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Abstract 

This study evaluates a novel measurement method of determining vascular wall strain 

and wall shear rate, which are interrelated physiologic parameters fundamentally 

important in vascular disease. Wall strains during vascular wall dilation were performed 

using ultrasound 2D speckle tracking; vascular wall edges and vascular wall shear rate 

were determined using decorrelation based velocity measurement method for in-vitro and 

in-vivo flow measurement.  These experiments and measurements were performed to 

investigate both the novel measurement methods as well as the relationship between the 

vascular wall shear rate and vascular wall dilation.  First, this study measures the strains 

of the arterial wall using the ultrasound radio-frequency (RF) signals.  The RF signals 

were acquired from B-mode images of a human brachial artery for healthy adult subjects 

under normal physiologic pressure and the use of external pressure (pressure 

equalization) to increase strain.  Strains in the arterial wall during arterial dilation (from 

diastole to systole) were determined using a 2D speckle tracking algorithm.  These 

ultrasound results were compared with measurements of arterial strain as determined by 

finite-element analysis (FEA) models with and without the effects from surrounding 

tissue, which was represented by homogenous material with fixed elastic modulus. The 

ultrasound and FEA strain measurements were not much different under physiologic 

pressure.  Under pressure equalization, however, the strain levels predicted by FEA 

model without surrounding tissue were considerably greater than the strain levels 

measured by both ultrasound and the FEA model with surrounding tissue, which were 

relatively similar.  Second, this research aims to measure wall edges and wall shear rate 

for in-vitro flow experiment using decorrelation ultrasound based velocity measurement.  

By moving a transducer with a given speed on a tissue-mimicking phantom, the speckle 

movements versus correlation curves were obtained for each depth using 2D tracking.  

The flow velocity was obtained by multiplying the speckle movement in two consecutive 

frames by the acoustic frame rate.  The wall edge was determined using B-mode images 

and 2
nd

 order gradient of flow velocity profiles.  The wall shear rate was measured at the 
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wall edge and evaluated by comparison with velocity gradients from parabolic flow 

velocity profile based on Poiseuille theory.  The decorrelation flow velocity measurement 

method demonstrated to be more accurate than the lateral speckle tracking method for the 

prediction of the wall shear rate.  Third, this research measures the vascular wall shear 

rate in the brachial artery for nine healthy, six chronic kidney disease and two end-stage 

renal disease subjects using the decorrelation based ultrasound velocity measurement.  

The vascular wall shear rate and vascular diameter pre-, during- and post-vascular 

occlusion with pressure cuffs were compared for five healthy and three renal disease (two 

chronic kidney disease and one end-stage renal disease) subjects at top and bottom wall 

edges.  The healthy subjects had significantly higher mean and maximum vascular wall 

shear rate than renal disease subjects at top and bottom vessel wall edges.  The mean 

vascular wall shear rate change between pre- and post-vascular occlusion was also 

significantly different for the healthy versus renal disease subjects.  These research 

findings validate the underlying novel measurement methods and determine the 

relationship between the vascular wall shear rate and vascular wall dilation.  This 

relationship can be corroborated by considering vascular wall elasticity during vascular 

dilation and these results indicate that these measurements can be improved by 

incorporating the effects of surrounding tissue in vascular modulus estimation.  
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Chapter 1 Introduction 

1.1 Motivation 

Patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD) have 

high risk of cardiovascular disease due to vascular calcification (1) and accelerated 

atherosclerosis, caused at least in part by abnormal endothelial function (1-3).  For the 

detection of future cardiovascular risk, the vascular wall dilation has been measured 

between pre- and post-vascular occlusion in flow mediated dilation (FMD) measurements 

(4).  The vascular wall shear rate (WSR) is a significant factor influencing vascular wall 

dilation (4).  The accuracy of FMD measurements will be improved by determining the 

relationship between WSR and vascular wall dilation. This relationship is corroborated 

by considering vascular wall elasticity because the vascular wall dilation is not only 

associated with the WSR, but vascular wall elasticity (5).   

First, this study measures the elasticity of the arterial wall using ultrasound radio-

frequency (RF) signals.  The RF signals are acquired from B-mode images of a human 

brachial artery for healthy adult subjects under normal physiologic pressure and the use 

of external pressure (pressure equalization) to increase strains.  Strains in the arterial wall 

during arterial dilation (from diastole to systole) are determined using a 2D speckle 

tracking algorithm.  These ultrasound results are compared with measurements of arterial 

strain as determined by finite-element analysis (FEA) models with and without the effects 

from surrounding tissue, which is represented by a homogenous material with fixed 

elastic modulus.  Second, this research aims to measure wall edges and wall shear rates 

for in-vitro flow experiments using decorrelation ultrasound based velocity measurement.  

By moving a transducer at a given speed on a tissue-mimicking phantom, the speckle 

movements versus correlation curves are obtained for each depth using 2D tracking.  The 

flow velocity is obtained by multiplying the speckle movement in two consecutive frames 

by the acoustic frame rate.  The wall edge is determined using B-mode images and 2
nd
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order gradient of flow velocity profiles.  The wall shear rate is measured at the wall edge 

and evaluated by comparison with velocity gradients from parabolic flow velocity 

profiles based on Poiseuille theory.  Third, this research measures the vascular wall shear 

rate in the brachial artery for nine healthy, six chronic kidney disease and two end-stage 

renal disease subjects using the decorrelation based ultrasound velocity measurement.  

The vascular wall shear rate and vascular diameter pre-, during- and post-vascular 

occlusion with a pressure cuff are compared for five healthy and three renal disease (two 

chronic kidney disease and one end-stage renal disease) subjects at top and bottom wall 

edges.   

1.2 Literature Review 

1.2.1 Review of Vascular Wall Elasticity Measurements 

Ultrasound techniques have been utilized for non-invasive measurements of vascular 

elasticity including vessel wall motion estimation, intraparietal strain imaging, and pulse-

wave velocity measurement (6-12).  Vessel compliance measurements were also 

conducted by monitoring internal pulsatile deformation in tissues surrounding the normal 

brachial artery (13).  Vascular wall strain measurements have been achieved using these 

techniques, but dynamic range of strain measurement was limited due to small arterial 

pulsation under physiologic arterial pressure.   

To expand the strain dynamic range, the pressure equalization technique has been 

developed.  Using pressure equalization, the mean arterial pressure was lowered by 

applying an external force on the artery (14, 15). 

1.2.2 Review of Doppler Ultrasound Flow Velocity Measurements 

Doppler ultrasound measurements have been widely used to measure blood flow in 

vessels using the frequency shift due to fluid reflector motion based on the assumption 

that the angle between the beam and the vessel orientation is known (16).  Multi-gate 

ultrasound Doppler has advanced spatial resolution and is able to measure the flow 

velocity profile at the wall edges (16) and has been applied in this setting to measure the 

WSR from the longitudinal view of the blood vessel (17-22) based on 1D velocity 

measurement.  The multi-gate ultrasound Doppler also depends on the assumptions that 
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the lumen is circular and that the flow is symmetrical in the out-of-plane directions, both 

of which are violated in the presence of vascular tortuosity and branching (16). 

1.2.3 Review of Lateral Speckle Tracking Flow Velocity Measurements  

The tracking of ultrasound RF signals has been utilized to study blood flow velocity 

profiles.  Using correlation based lateral speckle tracking, blood flow velocity profiles 

have been measured from longitudinal views of blood vessels (23-27).  However, B-

mode image acquisitions of longitudinal views of blood vessels were limited by vascular 

tortuosity and branching (28).   

1.2.4 Review of Decorrelation Flow Velocity Measurements 

Transverse views of blood vessels have been used to measure blood velocity profiles.  

For transverse views of blood vessels, the decorrelation of ultrasound RF signals along 

1D A-line and in 2D B-mode images have been applied to the study of blood velocity 

profiles.  Using the decorrelation of ultrasound RF signals, the vessel wall interface could 

be detected (29) and blood flow velocity profile was qualitatively identified (30).  The 

blood flow velocity profile measurement using the decorrelation of ultrasound RF signals 

from A-lines has been demonstrated, but the quantification of blood flow velocity was 

not achieved.  

RF signals of 2D B-mode images were used to determine the blood flow profiles 

in transverse views of a vessel.  Bamber et al. (31) demonstrated that decorrelation could 

be used to identify blood flow using the time rate-of-change of correlation in B-mode 

images.  Li et al. (32)  has theoretically demonstrated the linear decrease of correlation 

according to elevational speckle movement.  Speckle decorrelation has been used to 

measure the motion of transducer to produce 3D ultrasound images (32-35).  This 

technique has been applied by Rubin et al. (36) to qualitatively identify the blood flow 

profile in both in-vitro flow phantom and in-vivo animal studies.  Rubin et al. (37) also 

used the Doppler flow measurements to improve the accuracy of volumetric flow from 

the decorrelation based flow profiles and theoretically modeled exponential decrease of 

correlation according to elevational speckle movement.  Previous research demonstrated 

that speckle decorrelation could generate flow velocity profiles, but the decorrelation was 

not experimentally measured.  
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1.3 Research Objectives and Tasks 

The primary objective of this research is to evaluate novel measurement methods of 

determining vascular wall strain and WSR, which are interrelated physiologic parameters 

fundamentally important in vascular disease.  As discussed above in the motivation 

(Section 1.1) it is a reasonable hypothesis that the accuracy of vascular wall strains and 

WSR measurements in vessels will be improved using the ultrasound RF signals.  The 

secondary objective of this research is to investigate the relationship between the WSR 

and vascular wall dilation.  These objectives are accomplished throughout the process 

include: 

a) the arterial wall elasticity measurements using ultrasound 2D speckle tracking and 

the evaluation of surrounding tissue effects on the arterial wall strain and stress 

using finite element analysis 

b) the wall edges and edge velocity gradient measurements for in-vitro flow 

experiment using the speckle decorrelation flow velocity measurement  

c) the WSR and vascular diameter pre-, during- and post-vascular occlusion with 

pressure cuff measurements for healthy and renal disease subjects using the 

decorrelation based flow velocity measurement 

1.4 Outline 

This dissertation presents vascular wall elasticity measurements using ultrasound RF 

signals as well as vascular wall edges and WSR measurements using decorrelation based 

ultrasound flow velocity measurement.   

Chapter 1 of the dissertation provides the primary motivations for this doctoral 

research as well as a literature review of related research work.  

Chapter 2 describes the arterial wall strain measurements using ultrasound 2D speckle 

tracking and the evaluation of surrounding tissue effects on the arterial wall strain and 

stress using finite element analysis. 

Chapter 3 illustrates the wall edge and edge velocity gradient measurements for in-

vitro flow experiment using decorrelation based ultrasound flow velocity measurement.   
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Chapter 4 presents the vascular wall shear rate and vascular diameter pre-, during- 

and post-vascular occlusion with pressure cuff measurements for healthy and renal 

disease subjects using decorrelation based ultrasound measurement. 

Chapter 5 concludes this research and provides ideas for future work in this field 

along with the author’s original contributions. 
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Chapter 2 Vascular Wall Elasticity Measurements 

2.1 Introduction 

Arterial stiffness is associated with numerous disease processes, including 

cardiovascular and renal disease, peripheral vascular occlusive disease, and diabetes.  A 

possible cause of this increased stiffness includes a change in the ratio of collagen to 

elastin in the extracellular matrix of the arterial media (38-40).  A variety of noninvasive 

techniques have been employed to measure arterial stiffness and vascular elasticity. The 

pulse-wave velocity (PWV) technique estimates average arterial stiffness on the basis of 

the travel time of a wave between two measurement sites. PWV is considered one of the 

best methods of measuring stiffness when time of propagation of the arterial pulse is 

determined between the carotid and femoral arteries (41).  But carotid-femoral PWV 

results may differ substantially depending on whether time is measured from the foot of 

the waveform (using an arterial tonometer) or the point of maximum systolic upstroke 

(42).  Local arterial stiffness is poorly defined by PWV and the resolution of this 

technique is limited by reflected waves and blood noise. Improvements in PWV estimates 

of local strain have been obtained by using the radiation force of ultrasound to generate 

propagating waves in arterial walls (43).  The same research group has distinguished 

between normal and calcified femoral arteries in pigs in-vivo using vibroacoustography, 

which allows imaging of objects on the basis of the acoustic signal produced by two 

intersecting ultrasound beams (44).  Ultrasound estimates of vessel wall motion have 

included studies to measure femoral artery diameter and pulsatile changes in diameter to 

evaluate vessel thickness and stiffness in type 2 diabetes mellitus (12), carotid artery 

diameter and wall motion to determine the relationship of arterial calcification to vessel 

stiffness in end-stage renal disease (9), and femoral and carotid artery compliance in 

chronic dialysis patients (10).  Vessel compliance has been measured by monitoring 

internal pulsatile deformation in tissues surrounding the normal brachial artery (13).  

Several studies have explored use of tissue Doppler imaging in pulse-wave velocity 
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(PWV) and intraparietal strain measurements (8, 11).  To maximize the accuracy of 

motion estimation, high-resolution ultrasound with speckle tracking algorithms have been 

employed (45, 46) in the renal setting to measure the mechanical properties of arteries 

and transplant kidneys, demonstrating the potential to distinguish between normal and 

fibrotic tissue (47). 

Blood vessels are examples of subsurface organs or tissue with highly nonlinear 

mechanical properties.  When palpated, nonlinear structures undergo “strain stiffening” 

where there is less strain for a given pressure differential with increasing deformation 

(47).  Arteries distended under normal physiologic pressure produce little strain because 

the normal arterial wall is a nonlinear elastic medium.  This relatively low level of strain 

effectively limits the accuracy of measurements of the mechanical properties of arteries 

under physiologic conditions.  However, lowering the transmural pressure on the arterial 

wall by applying external compression increases wall strain and deformation for a given 

pressure differential (14, 47).  Our elasticity imaging technique achieves pressure 

equalization by means of continuous freehand compression or use of a blood pressure 

cuff.  The applied external force produces internal pressure comparable to that resulting 

from measurement of a subject’s blood pressure.  The artery pulsates maximally when the 

applied external pressure equals the diastolic pressure, and the vessel collapses 

completely when the applied pressure is greater than the systolic pressure.  The broader 

range of strain resulting from this technique may improve the ability to distinguish 

noninvasively between normal and diseased arterial walls if motion tracking can be 

performed accurately.  With use of the pressure equalization procedure, ultrasound 

elasticity imaging with speckle tracking has the potential to track motion accurately and 

thereby detect subtle changes in strain in the vascular wall with unprecedented precision 

and accuracy (14, 47, 48). 

Previous ultrasound estimates of radial artery strain considered only the nonlinear 

elastic properties of the artery (14), noting the artery modulus to be substantially greater 

than that of the surrounding tissue.  This allows one to approximate the modulus 

estimates of the artery using strain measurements from the arterial wall alone, ignoring 

the effects on strain of the much larger and softer surrounding tissue.  However, 

surrounding tissue has the potential to absorb or transmit pressure to the artery and may 
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have a particularly important effect on arterial strain when external compression is 

applied (14, 47).  While it may seem reasonable to use only arterial wall strain 

measurements to approximate the modulus estimates under physiologic conditions, an 

interesting phenomenon occurs during pressure equalization - Not only does the artery 

wall modulus decrease by “unloading” the vessel, reducing transmural pressure with 

pressure equalization, but the opposite change occurs in the surrounding tissue. The 

present study evaluates the effect of the surrounding tissue modulus and validates the 

strain results of artery under both normal physiologic pressure and pressure equalization. 

Two FEA artery models are used, one with and one without surrounding tissue modulus 

effects, and the FEA results are compared with in vivo high-resolution ultrasound data. 

2.2 Materials and Methods 

2.2.1 Elasticity Imaging 

Local, nonlinear, high-resolution ultrasound elasticity imaging was performed on a 

45-year-old healthy human male subject.  The subject was enrolled for our study after 

providing informed consent, under a study protocol approved by our institution’s 

Investigational Review Board.  A Philips (Bothell, WA) IU22 ultrasound scanner with a 

7-MHz center frequency linear array transducer was used for data collection at frame 

rates of approximately 180 frames per second.  The subject was seated and his arm placed 

in the supinated position and extended forward along the sagittal plane and resting at 

approximately heart level on a solid surface.  The scan head was aligned on the anterior 

surface of the forearm so that the scan plane aligned 90
o
 to the elbow-wrist axis (coronal 

plane), enabling a true accurate cross-section of the brachial artery to be obtained. 

Observing the B-scan images, continuous freehand positioning over the arterial region of 

interest was conducted, ensuring the artery remained approximately in the center of the 

image.  Dilation of the subject’s brachial artery was observed in response to the 

transmitted transmural pulse pressure within the artery induced by physiologic cardiac 

pulsations under normal atmospheric pressure.  Imaging was also performed using the 

same method, but with the pressure equalization technique (14, 47).  The external 

pressure was applied to the surface of the arm directly above the brachial artery using the 

transducer head for both tasks. When the external pressure matched the patient’s diastolic 
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blood pressure, maximal pulsation of the artery was achieved.  The real-time RF data 

were recorded continuously for each B-mode image frame for off-line post processing. 

During post-processing of the RF ultrasound signals, the displacements of the 

brachial artery and surrounding structures were tracked from frame-to-frame (over time), 

using a high-resolution, two-dimensional, correlation-based phase-sensitive speckle 

tracking algorithm (45, 46).  Figure 2-1 illustrates the estimation of vessel deformation 

through a cross-section of an artery along the reflected post-receive beam formed RF 

signature. 

 

Figure 2-1. Illustration of the displacement determined from the frame-to-

frame “lag” distance calculated using the correlation between the characteristic 

underlying radiofrequency (RF) ultrasound signals between frames. 
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 Initially, the ultrasound array is pulsed in a fashion as to create a longitudinal 

acoustic wave in the form of a focused beam.  As this beam crosses tissue interfaces with 

varying acoustic impedances, a certain portion of the wave is reflected, while the rest of 

the energy is transmitted deeper into the tissue.  The reflected beam is received by the 

transducer, amplified, filtered and sampled to form a sequence of discrete numeric values 

accurately representing the reflected waveform.  Digital signal processing is then used to 

calculate the correlation between each reflected beam from consecutive frames.  For each 

new reflected signal obtained, kernels (vectors of sequential samples) are extracted, time 

shifted to various degrees, multiplied and summed with the previous beam to produce a 

third cross-correlation signal.  A general form of this equation is shown in Equation 2-1, 

where x is the reflected signal, and i is the position and shift of the kernel, h, along the 

signal: 

 

The maximum of y[i] indicates the position of closest match between the signals. 

Since the reflections are due to physical structures in the tissue, mechanical deformation 

(i.e., compression) produces shifts in sequential reflected waveforms.  The amount of 

signal shift required to find the maximum correlation corresponds to the tissue 

deformation. Because the transmission time of each beam is accurately controlled, the 

deformation between time intervals can be determined, therefore the velocity of tissue 

features can be determined.  The derivative with respect to space of the displacement 

provides the strain.  For 2-D speckle tracking this process is repeated multiple times for 

each beam as well as between adjacent beams constituting the image.  For our study, the 

lateral and axial displacements were calculated at the position of the maximum 

correlation coefficient, using a correlation kernel size approximately equal to the speckle 

spot.  The axial displacement estimate was then further refined by determining the phase 

zero-crossing position of the analytic signal correlation.  A spatial filter twice as large as 

the kernel size was used to enhance signal-to-noise ratio with good spatial resolution.  A 

weighted correlation window and spatial filtering of adjacent correlation functions were 

                              Equation 2-1 
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used to reduce frame-to-frame displacement error (45).  To support calculation of 

Lagrangian strain, interframe motion of reference frame (e.g., first frame) pixels were 

integrated to produce the accumulated tissue displacement.  Spatial derivatives of the 

displacements were calculated in a region of the artery to estimate the radial normal 

strain.  The principal components of strain were determined according to the direction of 

the ultrasound beam.  Longitudinal strain is the axial strain measured along the beam 

direction, and lateral strain is perpendicular to the axial strain.  Longitudinal strain is 

more accurate than lateral strain, as resolution is at least an order of magnitude greater 

along the ultrasound beam than in the lateral (across beam) direction (see Figure 2-1). 

Therefore, all strains were measured in the axial direction and at regions with maximum 

axial strain values: top, bottom and both sides of arterial wall. 

2.2.2 Finite-element Analysis (FEA) 

With regard to FEA modeling, it is necessary to obtain accurate Young’s modulus 

values for the materials/tissues used.  A microelastometer (model 0301, ARTANN 

Laboratories, West Trenton, New Jersey) was used to empirically measure the 

strain/stress relationship on samples of bovine peripheral muscular artery and 

surrounding tissue obtained from a butcher shop.  Cylindrical tissue specimens with a 

diameter of 1 mm and height of 2 mm were separately cut from the arterial wall and 

surrounding tissue and individually placed between the stamp and bottom plate of the 

microelastometer. The distance between the bottom plate and base of the 

microelastometer stamp was used as the reference point for displacement measurement. 

The tissue sample was compressed to a force of 150g or 70% of the starting height 

(whichever limit is met first) to obtain the tissue’s force/height dependence (49).  The 

stress (force per unit area) versus strain (change in length) results were calculated based 

on the height, force and cross-sectional area of the tissue. These quantities can be related 

through the following equation to obtain the Young’s modulus of elasticity for the tissue, 

  

                                   Equation 2-2 
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where σ and ε are the stress and strain, respectively, F is the applied force in 

Newtons, L0 and A0 represent the initial non-deformed length and cross-sectional area, 

and ΔL is the change in length. Because the tissue exhibits a non-linear elastic response 

the Young’s modulus varies depending on the values of L0 and ΔL, with the tangent to the 

stress-strain curve indicating the Young’s modulus for a specific L0.  However, as ΔL → 

0 inaccuracies in measurement become more pronounced.  For our analysis we assumed a 

linear elastic response (Hooke’s Law) over the region of interest as ΔL is small for 

pulsatile arterial pressure variations considered in our research. 

FEA of the artery models with and without surrounding tissue was performed using 

ABAQUS software (Simulia, Providence, Rhode Island), version 6.4, and the Young’s 

moduli obtained in the microelastometer experiment.  The axial strain was analyzed 

under conditions simulating both physiologic pressure and pressure equalization.  A 

simplified model of the brachial artery and its surrounding tissue was designed (Figure 

2-2).  For the FEA model, the quadratic-dominated element shape was used.  Dimensions 

were determined on the basis of the ultrasound B-mode image, and boundary conditions 

were based on the ultrasound experiment.  
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We assumed the volume of the surrounding tissue to be much larger than that of the 

artery.  Thus, the boundary conditions for surrounding tissue included a fixed bottom and 

sides that were free to move vertically but not horizontally (horizontally symmetric 

conditions).  Two-dimensional mesh was designed to analyze this model. Volume change 

of the tissue was assumed to be negligible and thus the Poisson’s ratio was regarded as 

0.5. 

2.3 Results 

2.3.1 Elasticity Imaging 

The accumulated displacement of the arterial wall was calculated from the pixel-by-

pixel displacement relative to the original frame starting at diastole of the cardiac cycle. 

Normal accumulated strain values were obtained from the accumulated displacement, and 

the average strain value was estimated from five regions of interest chosen along the 

arterial wall during one pulsation of the artery.  These strain values show axial strains, as 

Figure 2-2. Finite-element analysis (FEA) model of artery and surrounding 

tissue, including dimensions. 
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shown in Figure 2-1, that were derived from spatial derivatives of the displacements in a 

region of the artery.  The axial strain values were converted to radial normal strain by 

changing vector direction according to the radial normal direction of the arterial wall in 

order to compare the imaging and FEA strain results.  Figure 2-3 shows the B-scan image 

and strain-versus-time plot of five regions of interest along the top edge of the vessel wall 

during one cardiac cycle under physiologic pressure.  

Analysis of all images showed the average strain under physiologic pressure was 

about –5% at the top and bottom of the arterial wall and 1% and 3% at the sides, 

compared to about –26% at the top and 11% and 24% at the sides under equalized 

pressure.  (The value of average strain at the bottom of the wall under pressure 

equalization was disregarded as unreliable due to poor tracking).  The vertical dashed line 

in Figure 2-3 represents the time at end-diastole (or onset of systole) when wall strain 

magnitude is at minimum. 

 

 

Figure 2-3. B-scan image and the strain-versus-time plot during one cardiac 

cycle under physiologic pressure. The average strain differences are calculated from 

five regions of interest along the arterial wall using ultrasound elasticity imaging. 
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2.3.2 Finite-element Analysis (FEA) 

Figure 2-4 provides the results of the bovine artery and surrounding tissue 

microelastometer experiments as stress-strain curves.  It can be seen that although strain 

is nonlinear overall, it can be approximated as a piecewise linear function over each of 

the physiologic and pressure equalization ranges.  

 

 

Figure 2-4. Stress-strain relationship for (a) bovine arterial wall and (b) 

surrounding tissue. The linear approximations of Young’s modulus used in the finite-

element analysis (FEA) model are summarized in Table 2-1. 
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Table 2-1 gives the Young’s modulus values determined for each pressure range, 

using Equation 2-2, where σ is the change in pressure in kilopascals inside the artery and 

ε is the strain.  

 

Figure 2-5(a) shows the boundary conditions and mesh on the artery model with 

surrounding tissue.  Figure 2-5(b) shows the strain distribution in the tissue under 

physiologic pressure.  As the internal pressure increases from 80 to 120 mmHg, the 

radius of the artery increases, but the thickness of the arterial wall decreases. From Figure 

2-5(b) it can be seen that the lateral sides (left and right) of the artery expand outwards, 

while the axial edges (top and bottom) tend to move inward (indicated as a negative 

strain) toward the center of the artery.  In the ultrasound experiment, the subject’s upper 

arm rests flat on a table, and pressure equalization is achieved by using the transducer to 

apply pressure to the arm.  Thus, the bottom of the surrounding tissue is constrained 

while pressure is applied to the top.  Under conditions of normal physiologic blood 

pressure of 120/80 mmHg, the transmural arterial wall pressure increases from 80 

(diastolic) to 120 (systolic) mmHg.  Under these conditions the artery and tissue are 

already under a certain amount of strain, as can be seen from Figure 2-4(a) and Figure 

2-4(b), resulting in a certain amount of resistance against further expansion of the vessel. 

A specific arterial pressure results in a force on the internal lumen wall of the artery.  

This force results in a displacement, or expansion of the artery.  Due to the base strain 

offset (pre-strain) imposed due to the physiologic pressure and non-linear elastic response 

(steeper Young’s modulus), a small displacement change occurs as the physiologic 

pressure pulses. As the artery expands, the arterial wall and surrounding tissue are 

deformed, resulting in an increasing elastic force opposing the pressure induced force. 

Table 2-1 The Young’s moduli of artery and surrounding tissue under physiologic 

pressure and pressure equalization 

 Artery Surrounding Tissue 

Physiologic pressure 118 kPa 14 kPa 

Pressure equalization 22 kPa 76 kPa 

 



17 

 

Arterial deformation reaches equilibrium when the sum of the force vectors balance, 

which occurs relatively quickly due to the slope of the stress-strain curve.  During the 

pressure equalization procedure used to illicit nonlinear behavior of the arterial wall (50), 

an external force is applied, which results in deformation of the artery and surrounding 

tissue.  This deformation is again balanced by the reaction force due to the elasticity of 

the tissue.  When the reaction force exceeds the pressure-induced force, the vessel 

collapses.  As the physiologic pressure pulses, the pressure force exceeds the external 

force and the artery expands again until the forces are once again in equilibrium.  Due to 

the external force, the base strain offset (pre-strain) is removed so the expansion occurs 

over an area of the stress-strain curve with a lower Young’s modulus, meaning that a 

larger displacement is necessary to balance the forces. 
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Average strains and standard deviations (STDs) of n = 5 regions of interest obtained 

from the FEA artery models for both physiologic pressure and equalized pressure are 

Figure 2-5. (a) The boundary condition and (b) strain distribution under 

physiologic pressure of the finite-element analysis (FEA) artery model. 
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shown in Table 2-2, where they are compared with the ultrasound imaging results. 

 

 FEA and imaging results are also compared in Figure 2-6(a) and Figure 2-6(b) for 

the regions of interest at the top and sides, respectively, of the arterial wall.  Under 

physiologic pressure, the average strain at the top and bottom of the arterial wall in the 

model with surrounding tissue (FEA1) was –9%, compared to –11% in the model without 

surrounding tissue (FEA2).  The difference in average strain values at the sides was 13% 

versus 17% in the models with and without surrounding tissue, respectively.  Under 

pressure equalization, however, the differences in average strain values between the two 

models were considerably greater: –20% versus –60% in the models with and without 

surrounding tissue, respectively, at the top and bottom regions of interest; and 16% 

versus 91% in the models with and without surrounding tissue, respectively, at the sides 

of the arterial wall. 

 

Table 2-2. The average strains of artery and surrounding tissue under physiologic 

pressure and pressure equalization. 

 Region Ultrasound Results FEA1 FEA2 

Physiologic 

pressure 

Top -0.050 ± 0.023 -0.086 ± 0.008 -0.113 ± 0.004 

Bottom -0.058 ± 0.013 -0.086 ± 0.009 -0.111 ± 0.003 

Left 0.012 ± 0.011 0.134 ± 0.011 0.170 ± 0.005 

Right 0.034 ± 0.019 0.136 ± 0.009 0.170 ± 0.004 

Pressure 

equalization 

Top -0.256 ± 0.073 -0.194 ± 0.043 -0.606 ± 0.023 

Bottom 
-0.059 ± 0.009 

(Poor tracking) 
-0.213 ± 0.038 -0.598 ± 0.016 

Left 0.115 ± 0.112 0.161 ± 0.021 0.914 ± 0.025 

Right 0.241 ± 0.141 0.164 ± 0.016 0.915 ± 0.019 
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Figure 2-7 shows the stress distribution of the artery model with surrounding tissue 

(FEA1) under both physiologic pressure and pressure equalization, with arrows showing 

high stress regions.  Maximum stress increased from about 235 to 356 mmHg under 

physiologic pressure and was concentrated inside the arterial wall. On the other hand, the 

high-stress region was outside of the vessel wall under pressure equalization, when 

maximum stress increased from about 99 to 116 mmHg.  Thus, a large portion of the 

external pressure was absorbed under pressure equalization, resulting in low stress on the 

arterial wall 

Figure 2-6. Average strain values and standard deviations from five regions of 

interest at the (a) top and (b) sides of the arterial wall under physiologic pressure and 

pressure equalization, as determined by high-resolution ultrasound imaging with 

speckle tracking (US) and finite-element analysis models with surrounding tissue 

(FEA1) and without surrounding tissue (FEA2). 
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Figure 2-7. The stress distribution of the artery model with surrounding tissue 

(FEA1) under either physiologic pressure or pressure equalization. The arrows point 

to high-stress regions. 



22 

 

2.4 Discussion 

High-resolution ultrasound with speckle-tracking algorithms can accurately and 

precisely measure the motion and mechanical strain of subsurface structures and tissues 

such as arteries and other vessels.  This noninvasive imaging technique has the clinical 

potential to distinguish subtle changes in arterial mechanics.  

However, the arterial wall is a highly nonlinear elastic medium that undergoes little 

deformation when the artery is distended under normal physiologic loading.  The small 

amount of arterial strain produced under physiologic pressure limits the range of possible 

measurements by elasticity imaging to characterize stiffness fully.  However, previous 

ultrasound imaging research (14, 47) has demonstrated that this limitation can be 

overcome by applying external pressure to lower the mean arterial pressure (MAP) that 

produces the low effective elastic modulus, and therefore higher radial strain, in the 

vessel wall.  Reducing MAP decreases preload or transmural pressure and allows the 

arterial pulse pressure to produce much larger strain. Use of the pressure equalization 

technique therefore expands the dynamic range of potential strain measurements.  

Previous estimates of peripheral artery strain under pressure equalization have relied 

on the Young’s modulus of only the artery (14).  We sought to investigate the effect of 

surrounding tissue in ultrasound elasticity measurements by comparing strain results from 

imaging to those of two FEA models, one employing the modulus of only artery (FEA2) 

and one employing the moduli of both artery and surrounding tissue (FEA1).  The 

ultrasound and FEA strain measurements differ little under physiologic pressure. Under 

pressure equalization, however, the strain levels predicted by the FEA2 model are 

substantially greater than the levels measured by both imaging and the FEA1 model, 

which are relatively similar.  Therefore, surrounding tissue appears to have a significant 

effect on arterial strain and should not be ignored in models of strain under pressure 

equalization.  One possible hypothesis for this effect could be the relationship between 

the Young’s moduli of the two tissues under physiologic and pressure equalization states. 

By evaluating Figure 2-4 and Table 2-1, it can be seen that under physiologic pressures 

the Young’s modulus of the arterial wall is significantly greater than that of the 

surrounding tissue (about 8×).  This means that the elasticity of the artery is 
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predominantly responsible for balancing the expansion force produced due to the blood 

pressure.  However, if we consider the pressure equalization state it can be seen that the 

Young’s modulus of the surrounding tissue is approximately 3× that of the artery wall. 

This means that the surrounding tissue is playing a far greater role in balancing the force 

due to the pressure in the artery.  This relationship can be clearly seen in Figure 2-6(a) 

and (b), by comparing the FEA1 (with surrounding tissue) and FEA2 (no surrounding 

tissue) graphs for physiologic pressures and pressure equalization.  In both cases, higher 

strain values are obtained when no surrounding tissue is present.  Under physiologic 

pressures we would not expect to see a great difference between the FEA1 and FEA2 

results.  However, under pressure equalization we see much higher strain (deformation) 

when no surrounding tissue is present in the simulation. 

A limitation of this study is the use of only one human subject for the collection of 

ultrasound data.  The ultrasound apparatus and method of data collection were considered 

too experimental and impractical for use in a larger clinical investigation. The 

preliminary findings of the comparison of the ultrasound and FEA elasticity analyses 

reported here warrant further development of an ultrasound apparatus that is suitable for 

use in a larger clinical study. 

2.5 Conclusions 

Prior studies have made important contributions to our understanding of arterial 

compliance.  Ultrasound speckle tracking has advanced our understanding by allowing 

high-resolution measurements. Provocative maneuvers are being developed to increase 

our understanding of tissue mechanics. These results indicate the use of strain 

information as a diagnostic tool may need to include the effects of surrounding tissue 

mechanics, especially when maneuvers such as pressure equalization are used to enhance 

the dynamic range of elasticity imaging. 
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Chapter 3 Quantification of Flow Velocity and Edge Velocity Gradient 

from Ultrasound Radio Frequency Signals 

3.1 Introduction 

The blood flow velocity profile is important for diagnosis of cardiovascular diseases, 

which are associated with abnormal blood flow in arteries due to hemodynamic changes 

of patients (28).  The blood flow velocity gradient at the wall edge has been utilized to 

estimate the vascular wall shear stress, which has a key role in vascular physiology as 

well as the pathophysiology of vascular diseases (51).  Based on Poiseuille theory, the 

blood flow velocity profile is parabolic and high velocity gradients occur at the vascular 

wall in steady-state and fully developed laminar flow in normal conduit vessels (52).  In 

areas with vascular tortuosity, branching, and the presence of vascular plaque, the blood 

flow velocity profile is non-parabolic (28).  Ultrasound has been the preferred non-

invasive technique to measure the blood flow velocity profile.  

Multi-gate Doppler ultrasound measurement has been applied to estimate the blood 

flow velocity in vessels (16).  Using multi-gate Doppler measurements, the blood flow 

velocity profile and blood flow velocity gradient at the wall edge were determined from 

longitudinal views of blood vessels (17, 18, 21, 22).  However, multi-gate Doppler 

ultrasound estimates of blood flow are based on 1D velocity measurements, which 

depend on the assumptions that the lumen is circular and that the flow is symmetrical in 

the out-of-plane directions, both of which are violated in the presence of vascular 

tortuosity and branching (16). 

To measure the 2D flow velocity, the tracking of ultrasound RF signals has been also 

utilized to study the blood flow velocity profile.  Using correlation based lateral speckle 

tracking, blood flow velocity profiles have been measured from longitudinal views of 

blood vessels (23-27).  Blood flow velocity profiles have been quantified using the 

correlation based lateral speckle tracking, but B-mode image acquisitions of longitudinal 
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views of blood vessels were limited by vascular tortuosity and branching (28).  To 

overcome these limitations, transverse views of blood vessels were used to measure 

blood velocity profiles.  For transverse views of blood vessels, the decorrelation of 

ultrasound RF signals along 1D A-line and in 2D B-mode images have been applied to 

the study of blood velocity profiles.  Using the decorrelation of ultrasound RF signals, the 

vessel wall interface could be detected (29) and blood flow velocity profile was 

qualitatively identified (30).  The blood flow velocity profile measurement using the 

decorrelation of ultrasound RF signals from A-lines has been demonstrated, but the 

quantification of blood flow velocity was not achieved.  

RF signals of 2D B-mode images were used to determine the blood flow profiles in 

transverse views of a vessel.  Bamber et al. (31) demonstrated that decorrelation could be 

used to identify blood flow using the time rate-of-change of correlation in B-mode 

images.  Li et al. (32) has theoretically demonstrated the linear decrease of correlation 

according to elevational speckle movement.  Speckle decorrelation has been used to 

measure the motion of transducer to produce 3D ultrasound images (32-35).  This 

technique has been applied by Rubin et al. (36) to qualitatively identify the blood flow 

profile in both in-vitro flow phantom and in-vivo animal studies.  Rubin et al. (37) also 

used the Doppler flow measurements to improve the accuracy of volumetric flow from 

the decorrelation based flow profiles and theoretically modeled exponential decrease of 

correlation according to elevational speckle movement.  Previous research demonstrated 

that speckle decorrelation could generate flow velocity profiles, but the decorrelation was 

not experimentally measured.  The first goal of this research is to estimate flow profiles 

using speckle decorrelation due to elevational motion in tissue-mimicking phantoms.  

Speckle decorrelation can be used to measure velocity profiles because when blood 

particles travel through an ultrasound imaging plane, the received echo signals 

decorrelate at a rate that is related to the flow velocity (50, 53-55).  To achieve this goal, 

the transducer is moved at a series of constant velocities across a tissue-mimicking 

phantom. The relationship between speckle (transducer) velocity and beam-to-beam 

correlation as a function of position along beam is obtained. This calibration function can 

then be used to calculate velocity from a 2D transverse image given a specific observed 

decorrelation. 
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A second goal of this research is to determine the edge of vascular walls and the 

velocity gradients at the edge using the speckle decorrelation approach.  The wall edge is 

determined using both the B-mode image and 2
nd

 order gradient of the flow velocity 

profile at the wall edge. The accuracy of the ultrasound measured flow velocity profile 

and the velocity gradient are evaluated by comparison with the parabolic velocity profile 

based on Poiseuille theory. 

The third goal of this research is to compare the transverse decorrelation based-, and 

lateral speckle tracking flow velocity profiles.  For lateral speckle tracking flow velocity 

measurement, the ultrasound RF signals of B-mode image are acquired from longitudinal 

views of the hole in the flow phantom through which blood mimicking fluid is flowing. 

The speckle movement is determined using correlation based lateral speckle tracking. 

The flow velocity is obtained by multiplying the speckle movement in two consecutive 

frames by the acoustic frame rate.  The wall edge is also determined using both B-mode 

image and 2nd order gradient of the flow velocity profile.  The velocity gradient is 

measured at the wall edge from the flow velocity profile.  The flow velocity profile and 

the velocity gradient are compared with the decorrelation flow velocity profile and 

velocity gradient. 
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3.2 Materials and Methods 

To obtain the data required to achieve the three goals, two experiments were 

performed: 1) speckle decorrelation measurement using tissue-mimicking phantom with a 

linear rail system and 2) in-vitro flow measurement using blood mimicking fluid with a 

flow phantom.  Two methods, decorrelation based transverse velocity estimation and 

lateral speckle tracking velocity estimation, were used to measure the flow velocity 

profile and the velocity gradient at the wall edge.  For the decorrelation based velocity 

estimation, the experimental setup shown in Figure 3-1 was used to obtain the calibration 

data and the setup shown in Figure 3-4 was used to obtain the flow data.   

 

The first experimental setup for speckle decorrelation measurement, as shown in 

Figure 3-1, consists of a tissue-mimicking phantom, a stepper-motor driven linear rail 

system and an ultrasound transducer.  The tissue-mimicking phantom contains scatterers 

producing fully developed speckle.  The linear rail system (Epsilon Imaging, Ann Arbor, 

Figure 3-1. The linear rail system and the tissue mimicking phantom. 
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Michigan, USA) generates speckle movement by moving an ultrasound transducer with 

desired velocity over the surface of a tissue-mimicking phantom.   

The ultrasound transducer (model L12-5 scanner, Epsilon Imaging, Ann Arbor, 

Michigan, USA) with a 9-MHz linear array acquires series of 19.5 mm × 24.9 mm B-

mode image, which consists of 0.09 × 0.09 mm pixels, with incremental spacing in the 

elevational direction over a tissue-mimicking phantom.  A 7 × 8 grid of region of interest 

(ROI) is chosen in the B-mode image (Figure 3-2).  Each ROI has 30 × 30 pixels, which 

is the sample number adequate to show consistent correlation values.  The size of ROI is 

2.72 × 2.73 mm, which has sufficient speckles to perform the speckle decorrelation.  The 

software EchoInsight
TM

 (Epsilon Imaging, Ann Arbor, Michigan, USA) executes the 

finite impulse response (FIR) high pass filtering and a 2D speckle tracking, which has a 5 

by 3-pixel kernel and a 9 by 5-pixel filter, for the B-mode images.  The FIR high pass 

filtering, which subtracts RF-signals of two intervals of frames, is applied for the B-mode 

RF-signals to suppress the reverberation noise and enhance the variation of RF-signals 

between frames and the accuracy of wall edge detection.   
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Figure 3-3(a) shows the beam correlation width, elevational speckle velocity and 

speckle decorrelation in the phantom speckle decorrelation measurement.  The beam 

correlation width is defined as full width at half maximum (FWHM) of the correlation 

versus speckle movement curve, as illustrated in Figure 3-3(b) (56). The beam correlation 

width determines the maximum flow velocity that can be measured. When the speckle 

movement during time interval between two consecutive firings of the transducer exceeds 

the beam correlation width, complete loss of speckle tracking occurs (37). This limits the 

maximum flow velocity that can be measured using the decorrelation based method and 

will be evident later in the Results and Discussions sections.  In addition, the beam 

correlation width versus depth determines the ultrasound beam profile, which can 

qualitatively validate the proposed method.   

 

Figure 3-2. B-mode image of the tissue mimicking phantom and the 7 by 8 grid 

region of interest (ROI).  
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For the first experimental setup (Figure 3-1), 47 frames of B-mode images were 

acquired by moving the ultrasound transducer with a 0.044 mm step size at 0.1 s per step 

over the phantom using the linear rail system.  2D speckle motion tracking was 

performed for the B-mode images by increasing the lag, which is the frame-to-frame 

increment, from 1 to 46.  A 7 × 8 grid of region of interest (ROI) was chosen in the B-

mode image (Figure 3-2).  The mean and standard error (SE) of the speckle movement 

versus correlation curves were obtained for each depth of the seven layers from the B-

mode image (Figure 3-2). 

The second experimental setup for in-vitro flow measurement consists of a peristaltic 

pump, a graduated cylinder, a flow phantom and an ultrasound transducer, as shown in 

Figure 3-4. The peristaltic pump (Barnant, Barrington, IL, USA) injects a fluid mixture, 

which consists of water and glycerine in the ratio of 5:1 and has plastic particles with 30 

± 3 μm diameter at a concentration of 1.7×10
4
 particles/cc (ATS Laboratories, 

 

 

Figure 3-3. (a) The definition of directions, beam correlation width, elevational 

speckle velocity and speckle decorrelation in the phantom.  (b) The anticipated 

speckle movement versus correlation curve and the beam correlation width of the 

curve. 
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Bridgeport, CT, USA) to increase the backscatter signal.  Mean volume flow rates of 50, 

100, 150, 200, 250, 500, and 1000 ml/min, within the range of human blood flow rate 

between 1 to 1000 ml/min (57) were studied.  The mean volume flow rate is measured 

using a graduated cylinder.  The flow phantom (Model 525, ATS laboratories, 

Bridgeport, CT, USA), made of tissue-mimicking urethane rubber, has 5.5 mm diameter 

hole as the flow path. 

In the second experimental setup (Figure 3-4), 700 B-mode frames were acquired at 

an acoustic frame rate of 348 Hz from the transverse view of the hole in the flow 

phantom.  The correlation map was computed as a function of time for the flow phantom 

with the fluid mixture flowing at specific velocities.  The correlation map of the flow 

phantom was used to determine the decorrelation rate corresponding to the fluid motion.  

Because the differences in speeds of sound, 1390-1500 m/s for the tissue-mimicking 

phantom in Figure 3-1 (58), 1555-1587 m/s for the fluid mixture (based on data provided 

by the manufacturer, ATS) and 1450 m/s for flow phantom (59), are small, their 

contributions to any errors in the estimates will be small.  The decorrelation of the fluid 

mixture and the average speckle movement versus correlation curves determined from 

the first experiment were used to measure the speckle displacement.  The speckle 

movement in two consecutive frames was multiplied by the frame rate to determine the 

flow velocity.  Using an averaged correlation map from the complete 700 frame set, the 

flow velocity profile was obtained for the circular cross-section of the hole inside the 

flow phantom.  This flow velocity profile was used to determine the velocity gradient at 

the wall edge using linear regression. 
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For lateral speckle tracking velocity estimation, the second experimental setup 

(Figure 3-4) was utilized to measure the flow velocity from the longitudinal view of the 

flow phantom.  917 B-mode frames were acquired using a 426 Hz frame rate to obtain 

the lateral velocity map of the fluid mixture flowing at a specific velocity.   

Using an averaged lateral velocity map from the entire range of 917 frames, the flow 

velocity profile was obtained for the longitudinal cross section of the hole in the flow 

phantom with the flowing fluid mixture.  Similarly, the velocity gradient at the wall edge 

was determined from this flow velocity profile using a linear regression estimate 

assuming that the flow is zero at the wall.  

The wall edges were determined using the B-mode image and the 2
nd

 order spatial 

derivative, gradient, of the flow velocity profile.  In the B-mode image, pixels in the 

vicinity of wall edges were identified from the brightness change of gray scale pixels due 

to acoustic impedance change between the tissue mimicking phantom and the fluid 

 

 

Figure 3-4. The graduated cylinder, peristaltic pump and flow phantom. 
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mixture (60).  Among these pixels, the wall edges were determined by the highest value 

of the 2
nd

 order gradient of the velocity profile.  Figure 3-5(a) shows the theoretical 

parabolic velocity profile for laminar flow in a circular tube.  The 1
st
 and 2

nd
 order 

gradient of the parabolic velocity profiles are shown in Figure 3-5(b) and (c), 

respectively.  For the 1
st
 order gradient of the velocity profile, discontinuity was occurred 

at the wall edges.  For the 2
nd

 order gradient of the velocity profile, an infinite value 

(    was generated at the wall edges.  The sites/pixels with the maximum values of the 

2
nd

 order gradient of the velocity profile were identified as the wall edges. 



34 

 

 

Figure 3-5. (a) Theoretical parabolic velocity curve and (b) the 1st and (c) 2nd 

order gradient of the velocity curve. v: velocity, μ: dynamic viscosity, v′: 1st 

gradient of velocity, v″: 2nd gradient of velocity, R: radius of the hole, r: distance 

from the center, ∆P: pressure difference, ∆x: distance in direction of flow, 
x

P




<0 is 

constant. 
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3.3 Results 

3.3.1 Decorrelation based flow velocity profile measurement and edge detection 

Figure 3-6 shows the average and SE of the speckle movement versus correlation 

curves for 7 layers.  The correlation coefficient and the speckle movement represent a 

normalized covariance and the elevational displacement of speckle through the beam, 

respectively.  The depth is defined from the top surface of the phantom with the 

transducer in the position for the transverse view.   

 

Figure 3-6. Average and standard error (SE) of speckle movement versus 

correlation curves from 8 ROIs in 7 layers each measuring 2.72 mm in height. 
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For the depth from 0 to 2.72 mm, the correlation coefficient sharply and linearly 

decreased from 1.0 to 0.34 with the speckle movement from 0 to 0.5 mm.  Beyond 0.5 

mm speckle movement, the correlation coefficient decreased slowly from 0.34 to 0.29.  

The beam correlation width, determined at FWHM of the average speckle movement 

versus correlation curve, was 0.296 mm in this layer.  For the next layer with depth from 

2.72 to 5.44 mm, the correlation coefficient also sharply and linearly decreased from 1.0 

to 0.31 with the speckle movement from 0 to 0.5 mm.  The correlation coefficient then 

slowly decreased to 0.22 at 2.1 mm speckle movement.  The beam correlation width 

Figure 3-6 (cont.). Average and standard error (SE) of speckle movement 

versus correlation curves from 8 ROIs in 7 layers each measuring 2.72 mm in 

height.  
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increased to 0.301 mm in this layer.  Similar patterns of sharp and linear decrease in 

correlation coefficient from 1.0 to 0.3 about 0.5 mm speckle movement and followed by 

a transition to slow decrease repeated in the following five layers.  The linear decrease of 

the correlation coefficient versus speckle movement was proposed by Li et al. (32) and 

observed in all layers.  The beam correlation width was approximately 0.30 mm in the 

top four layers (depth from 0 to 10.88 mm) and steadily increased to 0.36 mm in deeper 

layers (depth from 10.88 to 19.04 mm).  The divergence of the beam correlation width 

was observed.   

The measurement of beam correlation width was repeated four times. Figure 3-7 

shows the average and SE of the four beam correlation width measurements versus depth.  

The average beam correlation width was represented as the solid circle with different 

colors for each layer.  The SE of beam correlation width was the distance between the 

solid circle and the open cross symbol on both sides of the average.   

 

Figure 3-7. Average and standard error (SE) of beam correlation width versus 

depth. 
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The top layer had large variation of the measurement with the highest SE of the beam 

correlation width (0.017 mm).  Layers 2, 3, and 4 had consistent beam correlation width 

measurements with low SE (0.003 to 0.005 mm) and showed gradual convergence of 

ultrasound beam correlation width to the lowest value of 0.297 mm in Layer 4.  The 

ultrasound beam then gradually diverged from Layers 5 to 7.  This convergence and 

divergence of beam correlation width versus depth has been proposed by Shung (60) and 

qualitatively validated the measurement and analysis.   

Speckle movement versus correlation curves were applied to quantify the flow 

velocity using 2D speckle tracking of the flow phantom with fluid mixture flowing at 

mean volume flow rate of 100 ml/min using the second experimental setup (Figure 3-4).  

Figure 3-8(a) shows the B-mode image of the transverse view of the hole with the fluid 

mixture in the flow phantom.  A total of 700 consecutive B-mode frames were acquired 

in 2.01 s.  2D motion estimation was performed for the 700 frames by correlating 

adjacent frames (one lag) to generate 699 correlation maps.  In each pixel, the correlation 

coefficient in these 699 correlation maps was averaged to obtain the averaged correlation 

map as shown in Figure 3-8(b).   

A line, denoted as a-a, was selected across the center of the hole in the averaged 

correlation map (Figure 3-8(b)).  The correlation coefficient of the pixels along the a-a 

line was obtained five times under the same (100 ml/min) volume flow rate.  The average 

and SE of correlation coefficients along the a-a line are shown in Figure 3-9 for the 100 

as well as 50, 150 and 200 ml/min flow rate, each also has five measurements using the 

B-mode transverse view of the hole in the flow phantom.  The correlation coefficient of 

pixels in the a-a line was 1.0 up to about 6.6 mm, the depth of the top edge of the hole.  

Inside the hole, the correlation coefficient gradually dropped to a minimum value in the 

middle of the hole where the flow velocity was the highest and then increased back to 1.0 

at the bottom edge of the hole.  The change of correlation coefficient across the hole 

demonstrated the feasibility to use the correlation coefficient to estimate the flow velocity 

profile, as proposed by Rubin et al. (36).  The minimum average correlation coefficient 

for 50, 100, 150 and 200 ml/min volume flow rate was 0.92, 0.72, 0.65 and 0.56, 

respectively.  A high flow rate generated a lower minimum average correlation 

coefficient, which was also observed by (36).   
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To quantify the flow velocity using the correlation coefficient, the depth along the a-a 

line was divided into seven layers each measuring 2.72 mm in height similar to the 

speckle decorrelation measurement (Figure 3-2).  These seven layers are shown in Figure 

3-9.  In each layer, the value of correlation coefficient in the a-a line was used to find the 

amount of speckle movement in two consecutive frames based on the average speckle 

Figure 3-8. (a) B-mode image and (b) correlation map of the transverse view of 

the hole with the fluid mixture flowing at mean volume flow rate of 100 ml/min in 

the flow phantom.   
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movement versus correlation curves in Figure 3-6.  The speckle movement in the fluid 

mixture was determined from Layers 3, 4 and 5, the location of the hole in the flow 

phantom.  The speckle movement in two consecutive frames was multiplied by the 

acoustic frame rate (348 Hz) to estimate the flow velocity.   

 

The open square symbol in Figure 3-10 shows the velocity profile estimated using the 

decorrelation based flow velocity measurement method at 50, 100, 150 and 200 ml/min 

volume flow rate.  The theoretical (parabolic) velocity profiles, which are represented by 

solid lines, are also presented for comparison.  Near the top and bottom edges, the trend 

of sharp increase of flow velocity was the same for both the decorrelation based flow 

velocity profile and the theoretical velocity profile.  This demonstrated the feasibility of 

Figure 3-9. Average and standard error (SE) of the depth versus correlation 

coefficient curves from the line a-a for 50, 100, 150 and 200 ml/min volume flow rate. 
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the decorrelation based flow velocity measurement method to estimate the flow velocity 

gradient at the edge (not the whole velocity profile) of the hole.  In the middle of the hole, 

the decorrelation based flow velocity measurement underestimated the flow velocity 

because the speckle movement during time interval (0.003 s) between two consecutive 

firings of the transducer was larger than the beam correlation width.  This phenomenon 

has been observed by Rubin et al. (37).  
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The top and bottom wall edges were determined using the edge detection method 

based on the 2
nd

 order gradient of the velocity profile. Figure 3-11(a) shows the B-mode 

image of the transverse view of the hole with the fluid mixture flowing at 100 ml/min 

volume flow rate.  The a-a line across the top and bottom edge and center of the hole is 

marked.  Closed-up views of pixels in the hole and near the top and bottom edges as well 

: Lateral speckle tracking velocity profile 

: Theoretical (parabolic) velocity profile    

: Decorrelation transverse velocity profile  

Figure 3-10. Flow velocity profiles across a center of a cross section of the hole 

in the flow phantom at mean volume flow rate of 50, 100, 150 and 200 ml/min.  The 

correlation based lateral speckle tracking velocity profile was translated to the depth 

from 6 to 13 mm for comparison. 
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as the a-a line are shown in Figure 3-11(b).  Four pixels near the top edge, denoted as T1, 

T2, T3 and T4, were identified based on the transition of grey scale at depth of 6.45, 6.63, 

6.82 and 7.00 mm.  

 

 The 2
nd

 order gradient at T1, T2, T3 and T4 and adjacent pixels along the a-a line 

was determined and shown in Figure 3-12(b) for 100 ml/min volume flow rate.  The pixel 

T3 had the highest 2
nd

 order gradient (243 mm
-1

s
-1

) among four pixels and was 

determined as the top edge.  It is noted that pixels around T1 and T4 could have higher 

Figure 3-11. (a) B-mode image of the transverse view of the hole with the fluid 

mixture flowing at 100 ml/min volume flow rate and (b) closed-up views of pixels in 

the hole and near the top and bottom edges as well as the a-a line. 
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value of 2
nd

 order gradient but not be considered as the wall edge because they are not in 

the group of pixels were originally selected.   

 

 

 

 

Figure 3-12. Flow velocity profiles and the 2nd order gradient of the flow 

velocity profile across the a-a line at (a) 50, (b) 100, (c) 150 and (d) 200 ml/min 

volume flow rate. 

(a) (b) 
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Similarly, four pixels, denoted as B1, B2, B3 and B4 in Figure 3-11(b), were selected 

near the bottom edge in depth from 12.16 to 12.71 mm.  The 2
nd

 order gradient at B1, B2, 

B3 and B4 and adjacent pixels along the a-a line was determined and shown in Figure 

12(b) for 100 ml/min volume flow rate.  The pixel B1 had the highest 2
nd

 order gradient 

(280 mm
-1

s
-1

) among four pixels and was determined as the bottom edge.  This edge 

detection method was repeated for 50, 150 and 200 ml/min volume flow rate to obtain the 

top and bottom wall edges.  As shown in Figure 3-12(a) and (c), 50 and 150 ml/min 

volume flow rate, the top and bottom edges were determined at pixels T4 and B3, 

respectively.  For the 200 ml/min, the top and bottom edges were T4 and B2, respectively, 

as shown in Figure 3-12(d).   

Figure 3-12 (cont.). Flow velocity profiles and the 2nd order gradient of the flow 

velocity profile across the a-a line at (a) 50, (b) 100, (c) 150 and (d) 200 ml/min 

volume flow rate.  

(c) (d) 
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3.3.2 Lateral speckle tracking flow velocity profile measurement and edge detection 

The flow velocity profile was also measured using the correlation based lateral 

speckle tracking of the flow phantom with fluid mixture flowing at mean volume flow 

rate of 50, 100, 150 and 200 ml/min in the second experimental setup (Figure 3-4). Figure 

3-13(a) shows the B-mode image of the longitudinal view of the hole with 150 ml/min 

volume flow rate in the flow phantom.  A total of 917 consecutive B-mode frames (in 

2.15 s) were acquired.  The 2D speckle tracking was performed by correlating adjacent 

frames (one lag) to generate 916 lateral velocity maps.  In each pixel, the value of lateral 

velocity in these 916 lateral velocity maps was averaged to obtain the averaged lateral 

velocity map, as shown in  Figure 3-13(b) for 150 ml/min flow rate.   

 

Figure 3-13. (a) B-mode image and (b) lateral velocity map of the longitudinal 

view of the hole with the fluid mixture flowing at mean volume flow rate of 150 

ml/min in flow phantom. 
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Due to the pulsatile flow from the peristaltic pump (Figure 3-4), the flow velocity was 

not consistent along the hole, as observed in Figure 3-13(b).  Ten lines with interval of 30 

pixels, as shown in Figure 3-13(b), were selected across the hole.  The total flow rate of 

the flow velocity profile measured using lateral speckle tracking in each line was 

calculated.  The line with the flow rate closest to 150 ml/min, denoted as b-b in Figure 

3-13(b), was selected to represent the flow velocity profile at 150 ml/min volume flow 

rate.  This procedure was repeated for 50, 100 and 200 ml/min flow rate to find the cross-

sectional line which had the integrated flow rate best matched to the target flow rate. 

The flow velocity profiles estimated using the lateral speckle tracking flow velocity 

measurement method at 50, 100, 150 and 200 ml/min mean volume flow rate are shown 

using open circle symbol in Figure 3-10.  The lateral speckle tracking flow velocity 

measurement method spread beyond both edges due to the correlation window with 0.54 

mm size.  This was caused by the spatial smoothing effect of the flow velocity profile at 

the edge (45).   

The top and bottom wall edges were also determined using the edge detection method 

based on the 2
nd

 order gradient of the velocity profile. Figure 3-14(a) shows the B-mode 

image of the longitudinal view of the hole with the fluid mixture flowing at 150 ml/min 

volume flow rate.  For the lateral speckle tracking (longitudinal view), the depth of the 

hole in the flow phantom was 6.9 mm deeper than that in the decorrelation based flow 

velocity measurement (transverse view).  The depth for lateral speckle tracking was 

offset by this value for mutual comparison of the measurement results using these two 

setups.  The b-b line with the integrated flow rate closest to 150 ml/min is marked.  

Closed-up views of pixels in the b-b line near the hole are shown in Figure 3-14(b).  Four 

pixels near the top edge, denoted as T1, T2, T3 and T4, were identified in depths of 6.45, 

6.63, 6.82 and 7.00 mm, respectively.  The 2
nd

 order gradient at T1, T2, T3 and T4 and 

adjacent pixels along the b-b line was determined and shown in Figure 3-15(c) for 150 

ml/min volume flow rate.  The pixel T4 had the highest 2
nd

 order gradient (219 mm
-1

s
-1

) 

among three pixels and was determined as the top edge.   
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Similarly, four pixels, denoted as B1, B2, B3 and B4 in Figure 3-14 (b), were selected 

near the bottom edge with depth at 12.29, 12.47, 12.66 and 12.84 mm.  The 2
nd

 order 

gradient at B1, B2, B3 and B4 and adjacent pixels along the b-b line was determined and 

shown in Figure 3-15(c) for 150 ml/min volume flow rate.  The pixel B2 had the highest 

2
nd

 order gradient (109 mm
-1

s
-1

) among four pixels and was determined as the bottom 

edge.  This edge detection method was repeated for 50, 100 and 200 ml/min volume flow 

rate to obtain the top and bottom wall edges.  For 50 and 100 ml/min volume flow rate, 

the top and bottom edges were determined at pixels T3 and B1, as shown in Figure 

Figure 3-14. (a) B-mode image of the longitudinal view of the hole with the fluid 

mixture flowing at 150 ml/min volume flow rate and (b) closed-up views of pixels in 

the hole and near the top and bottom edges as well as the b-b line. 
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3-15(a) and (b), respectively.  For the 200 ml/min (Figure 3-15(d)), the top and bottom 

edges were T2 and B2, respectively. 

 

 

 

 

 

 

(a) (b) 

Figure 3-15. Flow velocity profiles and the 2nd order gradient of the flow 

velocity profile across the b-b line at (a) 50, (b) 100, (c) 150 and (d) 200 ml/min 

volume flow rate. 
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(c) (d) 

Figure 3-15 (cont.).  Flow velocity profiles and the 2nd order gradient of the flow 

velocity profile across the a-a line at (a) 50, (b) 100, (c) 150 and (d) 200 ml/min 

volume flow rate. 
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3.3.3 Velocity gradient estimation 

The velocity gradient at the wall edge was estimated using the linear regression of the 

flow velocity at pixels adjacent to the wall edge. Figure 3-16 shows results of velocity 

gradient with 3, 4 and 5 pixels adjacent to the wall edge (denoted as the 3-, 4- and 5-

pixel, respectively, to include the pixel representing the wall edge) at volume flow rate of 

50, 100, 150 and 200 ml/min.  The velocity gradient of theoretical parabolic velocity 

profile at the wall edge was also listed in Table 3-1.  The velocity gradient rose from 32.7 

to 131 s
-1

 with an increase of volume flow rate from 50 to 200 ml/min.  The percentage 

error relative to the theoretical value was calculated. 

The decorrelation based flow velocity measurement had good estimation of the 

velocity gradient using 3 pixels.  The error was 3%, 14%, 7% and 21% for 50, 100, 150 

and 200 ml/min flow rate, respectively.  The lateral speckle tracking required more pixels 

for more accurate estimation of velocity gradient.  The 5-pixel had the best estimation 

with 32%, 38%, 14% and 39% error for 50, 100, 150 and 200 ml/min flow rate, 

respectively.  This level of error was higher than that in the decorrelation based flow 

velocity measurement.  

 Velocity gradient (s
-1

) (% Error) 

Mean volume flow rate (ml/min) 50 100 150 200 

Theoretical (parabolic) velocity profile 32.7 65.3 98.0 131 

Decorrelation based 

velocity profile 

3-pixel 33.7 (3%) 56.2 (14%) 91.4 (7%) 104 (21%) 

4-pixel 27.2 (17%) 63.4 (3%) 108 (10%) 98.9 (25%) 

5-pixel 29.7 (9%) 75.6 (16%) 93.5 (4.6%) 89.7 (32%) 

Lateral speckle tracking 

velocity profile 

3-pixel 19.0 (42%) 30.9 (53%) 77.5 (21%) 64.0 (51%) 

4-pixel 21.0 (36%) 36.8 (44%) 81.4 (17%) 73.4 (44%) 

5-pixel 22.3 (32%) 40.7 (38%) 84.1 (14%) 79.7 (39%) 

 

 

 

Table 3-1. Flow velocity gradient at the wall edge at mean volume flow rate of 50, 100, 

150 and 200 ml/min.   
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The trend of high error in velocity gradient estimation at high volume flow rate was 

the same as in the decorrelation based flow velocity measurement.  This can be observed 

in Figure 3-16.  At 200 ml/min, both decorrelation based and lateral spectral tracking 

flow velocity measurement methods cannot predict the rapid rise of flow velocity at the 

wall edge. 

 

Figure 3-16. Flow velocity gradients at the wall edge at mean volume flow rate 

of 50, 100, 150 and 200 ml/min. 
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3.4 Discussion 

The decorrelation flow velocity measurement method demonstrated to be more 

accurate than the lateral speckle tracking method for the prediction of the velocity 

gradient at the wall edge.  Although the decorrelation based method has a limitation on 

measuring high flow velocity, as evident in Figure 3-10, it is more suitable to predict the 

wall edge velocity gradient.  The maximum velocity gradient error was 21% at 200 

ml/min volume flow rate as shown in Figure 3-16.  Figure 3-17 shows the theoretical 

velocity versus decorrelation based flow velocity.  The underestimation of flow velocity 

increased at high volume flow rate.  In this study, the limit for accurate decorrelation 

measurement of flow velocity was about 80 mm/s, which was determined by the beam 

correlation width (about 0.3 mm) and the acoustic frame rate (348 Hz).   

 

 

Figure 3-17. Theoretical velocity versus decorrelation based flow velocity. 
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The lateral speckle tracking flow velocity measurement method could measure the 

whole velocity profile (Figure 3-10).  This is shown in Figure 3-18 on the theoretical 

velocity versus lateral speckle tracking flow velocity.  Due to the correlation window 

spatial smoothing, the accuracy for predicting the edge velocity gradient was limited.  

The most accurate prediction of velocity gradient was only 14% at 150 ml/min volume 

flow rate as shown in Figure 3-16.  

 

Figure 3-18. Theoretical velocity versus correlation based lateral speckle 

tracking velocity. 
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3.5 Conclusion 

The decorrelation flow velocity measurement method not only can predict the edge 

velocity gradient more accurately than the lateral speckle tracking flow velocity 

measurement method but also has the advantage of the transverse view of the vessel for 

in-vivo patient study. A long section of vessel with uniform size is difficult to identify in 

the patient due to the tortuosity and branch of vessels.  The transverse view of the vessel 

is more suitable for ultrasound transducer setup.    

An application and future study of the decorrelation flow velocity measurement 

method is the vascular wall shear stress measurement to identify the potential for heart 

disease.  The decorrelation based velocity measurement method is ideal to predict the 

flow velocity gradient and the vascular wall shear stress on healthy and high-risk patient 

populations to study a non-invasive way for diagnosis of heart disease. 
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Chapter 4 In-vivo Vascular Wall Shear Rate of Renal Disease Patients 

4.1 Introduction 

Patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD) have 

high risk of cardiovascular disease due to vascular calcification (1) and accelerated 

atherosclerosis, caused at least in part by abnormal endothelial function (1-3).  The WSR 

is associated with the impairment of endothelial function and evidence is mounting it is 

an important indicator of future cardiovascular disease (61-66).  The WSR may also be 

helpful in diagnose of the atherosclerosis, which has been associated with low mean 

WSR (67, 68).  

Currently, WSR estimation is usually based on the measurement of peak blood 

velocity in the vessel center and the assumption that the blood velocity profile is 

parabolic in vessels (69-72).  However, in areas of vascular tortuosity, branching and the 

presence of vascular plaque, the blood velocity profile is non-parabolic (28).  Therefore, 

the direct measurement of blood velocity near the vascular wall edge may provide a 

significant aid for determining the WSR and reducing measurement dependence on 

modeling assumptions that may not be universally applicable.  Ultrasound techniques 

have been utilized for these direct noninvasive measurements of the WSR.   

Multi-gate ultrasound Doppler measurement has the advanced spatial resolution for 

determining the flow velocity profile at vessel wall edges (16) and has been applied to 

measure the WSR from longitudinal views of blood vessels based on 1D velocity 

measurement (17-22).  The use of Doppler requires the ultrasound beam to intersect the 

blood flow at a non-perpendicular angle.  Therefore, multi-gate ultrasound Doppler 

requires the assumptions that the lumen is circular and flow is symmetrical in the out-of-

plane directions in order to correct for the distortion introduced due to the isonification 

angle.  However, both assumptions are violated in the presence of vascular tortuosity and 

branching (16).   
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Decorrelation flow velocity measurement provides a possible method to overcome 

some of the assumptions associated with WSR measurement and has been applied to 

measure the flow velocity in the transverse view of the vessel (31, 36, 37).  This method 

has been expanded to identify vascular wall edges, measure WSR directly at the vessel-

blood interface and has shown potential advantages for in-vivo patient study.   

The research presented in this manuscript involves utilizing ultrasound RF signals 

acquired from the brachial artery in upper arm for nine healthy, six CKD and two ESRD 

subjects.  The blood velocity profile is measured from the transverse and longitudinal 

views, perpendicular to or along the blood flow direction in the brachial artery.  The 

performance of decorrelation imaging and correlation based lateral speckle tracking flow 

velocity measurement methods are compared between the various patient states.  The 

WSR is measured during the acquisition time interval using three pixels from the 

vascular wall edge to lumen interior using the blood velocity profile.  The mean and 

maximum WSR are determined during sequential cardiac cycles and compared between 

healthy and renal disease (CKD and ESRD) subjects.  The WSR and vascular diameter 

are determined for pre-, during- and post-vascular occlusion and compared between the 

healthy and the renal disease (CKD and ESRD) subjects. 

4.2 Materials and Methods 

4.2.1 Subjects 

A total of nine healthy, six CKD and two ESRD subjects were enrolled for our study 

after providing informed consent, under a study protocol approved by our Investigational 

Review Board.  The clinical information for the CKD patients, denoted as SB10 to SB15, 

and ESRD patients, denoted as SB16 and SB17, are summarized in Table 4-1.  The age 

of the CKD subjects ranged between 42 and 73.  The estimated glomerular filtration rate 

(eGFR) was between 4 and 39 ml/min.  The systolic blood pressure ranged from 132 to 

180 mmHg and the diastole blood pressure ranged from 60 to 84 mmHg.  The CKD 

subjects had documented history of coronary artery disease (SB11, SB12 and SB14), 

diabetes (SB10, SB11, SB12, SB14 and SB15), hyperlipidemia (SB10, SB11 and SB12), 

arthritis (SB10), hypertension (SB12, SB14 and SB15), myeloma (SB13) and 

thrombocytopenia (SB13).  The two ESRD subjects (SB16 and SB17) were aged 49 and 



58 

 

30, respectively.  Their systolic and diastolic blood pressures were 118 and 180 mmHg, 

and 80 and 76 mmHg, respectively.  The ESRD subject (SB16) has diabetes and was on 

hemodialysis.  The ESRD subject (SB17) had a transplant kidney, congenital renal 

disease and a long history of hemodialysis. 

 

 

 

 

 

  

 

CKD ESRD 

SB10 SB11 SB12 SB13 SB14 SB15 SB16 SB17 

Age 73 62 62 48 42 66 49 30 

Gender F F M F F M M M 

SBP 142 158 130 132 160 150 118 180 

DBP 84 60 60 80 84 74 80 76 

eGFR (ml/min) 21 16 39 6 10 4 5 * 

D
is

ea
se

 

Coronary artery 

disease 
        

Diabetes         

Hyperlipidemia         

Arthritis         

Congenital renal 

disease 
        

Hypertension         

Myeloma         

Thrombocytopenia         

■: Denote the subject has the disease  

*:  No value due to transplant kideny  

 

 

Table 4-1. The chronic kidney disease (CKD) and end-stage renal disease (ESRD) 

subjects’ clinical information. (SB: subject, M: male, F: female, SBP: systole blood 

pressure, DBP: diastole blood pressure, eGFR: estimated glomerular filtration rate) 
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4.2.2 Measurement Instrumentation 

The ultrasound transducer (Model L12-5 scanner, Epsilon Imaging, Ann Arbor, 

Michigan, USA) with a 9-MHz linear array acquires the 19.5 mm × 24.9 mm and 28.5 

mm × 49.8 mm B-mode images from the transverse and longitudinal view of the brachial 

artery, respectively.  The software EchoInsight
TM

 (Epsilon Imaging, Ann Arbor, 

Michigan, USA) performs the finite impulse response (FIR) high pass filtering of the RF 

data and applies a 2D speckle tracking algorithm using a 5 by 3-pixel kernel and a 9 by 5-

pixel filter.  The FIR high pass filtering, which subtracts RF-signals of two intervals of 

consecutive frames, is applied for the B-mode RF-signals to suppress the reverberation 

noise and enhance the variation of RF-signals between frames and the accuracy of wall 

edge detection.  

4.2.3 Measurement Procedure 

The WSR was measured from the transverse view of the brachial artery pre-, during- 

and post-arterial occlusion by inflating a pressure cuff placed around the upper arm to a 

suprasystolic pressure for about one minute.  Figure 4-1(a) shows the pre- and post- 

arterial occlusion and Figure 4-1(b) shows the during-arterial occlusion measurement. 

Figure 4-1(c) shows the blood velocity measurement from longitudinal view of the artery.  

The subjects were examined in sitting position and their arm was located at heart level.  

The ultrasound transducer was placed on the anterior surface of the upper arm.  The RF 

signals were acquired from the transverse and longitudinal views of the brachial artery.  

For the transverse and longitudinal view, the artery remained in the center of the B-mode 

image by applying continuous freehand positioning over the arterial region of interest.   

Two measurement methods, decorrelation and correlation based lateral speckle 

tracking, were used to obtain the blood velocity profile from the transverse and 

longitudinal view, respectively.  For the decorrelation flow velocity measurement method, 

2D speckle motion tracking was performed over 1000 B-mode frames to obtain 999 

correlation maps of the artery.  An arbitrarily line was selected across the center of the 

vessel in these 999 correlation maps.  The median temporal filtering with 20 frames was 

applied to correlation coefficient of the pixels along the selected line for entire 999 

frames using MATLAB (version 2009a, Mathworks, Natwick, MA, USA) to reduce the 
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noise from tissue motion.  Speckle movement due to blood flow for the transverse plane 

was calculated using the relationship obtained through a calibration procedure where the 

correlations of sequential acoustic beams were mapped versus a controlled speckle 

movement (Park et al. submitted).  999 blood velocity profiles were determined in 2.9 s 

along the selected line by multiplying the speckle movement in two consecutive frames 

by the acoustic frame rate. 
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The correlation based lateral speckle tracking flow velocity measurement method was 

also applied for comparison.  For this method, 2D speckle tracking was performed for 

917 RF frames to obtain 916 lateral velocity maps of the artery.  An arbitrary line was 

(a) (b) 

(c) 
Figure 4-1. (a) Transverse blood velocity measurement in the brachial artery, (b) 

transverse blood velocity measurement in the brachial artery with pressure cuff and 

(c) longitudinal blood velocity measurement in the brachial artery. 
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selected across the vessel in these 916 lateral velocity maps.  The median temporal 

filtering with 20 frames was also applied to lateral velocity of the pixels along the 

selected line for entire 916 frames.  916 blood velocity profiles were determined in 2.2 s 

along the selected line.   

The vascular wall edges were determined using the B-mode image and the 2
nd

 order 

gradient of the blood velocity profile.  Figure 4-2 shows an example of the healthy 

subject (SB1) B-mode image of the transverse view of the brachial artery without cuff 

and close-up view of pixels in the artery near the top and bottom edges as well as an 

arbitrarily placed vessel section line (a-a).  Four pixels near the top edge, denoted as T1, 

T2, T3 and T4, were identified based on the transition of grey scale at depth of 5.16, 5.34, 

5.53 and 5.71 mm.  Similarly, four pixels, denoted as B1, B2, B3 and B4 in Figure 

4-2(b), were selected near the bottom edge in depth from 9.58 to 10.1 mm.  The 2
nd

 order 

gradient of blood velocity at T1, T2, T3, T4, B1, B2, B3 and B4 and adjacent pixels 

along the a-a line was calculated to determine the vascular wall edges.  The WSR was 

calculated during acquisition time interval (2.9 s) using three pixels from the wall edge to 

inside of the lumen in the transverse view.  Figure 4-3 shows an example of the healthy 

subject (SB1) B-mode image of the longitudinal view of the brachial artery without cuff, 

and close-up views of pixels in the artery near the top and bottom edges as well as the b-b 

line, an arbitrary line across the vessel.  The top and bottom wall edges were also 

determined using the edge detection method based on the 2
nd

 order gradient of the blood 

velocity profile.  The WSR was calculated during the acquisition time interval using five 

pixels from the wall edge to inside of the lumen for the longitudinal view. 
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Figure 4-2. (a) B-mode image of the transverse view of the brachial artery and (b) 

closed-up views of pixels in the artery and near the top and bottom edges as well as 

the a-a line. (SB1, without cuff) 
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In each cardiac cycle, the mean WSR, denoted as meanWSR , and the maximum WSR, 

denoted as maxWSR , were calculated and compared between healthy and renal disease 

(CKD and ESRD) subjects.  The average of meanWSR , marked as meanWSR , and the 

, marked as maxWSR , of the two or three cardiac cycles were determined for each 

subject.  For the meanWSR  and maxWSR , the Shapiro-Wilk normality test was performed 

to evaluate normal distribution of healthy and renal disease subjects.  A t-test was 

performed for the  and maxWSR  to compare the healthy and renal disease (CKD 

maxWSR

meanWSR

Figure 4-3. (a) B-mode image of the longitudinal view of the brachial artery and 

(b) closed-up views of pixels in the artery and near the top and bottom edges as 

well as the b-b line. (SB1, without cuff) 
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and ESRD) subjects.  Blood flow occlusion using a pressure cuff was performed on 

healthy (SB1-SB9), CKD (SB10-SB15) and ESRD (SB16 and SB17) subjects.  The 

meanWSR  was determined pre-, during- and post-vascular occlusion and denoted as 

pre

meanWSR , 
during

meanWSR  and 
post

meanWSR , respectively.  The maxWSR  was also determined 

pre-, during- and post-vascular occlusion and denoted as 
pre

maxWSR , 
during

maxWSR  and 

post

maxWSR , respectively.  These WSRs and vessel diameter are calculated and compared 

between the healthy and renal disease (CKD and ESRD) subjects.  The t-test was 

performed to compare 
pre during

mean meanWSR WSR , 
pre during

max maxWSR WSR , 
post during

mean meanWSR WSR , 

post during

max maxWSR WSR , 
post pre

mean meanWSR WSR  and 
post pre

max maxWSR WSR  and the vascular 

diameter for the healthy and disease subjects.   

4.3 Results 

Figure 4-4 (a) shows an example of the top and bottom vessel edge WSR versus time 

for a healthy subject (SB1) during the 2.9 s acquisition time interval which has three 

cardiac cycles using the decorrelation flow velocity measurement method.  A moving 

average filter with 40 pixels× 40 frames using MATLAB (version 2009a, Mathworks, 

Natwick, MA, USA) was applied to remove the noise for WSR versus time.  The cardiac 

cycle was determined from time interval between sharp gradient changes of the WSR.  

Figure 4-4(b) shows the depth of top and bottom wall edges versus time during the 

acquisition time interval.  For the top and bottom wall edges, the median temporal 

filtering with 20 frames and moving average filter with 40 pixels× 40 frames were also 

applied to the top and bottom wall edges versus time using MATLAB (version 2009a, 

Mathworks, Natwick, MA, USA) for noise reduction.  The arterial diameter, as shown in 

Figure 4-4(c), was determined by subtracting from the bottom to top wall edges.  The 

arterial diameter changed from 3.7 to 4.4 mm during cardiac cycle.  

The WSR and vascular wall edges and diameter can also be determined using the 

lateral speckle tracking flow velocity measurement.  The meanWSR  was similar for both 

the decorrelation and lateral speckle tracking flow velocity measurement, but higher 

variations of WSR was observed in the lateral speckle tracking flow velocity 
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measurement due to the correlation window spatial smoothing.  The decorrelation flow 

velocity measurement was applied to measure the WSR in this study. 

 

Figure 4-5. shows the meanWSR  and maxWSR  in each cardiac cycle for nine healthy and 

eight renal disease (six CKD and two ESRD) subjects at top and bottom wall edges.  The 

meanWSR  and maxWSR  are represented as open green diamond and blue circle symbols, 

Figure 4-4.  (a) Time versus vascular wall shear rate during acquisition time 

interval (in 2.9 s), (b) time versus top and bottom vascular wall edges during 

acquisition time interval (in 2.9 s) and (c) time versus arterial diameter during 

acquisition time interval (in 2.9 s). (SB1, without cuff) 
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respectively.  The dash line represents meanWSR  and maxWSR  of the two or three cardiac 

cycles for each subject.   



 

 

6
8
 

 

Figure 4-5. Mean vascular wall shear rate (WSRmean) and maximum vascular wall shear rate (WSRmax) in each cardiac cycle 

for nine healthy and eight renal disease (six CKD and two ESRD) subjects from top and bottom vascular wall edges. (SB1 to SB9 

representing healthy subjects, SB10 to SB15 representing CKD subjects and SB16 and SB17 representing ESRD subjects and C1, 

C2 and C3 representing cardiac cycles) 
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Figure 4-6. Average mean vascular wall shear rate ( meanWSR ) and maximum vascular wall shear rate ( maxWSR ) for nine 

healthy and eight renal disease (six CKD and two ESRD) subjects from top and bottom vascular wall edges. (SB1 to SB9 

representing healthy subjects, SB10 to SB15 representing CKD subjects and SB16 and SB17 representing ESRD subjects) 
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The meanWSR  and maxWSR  for nine healthy and eight renal disease (six CKD and 

two ESRD) subjects are shown in Figure 4-6 at top and bottom wall edges.  The dash line 

represents the average meanWSR  and maxWSR  for the nine healthy and eight renal disease 

subject groups.  Both meanWSR  and maxWSR  had normal distribution for healthy and 

renal disease subjects in the Shapiro-Wilk normality test.  The average meanWSR  and 

maxWSR  were significantly different with all p < 0.05 at top and bottom wall edges, as 

summarized in Table 4-2, for the healthy versus renal disease subjects.   

 

For five healthy and three renal disease (two CKD and one ESRD) subjects, the 

pre

meanWSR , 
during

meanWSR  and  are shown in Figure 4-7 and 
pre

maxWSR ,  

and 
post

maxWSR  are shown in Figure 4-8 at top and bottom wall edges.  Changes from 

average 
during

meanWSR  to average 
post

meanWSR  and from average 
pre

meanWSR  to average 
post

meanWSR  

were distinctly different for the healthy and renal disease subjects as shown in Figure 4-9.  

post

meanWSR
during

maxWSR

 Healthy (s-1
) Disease (s-1

) p (two-tailed) 

meanWSR  
Top 80.96± 3.03 43.51± 5.89 0.00003* 

Bottom 81.54± 5.48 40.87± 4.66 0.0001* 

maxWSR  
Top 168.8± 13.4 111.1± 14.5 0.01* 

Bottom 173.7± 19.2 107.0± 14.0 0.01* 

* p < 0.05 

Table 4-2. The average and standard error of the mean (SEM) of average mean 

vascular wall shear rate ( meanWSR ) and average maximum vascular wall shear rate (

maxWSR ) for nine healthy and eight renal disease (six CKD and two ESRD) subjects. 
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Figure 4-7. Average mean pre- (
pre

meanWSR ), mean during- (
during

meanWSR ) and 

mean post-vascular occlusion vascular wall shear rate (
post

meanWSR ) for five healthy 

and three renal disease (two CKD and one ESRD) subjects from top and bottom 

vascular wall edges. (SB5 to SB9 representing healthy subjects, SB10 and SB11 

representing CKD subjects and SB17 representing ESRD subjects) 
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Figure 4-8. Average max pre- (
pre

maxWSR ), max during- (
during

maxWSR ) and max 

post-vascular occlusion vascular wall shear rate (
post

maxWSR ) for five healthy and 

three renal disease (two CKD and one ESRD) subjects from top and bottom 

vascular wall edges. (SB5 to SB9 representing healthy subjects, SB10 and SB11 

representing CKD subjects and SB17 representing ESRD subjects) 
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Figure 4-9. Average mean and maximum pre-, during- and post-vascular 

occlusion vascular wall shear rate for five healthy and three renal disease (two 

CKD and one ESRD) subjects from top and bottom vascular wall edges. 
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As summarized in the t-test results in Table 4-3, the average 
post during

mean meanWSR WSR  

and average 
post pre

mean meanWSR WSR  were significant with all p < 0.05 at top and bottom 

edges for the healthy versus renal disease subjects.  

 

 

On the contrary, the average  and 
post pre

max maxWSR WSR  were not 

significantly different for the healthy and renal disease subjects at top and bottom, as 

summarized in Table 4-4. 

 

 

pre during

max maxWSR WSR

 Healthy WSR (s
-1

) Disease WSR (s
-1

) p 

 

Top 76.88±21.4 56.23±22.0 0.551 

Bottom 84.57±21.4 44.49±11.1 0.226 

post during

max maxWSR WSR  
Top 76.74±20.3 31.58±7.71 0.154 

Bottom 127.6±19.1 43.02±12.3 0.02
*
 

 

Top -0.14±6.99 -24.7±20.6 0.215 

Bottom 42.97±25.6 -1.47±14.0 0.259 

* p < 0.05 

pre during

max maxWSR WSR

post pre

max maxWSR WSR

Table 4-4. The average and standard error of the mean (SEM) of average maximum 

vascular wall shear rate ( maxWSR ) change for pre-, during- and post-blood occlusion 

for five healthy and three renal disease (two CKD and one ESRD) subjects. 

 Healthy (s
-1

) Disease (s
-1

) p 

 

Top 53.80±7.19 28.88±9.26 0.08 

Bottom 55.63±6.95 25.58±6.88 0.03
*
 

post during

mean meanWSR WSR  
Top 101.8±8.40 22.20±5.44 0.001

*
 

Bottom 92.15±5.00 25.53±8.27 0.0003
*
 

 

Top 48.00±10.0 -6.68±3.90 0.004
*
 

Bottom 36.52±7.50 -0.06±4.30 0.006
*
 

* p < 0.05 

pre during

mean meanWSR WSR

post pre

mean meanWSR WSR

Table 4-3. The average and standard error of the mean (SEM) of average mean 

vascular wall shear rate ( meanWSR ) change for pre-, during- and post-blood occlusion 

for five healthy and three renal disease (two CKD and one ESRD) subjects. 
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The diameter of artery pre-, during- and post-arterial occlusion was measured during 

the 2.9 s acquisition time interval for five healthy and three renal disease (two CKD and 

one ESRD) subjects. Figure 4-10 shows the average pre-, during- and post-arterial 

occlusion arterial diameter for five healthy and three renal disease (two CKD and one 

ESRD) subjects.  The arterial diameter change between pre- and post-arterial occlusion 

was not significantly different between the healthy and renal disease subjects (p= 0.089). 

 

Figure 4-10. Average pre-, during- and post-vascular occlusion arterial 

diameter for five healthy and three renal disease (two CKD and one ESRD) 

subjects. (SB5 to SB9 representing healthy subjects, SB10 and SB11 representing 

CKD subjects and SB17 representing ESRD subjects) 
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4.4 Discussion 

Although this is a small study, an interesting observation is that the WSR was found 

to be significantly different between groups when vessel diameter was not.  Since vessel 

diameter tended toward significance, and since this is the value used for studies 

indicating vascular disease, such as flow mediated dilation (4), it suggests diameter 

change may become significant with a larger study population.  However, since wall 

shear is thought to be an important underlying physical stimulus for arterial dilation it 

may represent an important indicator for disease, worthy of further study.  In addition, 

these results suggest that using the appropriate measurement and analysis vehicle, WSR 

may be a more practical and robust measurement than the arterial diameter to determine 

the effects of renal disease or vascular disease in association with renal disease.  Lastly, 

our renal disease study group had a high prevalence of vascular disease, which is typical 

for patients with renal disease.  Knowing this, these results further suggest that this 

measurement method should be tested in other patient populations with known vascular 

disease to see if these results are reproducible in other settings.  Should these findings be 

reproducible this method may have significant potential for future cardiovascular disease 

risk stratification.   

4.5 Conclusion 

This study demonstrated that healthy subjects have significantly higher meanWSR  and 

maxWSR  than renal disease (CKD and ESRD) patients.  The findings were corroborated 

by using both top and bottom vascular wall edges, which yielded significant differences 

with p < 0.05.  The average 
post pre

mean meanWSR WSR was significantly higher also for healthy 

subjects than subject with renal disease, again at both the top and bottom wall edges (p= 

0.004 and 0.006).  The arterial diameter change between pre- and post-blood occlusion 

was not different from renal disease (CKD and ESRD) subjects. 
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Chapter 5 Conclusions 

5.1 Major Achievements 

The elasticity of the arterial wall was measured using ultrasound 2D speckle tracking 

and these ultrasound results were compared with measurements of arterial strain as 

determined by finite-element analysis models.  These measurements were performed with 

and without a surrounding tissue, which was represented by homogenous material with 

fixed elastic modulus.  The wall edges and edge velocity gradient were estimated for the 

in-vitro flow experiment using decorrelation based velocity measurements.  The vascular 

wall edges and vascular wall shear rate in the brachial artery were also measured using a 

decorrelation based ultrasound measurement method for nine healthy, six chronic kidney 

disease and two end-stage renal disease subjects.  The vascular wall shear rate and 

vascular diameter pre-, during- and post-occlusion with a pressure cuff were measured 

and compared for five healthy and three renal disease (two chronic kidney disease and 

one end-stage renal disease) subjects.   

The major achievements of this body of research are: 

 Arterial wall elasticity measurements and finite element analysis of arterial wall 

considering surrounding tissue effect. Ultrasound radio frequency signals were 

acquired from B-mode images of a human brachial artery for a healthy adult 

subject under normal physiologic pressure and with the use of an external 

pressure (pressure equalization) to increase strain.  Strain differences in the 

arterial wall during arterial dilation (from diastole to systole) were determined 

using a 2D speckle tracking algorithm.  These ultrasound results were compared 

with measurements of arterial strain as determined by finite-element analysis 

models with and without a surrounding tissue, which was represented by a 

homogenous material with fixed elastic modulus.  The results indicated that the 

surrounding tissue elastic modulus contributes significantly to vascular strain and 
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methods such as those performed in this study could significantly improve the 

estimation of vascular elastic modulus. 

 Quantification of wall edges and edge velocity gradient for in-vitro flow 

experiment using decorrelation based ultrasound flow velocity measurement. 

Speckle movement versus correlation curves were obtained for each depth using 

2D speckle tracking in a grid region by moving a transducer with a pre-

determined speed on a tissue-mimicking phantom.  The flow velocity was 

calculated by multiplying the estimated speckle movement from two consecutive 

frames by the acoustic frame rate.  The wall edge was determined using both the 

B-mode image and 2
nd

 order gradient of the flow velocity profile.  The velocity 

gradient was measured at the wall edge from the flow velocity profile.  The 

accuracy of the ultrasound measured flow velocity profile and the velocity 

gradient were evaluated by comparing them with the parabolic velocity profile 

based on Poiseuille theory.  These research results demonstrated the effectiveness 

and accuracy of this novel flow velocity estimation method in determining the 

velocity gradient near the vessel wall edge. 

  Measurements of vascular wall shear rate and vascular dilation for healthy and 

renal disease subjects. The vascular wall shear rate in the brachial artery was 

measured using the decorrelation based ultrasound measurement method for nine 

healthy, six chronic kidney disease and two end-stage renal disease subjects.  The 

vascular wall shear rate pre-, during- and post-vascular occlusion with a pressure 

cuff were compared for five healthy and three renal disease (two chronic kidney 

disease and one end-stage renal disease) subjects.  The mean and maximum 

vascular wall shear rate was measured during the cardiac cycle at the top and 

bottom wall edges, which were determined using the B-mode image and the 2
nd

 

order gradient of the blood velocity profile.  These research results demonstrated 

the effectiveness of this approach in determining wall shear in-vivo, as well as the 

potential utility of this approach in distinguishing healthy from diseased vascular 

physiology, and elucidated the underlying relationship between wall shear and the 

vascular dilation, which is thought to mediate changes in vascular compliance. 
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5.2 Original Contributions 

The original contributions made to the literature within this research are listed below.  

The list of original contributions are: 

1. Measurements of vascular wall strains using ultrasound 2D speckle tracking to 

evaluate the impact of surrounding tissue on strains. 

2. Finite-element analysis of vascular wall elasticity by considering surrounding 

tissue effect on the arterial wall, demonstrating the previously unrecognized 

substantial impact of surrounding tissue on vascular strain. 

3. Quantification of vascular wall edge location and vascular wall shear rate using 

decorrelation based ultrasound flow velocity measurement method. 

4. Comparison of vascular wall shear rate for healthy and renal disease subjects, 

demonstrating the differences in underlying shear that may mediate the changes in 

compliance. 

5. Comparison of vascular wall shear rate and vascular diameter pre-, during- and 

post-vascular occlusion with a pressure cuff for healthy and renal disease subjects 

that shows the potential utility for using this approach in measuring the 

underlying physiologic stimulus that actuates physiologic changes in strain. 

6.  Providing a unifying methodology and measurement approach using speckle 

tracking for evaluating vascular elastic modulus and the underlying wall shear 

stimulus that mediates changes in vascular elastic modulus. 

5.3 Future Work 

Based on the results from measurements performed during this research as well as my 

own analysis of the work performed over the course of this dissertation, the following 

research is suggested to be performed in order to move this research forward from the 

point it is currently at: 

1. Increase the range of decorrelation based flow velocity measurements. The 

maximum flow velocity measurements are limited by the beam correlation width 

and acoustic frame rate for the decorrelation based flow velocity measurement.  

The range of flow velocity measurement will be increased by adjusting the beam 
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correlation width or increasing acoustic frame rate.  This will extend the accuracy 

and robustness of this measurement approach. 

2. Vascular wall shear rate measurements for cardiovascular disease subjects. The 

decorrelation based vascular wall shear rate measurement method should be tested 

in other patient populations with known vascular disease to see if the results of 

dissertation are reproducible in other settings.  Should these findings be 

reproducible in other settings, this method may have significant potential for 

future cardiovascular disease risk stratification. 
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