This provided an
acceleration in the eigenvalue search similar to the well know Wielandt shift method.
Because the reference solution does not use any acceleration techniques, the comparison
is not truly representative of the improved solution.

The thermal fluids convergence also improved considerably using a fully implicit

Newtons method. The primary acceleration was due to the coupling of the solid
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and liquid energy equations. Because of the strong heat transfer coefficient coupling
and the dependence of the heat transfer coefficient on the primary variables, the
energy equation coupling improved both the rate and the stability of convergence.
The implicit treatment of the pressure equation also contributed to the improvement
in the convergence, but in general the pressure equation converged more rapidly than
the energy equations.

Improvement in the coupled field solution was similar to the improvement observed
in the convergence of the individual neutronics and thermal-fluids problems. Over an
order of magnitude reduction was observed in the number of iterations required to
achieve convergence. However, the overall computational time reduction for the Exact
Newtons method was only about 50 %.

Another important conclusion from the research here was that the Inexact New-
ton’s method did not outperform the Exact Newton’s Method. Performance of the
iterative method in the thermal fluids was nearly as fast as the direct solution, but the
iterative method was much slower in the coupled solution. A detailed analytis of the
floating point operation count showed that in all cases, the number of inner iterations
required of the iterative method exceeded the breakeven for which an iterative method

could be expected to outperform the direct solver.

7.2 Future Work

Based on the results and analysis in the work here, it is recommended that the next
phase of the research should focus on approximate solutions to the exact Jacobian
which do not require the formation of all the elements of the Jacobian. One of the
most promising approaches would be to investigate the Approximate Block Newton
(ABN) [88] method which appears to achieve a suitable balance between the expense
of forming the Jacobian and an improvement in the rate of convergence. The ABN
method also has been shown to provide improved performance without considerable
code changes which is an important consideration codes undergo improvements in
methods. Further research should include transient problems which can have the most
significant impact on the computational time for practical HTR safety analysis.
Finally, another potential area of research is the application of these methods to
uncertainty quantification for both the steady state and transient problems. Research
suggests that the analytical Jacobian may not be neccesary for accurate determination

of uncertainty and sensitivities. The availiability of both the analytical and finite-
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difference based Jacobian permit analysis the error introduced by approximating the

Jacobian in both the thermal-fluids and coupled models.
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Appendix A

Additional Analysis of Krylov
Solvers

Much of the focus of this research has been on GMRES as the Krylov iterative
solver. Research has shown that the performance of Krylov methods can vary widely
depending on the type of problem. For this reason, the behavior of the Bi - Conjugate
Gradient Stabilized method was analyzed. BiCGStab is used throughout reactor
analysis and have been shown to outperform GMRES is some cases.

The thermal fluids analytical Jacobian was chosen as the test case. Although this
case is smaller than the coupled case, the comparison should provide some insight
into the coupled performance as well. Because the two approaches are very different,
and were implemented differently, the comparison must be a mixture of quantita-
tive and qualitative analysis. The GMRES solver used above is an INTEL/MKL
implementation, and is well optimized. The BiCGStab solver is a mix of user coding
and mkl routines to peform the matrix-vector multiplication and application of the
preconditioner.

The first comparison is of the the inner iteration per Newton step. In order to see
a substantial improvement in performance, BiCGStab must solve the problem with
significantly less inners. Figure illustrates the differences. As can be seen, the two
solvers require similar numbers of inners iterations. With the same number of Newton

steps, the performances should be similar
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Table A.1: Krylov Solver Performance

Krylov Method | GMRES | BiCGStab
Time [s] 1.167 1.554
Newton Itr 7 7
Inner Itr 451 398
Inners / Newton 64 57
85 — GMRES |
BiCGStab
80
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275
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Q
z
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o
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Figure A.1: Krylov Solvers Inners per Newton Step
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As noted above, the similar number of inner iteration suggests the overal perfor-
mance should be similar. Because the GMRES solver is likely more efficient, it may
well outperform the BiCGStab solver. The performance is given in Table which
indicates that GMRES is slightly faster than BiCGStab. Again, with bigger problems,
one solver might perform much better than the other, and that is outside the scope of
the research performed here. Analysis of the work performed by GMRES seems to
suggest that the Krylov methods favor dense residual vectors. Any increase in the
dimension, N, or stored subspace, K, dramatically increases the orthgonalization work
of the iterative method. This puts it at a disadvantage compared to the direct solution
methods. Futher development will work to improve storage of the coefficient matrix

and residual vector. This should improve the performance of GMRES dramatically.
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Appendix B

Additional Analysis of
Preconditioners

As noted above, the incomplete LU factorization, without fill-in (ILUO), was used
to precondition the GMRES solver. This approach is widely used and has been
implemented in Neutronics solvers and thermal fluids codes throughout the nuclear
industry. Research indicates that the preconditioner can have a substantial impact
on the convergence of the Krylov solver. The state-of-practice in neutronics is to
perform the ILU decomposition on a matrix similar to A. The decomposed matrix,
M, is generally a block-wise version of A, with the coupling terms between subfields
eliminated.

The decomposition was actually performed on the full Jacobian matrix. In order
to gain more understanding of the preconditioner impact, some other approaches were
analyzed. Following the conventional approach, the decomposed matrix was reduced
from the Jacobian to a block-wise version of the Jacobian. The decomposed matrix
was further reduced to the original components of A. This was approach used in the
Jacobian-Free solver, as the partial derivatives that compose part of J were assumed
to not exist.

The analytical Jacobian from the thermal-fluids was used as the test case. A good
measure of the impact of the preconditioner is the number of inner iteration required
by GMRES. This is given in Figure [B.1] The number of inners and Newton steps
decreased when the preconditioned block-A matrix is augmented with some partial
derivatives. The improvement in performance is much smaller when the Block-wise
Jacobian is expanded to be the full Jacobian.

The timings are given in Table B.I} The block-wise Jacobian is nearly as effective
a preconditioner as the complete Jacobian. The larger matrix used in the coupled
solution may benefit from a more diagonal preconditioner like the block-wise Jacobian.

Another preconditioner was the incomplete LU factorization, with threshold fill-in

107



Table B.1: ILUO Decomposed Matrix Performance

Matrix Jacobian | Block-wise Jac. | Block-wise A
Time [s] 1.167 1.526 1.663
Newton Itr 7 8 8
GMRES Inners 451 1076 1333
Inners / Newton 64 135 167

(ILUT). This was tested, and was found to underperform when compared to the ILUO
preconditioning. The behavior is not shown, but the ILUT has two problems. The
first is difficulty in reducing the residual for the first few iterations. It appears it is
more challenging for the ILUT to enter the converence region, where Newton’s method
performs the best. Secondly, the solution appears to stagnate just above pratical
convergence of the primary variables, AX/X = 1075,

These results suggest that the ILUO preconditioner is adequate for the research
here, but further research and development are needed to improve the performance
of the Krylov methods. Problem specific preconditioning has received significant
attention, and these may have value for the Newton’s method class of approaches in

reactor analysis.
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Figure B.1: ILUO Inner Iterations per Newton Step
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Appendix C
Derivation: Solid Energy Equation

Solid Energy Equation Derivation for Implicit/Newton Iteration

ot [(1 = &)pscp T] AV

- DeTs,E + DwTs,W + DnTs,N + DsTs,S + Dth,T + Dst,B
— (De + Dw + Dn + DS + Dt + Db)TS’p — Oz(TS,p — Tf}p)AV —|— QAV (Cl)

Coefficients

D.=(1- ge)kseg—;AHAz Dy = (1 —ey)ks, - AOAz
1

Dy =(1—en)ks, =5-ArAz Dy = (1—¢ey)ks, rl d¢19 ArAz (C.2)
Dy = (1— &)k, ai ””me Dy = (1 - ey)ks, 5 b g

Using a simplifying coefficient

K.=(1-e)g=N0Az K, =(1—e,)fAJA>
Kn=(1—-¢en): aé ArDdz Ko=(1—e0); aé ArAz (C.3)
Ko=(1-e)iiAg K, = (1— &) "5 Ad

The revised coefficients are then given as,

Dy = Kp (K% + 0kop) - Dw = K (k5 + 0k )
Dy = Ky (K" + 5k8,N) Ds = Kg (k") + 6k,
Dy = Kr (K" + 5k5,T) Dy = Kp (kg{g + 0k 5

a=a® +éa

(C.4)
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The primary variables are then given as

Top=T"+ 0T Tow=T" +Tw
Ton=T" +0T,x Tos=T% +0T,s
Tor =T + 0Ty Top=T"+0T,p
Top=T" +0Tp Trp=T"+0Typ

The new equation is then given as,

K (k5 + ko) (T 4+ 0T, ) + Ko (K + ko) (TH) + 0T )
Ky (K + 0o ) (T + 0T ) + Ks (K03 + ks ) (T + 07,5
+ Kr (kgf’} + 5/<;S,T) (T;‘Q + 5TS,T) + Kp <k + 6k, B) (T;]g + 5T57B>
e (kg{g + 51@) (T;f;z + 5T37P> ~ Ky (k )+ ok, W) (Ts{’ji + 5T8,P>
~ Ky (k;gf?v + 5ks,N) (T;j;z + 5Ts,p) Ks (k&) + ok, S) (T;’jg + 5TS,P)
— K (K + okor ) (T +0T0p) - K ( + 0k, ) (T35 + 0T, p )

o

P

— (a¥ +6a) |(T +6T,p) = (T +0Typ) | AV +QAV =0 (CH)

Getting rid of the higher order terms and simplifying

K (KTE + ok, T8 + K0T, ) + Ko (K5 TS + ko T + K5 0T )
+ K (] }VTSF’jV Ok TR+ KT ) + K (KT + ok, ST + KT, 5)
+ Ky (KT + ko8 + K0T, 1) + Ko (kg’“BTS(’fB + Ok, T + KH0T, )
~ Ky (zgng ®) 1 kg w T + K8)6T, P) Ky (kggv ®) 1 Sk T8 + k5, 6T, P)
Ky (/cg’“N )+ Sk T + KN 0T, P) ~ K (k(k)T Y+ 6ky s TS + £5)6T, )
— g (KT + 0k T8+ K0T, p ) = Ko (KT + 0k, T + K )0T, )
— (W7 + 60T + aW6T, ) AV + (e + 50T () + aW6Ty ) AV
LQAV =0 (C.7)

Further simplifications,
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(Kpokos T + .+ Kpok, nTL5)
— (Kpdky g+ Kwokow + Knoksy + Ksky s + Krdk,r + Kpok, ) T
— AVSaT) + AVSaT})
+ (KpkloTop + .+ K0T, 5 )
— (Kuk + Kwkf, + Kk + Kokl + Kok + Kphl!)) 0T, p
— AVa®ST, p + AVa¥Ty p
+ (KekTl) + .+ Kpk{TE)
- (KEkgf“,; + Kwk®), + Kk, + Kok®) + Kok + KBkgfj;> 7®)

— AVaNTH + AVaW T =0 (C.8)

Addition of the flux source term,

QAV = pn,fuel (/{Elqﬁl + /€22¢2 + 523¢3) AV
kE¢ = (kE® + 0kE) (¢®) + 60) = (kZP®) + 5xTp®) + kEHF5p)  (C.9)

Inserting into the equation
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= AV Py pua (1200 + 85210 4 520, )
= AV g (2808 + 0550 + 1287662
— AV Py o (Hzg%gm + kD300 + Hzg’@a(pg)
— (KEakS,ETs{’g T KBak;s,BTs(fg)
— (Kgdks g + Kwoksw + Knoks n + Ksdks s + Krdksr + Kpdks p) Ts(ﬁg
— AVSaT) + AVSaT})
+ (Koh(oTos + ..+ Kph'hoT, p )
— (Kuk + Kwk, + Kk + Kokl + Kok + Kphl!)) 0T, p
— AVaW§T, p + AVaWTy p
+ (KekTl + .+ Kpk{TE)
. (KEkgf“,; + Kwk®), + Knk®, + Kok®) + Kok + KBkgfg) ")
)

~ AVaMTE) + AVaIT) (C.10)

Collecting like terms for organization,
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(KEakS,ET;gZ ot KBakS,BT;f‘g)
— (Kpdky g+ Kwokow + Knoksy + Ksky s + Krdk,r + Kpok, ) T
— AVSaT) + AVSaT} )~
+ AV Py puat (35516 + 052500 + 0r508)
+ (KpkloTup + .+ K0T, 5)
- (KE/{S‘; + Kwk®), + Kyk®), + Kok®) + Krk®) + KBkgg) 5T, p
— AVa™ST, p+ AVa®STy p
+ AV P, fur (ng’%qa + k2P + ng’“)wg)
+ (KeklT®) + o+ Kpk(T)
(KEk + Kwk®), + Knk®, + K ksS+KTkST+K kS )T;';;
oPTEAV + oW T AV
NI (@1’%1 +ruPe® 4 ﬁzgk@gm) ~0
(C.11)

To simplify, the following constants,

590 = (Keklyh o+ k1)
(KEk + Kwk®), + Knk®) + Ksk®) + Kok®) + Kk )Tg;;
PAVTY) + aWAVTE)
+ AVP, i (120 + m20l + kxPel?)  (C12)

Updated Equation, moving the non-source to the LHS
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- (KEéks,ET;’j; ot KBaks,BT;’j;)
+ (Kpdks.p + Kwoksw + Knokon + Ksokos + Krdkyz + Kpoks 5) T
+AVSaT!) — AVsaT})
— AV Py puat (5516 + 5230 + 0rg0fl”)
— (Kuk{oTop + ..+ Kpk{)oT, )
+ (KEk:gf‘% + Kk, + Kk + Kok + Kok®) + KBkgf‘;;) 5T, p
+ AVa¥T, p — AVa¥§T; p
— AV P, fur </€Egk)5¢ + k2P, + ngk)5¢3> = S® (C.13)

The next step is to the delta-coefficients. The fuel coefficients are relatively simple.

a = f (TS7Tf7Pa U$7vyavz)

oa\"! oa \" !
() s () s

n—1
ky = [ (T)) Ok, = (g;z) 5T, (C.14)

Reorganizing again
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+av (T8 - 1f) ba
— AV ( W5k5y + ook, + gbgk)&{Zg)
- (KEkgf%aTs,E T KBkg{gaTs,B)
+ (KEkgf“,; + Kwk®), + Kk, + Kok®) + Kok®) + KBkgfj;> 0T, p
+ AVaeT, p — AVa¥ 6Ty p
— AVP, o (ng‘“)agb + w2 6y + KEgk)(Sgbg) =S, (C.15)

Inserting definitions
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0 _ ) (Okss\" O CAY AN
+ K (T - 1) 6T + K (T - T ST,

8T57E aT&W
Oksn \" " (k) W\ [ Okss\"
+ K (Ts(k’) —Ts(k)> ( ’ ) 0Tyn + K (TS — T ’ 0T,
N P N 8T5,N N S P .S 8Ts,s S
e\ ks \" "
k k s,T k k s,B
vk (1 -19) (G52)  oTr+ ko (19 -18) (552) o7

ks " (k) W\ [ Oksw \"
: Kwl|\T: 5 —T :
<3TS,P) + Kw < s,P s,W> oT,.p

dap\"! dap\"! dap\" !
v av (18- 189) (( ) g (B) o+ (%) (svz)
— AVP, o <¢§’“>5521 + M5k, + ¢§k)6/£23)
— (KpkoTop + .+ K0T, B)
<K KO+ K k®), + Knk®y + Kok + Krk®) + Kph! >5TS,P
+ AVa¥§T, p — AVa¥6T; p
— AVP, fu (nzg’“)w + k2P 6y + ng’%%) =S, (C.16)

The cross section dependencies,

kY = f (Tp, Tar)
OKY = <(g%> 5Ts + (m) o 5TM> (C.17)

Inserting the cross section terms, collecting XS temperature terms
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0 _ ) (Okss\" O CAY AN
+ K (T - 1) 6T + K (T - T ST,

8T57E aT&W
Oksn \" " k) W\ [ Okss\"
+ K (Ts(k’) —Ts(k)> ( ’ ) 0Tyn + K (TS( — T ’ 0T,
N P N 8T5,N N S P .S 8Ts,s S
e\ ks \" "
k k s,T k k s,B
vk (1 -19) (G52)  oTr+ ko (19 -18) (552) o7

ks " (k) W\ [ Oksw \"
: Kwl|\T: 5 —T :
<3TS,P) + Kw < s,P s,W> oT,.p

8:‘121 n-l (k) 8/{22 nl (k) 8&23 n-l
— T
< Ty > + ¢y o7y + @3 ot 0T p
n—1 n—1 n—1
. = (k) aﬁz}l (k) @RZQ (k) 8:‘123
AVPn,fuel (‘bl ( aTM ) + (bz (—8TM + de aTM (ST&M

- (KEkgkgaTs ot + Kpk®oT, B)

(KEk: + Kwk®), + Knk®), + Kok®) + Krk®) + Kokl )5T5p
+ AVaWST, p — AVaWST p
— AV P, fuel (nzg’“% + k360 + kI 65 + 5251“5@) =S, (C.18)

All terms are gathered, giving the final form
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aks n—1
+ K | (1% - 1) < o E) — k" | 6T p
s, B
+ ...+
ak n—1
k k 5B K
Ky | (1% - 1) (OTS B) — K% | 0T
ok nl | ok n—1
k k s, E k k k s, W k
+|Kp (Ts‘,ﬁ -1 (5T5,P) +ES | + K (TS(; - T;VL) (aT&P) i V>V]
ak' n- i ak n—1 7
k k s, k k k 5,5 i
Fh <TS(13 - TS(A)[> (8T5,P) |+ Ks (TS(JQ B T5(52> <0T3,P> s
ok " ok n—1 T
k k s, T k k k s,B k
Hh <TS(;_TS(T) (aTs,P) | K <TS(’13_TS(’£§) (8TS7P) e

( 3
n—1 n—1 n—1
— p (k) ((OK (k) [ OKE2 k) [ Ok
Avpn,fuel <¢1 ( aTD ) + ¢2 ( 8TD + 3 aTD 6T3,D

n—1 n—1 n—1
k) [ Ok k) [ O3 S
T &2 ( Ty ) o ( 0Ty 0Tt = S

(C.19)
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Appendix D

Derivation: Fluid Energy Equation

Fluid Energy Equation Derivation for Implicit/Newton Iteration

0
— [gpfcprf} AV =

ot
ATy e+ AwTrw + ANTyn + AsTs s + AT + ATy
— (AE -+ AW -+ AN + As -+ AT + AB)Tf,p — Oé(Tf’p — Ts’p)Av
Coefficients
Ap = DpA(|Pg|) + [[|=Fg, 0[] Aw = Dy A(|Py|) + [||Fw, O]
As = DsA(|Ps]) + [||=Fs,0[]]  Ax = Dy A(|Pa]) + [|| £, O]
Ar = DrA(|Pr]) + [||=Fr, 0[] Ap = DyA(|Fy|) + [[|F5, 0]
Subcoefficients
F, = (mcy)ere AOAz D = eckreg=A0Az
Fy, = (mey)ywryA0Az Dy, = 5wkfw%A9Az
F, = (mc,),ArAz D, = 5nkfn%£A7’Az

= (
Fy = (mey)sArAz D, = 5Skfs%aiosArAz

o), o P A
mcp)tTAG Dt = 5tkfta_thA9

rery Loy
)bTAQ Db:gbkfba_zb 3 Af

mcy

Expanding the primary variables first,

Trp =T +0Ts e Trw =Ty +6Trw
Tyn =TH + 6Ty Tps =T +0Tys
Tyr =T +6Tr  Trp =Ty +0Tp
Tp=T" +0T,p Trp=T"+0Typ

Inserting into the equation
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(Ap+Aw + Ay + As + Ar + Ap) (Typ + 01y,p)
—Ap (Tre + 0Ty e) — Aw (Trw + 0Ty w) — An (TN + 0Ty N)
— As (Tss + 6Ty,5) = Ar (T + 0Tyr) — Ap (T, + 6T%,8)
+ (Typ + 6Ty p) — (Top + 6T p)) AVSa =0 (D.5)

The coefficients are expanded as well. This assumes only upwind differencing. The
derivation will assume all "upwind” statements are true, and implementation will
allow only one direction for flow per Newton iteration. Flow can change direction,

changing the upwind direction.

F.=Gg <C;(JI;)E + 6cpf7E> (m(bf“) + 5mE> D. = Kg (K + 5k:f7E)
Fo = G (el + dcppa ) (1ily) + o) Dy = K (S5 + oz )
Fo =G (e + ey ) () +ommy) Dy = Koy (K + oy Do)

F, = Gs (cg?s +0eprs) () +omg) Dy = Ko (K + 6k '

Fy=Gr (W +dcppr) () + dring D, = Kr (k¥ + dksr

Fy =G (il +dcprn) () +01is) Dy = K (kf) + ok

Developing the coefficients for simplicity, losing higher order terms

(Trp —Ttp)0Ag + (Trp — Trw) 0Aw + Ap (0Tfp — 0Tt p) + Aw (0Tt p — 0T w)
(Trp —Tin)0AN + (Typ —Ts) 6As + An (0Typ — 6Ty N) + As (0T p — 01 5)
(Typ —Tpr) 0Ar + (T p — Ty 5) 0Ap + Arp (0T p — 0Ty1) + Ap (0Tfp — 61} )
+ (Trp—Tsp) AVoa+ (T p — 0Ts p) AVa =
= Ap (Trp = Tre) — Aw (Tr,p — Trw)
— AN (Typ = Tyn) — As (Typ — T}s)
— Ar (Typ — Tyr) — Ap (Trp — Ty,)
— (Typ—Tsp) AVa (D.7)

The new equation is then given as, using a shorthand for the coefficients,
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(Tpp — Ty) K ( Okg Okg Okg Okg )

oT — T —9 0
T, - e+ 9T, » e+ D1 Prp + Dpre PrE

+ (Ty.p — Trp) Guing (g;fi 5Ty.p g; 2E 5T + g;fi ops.p + g;%i@f,,;)
+(Typ —Typ) Gecp e (g;:i Msp+ ...+ g:l—jjévz,p + %6@#5 +.+ SZZ Su, E)
+ ...+
(Typ— Tt ) Kp <8(37],€BP5T,0P + %57},3 iiB opsp + %@f B)

+ (Typ — Ty ) Gpmp <%5Tf,P + %57},3 + g;;l;B opys,p + g;j’B 5pf,B)
+(Ty.p — Tr.5) Gucp <g;”i STop+ ...+ gZi Sv.p+ ggi 0T+ oo+ SZ”Z 5v, B)

oo Oa
+ AV (Tf}p - Tsyp) (ﬁTS’P + ...+ av P5Uz7p)

+ Ap (0T p — 6Tsg) + Aw (0T;p — 6Trw) + An (6T p — 6Ts n)
+Ag (0T p — 0Tt5) Ar (0T p — 0T 1)+ Ap (0T p — 0T 5)+ (0T p — 0Ts p) AV =
= Ag (Typ = Trp) — Aw (Tr,p — Tyw) — An (Trp — Tyn)
—As(Ty.p —Tys) — Ar (Typ — Tyr) — Ap (Typ — Typ) — (Typ — Top) AVa
(D.8)
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Appendix E

Derivation: Pressure Equation

The mass flow equation for each node,

(rn —TN—l)mlfH 1} _ (TN — I'N- 1>Wk+1 k+1 Akarl
A At A T
(ry — ) s — ik _ (- TN+1)Wk+1 B At
ATQ At Ar2
(Orr — Ong—r) My — ik _  (Oar — O 1)Wk+1 k4 Akarl
Aps At Ags
(Orr — Onrn) g™ — ik _ Oy — 1) WAL T 1 Apk:—i-l
Agy At Agy e T
(Z[—Z]_l) mkH —mk 27 —21_1)
7 5 N 5 _ _( " Wk:+1 k+1 Apk+1+gA2 pk+1
(21 — 2r41) gt — ik (e = z) e k! ke+1 k+1
i N = m wk — Aplst — gAzepe (ELD)

A few constants for convenience,

I Ar1 — A93 — A25 _
G TN—TN—1 Gy On—0n—1 Gs 2p—21-1 (E 2)
G, = —Ar G, = — Ao — _ Az ’
2 TN—TN+1 4 On—Onr41 6 21—2141
Using these in the equations,
mlf+1*mlf Wk:—‘rl k—l—l G Apk+1
At
k41 -k
rinh T —rink k+1; k+1 k+1
Myt WA — GhApH
o k+1_ -k
Mg - ms W€k3+1 k+1 1 G Apk—i—l (E 3)
L k+1 .k .
my o —my k+1, - k+1 1 k+1
N —W94 m4 G Ap
k1l k
ms ~ ms _ Wk—H k—l—l -G Apk+1 + G5gAZ5pk+1
. k+1 -k
i E+1 - k+1 k-+1 k+1
GT = W -G Ap G69A26p
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Solving for the k+1 time terms in m-dot.

ikt — I _Giaph! ikl — 5 _Gunpty!
1 - k+1 2 - k+1
< W) < i)
ikl — —~G3Aphit ikl — ~G4Aph ! (E.4)
3 - k+1 4 — k1 .
=T = T
s k1 % G5 A k+1+G5gAz5p5 < k1l %—G’GAp G69A26p§+1
ms = k+1 mg =~ = 1 FT1
( Wz ) (E+Wz6 )

Creating the equation in terms of pressure,

Vi_t B IR R o s Y
v (5 1 -1+ g 0 )
— G ApH? m2 — G Apt! mg G3APk+1 m G4Apk+1
( Wk-H) ( +WET (E +WED (E +WED
—GsAPEY + GsgAzspht! me — GeAPEFL — GegAzgpht!
( Wk+1) + £ ( Wk+1)

_|_

(E.5)

Removing the time dependent terms,

G 3 -Gy
0= A k+1+ A k+1_|_ A k+1+ A k+1
WERSI e e 3 a
—G5 k+1 k1 k+1 k+1
* (ApL + gAzps ™) + T T (AP + gAzepET) (E6)
Some coeflicients for convenience

Fre=gin Fw=ger FRav=ggr  Res=g@s oo
R p = WGT} Rir = WGTEH brs = glzspst byr = gAzpg '

The equations are then given as,

— R pAPET — Row ApiSt — R NAph! — R, s Aphi!
— Rl,B (Aplzg-l + bﬁB) — Rl,T (Apl;gl + bf,B) == 0 (ES)

Expanding the delta pressure in terms of the geometry,
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R, g (prp —psE) + Rew (Prp — Drw)
+ Ron (pgp — Ppn) + Res (Pr,p — Drs5)
+ R ((pr.p — ps.B) = bpB) + Rir ((pgp — ppr) —bpp) =0 (E.9)

Expanding the primary variables, and coefficients,

R, 5 (0ps.p — 0pse) + Rew (0ps.p — 0psw)
+ Ron (0ps.p — 6psn) + Rrs (6py.p — Opy.s)
+ R (0ps.p — 6ps,B) + Rir (Ops.p — Opy1)
+0R, 5 (pr.p — p.E) + 0Rew (Pr.p — Prw)
+ 0Ro N (pr.p — i) +0R: s (Prp — Pys)
— Ry pobs g — Ry 7dbys
+ R ((prp — pr) —brp) + 6Rur ((pr.p — prr) — brs)
=R, (prp —pre) — Rew (Pr.p — Prw)
— Ron (pr.p —PsN) — Res (0pp — Drs)
— Rip ((pr.p — pr) — brs) — Rir ((pr,p — ppr) — byp)  (E.10)

The expanded coefficients, all terms included,
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— (ps.p — P1.E) {Z?E(STW +.t aa]j:f 5%,13}
— (pr.p — Dy5) BI;:ECSTS 4.+ gf:j (SUZ,E:|
R ——— {%Wsm + .. %]jjjv 6vz,p}
— (pr.p —Prw) {gﬁnw 0sw + ... + 8812;1// 5Uz,W:|
+(pr.p — py.s) {gi“jm Pt gf:f 5UZ,P}
+ (pr.p — Drs) {g?f 20T, + - @ai“jévz s]
+(pr.p — PyN) [%ﬁ:gm Pt ?9}55,’: 5%4
+ (prp —DsN) {g§:§5Ts N+t %fj]]: ov, N:|
+ (pgp — s — by1) _gg;ﬁl T+ ..+ gil; 5%,4
b = s = by) | G0 et G
+ (pr.p —ps.B — bs.B) Zi,l ]; Msp+ ...+ gilj 5'UZ,B:|
+ (ps,p — P15 — by,B) :g];:iCSTs Pt ..+ gilj 5712713}
— Ryp ng;;éTsT +.o+ gi’; ::Tpévz,T} — Rip B;j; ’ide,p ot gii :ITD&;Z,P}
—Rip [S;SJZ5TS B+t..+ gz:jz 5%,4 — R {2;;;57} p+..+ gzii 51}2,13]

R, g (0ps.p — 0pse) + Rew (0psp — Opsw)
+ Ron (0p,p — 0pyn) + Ris (0py.p — 0py,s)
+ R (0ps.p — 6py,8) + Rir (Ops,p — Opy1)
= R.p (pr.p —prE) + Rew (pr.p — Prw)
+ Ran (pr.p — PsN) + Rrs (Psp — Dy.s)
+ Ris ((prp — pr8) = bs) + Rur (pr.p — pyr) — br.s)
(E.11)
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Appendix F
Derivation: Velocity X Equation

The two mass flows in the x direction for the west and east faces are,

mx,E = Rr,E (pf,P - pf,E) (F 1)

mew = Rew (prw — Dr,p)

R is the radial flow resistance, with respect to east and west. The velocity definition,

My g+ My
U%p = —7E 2 W (F2>

Rewriting the equation with definitions,

20, p = R g (pr.p — pre) + Rew (Drw — pr.p) (F.3)

Expanding the primary variables

2 (vyp + 0z p)
= R, g ((ps.p +dpsp) — (pr.e + prE))

+ Rew ((prw + 0prw) — (pr.p + 0ps.p))
(F.4)

Moving to the LHS
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2(5U$7P + 21}5713

— R, g (0ps.p — 0pse) — Rew (Opsw — Opy.p)
— R

~—  —

— R, g (psp —DrE ww (Prw — Prp)
=0

(F.5)

Expanding the coefficients, ignoring higher order terms

20v, p — Ry g (Opr.p — 0pr.e) — Rew (ODgw — Opy.p)
—0R, g (pr.p —prE) — OR.w (Prw — Pr.p)
=20, p+ R g (ps.p —vre) + Rew (Drw — Dr.P)

Expanding the coefficients completely, some more algebra

200, p — Ry g (Ops.p — Opre) — Rew (Opsw — 0Dsp)

OR, OR,
_ (pf,P — pf,E) [aT—féTs’p + + 7E5’UZ’P:|

OR, OR,
— (pr.p — PrE) BT+ . + =2
s g

OR, OR,
— (prw — py.p) {aT—’Zde,p + ...+ W 5v, P}

8Rr w aRr,W

— — —— 0T
(prw pf,P){aT&W Wt

=20, p+ R g (ps.p —prE) + Rew (Drw — Dr.P)
(F.7)
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Appendix G
Derivation: Velocity Y Equation

The two mass flows in the y direction for the north and south faces are,

my,S = Ra,S (pf,P - pf,S)

. (G.1)
my N = Ron (Pfn — DfP)

R is the azimuthal flow resistance, with respect to north and south. The velocity

definition,

m +m
Vy,p = w 2—%5 (GQ)

Rewriting the equation with definitions,

20, p = Ros (pr.p — pr.s) + Ran (Pr.N — Prp) (G.3)

Expanding the primary variables

2 (vy,p + vy p)
= Ros ((pr,p +0psp) — (prs + 0pys))
+ Ron ((pr,n +6pgn) — (pr.p + 6ps.p))
(G.4)

Moving to the LHS
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2(5Uy7p + 2’Uy7p
— Ra5 (0ps.p — 0pgs) — Ran (Ops.n — 0ps.p)
— R s (pr.p — prs) — Ran (0rn —ppp) =0

(G.5)
Expanding the coefficients, ignoring higher order terms
20vy.p — Ra,s (0py,p — 0py.s) — Ran (0psn — 6py,p)
—0Ra5 (ps.p — p1,5) — ORan (DN — Ps,P)
= —2vy p + Ra5 (pr.p — ps.s) + Ran (Pg.n — PyP)
(G.6)
Some more algebra, expanding coefficients
200y, — Ra,5 (6ps,p — 0ps.s) — Ran (ODf,N — ODf,P)
8Ra S aRa S
— — =T, = v,
(pr.p —Dprs) |:8TS,P Pt B0 » P‘|
8Ra OR,
— (ps.p — Py.s) S5Tss 3 S(sz,s]
Vz,5
aRa N aRa N
0T, — v,
— (p.n —DPrP) {aTSP ol e Donp v ,P:|
GRa N aRa N
o7, — v,
— (pg.N — p1.P) {8T5N N+ ..+ Domn U,N:|
= —2vyp + Ras (pr.r — Pfe) + Ran (Pf.v — Ds.P)
(G.7)
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Appendix H

Derivation: Velocity Z Equation

The two mass flows in the x direction for the west and east faces are,

m.r = Rir (prp —pgr — bpr)
m.p = Rig(prs — prp — bsp)

The velocity definition,

m;B + mzr

Uz, P
2

Rewriting the equation with definitions,

2v,p = Rir (pr.p — s —brr) + R (prs —prp — br)

Expanding the primary variables and coefficients.,

2(vyp+ v, p) =
+ Ruyr ((pr.p + 0ps.p) — (P + 0ppr) — (bpr 4 0bs 7))
+ Rip (P, + 0pr.8) — (pr.p + 0psp) — (br,5 + 0by,5))
+ 0Ryr (pr.p — psr — byr) + 6R B (pr.B — Prp — by.B)

Moving to the RHS and LHS
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2(51)2713 — Rl,T (5pf7p — 5pf7T — §bf7T) — Rl,B (5pf73 — (5pf7p — 6bf7B)
— ORyr (prp —prr —bsr) — R (D8 — Prp — by,B)
=—2v,p+ Rir(prp —prr —bsrr) + Rip(pre —rp — brp)

(H.5)

Separating the coefficients,

20v..p — Rir (Opsp — 0psr) — Rip (0psB — 0ps.p)
+ Ry r6bsr + Ry pobs g
— (pr.p —ppr —bpr) OR T
— (psB —prp —bpp) R B
= —2v,p+ Rir (psp —prr — bsr) + Rip (pr.8 — Pyp — bf.B)

Expanding each coefficient,

26v,p — Ry (0ps,p — 6psr) — Rip (Ops.B — dpy.p)

Oby by
Dot 502,4 + Ryr [8TS .

b, 7

0T p
OTor + ...+

+Rm[ 0T + .. +

(5Ts B 5Ts P

6b 6b
+ RZ,B [ .+ 0

obs
8T5 5 (SUZ B} + RZ,B |:

airs P

Uz,B

—(ps.p — s —byr)
—(ps.p —pgr —br1)
— (py.B —prp —bsB)

— (py.B —psp —bsB)

_aTs T
[OR; 7
0T p
'8Rl,B
| 0T
Y‘?Rl,B
| 0T p

— 0T + ..
Msp+ ...
(STS,B

5TS,P + ..

+ aRLT 5Uz,T:|

avz T
331 T

avz P

0, p

avz B
a17:{1 ,B

avz P

5Uz P

aRl D 57}2 B:|

= —2v,p+ Rir (prp — s —byr) + Rig (prs — prp — byB)
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Appendix 1

Derivation: Neutronics

Beginning with the cylindrical time-dependent flux equation,

+ Dy,Ed’Z,E + Dg,WQﬁZ,W + Dg,N¢Z,N
+ DQ7S¢Z’S + DQ,B¢Z,B + Dg’TQS;L’T
- <[)g,E + Dg,W —|— Dg,N + Dg,S —|— DQ,B ‘I‘ Dg,T) ZyP

G
- <Ea,g + Z Es,gg’) VpCbZ,P

9'#g

G G

X n

+ Z Es,g’g + /Bpk = Z sz?.gl V;!?ng’,P
9'=1(#9) I g=1

(L1)

The diffusion coefficients,

Dyp = D2=A0Az  Dyw = Dyr=AAz

Ore Orw
2 _ 11 - _ 11
Dg,N = DnEMATAZ Dg,S = DSZB_QSATAZ (IQ)
N . — D Lreri N . — DL re=ri
Dyp = Deg-=52A0 Dyr = Deg-—~5+A0

The diffusion coefficient, cross section, and eigenvalue need to be addressed. That

derivation will follow. The cross section and diffusion coefficient dependencies

1
ES,EG,I/EJC,D,;,BP = f(Tm,Td) (I?))
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The definitions for the cross sections and fluxes

¢k+1 _ ¢(k) + 5¢ Ak+1 — A(k) + 0A
sl =P 4 ox, o =nl 4y, (L4)
I/E'Jf“ = ngck) +6vy; D¥l=DW 45D

Inserting these into the equation,

(D + 0D, 5) (0% + 66,) — (D5 + 5Dy ) (o + o w)
— (DY) + 6Dy ) (¢<k> +00,x) — (DY%+ 5Dy ) (4!

— (DY) +0Dyir) (6% + 6,5) — (DS + 3D, 7) (¢§T+6¢g T)
(D E+6D ) (055 + 86,0 ) + (DS + D, ) <¢gp+6¢gp)

+ (DY + 0D ) (6 + 60p) + (DU + 8D, 5)
(D4 + 4D QT) (3% 3641) + (Dyf + 0Dy )
+V

(50 + 0%0g) (605 + 60,.)
G

~—~
%
QT
CQ
+
>,
<
Q
0
~—

+ V5 Z (Zikgg’ +0%s gg/> <¢ 0% P)
g'#g
e 3 (8 05) (o )]
g'=1(#g)

+ VoXgp (A(k) +0A) Q/Z: [(VE%, + 1/5Zf,g’) <¢§]7,)P + 5%’?)}

(L5)

Multiplying out,
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— (Dol + 0D, w0l <’“}35¢9,E) — (DR 68 + 6 Do dllhy + DNy 36,w )
— (DYNON + IDg N0k + D065 ) — (DYh6% + 3D, 500% + Dg’fgagzsg,s)
— (DYoLt + 5Dy polh + DgﬁB&pg,B) — (D& + 6Dy 265 + D50, 7)
+ (Dg’%gb(’“; + 6D, 56"} + D;’fgwg,p) + (Do) + 0Dy wolfh + Dl b6, p )
+ (Dol + 8D, o + DR G6,p ) + (DY) + 8D, s6% + DMLos,p)
+ (DYoL + 0Dy 5dllh + DIhos,p) + (DQT%P + 6Dgr it + D156, )
+V, (2“ 65 + 654,48 + P50, )

k k k
o (St )l (Som )+ (S5 e
9'#g g'#g g'#g
G

| S (590 ¢ () b S (55, 500)
)

=1(#9) 9'=1(#9) 9'=1(#9)

i (vofiolfe ) + i (voZ o) + i (v5i 80, P)]

g'=1 g'=1 g'=1

+ VoXgp (AP + 6A)

(L6)

Condensing Terms,
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0= (foécb(% + Dol + Dol + DYoL + Do) + Df,kTqﬁ(’“))
<5DQE¢ + 6D, wol) + 5Dy "), + 6Dy 50 + 6Dy 58" + 5Dy 16! >>
+ (DY004,5 + Doy + Diddgn + DI86,,5 + Dhds,n + DfYos,r)

G
k) k) HE) | k) ~(k) (k) k (k) (k)
T _<D9’E+D97w+D97N+DQS + D +D >_V17<Zg,;+zzs,gg’>] Pg,p

G
- (5 Dyp+0Dgw + 0D, N +06Dys + 0D, 5 + 5[)9,T> -V, (52%{, +> 525,@/)] o

9'#g

Moving the non-derivative terms to the source term,

Sk) —
Ak k) (K k) k) L (k
+ (DYl + Doty + Do + Dol + Dially + Do)
G
HE) L k) Hk) L pHk) L pHk) (k) k (k) (k)
* _<D9E+D9W+D9N+DQS+D93+D97T)_V;’(Zgug‘l—zzsvgg’)] Pg.p
9'#9

¢ G
+Vp Z (Zilf;’gqﬁ;lf)P) + VoXgpA ‘ Z (VZ%;/ ¢é’7)P>]
9121(7&9) g’:l

Simplifying and collecting terms,
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0=5®
+ (605 041k + 6D, i + 6Dy 0% + 6Dy 50% + 6D, 50{'% + 6D, 16

9'#g

G
+V, Z <5Zs7g’g¢gf,)13> + V;)XgpA(k) Z (’/521‘79@;7)13)
9'=1(9) g'=1

+ (DYh005 + Doty + Di00gn + DI36,5 + Dhso,n + Do, )

(B + D%, + D+ DA+ DY + D) v, ( “ }:Eggg)]a¢%P

g'#9
G G
VY (Z0,000.0) + Vg Z (v2000.r)
9'=1(#g) g'=
G
k) (k
+ VoxgpOA Z <y25£ 2,/(15;, )P>
g'=1

(1.9)

Further simplifications,
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- <5DQ,E +0D,w + 0Dy N + 06Dy + 0Dy + 5D97T) -V, <5za,g +> 52&”,)] b

(k)
g,P



0=5®

+ (Dg 156065 + D®) 50w + DX\50gn + D Mo + D50, 5 + DgT&pgT)

~(k ~(k ~ (k ~(k
— (D8 + D, + DB, + D + D+ DY) - (zk S5
9'#g
G
+V | >0 1l 4y, AW Zuz D1 66y p
9'=1(#£g)

(%I% o ¢é,P> 5D9:E + <¢g,w - %,P) 5Dg,w
% — 003 ) 0D, + (0t — 0lt%) 6Dy s
qﬁfﬁs ¢g P> 0Dy + (Cb( ) Gb(k)) 0Dy

k k
- pgbé,l)ﬂéza,g - V;)(bé ) Z 0 s,99'

g'=1( 759)
+V, Z ¢(/ P528 a9 T VoXap Z ¢;]’€,)PV52JC,Q’
g'=1(#g)
a
+Voxor 3 (v ) oA

g'=1

Expanding each of the terms by the cross section by TH dependence,

X,D = f(Tp,Ty)

Inputting the expansions into the equation,
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Regrouped, using some short hand,
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_ SMVPXQPZG:( £ ¢ ,P)(SA

g'=1

b (D000, + D b0+ D06, + D00, + D30, + D Yo0,)

|- (0 0t D D B D) - (s 3
g'#g
G G
k k
+V | > B AP S T unl | 6y p
9'=1(#9) g'=1

0Dy EwNSBT 0Dy pwNSBT

{6Ty ewnspr} +

k k
+<¢§],£WNSBT - ¢§],})3‘) {5TD,EWNSBT}]

OTn EwNSBT OTp EwNSBT

oD oD
k k JEWNSBT JEWNSBT
+ <¢é,£WNSBT - (ﬁé’};) gaj_,ﬁ {5TM,P} + ga’]—'T {5TD,P}

ox,\"! oy, \" !
vt ((55) " o (322) " omue

G n—1 n—1
0%, gy 05, 4y
Vo 2 ((W) iTor+ (57 ‘m“’)
=1(#9)

g’—l(sfég
)y -1 2o\
+Vp Z ¢ ((8 Sgg) 5TD,P+(—88;’Q‘Q) 5TM,P>
M
g'= 1#9

n—1 n—1
Ve A Z o® (220N o oy (D250 s,
o g—1 o dTp 7 0Ty ’

(1.13)

Collecting terms,
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_ SMVPXQPZG:( £ ¢ ,P)(SA

g'=1

+ (D860, + DNy 80gw + DiNodgn + Difio,s + Diho0ss + DYoo, )

(D D+ D+ B 005 03) -1 (s 3 )
g'#g

G
+V, 28 0050+ XepA® S v 5y p

g'=1(#£9) g'=1

0Dy EwNSBT 0Dy pwNSBT

{6Ty ewnspr} +

k k
+<¢§],£WNSBT - ¢§],})3‘) {5TD,EWNSBT}]

OTn EwNSBT OTp EwNSBT

abg EWNSBT aD EWNSBT
PP 5T — 9 0P 6T
T {6T\p} + ITpp {0Tp,p}

aga n—1 G 828 , n—1
~ Vs (a D) P> (W) o
= )

k k
+ <¢5(;,£)?WNSBT - ¢é,1)3>

If TH feedback is ignored in the initial development,
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+

5,99’

G
(D) + Dl + D% + DI+ D+ D) +3 (2 H Y 5w )] 6

G G
k k
-V Z Eg,g)’g(S(bg/,P + XgpA(k) Z VZ(,Z;/ 00y P

9'=1(#9) g'=1
G
k) (k
— Vo Xop Z (VE;’;,Q%,’)P) oA
g'=1

- (D%&%E + Dy 0gw + DS\ 06y x + Diho¢,.s + Do hddyn + Dgf:)ng,T)
= gk
(L.15)
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Appendix J

Derivation: Eigenvalue

Beginning with a first order estimation for the eigenvalue,

g

9
A (8] 400) = A0 0 (vEG,0)) (J.1)
1

1

Expanding the cross section, flux, and eigenvalue,

A= AP g (J.2a)
6! = o) + 56, (J.2b)
vy, = vEpg + 0vS, (J.2¢)
(J.2d)
Inserting these into the equation, assuming three groups,
(A x) (o1 +001) (3 + v5p1) )
+ << ék) + 5@52) (VELQ + (51/2]0 2)) + <<¢ék) + 5¢3> (l/zﬁg + 51/Ef73))>
g
Z VEO
1
(J.3)

Doing some algebra,
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(A®) £ 60) (V211601 + vE 12600 + S 13605
+ 5V2f71¢§k) + 51/2f72¢ék) + 51/2f73¢i(’)k)
+1/Ef,1¢gk) + sz,2¢§k) + VEfvf”d)gk))

g

=AD" (5,65

1

(J.4)

More algebra,

S (uz 1160 4+ 05500 + 08 fﬁ3¢§f“>>
AP (U181 4+ v 200y + vE 1 30h3)
A (55100 + 50l + 500l

g
N (v5,09) ~AD (v5p100 08100 + v 208 0T 20 + 800l 800 )
1

(J.5)

More algebra, expanding the cross sections with respect to Moderator and Doppler

cross sections temperature

(I/Ef,ﬂﬁgk) + VZf,2¢gk) + VZf,3¢§,k)> o\
+ U5 1001 + vEf2009 + V3003

ovy ovy ovy

8u2f1 (k)auEfg (k)ﬁuEfg
et S22 ZTEI3 ) ST
<¢1 t o T T —gr, ) 0T

g
k k
=0 (1, 68) ~ A (VB + a0l + w50
1

(J.6)
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Appendix K

Derivation: 1D Conduction Solve

The 1-D conduction solve within the pebble is given as,

0 orT 0

If we ignore the time dependent terms, and discretize in the radial direction,

kznAzn (Tsur - En) + koutAout (Tsur - Tout) = q;;v;n + q:)/f;t‘/out <K2)

The power can be represented in terms if the relative radial power and total pebble

power,

1"

kznAzn (Tsur - T'm) + koutAout (Tsur - Tout) = (fm‘/m + fout‘/out) Qpeb (K3)

Expanding the primary variables,

+ koutAout (Tsur + 6Tsur - Tout + 5Tout)
= (fmv;n + fout‘/out) q;,;”eb (K4)

Adding the coefficients,

+ (kout + 5kout) Aout (Tsur _I' 5Tsur - Tout - 5Tout)
= (f'm‘/m + fout‘/out) (q;;;b + 5qpeb) (K5>
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Multiplying out, keeping 1st order terms,

Az’n (Tsur - m) 5km + kmAm (5 sur &Tm)
+ Aout ( sur — Tout) 5kout + koutAout <5Tsur - 5Tout) - (fm‘/m + fout‘/out) 5Qpeb

1"

(fmv;n + fout‘/aut) q];eb kznAm ( sur T’zn) + koutAout ( sur ~ Tout) (K6)

Expanding the conductivity, and heat generation, give the final form

Ok oy, Ok o,
+ Aout (Tsur - Tout) (aT—téTsur 8T idTout>

ngroup ngroup
oK% OKY
- (fzn‘/zn + fout‘/out core (( Z ¢g il f) 5T + ( Z ¢g r f) 5Td>

+ kmAzn (5 sur 5En) + koutAout (6 sur 5T0ut)

"

(fzn‘/;n + fout‘/out) Qpeb kznAzn ( sur — iT’m) + koutAout ( sur Tout) (K7)

In the first shell, closet to the center of the pebble, the ”in” terms are equal to
zero. The boundary with the fluid is treated differently,

kinAin (Tsur — Tin) + aApes (Lour — Tri)
+ keqw (Tsur — Tsor,w) + keq.p (Lour — Tsor.E)
+ kegn (Tsur — TsorN) + Keq.s (Lsur — Tso1,8)
+ keq.B (Tsur — Tsor.B) + keqr (Tsur — Tsor1)

"

Similar to the solid energy equation, the neighbor solid temperature, fluid temper-

ature, equivalent conductivity, and alpha are all expanded.
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aTsur

5Tsu7‘ +
T,

Ain (Tsur - T‘m) (

i)

Ay, (0T e — 0T 1) +A Oa Oa Oa
e sur flu peb (5 sur 5Tflu) —5Tsur 0T T
aTzu" aT’sol sl anlu5 Tt
+ keguw (6Twur — 6T o) + (Tour — ( fea IV Okeqv
, sur S0 sur sol w 5Tso R v—— =
aTjsol W LW air’sol ,P 5TSOZ P)
+ kg (0Tsur — 0Tso1,52) + (T (akqu Ok,
s sur sol, sur sol JE 5Tso + =
sol E LE 8jﬁsol P 5TSO[ P)
+ keq,N (5Tsur - 5TSOZ,N) + sur sol N ( - N s lE akeq N
sol N ‘ aT:sol P sohP
+/€eq5<5T —5Tzs)+ — ( eqS Ok 5
R sur sol, sur sol S 5Tso =
a,-Z—'sol S b Chl aTsol ,P T P)
¥ kg (6Tsur — 0Tsor58) + (Tour — (akqu Oy
s sur sol, sur sol B 5Tso —2
aT‘sol B : E aTSOl P TSOl P)
+ keqr (0Tsur — 6Toor ) + (Tour — (ake @l gt
R sur sol, sur sol T 6Tso =
8,Tsol T : T aT’sol P 6TSOZ P)
— qum kznAzn ( sur — ,—Tzn> - aApeb (Tsur - Tflu)
- keq,W (Tsur - Tsol,W) - keq,E (Tsur - Tsol,E)
- keq,N (Tsur - Tsol,N) - keq,S (Tsur - Tsol,S)
- keq,B (Tsur - Tsol,B) - keq,T (Tsur - Tsol,T) (Kg)
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Appendix L

Derivation: Moderator XS
Temperature

The moderator temperature is a linear function of the 1-d conduction temperature

nshell
T, T,
‘/pebTm = Z Vvs% (Ll)
sh=1

Expanding the moderator and shell temperatures

nshell
T, 0T, T, o7,
Vi (T + 6T, = 3 v, Lot 0Ln) ¥ Tann & 0 (L.2)
2
sh=1
Moving to LH and RHS,
nshell 5T + (ST nshell T + T
0T, — P osh T TTshAl Zsh T skl )y LT L.

VT 3 VI P (VuTw)  (L3)
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Appendix M

Derivation: Doppler XS
Temperature

The Doppler temperature is a linear function of the 1-d conduction temperature, and

also contains a heat generation term

nshell(fuel)

T, + T
Vfuele = Z (%% + stpuepreb) (Ml)
sh=1

Expanding the Doppler and shell temperatures

nshell( fuel)
Top + 0Tsp,) + (Tspyq + 0T
vf“el <Td + 5Td) - Z Vs (( : h) (2 a2 h+1) + stpuepreb)
sh=1
(M.2)
Moving to LH and RHS,
nshell( fuel)
0l sp + 0T sn11
Viuer0Ty — Z Vs—2
sh=1
nshell(fuel)
Top + T
- Z (%% + ‘/sfpuepreb) - (Vfuele) (MS)
sh=1

Expanding the heat generation term,
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nshell(fuel) nshell(fuel)
0T, + 0T
VfueléTd - Z V % - Z ‘/;fpuebdeeb
sh=1 sh=1
nshell( fuel)
Tsh + Tsh
= Z (‘/STH + ‘/sfpuepreb) - (Vfuele)
sh=1
(M.4)
The heat generation depends on kappa fission and flux,
nshell( fuel)
5Tsh + 5Tsh+1
Vfuel(STd — Z Vs #
sh=1
nshell(fuel) ngrp
ac2;neb
- Z stpueb aTm 5Tm
sh=1 1
nshell(fuel) ngrp
OQpe
- Z Vi fpueb a% ’ 5TD
sh=1 1 b
nshell(fuel) ngrp
- Z Vi fpueb + Vfuelpn Sfuel Z K2 6¢g
sh=1
nshell( fuel)
Tsh + Tsh
= Z (V;TH + ‘/sfpuepreb) - (Vfuele)
sh=1
(M.5)
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