
A Newton-Krylov Solution to the
Coupled Neutronics-Porous

Medium Equations

by

Andrew M. Ward

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Nuclear Engineering and Radiological Sciences)

in The University of Michigan
2012

Doctoral Committee:
Professor Thomas J. Downar, Co-Chair
Assistant Research Scientist Volkan Seker, Co-Chair
Professor James Paul Holloway
Professor John C. Lee
Assistant Professor Divakar Viswanath
Assistant Research Scientist Yunlin Xu

but these are written so that you may believe

that Jesus is the Christ, the Son of God, and

that by believing you may have life in his

name.

— John 20:31

c© Andrew M. Ward

All Rights Reserved

2012

for Laura, to Kahlan

Your patience and unwavering support gave me strength and diligence.

ii

Acknowledgments

I would like to thank my advisor Dr. Thomas Downar for his direction and guidance

throughout my graduate studies. I would also like to thank Dr. Volkan Seker for this

patience with all my question and guidance in learning about gas reactors and the

porous medium equations. Dr. Yunlin Xu was also instrumental to my understanding

of Newton’s Method, iterative solves, and all things coding. Without their direction,

this would not have been possible. Thank you.

My committee was an excellent source of direction and feedback. I would like

to thank Dr. John Lee, Dr. James Holloway, and Dr. Divakar Viswanath. Their

suggestions and criticisms were very helpful, and several discussions helped move this

research forward.

I would like to thank Dr. Ben Collins for his encouragement, observations, as-

sistance, and of course company. His help was vital to the success of this project.

I would also like to thank Danial Jabaay and Timothy Drzewiecki for their help in

brainstorming and also their contribution to our office environment; makes coming to

work all that more enjoyable.

Finally, I would like to thank my wife Laura and my daughter Kahlan. Their

sacrifice and patience were so important. I would also like to thank my Mom and Dad

for their raising me and their support throughout my education. Lastly, all thanks,

praise, glory, and honor is due Jesus Christ, the son of God and savior of the world.

Through his blood, there is salvation for all.

iii

Table of Contents

Dedication . ii

Acknowledgments . iii

List of Tables . vi

List of Figures . vii

List of Appendices . x

Abstract . xi

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Current Coupled Code Solution Methods 1

Chapter 2 Current AGREE/PARCS Formulation 6
2.1 Thermal Fluids . 6

2.1.1 Solid Energy Equation . 7
2.1.2 Fluid Energy Equation . 9
2.1.3 Fluid Momentum Equation 11
2.1.4 Fluid Mass Flow Rate and Velocity 13
2.1.5 Matrix Structure of Theoretical Problem 13

2.2 Neutronics . 15
2.2.1 Multigroup Neutron Diffusion 16
2.2.2 Eigenvalue . 17

2.3 Physics Coupling of AGREE / PARCS 17
2.3.1 Matrix Structure of Theoretical Problem 18

Chapter 3 Implicit Coupling Techniques 21
3.1 Introduction . 21
3.2 Newton Iteration . 24
3.3 Implementations of Newton’s Method 25

3.3.1 Analytical Jacobian . 25

iv

3.3.2 Finite Difference Jacobian . 26
3.3.3 Jacobian-Free / Approximate Block Newton 26

3.4 Summary . 28

Chapter 4 Implicit Formulation for AGREE/PARCS 29
4.1 Derivation of Jacobian for the Thermal-Fluids Equations 29
4.2 Derivation of Jacobian for AGREE/PARCS 31

4.2.1 Newton’s Method Neutronics Equations 33
4.2.2 Newton’s Method Thermal-Fluids Equations 36
4.2.3 Newton’s Method Cross Section Feedback Equations 44

4.3 Solution of Newton’s Methods . 47
4.3.1 Solution Methods . 47
4.3.2 Convergence Testing . 48

Chapter 5 Models Used in Analysis . 49
5.1 Problem Specifications . 49
5.2 Validation Basis . 52
5.3 The Jacobian Matrix . 55

Chapter 6 Analysis of Implicit Formulations 62
6.1 Newton-Krylov Thermal-Fluid Analysis 62

6.1.1 Exact Newton . 62
6.1.2 Inexact Newton . 69
6.1.3 Finite Difference Jacobian . 74
6.1.4 Jacobian-Free . 79

6.2 Newton-Krylov Neutronics Analysis 81
6.2.1 Exact Newton’s Method . 81
6.2.2 Inexact Newton’s Method . 83

6.3 Newton-Krylov Coupled Analysis . 85
6.3.1 Exact Newton . 85
6.3.2 Inexact Newton . 92
6.3.3 Finite Difference Jacobian . 95

Chapter 7 Summary and Conclusion . 100
7.1 Summary of Work . 100
7.2 Future Work . 101

Appendices . 103

Bibliography . 151

v

List of Tables

Table

2.1 AGREE / PARCS Coefficient Depedence 18

5.1 PBMR Characteristics . 50
5.2 Case S-3 Eigenvalue Comparison . 55
5.3 Resulting Jacobian Linear Systems 60
5.4 Estimate of Solve Operations . 61

6.1 Thermal-Fluids Performance Comparison 67
6.2 Thermal-Fluids Results Comparison 67
6.3 Thermal-Fluids Inexact Newton . 73
6.4 Thermal-Fluids F.D. Jac Direct Solve 77
6.5 Thermal-Fluids F.D. Jac with Optimized Pert. 77
6.6 Thermal-Fluids Jacobian-Free . 80
6.7 Neutronics Performance Comparison 83
6.8 Neutronics Results Comparison . 83
6.9 Coupled Performance Comparison . 86
6.10 Coupled Results Comparison Neutronics 86
6.11 Coupled Results Comparison Thermal Fluids 87
6.12 Coupled Inexact Newton Performance 92
6.13 Coupled F.D. Jac with Fixed Pert. 95
6.14 Coupled F.D. Jac with Dynamic Pert. 96

A.1 Krylov Solver Performance . 105

B.1 ILU0 Decomposed Matrix Performance 108

vi

List of Figures

Figure

1.1 Coupling Technique - Staggered Update 3
1.2 Coupling Techniques for RELAP5 / TRAC-M(TRACE) 3
1.3 Coupling Technique - Simultaneous Update 4

2.1 AGREE / PARCS Nodalization . 7
2.2 Theoretical 3 x 3 x 3 Problem . 14
2.3 Theoretical 3 x 3 x 3 Matrix . 14
2.4 Actual Structure of Current AGREE Linear System 15
2.5 Theoretical Structure of Coupled AGREE Linear System 15
2.6 Theoretical AGREE / PARCS Symbolic Structure 19
2.7 Theoretical AGREE / PARCS Matrix Structure 20

3.1 Coupling Technique - Fully Implicit 22
3.2 Exact Newton’s Method Logic . 26
3.3 Jacobian-Free Method Logic . 27

4.1 Theoretical AGREE / PARCS Jacobian 30
4.2 Symbolic Representation of AGREE Jacobian 31
4.3 Matrix Structure of AGREE Jacobian 32
4.4 Symbolic Representation of AGREE/PARCS Jacobian 32
4.5 Matrix Structure of AGREE/PARCS Jacobian 33

5.1 PBMR 400 Reactor . 51
5.2 TRISO Fuel Pebble . 51
5.3 Model of Core Layout . 53
5.4 K-Effective . 53
5.5 Maximum Power Density . 54
5.6 Radial Thermal Flux . 54
5.7 Axial Thermal Flux . 55
5.8 Pressure Drop . 56
5.9 Fuel Temperature . 56
5.10 Moderator Temperature . 57

vii

5.11 Axial Fuel Temperature . 57
5.12 Axial Thermal Flux . 58
5.13 Radial Thermal Flux . 58
5.14 Power Density . 59
5.15 Axial Doppler Temperature . 59
5.16 Partial Filling of Practical Matrix . 60

6.1 Thermal Fluids Exact Newton Del-X / X 2-Norm 64
6.2 Thermal Fluids Exact Newton Del-X / X Inf-Norm 66
6.3 Thermal Fluids Exact Newton Residual 2-Norm 66
6.4 Thermal Fluids Exact Newton Residual Inf-Norm 67
6.5 Thermal Fluids Exact Newton Del-X / X Comparison 68
6.6 Thermal Fluids Exact Newton Residuals Comparison 68
6.7 Thermal Fluids Inexact Newton Del-Ts / Ts 70
6.8 Thermal Fluids Inexact Newton Del-Vz / Vz 70
6.9 Thermal Fluids Inexact Newton Normalized Ts Residual 71
6.10 Thermal Fluids Inexact Newton Normalized Vz Residual 71
6.11 Thermal Fluids Inexact GMRES Conv. 72
6.12 Thermal Fluids Inexact Newton Normalized Ts Residual 72
6.13 Thermal Fluids Inexact Newton Normalized Vz Residual 73
6.14 Thermal Fluids F.D. Jac Ts Residual 75
6.15 Thermal Fluids F.D. Jac Vz Residual 77
6.16 Thermal Fluids F.D. Jac Normalized Ts Residual 78
6.17 Thermal Fluids F.D. Jac Normalized Vz Residual 78
6.18 Thermal Fluids Jac-Free Normalized Ts Residual 79
6.19 Thermal Fluids Jac-Free Normalized Vz Residual 80
6.20 Neutronics Exact Newton Fission Source 81
6.21 Neutronics Exact Newton Del-Flux / Flux 82
6.22 Neutronics Exact Newton Flux Residual 82
6.23 Neutronics Inexact Newton Del-Flux / Flux 84
6.24 Neutronics Inexact Newton Flux Residual 84
6.25 Coupled Exact Newton Del-Flux / Flux 87
6.26 Coupled Exact Newton Del-Ts / Ts 88
6.27 Coupled Exact Newton Del-Pf / Pf 88
6.28 Coupled Exact Newton Residual Flux 89
6.29 Coupled Exact Newton Residual Ts 89
6.30 Coupled Exact Newton Residual Pf 90
6.31 Coupled Exact Newton Del-X / X . 90
6.32 Coupled Exact Newton Residuals . 91
6.33 Coupled Inexact GMRES Conv. 93
6.34 Coupled Inexact Newton Normalized Flux Residual 93
6.35 Coupled Inexact Newton Normalized Ts Residual 94
6.36 Coupled Inexact Newton Normalized Vz Residual 94
6.37 Coupled F.D. Jac Flux Residual . 96
6.38 Coupled F.D. Jac Ts Residual . 97

viii

6.39 Coupeld F.D. Jac Vz Residual . 97
6.40 Coupled F.D. Jac Normalized Flux Residual 98
6.41 Coupled F.D. Jac Normalized Ts Residual 98
6.42 Coupled F.D. Jac Normalized Vz Residual 99

A.1 Krylov Solvers Inners per Newton Step 105

B.1 ILU0 Inner Iterations per Newton Step 109

ix

List of Appendices

Appendix

A Additional Analysis of Krylov Solvers . 104

B Additional Analysis of Preconditioners . 107

C Derivation: Solid Energy Equation . 110

D Derivation: Fluid Energy Equation . 120

E Derivation: Pressure Equation . 123

F Derivation: Velocity X Equation . 127

G Derivation: Velocity Y Equation . 129

H Derivation: Velocity Z Equation . 131

I Derivation: Neutronics . 133

J Derivation: Eigenvalue . 143

K Derivation: 1D Conduction Solve . 145

L Derivation: Moderator XS Temperature 148

M Derivation: Doppler XS Temperature . 149

x

Abstract

The solution of the coupled field equations for nuclear reactor analysis has typically

been performed by solving separately the individual field equations and transferring

information between fields. This has generally been referred to as operating splitting

and has been applied to a wide range of reactor steady-state and transient problems.

Although this approach has generally been successful, it has been computationally

inefficient and imposed some limitations on the range of problems considered. The

research here investigated fully implicit methods which do not split the coupled field

operators and the solution of the coupled equations using Neutron-Krylov methods.

The focus of the work here was on the solution of the coupled neutron and temper-

ature/fluid field equations for the specific application to the high temperature gas

reactor. The solution of the neutron field equations was restricted to the steady-state

multi-group neutron diffusion equations and the temperature fluid solution for the gas

reactor involved the solution of the solid energy, fluid energy, and the single phase

mass-momentum equations.

In the research performed here, several Newton-Krylov solution approaches have

been employed to improve the behavior and performance of the coupled neutronics /

porous medium equations as implemented in the PARCS/AGREE code system. The

Exact and Inexact Newton’s method were employed first, using an analytical Jacobian,

followed by a finite difference based Jacobian, and lastly a Jacobian-Free method was

employed for the thermal-fluids. Results in the thermal fluids indicate that the Exact

Newton’s method outperformed the other methods, including the current operator

split solution. Finite difference Jacobian and Jacobian-Free were slighty slower than

the current solution, though fewer outer iterations were required. In the coupled

solution, the exact Newton method performed the best. The finite difference Jacobian

with optimized perturbation integrated into the GMRES solve also performed very

well, which represented the best iterative solution to the coupled problem. Future

analysis will consider the transient problem.

xi

Chapter 1

Introduction

1.1 Motivation

The solution of the coupled field equations for nuclear reactor analysis has typically

been performed by solving separately the individual field equations and transferring

information between fields. This has generally been referred to as operating splitting

and has been applied to a wide range of reactor steady-state and transient problems

[1] [2] [3] [4] [5] [6]. Although this approach has generally been successful, it can be

computationally inefficient and has imposed some limitations on the range of problems

considered. The research here investigated fully implicit methods which do not split

the coupled field operators and the solution of the coupled equations was performed

using Neutron-Krylov methods. The focus of the work here was on the solution of

the coupled neutron and temperature/fluid field equations for the specific application

to the high temperature gas reactor. The solution of the neutron field equations

was restricted to the steady-state multi-group neutron diffusion equations and the

temperature fluid solution for the gas reactor which involved the solution of the solid

energy, fluid energy, and the single phase mass-momentum equations.

1.2 Current Coupled Code Solution Methods

The focus of most previous research in coupled code solution methods has been for

the Light Water Reactor (LWR) [7] [8] [9]. It has long been recognized that the

steady-state and transient analysis of a LWR core is a complex multi-physics problem,

involving the simulation of neutron production and transport, heat transfer throughout

the structures, and the description of the coolant flow field throughout the system

[10] [11] [12] [13]. Such analysis has involved the coupling of separated simulation

codes, with each one devoted to the solving of one of the coupled physics problems

1

[14]. Because of the complexity of the individual field solutions, most of the existing

coupled code systems have applied an Operator Splitting (OS) coupling technique,

where one code is iterated first to provide boundary conditions to the second code and

so on until the last code of the simulation system completes one overall temporal step

[15] [14]. The accuracy of such coupling is generally driven by the one code that uses

the least accurate numerical scheme and therefore traditional OS coupling methods

have been limited to 1st order accuracy. The computational efficiency has further been

limited because the non-implicit nature of this step-by-step decomposition required

the use of small times steps to ensure the stability of the solution [16] [17]. Some

methods have been developed to improve the efficiency of these methods, but the

fundamental inefficiency and limitations of operated splitting methods remain. The

use of an iterative approach to solve a loosely coupled non-linear set of field equations

has generally resulted in long computation times and imposed some limitations on

the range of problems that could be solved [18] [19] [20].

The most commonly used thermal-fluid codes in the industry today, such as

TRACE [21], RELAP5 [22], or RETRAN [23] and originally TRAC [24], generally

apply a mixture of explicit and implicit equation formulations. The numerical ap-

proach is generally chosen to minimize stability issues inherent with the first order

formulations [25]. The solution of the linear reactor physics problem is generally more

straightforward, particularly for the steady-state condition which is the focus of the

work here [26] [27]. The methods implemented in the codes SIMULATE-3K [28] and

PARCS [29] are representative of the current generation of reactor physics methods in

the industry today [30].

The most common technique to couple the thermal-fluid and neutronics equations

is depicted in Figure 1.1 in which one field is solved while holding constant the unsolved

equations variables in the other field. The simplest example for the temperature/fluid

and neutronics equations is a staggered update between three field equation subsets

in which the energy equation steps forward, and the n + 1 time step solution is used

to solve the fluid pressure equation. The solution is passed back to time n, where the

neutronics is solved and the time step is advanced to n+1. Experience has shown this

method to be relatively stable for most practical reactor applications.

This method has been used for several years to couple reactor systems codes such

as RELAP5 and TRAC to reactor neutronics codes such as PARCS. The coupling

of these codes is shown in Figure 1.2 which shows there is a slight difference in the

sequence in which the fields are updated. In the RELAP5/PARCS coupling the heat

conduction precedes the fluids solution whereas in the TRACE/PARCS coupling the

2

Figure 1.1: Coupling Technique - Staggered Update

Figure 1.2: Coupling Techniques for RELAP5 / TRAC-M(TRACE)

sequence is reversed. These two schemes represent different physics considerations as

well. The conduction driven scheme in RELAP5 repsents the assumption that power

will generally change and in term drive the other fields, while the momemtum driven

scheme in TRACE, assumes a pressure driven transient, more likely in a BWR.

3

Figure 1.3: Coupling Technique - Simultaneous Update

Variations on the staggered operator splitting method have been proposed over

the years and generally involve slight variations such as a simultaneous update of the

fields as shown in Figure 1.3. In this method, the neutronics and thermal-fluids time

advance together, but between time steps, several data transfers and recalculations are

performed to converge the fields. This is the method currently used in the coupling of

the U.S. NRC HTR fluids code AGREE to the neutronics PARCS which provided the

framework for the research here. Ideally, this simultaneous update method allows for

larger time steps, but at the cost of additional computational time.

There has been considerable analysis of the current practice of coupled codes

for reactor applications. One of the most comprehensive studies was performed by

the OECD [31]. Because there have been only minor advances for practical reactor

applications during the last several years, the OECD report still provides a reasonable

assessment of the current state-of-the-art. A detailed description of the basic issues

of Neutron-Kinetics/Thermal-Hyrdaulic (N-K/T-H) coupling is given in the report,

followed by a description of some of the coupling issues which include:

• Coupling approach - integration algorithm or parallel processing
• Ways of Coupling - internal or external
• Spatial mesh overlays
• Coupled time step algorithms
• Coupling numerics - explicit, semi-implicit or implicit schemes
• Coupled convergence schemes

4

The two first items refer to the different methods than can be used to couple two

existing solvers, either integrating one code into the other one (thus resulting into

one code), or establishing a dynamic data exchange routine (PVM or MPI based)

between the two codes, thus corresponding to a black-box interfacing where only

limited modifications to the two solvers are needed. The third item, which corre-

sponds to the problem of exchanging coupling fields computed on different meshing

schemes was not an issue for the HTR application here. The review provided of the

last three items did provide some useful background, for example the development

of the SIMTRAN 3D core dynamics code [32] where staggered alternate time step

advancement and extrapolation strategies were used between the two physics (N-K

and T-H). This provided the ability to transfer the T-H feedback variables in a nearly

implicit manner for the core power calculation. The work summarized in the OECD

report addressed primarily the coupling problem for the Light Water Reactor which

was not the principal focus of the research here. However, this work did provide a

comprehensive perspective on previous coupled code approaches provides and a basis

for the investigation of methods to improve the convergence of the existing coupling

techniques (OS based).

The presentation of the work performed in this research is organized as follows.

The next chapter will summarize the field equations which are currently used in the

U.S. NRC codes AGREE and PARCS for High Temperature Gas Reactor analysis and

which provided the basis for the research here. Chapter 3 will provide an overview of

the implicit methods that were used in the work here, and Chapter 4 will describe

the development of these methods for the coupled temperature/fluid and neutronics

HTR problem as solved in AGREE/PARCS. Chapter 5 will introduce the test prob-

lems used for the thermal-fluids, neutronics, and coupled analysis. Chapter 6 will

present the results of applying these methods to practical HTR problems and summary

and conclusions are provided in Chapter 7. The principal original and significant

contribution of this research is the development of a fully implicit, Newton-Krylov

method for the solution of the coupled temperature/fluid and neutronics equations

and the application of these methods within the framework of the U.S. NRC code

system AGREE/PARCS for the regulatory level analysis of the High Temperature

Gas Reactor.

5

Chapter 2

Current AGREE/PARCS
Formulation

The solution of the temperature/fluid equations for the gas reactor problem used in

the work here was based on the methods implemented in the U.S. NRC code AGREE

which solves three separate field equations: a mass-momentum equation, a fluid energy

equation, and a solid energy equation. These are solved separately and explicitly, and

several iterations are typically required to converge the TH solution. The converged

temperature/fluid solution was then coupled explicity to the PARCS code which solves

the multigroup neutron diffusion equation. The equations are given in the following

sections.

The application here is to the pebble bed design of the High Temperature Gas

Reactor which is described using a cylindrical coordinate system as shown in Fig-

ure 2.1. The finite difference method is used to discretize both the neutronics and

temperature/fluid equations which provides for coupling to six neighbors as shown in

the Figure. The spatial coupling convention of N, S, E, W, T, B for the neighbors will

be used throughout the work here.

2.1 Thermal Fluids

The solid energy equation used in AGREE for Pebble Bed applications is the conven-

tional porous medium conduction equation. Because of the pebble contact and mesh

size, the conductivity definition is expanded to include other heat transfer mechanisms

such as radiative heat transfer. The fluid energy solution also utilizes the porous

medium approach and the calculation of the fluid velocity and convective terms requires

specialized definitions which will be summarized in the following sections. Finally, the

fluid pressure is calculated by combining the mass and momentum equations which

considerably simplifies the final form of the equations.

6

Figure 2.1: AGREE / PARCS Nodalization

The formulation of the three thermal fluid equations results in three nine-stripe

matrices. The typical three dimensional finite difference seven stripes which include

the node of interest and six neighbors, has two extra stipes to model the periodic

boundary condition of the azimuthal direction. After the coefficients of the matrix are

determined, the coefficient matrix is constructed for each equation, and then matrices

are solved in the following order: pressure, fluid energy, and solid energy. An iterative

loop is repeated several times until convergence. Mass flow rate and velocity are

calculated after each outer iteration. The velocity is used to calculation Relynolds

number, which is used to calculate several coefficients in the system.

2.1.1 Solid Energy Equation

The fuel in the pebble bed reactor is in the form of a pebble and therefore the field

equation for the solid energy begins with the spherical conduction equation as shown

in equation (2.1), which utilizes the conventional definition of the porosity, epsilon,

as the ratio of the fluid volume to the total volume. The LHS represents the time

dependent change in the energy stored in the solid. The first three terms on the

7

RHS describe the radial conduction, azimuthal conduction, and axial conduction,

respectively. The heat transfer to the fluid is then given, which depends on the solid

and fluid temperatures. Lastly, Q is the heat generation, which in the coupled system

is the kappa-fission reaction rate total.

∂

∂t
((1− ε) ρscp,sTs)

=
1

r

∂

∂r

(
(1− ε) ksr

∂Ts
∂r

)
+

1

r

∂

∂θ

(
(1− ε) ks

r

∂Ts
∂θ

)
+

∂

∂z

(
(1− ε) ks

∂Ts
∂z

)
− α (Ts − Tf) +Q (2.1)

The finite-volume method is used to solve this problem, and therefore the equation

is integrated in space over the discretized geometric grid. The coefficients for the

radial conduction terms are given below in which the derivative terms are a function

of the underlying grid geometry.

De = (1− ε) ks,e
re

∆re
∆θ∆z (2.2a)

Dw = (1− ε) ks,w
rw

∆rw
∆θ∆z (2.2b)

Dn = (1− ε) ks,n
1

rn

rn
∆θn

∆r∆z (2.2c)

Ds = (1− ε) ks,s
1

rs

rs
∆θs

∆r∆z (2.2d)

Db = (1− ε) ks,b
1

∆zb

r2
e − r2

w

2
∆θ (2.2e)

Dt = (1− ε) ks,t
1

∆ze

r2
e − r2

w

2
∆θ (2.2f)

The conductivity is a strong function of the solid temperature, and therefore must

be updated during the outer iterations in the finite difference scheme. Using these

variables, and integrating in time, the final form of the equation can be written as

equation (2.3)

8

(1− ε) ρscp,s
1

∆t

(
Ts,P − T n−1

s,P

)
∆V

= De (Ts,E − Ts,P) +Dw (Ts,W − Ts,P)

+Dn (Ts,N − Ts,P) +Ds (Ts,S − Ts,P)

+Db (Ts,B − Ts,P) +Dt (Ts,T − Ts,P)

+Q∆V − α (Ts,P − Tf,P) ∆V (2.3)

Equation (2.3) is the basis for solution of the time dependent heat conduction

problem in AGREE. The primary variable is the solid temperature, including the

primary node and its neighbors. The solution also depends on the fluid temperature

in the primary node. The coefficients depend on the geometry, the node ”P” solid

temperature, fluid temperature, and fluid pressure.

2.1.2 Fluid Energy Equation

This field equation begins as the conduction / convection for a single phase fluid in

cylindrical coordinates and is provided in equation (2.4).

∂

∂t
(ερfcp,fTf)

= −1

r

∂

∂r
(rṁrcp,fTf)−

1

r

∂

∂θ
(ṁθcp,fTf)−

∂

∂z
(ṁzcp,fTf)

+
1

r

∂

∂r

(
εkfr

∂Tf
∂r

)
+

1

r

∂

∂θ

(
ε
kf
r

∂Tf
∂θ

)
+

∂

∂z

(
εkf

∂Tf
∂z

)
− α (Tf − Ts) (2.4)

The LHS term is the time dependent energy stored in the fluid. The terms on

the RHS are the radial, azimuthal, and axial convection, or movement of heat by the

fluid. The next set of terms are the radial, azimuthal, and axial conduction of energy

through the fluid. The final term is the heat exchange between the fluid and solid

which couples the fluid and solid energy equations.

The conventional finite-volume method is used to solve this problem, therefore the

equation must be integrated in space to be used on the discretized geometric grid. The

9

coefficients for the conduction terms are given in equation (2.5a) and equation (2.6a).

De = εkf,e
re

∆re
∆θ∆z (2.5a)

Dw = εkf,w
rw

∆rw
∆θ∆z (2.5b)

Dn = εkf,n
1

rn

rn
∆θn

∆r∆z (2.5c)

Ds = εkf,s
1

rs

rs
∆θs

∆r∆z (2.5d)

Db = εkf,b
1

∆zb

r2
e − r2

w

2
∆θ (2.5e)

Dt = εkf,t
1

∆ze

r2
e − r2

w

2
∆θ (2.5f)

Fe = ṁecp,f∆θ∆z (2.6a)

Fw = ṁwcp,f∆θ∆z (2.6b)

Fn = ṁncp,f∆r∆z (2.6c)

Fs = ṁscp,f∆r∆z (2.6d)

Fb = ṁbcp,f
r2
e − r2

w

2
∆θ (2.6e)

Ft = ṁtcp,f
r2
e − r2

w

2
∆θ (2.6f)

In order to treat the convective terms, the velocity must be calculated during the

outer iteration. The differencing scheme is a user option in AGREE which provides for

upwind, central, and hybrid differencing. The general form is given in equation (2.7a).

For purposes of testing and comparison of the solvers developed in the research here,

the upwind differencing scheme was used exclusively. This means A(| P |) is equal to

10

one in all cases.

AE = DEA (| PE |) + [‖ − FE, 0‖] (2.7a)

AW = DWA (| PW |) + [‖FW , 0‖] (2.7b)

AN = DNA (| PN |) + [‖ − FN , 0‖] (2.7c)

AS = DSA (| PS |) + [‖FS, 0‖] (2.7d)

AT = DTA (| PT |) + [‖ − FT , 0‖] (2.7e)

AB = DBA (| PB |) + [‖FB, 0‖] (2.7f)

The final equation is then given in equation (2.8) which is used to solve the time

dependent conduction / convection equations in AGREE. The coefficients depend on

the solid temperature, fluid temperature, and the fluid pressure. During the transient,

it also depends on the time step and the previous fluid temperature.

ερfcp,f
1

∆t

(
Tf,P − T n−1

f,P

)
∆V

= Ae (Tf,E − Tf,P) + Aw (Tf,W − Tf,P)

+ An (Tf,N − Tf,P) + As (Tf,S − Tf,P)

+ Ab (Tf,B − Tf,P) + At (Tf,T − Tf,P)

− α (Tf,P − Ts,P) ∆V (2.8)

2.1.3 Fluid Momentum Equation

This field equation is a combination of the mass conservation and momentum con-

servation equations. This is achieved by inserting the continuity equation into the

momentum equation which is given in equation (2.9).

∂
(
ε〈ρf〉f〈vf〉f

)
∂t

= −5 〈p〉+ ε〈ρf〉f~g −Wε〈ρf〉f〈vf〉f (2.9)

The time dependent momentum of the fluid is given by the LHS term of equa-

tion (2.9) and the pressure gradient is the first term on the RHS. The next term on

the RHS is the change in momentum resulting from gravity, and the final term is

pressure loss due to the motion of the fluid through the porous medium which utilizes

the resistivity as shown in equation (2.10). For the pebble bed HTR application shear

11

and convection are usually small and can be neglected.

W =

(
320
Re
1−ε

+
6

Re
1−ε

0.1

)
1− ε
ε3

1

dp

| 〈ρf〉f〈vf〉f |
2〈ρf〉f

(2.10)

The flow rate definition from the continuity equation can be used to replace the

time dependent terms in the momentum equation as shown in equation (2.11).

∂
(
ε〈ρf〉f〈vf〉f

)
∂t

=
1

A

∂ṁ

∂t
(2.11)

The final form of the continuity/momentum field equation is given by equa-

tion (2.12), which can then be applied to the finite difference formulation used as in

the other field equations.

1

A

∂ṁ

∂t
= −W

A
ṁ−

(
∂pr
∂r

+
1

r

∂pθ
∂θ

+
∂pz
∂z

)
+ ε〈ρf〉f~g (2.12)

The momentum contribution through each face under the discretization scheme

above is given by equation (2.13a). A similar spatial integration is used as in the other

field equations.

rP − rE
AE

ṁn
E − ṁn−1

E

∆t
=
rP − rE
AE

W n
Eṁ

n
E −4pnE (2.13a)

rP − rW
AW

ṁn
W − ṁn−1

W

∆t
=
rP − rW
AW

W n
W ṁ

n
W −4pnW (2.13b)

θP − θN
AN

ṁn
N − ṁn−1

N

∆t
=
rP − rN
AE

W n
Nṁ

n
N −

1

rN
4 pnN (2.13c)

θP − θS
AS

ṁn
S − ṁn−1

S

∆t
=
rP − rS
AE

W n
S ṁ

n
S −

1

rS
4 pnS (2.13d)

zP − zB
AB

ṁn
B − ṁn−1

B

∆t
=
rP − rB
AB

W n
Bṁ

n
B −4pnB + ~g4 zB/rho

n
B (2.13e)

zP − zT
AT

ṁn
T − ṁn−1

T

∆t
=
rP − rT
AT

W n
T ṁ

n
T −4pnT − ~g4 zT/rho

n
T (2.13f)

Each equation is solved for the mn terms. These terms are then summed, and the

above definition of the continuity equation is used to solve for the time-dependent

mass flow in terms of the change in the density. This can then be expanded as the

partial derivative with time for the temperature and pressure to give the final form of

the equation below which is solved for the change in pressure for each neighbor and

12

the node of interest.

V
∆ρ

∆t
= ṁn

E + ṁn
W + ṁn

N + ṁn
S + ṁn

B + ṁn
T (2.14)

V

(
∂ρ

∂t

1

∆t

(
T nf − T n−1

f

)
+
∂ρ

∂p

1

∆t

(
pnf − pn−1

f

))
=

ṁn−1
E

∆t
−GE 4 pnE(

1
∆t

+W n−1
E

) +

ṁn−1
W

∆t
−GW 4 pnW(

1
∆t

+W n−1
W

) +

ṁn−1
N

∆t
−GN 4 pnN(

1
∆t

+W n−1
N

) +

ṁn−1
S

∆t
−GS 4 pnS(

1
∆t

+W n−1
S

)
+

ṁn−1
B

∆t
−GB 4 pnB +GB~g4 zBρ

n−1
B(

1
∆t

+W n−1
B

) +

ṁn−1
T

∆t
−GT 4 pnT −GT~g4 zTρ

n−1
T(

1
∆t

+W n−1
T

) (2.15)

2.1.4 Fluid Mass Flow Rate and Velocity

The mass flow is calculated on the face of each node, and is a function of the resistivity

and pressure. The equation is given in the axial direction is shown in equation (2.16).

ṁz =
Gz

Wz

((pb − pp)− ~g∆zρf) (2.16)

where G is a geometric constant, W is the resistivity, ~g is the gravitational constant,

and ρf is the fluid density. In the solution approach used here, this is calculated after

the pressure equation is solved. The mass flow rates are then used to calculate the

velocity, which is stored at the cell center. For the axial direction, the velocity is given

in equation (2.17).

vz =
1

2

Gz

ρf
(ṁT + ṁB) (2.17)

The velocity can be expressed directly in terms of pressure and is the quantity

which is actually used in the correlations and empirical relationships. The mass flow

rate is generally only used for benchmarking and comparison to external data.

2.1.5 Matrix Structure of Theoretical Problem

In order to understand the matrix structure, a small model was used as shown in

Figure 2.2. Because the application here is to the Pebble Bed Reactor, the problem is

13

Figure 2.2: Theoretical 3 x 3 x 3 Problem

Figure 2.3: Theoretical 3 x 3 x 3 Matrix

modeled in cylindrical geometry and as shown is a 3 x 3 x 3 problem.

As indicated, there are three nodes in each direction and with a numbering scheme

of radial, inner to outer, azimuthal, counter-clockwise, and axial, bottom to top, the

matrix structure is as shown in Figure 2.3 for a single field equation.

The current solution method in AGREE solves the equations in the following order:

Pressure (pf), Fluid Temperature (Tf), and Solid Temperature (Ts). Because each

equation is solved separately, there is no coupling between equations as shown in

Figure 2.4.

This can be improved by coupling the available fields together. For example, the

heat transfer coefficient is common to the solid energy and fluid energy equations.

This represents the off diagonal elements in each equation. Also, the convection terms

in the fluid energy equation can be expressed in terms of pressure and the density in

the pressure equation can be expressed in terms of fluid temperature. This is shown

in Figure 2.5. This represents the tightest coupling possible for the conventional

operator split approach currently used in AGREE. In the Newton method which

will be described in the following sections, the dependence of the coefficients will be

14

Figure 2.4: Actual Structure of Current AGREE Linear System

Figure 2.5: Theoretical Structure of Coupled AGREE Linear System

expressed directly which will fill in the off-diagonal elements and provide for tighter

coupling of the equations.

2.2 Neutronics

The multigroup neutronics equations for PARCS are a finite difference formulation

of the standard diffusion equation in cylindrical geometry. Energy groups are solved

independently from each other using a group sweep, and therefore coupled only through

the source terms of the other groups.

15

2.2.1 Multigroup Neutron Diffusion

The diffusion approximation to the transport equation in cylindrical geometry is

integrated in space and angle. As in the usual diffusion approximation depicted in

equation (2.18) the surface currents are approximated using Fick’s law to relate the

currents with the fluxes and the diffusion coefficient has the usual relation with the

transport cross section defined by the P1 equations [33]. The conventional multigroup

approach is used in which the cross sections and group fluxes are defined over a suitable

energy range with isotropic fission and scattering sources.

1

vg

dφg
dt

=
χp,g
keff

G∑
g=1

νp,gΣf,gφg +χd,g

K∑
k=1

λkCk +
G∑

g′=1(6=g)

Σs,g′→gφg′ −Σt,gφg +50Dg5φg

(2.18)

The LHS of equation (2.18) indicates the change in neutron flux with respect to

time and the RHS contains the source, loss, and migration terms. First is the fission

source contribution, with keff to scale the source and adjust the balance equation.

The second term is the delayed neutron source, the third term is the scattering into

group g from all other groups. The next term represents the loss of neutrons to

absorption and scattering into other groups. Finally, the movement of neutrons into

or out of the node of interest is given in the final term. Discretizing in space with the

finite difference grid, the diffusion terms become function of the neighbor fluxes. The

diffusion coefficients are given in equation (2.19a).

D̃e = De
re

∆re
∆θ∆z (2.19a)

D̃w = Dw
rw

∆rw
∆θ∆z (2.19b)

D̃n = Dn
1

rn

rn
∆θn

∆r∆z (2.19c)

D̃s = Ds
1

rs

rs
∆θs

∆r∆z (2.19d)

D̃b = Db
1

∆zb

r2
e − r2

w

2
∆θ (2.19e)

D̃t = Dt
1

∆ze

r2
e − r2

w

2
∆θ (2.19f)

The LHS of equation (2.18) is also expanded in time and the final discretized form

of the diffusion equation in cylindrical geometry is given in equation (2.20).

16

Vp
1

vg

φng,P − φn−1
g,P

∆t
= χg,d

K∑
k=1

λkCk

+ D̃g,E

(
φng,E − φng,P

)
+ D̃g,W

(
φng,W − φng,P

)
+ D̃g,N

(
φng,N − φng,P

)
+ D̃g,S

(
φng,S − φng,P

)
+ D̃g,B

(
φng,B − φng,P

)
+ D̃g,T

(
φng,T − φng,P

)
−

Σa,g +
G∑

g′=1(6=g)

Σs,g→g′

Vpφ
n
g,P+Vp

 G∑
g′=1(6=g)

Σs,g′→gφ
n
g′,P + βpλ

(k)χp,g

G∑
g′=1

νΣf,g′φ
n
g′,P


(2.20)

In steady state, the LHS becomes zero and all neutron production is assumed to be

prompt, so the delayed neutrons precursors are also zero. Finally, the delayed neutron

fraction becomes one. The value 1
keff

is replaced by λ, which is a more practical value

to calculate as a primary variable.

2.2.2 Eigenvalue

For the homogeneous, steady-state problem, the eigenvalue is introduced to scale the

fission reaction rate over successive iterations and upon convergence provide a unique

solution to the neutron diffusion equation. In the methods used here the eigenvalue is

defined as in equation (2.21)

λ(k)

G∑
g=1

νΣ
(k)
f,gφ

(k)
g = λ0

G∑
g=1

νΣ0
f,gφ

0
g (2.21)

During the iterations, the equation is actually solved only for λ(k), with the cross

sections, fluxes, and λ0 fixed from previous iterations or the flux solve. In practice,

higher order methods (e.g. Chebyshev acceleration) can accelerate convergence, but

the form used here is the most practical for implementation of Newton’s Method.

2.3 Physics Coupling of AGREE / PARCS

When the temperature fluid solution in AGREE is coupled to PARCS, the neutronics

solution is solved separately which is similar to the simultaneous updated method

17

discussed in Chapter 1. However, in practice some implicitness can be introduced

into the temperature fluid solution by employing a staggered scheme in which some

of the coefficients are evaluated outside the iteration loop. For example, because the

mass-momentum equation does not contain the solid or fluid temperature variables,

the heat transfer coefficients can be outdated during the iteration. The dependence of

the primary coefficients are the primary variables is given in Table 2.1. As can be seen,

the equivalent conductivity in the solid energy equation depends only on the solid

temperature. However, the heat transfer coefficient depends on both temperature

fields, pressure, and all three velocity fields. The mass momentum equation is coupled

through the fluid density, conductivity, and other parameters. Some coefficients or

components are not listed, which include Reynolds number and Prandlt number.

Table 2.1: AGREE / PARCS Coefficient Depedence

Coefficient Symbol Dependence
Equivalent Conductivity k Ts
Heat Transfer Coefficient α Ts, Tf , pf , vx, vy, vz
Flow Resistance W Ts, Tf , pf , vx, vy, vz
Cross Section Σ, D Td, Tm

The solution of the spherical conduction equation is used to determine the moder-

ator temperature and Doppler temperature. Because this is a separate calculation

requiring boundary conditions, the cross sections actually depend on all the thermal-

fluid fields. When coupled to PARCS, the current one-dimensional conduction equation

is used to update the cross sections, and then the next iteration uses the new fluxes in

the heat generation term.

2.3.1 Matrix Structure of Theoretical Problem

Using the same model problem as used in the previous section for the thermal-fluids,

the matrix structure can be represented for the coupled fields as shown in Figure 2.6

and Figure 2.7. Although the coupled problem is not solved in AGREE/PARCS

exactly as shown in this representation, the coupling depicted in the figure is the

tighest coupling possible with the conventional approach. The most significant draw-

back is the operator split coupling approach is an absence of coupling between the

thermal fluids and neutronics. Specifically, the cross sections strongly depend on the

conduction solution, but the cross section temperatures are calculated separately from

18

Figure 2.6: Theoretical AGREE / PARCS Symbolic Structure

the neutronics. The inclusion of a direct coupling between the fields is one of the

strengths of the Newtons Method which is described in the subsequent chapters.

19

Figure 2.7: Theoretical AGREE / PARCS Matrix Structure

20

Chapter 3

Implicit Coupling Techniques

3.1 Introduction

Previous researchers have investigated the use implicit numerical techniques for reactor

analysis applications. In general, these efforts have been restricted to a single set of

field equations, such as a thermal fluids code [34], but implicit methods for coupled

codes have been demonstrated using reduced order methods and test codes in a variety

of fields [35]. On a larger scale, a recent effort was made to form the complete implicit

formulation for PARCS / TRACE [36]. This achieved noticeable speedup for some

test problems but the work is still in the development phase. Packed beds and the

porous medium equation have received some interest over the years [37] [38] [39] as

well. Several researches have outlined the mathematical approaches [40] [41] [42] [43]

[44] [45], but as yet there has not been a successful implementation in an engineering

grade reactor analysis code. Newton’s method has been studied in other fields as well,

with multiphysics modeling the common goals.

One of the principal reasons for the limited success of previous implicit coupling

methods has been the considerable expense of forming the Jacobian for practical

applications. Only recently, methods have been developed to form the analytical

Jacobian [46] [47], with increased interest in automatic differentiation. Several code

have been developed to use Finite Difference based Jacobians, mainly for the purposes

of Uncertainty quantification and sensitivity analysis [48] [49] [50] [51]. Because of

the expense of forming and storing the Jacobian, the largest area of research the

last several years has been in Jacobian-Free Newton Methods [52] [53] [20] [54] [55].

In these methods, the effect of the Jacobian is approximated using a Taylor series

expansion of a matrix-vector product [56]. Many fields are considering these methods,

and these include thermal-fluids [57] [58] [59] [60] [61] [62] [63], radiation [64] [65]

[66], neutronics [67] [68] [69] [70] [71], structural mechanics [72], fuel performance

21

Figure 3.1: Coupling Technique - Fully Implicit

[73], and several other fields [74] [75]. Research into this method has been underway

for the PARCS code as well [53]. It is important to note that convergence is not

guaranteed with these methods [76] and stagnation has been a problem [44] with

approximate methods using Krylov solvers [77] [78] [79]. In order to address potential

non-convergence and stagnation issues, the research here will include both the exact

and inexact Newton’s methods.

A fully implicit solution should solve all the field equations together, and it should

also converge the coefficients before time stepping. In general, this is similar to

the simultaneous update described in Chapter 1, but there need not be an inner

iteration between the coefficient updates and field equation solutions. This is depicted

in Figure 3.1 in which the linear system is first solved with an initial guess of the

coefficients and after convergence of the linear system the coefficients are updated and

a new linear system is constructed. In this scheme, the time steps size can change

which can be dictated by the change in coefficients with respect to the field primary

variables.

22

The principal obstacle to the widespread use of implicit coupling of the multiphysics

field equations for reactor analysis has been the difficulty in integrating existing legacy

physics codes. Additionally, there have been concerns with the cost of maintaining

such an integrated code which have been typically validated using an extensive set

of benchmarks for the individual fields. Arguments for a more widespread use of

implicit methods include a truer physics representation, improved convergence speed,

simplification or elimination of code coupling, increasing demand for coupled physics

analysis, reduced computational costs, and a simplified method for the quantification

of uncertainties.

The majority of coupled physics solutions begin with a linearization of the system of

equations, because the system is inherently nonlinear. This enables the use of reliable

linear solvers and simple fixed point iteration schemes. There has been considerable

research on improved non-linear solvers, but these have not been implemented in

production level codes. The impact of non-linearity can be demonstrated using a term,

equation (3.1a), of the momentum equation in the TRACE code. The value of the

density, ρ, is evaluated at time step n-1, as is the first value of the velocity, v. The

second value of v is the variable for the field equation, which created a linear field

equation representation for the non-linear problem.

~x =
[
v p T

]
(3.1a)

ρvv = a1,1x1 (3.1b)

(ρv) = a1,1 v = x1 (3.1c)

(ρv)v = (a1,1)x1 (3.1d)

In this case, the mathematical system is non-linear, but can be represented by

a linear system. Numerically, this can introduce stability issues and an increased

computational costs. This example is representative of many cross section feedback

effects, heat generation terms, heat transfer coefficients, etc. Understanding and

addressing these terms is important to achieving an improvement in the convergence

of the coupled field solutions in both steady state and transient simulations.

23

3.2 Newton Iteration

Newtons method has been well established as a method to achieve second order con-

vergence to a non-linear problem. In contrast, operator split approaches can generally

only achieve linear convergence. The so-called Newton Iteration is really a Taylor

expansion of the primary field variables and coefficients, in which only the first order

derivative term is used and the higher order terms ignored.

~x = ~x0 + ∆~x (3.2a)

f(~x0 + ∆~x) = f(~x0) + ∆~x · f ′(~x0) +
1

2!
(∆~x)2 · f”(~x0) + . . . (3.2b)

A(~x0 + ∆~x) = A(~x0) + ∆~xA′(~x0) (3.2c)

This expansion for the coefficients is similar, but a second step is used as shown in

equation (3.3a) in which the (k) represents the previous Newton iteration, and the δ

terms are solved for in the current Newton step.

~xT =
[
y z

]
(3.3a)

δA→ ∂A

∂y

∣∣∣∣(k)

z=const.

δy +
∂A

∂z

∣∣∣∣(k)

y=const.

δz (3.3b)

A→ A(k) +
∂A

∂y

∣∣∣∣(k)

z=const.

δy +
∂A

∂z

∣∣∣∣(k)

y=const.

δz (3.3c)

The earlier example from the momenetum equation can be expanded and as shown

in equation (3.4a), with an assumed source term. Instead of solving for the velocity

directly, the solution variable is the change in the velocity which provides a second

order convergent approach. The actual velocity is computed by adding the solution to

the previous iteration. The coupling between field equations is also much tighter since

the non-velocity variables are considered through the expansion of the coefficients.

This method therefore has the advantage of not only improving convergence, but also

24

more tightly coupling the field equations.

~xT =
[
v p T

]
(3.4a)

(ρ+ δρ)(v + δv)(v + δv) = (~b) (3.4b)

δρvv + 2ρvδv = (~b)− ρvv (3.4c)

2ρvδv + vv
∂ρ

∂T
δT + vv

∂ρ

∂p
δp = (~b)− ρvv (3.4d)

In principle, the method is straightforward, but the there are some drawbacks

which were alluded to previously. The partial derivatives must be either approximated

by a perturbation / difference method, or formulated by symbolically taking the

derivative of the coefficient equation. Evaluating these partial derivatives is more

expensive in either case. The true impact of this increase on the computational time

must be included in assessing the value of improved convergence from the Newton

Method.

3.3 Implementations of Newton’s Method

3.3.1 Analytical Jacobian

The most robust implementation of Newtons method is the Exact Newton’s method

in which the Jacobian operator is formed completely for all equations. No finite

difference is used to approximate the coefficients, rather each coefficient is formed from

the analytical derivatives of each component of the matrix A. Ideally, the derivatives

of any empirical relationships which could potentially introduce discontinuities are

smoothed to prevent oscillations in convergence. The Jacobian is then inverted, and

an exact Newton step is performed and repeated until the solution is converged. A

diagram of the algorithm is given in Figure 3.2.

Inexact Newton’s method [80] is simply a variation on the direct solution of the

linear system. Because Iterative solvers, such as GMRES or BiCGStab, provide an

approximate solution, the term ”inexact” is used to characterize this variation of the

Newtons method. Because the size of the linear system can be large for practical

reactor problems, the cost of the linear system solution can be considerable and Inexact

Newton methods are more commonly used for most applications.

25

Figure 3.2: Exact Newton’s Method Logic

3.3.2 Finite Difference Jacobian

A noted above, the exact Newton’s method usually based on the analytical Jacobian.

If this is too expensive and if Jacobian-Free methods are ineffective, a finite difference

based derivative provides an alternative. In this approach, the routines for calculating

a given A matrix coefficient are run twice. The primary variable is perturbed, and a

simple linear approximation to the first derivative is obtained. The overall structure

of the Jacobian is the same but an analytical derivative step is replaced by the finite

difference calculation. Again, either a direct or Krylov solver can be used to solve the

system. However, since the Jacobian is an approximation, it is more consistent to use

an inexact linear solver such as a Krylov method.

3.3.3 Jacobian-Free / Approximate Block Newton

The achievement of near second order convergence without forming the Jacobian

matrix is the goal of using Jacobian-Free approach. Neither the Jacobian-Free nor

Approximate Block Newton [81] require the formation of the actual Jacobian, but

rather use an approximation based on a first order Taylor expansion. Because the

Jacobian is not needed, coding for analytical derivatives or finite difference calcuations

are not necessary and in principle the existing formulation can almost be used as

implemented. This method does have some drawbacks, which include susceptibility

to instabilities and divergence. A diagram of the Jacobian-Free method is shown in

Figure 3.3.

The JFNK algorithm is given below and detailed descriptions of the JFNK method

26

Figure 3.3: Jacobian-Free Method Logic

can be found in several publications.

1. Compute r0 = b− Ax, β : = ‖r0‖2 v1 : = r0/β
2. Define the (m+ 1)×m matrix Hm = 0
3. For j = 1, 2, ...,m
4. Compute wj : = Jvj
5. For i = 1, ..., j
6. hi,j : = (wj, vi)
7. wj : = wj − hi,jvi
8. End
9. hj+1,j = ‖wj‖2

10. vj+1 = wj/hj+1,j

11. End
12. Compute ym the minimizer of ‖βe1 −Hmy‖2 and δxm = δx0 + Vmym

Step 4 in the algorithm would normally require the full Jacobian matrix, but a

finite difference step can approximate the action of the Jacobian on the vector. This

matrix-vector operation will induce the residual in the conventional sense, so the same

27

change must be induced. This is given in equation (3.5a)

~r(~x) = ~b(~x)− A(~x)~x (3.5a)

~w = J~v ≈ ~r(~x+ ε~v)− ~r(~x)

ε
(3.5b)

Therefore, evaluation of the residual is completed for each new vector w, which is

required to fill the subspace. The general approach is straightforward and has been

implemented without major code modifications for some applications. One of the

principal requirements is to have access to the residuals of each subfield which is not

always available for some of the legacy codes.

3.4 Summary

The objective of the research here was to examine both the exact and inexact Newtons

method, as well as the Jacobian Free Newton Krylov method in order to assess their

effectiveness for practical HTR applications. The overall metric for performance was

the robustness of the algorithm and the overall computational time to achieve a

converged solution. The following section will describe the methods used to implement

Newtons method within the framework of the equations used in the AGREE/PARCS

code system which were described in Chapter 2.

28

Chapter 4

Implicit Formulation for
AGREE/PARCS

The most complex and computationally demanding aspect of the Newton Method is

the formation of the Jacobian. This chapter will describe the form of the Jacobian for

the coupled field equations and then the details of the methods used in this research

to construct the Jacobian first for the thermal-fluid equations in AGREE, and then

for the coupled field solution in AGREE/PARCS. The exact Jacobian is typically not

constructed for practical applications, however, it has been used in some cases.

The Jacobian is formed for the complete set of field equations of the coupled field

solution using a Taylor expansion for both the primary variables and coefficients of

the systems equations. The matrix elements represent the partial derivatives of each

equation with respect to each variable. The full Jacobian is given in Figure 4.1 for the

AGREE/PARCS equations described in Chaper 2. Some terms may be zero since the

coefficients in an equation may not depend on all primary variables. A red box denotes

the thermal-fluid sub-matrix, which will be described first. The RHS is denoted by rx,

which is the residual of each field equation. The LHS coefficient matrix is therefore

the partial derivative of each residual with respect to each variable.

4.1 Derivation of Jacobian for the Thermal-Fluids

Equations

The Jacobian matrix components for the fully implicit coupled thermal-fluid equations

is given in Figure 4.2. The primary variables are the multigroup neutron flux (φg), solid

temperature (Ts), fluid temperature (Tf), fluid pressue (pf),x-velocity (Vx), y-velocity

(Vy), z-velocity (Vz), 1-d conduction (Tsh or 1d), moderator temperature (Tm), Doppler

temperature (Td), lambda (λ). One of the major differences between the operator

29

Figure 4.1: Theoretical AGREE / PARCS Jacobian

30

Figure 4.2: Symbolic Representation of AGREE Jacobian

split matrix structure shown in Chapter 2 and the fully implicit Jacobian shown here

is the inclusion of the velocity equations as primary variables in the fully implicit

formulation. As noted previously, the heat transfer coefficients are a function of the

Reynolds number which depends on velocity. Therefore in order to achieve a fully

implicit solution the velocity must be included as a primary variable and analytic

derivates of the velocity must be included in the Jacobian. There is no difference

in the striping around the primary diagonal, but additional stripes can be seen in

Figure 4.2 in the off-diagonal blocks. These stripes provide coupling of the equations

through the coefficient expansions and importance of these terms will become evident

when comparing solutions of the operator split and fully implicit methods.

The structure of the Jacobian matrix for the thermal-fluid equations is shown in

Figure 4.3 for the same 3x3 model problem used to demonstrate the structure of the

operator split matrix in Chapter 2.

4.2 Derivation of Jacobian for AGREE/PARCS

The coupled steady state equation system currently solved in AGREE/PARCS was

shown previously in Chapter 2. The Jacobian for the fully coupled thermal-fluid and

neutronics system is shown in Figure 4.4.

The Jacobian matrix structure for the same 3-D, 3x3x3 model problem described

in Chapter 2 is shown in Figure 4.4. Because of the complexity of neutron spectrum

in a graphite moderated system, the number of energy groups used in the neutronics

solution is typically more than twenty. However, the structure here only shows two en-

ergy groups since the additional groups will have a structure similar to the two groups

shown here. The highest and lowest energy group will have down- or up-scattering

31

Figure 4.3: Matrix Structure of AGREE Jacobian

Figure 4.4: Symbolic Representation of AGREE/PARCS Jacobian

32

Figure 4.5: Matrix Structure of AGREE/PARCS Jacobian

only, respectively.

Construction of the Jacobian will be shown separately for the thermal-fluids and

the neutronics equations. After each subsystem is solved and tested separately, the

systems are then coupled to include the off-diagonal coupling terms. The steady state

problem is formulated as an eigenvalue problem and the eigenvalue itself is treated

as a variable in the Newton iteraction scheme. This provides for an acceleration of

the convergence in a fashion similar to conventional Wielandt shift or Chebyshev

acceleration methods. In total, the system includes six thermal-fluids equations (mass,

energy, and momentum for gas and solid), g neutron diffusion equations, three cross

section feedback equations, and one eigvenvalue equation. The following subsection

will provide the form of elements for each of the field equations, but the full derivations

are given in the appendices.

4.2.1 Newton’s Method Neutronics Equations

The derivation for the neutronics equation begins with the diffusion equation in

cylindrical geometry given in equation (2.20) and equation (2.21). As noted earlier,

the basis for this approach is the Taylor expansion of both the primary variables, the

33

flux and eigenvalue, and the coefficients, the cross sections and diffusion coefficients.

Because only steady state is considered, the time dependent terms are ignored.

φg → φ(k)
g + δφg (4.1a)

λ→ λ(k) + δλ (4.1b)

Σ→ Σ(k) + δΣ (4.1c)

D → D(k) + δD (4.1d)

Inserting these into the diffusion equations

(
D̃

(k)
g,E + δD̃g,E

)(
φ

(k)
g,P + δφg,P − φ(k)

g,E − δφg,E
)

+
(
D̃

(k)
g,W + δD̃g,W

)(
φ

(k)
g,P + δφg,P − φ(k)

g,W − δφg,W
)

+
(
D̃

(k)
g,N + δD̃g,N

)(
φ

(k)
g,P + δφg,P − φ(k)

g,N − δφg,N
)

+
(
D̃

(k)
g,S + δD̃g,S

)(
φ

(k)
g,P + δφg,P − φ(k)

g,W − δφg,S
)

+
(
D̃

(k)
g,B + δD̃g,B

)(
φ

(k)
g,P + δφg,P − φ(k)

g,B − δφg,B
)

+
(
D̃

(k)
g,T + δD̃g,T

)(
φ

(k)
g,P + δφg,P − φ(k)

g,T − δφg,T
)

+

(Σ(k)
a,g + δΣa,g

)
+

G∑
g′=1(6=g)

(
Σ

(k)
s,g→g′ + δΣs,g→g′

)Vp

(
φ

(k)
g,P + δφg,P

)

− Vp
G∑

g′=1(6=g)

(
Σ

(k)
s,g′→g + δΣs,g′→g

)(
φ

(k)
g′,P + δφg′,P

)

− Vpλχp,g
G∑

g′=1

(
νΣ

(k)
f,g′ + δνΣf,g′

)(
φ

(k)
g′,P + δφg′,P

)
= 0 (4.2)

The diffusion coefficient and cross sections must be expanded as well. The δΣ

and δD can be expanded into a partial derivative, to accomodate the underlying

dependence.

δΣ→ ∂Σ

∂Tm
δTm +

∂Σ

∂Td
δTd (4.3)

After some algebra, shown in the Appendicies, the final form of the diffusion

equation is given as

34

= Sk + Vpχgp

G∑
g′=1

(
νΣ

(k)
f,g′φ

(k)
g′,P

)
δΛ

+
(
D̃

(k)
g,Eδφg,E + D̃

(k)
g,W δφg,W + D̃

(k)
g,Nδφg,N + D̃

(k)
g,Sδφg,S + D̃

(k)
g,Bδφg,B + D̃

(k)
g,T δφg,T

)
+

[
−
(
D̃

(k)
g,E + D̃

(k)
g,W + D̃

(k)
g,N + D̃

(k)
g,S + D̃

(k)
g,B + D̃

(k)
g,T

)
− Vp

(
Σ(k)
a,g +

G∑
g′ 6=g

Σ
(k)
s,gg′

)]
δφg,P

+ Vp

 G∑
g′=1(6=g)

Σ
(k)
s,g′gδφg′,P + χgpΛ

(k)

G∑
g′=1

νΣ
(k)
f,g′δφg′,P


+
(
φ

(k)
g,EWNSBT − φ

(k)
g,P

)[∂D̃g,EWNSBT

∂TM,EWNSBT

{δTM,EWNSBT}+
∂D̃g,EWNSBT

∂TD,EWNSBT

{δTD,EWNSBT}

]

+
(
φ

(k)
g,EWNSBT − φ

(k)
g,P

)[∂D̃g,EWNSBT

∂TM,P

{δTM,P}+
∂D̃g,EWNSBT

∂TD,P
{δTD,P}

]

− Vpφ(k)
g,P

(∂Σa

∂TD

)n−1

+

 G∑
g′=1(6=g)

(
∂Σs,gg′

∂TD

)n−1
 δTD,P

+ Vp

 G∑
g′=1(6=g)

φ
(k)
g′,P

(
∂Σs,g′g

∂TD

)n−1

+ χgpΛ
(k)

(
G∑

g′=1

φ
(k)
g′,P

(
∂νΣf,g′

∂TD

)n−1
) δTD,P

− Vpφ(k)
g,P

(∂Σa

∂TM

)n−1

+

 G∑
g′=1(6=g)

(
∂Σs,gg′

∂TM

)n−1
 δTM,P

+ Vp

 G∑
g′=1(6=g)

φ
(k)
g′,P

(
∂Σs,g′g

∂TM

)n−1

+ χgpΛ
(k)

(
G∑

g′=1

φ
(k)
g′,P

(
∂νΣf,g′

∂TM

)n−1
) δTM,P

(4.4)

An important difference from the standard diffusion equation is that the eigen-

value is now a primary variable. This allows the eigenvalue to change in reponse to

changes in the flux, and vice versa. Another difference is inclusion of the cross section

temperature dependence. In the standard diffusion equation formulation, the cross

sections dependence on temperature are not included within the neutronics solution,

but are included after a thermal-fluids solve. Therefore, in the Newton’s Method it is

expected the nonlinear coefficients will converge more quickly.

35

+

[(
D̃

(k)
g,E + D̃

(k)
g,W + D̃

(k)
g,N + D̃

(k)
g,S + D̃

(k)
g,B + D̃

(k)
g,T

)
+ Vp

(
Σ(k)
a,g +

G∑
g′ 6=g

Σ
(k)
s,gg′

)]
δφg,P

− Vp

 G∑
g′=1(6=g)

Σ
(k)
s,g′gδφg′,P + χgpΛ

(k)

G∑
g′=1

νΣ
(k)
f,g′δφg′,P


− Vpχgp

G∑
g′=1

(
νΣ

(k)
f,g′φ

(k)
g′,P

)
δΛ

−
(
D̃

(k)
g,Eδφg,E + D̃

(k)
g,W δφg,W + D̃

(k)
g,Nδφg,N + D̃

(k)
g,Sδφg,S + D̃

(k)
g,Bδφg,B + D̃

(k)
g,T δφg,T

)
= Sk

(4.5)

In the absense of thermal-fluids feedback, the cross sections are fixed, and the

equation is much simpler. This was the form implemented for neutronics only solutions

given in Section 2 of Chapter 6.

4.2.2 Newton’s Method Thermal-Fluids Equations

In the conventional O.S. solve, the solution is governed by three field equations. As

noted above, the dependence of Relynold’s number on the velocity requires that the

Jacobian include these equations. This augments the original three equations with

three more velocity equations. In this sense, the thermal-fluids are better represented

by the momentum and continuity equations.

The solid energy equation derivation begins with the form given above. The time

dependence is ignored.

∂

∂t
[(1− ε)ρscpsTs] ∆V

= DeTs,E +DwTs,W +DnTs,N +DsTs,S +DtTs,T +DbTs,B

− (De +Dw +Dn +Ds +Dt +Db)Ts,P − α(Ts,P − Tf,P)∆V +Q∆V (4.6)

Inserting expansion for the thermal-fluid coefficients and primary variables. In-

cluding the heat generation expansion as well.

36

+KE

(
T

(k)
s,P − T

(k)
s,E

)(∂ks,E
∂Ts,E

)n−1

δTs,E +KW

(
T

(k)
s,P − T

(k)
s,W

)(∂ks,W
∂Ts,W

)n−1

δTs,W

+KN

(
T

(k)
s,P − T

(k)
s,N

)(∂ks,N
∂Ts,N

)n−1

δTs,N +KS

(
T

(k)
s,P − T

(k)
s,S

)(∂ks,S
∂Ts,S

)n−1

δTs,S

+KT

(
T

(k)
s,P − T

(k)
s,T

)(∂ks,T
∂Ts,T

)n−1

δTs,T +KB

(
T

(k)
s,P − T

(k)
s,B

)(∂ks,B
∂Ts,B

)n−1

δTs,B

+

(
KE

(
T

(k)
s,P − T

(k)
s,E

)(∂ks,E
∂Ts,P

)n−1

+KW

(
T

(k)
s,P − T

(k)
s,W

)(∂ks,W
∂Ts,P

)n−1

+KN

(
T

(k)
s,P − T

(k)
s,N

)(∂ks,N
∂Ts,P

)n−1

+KS

(
T

(k)
s,P − T

(k)
s,S

)(∂ks,S
∂Ts,P

)n−1

+KT

(
T

(k)
s,P − T

(k)
s,T

)(∂ks,T
∂Ts,P

)n−1

+KB

(
T

(k)
s,P − T

(k)
s,B

)(∂ks,B
∂Ts,P

)n−1
)
δTs,P

+ ∆V
(
T

(k)
s,P − T

(k)
f,P

)((∂αP
∂Ts,P

)n−1

δTs,P +

(
∂αP
∂Tf,P

)n−1

δTf,P +

(
∂αP
∂PP

)n−1

δPP

)

+ ∆V
(
T

(k)
s,P − T

(k)
f,P

)((∂αP
∂vx

)n−1

δvx +

(
∂αP
∂vy

)n−1

δvy +

(
∂αP
∂vz

)n−1

δvz

)
−∆V P̄n,fuel

(
φ

(k)
1 δκΣ1 + φ

(k)
2 δκΣ2 + φ

(k)
3 δκΣ3

)
−
(
KEk

(k)
s,EδTs,E + . . .+KBk

(k)
s,BδTs,B

)
+
(
KEk

(k)
s,E +KWk

(k)
s,W +KNk

(k)
s,N +KSk

(k)
s,S +KTk

(k)
s,T +KBk

(k)
s,B

)
δTs,P

+ ∆V α(k)δTs,P −∆V α(k)δTf,P

−∆V P̄n,fuel

(
κΣ

(k)
1 δφ+ κΣ

(k)
2 δφ2 + κΣ

(k)
3 δφ3

)
= Sk (4.7)

Where the source is the residual, given as,

S(k) =
(
KEk

(k)
s,ET

(k)
s,E + . . .+KBk

(k)
s,BT

(k)
s,B

)
−
(
KEk

(k)
s,E +KWk

(k)
s,W +KNk

(k)
s,N +KSk

(k)
s,S +KTk

(k)
s,T +KBk

(k)
s,B

)
T

(k)
s,P

− α(k)∆V T
(k)
s,P + α(k)∆V T

(k)
f,P

+ ∆V P̄n,fuel

(
κΣ

(k)
1 φ

(k)
1 + κΣ

(k)
2 φ

(k)
2 + κΣ

(k)
3 φ

(k)
3

)
(4.8)

Expanding the cross section terms,

37

+KE

(
T

(k)
s,P − T

(k)
s,E

)(∂ks,E
∂Ts,E

)n−1

δTs,E +KW

(
T

(k)
s,P − T

(k)
s,W

)(∂ks,W
∂Ts,W

)n−1

δTs,W

+KN

(
T

(k)
s,P − T

(k)
s,N

)(∂ks,N
∂Ts,N

)n−1

δTs,N +KS

(
T

(k)
s,P − T

(k)
s,S

)(∂ks,S
∂Ts,S

)n−1

δTs,S

+KT

(
T

(k)
s,P − T

(k)
s,T

)(∂ks,T
∂Ts,T

)n−1

δTs,T +KB

(
T

(k)
s,P − T

(k)
s,B

)(∂ks,B
∂Ts,B

)n−1

δTs,B

+

(
KE

(
T

(k)
s,P − T

(k)
s,E

)(∂ks,E
∂Ts,P

)n−1

+KW

(
T

(k)
s,P − T

(k)
s,W

)(∂ks,W
∂Ts,P

)n−1

+KN

(
T

(k)
s,P − T

(k)
s,N

)(∂ks,N
∂Ts,P

)n−1

+KS

(
T

(k)
s,P − T

(k)
s,S

)(∂ks,S
∂Ts,P

)n−1

+KT

(
T

(k)
s,P − T

(k)
s,T

)(∂ks,T
∂Ts,P

)n−1

+KB

(
T

(k)
s,P − T

(k)
s,B

)(∂ks,B
∂Ts,P

)n−1
)
δTs,P

+ ∆V
(
T

(k)
s,P − T

(k)
f,P

)((∂αP
∂Ts,P

)n−1

δTs,P +

(
∂αP
∂Tf,P

)n−1

δTf,P +

(
∂αP
∂PP

)n−1

δPP

)

+ ∆V
(
T

(k)
s,P − T

(k)
f,P

)((∂αP
∂vx

)n−1

δvx +

(
∂αP
∂vy

)n−1

δvy +

(
∂αP
∂vz

)n−1

δvz

)

−∆V P̄n,fuel

(
φ

(k)
1

(
∂κΣ1

∂TD

)n−1

+ φ
(k)
2

(
∂κΣ2

∂TD

)n−1

+ φ
(k)
3

(
∂κΣ3

∂TD

)n−1
)
δTs,D

−∆V P̄n,fuel

(
φ

(k)
1

(
∂κΣ1

∂TM

)n−1

+ φ
(k)
2

(
∂κΣ2

∂TM

)n−1

+ φ
(k)
3

(
∂κΣ3

∂TM

)n−1
)
δTs,M

−
(
KEk

(k)
s,EδTs,E + . . .+KBk

(k)
s,BδTs,B

)
+
(
KEk

(k)
s,E +KWk

(k)
s,W +KNk

(k)
s,N +KSk

(k)
s,S +KTk

(k)
s,T +KBk

(k)
s,B

)
δTs,P

+ ∆V α(k)δTs,P −∆V α(k)δTf,P

−∆V P̄n,fuel

(
κΣ

(k)
1 δφ+ κΣ

(k)
2 δφ2 + κΣ

(k)
3 δφ3 + κΣ

(k)
4 δφ4

)
= Sk (4.9)

The heat generation can be expanded in terms of the flux and kappa fission cross

section, shown to depend on the cross section temperature

κΣ = f (TD, TM)

δκΣ =

((
∂κΣ
∂TD

)n−1

δTS +
(
∂κΣ
∂TM

)n−1

δTM

)
(4.10)

After some algebra and collecting of terms, the final form is given, with some

shorthand for brevity.

38

+KE

[(
T

(k)
s,P − T

(k)
s,E

)(∂ks,E
∂Ts,E

)n−1

− k(k)
s,E

]
δTs,E

+ . . .+

KB

[(
T

(k)
s,P − T

(k)
s,B

)(∂ks,B
∂Ts,B

)n−1

− k(k)
s,B

]
δTs,B

+

[
KE

[(
T

(k)
s,P − T

(k)
s,E

)(∂ks,E
∂Ts,P

)n−1

+ k
(k)
s,E

]
+KW

[(
T

(k)
s,P − T

(k)
s,W

)(∂ks,W
∂Ts,P

)n−1

+ k
(k)
s,W

]

+KN

[(
T

(k)
s,P − T

(k)
s,N

)(∂ks,N
∂Ts,P

)n−1

+ k
(k)
s,N

]
+KS

[(
T

(k)
s,P − T

(k)
s,S

)(∂ks,S
∂Ts,P

)n−1

+ k
(k)
s,S

]

+KT

[(
T

(k)
s,P − T

(k)
s,T

)(∂ks,T
∂Ts,P

)n−1

+ k
(k)
s,T

]
+KB

[(
T

(k)
s,P − T

(k)
s,B

)(∂ks,B
∂Ts,P

)n−1

+ k
(k)
s,B

]

+∆V

((
T

(k)
s,P − T

(k)
f,P

)(∂αP
∂Ts,P

)n−1

+ α(k)

)]
δTs,P

+ ∆V
(
T

(k)
s,P − T

(k)
f,P

)((∂α
∂vx

)n−1

δvx +

(
∂α

∂vy

)n−1

δvy +

(
∂α

∂vz

)n−1

δvz

)

+∆V

[(
T

(k)
s,P − T

(k)
f,P

)(∂αP
∂Tf,P

)n−1

− α(k)

]
δTf,P+∆V

[(
T

(k)
s,P − T

(k)
f,P

)(∂αP
∂PP

)n−1
]
δPP

−∆V P̄n,fuel

([
κΣ

(k)
1

]
δφ1 −

[
κΣ

(k)
2

]
δφ2 −

[
κΣ

(k)
3

]
δφ3

)
−∆V P̄n,fuel

(
φ

(k)
1

(
∂κΣ1

∂TD

)n−1

+ φ
(k)
2

(
∂κΣ2

∂TD

)n−1

+ φ
(k)
3

(
∂κΣ3

∂TD

)n−1
)
δTs,D

−∆V P̄n,fuel

(
φ

(k)
1

(
∂κΣ1

∂TM

)n−1

+ φ
(k)
2

(
∂κΣ2

∂TM

)n−1

+ φ
(k)
3

(
∂κΣ3

∂TM

)n−1
)
δTs,M = Sk

(4.11)

The final equation depends on the neighbor solid temperatures and fluid tempera-

ture as before. However, the heat transfer coefficient derivatives increase the coupling

to the other fields. Also, the flux and kappa fission terms tightly couple the heat

generation. Because there is no heat assumed to be generated in the fluid, this is the

primary coupling between the flux and thermal-fluids.

The fluid energy equation is actually the more complex field equation. The pres-

39

ence of the conduction, convection, and heat transfer terms, increases the number of

terms and complexity of the equation. As noted above, only upwind differencing was

considered, but further analysis could consider higher order schemes. Beginning with

the conventional derivation,

∂

∂t

[
ερfcpfTf

]
∆V =

AETf,E + AWTf,W + ANTf,N + ASTs,S + ATTf,T + ABTf,B

− (AE + AW + AN + AS + AT + AB)Tf,P − α(Tf,P − Ts,P)∆V (4.12)

Expanding the primary variables,

(AE + AW + AN + AS + AT + AB) (Tf,P + δTf,P)

− AE (Tf,E + δTf,E)− AW (Tf,W + δTf,W)− AN (Tf,N + δTf,N)

− AS (Ts,S + δTf,S)− AT (Tf,T + δTf,T)− AB (Tf,B + δTf,B)

+ ((Tf,P + δTf,P)− (Ts,P + δTs,P)) ∆V δα = 0 (4.13)

Expansions for the coefficients,

α = α(k) + δα

Fe = GE

(
c

(k)
pf,E + δcpf,E

)(
ṁ

(k)
E + δṁE

)
De = KE

(
k

(k)
f,E + δkf,E

)
Fw = GW

(
c

(k)
pf,W + δcpf,W

)(
ṁ

(k)
W + δṁW

)
Dw = KW

(
k

(k)
f,W + δkf,W

)
Fn = GN

(
c

(k)
pf,N + δcpf,N

)(
ṁ

(k)
N + δṁN

)
Dn = KN

(
k

(k)
f,N + δkf,N

)
Fs = GS

(
c

(k)
pf,S + δcpf,S

)(
ṁ

(k)
S + δṁS

)
Ds = KS

(
k

(k)
f,S + δkf,S

)
Ft = GT

(
c

(k)
pf,T + δcpf,T

)(
ṁ

(k)
T + δṁT

)
Dt = KT

(
k

(k)
f,T + δkf,T

)
Fb = GB

(
c

(k)
pf,B + δcpf,B

)(
ṁ

(k)
B + δṁB

)
Db = KB

(
k

(k)
f,B + δkf,B

)
(4.14)

The final form is then given as,

40

(Tf,P − Tf,E)KE

(
∂kE
∂Tf,P

δTf,P +
∂kE
∂Tf,E

δTf,E +
∂kE
∂pf,P

δpf,P +
∂kE
∂pf,E

δpf,E

)
+ (Tf,P − Tf,E)GEṁE

(
∂cp,E
∂Tf,P

δTf,P +
∂cp,E
∂Tf,E

δTf,E +
∂cp,E
∂pf,P

δpf,P +
∂cp,E
∂pf,E

δpf,E

)
+(Tf,P − Tf,E)GEcp,E

(
∂ṁE

∂Ts,P
δTs,P + ...+

∂ṁE

∂vz,P
δvz,P +

∂ṁE

∂Ts,E
δTs,E + ...+

∂ṁE

∂vz,E
δvz,E

)
+ ...+

(Tf,P − Tf,B)KB

(
∂kB
∂Tf,P

δTf,P +
∂kB
∂Tf,B

δTf,B +
∂kB
∂pf,P

δpf,P +
∂kB
∂pf,B

δpf,B

)
+ (Tf,P − Tf,B)GBṁB

(
∂cp,B
∂Tf,P

δTf,P +
∂cp,B
∂Tf,B

δTf,B +
∂cp,B
∂pf,P

δpf,P +
∂cp,B
∂pf,B

δpf,B

)
+(Tf,P − Tf,B)GBcp,B

(
∂ṁB

∂Ts,P
δTs,P + ...+

∂ṁB

∂vz,P
δvz,P +

∂ṁB

∂Ts,B
δTs,B + ...+

∂ṁB

∂vz,B
δvz,B

)
+ ∆V (Tf,P − Ts,P)

(
∂α

∂Ts,P
Ts,P + ...+

∂α

∂vz,P
δvz,P

)
+ AE (δTf,P − δTf,E) + AW (δTf,P − δTf,W) + AN (δTf,P − δTf,N)

+AS (δTf,P − δTf,S)AT (δTf,P − δTf,T)+AB (δTf,P − δTf,B)+(δTf,P − δTs,P) ∆V α =

− AE (Tf,P − Tf,E)− AW (Tf,P − Tf,W)− AN (Tf,P − Tf,N)

− AS (Tf,P − Tf,S)− AT (Tf,P − Tf,T)− AB (Tf,P − Tf,B)− (Tf,P − Ts,P) ∆V α

(4.15)

As noted earlier, the fluid energy depends on all primary variables, with all

neighbors. This creates tight coupling between the fluid energy and every other

equation.

The pressure equation is generally simple in form. However, the coefficients depend

on every primary variable, including the velocities. The equation written in terms of

pressure, is given as,

0 =
−G1

W k+1
r1

∆pk+1
r1 +

−G2

W k+1
r2

∆pk+1
r2 +

−G3

W k+1
θ3

∆pk+1
θ3 +

−G4

W k+1
θ4

∆pk+1
θ4

+
−G5

W k+1
z5

(
∆pk+1

z5 + g∆z5ρ
k+1
5

)
+
−G6

W k+1
z6

(
∆pk+1

z6 + g∆z6ρ
k+1
6

)
(4.16)

where W represents the flow resisitivity in each geometric direction, respectively.

41

Using some coefficients for convenience,

Rr,E = G1

Wk+1
r1

Rr,W = G2

Wk+1
r2

Ra,N = G3

Wk+1
θ3

Ra,S = G4

Wk+1
θ4

Rl,B = G5

Wk+1
z5

Rl,T = G6

Wk+1
z6

bf,B = g∆z5ρ
k+1
5 bf,T = g∆z6ρ

k+1
6

(4.17)

The equations are then given as,

−Rr,E∆pk+1
r1 −Rr,W∆pk+1

r2 −Ra,N∆pk+1
θ3 −Rr,S∆pk+1

θ4

−Rl,B

(
∆pk+1

z5 + bf,B
)
−Rl,T

(
∆pk+1

z6 + bf,B
)

= 0 (4.18)

Expanding the primary variables, and coefficients,

Rr,E (δpf,P − δpf,E) +Rr,W (δpf,P − δpf,W)

+Ra,N (δpf,P − δpf,N) +Rr,S (δpf,P − δpf,S)

+Rl,B (δpf,P − δpf,B) +Rl,T (δpf,P − δpf,T)

+ δRr,E (pf,P − pf,E) + δRr,W (pf,P − pf,W)

+ δRa,N (pf,P − pf,N) + δRr,S (pf,P − pf,S)

−Rl,Bδbf,B −Rl,T δbf,B

+ δRl,B ((pf,P − pf,B)− bf,B) + δRl,T ((pf,P − pf,T)− bf,B)

= −Rr,E (pf,P − pf,E)−Rr,W (pf,P − pf,W)

−Ra,N (pf,P − pf,N)−Rr,S (pf,P − pf,S)

−Rl,B ((pf,P − pf,B)− bf,B)−Rl,T ((pf,P − pf,T)− bf,B) (4.19)

The final form is given, with some short hand for brevity,

42

− (pf,P − pf,E)

[
∂Rr,E

∂Ts,P
δTs,p + ...+

∂Rr,E

∂vz,P
δvz,P

]
− (pf,P − pf,E)

[
∂Rr,E

∂Ts,E
δTs,E + ...+

∂Rr,E

∂vz,E
δvz,E

]
− (pf,P − pf,W)

[
∂Rr,W

∂Ts,P
δTs,p + ...+

∂Rr,W

∂vz,P
δvz,P

]
− (pf,P − pf,W)

[
∂Rr,W

∂Ts,W
δTs,W + ...+

∂Rr,W

∂vz,W
δvz,W

]
+ (pf,P − pf,S)

[
∂Ra,S

∂Ts,P
δTs,P + ...+

∂Ra,S

∂vz,P
δvz,P

]
+ (pf,P − pf,S)

[
∂Ra,S

∂Ts,S
δTs,S + ...+

∂Ra,S

∂vz,S
δvz,S

]
+ (pf,P − pf,N)

[
∂Ra,N

∂Ts,P
δTs,P + ...+

∂Ra,N

∂vz,P
δvz,P

]
+ (pf,P − pf,N)

[
∂Ra,N

∂Ts,N
δTs,N + ...+

∂Ra,N

∂vz,N
δvz,N

]
+ (pf,P − pf,T − bf,T)

[
∂Rl,T

∂Ts,T
δTs,T + ...+

∂Rl,T

∂vz,T
δvz,T

]
+ (pf,P − pf,T − bf,T)

[
∂Rl,T

∂Ts,P
δTs,P + ...+

∂Rl,T

∂vz,P
δvz,P

]
+ (pf,P − pf,B − bf,B)

[
∂Rl,B

∂Ts,B
δTs,B + ...+

∂Rl,B

∂vz,B
δvz,B

]
+ (pf,P − pf,B − bf,B)

[
∂Rl,B

∂Ts,P
δTs,P + ...+

∂Rl,B

∂vz,P
δvz,P

]
−Rl,T

[
∂bf,T
∂Ts,T

δTs,T + ...+
∂bf,T
∂vz,T

δvz,T

]
−Rl,T

[
∂bf,T
∂Ts,P

δTs,P + ...+
∂bf,T
∂vz,P

δvz,P

]
−Rl,B

[
∂bf,B
∂Ts,B

δTs,B + ...+
∂bf,B
∂vz,B

δvz,B

]
−Rl,B

[
∂bf,B
∂Ts,P

δTs,P + ...+
∂bf,B
∂vz,P

δvz,P

]
Rr,E (δpf,P − δpf,E) +Rr,W (δpf,P − δpf,W)

+Ra,N (δpf,P − δpf,N) +Rr,S (δpf,P − δpf,S)

+Rl,B (δpf,P − δpf,B) +Rl,T (δpf,P − δpf,T)

= Rr,E (pf,P − pf,E) +Rr,W (pf,P − pf,W)

+Ra,N (pf,P − pf,N) +Rr,S (pf,P − pf,S)

+Rl,B ((pf,P − pf,B)− bf,B) +Rl,T ((pf,P − pf,T)− bf,B)

(4.20)

43

The pressure equation now depends on all primary thermal-fluid variables. This

more tightly couples the equation to the other fields, which is drastically different from

the convetional implementation. The velocity equations are simple compared to the

above field equations, and therefore, the derivations are provided in the appendicies

only.

4.2.3 Newton’s Method Cross Section Feedback Equations

The cross section feedback for the PBMR is governed by three field equatiosn. The

primary equation is a special 1-D conduction solve which is appled to an average

power pebble within each material mesh. Along with the 1-D conduction and heat

conduction to the fluid, heat transfer through the pebble is included as well. Beginning

with the 1-D conduction equation in steady state,

− ∂

∂x

[
kA

∂T

∂x

]
= Q (4.21)

Integrating over space, the finite difference form is given as,

kinAin (Tsur − Tin) + koutAout (Tsur − Tout) = q
′′′

inVin + q
′′′

outVout (4.22)

Expanding all of the coefficients, heat generation terms, and primary variables,

Ain (Tsur − Tin)

(
∂kin
∂Tsur

δTsur +
∂kin
∂Tin

δTin

)
+ Aout (Tsur − Tout)

(
∂kout
∂Tsur

δTsur +
∂kout
∂Tout

δTout

)
− (finVin + foutVout) P̄core

((
ngroup∑
g=1

φg
∂κΣf

∂Tm

)
δTm +

(
ngroup∑
g=1

φg
∂κΣf

∂Td

)
δTd

)
+ kinAin (δTsur − δTin) + koutAout (δTsur − δTout)

= (finVin + foutVout) q
′′′

peb − kinAin (Tsur − Tin) + koutAout (Tsur − Tout) (4.23)

Keeping only the first order terms, the final form is given as

44

Ain (Tsur − Tin)

(
∂kin
∂Tsur

δTsur +
∂kin
∂Tin

δTin

)
+αApeb (δTsur − δTflu)+Apeb (δTsur − δTflu)

(
∂α

∂Tsur
δTsur +

∂α

∂Tsol
δTsol +

∂α

∂Tflu
δTflu

)
+ keq,W (δTsur − δTsol,W) + (Tsur − Tsol,W)

(
∂keq,W
∂Tsol,W

δTsol,W +
∂keq,W
∂Tsol,P

δTsol,P

)
+ keq,E (δTsur − δTsol,E) + (Tsur − Tsol,E)

(
∂keq,E
∂Tsol,E

δTsol,E +
∂keq,E
∂Tsol,P

δTsol,P

)
+ keq,N (δTsur − δTsol,N) + (Tsur − Tsol,N)

(
∂keq,N
∂Tsol,N

δTsol,E +
∂keq,N
∂Tsol,P

δTsol,P

)
+ keq,S (δTsur − δTsol,S) + (Tsur − Tsol,S)

(
∂keq,S
∂Tsol,S

δTsol,E +
∂keq,S
∂Tsol,P

δTsol,P

)
+ keq,B (δTsur − δTsol,B) + (Tsur − Tsol,B)

(
∂keq,B
∂Tsol,B

δTsol,E +
∂keq,B
∂Tsol,P

δTsol,P

)
+ keq,T (δTsur − δTsol,T) + (Tsur − Tsol,T)

(
∂keq,T
∂Tsol,T

δTsol,T +
∂keq,T
∂Tsol,P

δTsol,P

)
= q

′′′

inVin − kinAin (Tsur − Tin)− αApeb (Tsur − Tflu)

− keq,W (Tsur − Tsol,W)− keq,E (Tsur − Tsol,E)

− keq,N (Tsur − Tsol,N)− keq,S (Tsur − Tsol,S)

− keq,B (Tsur − Tsol,B)− keq,T (Tsur − Tsol,T) (4.24)

As can be seen, the solution depends on the fluid temperature and all solid tem-

perature neighbors. The results of this calculation are used to determine the cross

sections temperatures for each node.

The next cross sections temperature equation is the Moderator temperaure. This

is actually a simple volume weighting of the 1-D conduction solution given above. The

inclusion of this equation results from a need to reduce the spatial complexity of the

cross section dependence. The fundamental equation is given as,

VpebTm =
nshell∑
sh=1

Vs
Tsh + Tsh+1

2
(4.25)

Expanding the 1-D condution temperature and Moderator temperature, the final

45

form is given as,

VpebδTm −
nshell∑
sh=1

Vs
δTsh + δTsh+1

2
=

(
nshell∑
sh=1

Vs
Tsh + Tsh+1

2

)
− (VpebTm) (4.26)

The final equation for cross section feedback is the Doppler temperature calculation.

This equation is similar to the Moderator temperature calculation, with an added

empirical heat generation term, f − pueb, used to approximate the peaking within the

triso particles. The basic equation is given as,

VfuelTd =

nshell(fuel)∑
sh=1

(
Vs
Tsh + Tsh+1

2
+ VsfpuebQpeb

)
(4.27)

Expanding the temperature and heat generation term, the expanded form is given

as,

VfuelδTd −
nshell(fuel)∑

sh=1

Vs
δTsh + δTsh+1

2
−

nshell(fuel)∑
sh=1

VsfpuebδQpeb

=

nshell(fuel)∑
sh=1

(
Vs
Tsh + Tsh+1

2
+ VsfpuebQpeb

)− (VfuelTd)

(4.28)

Including the cross section dependence, the final form is given as,

46

VfuelδTd −
nshell(fuel)∑

sh=1

Vs
δTsh + δTsh+1

2

−

nshell(fuel)∑
sh=1

Vsfpueb

 ngrp∑
1

∂Qpeb

∂Tm
δTm

−

nshell(fuel)∑
sh=1

Vsfpueb

 ngrp∑
1

∂Qpeb

∂TD
δTD

−

nshell(fuel)∑
sh=1

Vsfpueb

+ VfuelP n,fuel

ngrp∑
1

κΣgδφg

=

nshell(fuel)∑
sh=1

(
Vs
Tsh + Tsh+1

2
+ VsfpuebQpeb

)− (VfuelTd)

(4.29)

The Doppler temperature depends on the 1-D condution solve, the neutron flux,

Moderator temperature, and the Doppler temperature.

4.3 Solution of Newton’s Methods

As noted in Chapter 3, the Jacobian was solved in this research using both exact and

inexact methods. The exact solution provided a reference solution whereas practical

solutions of the Jacobian are typically performed using linear solver libraries similar

to the GMRES [82] [83] [84] which was used here from the INTEL-MKL library. A

routine was developed to convert the different parts of the Jacobian into the required

format for the MKL library but could easily be extended to include the formats needed

for other libraries.

4.3.1 Solution Methods

The direct solver used in the exact Newton method was PARDISO which is a state-

of-the-art direct solver used throughout the scientific community. In PARDISO the

standard Gaussian elimination is replaced by an LU decomposition produced using

pivoting and iterative refinement. In this way, PARDISO attempts to minimize the

47

truncation and roundoff error produced during a standard matrix inversion. The

resulting solution is a very reliable and accurate exact solution. Several of the advanced

features will be disabled to allow a clearer comparison to the iterative method.

The iterative solver used in the inexact Newton method was the GMRES solver

from the INTEL-MKL library. The solver is composed of three main routines. The

first generates the orthogonal basis for the given vector. The second routine is used to

perform the Jv matrix-vector operation, and lastly, a third routine performs the least

squares problem to obtain the solution for the given Newton step. The orthogonal

basis is constructed using the Arnoldi process with Householder transformations. An

incomplete LU factorization is also available to precondition the GMRES iterations.

In the work here the restarted GMRES solution was also tested since the memory

requirements can become considerable for the large coupled problems. This was

found to be somewhat successful for the thermal fluids problem, but not for the

coupled problem. Along with a fixed convergence strategy, a dynamic strategy was

implemented as well allow the inner iterations to converge relative to the Newton

residual calculated in the previous iteration. In this way, the GMRES inners would

not converge tightly to an inaccurate solution early in the nonlinear iterations.

4.3.2 Convergence Testing

There are several possible methods to evaluate the convergence of the Newton itera-

tions. The first method typically used is to evaluate the magnitude of the shift of each

solution variable in successive iterations. This can evaluate convergence within the

Newton iteration itself, but does not necessarily indicate the convergence of the overall

non-linear system. For a system with constant coefficients this is typically sufficient,

but a higher order estimate of the error is required for systems with non-constant

coefficients which is the more practical case.

The second approach typically used to evaluate convergence is to compare the

magnitude of the nonlinear residuals after coefficient updates. This provides a more

accurate estimate of the error for the case here in which the coefficients are not

constant. A variation on this approach is to evaluate the change in the coefficients

together with a test of the primary system variables. This can include either or both

the standard coefficients or the partial derivatives. The goal is to therefore drive the

residuals to zero, or a small as possible with machine percision.

48

Chapter 5

Models Used in Analysis

This chapter describes the problems used to test and evaluate the Newton’s method

developed in this work. The problems are based on the OECD PBMR-400 Benchmark

problem which was developed to assess the performance of coupled codes for the

steady-state and transient analysis of the Pebble Bed High Temperature Gas Reactor.

The following section will introduce the problem specifications and the subsequent

sections will provide the detailed coupled code solution. All results presented in this

section are the validation basis for the Newton’s Method calculations, and were taken

from Seker [85].

5.1 Problem Specifications

The development of the PBMR concept began in South Africa in 1993. The Pebble

Bed Modular Reactor (Pty) Ltd Company was established in 1999 to complete the

design study and carry out the construction of the first PBMR module. The PBMR is

a pebble bed type high temperature gas reactor with a direct cycle gas turbine power

conversion system which achieves a thermodynamic efficiency of about 42 %. The

reactor operates at a thermal power of 400MWt with inlet and outlet temperatures of

500 ◦C and 900 ◦C, respectively. The major design and operational characteristics are

summarized in Table 5.1.

The reactor has an annular core with an outer diameter of 3.7 meters and an

effective core height of 11 meters. The solid graphite reflector with a diameter of

2 meters is located in the center of the core and a graphite side reflector with a

thickness of 90 cm surrounds the fuel region. The layout of the reactor unit is shown

in Figure 5.1.

The helium gas enters the reactor unit from the inlet plenum, flows upwards in the

helium flow channels which are located in the side reflector and downwards through

49

Table 5.1: PBMR Characteristics

PBMR Characteristic Value
Thermal Power 400 MW
Electric Power 165 MW
Capacity Factor ≥ 95 %
Core Configuration Vertical with Inner Reflector
Fuel TRISO Coated Graphite Spehers
Primary Coolant Helios
Reactor Pressure 9 MPa
Moderator Graphite
Core Outlet Temp 900 ◦C
Core Inlet Temp 500 ◦C
Cycle Type Direct
Cycle Efficiency ∼ 42 %

the pebble bed before leaving the reactor from the outlet plenum. The reactor control

system consists of 24 control rod positions in the side reflector. 12 control rods operate

at the upper part of the core serving as control rods while the other 12 rods operate

at the lower part of the core as shut down rods.

The fuel is loaded online into the core from the three positions located above the

core and removed from the three defueling chutes located below the core and positioned

equidistant to the centre of the fuel annulus. The core contains approximately 452000

fuel pebbles with a packing fraction of 0.61. The fuel pebble has a diameter of 6 cm.

The inner 5 cm of the fuel contains about 15 million UO2 TRISO particles embedded

in a graphite matrix and is surrounded by an outer graphite shell with a thickness

of 0.5 cm. The form of the fuel pebble is represented Figure 5.2. Each fuel pebble

contains 9 grams of Uranium with a U-235 enrichment of 9.6 wt %.

The PBMR design is primarily based on the German AVR and THTR reactors.

The tools and methods to perform the design and safety analyses of the reactor lagged

behind the state of the art compared to other reactor technologies. This has motivated

the testing of existing methods for pebble bed reactor concept. The first attempt

for this verification and validation effort was the benchmark problem defined for the

PBMR 268MW reactor design. A test case for the PBMR 400MW design was also

defined and accepted as an international benchmark problem by the OECD/NEA/NSC.

The main objective of the benchmark is to establish a well defined problem based on a

common set of cross-sections to compare the methods and tools in the core simulation

and thermal hydraulic analysis.

50

Figure 5.1: PBMR 400 Reactor

Figure 5.2: TRISO Fuel Pebble

51

The reference design for this benchmark is derived from the 400MW PBMR shown

in Figure 5.1. The reactor core is modeled in two-dimensions (r,z) with some simplifi-

cations such as flattening the pebble beds upper surface and removal of the bottom

cones and the de-fuel channels which results in a flat bottom reflector, which simplified

the input model. The effect of this simplification was not quantified, but would be

neccesary in futher validation efforts. The pebble flow is simplified to be in parallel

channels and at equal speed. The control rods in the side reflector are modeled with

a given B-10 concentration as a cylindrical skirt. In order to analyze some specific

cases such as a single rod or a segment of rods ejections, a three-dimensional (r,θ,z)

model is also employed. In the thermal-fluids design, the stagnant helium and air is

specified between the core barrel and RPV and RPV and heat sink, respectively. The

details of the benchmark problem such as the core geometry, material properties, fuel

and structural material specifications and etc. are given in the official benchmark

description document [86].

The core layout of the PBMR-400 is shown in Figure 5.3. A set of cross-sections

in two energy groups and five state parameters dependent is provided as a part

of benchmark specification. The cross sections are dependent on fuel temperature,

moderator temperature, xenon concentration, fast and thermal bucklings. The 5-D

interpolation method implemented in PARCS was used to update the cross section

data.

5.2 Validation Basis

This section will summarize the AGREE-PARCS results of the steady-state cases and

compare the results with those of other benchmark participants. These results were

previously completed, and are not Newton-Krylov methods results. There are three

steady-state cases that were performed which include

• Case S-1: Neutronics Solution with Fixed Cross Sections
• Case S-2: Thermal Fluid solution with given power / heat sources
• Case S-3: Combined neutronics thermal fluids calculation starting condition for

the transients

The first three cases were performed to verify the standalone neutronics, stan-

dalone thermal-fluids and coupled neutronics/thermal-fluids. The comparison of the

eigenvalue, maximum power density and axial/radial thermal flux profiles for the Case

S-1 are shown in Figure 5.4 through Figure 5.7.

52

Figure 5.3: Model of Core Layout

Figure 5.4: K-Effective

53

Figure 5.5: Maximum Power Density

Figure 5.6: Radial Thermal Flux

54

Figure 5.7: Axial Thermal Flux

In case S-2 the power profile obtained from the equilibrium calculation is set in the

standalone thermal fluids calculation. The comparison of various average values and

profiles are given in Figure 5.8 through Figure 5.11. The coupled neutronics/thermal-

fluids problem Case-3 was solved and the results were compared with those obtained

by the CAPP/MARS coupled code system.

These three steady-state problems were used to evaluate the performance of the

Newtons method described in the previous chapters. The following chapter will show

the comparisons of the convergence history of the Newtons methods with the existing

solver for each of the three steady state cases.

Table 5.2: Case S-3 Eigenvalue Comparison

Code keff (HFP) keff (HZP)
CAPP/MARS 0.99270 -
PARCS 0.99283 1.04099
PARCS∗ 0.99282 1.04090

5.3 The Jacobian Matrix

The general guideline is that larger matricies are more costly to solve, however, the

sparsity of the matrix is also very important. Table 5.3 gives the dimensions and

55

Figure 5.8: Pressure Drop

Figure 5.9: Fuel Temperature

56

Figure 5.10: Moderator Temperature

Figure 5.11: Axial Fuel Temperature

57

Figure 5.12: Axial Thermal Flux

Figure 5.13: Radial Thermal Flux

58

Figure 5.14: Power Density

Figure 5.15: Axial Doppler Temperature

59

Figure 5.16: Partial Filling of Practical Matrix

sparsity of the three matrices used in the test problems. The large increase in the size

of the coupled system results from the large number of 1-D conduction problems that

must be solved for the XS feedback. In all cases, the percent of non-zero elements is

about 0.05%.

Table 5.3: Resulting Jacobian Linear Systems

System Neutronics Therm-Flu Coupled
Dimension 1161 8772 61825
Non-Zeros 6591 36559 207747

Because of the computational cost of building the Jacobian, the performance of

the Newton’s Method will depend largely on the size of the system analyzed. An

estimation of the required operation counts was useful also performed. Because these

systems are very sparse, as shown above, the commonly held assumptions regarding

performance of direct vs iterative system may not be valid. Another important con-

sideration is the storage convention used in the coding. Figure 5.3 shows that not

all nodes contain a calculation for all variables. The boundary nodes have only a

conduction solve and do not generate heat and therefore, the Jacobian matrix will

contain identity submatrices, as illustrated in Figure 5.16.

The second and third submatrices are smaller than the first submatrix. This means

that both the direct solve and iterative solve will have some zero elements in the RHS.

60

This is not a significant issue for the direct solver but represents a potential problem for

the iterative solver. Each time a subspace vector is generated, operations are wasted on

these zero residuals, which then results in poor performance for GMRES. An estimate

of the required operations is shown in Table 5.4. The direct solve statistics were taken

from PARDISO, and the iterative estimate was adapted from Sosonkina [87]. N is

the matrix dimension, NNZ is the number of non-zero elements in the Jacboian, K

is the number of stored Krylov vectors, and I is the number of inner iterations per

Newton step.

WGMRES ≈ 4I (NNZ + (NNZ −N))) +
1

2
NKI +O(I) (5.1)

Table 5.4: Estimate of Solve Operations

Operations Neutronics Therm-Flu Coupled
Per Newton
Direct Flops 1.308e6 1.000e7 6.972e8
GMRES Inners 22 29 114
GMERS Flops 1.407e6 1.009e7 6.973e8

The number of inners iterations was calculated to obtain similar total operations

per outer iterations. The results here indicate that if GMRES requires more than 22,

29, and 114 iterations for the neutronics, thermal-fluids, and coupled field solution,

respectively, then the direct solver can be expected to perform better than the iterative

method.

These esimates depend on the number of stored vectors as well, which varies

between the neutronics, thermal-fluids, and coupled calculations. The current imple-

mentation could be improved in several ways, which include storing the residual more

efficiently, reducing N , storing less subspace vectors, reducing K, or improving the

preconditioner, reducing I.

61

Chapter 6

Analysis of Implicit Formulations

This chapter provides the results and analysis of applying the Newton Method to the

HTR problem described in the preceding chapter. First the application of Newtons

method to the individual field solutions will be presented with the temperature-fluid

solution presented in Section 6.1 and the neutronics in section 6.2. The analysis of

the individual field solution was important to verify the accuracy of the Jacobian

since errors in the Jacobian itself would not always prevent convergence. The solution

of the coupled field solution are then presented in section 6.3. In order to obtain a

reasonable initial guess for the Newton iteration, the conventional solvers were run

for a few iterations. The primary variables were then used to form the Jacobian and

initiate the Newton iteration until convergence.

The fundamental expansion of the primary variables and coefficients serves as the

foundation for the Jacobian matrix. In order to test each derivative and determine the

”importance” of individual coefficients, the Jacobian could be modified to include or

exclude any coefficient expansion. However, the Jacobian with all analytic derivatives

was the basis for the Exact Newton’s method.

6.1 Newton-Krylov Thermal-Fluid Analysis

6.1.1 Exact Newton

The problem described in the previous chapter was used with a fixed power in order

to analyze the solution of the thermal-fluid equations. This problem required the

solution of all six field equations, which allowed testing of the coupling terms among

the field equations. In the fully implicit method all field equations are solved together

and therefore the convergence is generally different from the conventional solution

62

which uses a nested iteration scheme in which the heat transfer coefficient is updated

in an outer iteration.

The first Newton method studied was the Exact Newton’s Method in which the

Jacobian was formed with analytical derivatives as described in Chapter 3. A compar-

ison of the convergence of the energy and pressure equations using the operator split

and Exact Newtons Method is shown in Figure 6.1 and Figure 6.2, for the 2-norm and

infinite norm, respectively. The superlinear convergence and the considerable decrease

in the number of outer iterations observed with the Exact Newtons Method compared

to the operator split method is indicative of the performance expected of the Exact

Newton’s Method. The normalized change in each variable is a practical measure

of convergence, but the convergence of the residuals is also shown in Figure 6.3 and

Figure 6.4.

The pressure appears to converge much quicker than either energy equation. This

results from the decoupling of the pressure from energy equations, as well as the

limited effect of fluid temperature on fluid density. The flow resistivity, the primary

coefficient in the pressure equation, is a strong function of pressure, as it depends on

several empirical, and unit less constitutive relationships, which drives the convergence

of the pressure equation. The convergence of the energy equations is very similar.

This is due to the heat transfer coefficient, alpha, but also the definition of the wall

temperature, uses to evaluate several coefficients in the energy equations. Coupling

the energy equation considerably improves convergence.

63

Figure 6.1: Thermal Fluids Exact Newton Del-X / X 2-Norm

64

The physical derivatives were also compared. Each residual has different units,

and therefore are at different levels. However, each residual should converge to the

same level between the conventional solution and the Newton’s Method.

The results in Figure 6.1 through Figure 6.4 indicate that the Exact Newton’s

method converges more quickly than the conventional operator split method. The

expected ”2nd Order” convergence is apparent with each of the norms. However,

also as expected, because of the overhead to form the Jacobian, the decrease in

the computational time for the Exact Newtons method is not as significant as the

decrease in the number of iterations. The number of iterations and the wall time are

given in Table 6.1 for the O.S. and Exact Newtons method. As indicated there is an

order of magnitude reduction in the number of outer iterations but only a factor of

two reduction in the computational time. The increased computational expense of

calculating the derivatives and solving the large matrix equations offsets much of the

potential increase in performance.

A comparison between the convergence of individual solution variables obtained

from the Exact Newton and Operator Split method is shown in Table 6.2. As indicated

there is very little difference between the two solutions which provides confidence in

the accuracy of the Newtons method solution.

A closer analysis of the individual solution variables in the Exact Newton’s Method

was also performed as shown in Figure 6.5 and Figure 6.6. As indicated a similar rate

of convergence is observed for each of the variables with the exception of the fluid

pressure which converges slightly faster than the temperatures and velocities.

65

Figure 6.2: Thermal Fluids Exact Newton Del-X / X Inf-Norm

Figure 6.3: Thermal Fluids Exact Newton Residual 2-Norm

66

Figure 6.4: Thermal Fluids Exact Newton Residual Inf-Norm

Table 6.1: Thermal-Fluids Performance Comparison

Method Current/O.S. Exact Newton
Time [s] 1.901 1.074
Outer Itr 83 7

Table 6.2: Thermal-Fluids Results Comparison

Variable Ts Tf Pf Vx Vz
% Err Max 6.98E-04 6.71E-04 3.96E-06 7.95E-06 1.35E+01
% Err RMS 1.03E-05 1.84E-05 2.48E-07 6.81E-07 3.95E-01

Abs Err Max 6.44E-03 6.31E-03 3.65E-04 1.00E-06 6.00E-05
Abs Err RMS 9.01E-05 1.70E-04 2.28E-05 8.57E-08 1.82E-06

67

Figure 6.5: Thermal Fluids Exact Newton Del-X / X Comparison

Figure 6.6: Thermal Fluids Exact Newton Residuals Comparison

68

6.1.2 Inexact Newton

The inexact Newton method was then analyzed with the inner iteration performed

using an ILU preconditioned GMRES solver as discussed in Chapter 4. Two methods

were used to determine the convergence of the inner iteration. First, the same fixed

tolerance of 10−8 was used for all inner iterations and then a more practical algorithm

was used in which the convergence tolerance of the inner iteration was determined by

the residual of the outer iteration.

The first method using a tight convergence of each inner iteration is useful to

evaluate the numerical performance of the Exact and Inexact Newtons method. The

convergence of the solid temperature and fluid velocity is shown in Figure 6.7 and

Figure 6.8, respectively, and as indicated the rate of convergence of the 2-norm and

infinite norm are very similar. The residuals are shown in Figure 6.9 and Figure 6.10.

In the second inexact method the tolerance of the inner iteration was determined

by the residual of the outer iteration. During the initial outer iterations the inner

iteration convergence was relaxed and then increased as the outer residual reduced

during the final iterations. As shown in Figure 6.11, this considerably reduced the

overall number of GMRES iteration compared to the first method of using a fixed

tolerance throughout the Newton iteration.

The impact of the dynamic inner iteration convergence on the convergence of the

Inexact Newton method is shown in Figure 6.12 and Figure 6.13. As expected there

is some decrease in the rate of convergence, but as shown in Table 6.3, there is only

a slight increase in the number of outer iterations. However, as also shown in the

Figure 6.11 even the slight increase in the number of outer iterations leads to only a

slight reduction in the overall computational time.

Fixed Convergence: rel. tol = (10e-6 v0 = v1), abs tol = 0.0

Dynamic Convergence: rel tol = (10e-5 v0 = v1), abs tol = 10e-4*r0

One of the most important observations from Table 6.3 is that even with the

dynamic inner convergence method the computational time of the inexact Newton

method is considerably higher than the exact Newton method.One of the primary

reasons for this was discussed in Chapter 5 which estimated the breakeven performance

of the direct and iterative solvers. As shown in Figure 6.11, even with dynamic inner

iteration tolerance, the number of GMRES iterations is above the breakeven threshold,

and Exact Newton with the direct solver should be expected to perform better.

69

Figure 6.7: Thermal Fluids Inexact Newton Del-Ts / Ts

Figure 6.8: Thermal Fluids Inexact Newton Del-Vz / Vz

70

Figure 6.9: Thermal Fluids Inexact Newton Normalized Ts Residual

Figure 6.10: Thermal Fluids Inexact Newton Normalized Vz Residual

71

Figure 6.11: Thermal Fluids Inexact GMRES Conv.

Figure 6.12: Thermal Fluids Inexact Newton Normalized Ts Residual

72

Figure 6.13: Thermal Fluids Inexact Newton Normalized Vz Residual

Table 6.3: Thermal-Fluids Inexact Newton

Method Exact Newton Inexact Newton Inexact Newton
Tight Conv. Dynam. Conv.

Time [s] 1.104 1.167 1.177
Newton Itr 7 7 8

Flops / Nwt. 1.00e7 1.009e7 1.309e7

73

6.1.3 Finite Difference Jacobian

The next phase of the research was to investigate a finite difference method for calcu-

lating the elements of the Jacobian. Two methods were used to form the perturbation

size for the finite difference evaluation. The first method was to simply use a fixed

perturbation size and the second method was to use an algorithm to determine the

perturbation size which depended on the matrix properties. Both methods were

evaluated using both the inexact and exact Newtons method.

The first method of fixed perturbation size was first evaluated using the Exact

Newtons method and as expected the rate of convergence was reduced. Figure 6.14

and Figure 6.15 compares the convergence of the Exact Newton method with analytic

derivates and with finite derivatives and the overall performance is summarized in

Table 6.4. As indicated in the Table, the required number of outer iterations was

slightly higher than the Exact Newtons method with analytic derivates. The increased

computational cost reflects both the increased number of outer iterations but also the

slightly higher cost to calculate the finite difference derivatives than in the analytical

approach. Also shown in the Table is the result of applying the first method of fixed

perturbation size to the Inexact Newtons method. As indicated both the number of

outer iteration and the overall computational time are higher than for the Inexact

Newtons method with analytic derivates.

74

Figure 6.14: Thermal Fluids F.D. Jac Ts Residual

75

The second method evaluated was to allow the perturbation size to vary based

upon an optimized pertubation. Because the finite difference is an approximation,

GMRES was used as the basis for the perturbation. This approach was suggested by

Xu [55] and depends on the norms of the Jacobian which are estimated using methods

described in [55].

γ ≥ γ̃ =
2‖F (xk+1)‖
‖sk‖2 η ≈ ε ≈ 2−52 ≈ 2.22−16 (6.1)

σopt =
1

‖v‖

√
ε
‖F ′(x)‖

γ
‖x‖+

2η ‖F (x)‖
γ

(6.2)

The rate of convergence of the Finite Difference method with the optimized method

for evaluating the perturbation size shown in Figure 6.16 and Figure 6.17, and sum-

marized in Table 6.5. As indicated, the optimized method does not perform as well as

the fixed perturbation size. However, the fixed perturbation size used in this work

was chosen after several sensitivity studies, and it is therefore highly susceptible to

errors. Although the optimized perturbation method does not perform as efficiently

as the fixed perturbation used here, it may provide a more robust method for a wider

range of problems.

76

Figure 6.15: Thermal Fluids F.D. Jac Vz Residual

Table 6.4: Thermal-Fluids F.D. Jac Direct Solve

Method Anl. Jacobian F.D. Jacobian
Direct Solve Direct Solve

Time [s] 1.014 1.528
Newton Itr 7 11

Table 6.5: Thermal-Fluids F.D. Jac with Optimized Pert.

Method Anl Jacobian F.D. Jacobian F.D. Jacobian
Fixed Pert. Opt. Pert.

Time [s] 1.177 1.914 2.004
Newton Itr 8 13 15

Flops / Nwt. 1.309e7 1.783e7 1.515e7

77

Figure 6.16: Thermal Fluids F.D. Jac Normalized Ts Residual

Figure 6.17: Thermal Fluids F.D. Jac Normalized Vz Residual

78

Figure 6.18: Thermal Fluids Jac-Free Normalized Ts Residual

6.1.4 Jacobian-Free

The final method evaluated for the thermal fluids was the Jacobian Free method which

has been studied extensively in recent years as discussed in Chapter 4. The GMRES

solver was used as the basis for the Jacobian-Free method and the formation of the

residual for the six thermal fluids equations was performed similarly to the methods

used in the previous sections. As will be evident in evaluating the performance of the

method, the cost of computing the residual was significant and one of the areas for

future research will be to investigate more efficient methods to compute the residuals.

The residuals are given in Figure 6.18 and Figure 6.19 below, which compares

the Exact Newton, F. D. Jacobian, and Jacobian-Free methods. As indicated in the

Figure, the Jacobian-Free converges in fewer Newton steps than the F.D. Jacobian,

but all methods show superlinear convergence performance.

The computation time is shown in Table 6.6 and as indicated, the number of

Newton iterations for the Jacobian-Free method is comparable to the other methods,

however the overall computational time is much higher. As noted above, this is

primarily because of the high cost of forming the residual which may be reduced

with a more compact residual representation. However, it is not expected that any

reduction would be larger than 50

79

Figure 6.19: Thermal Fluids Jac-Free Normalized Vz Residual

Table 6.6: Thermal-Fluids Jacobian-Free

Method Anl. Jacobian Anl. Jacobian F.D. Jacobian Jac.-Free
Direct Dynam. Conv. Dyn. / Opt. Dyn. / Opt.

Time [s] 1.074 1.177 2.004 5.883
Newton Itr 7 8 15 11

Flops / Nwt. 1.000e7 1.309e7 1.515e7 1.057e7

80

Figure 6.20: Neutronics Exact Newton Fission Source

6.2 Newton-Krylov Neutronics Analysis

6.2.1 Exact Newton’s Method

The neutronics solution was analyzed using the test problem described in Chapter 5

with a fixed temperature-fluid field solution and therefore no cross section feedback.

The Jacobean of the multigroup neutronics equations was first computed using analytic

derivates as described in Chapter 4 and solved exactly using the same direct solver as

described in the previous section. The Exact Newton solution was then compared to

the solution using the standard fission source and power iterations. The fluxes and

eigenvalue were essentially identical but the convergence performance was very different

as shown in Figure 6.20. As indicated, the Newton’s method reduces significantly

the required number of iterations compared to the standard power iteration. The

primary reason for this significant difference is that the eigenvalue is solved directly

as a primary variable in the Newtons method whereas the standard power iteration

involves an inner and outer iteration. The computational time is summarized in

Table 6.7 which also shows the small difference in the fluxes.

81

Figure 6.21: Neutronics Exact Newton Del-Flux / Flux

Figure 6.22: Neutronics Exact Newton Flux Residual

82

Table 6.7: Neutronics Performance Comparison

Method Current Exact Newton
Power Itr.

Solver Direct Direct
Time [s] 2.324 0.265
Outer Itr 406 6

6.2.2 Inexact Newton’s Method

The neutronics problem was then solved with the same GMRES method and inexact

Newtons method used in the previous section for the Thermal-Fluids equations. A

fixed tight convergence 10−8 was used to converge GMRES. As shown in Figure 6.23,

a similar convergence behavior was observed in the convergence of the flux between

the inexact and exact Newtons method. However, some stagnation of the GMRES

solution was observed in the residual as shown in Figure 6.24. A comparison of the

computation time is shown in Table 6.8. As indicated the same number of iterations

are used in the Exact and Inexact Newtons method, but similar to the trend observed

in the thermal-fluids solution there is an overall increase in the computational time

required for the inexact Newton method, primarily because of the increased cost of

the GMRES iterations compared to the direct solver, as noted in Chapter 5.

Table 6.8: Neutronics Results Comparison

Method Current Exact Newton Inexact Newton
Power Itr.

Solver Direct Direct GMRES
Time [s] 2.324 0.265 0.405
Outer Itr 406 6 6

% Err RMS - 3.09e-6 2.86e-6
% Err Max - 9.46e-4 2.25e-3

83

Figure 6.23: Neutronics Inexact Newton Del-Flux / Flux

Figure 6.24: Neutronics Inexact Newton Flux Residual

84

6.3 Newton-Krylov Coupled Analysis

The final phase of the research was to apply the Newton’s method to the coupled

thermal-fluids and neutronics solution. The same coupled steady state problem was

used as described in Chapter 5 and applied to the individual field solutions in the

previous sections. As discussed in Chapter 2, the conventional operator split solution

first achieves a converged thermal-fluid solution by iterating between the separate

solution of each thermal fluids equation and then updates the neutron cross section

and solves the neutronics equations. Upon convergence of the neutronics equations,

the temperature fluid coefficients are updated and the thermal fluid equations are

solved again. The iteration strategy is repeated until convergence.

The operator split method was compared with the same three variations of the

Newton solution applied to the thermal fluid equations in Section 6.1. One of the

essential differences for the coupled field is that the analytical Jacobian was expanded

to include the derivatives of the cross section to the temperature fluid variables. This

significantly increased the size of the problem since several submesh are required to

calculate the temperature distribution in the pebble and it was necessary to represent

this explicitly in the Jacobian.

In the following subsections, results will be presented sequentially for the exact

Newton method, the inexact Newton method, and then for the inexact Newton method

with a finite difference Jacobian.

6.3.1 Exact Newton

One of the important advantages of the Exact Newton’s method is the rapid con-

vergence of the flux source as shown in Figure 6.25. The more rapidly the flux is

converged the sooner a converged power and heat source distribution can be obtained

for the thermal-fluids solution. Therefore, the accelerated fission source convergence

considerably improves the convergence of the coupled system. The two-norm and

infinite-norm of the solid temperature and pressure are shown in Figure 6.26 and

Figure 6.27.

The residuals of the coupled field solution are given below. After about eight

iterations, the Newton’s method begins to converge superlinearly as expected. This

is similar to the convergence observed in the thermal-fluids. Also, because of the

tighter coupling between the fields the residuals are generally much smaller in the

Exact Newton’s method than in the conventional solution method.

85

A comparison of the performance of the exact Newton and the operator split

method is given in Table 6.9. The considerable reduction in the total number of

iterations is similar to the thermal-fluids case. However, the increased size of the

system results in a higher computational burden to form the Jacobian which offsets

the savings in the reduced number of iterations.

Table 6.9: Coupled Performance Comparison

Method Current/O.S. Exact Newton
Time [s] 23.275 14.508
Outer Itr 495 17

The convergence of the 2-norm of the solution variables and the residuals is shown

in Table 6.31 and Table 6.32. All of the residuals are normalized to converge to

below double precision error, but execution terminates as the stopping criteria is met.

Some oscillations are introduced from the discontinuous derivatives, but the solution

stabilizes after about five iterations. The overall convergence behavior is similar to

what was observed in the thermal fluids.

A detailed comparison of the converged coupled field solution variables is shown in

Table 6.10 and Table 6.11. As indicated there is very little difference in the solution

variables.

Table 6.10: Coupled Results Comparison Neutronics

Variable Phi-1 Phi-2 Tm Td
% Err Max 1.25E-05 1.19E-05 4.48E-06 8.82E-06
% Err RMS 9.93E-04 9.98E-04 2.86E-04 2.70E-04

Abs Err Max 4.30E+06 6.33E+06 3.84E-05 8.01E-05
Abs Err RMS 1.00E+09 1.00E+09 2.66E-03 2.52E-03

* Extremely Small Values Increase Percent Error

86

Table 6.11: Coupled Results Comparison Thermal Fluids

Variable Ts Tf Pf Vx Vz*
% Err Max 4.48E-06 9.89E-06 1.23E-07 5.39E-04 1.84E+00
% Err RMS 2.86E-04 2.88E-04 2.07E-06 8.34E-03 5.69E+01

Abs Err Max 3.84E-05 8.73E-05 1.14E-05 9.54E-07 2.27E-04
Abs Err RMS 2.66E-03 2.68E-03 1.92E-04 1.30E-05 6.90E-03

Figure 6.25: Coupled Exact Newton Del-Flux / Flux

87

Figure 6.26: Coupled Exact Newton Del-Ts / Ts

Figure 6.27: Coupled Exact Newton Del-Pf / Pf

88

Figure 6.28: Coupled Exact Newton Residual Flux

Figure 6.29: Coupled Exact Newton Residual Ts

89

Figure 6.30: Coupled Exact Newton Residual Pf

Figure 6.31: Coupled Exact Newton Del-X / X

90

Figure 6.32: Coupled Exact Newton Residuals

91

6.3.2 Inexact Newton

The inexact Newtons method was then applied to the coupled field. As determined in

the thermal-fluids analysis, the most efficient convergence strategy with GMRES was

to use a dynamic tolerance for the inner iterations and this was used in the analysis

of the coupled system. A comparison of the number of GMRES iterations for each

Newton iteration for the fixed and dynamic tolerance is shown in Figure 6.33.

As dicussed in Section 5.3, the number of inner iterations for the coupled calculation

considerably exceeds the breakeven to which the iterative solver would be competative

with the direct solver. Therefore, the inexact Newton’s method cannot be expected to

perform better than the Exact Newton’s method.

The convergence of the coupled field residuals are shown in the following Figures

for the exact Newton method and inexact Newton with a fixed and dynamic tolerance.

As indicated the fixed tolerance performance is similar to the Exact Newton method

but the dynamic tolerance converges more slowly. However, as shown in Table 6.12,

because of the reduced number of inner iterations the overall computational time of

the dynamic tolerance is less than the fixed tolerance inexact Newton method.

Table 6.12: Coupled Inexact Newton Performance

Method Exact Newton Inexact Newton Inexact Newton
Tight Conv. Dynamic Conv.

Time [s] 14.508 48.030 49.829
Newton Itr 17 17 25

Flops / Nwt. 6.972e8 1.391e9 8.180e8

92

Figure 6.33: Coupled Inexact GMRES Conv.

Figure 6.34: Coupled Inexact Newton Normalized Flux Residual

93

Figure 6.35: Coupled Inexact Newton Normalized Ts Residual

Figure 6.36: Coupled Inexact Newton Normalized Vz Residual

94

6.3.3 Finite Difference Jacobian

The final phase of the research was to investigate the behavior of the Finite Difference

Jacobian, which can be particularly attractive because of the expense of forming

analytic derivates when code methods change. The finite difference Jacobian was

analyzed using both exact and inexact Newtons method. The residuals for the finite

difference based Jacobian are given in Figure 6.37 through Figure 6.39. As can be

observed, Newtons method with the analytical Jacobian converges more quickly than

the finite difference Jacobian.

The finite difference Jacobian was then compared to the analytic Jacobian using

the inexact Newton method. The results are shown in Figure 6.40 through Figure 6.42.

As indicated the rate of convergence achieved with finite difference derivates is slightly

less than the analytic derivates and in both cases the convergence is slower than the

finite difference derivatives with the direct solver.

The computational performance is summarized in Table 6.13. As indicated the

number of iterations of the finite difference Jacobian is higher than the Jacobian with

analytic derivates for both the exact and inexact Newton method.

Table 6.13: Coupled F.D. Jac with Fixed Pert.

Method Anl. Jacobian Anl. Jacobian F.D. Jacobian
Direct Solve Dynam. Conv. Dynam. Conv.

Time [s] 14.508 49.829 46.101
Newton Itr 17 25 29

Flops / Nwt 6.972e8 8.180e8 7.484e8

The optimized perturbation size that was analyzed for the thermal-fluid solution

was also tested for the coupled neutronics / thermal fluid solution. The results are

shown in Table 6.14 for the Inexact Newton case and the optimized perturbation finite

difference method was found to converge in fewer iterations than the finite difference

with a fixed perturbation size. If the analytic Jacobian is not available, then the

results here indicate that finite difference Jacobian with the optimized perturbation

method would be an attractive option.

95

Table 6.14: Coupled F.D. Jac with Dynamic Pert.

Method Anl. Jacobian F.D. Jacobian F.D. Jacobian
Fixed Pert. Opt. Pert

Time [s] 49.829 46.101 39.794
Newton Itr 25 29 26

Flops / Nwt. 8.180e9 7.484e8 7.139e8

Figure 6.37: Coupled F.D. Jac Flux Residual

96

Figure 6.38: Coupled F.D. Jac Ts Residual

Figure 6.39: Coupeld F.D. Jac Vz Residual

97

Figure 6.40: Coupled F.D. Jac Normalized Flux Residual

Figure 6.41: Coupled F.D. Jac Normalized Ts Residual

98

Figure 6.42: Coupled F.D. Jac Normalized Vz Residual

99

Chapter 7

Summary and Conclusion

7.1 Summary of Work

The solution of the coupled field equations for nuclear reactor analysis has typically

been performed by solving separately the individual field equations and transferring

information between fields. This has generally been referred to as operating splitting

and has been successfully applied to a wide range of reactor steady-state and transient

problems. Although this approach has generally been successful, it has been computa-

tionally inefficient and imposed some limitations on the range of problems considered.

The research here investigated fully implicit methods which do not split the coupled

field operators and which solves the coupled equations using Newton-Krylov methods.

The focus of the work here was on the solution of the coupled neutron and tem-

perature/fluid field equations for the specific application to the high temperature gas

reactor. However, the reserach here also investigated the application of the Newton’s

Method to the individual field equations. The solution of the neutron field equations

was restricted to the steady-state multi-group neutron diffusion equations and the

temperature fluid solution for the gas reactor involved only the single phase fluid

which was adequate for the gas reactor. The results here indicate that steady state

convergence of the coupled field equations can significantly improve both the stand

alone neutronics and thermal fluid using Newton methods.

A large part of the improvement in the convergence in the neutronics was the

inclusion of the eigenvalue as a primary variable in the Jacobian. This provided an

acceleration in the eigenvalue search similar to the well know Wielandt shift method.

Because the reference solution does not use any acceleration techniques, the comparison

is not truly representative of the improved solution.

The thermal fluids convergence also improved considerably using a fully implicit

Newtons method. The primary acceleration was due to the coupling of the solid

100

and liquid energy equations. Because of the strong heat transfer coefficient coupling

and the dependence of the heat transfer coefficient on the primary variables, the

energy equation coupling improved both the rate and the stability of convergence.

The implicit treatment of the pressure equation also contributed to the improvement

in the convergence, but in general the pressure equation converged more rapidly than

the energy equations.

Improvement in the coupled field solution was similar to the improvement observed

in the convergence of the individual neutronics and thermal-fluids problems. Over an

order of magnitude reduction was observed in the number of iterations required to

achieve convergence. However, the overall computational time reduction for the Exact

Newtons method was only about 50 %.

Another important conclusion from the research here was that the Inexact New-

ton’s method did not outperform the Exact Newton’s Method. Performance of the

iterative method in the thermal fluids was nearly as fast as the direct solution, but the

iterative method was much slower in the coupled solution. A detailed analytis of the

floating point operation count showed that in all cases, the number of inner iterations

required of the iterative method exceeded the breakeven for which an iterative method

could be expected to outperform the direct solver.

7.2 Future Work

Based on the results and analysis in the work here, it is recommended that the next

phase of the research should focus on approximate solutions to the exact Jacobian

which do not require the formation of all the elements of the Jacobian. One of the

most promising approaches would be to investigate the Approximate Block Newton

(ABN) [88] method which appears to achieve a suitable balance between the expense

of forming the Jacobian and an improvement in the rate of convergence. The ABN

method also has been shown to provide improved performance without considerable

code changes which is an important consideration codes undergo improvements in

methods. Further research should include transient problems which can have the most

significant impact on the computational time for practical HTR safety analysis.

Finally, another potential area of research is the application of these methods to

uncertainty quantification for both the steady state and transient problems. Research

suggests that the analytical Jacobian may not be neccesary for accurate determination

of uncertainty and sensitivities. The availiability of both the analytical and finite-

101

difference based Jacobian permit analysis the error introduced by approximating the

Jacobian in both the thermal-fluids and coupled models.

102

Appendices

103

Appendix A

Additional Analysis of Krylov
Solvers

Much of the focus of this research has been on GMRES as the Krylov iterative

solver. Research has shown that the performance of Krylov methods can vary widely

depending on the type of problem. For this reason, the behavior of the Bi - Conjugate

Gradient Stabilized method was analyzed. BiCGStab is used throughout reactor

analysis and have been shown to outperform GMRES is some cases.

The thermal fluids analytical Jacobian was chosen as the test case. Although this

case is smaller than the coupled case, the comparison should provide some insight

into the coupled performance as well. Because the two approaches are very different,

and were implemented differently, the comparison must be a mixture of quantita-

tive and qualitative analysis. The GMRES solver used above is an INTEL/MKL

implementation, and is well optimized. The BiCGStab solver is a mix of user coding

and mkl routines to peform the matrix-vector multiplication and application of the

preconditioner.

The first comparison is of the the inner iteration per Newton step. In order to see

a substantial improvement in performance, BiCGStab must solve the problem with

significantly less inners. Figure A.1 illustrates the differences. As can be seen, the two

solvers require similar numbers of inners iterations. With the same number of Newton

steps, the performances should be similar

104

Table A.1: Krylov Solver Performance

Krylov Method GMRES BiCGStab
Time [s] 1.167 1.554

Newton Itr 7 7
Inner Itr 451 398

Inners / Newton 64 57

Figure A.1: Krylov Solvers Inners per Newton Step

105

As noted above, the similar number of inner iteration suggests the overal perfor-

mance should be similar. Because the GMRES solver is likely more efficient, it may

well outperform the BiCGStab solver. The performance is given in Table A.1, which

indicates that GMRES is slightly faster than BiCGStab. Again, with bigger problems,

one solver might perform much better than the other, and that is outside the scope of

the research performed here. Analysis of the work performed by GMRES seems to

suggest that the Krylov methods favor dense residual vectors. Any increase in the

dimension, N, or stored subspace, K, dramatically increases the orthgonalization work

of the iterative method. This puts it at a disadvantage compared to the direct solution

methods. Futher development will work to improve storage of the coefficient matrix

and residual vector. This should improve the performance of GMRES dramatically.

106

Appendix B

Additional Analysis of
Preconditioners

As noted above, the incomplete LU factorization, without fill-in (ILU0), was used

to precondition the GMRES solver. This approach is widely used and has been

implemented in Neutronics solvers and thermal fluids codes throughout the nuclear

industry. Research indicates that the preconditioner can have a substantial impact

on the convergence of the Krylov solver. The state-of-practice in neutronics is to

perform the ILU decomposition on a matrix similar to A. The decomposed matrix,

M, is generally a block-wise version of A, with the coupling terms between subfields

eliminated.

The decomposition was actually performed on the full Jacobian matrix. In order

to gain more understanding of the preconditioner impact, some other approaches were

analyzed. Following the conventional approach, the decomposed matrix was reduced

from the Jacobian to a block-wise version of the Jacobian. The decomposed matrix

was further reduced to the original components of A. This was approach used in the

Jacobian-Free solver, as the partial derivatives that compose part of J were assumed

to not exist.

The analytical Jacobian from the thermal-fluids was used as the test case. A good

measure of the impact of the preconditioner is the number of inner iteration required

by GMRES. This is given in Figure B.1. The number of inners and Newton steps

decreased when the preconditioned block-A matrix is augmented with some partial

derivatives. The improvement in performance is much smaller when the Block-wise

Jacobian is expanded to be the full Jacobian.

The timings are given in Table B.1. The block-wise Jacobian is nearly as effective

a preconditioner as the complete Jacobian. The larger matrix used in the coupled

solution may benefit from a more diagonal preconditioner like the block-wise Jacobian.

Another preconditioner was the incomplete LU factorization, with threshold fill-in

107

Table B.1: ILU0 Decomposed Matrix Performance

Matrix Jacobian Block-wise Jac. Block-wise A
Time [s] 1.167 1.526 1.663

Newton Itr 7 8 8
GMRES Inners 451 1076 1333
Inners / Newton 64 135 167

(ILUT). This was tested, and was found to underperform when compared to the ILU0

preconditioning. The behavior is not shown, but the ILUT has two problems. The

first is difficulty in reducing the residual for the first few iterations. It appears it is

more challenging for the ILUT to enter the converence region, where Newton’s method

performs the best. Secondly, the solution appears to stagnate just above pratical

convergence of the primary variables, ∆X/X ≈ 10−6.

These results suggest that the ILU0 preconditioner is adequate for the research

here, but further research and development are needed to improve the performance

of the Krylov methods. Problem specific preconditioning has received significant

attention, and these may have value for the Newton’s method class of approaches in

reactor analysis.

108

Figure B.1: ILU0 Inner Iterations per Newton Step

109

Appendix C

Derivation: Solid Energy Equation

Solid Energy Equation Derivation for Implicit/Newton Iteration

∂

∂t
[(1− ε)ρscpsTs] ∆V

= DeTs,E +DwTs,W +DnTs,N +DsTs,S +DtTs,T +DbTs,B

− (De +Dw +Dn +Ds +Dt +Db)Ts,P − α(Ts,P − Tf,P)∆V +Q∆V (C.1)

Coefficients

De = (1− εe)kse re
∂re

∆θ∆z Dw = (1− εw)ksw
rw
∂rw

∆θ∆z

Dn = (1− εn)ksn
1
rn

1
∂θn

∆r∆z Ds = (1− εs)kss 1
rs

1
∂θs

∆r∆z

Dt = (1− εt)kst 1
∂zt

r2
e−r2

w

2
∆θ Db = (1− εb)ksb 1

∂zb

r2
e−r2

w

2
∆θ

(C.2)

Using a simplifying coefficient

Ke = (1− εe) re
∂re

∆θ∆z Kw = (1− εw) rw
∂rw

∆θ∆z

Kn = (1− εn) 1
rn

1
∂θn

∆r∆z Ks = (1− εs) 1
rs

1
∂θs

∆r∆z

Kt = (1− εt) 1
∂zt

r2
e−r2

w

2
∆θ Kb = (1− εb) 1

∂zb

r2
e−r2

w

2
∆θ

(C.3)

The revised coefficients are then given as,

DE = KE

(
k

(k)
s,E + δks,E

)
DW = KW

(
k

(k)
s,W + δks,W

)
DN = KN

(
k

(k)
s,N + δks,N

)
DS = KS

(
k

(k)
s,S + δks,S

)
DT = KT

(
k

(k)
s,T + δks,T

)
DB = KB

(
k

(k)
s,B + δks,B

)
α = α(k) + δα

(C.4)

110

The primary variables are then given as

Ts,E = T
(k)
s,E + δTs,E Ts,W = T

(k)
s,W + δTs,W

Ts,N = T
(k)
s,N + δTs,N Ts,S = T

(k)
s,S + δTs,S

Ts,T = T
(k)
s,T + δTs,T Ts,B = T

(k)
s,B + δTs,B

Ts,P = T
(k)
s,P + δTs,P Tf,P = T

(k)
f,P + δTf,P

(C.5)

The new equation is then given as,

KE

(
k

(k)
s,E + δks,E

)(
T

(k)
s,E + δTs,E

)
+KW

(
k

(k)
s,W + δks,W

)(
T

(k)
s,W + δTs,W

)
+KN

(
k

(k)
s,N + δks,N

)(
T

(k)
s,N + δTs,N

)
+KS

(
k

(k)
s,S + δks,S

)(
T

(k)
s,S + δTs,S

)
+KT

(
k

(k)
s,T + δks,T

)(
T

(k)
s,T + δTs,T

)
+KB

(
k

(k)
s,B + δks,B

)(
T

(k)
s,B + δTs,B

)
−KE

(
k

(k)
s,E + δks,E

)(
T

(k)
s,P + δTs,P

)
−KW

(
k

(k)
s,W + δks,W

)(
T

(k)
s,P + δTs,P

)
−KN

(
k

(k)
s,N + δks,N

)(
T

(k)
s,P + δTs,P

)
−KS

(
k

(k)
s,S + δks,S

)(
T

(k)
s,P + δTs,P

)
−KT

(
k

(k)
s,T + δks,T

)(
T

(k)
s,P + δTs,P

)
−KB

(
k

(k)
s,B + δks,B

)(
T

(k)
s,P + δTs,P

)
−
(
α(k) + δα

) [(
T

(k)
s,P + δTs,P

)
−
(
T

(k)
f,P + δTf,P

)]
∆V +Q∆V = 0 (C.6)

Getting rid of the higher order terms and simplifying

KE

(
k

(k)
s,ET

(k)
s,E + δks,ET

(k)
s,E + k

(k)
s,EδTs,E

)
+KW

(
k

(k)
s,WT

(k)
s,W + δks,WT

(k)
s,W + k

(k)
s,W δTs,W

)
+KN

(
k

(k)
s,NT

(k)
s,N + δks,NT

(k)
s,N + k

(k)
s,NδTs,N

)
+KS

(
k

(k)
s,ST

(k)
s,S + δks,ST

(k)
s,S + k

(k)
s,SδTs,S

)
+KT

(
k

(k)
s,TT

(k)
s,T + δks,TT

(k)
s,T + k

(k)
s,T δTs,T

)
+KB

(
k

(k)
s,BT

(k)
s,B + δks,BT

(k)
s,B + k

(k)
s,BδTs,B

)
−KE

(
k

(k)
s,ET

(k)
s,P + δks,ET

(k)
s,P + k

(k)
s,EδTs,P

)
−KW

(
k

(k)
s,WT

(k)
s,P + δks,WT

(k)
s,P + k

(k)
s,W δTs,P

)
−KN

(
k

(k)
s,NT

(k)
s,P + δks,NT

(k)
s,P + k

(k)
s,NδTs,P

)
−KS

(
k

(k)
s,ST

(k)
s,P + δks,ST

(k)
s,P + k

(k)
s,SδTs,P

)
−KT

(
k

(k)
s,TT

(k)
s,P + δks,TT

(k)
s,P + k

(k)
s,T δTs,P

)
−KB

(
k

(k)
s,BT

(k)
s,P + δks,BT

(k)
s,P + k

(k)
s,BδTs,P

)
−
(
α(k)T

(k)
s,P + δαT

(k)
s,P + α(k)δTs,P

)
∆V +

(
α(k)T

(k)
f,P + δαT

(k)
f,P + α(k)δTf,P

)
∆V

+Q∆V = 0 (C.7)

Further simplifications,

111

(
KEδks,ET

(k)
s,E + . . .+KBδks,BT

(k)
s,B

)
− (KEδks,E +KW δks,W +KNδks,N +KSδks,S +KT δks,T +KBδks,B)T

(k)
s,P

−∆V δαT
(k)
s,P + ∆V δαT

(k)
f,P

+
(
KEk

(k)
s,EδTs,E + . . .+KBk

(k)
s,BδTs,B

)
−
(
KEk

(k)
s,E +KWk

(k)
s,W +KNk

(k)
s,N +KSk

(k)
s,S +KTk

(k)
s,T +KBk

(k)
s,B

)
δTs,P

−∆V α(k)δTs,P + ∆V α(k)δTf,P

+
(
KEk

(k)
s,ET

(k)
s,E + . . .+KBk

(k)
s,BT

(k)
s,B

)
−
(
KEk

(k)
s,E +KWk

(k)
s,W +KNk

(k)
s,N +KSk

(k)
s,S +KTk

(k)
s,T +KBk

(k)
s,B

)
T

(k)
s,P

−∆V α(k)T
(k)
s,P + ∆V α(k)T

(k)
f,P = 0 (C.8)

Addition of the flux source term,

Q∆V = P̄n,fuel (κΣ1φ1 + κΣ2φ2 + κΣ3φ3) ∆V

κΣφ =
(
κΣ(k) + δκΣ

) (
φ(k) + δφ

)
=
(
κΣ(k)φ(k) + δκΣφ(k) + κΣ(k)δφ

)
(C.9)

Inserting into the equation

112

−∆V P̄n,fuel

(
κΣ

(k)
1 φ

(k)
1 + δκΣ1φ

(k)
1 + κΣ

(k)
1 δφ1

)
−∆V P̄n,fuel

(
κΣ

(k)
2 φ

(k)
2 + δκΣ2φ

(k)
2 + κΣ

(k)
2 δφ2

)
−∆V P̄n,fuel

(
κΣ

(k)
3 φ

(k)
3 + δκΣ3φ

(k)
3 + κΣ

(k)
3 δφ3

)
=
(
KEδks,ET

(k)
s,E + . . .+KBδks,BT

(k)
s,B

)
− (KEδks,E +KW δks,W +KNδks,N +KSδks,S +KT δks,T +KBδks,B)T

(k)
s,P

−∆V δαT
(k)
s,P + ∆V δαT

(k)
f,P

+
(
KEk

(k)
s,EδTs,E + . . .+KBk

(k)
s,BδTs,B

)
−
(
KEk

(k)
s,E +KWk

(k)
s,W +KNk

(k)
s,N +KSk

(k)
s,S +KTk

(k)
s,T +KBk

(k)
s,B

)
δTs,P

−∆V α(k)δTs,P + ∆V α(k)δTf,P

+
(
KEk

(k)
s,ET

(k)
s,E + . . .+KBk

(k)
s,BT

(k)
s,B

)
−
(
KEk

(k)
s,E +KWk

(k)
s,W +KNk

(k)
s,N +KSk

(k)
s,S +KTk

(k)
s,T +KBk

(k)
s,B

)
T

(k)
s,P

−∆V α(k)T
(k)
s,P + ∆V α(k)T

(k)
f,P (C.10)

Collecting like terms for organization,

113

(
KEδks,ET

(k)
s,E + . . .+KBδks,BT

(k)
s,B

)
− (KEδks,E +KW δks,W +KNδks,N +KSδks,S +KT δks,T +KBδks,B)T

(k)
s,P

−∆V δαT
(k)
s,P + ∆V δαT

(k)
f,P−

+ ∆V P̄n,fuel

(
δκΣ1φ

(k)
1 + δκΣ2φ

(k)
2 + δκΣ3φ

(k)
3

)
+
(
KEk

(k)
s,EδTs,E + . . .+KBk

(k)
s,BδTs,B

)
−
(
KEk

(k)
s,E +KWk

(k)
s,W +KNk

(k)
s,N +KSk

(k)
s,S +KTk

(k)
s,T +KBk

(k)
s,B

)
δTs,P

−∆V α(k)δTs,P + ∆V α(k)δTf,P

+ ∆V P̄n,fuel

(
κΣ

(k)
1 δφ+ κΣ

(k)
2 δφ2 + κΣ

(k)
3 δφ3

)
+
(
KEk

(k)
s,ET

(k)
s,E + . . .+KBk

(k)
s,BT

(k)
s,B

)
−
(
KEk

(k)
s,E +KWk

(k)
s,W +KNk

(k)
s,N +KSk

(k)
s,S +KTk

(k)
s,T +KBk

(k)
s,B

)
T

(k)
s,P

− α(k)T
(k)
s,P∆V + α(k)T

(k)
f,P∆V

+ ∆V P̄n,fuel

(
κΣ

(k)
1 φ

(k)
1 + κΣ

(k)
2 φ

(k)
2 + κΣ

(k)
3 φ

(k)
3

)
= 0

(C.11)

To simplify, the following constants,

S(k) =
(
KEk

(k)
s,ET

(k)
s,E + . . .+KBk

(k)
s,BT

(k)
s,B

)
−
(
KEk

(k)
s,E +KWk

(k)
s,W +KNk

(k)
s,N +KSk

(k)
s,S +KTk

(k)
s,T +KBk

(k)
s,B

)
T

(k)
s,P

− α(k)∆V T
(k)
s,P + α(k)∆V T

(k)
f,P

+ ∆V P̄n,fuel

(
κΣ

(k)
1 φ

(k)
1 + κΣ

(k)
2 φ

(k)
2 + κΣ

(k)
3 φ

(k)
3

)
(C.12)

Updated Equation, moving the non-source to the LHS

114

−
(
KEδks,ET

(k)
s,E + . . .+KBδks,BT

(k)
s,B

)
+ (KEδks,E +KW δks,W +KNδks,N +KSδks,S +KT δks,T +KBδks,B)T

(k)
s,P

+ ∆V δαT
(k)
s,P −∆V δαT

(k)
f,P

−∆V P̄n,fuel

(
δκΣ1φ

(k)
1 + δκΣ2φ

(k)
2 + δκΣ3φ

(k)
3

)
−
(
KEk

(k)
s,EδTs,E + . . .+KBk

(k)
s,BδTs,B

)
+
(
KEk

(k)
s,E +KWk

(k)
s,W +KNk

(k)
s,N +KSk

(k)
s,S +KTk

(k)
s,T +KBk

(k)
s,B

)
δTs,P

+ ∆V α(k)δTs,P −∆V α(k)δTf,P

−∆V P̄n,fuel

(
κΣ

(k)
1 δφ+ κΣ

(k)
2 δφ2 + κΣ

(k)
3 δφ3

)
= S(k) (C.13)

The next step is to the delta-coefficients. The fuel coefficients are relatively simple.

α = f (Ts, Tf , P, vx, vy, vz)

δα =

(
∂α

∂Ts

)n−1

δTs + . . .+

(
∂α

∂vz

)n−1

δvz

ks = f (Ts) δks =
(
∂ks
∂Ts

)n−1

δTs (C.14)

Reorganizing again

115

KE

(
T

(k)
s,P − T

(k)
s,E

)
δks,E +KW

(
T

(k)
s,P − T

(k)
s,W

)
δks,W

+KN

(
T

(k)
s,P − T

(k)
s,N

)
δks,N +KS

(
T

(k)
s,P − T

(k)
s,S

)
δks,S

+KT

(
T

(k)
s,P − T

(k)
s,T

)
δks,T +KB

(
T

(k)
s,P − T

(k)
s,B

)
δks,B

+ ∆V
(
T

(k)
s,P − T

(k)
f,P

)
δα

−∆V
(
φ

(k)
1 δκΣ1 + φ

(k)
2 δκΣ2 + φ

(k)
3 δκΣ3

)
−
(
KEk

(k)
s,EδTs,E + . . .+KBk

(k)
s,BδTs,B

)
+
(
KEk

(k)
s,E +KWk

(k)
s,W +KNk

(k)
s,N +KSk

(k)
s,S +KTk

(k)
s,T +KBk

(k)
s,B

)
δTs,P

+ ∆V α(k)δTs,P −∆V α(k)δTf,P

−∆V P̄n,fuel

(
κΣ

(k)
1 δφ+ κΣ

(k)
2 δφ2 + κΣ

(k)
3 δφ3

)
= Sk (C.15)

Inserting definitions

116

+KE

(
T

(k)
s,P − T

(k)
s,E

)(∂ks,E
∂Ts,E

)n−1

δTs,E +KW

(
T

(k)
s,P − T

(k)
s,W

)(∂ks,W
∂Ts,W

)n−1

δTs,W

+KN

(
T

(k)
s,P − T

(k)
s,N

)(∂ks,N
∂Ts,N

)n−1

δTs,N +KS

(
T

(k)
s,P − T

(k)
s,S

)(∂ks,S
∂Ts,S

)n−1

δTs,S

+KT

(
T

(k)
s,P − T

(k)
s,T

)(∂ks,T
∂Ts,T

)n−1

δTs,T +KB

(
T

(k)
s,P − T

(k)
s,B

)(∂ks,B
∂Ts,B

)n−1

δTs,B

+

(
KE

(
T

(k)
s,P − T

(k)
s,E

)(∂ks,E
∂Ts,P

)n−1

+KW

(
T

(k)
s,P − T

(k)
s,W

)(∂ks,W
∂Ts,P

)n−1

+KN

(
T

(k)
s,P − T

(k)
s,N

)(∂ks,N
∂Ts,P

)n−1

+KS

(
T

(k)
s,P − T

(k)
s,S

)(∂ks,S
∂Ts,P

)n−1

+KT

(
T

(k)
s,P − T

(k)
s,T

)(∂ks,T
∂Ts,P

)n−1

+KB

(
T

(k)
s,P − T

(k)
s,B

)(∂ks,B
∂Ts,P

)n−1
)
δTs,P

+ ∆V
(
T

(k)
s,P − T

(k)
f,P

)((∂αP
∂Ts,P

)n−1

δTs,P +

(
∂αP
∂Tf,P

)n−1

δTf,P +

(
∂αP
∂PP

)n−1

δPP

)

+ ∆V
(
T

(k)
s,P − T

(k)
f,P

)((∂αP
∂vx

)n−1

δvx +

(
∂αP
∂vy

)n−1

δvy +

(
∂αP
∂vz

)n−1

δvz

)
−∆V P̄n,fuel

(
φ

(k)
1 δκΣ1 + φ

(k)
2 δκΣ2 + φ

(k)
3 δκΣ3

)
−
(
KEk

(k)
s,EδTs,E + . . .+KBk

(k)
s,BδTs,B

)
+
(
KEk

(k)
s,E +KWk

(k)
s,W +KNk

(k)
s,N +KSk

(k)
s,S +KTk

(k)
s,T +KBk

(k)
s,B

)
δTs,P

+ ∆V α(k)δTs,P −∆V α(k)δTf,P

−∆V P̄n,fuel

(
κΣ

(k)
1 δφ+ κΣ

(k)
2 δφ2 + κΣ

(k)
3 δφ3

)
= Sk (C.16)

The cross section dependencies,

κΣ = f (TD, TM)

δκΣ =

((
∂κΣ
∂TD

)n−1

δTS +
(
∂κΣ
∂TM

)n−1

δTM

)
(C.17)

Inserting the cross section terms, collecting XS temperature terms

117

+KE

(
T

(k)
s,P − T

(k)
s,E

)(∂ks,E
∂Ts,E

)n−1

δTs,E +KW

(
T

(k)
s,P − T

(k)
s,W

)(∂ks,W
∂Ts,W

)n−1

δTs,W

+KN

(
T

(k)
s,P − T

(k)
s,N

)(∂ks,N
∂Ts,N

)n−1

δTs,N +KS

(
T

(k)
s,P − T

(k)
s,S

)(∂ks,S
∂Ts,S

)n−1

δTs,S

+KT

(
T

(k)
s,P − T

(k)
s,T

)(∂ks,T
∂Ts,T

)n−1

δTs,T +KB

(
T

(k)
s,P − T

(k)
s,B

)(∂ks,B
∂Ts,B

)n−1

δTs,B

+

(
KE

(
T

(k)
s,P − T

(k)
s,E

)(∂ks,E
∂Ts,P

)n−1

+KW

(
T

(k)
s,P − T

(k)
s,W

)(∂ks,W
∂Ts,P

)n−1

+KN

(
T

(k)
s,P − T

(k)
s,N

)(∂ks,N
∂Ts,P

)n−1

+KS

(
T

(k)
s,P − T

(k)
s,S

)(∂ks,S
∂Ts,P

)n−1

+KT

(
T

(k)
s,P − T

(k)
s,T

)(∂ks,T
∂Ts,P

)n−1

+KB

(
T

(k)
s,P − T

(k)
s,B

)(∂ks,B
∂Ts,P

)n−1
)
δTs,P

+ ∆V
(
T

(k)
s,P − T

(k)
f,P

)((∂αP
∂Ts,P

)n−1

δTs,P +

(
∂αP
∂Tf,P

)n−1

δTf,P +

(
∂αP
∂PP

)n−1

δPP

)

+ ∆V
(
T

(k)
s,P − T

(k)
f,P

)((∂αP
∂vx

)n−1

δvx +

(
∂αP
∂vy

)n−1

δvy +

(
∂αP
∂vz

)n−1

δvz

)

−∆V P̄n,fuel

(
φ

(k)
1

(
∂κΣ1

∂TD

)n−1

+ φ
(k)
2

(
∂κΣ2

∂TD

)n−1

+ φ
(k)
3

(
∂κΣ3

∂TD

)n−1
)
δTs,D

−∆V P̄n,fuel

(
φ

(k)
1

(
∂κΣ1

∂TM

)n−1

+ φ
(k)
2

(
∂κΣ2

∂TM

)n−1

+ φ
(k)
3

(
∂κΣ3

∂TM

)n−1
)
δTs,M

−
(
KEk

(k)
s,EδTs,E + . . .+KBk

(k)
s,BδTs,B

)
+
(
KEk

(k)
s,E +KWk

(k)
s,W +KNk

(k)
s,N +KSk

(k)
s,S +KTk

(k)
s,T +KBk

(k)
s,B

)
δTs,P

+ ∆V α(k)δTs,P −∆V α(k)δTf,P

−∆V P̄n,fuel

(
κΣ

(k)
1 δφ+ κΣ

(k)
2 δφ2 + κΣ

(k)
3 δφ3 + κΣ

(k)
4 δφ4

)
= Sk (C.18)

All terms are gathered, giving the final form

118

+KE

[(
T

(k)
s,P − T

(k)
s,E

)(∂ks,E
∂Ts,E

)n−1

− k(k)
s,E

]
δTs,E

+ . . .+

KB

[(
T

(k)
s,P − T

(k)
s,B

)(∂ks,B
∂Ts,B

)n−1

− k(k)
s,B

]
δTs,B

+

[
KE

[(
T

(k)
s,P − T

(k)
s,E

)(∂ks,E
∂Ts,P

)n−1

+ k
(k)
s,E

]
+KW

[(
T

(k)
s,P − T

(k)
s,W

)(∂ks,W
∂Ts,P

)n−1

+ k
(k)
s,W

]

+KN

[(
T

(k)
s,P − T

(k)
s,N

)(∂ks,N
∂Ts,P

)n−1

+ k
(k)
s,N

]
+KS

[(
T

(k)
s,P − T

(k)
s,S

)(∂ks,S
∂Ts,P

)n−1

+ k
(k)
s,S

]

+KT

[(
T

(k)
s,P − T

(k)
s,T

)(∂ks,T
∂Ts,P

)n−1

+ k
(k)
s,T

]
+KB

[(
T

(k)
s,P − T

(k)
s,B

)(∂ks,B
∂Ts,P

)n−1

+ k
(k)
s,B

]

+∆V

((
T

(k)
s,P − T

(k)
f,P

)(∂αP
∂Ts,P

)n−1

+ α(k)

)]
δTs,P

+ ∆V
(
T

(k)
s,P − T

(k)
f,P

)((∂α
∂vx

)n−1

δvx +

(
∂α

∂vy

)n−1

δvy +

(
∂α

∂vz

)n−1

δvz

)

+∆V

[(
T

(k)
s,P − T

(k)
f,P

)(∂αP
∂Tf,P

)n−1

− α(k)

]
δTf,P+∆V

[(
T

(k)
s,P − T

(k)
f,P

)(∂αP
∂PP

)n−1
]
δPP

−∆V P̄n,fuel

([
κΣ

(k)
1

]
δφ1 −

[
κΣ

(k)
2

]
δφ2 −

[
κΣ

(k)
3

]
δφ3

)
−∆V P̄n,fuel

(
φ

(k)
1

(
∂κΣ1

∂TD

)n−1

+ φ
(k)
2

(
∂κΣ2

∂TD

)n−1

+ φ
(k)
3

(
∂κΣ3

∂TD

)n−1
)
δTs,D

−∆V P̄n,fuel

(
φ

(k)
1

(
∂κΣ1

∂TM

)n−1

+ φ
(k)
2

(
∂κΣ2

∂TM

)n−1

+ φ
(k)
3

(
∂κΣ3

∂TM

)n−1
)
δTs,M = Sk

(C.19)

119

Appendix D

Derivation: Fluid Energy Equation

Fluid Energy Equation Derivation for Implicit/Newton Iteration

∂

∂t

[
ερfcpfTf

]
∆V =

AETf,E + AWTf,W + ANTf,N + ASTs,S + ATTf,T + ABTf,B

− (AE + AW + AN + AS + AT + AB)Tf,P − α(Tf,P − Ts,P)∆V (D.1)

Coefficients

AE = DEA(|PE|) + [‖−FE, 0‖] AW = DwA(|Pw|) + [‖FW , 0‖]
AS = DSA(|PS|) + [‖−FS, 0‖] AN = DnA(|Pn|) + [‖FN , 0‖]
AT = DTA(|PT |) + [‖−FT , 0‖] AB = DbA(|Pb|) + [‖FB, 0‖]

(D.2)

Subcoefficients

Fe = (ṁcp)ere∆θ∆z De = εekfe
re
∂re

∆θ∆z

Fw = (ṁcp)wrw∆θ∆z Dw = εwkfw
rw
∂rw

∆θ∆z

Fn = (ṁcp)n∆r∆z Dn = εnkfn
1
rn

1
∂θn

∆r∆z

Fs = (ṁcp)s∆r∆z Ds = εskfs
1
rs

1
∂θs

∆r∆z

Ft = (ṁcp)t
r2
e−r2

w

2
∆θ Dt = εtkft

1
∂zt

r2
e−r2

w

2
∆θ

Fb = (ṁcp)b
r2
e−r2

w

2
∆θ Db = εbkfb

1
∂zb

r2
e−r2

w

2
∆θ

(D.3)

Expanding the primary variables first,

Tf,E = T
(k)
f,E + δTf,E Tf,W = T

(k)
f,W + δTf,W

Tf,N = T
(k)
f,N + δTf,N Tf,S = T

(k)
f,S + δTf,S

Tf,T = T
(k)
f,T + δTf,T Tf,B = T

(k)
f,B + δTf,B

Ts,P = T
(k)
s,P + δTs,P Tf,P = T

(k)
f,P + δTf,P

(D.4)

Inserting into the equation

120

(AE + AW + AN + AS + AT + AB) (Tf,P + δTf,P)

− AE (Tf,E + δTf,E)− AW (Tf,W + δTf,W)− AN (Tf,N + δTf,N)

− AS (Ts,S + δTf,S)− AT (Tf,T + δTf,T)− AB (Tf,B + δTf,B)

+ ((Tf,P + δTf,P)− (Ts,P + δTs,P)) ∆V δα = 0 (D.5)

The coefficients are expanded as well. This assumes only upwind differencing. The

derivation will assume all ”upwind” statements are true, and implementation will

allow only one direction for flow per Newton iteration. Flow can change direction,

changing the upwind direction.

α = α(k) + δα

Fe = GE

(
c

(k)
pf,E + δcpf,E

)(
ṁ

(k)
E + δṁE

)
De = KE

(
k

(k)
f,E + δkf,E

)
Fw = GW

(
c

(k)
pf,W + δcpf,W

)(
ṁ

(k)
W + δṁW

)
Dw = KW

(
k

(k)
f,W + δkf,W

)
Fn = GN

(
c

(k)
pf,N + δcpf,N

)(
ṁ

(k)
N + δṁN

)
Dn = KN

(
k

(k)
f,N + δkf,N

)
Fs = GS

(
c

(k)
pf,S + δcpf,S

)(
ṁ

(k)
S + δṁS

)
Ds = KS

(
k

(k)
f,S + δkf,S

)
Ft = GT

(
c

(k)
pf,T + δcpf,T

)(
ṁ

(k)
T + δṁT

)
Dt = KT

(
k

(k)
f,T + δkf,T

)
Fb = GB

(
c

(k)
pf,B + δcpf,B

)(
ṁ

(k)
B + δṁB

)
Db = KB

(
k

(k)
f,B + δkf,B

)
(D.6)

Developing the coefficients for simplicity, losing higher order terms

(Tf,P − Tf,E) δAE + (Tf,P − Tf,W) δAW + AE (δTf,P − δTf,E) + AW (δTf,P − δTf,W)

(Tf,P − Tf,N) δAN + (Tf,P − Tf,S) δAS + AN (δTf,P − δTf,N) + AS (δTf,P − δTf,S)

(Tf,P − Tf,T) δAT + (Tf,P − Tf,B) δAB + AT (δTf,P − δTf,T) + AB (δTf,P − δTf,B)

+ (Tf,P − Ts,P) ∆V δα + (δTf,P − δTs,P) ∆V α =

− AE (Tf,P − Tf,E)− AW (Tf,P − Tf,W)

− AN (Tf,P − Tf,N)− AS (Tf,P − Tf,S)

− AT (Tf,P − Tf,T)− AB (Tf,P − Tf,B)

− (Tf,P − Ts,P) ∆V α (D.7)

The new equation is then given as, using a shorthand for the coefficients,

121

(Tf,P − Tf,E)KE

(
∂kE
∂Tf,P

δTf,P +
∂kE
∂Tf,E

δTf,E +
∂kE
∂pf,P

δpf,P +
∂kE
∂pf,E

δpf,E

)
+ (Tf,P − Tf,E)GEṁE

(
∂cp,E
∂Tf,P

δTf,P +
∂cp,E
∂Tf,E

δTf,E +
∂cp,E
∂pf,P

δpf,P +
∂cp,E
∂pf,E

δpf,E

)
+(Tf,P − Tf,E)GEcp,E

(
∂ṁE

∂Ts,P
δTs,P + ...+

∂ṁE

∂vz,P
δvz,P +

∂ṁE

∂Ts,E
δTs,E + ...+

∂ṁE

∂vz,E
δvz,E

)
+ ...+

(Tf,P − Tf,B)KB

(
∂kB
∂Tf,P

δTf,P +
∂kB
∂Tf,B

δTf,B +
∂kB
∂pf,P

δpf,P +
∂kB
∂pf,B

δpf,B

)
+ (Tf,P − Tf,B)GBṁB

(
∂cp,B
∂Tf,P

δTf,P +
∂cp,B
∂Tf,B

δTf,B +
∂cp,B
∂pf,P

δpf,P +
∂cp,B
∂pf,B

δpf,B

)
+(Tf,P − Tf,B)GBcp,B

(
∂ṁB

∂Ts,P
δTs,P + ...+

∂ṁB

∂vz,P
δvz,P +

∂ṁB

∂Ts,B
δTs,B + ...+

∂ṁB

∂vz,B
δvz,B

)
+ ∆V (Tf,P − Ts,P)

(
∂α

∂Ts,P
Ts,P + ...+

∂α

∂vz,P
δvz,P

)
+ AE (δTf,P − δTf,E) + AW (δTf,P − δTf,W) + AN (δTf,P − δTf,N)

+AS (δTf,P − δTf,S)AT (δTf,P − δTf,T)+AB (δTf,P − δTf,B)+(δTf,P − δTs,P) ∆V α =

− AE (Tf,P − Tf,E)− AW (Tf,P − Tf,W)− AN (Tf,P − Tf,N)

− AS (Tf,P − Tf,S)− AT (Tf,P − Tf,T)− AB (Tf,P − Tf,B)− (Tf,P − Ts,P) ∆V α

(D.8)

122

Appendix E

Derivation: Pressure Equation

The mass flow equation for each node,

(rN − rN−1)

Ar1

ṁk+1
1 − ṁk

1

∆t
= −(rN − rN−1)

Ar1
W k+1
r1 ṁk+1

1 −∆pk+1
r1

(rN − rN+1)

Ar2

ṁk+1
2 − ṁk

2

∆t
= −(rN − rN+1)

Ar2
W k+1
r2 ṁk+1

2 −∆pk+1
r2

(θM − θM−1)

Aθ3

ṁk+1
3 − ṁk

3

∆t
= −(θM − θM−1)

Aθ3
W k+1
θ3 ṁk+1

3 − 1

rN
∆pk+1

θ3

(θM − θM+1)

Aθ4

ṁk+1
4 − ṁk

4

∆t
= −(θM − θM+1)

Aθ4
W k+1
θ4 ṁk+1

4 − 1

rN
∆pk+1

θ4

(zI − zI−1)

Az5

ṁk+1
5 − ṁk

5

∆t
= −(zI − zI−1)

Az5
W k+1
z5 ṁk+1

5 −∆pk+1
z5 + g∆z5ρ

k+1
5

(zI − zI+1)

Az6

ṁk+1
6 − ṁk

6

∆t
= −(zI − zI+1)

Az6
W k+1
z6 ṁk+1

6 −∆pk+1
z6 − g∆z6ρ

k+1
6 (E.1)

A few constants for convenience,

G1 = Ar1
rN−rN−1

G3 = Aθ3
θM−θM−1

G5 = Az5
zI−zI−1

G2 = Ar2
rN−rN+1

G4 = Aθ4
θM−θM+1

G6 = Az6
zI−zI+1

(E.2)

Using these in the equations,

ṁk+1
1 −ṁk1

∆t
= −W k+1

r1 ṁk+1
1 −G1∆pk+1

r1

ṁk+1
2 −ṁk2

∆t
= −W k+1

r2 ṁk+1
2 −G2∆pk+1

r2

ṁk+1
3 −ṁk3

∆t
= −W k+1

θ3 ṁk+1
3 − 1

rN
G3∆pk+1

θ3
ṁk+1

4 −ṁk4
∆t

= −W k+1
θ4 ṁk+1

4 − 1
rN
G4∆pk+1

θ4
ṁk+1

5 −ṁk5
∆t

= −W k+1
z5 ṁk+1

5 −G5∆pk+1
z5 +G5g∆z5ρ

k+1
5

ṁk+1
6 −ṁk6

∆t
= −W k+1

z6 ṁk+1
6 −G6∆pk+1

z6 −G6g∆z6ρ
k+1
6

(E.3)

123

Solving for the k+1 time terms in m-dot.

ṁk+1
1 =

ṁk1
∆t
−G1∆pk+1

r1

(1
∆t

+Wk+1
r1)

ṁk+1
2 =

ṁk2
∆t
−G2∆pk+1

r2

(1
∆t

+Wk+1
r2)

ṁk+1
3 =

ṁk3
∆t
−G3∆pk+1

θ3

(1
∆t

+Wk+1
θ3)

ṁk+1
4 =

ṁk4
∆t
−G4∆pk+1

θ4

(1
∆t

+Wk+1
θ4)

ṁk+1
5 =

ṁk5
∆t
−G5∆pk+1

z5 +G5g∆z5ρ
k+1
5

(1
∆t

+Wk+1
z5)

ṁk+1
6 =

ṁk6
∆t
−G6∆pk+1

z6 −G6g∆z6ρ
k+1
6

(1
∆t

+Wk+1
z6)

(E.4)

Creating the equation in terms of pressure,

V
∆ρ

∆t
= ṁk+1

1 + ṁk+1
2 + ṁk+1

3 + ṁk+1
4 + ṁk+1

5 + ṁk+1
6

V

(
∂ρ

∂T

1

∆t

(
T k+1 − T k

)
+
∂ρ

∂p

1

∆t

(
pk+1 − pk

))
=

ṁk1
∆t
−G1∆pk+1

r1(
1

∆t
+W k+1

r1

) +

ṁk2
∆t
−G2∆pk+1

r2(
1

∆t
+W k+1

r2

) +

ṁk3
∆t
−G3∆pk+1

θ3(
1

∆t
+W k+1

θ3

) +

ṁk4
∆t
−G4∆pk+1

θ4(
1

∆t
+W k+1

θ4

)
+

ṁk5
∆t
−G5∆pk+1

z5 +G5g∆z5ρ
k+1
5(

1
∆t

+W k+1
z5

) +

ṁk6
∆t
−G6∆pk+1

z6 −G6g∆z6ρ
k+1
6(

1
∆t

+W k+1
z6

) (E.5)

Removing the time dependent terms,

0 =
−G1

W k+1
r1

∆pk+1
r1 +

−G2

W k+1
r2

∆pk+1
r2 +

−G3

W k+1
θ3

∆pk+1
θ3 +

−G4

W k+1
θ4

∆pk+1
θ4

+
−G5

W k+1
z5

(
∆pk+1

z5 + g∆z5ρ
k+1
5

)
+
−G6

W k+1
z6

(
∆pk+1

z6 + g∆z6ρ
k+1
6

)
(E.6)

Some coefficients for convenience,

Rr,E = G1

Wk+1
r1

Rr,W = G2

Wk+1
r2

Ra,N = G3

Wk+1
θ3

Ra,S = G4

Wk+1
θ4

Rl,B = G5

Wk+1
z5

Rl,T = G6

Wk+1
z6

bf,B = g∆z5ρ
k+1
5 bf,T = g∆z6ρ

k+1
6

(E.7)

The equations are then given as,

−Rr,E∆pk+1
r1 −Rr,W∆pk+1

r2 −Ra,N∆pk+1
θ3 −Rr,S∆pk+1

θ4

−Rl,B

(
∆pk+1

z5 + bf,B
)
−Rl,T

(
∆pk+1

z6 + bf,B
)

= 0 (E.8)

Expanding the delta pressure in terms of the geometry,

124

Rr,E (pf,P − pf,E) +Rr,W (pf,P − pf,W)

+Ra,N (pf,P − pf,N) +Rr,S (pf,P − pf,S)

+Rl,B ((pf,P − pf,B)− bf,B) +Rl,T ((pf,P − pf,T)− bf,B) = 0 (E.9)

Expanding the primary variables, and coefficients,

Rr,E (δpf,P − δpf,E) +Rr,W (δpf,P − δpf,W)

+Ra,N (δpf,P − δpf,N) +Rr,S (δpf,P − δpf,S)

+Rl,B (δpf,P − δpf,B) +Rl,T (δpf,P − δpf,T)

+ δRr,E (pf,P − pf,E) + δRr,W (pf,P − pf,W)

+ δRa,N (pf,P − pf,N) + δRr,S (pf,P − pf,S)

−Rl,Bδbf,B −Rl,T δbf,B

+ δRl,B ((pf,P − pf,B)− bf,B) + δRl,T ((pf,P − pf,T)− bf,B)

= −Rr,E (pf,P − pf,E)−Rr,W (pf,P − pf,W)

−Ra,N (pf,P − pf,N)−Rr,S (pf,P − pf,S)

−Rl,B ((pf,P − pf,B)− bf,B)−Rl,T ((pf,P − pf,T)− bf,B) (E.10)

The expanded coefficients, all terms included,

125

− (pf,P − pf,E)

[
∂Rr,E

∂Ts,P
δTs,p + ...+

∂Rr,E

∂vz,P
δvz,P

]
− (pf,P − pf,E)

[
∂Rr,E

∂Ts,E
δTs,E + ...+

∂Rr,E

∂vz,E
δvz,E

]
− (pf,P − pf,W)

[
∂Rr,W

∂Ts,P
δTs,p + ...+

∂Rr,W

∂vz,P
δvz,P

]
− (pf,P − pf,W)

[
∂Rr,W

∂Ts,W
δTs,W + ...+

∂Rr,W

∂vz,W
δvz,W

]
+ (pf,P − pf,S)

[
∂Ra,S

∂Ts,P
δTs,P + ...+

∂Ra,S

∂vz,P
δvz,P

]
+ (pf,P − pf,S)

[
∂Ra,S

∂Ts,S
δTs,S + ...+

∂Ra,S

∂vz,S
δvz,S

]
+ (pf,P − pf,N)

[
∂Ra,N

∂Ts,P
δTs,P + ...+

∂Ra,N

∂vz,P
δvz,P

]
+ (pf,P − pf,N)

[
∂Ra,N

∂Ts,N
δTs,N + ...+

∂Ra,N

∂vz,N
δvz,N

]
+ (pf,P − pf,T − bf,T)

[
∂Rl,T

∂Ts,T
δTs,T + ...+

∂Rl,T

∂vz,T
δvz,T

]
+ (pf,P − pf,T − bf,T)

[
∂Rl,T

∂Ts,P
δTs,P + ...+

∂Rl,T

∂vz,P
δvz,P

]
+ (pf,P − pf,B − bf,B)

[
∂Rl,B

∂Ts,B
δTs,B + ...+

∂Rl,B

∂vz,B
δvz,B

]
+ (pf,P − pf,B − bf,B)

[
∂Rl,B

∂Ts,P
δTs,P + ...+

∂Rl,B

∂vz,P
δvz,P

]
−Rl,T

[
∂bf,T
∂Ts,T

δTs,T + ...+
∂bf,T
∂vz,T

δvz,T

]
−Rl,T

[
∂bf,T
∂Ts,P

δTs,P + ...+
∂bf,T
∂vz,P

δvz,P

]
−Rl,B

[
∂bf,B
∂Ts,B

δTs,B + ...+
∂bf,B
∂vz,B

δvz,B

]
−Rl,B

[
∂bf,B
∂Ts,P

δTs,P + ...+
∂bf,B
∂vz,P

δvz,P

]
Rr,E (δpf,P − δpf,E) +Rr,W (δpf,P − δpf,W)

+Ra,N (δpf,P − δpf,N) +Rr,S (δpf,P − δpf,S)

+Rl,B (δpf,P − δpf,B) +Rl,T (δpf,P − δpf,T)

= Rr,E (pf,P − pf,E) +Rr,W (pf,P − pf,W)

+Ra,N (pf,P − pf,N) +Rr,S (pf,P − pf,S)

+Rl,B ((pf,P − pf,B)− bf,B) +Rl,T ((pf,P − pf,T)− bf,B)

(E.11)

126

Appendix F

Derivation: Velocity X Equation

The two mass flows in the x direction for the west and east faces are,

ṁx,E = Rr,E (pf,P − pf,E)

ṁx,W = Rr,W (pf,W − pf,P)
(F.1)

R is the radial flow resistance, with respect to east and west. The velocity definition,

vx,P =
mx,E +mx,W

2
(F.2)

Rewriting the equation with definitions,

2vx,P = Rr,E (pf,P − pf,E) +Rr,W (pf,W − pf,P) (F.3)

Expanding the primary variables

2 (vx,P + δvx,P)

= Rr,E ((pf,P + δpf,P)− (pf,E + δpf,E))

+Rr,W ((pf,W + δpf,W)− (pf,P + δpf,P))

(F.4)

Moving to the LHS

127

2δvx,P + 2vx,P

−Rr,E (δpf,P − δpf,E)−Rr,W (δpf,W − δpf,P)

−Rr,E (pf,P − pf,E)−Rr,W (pf,W − pf,P)

= 0

(F.5)

Expanding the coefficients, ignoring higher order terms

2δvx,P −Rr,E (δpf,P − δpf,E)−Rr,W (δpf,W − δpf,P)

− δRr,E (pf,P − pf,E)− δRr,W (pf,W − pf,P)

= −2vx,P +Rr,E (pf,P − pf,E) +Rr,W (pf,W − pf,P)

(F.6)

Expanding the coefficients completely, some more algebra

2δvx,P −Rr,E (δpf,P − δpf,E)−Rr,W (δpf,W − δpf,p)

− (pf,P − pf,E)

[
∂Rr,E

∂Ts,P
δTs,p + ...+

∂Rr,E

∂vz,P
δvz,P

]
− (pf,P − pf,E)

[
∂Rr,E

∂Ts,E
δTs,E + ...+

∂Rr,E

∂vz,E
δvz,E

]
− (pf,W − pf,P)

[
∂Rr,W

∂Ts,P
δTs,p + ...+

∂Rr,W

∂vz,P
δvz,P

]
− (pf,W − pf,P)

[
∂Rr,W

∂Ts,W
δTs,W + ...+

∂Rr,W

∂vz,W
δvz,W

]
= −2vx,P +Rr,E (pf,P − pf,E) +Rr,W (pf,W − pf,P)

(F.7)

128

Appendix G

Derivation: Velocity Y Equation

The two mass flows in the y direction for the north and south faces are,

ṁy,S = Ra,S (pf,P − pf,S)

ṁy,N = Ra,N (pf,N − pf,P)
(G.1)

R is the azimuthal flow resistance, with respect to north and south. The velocity

definition,

vy,P =
my,N +my,S

2
(G.2)

Rewriting the equation with definitions,

2vy,P = Ra,S (pf,P − pf,S) +Ra,N (pf,N − pf,P) (G.3)

Expanding the primary variables

2 (vy,P + δvy,P)

= Ra,S ((pf,P + δpf,P)− (pf,S + δpf,S))

+Ra,N ((pf,N + δpf,N)− (pf,P + δpf,P))

(G.4)

Moving to the LHS

129

2δvy,P + 2vy,P

−Ra,S (δpf,P − δpf,S)−Ra,N (δpf,N − δpf,P)

−Ra,S (pf,P − pf,S)−Ra,N (pf,N − pf,P) = 0

(G.5)

Expanding the coefficients, ignoring higher order terms

2δvy,P −Ra,S (δpf,P − δpf,S)−Ra,N (δpf,N − δpf,P)

− δRa,S (pf,P − pf,S)− δRa,N (pf,N − pf,P)

= −2vy,P +Ra,S (pf,P − pf,S) +Ra,N (pf,N − pf,P)

(G.6)

Some more algebra, expanding coefficients

2δvy,p −Ra,S (δpf,P − δpf,S)−Ra,N (δpf,N − δpf,P)

− (pf,P − pf,S)

[
∂Ra,S

∂Ts,P
δTs,P + ...+

∂Ra,S

∂vz,P
δvz,P

]
− (pf,P − pf,S)

[
∂Ra,S

∂Ts,S
δTs,S + ...+

∂Ra,S

∂vz,S
δvz,S

]
− (pf,N − pf,P)

[
∂Ra,N

∂Ts,P
δTs,P + ...+

∂Ra,N

∂vz,P
δvz,P

]
− (pf,N − pf,P)

[
∂Ra,N

∂Ts,N
δTs,N + ...+

∂Ra,N

∂vz,N
δvz,N

]
= −2vy,P +Ra,S (pf,R − pf,E) +Ra,N (pf,N − pf,P)

(G.7)

130

Appendix H

Derivation: Velocity Z Equation

The two mass flows in the x direction for the west and east faces are,

ṁz,T = Rl,T (pf,P − pf,T − bf,T)

ṁz,B = Rl,B (pf,B − pf,P − bf,P)
(H.1)

The velocity definition,

vz,P =
mz,B +mz,T

2
(H.2)

Rewriting the equation with definitions,

2vz,P = Rl,T (pf,P − pf,T − bf,T) +Rl,B (pf,B − pf,P − bf,B) (H.3)

Expanding the primary variables and coefficients.,

2 (vz,P + δvz,P) =

+Rl,T ((pf,P + δpf,P)− (pf,T + δpf,T)− (bf,T + δbf,T))

+Rl,B ((pf,B + δpf,B)− (pf,P + δpf,P)− (bf,B + δbf,B))

+ δRl,T (pf,P − pf,T − bf,T) + δRl,B (pf,B − pf,P − bf,B)

(H.4)

Moving to the RHS and LHS

131

2δvz,P −Rl,T (δpf,P − δpf,T − δbf,T)−Rl,B (δpf,B − δpf,P − δbf,B)

− δRl,T (pf,P − pf,T − bf,T)− δRl,B (pf,B − pf,P − bf,B)

= −2vz,P +Rl,T (pf,P − pf,T − bf,T) +Rl,B (pf,B − pf,P − bf,B)

(H.5)

Separating the coefficients,

2δvz,P −Rl,T (δpf,P − δpf,T)−Rl,B (δpf,B − δpf,P)

+Rl,T δbf,T +Rl,Bδbf,B

− (pf,P − pf,T − bf,T) δRl,T

− (pf,B − pf,P − bf,B) δRl,B

= −2vz,P +Rl,T (pf,P − pf,T − bf,T) +Rl,B (pf,B − pf,P − bf,B)

(H.6)

Expanding each coefficient,

2δvz,P −Rl,T (δpf,P − δpf,T)−Rl,B (δpf,B − δpf,P)

+Rl,T

[
∂bf,T
∂Ts,T

δTs,T + ...+
∂bf,T
∂vz,T

δvz,T

]
+Rl,T

[
∂bf,T
∂Ts,P

δTs,P + ...+
∂bf,T
∂vz,P

δvz,P

]
+Rl,B

[
∂bf,B
∂Ts,B

δTs,B + ...+
∂bf,B
∂vz,B

δvz,B

]
+Rl,B

[
∂bf,B
∂Ts,P

δTs,P + ...+
∂bf,B
∂vz,P

δvz,P

]
− (pf,P − pf,T − bf,T)

[
∂Rl,T

∂Ts,T
δTs,T + ...+

∂Rl,T

∂vz,T
δvz,T

]
− (pf,P − pf,T − bf,T)

[
∂Rl,T

∂Ts,P
δTs,P + ...+

∂Rl,T

∂vz,P
δvz,P

]
− (pf,B − pf,P − bf,B)

[
∂Rl,B

∂Ts,B
δTs,B + ...+

∂Rl,B

∂vz,B
δvz,B

]
− (pf,B − pf,P − bf,B)

[
∂Rl,B

∂Ts,P
δTs,P + ...+

∂Rl,B

∂vz,P
δvz,P

]
= −2vz,P +Rl,T (pf,P − pf,T − bf,T) +Rl,B (pf,B − pf,P − bf,B)

(H.7)

132

Appendix I

Derivation: Neutronics

Beginning with the cylindrical time-dependent flux equation,

Vp
1

vg

φng,P − φn−1
g,P

∆t
= χgd

Q∑
q=1

λqCq

+ D̃g,Eφ
n
g,E + D̃g,Wφ

n
g,W + D̃g,Nφ

n
g,N

+ D̃g,Sφ
n
g,S + D̃g,Bφ

n
g,B + D̃g,Tφ

n
g,T

−
(
D̃g,E + D̃g,W + D̃g,N + D̃g,S + D̃g,B + D̃g,T

)
φng,P

−

(
Σa,g +

G∑
g′ 6=g

Σs,gg′

)
Vpφ

n
g,P

+

 G∑
g′=1(6=g)

Σs,g′g + βp
χgp
keff

G∑
g′=1

νΣf,g′

Vpφ
n
g′,P

(I.1)

The diffusion coefficients,

D̃g,E = De
re
∂re

∆θ∆z D̃g,W = Dw
rw
∂rw

∆θ∆z

D̃g,N = Dn
1
rn

1
∂θn

∆r∆z D̃g,S = Ds
1
rs

1
∂θs

∆r∆z

D̃g,B = De
1
∂zb

r2
e−r2

w

2
∆θ D̃g,T = De

1
∂zt

r2
e−r2

w

2
∆θ

(I.2)

The diffusion coefficient, cross section, and eigenvalue need to be addressed. That

derivation will follow. The cross section and diffusion coefficient dependencies

Σs,Σa, νΣf , D,
1

v
, βp = f (Tm, Td) (I.3)

133

The definitions for the cross sections and fluxes

φk+1 = φ(k) + δφ Λk+1 = Λ(k) + δΛ

Σk+1
a = Σ

(k)
a + δΣa Σk+1

s = Σ
(k)
s + δΣs

νΣk+1
f = νΣ

(k)
f + δνΣf Dk+1 = D(k) + δD

(I.4)

Inserting these into the equation,

−
(
D̃

(k)
g,E + δD̃g,E

)(
φ

(k)
g,E + δφg,E

)
−
(
D̃

(k)
g,W + δD̃g,W

)(
φ

(k)
g,W + δφg,W

)
−
(
D̃

(k)
g,N + δD̃g,N

)(
φ

(k)
g,N + δφg,N

)
−
(
D̃

(k)
g,S + δD̃g,S

)(
φ

(k)
g,S + δφg,S

)
−
(
D̃

(k)
g,T + δD̃g,T

)(
φ

(k)
g,B + δφg,B

)
−
(
D̃

(k)
g,T + δD̃g,T

)(
φ

(k)
g,T + δφg,T

)
+
(
D̃

(k)
g,E + δD̃g,E

)(
φ

(k)
g,P + δφg,P

)
+
(
D̃

(k)
g,W + δD̃g,W

)(
φ

(k)
g,P + δφg,P

)
+
(
D̃

(k)
g,N + δD̃g,N

)(
φ

(k)
g,P + δφg,P

)
+
(
D̃

(k)
g,S + δD̃g,S

)(
φ

(k)
g,P + δφg,P

)
+
(
D̃

(k)
g,T + δD̃g,T

)(
φ

(k)
g,P + δφg,P

)
+
(
D̃

(k)
g,T + δD̃g,T

)(
φ

(k)
g,P + δφg,P

)
+ Vp

(
Σ(k)
a,g + δΣa,g

) (
φ

(k)
g,P + δφg,P

)
+ Vp

[
G∑

g′ 6=g

(
Σ

(k)
s,gg′ + δΣs,gg′

)](
φ

(k)
g,P + δφg,P

)
= Vp

G∑
g′=1(6=g)

[(
Σ

(k)
s,g′g + δΣs,g′g

)(
φ

(k)
g′,P + δφg′,P

)]

+ Vpχgp
(
Λ(k) + δΛ

) G∑
g′=1

[(
νΣ

(k)
f,g′ + νδΣf,g′

)(
φ

(k)
g′,P + δφg′,P

)]
(I.5)

Multiplying out,

134

−
(
D̃

(k)
g,Eφ

(k)
g,E + δD̃g,Eφ

(k)
g,E + D̃

(k)
g,Eδφg,E

)
−
(
D̃

(k)
g,Wφ

(k)
g,W + δD̃g,Wφ

(k)
g,W + D̃

(k)
g,W δφg,W

)
−
(
D̃

(k)
g,Nφ

(k)
g,N + δD̃g,Nφ

(k)
g,N + D̃

(k)
g,Nδφg,N

)
−
(
D̃

(k)
g,Sφ

(k)
g,S + δD̃g,Sφ

(k)
g,S + D̃

(k)
g,Sδφg,S

)
−
(
D̃

(k)
g,Bφ

(k)
g,B + δD̃g,Bφ

(k)
g,B + D̃

(k)
g,Bδφg,B

)
−
(
D̃

(k)
g,Tφ

(k)
g,T + δD̃g,Tφ

(k)
g,T + D̃

(k)
g,T δφg,T

)
+
(
D̃

(k)
g,Eφ

(k)
g,P + δD̃g,Eφ

(k)
g,P + D̃

(k)
g,Eδφg,P

)
+
(
D̃

(k)
g,Wφ

(k)
g,P + δD̃g,Wφ

(k)
g,P + D̃

(k)
g,W δφg,P

)
+
(
D̃

(k)
g,Nφ

(k)
g,P + δD̃g,Nφ

(k)
g,P + D̃

(k)
g,Nδφg,P

)
+
(
D̃

(k)
g,Sφ

(k)
g,P + δD̃g,Sφ

(k)
g,P + D̃

(k)
g,Sδφg,P

)
+
(
D̃

(k)
g,Bφ

(k)
g,P + δD̃g,Bφ

(k)
g,P + D̃

(k)
g,Bδφg,P

)
+
(
D̃

(k)
g,Tφ

(k)
g,P + δD̃g,Tφ

(k)
g,P + D̃

(k)
g,T δφg,P

)
+ Vp

(
Σ(k)
a,gφ

(k)
g,P + δΣa,gφ

(k)
g,P + Σ(k)

a,gδφg,P

)
+ Vp

((
G∑

g′ 6=g

Σ
(k)
s,gg′

)
φ

(k)
g,P +

(
G∑

g′ 6=g

δΣs,gg′

)
φ

(k)
g,P +

(
G∑

g′ 6=g

Σ
(k)
s,gg′

)
δφg,P

)

= Vp

 G∑
g′=1(6=g)

(
Σ

(k)
s,g′gφ

(k)
g′,P

)
+

G∑
g′=1(6=g)

(
δΣs,g′gφ

(k)
g′,P

)
+

G∑
g′=1(6=g)

(
Σ

(k)
s,g′gδφg′,P

)
+ Vpχgp

(
Λ(k) + δΛ

) [G∑
g′=1

(
νΣ

(k)
f,g′φ

(k)
g′,P

)
+

G∑
g′=1

(
νδΣf,g′φ

(k)
g′,P

)
+

G∑
g′=1

(
νΣ

(k)
f,g′δφg′,P

)]

(I.6)

Condensing Terms,

135

0 =
(
D̃

(k)
g,Eφ

(k)
g,E + D̃

(k)
g,Wφ

(k)
g,W + D̃

(k)
g,Nφ

(k)
g,N + D̃

(k)
g,Sφ

(k)
g,S + D̃

(k)
g,Bφ

(k)
g,B + D̃

(k)
g,Tφ

(k)
g,T

)
+
(
δD̃g,Eφ

(k)
g,E + δD̃g,Wφ

(k)
g,W + δD̃g,Nφ

(k)
g,N + δD̃g,Sφ

(k)
g,S + δD̃g,Bφ

(k)
g,B + δD̃g,Tφ

(k)
g,T

)
+
(
D̃

(k)
g,Eδφg,E + D̃

(k)
g,W δφg,W + D̃

(k)
g,Nδφg,N + D̃

(k)
g,Sδφg,S + D̃

(k)
g,Bδφg,B + D̃

(k)
g,T δφg,T

)
+

[
−
(
D̃

(k)
g,E + D̃

(k)
g,W + D̃

(k)
g,N + D̃

(k)
g,S + D̃

(k)
g,B + D̃

(k)
g,T

)
− Vp

(
Σ(k)
a,g +

G∑
g′ 6=g

Σ
(k)
s,gg′

)]
φ

(k)
g,P

+

[
−
(
δD̃g,E + δD̃g,W + δD̃g,N + δD̃g,S + δD̃g,B + δD̃g,T

)
− Vp

(
δΣa,g +

G∑
g′ 6=g

δΣs,gg′

)]
φ

(k)
g,P

+

[
−
(
D̃

(k)
g,E + D̃

(k)
g,W + D̃

(k)
g,N + D̃

(k)
g,S + D̃

(k)
g,B + D̃

(k)
g,T

)
− Vp

(
Σ(k)
a,g +

G∑
g′ 6=g

Σ
(k)
s,gg′

)]
δφg,P

+ Vp

 G∑
g′=1(6=g)

(
Σ

(k)
s,g′gφ

(k)
g′,P

)
+

G∑
g′=1(6=g)

(
δΣs,g′gφ

(k)
g′,P

)
+

G∑
g′=1(6=g)

(
Σ

(k)
s,g′gδφg′,P

)
+Vp

(
β(k)
pr + δβpr

) (
Λ(k) + δΛ

) [G∑
g′=1

(
νΣ

(k)
f,g′φ

(k)
g′,P

)
+

G∑
g′=1

(
νδΣf,g′φ

(k)
g′,P

)
+

G∑
g′=1

(
νΣ

(k)
f,g′δφg′,P

)]

(I.7)

Moving the non-derivative terms to the source term,

S(k) =

+
(
D̃

(k)
g,Eφ

(k)
g,E + D̃

(k)
g,Wφ

(k)
g,W + D̃

(k)
g,Nφ

(k)
g,N + D̃

(k)
g,Sφ

(k)
g,S + D̃

(k)
g,Bφ

(k)
g,B + D̃

(k)
g,Tφ

(k)
g,T

)
+

[
−
(
D̃

(k)
g,E + D̃

(k)
g,W + D̃

(k)
g,N + D̃

(k)
g,S + D̃

(k)
g,B + D̃

(k)
g,T

)
− Vp

(
Σ(k)
a,g +

G∑
g′ 6=g

Σ
(k)
s,gg′

)]
φ

(k)
g,P

+ Vp

 G∑
g′=1(6=g)

(
Σ

(k)
s,g′gφ

(k)
g′,P

)+ VpχgpΛ
(k)

[
G∑

g′=1

(
νΣ

(k)
f,g′φ

(k)
g′,P

)]
(I.8)

Simplifying and collecting terms,

136

0 = S(k)

+
(
δD̃g,Eφ

(k)
g,E + δD̃g,Wφ

(k)
g,W + δD̃g,Nφ

(k)
g,N + δD̃g,Sφ

(k)
g,S + δD̃g,Bφ

(k)
g,B + δD̃g,Tφ

(k)
g,T

)
+

[
−
(
δD̃g,E + δD̃g,W + δD̃g,N + δD̃g,S + δD̃g,B + δD̃g,T

)
− Vp

(
δΣa,g +

G∑
g′ 6=g

δΣs,gg′

)]
φ

(k)
g,P

+ Vp

G∑
g′=1(6=g)

(
δΣs,g′gφ

(k)
g′,P

)
+ VpχgpΛ

(k)

G∑
g′=1

(
νδΣf,g′φ

(k)
g′,P

)
+
(
D̃

(k)
g,Eδφg,E + D̃

(k)
g,W δφg,W + D̃

(k)
g,Nδφg,N + D̃

(k)
g,Sδφg,S + D̃

(k)
g,Bδφg,B + D̃

(k)
g,T δφg,T

)
+

[
−
(
D̃

(k)
g,E + D̃

(k)
g,W + D̃

(k)
g,N + D̃

(k)
g,S + D̃

(k)
g,B + D̃

(k)
g,T

)
− Vp

(
Σ(k)
a,g +

G∑
g′ 6=g

Σ
(k)
s,gg′

)]
δφg,P

+ Vp

G∑
g′=1(6=g)

(
Σ

(k)
s,g′gδφg′,P

)
+ VpχgpΛ

(k)

G∑
g′=1

(
νΣ

(k)
f,g′δφg′,P

)

+ VpχgpδΛ
G∑

g′=1

(
νΣ

(k)
f,g′φ

(k)
g′,P

)
(I.9)

Further simplifications,

137

0 = S(k)

+
(
D̃

(k)
g,Eδφg,E + D̃

(k)
g,W δφg,W + D̃

(k)
g,Nδφg,N + D̃

(k)
g,Sδφg,S + D̃

(k)
g,Bδφg,B + D̃

(k)
g,T δφg,T

)
+

[
−
(
D̃

(k)
g,E + D̃

(k)
g,W + D̃

(k)
g,N + D̃

(k)
g,S + D̃

(k)
g,B + D̃

(k)
g,T

)
− Vp

(
Σ(k)
a,g +

G∑
g′ 6=g

Σ
(k)
s,gg′

)]
δφg,P

+ Vp

 G∑
g′=1(6=g)

Σ
(k)
s,g′g + χgpΛ

(k)

G∑
g′=1

νΣ
(k)
f,g′

 δφg′,P
+
(
φ

(k)
g,E − φ

(k)
g,P

)
δD̃g,E +

(
φ

(k)
g,W − φ

(k)
g,P

)
δD̃g,W

+
(
φ

(k)
g,N − φ

(k)
g,P

)
δD̃g,S +

(
φ

(k)
g,S − φ

(k)
g,P

)
δD̃g,S

+
(
φ

(k)
g,B − φ

(k)
g,P

)
δD̃g,B +

(
φ

(k)
g,T − φ

(k)
g,P

)
δD̃g,T

− Vpφ(k)
g,P δΣa,g − Vpφ(k)

g,P

G∑
g′=1(6=g)

δΣs,gg′

+ Vp

G∑
g′=1(6=g)

φ
(k)
g′,P δΣs,g′g + Vpχgp

G∑
g′=1

φ
(k)
g′,PνδΣf,g′

+ Vpχgp

G∑
g′=1

(
νΣ

(k)
f,g′φ

(k)
g′,P

)
δΛ

(I.10)

Expanding each of the terms by the cross section by TH dependence,

Σ, D = f (TD, TM) (I.11)

Inputting the expansions into the equation,

138

+
(
φ

(k)
g,E − φ

(k)
g,P

)(∂D̃g,E

∂TD,P

)n−1

δTD,P +

(
∂D̃g,E

∂TD,E

)n−1

δTD,E


+
(
φ

(k)
g,E − φ

(k)
g,P

)(∂D̃g,E

∂TM,P

)n−1

δTM,P +

(
∂D̃g,E

∂TM,E

)n−1

δTM,E


. . .W,N, S,B, . . .

+
(
φ

(k)
g,T − φ

(k)
g,P

)(∂D̃g,T

∂TD,P

)n−1

δTD,P +

(
∂D̃g,T

∂TD,T

)n−1

δTD,T


+
(
φ

(k)
g,T − φ

(k)
g,P

)(∂D̃g,T

∂TM,P

)n−1

δTM,P +

(
∂D̃g,T

∂TM,T

)n−1

δTM,T


− Vpφ(k)

g,P

((
∂Σa

∂TD

)n−1

δTD,P +

(
∂Σa

∂TM

)n−1

δTM,P

)

− Vpφ(k)
g,P

G∑
g′=1(6=g)

((
∂Σs,gg′

∂TD

)n−1

δTD,P +

(
∂Σs,gg′

∂TM

)n−1

δTM,P

)

+ Vp

G∑
g′=1(6=g)

φ
(k)
g′,P

((
∂Σs,g′g

∂TD

)n−1

δTD,P +

(
∂Σs,g′g

∂TM

)n−1

δTM,P

)

+ VpχgpΛ
(k)

G∑
g′=1

φ
(k)
g′,P

((
∂νΣf,g′

∂TD

)n−1

δTD,P +

(
∂νΣf,g′

∂TM

)n−1

δTM,P

)
(I.12)

Regrouped, using some short hand,

139

= Sk + Vpχgp

G∑
g′=1

(
νΣ

(k)
f,g′φ

(k)
g′,P

)
δΛ

+
(
D̃

(k)
g,Eδφg,E + D̃

(k)
g,W δφg,W + D̃

(k)
g,Nδφg,N + D̃

(k)
g,Sδφg,S + D̃

(k)
g,Bδφg,B + D̃

(k)
g,T δφg,T

)
+

[
−
(
D̃

(k)
g,E + D̃

(k)
g,W + D̃

(k)
g,N + D̃

(k)
g,S + D̃

(k)
g,B + D̃

(k)
g,T

)
− Vp

(
Σ(k)
a,g +

G∑
g′ 6=g

Σ
(k)
s,gg′

)]
δφg,P

+ Vp

 G∑
g′=1(6=g)

Σ
(k)
s,g′g + χgpΛ

(k)

G∑
g′=1

νΣ
(k)
f,g′

 δφg′,P
+
(
φ

(k)
g,EWNSBT − φ

(k)
g,P

)[∂D̃g,EWNSBT

∂TM,EWNSBT

{δTM,EWNSBT}+
∂D̃g,EWNSBT

∂TD,EWNSBT

{δTD,EWNSBT}

]

+
(
φ

(k)
g,EWNSBT − φ

(k)
g,P

)[∂D̃g,EWNSBT

∂TM,P

{δTM,P}+
∂D̃g,EWNSBT

∂TD,P
{δTD,P}

]

− Vpφ(k)
g,P

((
∂Σa

∂TD

)n−1

δTD,P +

(
∂Σa

∂TM

)n−1

δTM,P

)

− Vpφ(k)
g,P

G∑
g′=1(6=g)

((
∂Σs,gg′

∂TD

)n−1

δTD,P +

(
∂Σs,gg′

∂TM

)n−1

δTM,P

)

+ Vp

G∑
g′=1(6=g)

φ
(k)
g′,P

((
∂Σs,g′g

∂TD

)n−1

δTD,P +

(
∂Σs,g′g

∂TM

)n−1

δTM,P

)

+ VpχgpΛ
(k)

G∑
g′=1

φ
(k)
g′,P

((
∂νΣf,g′

∂TD

)n−1

δTD,P +

(
∂νΣf,g′

∂TM

)n−1

δTM,P

)
(I.13)

Collecting terms,

140

= Sk + Vpχgp

G∑
g′=1

(
νΣ

(k)
f,g′φ

(k)
g′,P

)
δΛ

+
(
D̃

(k)
g,Eδφg,E + D̃

(k)
g,W δφg,W + D̃

(k)
g,Nδφg,N + D̃

(k)
g,Sδφg,S + D̃

(k)
g,Bδφg,B + D̃

(k)
g,T δφg,T

)
+

[
−
(
D̃

(k)
g,E + D̃

(k)
g,W + D̃

(k)
g,N + D̃

(k)
g,S + D̃

(k)
g,B + D̃

(k)
g,T

)
− Vp

(
Σ(k)
a,g +

G∑
g′ 6=g

Σ
(k)
s,gg′

)]
δφg,P

+ Vp

 G∑
g′=1(6=g)

Σ
(k)
s,g′gδφg′,P + χgpΛ

(k)

G∑
g′=1

νΣ
(k)
f,g′δφg′,P


+
(
φ

(k)
g,EWNSBT − φ

(k)
g,P

)[∂D̃g,EWNSBT

∂TM,EWNSBT

{δTM,EWNSBT}+
∂D̃g,EWNSBT

∂TD,EWNSBT

{δTD,EWNSBT}

]

+
(
φ

(k)
g,EWNSBT − φ

(k)
g,P

)[∂D̃g,EWNSBT

∂TM,P

{δTM,P}+
∂D̃g,EWNSBT

∂TD,P
{δTD,P}

]

− Vpφ(k)
g,P

(∂Σa

∂TD

)n−1

+

 G∑
g′=1(6=g)

(
∂Σs,gg′

∂TD

)n−1
 δTD,P

+ Vp

 G∑
g′=1(6=g)

φ
(k)
g′,P

(
∂Σs,g′g

∂TD

)n−1

+ χgpΛ
(k)

(
G∑

g′=1

φ
(k)
g′,P

(
∂νΣf,g′

∂TD

)n−1
) δTD,P

− Vpφ(k)
g,P

(∂Σa

∂TM

)n−1

+

 G∑
g′=1(6=g)

(
∂Σs,gg′

∂TM

)n−1
 δTM,P

+ Vp

 G∑
g′=1(6=g)

φ
(k)
g′,P

(
∂Σs,g′g

∂TM

)n−1

+ χgpΛ
(k)

(
G∑

g′=1

φ
(k)
g′,P

(
∂νΣf,g′

∂TM

)n−1
) δTM,P

(I.14)

If TH feedback is ignored in the initial development,

141

+

[(
D̃

(k)
g,E + D̃

(k)
g,W + D̃

(k)
g,N + D̃

(k)
g,S + D̃

(k)
g,B + D̃

(k)
g,T

)
+ Vp

(
Σ(k)
a,g +

G∑
g′ 6=g

Σ
(k)
s,gg′

)]
δφg,P

− Vp

 G∑
g′=1(6=g)

Σ
(k)
s,g′gδφg′,P + χgpΛ

(k)

G∑
g′=1

νΣ
(k)
f,g′δφg′,P


− Vpχgp

G∑
g′=1

(
νΣ

(k)
f,g′φ

(k)
g′,P

)
δΛ

−
(
D̃

(k)
g,Eδφg,E + D̃

(k)
g,W δφg,W + D̃

(k)
g,Nδφg,N + D̃

(k)
g,Sδφg,S + D̃

(k)
g,Bδφg,B + D̃

(k)
g,T δφg,T

)
= Sk

(I.15)

142

Appendix J

Derivation: Eigenvalue

Beginning with a first order estimation for the eigenvalue,

λ1

g∑
1

(
νΣ1

f,gφ
1
g

)
= λ0

g∑
1

(
νΣ0

f,gφ
0
g

)
(J.1)

Expanding the cross section, flux, and eigenvalue,

λ1 ⇒ λ(k) + δλ (J.2a)

φ1
g ⇒ φ(k)

g + δφg (J.2b)

νΣ1
f,g ⇒ νΣf,g + δνΣf,g (J.2c)

(J.2d)

Inserting these into the equation, assuming three groups,

(
λ(k) + δλ

) (((
φ

(k)
1 + δφ1

)
(νΣf,1 + δνΣf,1)

)
+
((
φ

(k)
2 + δφ2

)
(νΣf,2 + δνΣf,2)

)
+
((
φ

(k)
3 + δφ3

)
(νΣf,3 + δνΣf,3)

))
= λ0

g∑
1

(
νΣ0

f,gφ
0
g

)
(J.3)

Doing some algebra,

143

(
λ(k) + δλ

)
(νΣf,1δφ1 + νΣf,2δφ2 + νΣf,3δφ3

+ δνΣf,1φ
(k)
1 + δνΣf,2φ

(k)
2 + δνΣf,3φ

(k)
3

+νΣf,1φ
(k)
1 + νΣf,2φ

(k)
2 + νΣf,3φ

(k)
3

)
= λ0

g∑
1

(
νΣ0

f,gφ
0
g

)
(J.4)

More algebra,

δλ
(
νΣf,1φ

(k)
1 + νΣf,2φ

(k)
2 + νΣf,3φ

(k)
3

)
+ λ(k) (νΣf,1δφ1 + νΣf,2δφ2 + νΣf,3δφ3)

+ λ(k)
(
δνΣf,1φ

(k)
1 + δνΣf,2φ

(k)
2 + δνΣf,3φ

(k)
3

)
= λ0

g∑
1

(
νΣ0

f,gφ
0
g

)
−λ(k)

(
νΣf,1φ

(k)
1 νΣf,1φ

(k)
1 + νΣf,2φ

(k)
2 νΣf,2φ

(k)
2 + νΣf,3φ

(k)
3 νΣf,3φ

(k)
3

)

(J.5)

More algebra, expanding the cross sections with respect to Moderator and Doppler

cross sections temperature

(
νΣf,1φ

(k)
1 + νΣf,2φ

(k)
2 + νΣf,3φ

(k)
3

)
δλ

+ νΣf,1δφ1 + νΣf,2δφ2 + νΣf,3δφ3

+ λ(k)

(
φ

(k)
1

∂νΣf,1

∂Tm
+ φ

(k)
2

∂νΣf,2

∂Tm
+ φ

(k)
3

∂νΣf,3

∂Tm

)
δTm

+ λ(k)

(
φ

(k)
1

∂νΣf,1

∂Td
+ φ

(k)
2

∂νΣf,2

∂Td
+ φ

(k)
3

∂νΣf,3

∂Td

)
δTd

= λ0

g∑
1

(
νΣ0

f,gφ
0
g

)
− λ(k)

(
νΣf,1φ

(k)
1 + νΣf,2φ

(k)
2 + νΣf,3φ

(k)
3

)
(J.6)

144

Appendix K

Derivation: 1D Conduction Solve

The 1-D conduction solve within the pebble is given as,

∂

∂x

[
kA

∂T

∂x

]
+Q =

∂

∂t
[cpT] (K.1)

If we ignore the time dependent terms, and discretize in the radial direction,

kinAin (Tsur − Tin) + koutAout (Tsur − Tout) = q
′′′

inVin + q
′′′

outVout (K.2)

The power can be represented in terms if the relative radial power and total pebble

power,

kinAin (Tsur − Tin) + koutAout (Tsur − Tout) = (finVin + foutVout) q
′′′

peb (K.3)

Expanding the primary variables,

kinAin (Tsur + δTsur − Tin + δTin)

+ koutAout (Tsur + δTsur − Tout + δTout)

= (finVin + foutVout) q
′′′

peb (K.4)

Adding the coefficients,

(kin + δkin)Ain (Tsur + δTsur − Tin − δTin)

+ (kout + δkout)Aout (Tsur + δTsur − Tout − δTout)

= (finVin + foutVout)
(
q
′′′

peb + δqpeb

)
(K.5)

145

Multiplying out, keeping 1st order terms,

Ain (Tsur − Tin) δkin + kinAin (δTsur − δTin)

+ Aout (Tsur − Tout) δkout + koutAout (δTsur − δTout)− (finVin + foutVout) δqpeb

= (finVin + foutVout) q
′′′

peb − kinAin (Tsur − Tin) + koutAout (Tsur − Tout) (K.6)

Expanding the conductivity, and heat generation, give the final form

Ain (Tsur − Tin)

(
∂kin
∂Tsur

δTsur +
∂kin
∂Tin

δTin

)
+ Aout (Tsur − Tout)

(
∂kout
∂Tsur

δTsur +
∂kout
∂Tout

δTout

)
− (finVin + foutVout) P̄core

((
ngroup∑
g=1

φg
∂κΣf

∂Tm

)
δTm +

(
ngroup∑
g=1

φg
∂κΣf

∂Td

)
δTd

)
+ kinAin (δTsur − δTin) + koutAout (δTsur − δTout)

= (finVin + foutVout) q
′′′

peb − kinAin (Tsur − Tin) + koutAout (Tsur − Tout) (K.7)

In the first shell, closet to the center of the pebble, the ”in” terms are equal to

zero. The boundary with the fluid is treated differently,

kinAin (Tsur − Tin) + αApeb (Tsur − Tflu)

+ keq,W (Tsur − Tsol,W) + keq,E (Tsur − Tsol,E)

+ keq,N (Tsur − Tsol,N) + keq,S (Tsur − Tsol,S)

+ keq,B (Tsur − Tsol,B) + keq,T (Tsur − Tsol,T)

= q
′′′

inVin (K.8)

Similar to the solid energy equation, the neighbor solid temperature, fluid temper-

ature, equivalent conductivity, and alpha are all expanded.

146

Ain (Tsur − Tin)

(
∂kin
∂Tsur

δTsur +
∂kin
∂Tin

δTin

)
+αApeb (δTsur − δTflu)+Apeb (δTsur − δTflu)

(
∂α

∂Tsur
δTsur +

∂α

∂Tsol
δTsol +

∂α

∂Tflu
δTflu

)
+ keq,W (δTsur − δTsol,W) + (Tsur − Tsol,W)

(
∂keq,W
∂Tsol,W

δTsol,W +
∂keq,W
∂Tsol,P

δTsol,P

)
+ keq,E (δTsur − δTsol,E) + (Tsur − Tsol,E)

(
∂keq,E
∂Tsol,E

δTsol,E +
∂keq,E
∂Tsol,P

δTsol,P

)
+ keq,N (δTsur − δTsol,N) + (Tsur − Tsol,N)

(
∂keq,N
∂Tsol,N

δTsol,E +
∂keq,N
∂Tsol,P

δTsol,P

)
+ keq,S (δTsur − δTsol,S) + (Tsur − Tsol,S)

(
∂keq,S
∂Tsol,S

δTsol,E +
∂keq,S
∂Tsol,P

δTsol,P

)
+ keq,B (δTsur − δTsol,B) + (Tsur − Tsol,B)

(
∂keq,B
∂Tsol,B

δTsol,E +
∂keq,B
∂Tsol,P

δTsol,P

)
+ keq,T (δTsur − δTsol,T) + (Tsur − Tsol,T)

(
∂keq,T
∂Tsol,T

δTsol,T +
∂keq,T
∂Tsol,P

δTsol,P

)
= q

′′′

inVin − kinAin (Tsur − Tin)− αApeb (Tsur − Tflu)

− keq,W (Tsur − Tsol,W)− keq,E (Tsur − Tsol,E)

− keq,N (Tsur − Tsol,N)− keq,S (Tsur − Tsol,S)

− keq,B (Tsur − Tsol,B)− keq,T (Tsur − Tsol,T) (K.9)

147

Appendix L

Derivation: Moderator XS
Temperature

The moderator temperature is a linear function of the 1-d conduction temperature

VpebTm =
nshell∑
sh=1

Vs
Tsh + Tsh+1

2
(L.1)

Expanding the moderator and shell temperatures

Vpeb (Tm + δTm) =
nshell∑
sh=1

Vs
(Tsh + δTsh) + (Tsh+1 + δTsh+1)

2
(L.2)

Moving to LH and RHS,

VpebδTm −
nshell∑
sh=1

Vs
δTsh + δTsh+1

2
=

(
nshell∑
sh=1

Vs
Tsh + Tsh+1

2

)
− (VpebTm) (L.3)

148

Appendix M

Derivation: Doppler XS
Temperature

The Doppler temperature is a linear function of the 1-d conduction temperature, and

also contains a heat generation term

VfuelTd =

nshell(fuel)∑
sh=1

(
Vs
Tsh + Tsh+1

2
+ VsfpuebQpeb

)
(M.1)

Expanding the Doppler and shell temperatures

Vfuel (Td + δTd) =

nshell(fuel)∑
sh=1

Vs

(
(Tsh + δTsh) + (Tsh+1 + δTsh+1)

2
+ VsfpuebQpeb

)
(M.2)

Moving to LH and RHS,

VfuelδTd −
nshell(fuel)∑

sh=1

Vs
δTsh + δTsh+1

2

=

nshell(fuel)∑
sh=1

(
Vs
Tsh + Tsh+1

2
+ VsfpuebQpeb

)− (VfuelTd) (M.3)

Expanding the heat generation term,

149

VfuelδTd −
nshell(fuel)∑

sh=1

Vs
δTsh + δTsh+1

2
−

nshell(fuel)∑
sh=1

VsfpuebδQpeb

=

nshell(fuel)∑
sh=1

(
Vs
Tsh + Tsh+1

2
+ VsfpuebQpeb

)− (VfuelTd)

(M.4)

The heat generation depends on kappa fission and flux,

VfuelδTd −
nshell(fuel)∑

sh=1

Vs
δTsh + δTsh+1

2

−

nshell(fuel)∑
sh=1

Vsfpueb

 ngrp∑
1

∂Qpeb

∂Tm
δTm

−

nshell(fuel)∑
sh=1

Vsfpueb

 ngrp∑
1

∂Qpeb

∂TD
δTD

−

nshell(fuel)∑
sh=1

Vsfpueb

+ VfuelP n,fuel

ngrp∑
1

κΣgδφg

=

nshell(fuel)∑
sh=1

(
Vs
Tsh + Tsh+1

2
+ VsfpuebQpeb

)− (VfuelTd)

(M.5)

150

Bibliography

151

[1] J. Gan, Y. Xu, and T. J. Downar, “Efficient numerical solver for non-linear
nuclear coupled codes,” in Nuclear Mathematical and Computaional Sciences: A
Century in Review, A Century Anew, 2003.

[2] B. R. Bandini, K. N. Ivanov, A. J. Baratta, and R. G. Steinke, “Verifcation of
a three-dimensional nodal transient neutronics routine for the trace-pf1 / mod3
thermal-hydraulic system analysis code,” Nuclear Technology, vol. 123, pp. 1–20,
1998.

[3] J. J. Jeong and H. C. No, “An improved numerical scheme with the fully-implicit
two-fluid model for a fast-running system code,” Nulcear Engineering and Design,
vol. 104, pp. 145–153, 1987.

[4] J. C. Ragusa and V. S. Mahadevan, “Consistent and accurate schemes for coupled
neutronics thermal-hydraulics reactor analysis,” Nuclear Engineering and Design,
vol. 239, pp. 566–579, 2009.

[5] H. Zhang, V. A. Mousseau, and H. Zhao, “Development of a high fidelity system
analysis code for generation iv reactors,” tech. rep., Idaho National Laboratory,
2008.

[6] V. S. Mahadeven and J. C. Ragusa, “Coupling schemes for multiphysics reactor
simulation,” tech. rep., Idaho National Laboratory, 2007.

[7] R. M. Miller, “The application of high performance computing to coupled thermal-
hydraulic / neutronic reactor analysis,” Master’s thesis, Purdue University, 2000.

[8] V. A. Mousseau, “A generalized interface module for the coupling of spatial
kinetics and thermal-hydraulics codes,” in 9th International Topic Meeting on
Nuclear Reactor Thermal Hydraulics. San Fransisco, CA, 1998.

[9] V. A. Mousseau, “Application fo the generalized interface module to the coupling
of parcs with both relap5 and trac-m,” in ANS Annual Meeting and Embedded
Topical Meeting, Boston, MA, 1999.

[10] M. Jelinek, “Study of higher order numerical schemes applied to full two-phase
flow: A thesis,” Master’s thesis, Pennsylvania State University, 2005.

[11] A. Pautz and A. Birkhofer, “Coupling of time-dependent neutron transport theory
with the thermal hydraulics code athlet and application to the research reactor
frm-ii,” Nuclear Science and Engineering, vol. 145, pp. 320–341, 2003.

[12] D. Viswanath, “Recurrent motions within plane couette turbulence,” Journal of
Fluid Mechanics, vol. 580, pp. 339–358, 2007.

[13] D. Viswanath, “The critical layer in piper flow at high reynolds number,” Philo-
sophical Transactions of The Royal Society A, vol. 367, pp. 561–576, 2009.

152

[14] K. Ivanov and M. Avramova, “Challenges in coupled thermal-hydraulics and
neutronics simulation for lwr safety analysis,” Annals of Nuclear Energy, vol. 34,
pp. 501–513, 2007.

[15] A. V. Gulevich and O. F. Kukharchuk, “Methods for calculating coupled reactor
systems,” Atomic Energy, vol. 97, pp. 803–811, 2004.

[16] D. Gaston, C. Newman, G. Hansen, and D. Lebrun-Grandie, “Moose: A parallel
computational framework for coupled systems of nonlinear equations,” Nuclear
Engineering and Design, vol. 239, pp. 1768–1778, 2009.

[17] D. Gaston, G. Hansen, S. Kadioglu, D. A. Knoll, C. Newman, H. Park, C. Per-
mann, and W. Taitano, “Parallel multiphysics algorithmms and software for
computational nuclear engineering,” Journal of Physics: Conference Series,
vol. 180, pp. 1–10, 2009.

[18] D. W. Jerng and H. C. No, “New computational method with a fully-implicit
scheme for a real-time accident simulator,” Nuclear Engineering and Design,
vol. 99, pp. 101–107, 1987.

[19] D. A. Kastanya, Implementaion of a Newton-Krylov Iterative Method to Address
Strong Non-Linear Feedback Effects in Formosa-B BWR Core Simulator. PhD
thesis, North Carolina State University, 2002.

[20] D. A. Knoll and D. E. Keyes, “Jacobian-free newton-krylov methods: a survery
of approaches and applications,” Journal of Computational Physics, vol. 193,
pp. 357–397, 2004.

[21] “Trace v5.0 (patch 01): Users manual,” tech. rep., US NRC, Office of Nuclear
Regulatory Research, 2008.

[22] “Relap5/mod3.3 code manual volume iv: Models and correlations,” tech. rep.,
Information Systems Laboratories, Inc., 2001.

[23] J. H. McFadden and M. P. Paulsen, “Retran-03: A program for transient thermal-
hydraulic analysis of complex fluid flow systems,” tech. rep., Idaho: Computer
Simulation & Analysis, Inc., 1992.

[24] J. W. Spore and J. H. Mahaffy, “Trac-m / fortran 90 (version 3.0) theory manual,”
tech. rep., Los Alamos National Laboratory, 2000.

[25] J. H. Mahaffy, “The advantages and limitations of the sets method,” in Inter-
national Conference on Numerical Methods in Nuclear Engnieering. Montreal,
Canada, 1983.

[26] A. E. Aboanber, “Exact solution for the non-linear two point kinetic model of
reflected reactors,” Progress in Nuclear Energy, vol. 51, pp. 715–726, 2009.

153

[27] R. G. McClarren, J. P. Holloway, T. A. Brunner, and T. A. Melhorn, “A quasi-
linear implicit riemann solver for the time-dependent pn equations,” Nuclear
Science and Engineering, vol. 155, pp. 290–299, 2007.

[28] “Simulate-3k, models and methodology,” tech. rep., Studsvik Scandpower, 2009.

[29] T. J. Downar, Y. Xu, and V. Seker, “Parcs v3.0 u.s nrc core neutronics simulator
theory manual,” tech. rep., University of Michigan, 2010.

[30] B. Quintero-Leyva, “On the numerical solution of the integro-differential equation
of the point kinetics of nuclear reactors,” Annals of Nuclear Energy, vol. 36,
pp. 1280–1284, 2009.

[31] F. D’Auria, A. B. Salah, G. Galassi, and J. Vedov, “Neutronics/thermal-hydraulics
coupling in lwr technology, vol. 1 & 2,” tech. rep., OECD, 2004.

[32] F. Merino, C. Ahnert, and J. M. Aragones, “Development and validation of the
3-d pwr core dynamics simtran code,” Mathematical Methods and Supercomputing
in Nuclear Applications,, vol. 1, p. 646, 1993.

[33] B. Davidson, Neutron Transport Theory. Oxford University Press, 1957.

[34] C. Frepoli, J. H. Mahaffy, and K. Ohkawa, “Notes on the implementaion of the
fully-implicit numerical scheme for a two-phase three-field flow model,” Nuclear
Engineering and Design, vol. 225, pp. 191–217, 2003.

[35] V. A. Mousseau, “A fully implicit, second order in time, simulation of a nuclear
reactor core,” in Proceedings of ICONE14, Miami, FL, 2006.

[36] J. Watson, Implicit Time-Integraion Method for Simultaneous Solution of a
Coupled Non-Linear System. PhD thesis, Penn State University, 2010.

[37] E. S. Lee, “A generalized newton-raphson method for nonlinear partial differential
equations - packed bed reactors with axial mixing,” Chemical Engineering Science,
vol. 21, pp. 143–157, 1966.

[38] I. Limaiem, F. Damian, X. Raepsaet, and E. Studer, “Vhtr core modeling: Cou-
pling between neutronic and thermal-hydraulics,” in MC+SNA. Avignon, France,
2005.

[39] H. Park, D. A. Knoll, D. R. Gaston, and R. C. Martineau, “Tighly coupled mul-
tiphysics algorithms for pebble bed reactors,” Nuclear Science and Engineering,
vol. 166, pp. 118–133, 2010.

[40] F. D. Bramkamp, H. M. Bucker, and A. Rasch, “Using exact jacobian in an
implicit newton-krylov method,” Computers and Fluids, vol. 35, p. 1063, 2006.

[41] P. N. Brown and Y. Saad, “Hybrid krylov methods for nonlinear systems of
equations,” SIAM J. Sci. Stat. Comput., vol. 11, pp. 450–481, 1990.

154

[42] T. F. Chan and K. R. Jackson, “Nonlinearly preconditioned krylov subspace
methods for discrete newton algorithms,” SIAM J. Sci. Stat. Comput., vol. 5,
pp. 533–542, 1984.

[43] J. I. Ramos, “Linearized methods for ordinary differential equations,” Applied
Mathematics and Computation, vol. 104, pp. 109–129, 1999.

[44] M. Rosa, J. S. Warsa, and J. H. Chang, “Fourier analysis of inexact block-jacobi
splitting with transport synthetic acceleration,” Nuclear Science and Engineering,
vol. 164, pp. 248–263, 2010.

[45] J. F. Traub and H. Wozniakowski, “Convergence and complexity of newton itera-
tion for operator equations,” Journal of the Association for Computing Machinery,
vol. 26, pp. 250–258, 1979.

[46] K. T. Chu, “A direct matrix method for computing analytical jacobians of
discretized nonlinear integro-differential equations,” Journal of Computational
Physics, vol. 228, pp. 5526–5538, 2009.

[47] M. A. Fernandez and M. Moubachir, “A newton method using exact jacobians
for solving fluid-structure coupled,” Computers and Fluids, vol. 83, pp. 127–142,
2005.

[48] H. S. Abdel-Khalik and P. J. Turinsky, “Subspace methods for multi-scale /
multi-physics calculations, part i: Theory,” in Transactions of the American
Nuclear Society, Boston, MA, pp. 548–550, 2007.

[49] H. S. Abdel-Khalik, P. J. Turinsky, and M. A. Jessee, “Efficient subspace methods-
based algorithms for performing sensitivity, uncertainty, and adaptive simulation
of large-scale computational models,” Nuclear Science and Engineering, vol. 159,
pp. 256–272, 2008.

[50] Y. Bang and H. S. Abdel-Khalik, “Verification tests for uncertainty quantification
and sensitivity analysis studies,” in Transactions of the American Nuclear Society,
Washington D.C., 2011.

[51] M. A. Jessee, H. S. Abdel-Khalik, and P. J. Turinsky, “Subspace methods for
multi-scale / multi-physics calculations, part ii: Numerical experiments,,” in
Transactions of American Nuclear Society, Boston, MA, 2008.

[52] D. A. Knoll and W. J. Rider, “A multigrid preconditioned newton-krylov method,”
SIAM Journal on Scientific Computation, vol. 21, pp. 691–710, 1999.

[53] J. Gan, Y. Xu, and T. J. Downar, “A matrix-free newton method for coupled
neutronics thermal-hydraulics reactor analyses,” in Nuclear Mathematical and
Computational Sciences: A Century in Review, A Century Anew, 2003.

155

[54] T. J. Downar and H. G. Joo, “A preconditioned krylov method for solution of
the multi-dimensional, two-fluid, hydrodynamics equations,” Annals of Nuclear
Energy, vol. 28, pp. 1251–1267, 2000.

[55] Y. Xu, A Matrix-Free Newton/Kyrlov Method for Coupling Complex Multiphysics
Subsystem. PhD thesis, Purdue University, 2004.

[56] S. Bellavia and B. Morini, “A globally convergent newton-gmres subspace method
for systems of non-linear equations,” SIAM Journal on Scientific Computation,
vol. 3, pp. 940–960, 2001.

[57] G. J. V. Tuyle and J. C. Lee, “Linearized transient analysis of nuclear steam
generators,” Nuclear Science and Engineering, vol. 75, pp. 225–242, 1980.

[58] U. Graf, “Implicit coupling of fluid-dynamic systems: Application to multidimen-
sional countercurrent two-phase flow of water and steam,” Nuclear Science and
Engineering, vol. 129, pp. 305–310, 1998.

[59] M. Liou, “A newton/upwind method and numerical study of shock wave / bound-
ary layer interactions,” International Journal for Numerical Methods in Fluids,
vol. 9, pp. 747–761, 1989.

[60] V. A. Mousseau, “Implicitly balanced solution of the two-phase flow equatiosn cou-
pled to nonlinear heat conduction,” Journal of Computational Physics, vol. 200,
pp. 104–132, 2004.

[61] J. Peter, “Non-linear implicit scheme using newton’s method for the numerical
solution of the navier-stokes equations,” Aerospace Science and Technology, vol. 3,
pp. 157–166, 1998.

[62] M. D. Tidiri, “Preconditing techniques for the newton-krylov solution of com-
pressible flows,” Journal of Computational Physics, vol. 132, pp. 51–61, 1997.

[63] I. Toumi and D. Caruge, “An implicit second-order numerical method for three-
dimensional two-phase flow calculations,” Nuclear Science and Engineering,
vol. 130, pp. 213–225, 1998.

[64] C. O. Ober and J. N. Shadid, “Studies on the accuracy of time integration
methods for the radiation-diffusion equations,” Journal of Computational Physics,
vol. 195, pp. 743–772, 2004.

[65] V. A. Mousseau, D. A. Knoll, and W. J. Rider, “Physics-based preconditioning
and the newton-krylov method for non-equilibrium radiation diffusion,” Journal
of Computational Physics, vol. 160, pp. 734–765, 2000.

[66] M. P. Leonchuk, Z. V. Sivak, and Y. E. Shvetsov, “Implicit method of solving
mass-transfer equations in the variables velocity-vorticity,” Atomic Energy, vol. 58,
pp. 166–170, 1985.

156

[67] J. M. Barry and J. P. Pollard, “Method of implicit non-stationary iteration for
solving neutron diffusion linear equations,” Annals of Nuclear Energy, vol. 4,
pp. 485–493, 1977.

[68] E. D. Fichtl, J. S. Warsa, and J. D. Densmore, “The newton-krylov method
applied to negative-flux fixup in sn transport calculations,” Nuclear Science and
Engineering, vol. 165, pp. 331–341, 2010.

[69] D. F. Gill, Newton-Krylov Methods for the Solution of the k-eigenvalue problem
in multigroup neutronics calculations: A Dissertation. PhD thesis, Pennsylvania
State University, 2009.

[70] A. Pautz and A. Birkhofer, “Dort-td: A transient neutron transport code with fully
implicit time integration,” Nuclear Science and Engineering, vol. 145, pp. 299–319,
2003.

[71] P. Ravette, A. M. Larosa, G. G. Coppa, G. Lapenta, and M. Carta, “Analysis
and optimization of implicit methods for time-dependent transport calculations
of source-driven systems,” Journal of Nuclear Science and Technology, vol. 37,
pp. 215–220, 2000.

[72] M. Geradin, S. Idelsohn, and M. Hogge, “Nonlinear structural dynamics via
newton and quasi-newton methods,” Nuclear Engineering and Design, vol. 58,
pp. 339–348, 1980.

[73] W. S. Yang and H. G. Joo, “Lmr core temperature calculation based on implicit
formulation of the energy model and a krylov subspace method,” Annals of
Nuclear Energy, vol. 26, pp. 629–640, 1999.

[74] V. A. Mousseau, D. A. Knoll, and J. M. Reisner, “An implicit nonlinearly consis-
tent method for the two-dimensional shallow-water equations with coriolis force,”
Monthly Weather Review, vol. 130, pp. 2611–2625, 2002.

[75] D. A. Knoll, L. Chacon, L. G. Margolin, and V. A. Mousseau, “On balanced
approximations for the time integration of multiple time scale systems,” Journal
of Computational Physics, vol. 185, pp. 583–611, 2003.

[76] R. Blaheta, “Convergence of newton-type methods in incremental return mappins
analysis of elasto-plastic problems,” Computational Methods in Applied Mechanics
and Engineering, vol. 147, pp. 167–185, 1997.

[77] P. N. Brown and A. C. Hindmarsh, “Matrix-free methods for stiff systems of
ode’s,” SIAM Journal on Numerical Analysis, vol. 23, pp. 610–638, 1986.

[78] P. N. Brown, “A local convergence theory for combined inexact-newton / finite-
difference projection methods,” SIAM Journal on Numerical Analysis, vol. 24,
pp. 407–434, 1987.

157

[79] T. F. Chan, “An approximate newton method for coupled nonlinear systems,”
SIAM Journal on Numerical Analysis, vol. 22, pp. 904–913, 1985.

[80] R. S. Dembo, S. C. Eisenstat, and T. Steilhaug, “Inexact newton methods,” SIAM
Journal on Numerical Analysis, vol. 19, pp. 400–408, 1982.

[81] O. Zerkak, A. Manera, I. Gajev, and T. Kozlowski, “Review of multi-physics
coupling techniques and suggestions of improvements in the context of nurisp,”
tech. rep., Paul Scherre Institute, 2010.

[82] Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algorithm
for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput., vol. 7,
pp. 856–869, 1986.

[83] R. Wienands, C. W. Oosterlee, and T. Washio, “Fourier analysis of gmres(m)
preconditioned by multigrid,” SIAM Journal on Scientific Computation, vol. 22,
pp. 582–603, 2000.

[84] I. Moret, “A note on the superlinear convergence of gmres,” SIAM Journal on
Numerical Analysis, vol. 34, pp. 513–516, 1997.

[85] V. Seker, Multiphysics Methods Development for High Temperature Gas Reactor.
PhD thesis, Purdue University, 2007.

[86] F. Reitsma, K. Ivanov, T. Downar, H. de Haas, S. Sen, G. Strydom, R. Mphahlele,
B. Tyobeka, V. Seker, and H. D. Gougar, “Pbmr coupled neutronics/thermal
hydraulics transient benchmark - the pbmr-400 core design, benchmark definition,”
tech. rep., NEA, 2005.

[87] M. Sosonkina, D. Allison, and L. Watson, “Scalability analysis of parallel gmres
implementations,” Parallel Algorithms Applcations, vol. 17, pp. 263–284, 2002.

[88] T. F. Chan, “Approximate newton method for coupled nonlinear systems,” SIAM
Journal on Numerical Analysis, vol. 22, pp. 904–913, 1985.

158

	Title
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Appendices
	Abstract
	Chapter Introduction
	Motivation
	Current Coupled Code Solution Methods

	Chapter Current AGREE/PARCS Formulation
	Thermal Fluids
	Solid Energy Equation
	Fluid Energy Equation
	Fluid Momentum Equation
	Fluid Mass Flow Rate and Velocity
	Matrix Structure of Theoretical Problem

	Neutronics
	Multigroup Neutron Diffusion
	Eigenvalue

	Physics Coupling of AGREE / PARCS
	Matrix Structure of Theoretical Problem

	Chapter Implicit Coupling Techniques
	Introduction
	Newton Iteration
	Implementations of Newton's Method
	Analytical Jacobian
	Finite Difference Jacobian
	Jacobian-Free / Approximate Block Newton

	Summary

	Chapter Implicit Formulation for AGREE/PARCS
	Derivation of Jacobian for the Thermal-Fluids Equations
	Derivation of Jacobian for AGREE/PARCS
	Newton's Method Neutronics Equations
	Newton's Method Thermal-Fluids Equations
	Newton's Method Cross Section Feedback Equations

	Solution of Newton's Methods
	Solution Methods
	Convergence Testing

	Chapter Models Used in Analysis
	Problem Specifications
	Validation Basis
	The Jacobian Matrix

	Chapter Analysis of Implicit Formulations
	Newton-Krylov Thermal-Fluid Analysis
	Exact Newton
	Inexact Newton
	Finite Difference Jacobian
	Jacobian-Free

	Newton-Krylov Neutronics Analysis
	Exact Newton's Method
	Inexact Newton's Method

	Newton-Krylov Coupled Analysis
	Exact Newton
	Inexact Newton
	Finite Difference Jacobian

	Chapter Summary and Conclusion
	Summary of Work
	Future Work

	 Additional Analysis of Krylov Solvers
	 Additional Analysis of Preconditioners
	 Derivation: Solid Energy Equation
	 Derivation: Fluid Energy Equation
	 Derivation: Pressure Equation
	 Derivation: Velocity X Equation
	 Derivation: Velocity Y Equation
	 Derivation: Velocity Z Equation
	 Derivation: Neutronics
	 Derivation: Eigenvalue
	 Derivation: 1D Conduction Solve
	 Derivation: Moderator XS Temperature
	 Derivation: Doppler XS Temperature
	Bibliography

