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Background and purpose: One of the triumphs of modern cosmology has been the detection and measurement
of anisotropies in the cosmic microwave background (CMB), thermal radiation left over from the Big Bang.
Though almost completely uniform, it contains inhomogeneities on the order of 1075, one part in 100,000,
imparting important information regarding the nature of our universe.

One of the questions cosmologists today must consider is if our standard cosmological model is an accurate descrip-
tion of the universe, or if pieces are missing. Detection of anomalies, such as odd alignments in multipole vectors
or unusually hot/cold regions of the sky, could provide evidence for missing pieces in our understanding of the
universe. However, in order to detect such anomalies, one must first devise efficient search techniques to find them.

Signal injection: In order to test the effectiveness of our search methods, we explore the topic of signal
injection. We generate random Gaussian statistically isotropic full-sky maps based on our current ACDM best-fit
cosmological model. Then, we artificially induce a signal in the map - for instance, by adding a cold spot of
particular shape or size into the map. Finally, we use our existing techniques to search for the signal we added,
to determine the efficiency of our search techniques and the minimum strength required for the signal before
detection is possible. In this paper, we examine two specific signals: Hot and cold spots, and also multipole
modulation, in which a particular direction of the sky is singled out.

Results and conclusion: Our results are somewhat disappointing; the techniques we studied require the signals
to be quite large before detection at 3o is possible. However, it is still useful to examine the topic; negative results
are still worthy of being written up. At the least, this work will help us determine more efficient search techniques
in the future, and provide a guideline on the sensitivity of our tools to detection of specific signals.
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I. INTRODUCTION AND BACKGROUND

The cosmic microwave background (CMB) consists of thermal black-body photons permeating the observable
universe almost uniformly. Discovered serendipitously by Penzias and Wilson in 1964 [1], it was a strong confirmation
for the Big Bang model of our universe.

The early universe was made up of a hot interacting plasma of photons, leptons, and baryons; as the universe
expanded, the photons redshifted in wavelength, cooling until components of the universe decoupled one by one. Neu-
trinos, for instance, decoupled about 1 second after the Big Bang. When the universe was roughly 380, 000 years old,
photons cooled to the point at which they could no longer ionize hydrogen, and thus formation of neutral hydrogen
began, a process known as recombination. Before, photons could not freely travel, as they would continually scatter
off free electrons and protons, but shortly after recombination, photons were able to travel freely ('free streaming’)
without interacting with matter; we view them as CMB photons today. They offer an unparalleled snapshot of the
early universe, when it was less than a thousandth of its current age.

The cosmic microwave background is an almost perfect black-body spectrum. In Fig 1 above, we may see the CMB
spectrum measured by the Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background
Explorer (COBE) satellite. It is the most precisely measured black body spectrum in nature, measured so accurately
that the error bars and data points are thinner than the line (indicating the theoretical prediction.) The current
temperature of the CMB is T = 2.725 £ 0.001, where the error is not statistical, but rather refers to the scale of
anisotropies in the cosmic microwave background. At this early stage, the universe was almost perfectly uniform, but
those anisotropies grew over the course of its life to give us the clusters, galaxies, and overall structure we can see
today. The CMB is believed to be statistically isotropic, though this is still a study of investigation today. Note the
distinction between pure isotropy, in which everything is exactly the same in all directions, and statistical isotropy,
in which the small anisotropies are Gaussian random without any innate pattern or preferred direction.

In addition to the anisotropies described above, the cosmic microwave background also has a dipole anisotropy,
shown in Fig 2. This is caused by a Doppler shift in wavelength, due to the motion of the solar system through
the rest frame of the CMB background. The dipole anisotropy is of order 1072, a thousand times stronger than the
fine structure of the CMB; it must be subtracted out carefully to see the detailed anisotropies. As a result of this
velocity-induced dipole, it is impossible for us to measure the (much smaller) intrinsic dipole which should be present
within the radiation. It was only after the launch of the Wilkinson Microwave Anisotropy Probe (WMAP) in 2003
that the CMB has could be measured in extremely detailed high-resolution full-sky maps [2-5]; these maps have been
the subject of considerable study and examination over the past few years[6-9]. They will also be the main focus of
this paper.

A. Map methodology

We use WMAP’s seven-year maps in our work [5]. Firstly, we use the ILC map, which attempts to reconstruct
portions of the sky obscured by galactic noise; it is shown on the left panel of Fig 3. This is a risky process, however,
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FIG. 2: This false color map is a Mollweide
projection of temperatures in the cosmic
microwave background; the dipole
anisotropy visible is caused by a Doppler
shift due to our motion relative to the
cosmic microwave background. Note that
the line around the equator of the map is
caused by noise from the galaxy. Image
credited to the WMAP satellite team and
NASA.
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FIG. 3: The two figures are full-sky Mollweide projections of the cosmic microwave background (CMB), using 7-year
data from the WMARP satellite. Note that the figures are in false color, with redder colors corresponding to warmer
temperatures (and shorter wavelengths of photons), while bluer colors correspond to cooler temperatures. The figure
on the left is the Internal Linear Combination (ILC) map, which attempts to subtract out the galactic foreground,
reconstructing portions of the sky that would usually be obscured by noise. This is a risky procedure, however,
which necessitates the assumption of statistical isotropy, and is only believed to be accurate on angular scales
greater than 10°, according to the WMAP team. The right-hand figure is the coadded masked foreground-cleaned
Q-V-W map; gray pixels represent points in the sky obscured by noise from the galaxy, or other point sources. Note
that the ILC map has been smoothed through convolution with a Gaussian beam, removing much of the structure
on smallest scales.

which includes the assumption of statistical isotropy. Although statistical isotropy is indeed a feature of our standard
cosmological model, this assumption precludes our use of the map to test for statistical isotropy in the sky. In
addition, the uncertainty involved within the procedure means that it is only accurate on large scales of 2 10°,
according to the WMAP team.

In addition to the ILC map, we also use a map which has portions of the foreground remaining, but has not
undergone risky reconstruction techniques. Specifically, we use a coadded masked foreground-cleaned Q-V-W map.
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where T is the coadded temperature, determined from the weighted sum of temperatures T, of each individual
radiometer r € {Q1,Q2,V1,V2, W1, W2 W3, W4}, divided by the total weight. The weights at each pixel for each
radiometer are w,(i) = N,.(i)/o2, where N, (i) are the number of effective observations at the pixel, and o, is the
noise dispersion for the given receiver

This coadding was performed on maps at resolution of Ngqe = 512 (~ 8'). Finally, we applied the KQ75 mask, a
pixel mask provided by the WMAP team to exclude foreground-contaminated regions of the sky from analysis. The
resultant map may be seen in the right panel of Fig 3.
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FIG. 4: Left: Power spectrum of the CMB. Points are WMAP measurements, while the red line is the best-fit curve

in our A—CDM model. The gray bands signify cosmic variance - the model results are the expected average over an

ensemble of universes, but we have only one universe to observe. The first point is the quadrupole, which is seen just
below the error band and considerably less than the expected value. Image credited to the WMAP satellite team

and NASA. Right: The angular correlation function in the CMB C(0) = T(€2;), T(S22) 5o . The A—CDM
theoretical prediction is in purple, while the result from the ILC map is depicted in red, 1anzd_the result from the
foreground-cleaned coadded Q-V-W bands map is delienated in green. The green curve is unusually close to 0 past

6 ~ 60°. Data is from WMAP

II. CLAIMED ANOMALIES IN THE CMB

There have been a number of claimed anomalies in the cosmic microwave background. In this section, we will briefly
cover the most prominent ones, to give an idea of the signals we would like to detect.

A. Cold Spot

Since the WMAP 3rd-year data release, work has been done suggesting the presence of an anomalously cold spot
in WMAP data centered in the southern hemisphere, at galactic coordinates (I,b) = (208, —56) [10-12]. The spot is
of size roughly 4.6° in radius, and has an a priori significance of ~ 1072 (0.1%). Suggestions have been made that
the spot is due to a void or cosmic texture, among other explanations.

In 2009, a paper by Zhang and Huterer [13] called the significance of the spot into question. Namely, it claimed
that the quoted statistics were a priori and the actual significances were not unusual enough for a discovery.

B. Low quadrupole problem

Since the analysis of data from the Cosmic Background Explorer (COBE) satellite, the quadrupole (I = 2) moment
of the CMB is known to be considerably lower than expected; this is shown in the left panel of Figure 4. However,
due to cosmic variance (the model prediction is for an average over an entire ensemble of universes, whereas have only
one universe to observe) and foreground contamination through dust and synchrotron/free-free emission, errors are
considerably high. A full Bayesian analysis by O’Dwyer et al. [14] has shown that the quadrupole is significant only
at the 10% level.
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FIG. 5: It transpires that using the Internal Linear Combination (ILC) map with the right temperature scales, it is

possible to see temperature fluctuations that look like the initials “S H” - perhaps short for Stephen Hawking. This

demonstration of a priori statistics and cosmic coincidences was originally noted by Lyman Page, and later used as
an example by Bennett et al. [23].

C. Lack of angular correlations

The angular correlation function C(#) is defined as the average product in temperature between two points separated
by degree 0. That is,

0)=T(N),T II.1
C(o) =TT, (IL.1)
C(0) and the power spectrum Cj are related through the relation
20+ 1
= P, 11.2
C(9) ZEZZ gy CiP(cos ) (I1.2)

Measurement of C(6) in our sky has shown it to diverge considerably from A—CDM model predictions, as shown in
the right panel of Fig 4. Moreover, it is observed that in the cut-sky, C'(#) is unusually close to 0 for 6§ > 60°. !

In order to quantify the low power in the angular two-point function between approximately 60° and 180°, the
statistic [15]

1/2
Si/2 = C(0)?d(cos b)) (11.3)

—1

has been widely used. Analysis has shown the result in our sky to be significant at a level of > 3.20 [16-18], though
the validity of this result has been questioned [19]. A recent analysis by Zhang [20] suggests that the result may be
related to the regions of the sky corresponding to the quadrupole and octupole.

D. Alignment of quadrupole and octupole vectors

While the power spectrum plots the magnitude of the multipoles, each of them also have directional vectors
associated with them (See Section IV B for more details). Analysis has shown [6, 21, 22] that the quadrupole and
octupole vectors are strangely aligned with each other and the ecliptic plane, jokingly dubbed by researchers as the
“axis of evil.” This alignment is especially strange as the ecliptic plane is simply the plane of Earth’s orbit around
the Sun, devoid of cosmological significance.

IHere, T am discussing the results in the cut-sky map; as mentioned earlier, the full-sky ILC map is known to be unreliable for detailed
analysis.
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E. WMAP team response Response

The WMAP team examined the claimed anomalies and concluded that no significant anomalies existed [23]. They
stated that the claims were mostly the product of a-posteriori statistics. To illustrate their point, WMAP pointed
out that using the ILC map, with the temperature scales set right, it is possible to see Stephen Hawking’s initials in
the CMB. This is illustrated in Figure 5

Of course, there are many caveats to this example - the image only shows up in the ILC map, in which galactic
noise is subtracted out through assuming statistical isotropy, the temperature scale has to be set in a certain manner,
etc. Nevertheless, it is a useful example that patterns do not have to have a meaning; the human eye in particular

has a tendency to see 'patterns’ within random data (phenomenon known as apophenia and pareidolia.) In order to
have robust results, we must be careful to avoid a priori statistics.

III. HOT AND COLD SPOTS

In order to test for anomalies in the cosmic microwave background, we must first devise efficient search techniques
capable of detecting potential anomalies. As a result, we have an interest in testing the sensitivity of our methods
and their facility for signal detection. We now seek to artificially inject ’signals’ into arbitrary skies and detect the
artificial results through our array of search techniques.

One of the simplest types of CMB anomalies are the potential existence of unusually ‘hot’ or ‘cold’ spots; study in
this area has focused around the claimed WMAP cold spot, following the work of [10]. In this section, we examine
injection of simple hot or cold spots of varying shape, size, and radius into the cosmic microwave background. We

then attempt to search for the artificial signals using different weight functions in our search, and compare them to
results for unmodified random skies.

A. Weight function methodology

We consider three different weight functions: Top-hat weights (disks), Gaussians, and Spherical Mexican Hat
Wavelets. This analysis is based around the previous work of Zhang and Huterer [13]

We define the disk top-hat weight of radius R as
D(r) = Aasx(R) [O(r) — ©(r — R)], (I11.1)

where ©(r) is a Heaviside step function and Agisk(R) = (27(1 — COS(R)))_1/2 is defined so that

/ﬂ D(r)%dQ = 1. (I11.2)
0

Note however that the normalization Agisx(R) is unimportant for our analysis, as we perform relative comparisons of
temperatures in disks on the sky. The top hat-weighted temperature coefficients are given by

T (75 R) = / dYT(#)D(as R), (111.3)

where 7 = (6, ¢) is the location of a given spot, #' = (8, ¢') is the dummy location on the sky whose temperature we
integrate over, and « = arccos(7 - ') is the angle between the two directions.

Our Gaussian weights are defined similarly. The weight functions are
r2
G(r) = Agauss(R) exp <—4ln QRQ) , (I11.4)
so that the full width at half maximum of the distribution is equal to R. The weighted temperatures are given by

T (7 R) = / dYT(#)G a; R). (111.5)
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Finally, we use wavelet search functions, with procedure following the work of Cayon et al. [24], Martinez-Gonzalez
et al. [25]. The Spherical Mexican Hat wavelets are defined as

T(0; R) = Ayav(R) <1 v (g)z)z (2 . (2)2> exp (2}‘32) (I1L.6)
where y = 2tan(6/2) and

2 4N 7-1/2
Ayav(R) = [27TR2 <1 + % + Zﬂ , (I11.7)

so that f dQY¥2(0; R) = 1 over the whole sky. We may now define the continuous wavelet transform stereographically
projected over the sphere with respect to ¥(6; R), with T being the CMB temperature:

Tou (7 R) = / AT (F + [7)U(0: R), (IIL8)

where & — (0, ¢) and ,J’ — (#',¢') are the stereographic projections to the sphere of the center of the spot and the
dummy location, respectively, and are given by

T = 2tan g(cos ¢,sin ¢), (111.9)

/

0
i’ = 2tan 5((705 ¢, sing’); (I11.10)

see Martinez-Gonzalez et al. [25] for details. To work in terms of purely spherical coordinates, we center the spot
location to the north pole of the sphere, and rewrite the above as

Tyay (73 R) = / dYT(#)¥ (o R), (II1.11)

where M(#') is the mask, defined to be 1 for pixels within the mask and and 0 for those outside of it. For ease
of computation, we cut off the integral at values of @ = 4R, as the wavelet is effectively zero for greater values.
Afterwards, we may carry out the integral by using the Healpix command query_disc to find all pixels within that
radius from the wavelet center.

B. Significance statistics
To find the coldest spots in each sky, we evaluate the weighted temperatures
Tweignt (7; R) = /dQ’T(?’)W(a;R) (I11.12)

where W (a; R) is the weight function (either top-hats, Gaussians, or wavelets), and # = (6, ¢) is the location of a
specific spot.

The locations of centroids of spots are chosen to be all the centers of pixels in Ngqe = 32 resolution; therefore, we
examine Npix = 12 Nfide ~ 12,000 spots on the sky. In order to calculate the spots’ weighted temperatures, however,
we analyze the coadded map at resolution of Ngqe = 128 (~ 0.5°), which is sufficiently high to allow our results to

converge for spots of R 2> 2° | but still low enough to be numerically feasible.

For our statistic, we use the temperature of the coldest spot divided by the standard deviation of the distribution
of all spots

Tcpldest R
Swergni(R) = T5ac ™ (R)

oo () (IT1.13)

and equivalently for the Gaussian weights and the wavelets. Here o4k (R) is the standard deviation of the distribution

of all spots in a given map, while Tvﬁgigﬁit (R) is the coldest spot for a given weight and given scale in the distribution.
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FIG. 6: Depicted above is a demonstration of our methodology for finding coldest spots in each map. These two
figures are not conventional temperature maps, but Mollweide projections of the temperatures weighted by 5-degree
Spherical Mexican Hat Wavelets. That is, for each pixel 2 plotted above, the value of that pixel in the map is
M(Q) = Tway(Z; R =5) = [dYT(Z+ [i')¥(0'; R = 5). The left plot shows values evaluated for the full-sky ILC
map; the right plot shows values evaluated for the coadded masked foreground-cleaned Q-V-W map; calculations
were performed at Ngqge = 128. After calculating the above, we may then determine 7599t (R = 5) for these
specific maps (and repeat the process for each new map, radius size, and weight function.) Note that the large dark

blue (cold) region in the lower right of both figures is the ’cold spot’, claimed to be anomalous by Cruz et al. [10]

Note that the distribution of spot temperatures is not Gaussian, as the spots overlap and are not independent. We
scale T by o in Eq. (II1.13) in order to account for small (~ 10%) differences in the overall level of power in spots
of characteristic size R in the different maps — in effect, oqisk(R) provides units in which to best report the coldest
temperature. In unaltered random maps, we use a range of R € {2°,2.5°,...,9°} for disk and Gaussian weights, and
a reduced range of R € {2°,2.5°,...6.5°} for wavelet weights. 2

Computing the significance of our statistic Sqisk(7; R) is then in principle straightforward: we compare it to values
obtained from simulated Gaussian random maps and rank-order it; the rank gives the probability.

Finally, to avoid a priori statistics when comparing statistics to random maps, we also form an overall statistic,
which is defined as the minimum value of our statistic Sweignt(R) (defined in Eq II1.13) over a range of scales R.

Soveran(Weight) = mrin{Sweight (R)} (11114)

where
Re{2°,25°,...,9°} (IT1.15)
Weight € {wavelet, disk, Gaussian}

as well as a ’superstatistic’, adopted from Zhang and Huterer [13], which is defined as the minimum a priori
probability across the same range of scales

Ssupcr(welght) = mén{P(Welght, R)} (IIIIG)

over the same range of scales as above, where the specific a priori probabilities are calculated by comparison to
other Gaussian random maps. So for instance, if a map is ranked #4 in coldness for Gaussian spots of radius 5° out

of the 10,000 random maps, then that map has P(Weight=G, R = 5°) = ﬁ = 0.04%

2For wavelets with 6.5° < R < 9° the calculations at Ngg. = 128 were unfeasible due to the large number of pixels to keep track of. As
a result, we only consider scales of 2° < R < 6.5° for wavelet weight functions, but consider the full range 2° < R < 9° for disks and
Gaussians.
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FIG. 7: We plot a histogram for the range of overall statistics Soveran(Weight) and superstatistics Ssuper(Weight)
(logarithmic scale) for each of the 10,000 specific random Gaussian maps. We find that wavelets appear to be a
more ’efficient” weight function for searching for signals. That is, looking at Gaussian random maps across a range of
radii, you are more likely to find an ’anomalous’ a priori 3o result with wavelets than with circles and gaussians.

FIG. 8: An example of a random Gaussian map before (left) and after (right) a Gaussian-shaped signal of radius 8°
is artificially added; the region in question is circled in red.

C. Random map statistics

For our analysis, we used 10,000 randomly generated Gaussian full sky maps. The skies have been generated using
the Healpix facility synfast, and used as input the power spectrum determined in the WMAP 7-year analysis. The
maps were then smoothed by a Gaussian with FWHM = 1° to match the WMAP procedure.

Our findings are shown in Fig 7. We find that wavelets are inherently superior at finding signals; looking at
Gaussian random maps across a range of radii, you are more likely to find an ’anomalous’ a priori 3o result with
wavelets (1.62% likely) than with circles (0.76% likely) and gaussians. This is because wavelets are able to filter out
correlation between different scales.

As we calculate probability by comparison to other Gaussian random maps, the total number of 3o results across
the spectrum of random maps and radii is constant 3, at

Nga = 027% X NMaps X NRadii~ (11117)

3Note that due to computational complexity issues, we only computed 2 < R < 6.5° for wavelets, as opposed to 2 < R < 9° for circles and
Gaussians, and hence would have reason to expect fewer maps with 30 results for wavelets, simply due to a smaller search range.
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FIG. 10: Our attempts at detecting the significance of a sample signal. The left graph plots Soyeran(Weight) with
respect to the signal strength. The right graph plots the significance with respect to random maps of
Soverall(Weight); the black line denotes a probability of 30 (0.27%). It appears that wavelets are superior at
detecting signals. In addition, the signal needs to be quite strong ( ~ 250uK) before it can be detected at a true
significance of 3¢ (having accounted for a priori statistics.)

The difference comes because wavelets more efficiently distribute their result across multiple maps. For instance, if
a specific random map has a 30 result with R = 5° circles (or Gaussians), it is likely to also have a low-probability
result for R = 4°,4.5° etc. circles (or Gaussians); thus, the spectrum of 3o results is tightly clustered across specific
maps for circles or Gaussians. Wavelets suffer less from this issue, and hence, it is more likely to find an a priori
30 result with wavelets than with other weight functions. To avoid a priori statistics, we must take this effect into
account when examining signal injection into random skies; otherwise, wavelets will appear to be more effective than
they actually are.

D. Signal injection and results

We now experiment with injecting cold spot signals of arbitrary size into Gaussian random statistically isotropic
skies generated from the underlying best-fit A—CDM cosmological model. For simplicity, we select the shapes of the
signals to be our three weight functions - top hats, Gaussians, and wavelets. Plotted in Fig 8 is an example of a
random sky before and after the signal is injected; Fig 9 shows how the radial temperature distribution (centered

10
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around our signal) changes before and after we artificially add the signal to the sky. Note that by happenstance, our
signal was injected on top of an intrinsic 'hot spot’ temperature anisotropy. This highlights that there is an element
of uncertainty to signal injection - if, by chance, our artificial cold spot is added on top of an intrinsic hot spot of
similar size and magnitude, the two could cancel out, leaving little trace. On the other hand, if - by random chance -
we begin with a Gaussian sky which improbably already contains an extraordinarily cold spot, then no signal would
be needed for us to detect an apparently anomalous result.

After adding the artificial signal into a section of the sky, we then attempt to detect it with the weight functions
described above.

Our findings appear to be qualitatively consistent across a range of signal shapes and radii. An example is shown
in Fig 10, for an 8° Gaussian signal. We find that unfortunately, the signal needs to be quite strong (150-200 pK)
before we may obtain an a priori significance of 3o0. Furthermore, it appears that the wavelet is somewhat superior
at detecting signals regardless of their shape, even after accounting for a priori statistics.

IV. MULTIPOLE VECTORS

We now move on from our study of hot and cold spots, and consider the use of multipole vectors to search for
anomalies.

A. Anisotropy decomposition

One commonly used method of studying the CMB, is to decompose anisotropies in the sky into spherical harmonics

o0

l
Q) -T) =3 3 amYin(®) (1v.1)

=1 m=-—1

l
_ 1 4
Cl = 2[74—1 m;l ‘alm| (IV?)

In the first equation, we take the temperature difference as a function of vector Q) in the sky, and express it with a
spherical harmonic summation. In the second equation, we condense the power of each angular scale [ into a single
measure C}, the power spectrum, which agrees well with predictions through the standard AC DM cosmological model.

However, the measure above loses directional information which may be present in correlations between the indi-
vidual a;,s. As the assumption of statistical anisotropy has been questioned due to the discovery of various claimed
anomalies in the CMB [10, 23], it may be useful to create a new measure which retains directional information. This
was done by Copi, Huterer, and Starkman [26], by proposing the method of multipole vector decomposition to express
anisotropies in the CMB sky [17, 27].

B. Vector decomposition

The idea of multipole vector decomposition is to construct a set of [ unit vectors @(l’i)|0§i§l and a scalar A® from
each multipole moment, Zin:_l alelm(Q). That is, we express

l

D Y () = AV 0D ). (60D - ¢) (IV.3)
m=—I

l .
> Y (Q) & AV (549 - &) (IV.4)
m=—1
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FIG. 11:

Mollweide projections of skies which have undergone multipole modulation Thew (€2) = Toiq(Q)[1 + A(Q - 2)Y]] in the

+z direction in galactic coordinates, with A=5 (a very strong modulation. By comparison, the best-fit value for our

fiducial sky is A ~ 0.072 [7]. In the upper left is a dipole (I = 1) modulated sky; upper right is a quadrupole (I = 2)

modulated sky; lower left is a octupole (I = 3) modulated sky; lower right is a hexadecapole (I = 4) modulated sky.
The temperature scale is identical between all four sky plots.

For more details regarding the computation of multipole vectors, see [26]. We reuse the multipole vector decompo-
sition code of Copi et al., which is publicly available from their website.*

C. Detection of injected dipole modulation signals

One widely considered possible background in the CMB is a dipole modulation [7, 28-30].
Thew (Q) = Toa ()1 + A(Q2 - 7)) (IV.5)

Here, 7 is the modulation direction and A is the modulation strength. Note that this is different from the [ = 1
multipole (dipole), as this multiplies the temperature anisotropies, whereas the dipole is additive. The net effect on
the sky is more complicated than in the equation above, as injecting such a dipole modulation would also create
a dipole, which is typically removed > We wish to investigate the possibility of detecting such a background signal
through use of multipole vectors.

4http://www.phys.cwru.edu/projects/mpvectors
5The intrinsic CMB dipole cannot be seen, as it is drowned out by the much larger Doppler shift dipole caused by the peculiar velocity of
our solar system through the cosmos; hence, it is standard practice to remove the dipole.
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FIG. 12: Left: A contour plot with the x-axis being the strength of the modulation (A) and the y-axis being the
maximum multipole [ considered in the statistic. The three contours are for 1o, 20, and 30. Thus, considering more
multipoles (and more vectors) increases the statistics, meaning that a smaller modulation amplitude is needed to
reach 30 significance. Right: We plot the significance of results with respect to the modulation amplitude A, for
modulation of orders [ = 1,2,3,4 (where we have assumed a Gaussian distribution.) Our signal is injected into a
random maps with initial statistic —1o (Eq IV.7.) The four colored curves are the results for the dipole (I =1, in
purple), quadrupole (I = 2, in light blue), octupole (I = 3, in green), and hexadecapole (I = 4, in red.) The black line
represents a 3o result. The general trend continues for higher multipole values - our statistic is much better at
detecting even-order modulation than odd-order modulation. In addition, its effectiveness declines as the order of
modulation increases. Thus, it is most effective at detecting I = 2 quadrupole modulation

For this analysis, we use the statistic

Laz 1
S = (oD . (IV.6)
l =1

3

[|
V)

chosen for simplicity. We square before summing, because dipole modulation biases the multipole vectors not only
towards the modulation direction, but also the opposite point on the sphere (in short, we wish ¢ . = —1 to be
considered just as significant as v(l D).y = +1.) Practically, due to computational constraints we will need to cut off
the sum over [ at some point (which we designate Lyqz.)

For our analysis, we generate 5,000 Gaussian random statistically isotropic maps, based on the underlying best-fit
ACDM cosmological model. For simplicity, we do not apply a mask (this is because a masked sky complicates the
method for recovering the aj,s).

We inject a modulation signal of varying strength (A) into a random sky and compare the value of our statistic
(selecting 7 to be that of the injected dipole modulation) to that of the other randomly generated skies. We also
vary the maximum [ over which we sum, to ascertain if a balance can be struck between statistics and computational
complexity.

The results, shown in the left panel of Figure (12), are discouraging. Very high modulation amplitudes (A > 1.5,
compared to fiducial A = 0.072) are required to reach 3o significance, and the overall trend of the contour seems
to indicate that increasing statistics by increasing the maximum [/ in our summation will not improve matters by much.

It must also be noted that even this discouraging result is optimistic, as it neglects several issues. Firstly, the
statistic we used measures the correlation of vectors to the modulation direction in unmodulated random maps -
essentially, examining correlation to a random direction. To properly compute the statistics, one would find the
best-fit modulation direction for every single unmodulated random map.
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FIG. 13: Depicted here is a contour plot with the x-axis being the strength of the modulation (A) and the y-axis
being the order of modulation | (with I = 1 being the dipole modulation we previously considered, for instance.)
The three contours are for 1o, 20, and 3o.

In addition, the statistics also depend on the correlation of vectors in the starting map to which you wish to inject
a dipole modulation. To illustrate with an example, imagine a hypothetical randomly generated map whose multipole
vectors through sheer coincidence all align perfectly towards the same direction. Obviously, the statistic for this map
would then be above 30 even if no modulation would be added. For our results, we started with a random map whose
correlation is & 1o below the mean compared to other random skies (i.e. for A = 0, the statistic is —1c), so the 3¢
bound we computed should be valid for ~ 82% of starting maps (if we neglect the first caveat above); computational
time constraints did not permit the use of a wide range of initial random maps. The point, in short, is that the
contours are not clearly delineated, as their exact location depends on the starting map.

D. Multipole modulation

One of the reasons behind our poor results with dipole modulation is that most of its effect is deposited within the
I=1 dipole - which is removed and hence not considered within our statistic. To rectify this problem, we consider a
different signal, a generalized multipole modulation.

Thew (Q) = Told(Q)[]- + A(Q : ﬁ)l]] (IV7)

Here, [ is a constant denoting the order of our modulation. For instance, [ = 1 gives the dipole modulation discussed
earlier, but we may also have [ = 2 (quadrupole modulation), I = 3 (octupole modulation), and so on for arbitrary
I. Thus, keeping the statistic defined above, we seek to vary [ and the modulation amplitude A to determine if it is
possible to detect small signals for higher orders of modulation with the multipole statistic we have previously defined.

Our results, shown in the right panel of Figure 12, are interesting. It appears that the selected statistic is very good
at detecting even-order modulations (e.g. 1=2, 1=4, etc.) but exceedingly poor at detecting odd-order modulations
(e.g. 1=1, 1=3, 1=5.) This serves as an explanation to our earlier lack of success in dipole modulation. Furthermore,
the statistic becomes less effective when examining higher-order modulations, but these are not typically examined
as backgrounds. It appears that the statistic is most effective at detecting quadrupole (I = 2) modulation; even so, it
unfortunately requires a very high modulation amplitude of A ~ 0.8 — 0.9 to obtain a 3-sigma result.

E. Multiple multipole modulation

We next investigate a variation of our multipole modulation approach, by applying a modulation across multiple
multipoles.
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Thew(€2) = Toia (Q)[1 + A(Q - 7t)]Vmas (IV.8)
lmaz
- A 5 () iy
= old(Q) 1+l_1< ) >(AQ )] (IV9)

Here, [,,4, is a constant denoting the highest order of our tongue-twisting 'multiple multipole modulation’, which
applies a series of modulations up to order [,,,,. Thus, keeping the statistic defined above, we seek to vary l,,., and
the modulation amplitude A to determine if it is possible to detect small signals for higher orders of modulation with
the multipole statistic we have previously defined.

The results are more encouraging, as shown in Figure 13. For higher order modulations, such as [ = 10, we are
able to considerably reduce the amplitude required to obtain a 30 result to A = 0.2. Unfortunately, this is still rather
high compared to fiducial amplitudes, but it is a vast improvement from the previous result.

F. Issues for further consideration with multipole vectors

There are several major issues which must be considered for further development of this path of inquiry.

First is the selection of a statistic. Ours (Eq IV.6) was chosen for simplicity, but there may be far superior methods
for detecting multipole modulation. However, our statistic also has the advantage of being a general one which detects
correlation with a specific direction, rather than a specific signal - utilizing several such specialized statistics would
run into issues with a priori statistics. It may, however, prove useful to weigh the statistic with the A®) scalars from
EqIV.3

Second is to develop a method for detection of best-fit correlation direction. Obviously, this can be done through
computing our statistic for various directions in the random sky and selecting the direction which maximizes it,
but this is a very time-inefficient method. As is, without such a method, our statistics are incomplete and overly
optimistic, and we are restricted to working with injecting backgrounds into random skies, where we will know the
correlation direction.

An additional less significant issue is the lack of a mask in our analysis. This is due to the complex calculations
required to reconstruct the a;,s in a masked sky - although we have code to perform this task, it takes a considerable
amount of time even at low resolution values. Reconstructing the a;,s of 10,000 random skies at Ngqe = 16 would
require =~ 2% days of valuable computational time, not to mention the time required to decompose the a;,,s into
multipole vectors. Unfortunately, time simply did not permit us to account for masked skies.

It should also be considered if attempting to detect multipole modulation is the best use for multipole vectors - it
may be that multipole vectors are better suited for detection of other types of signals.

V. CONCLUSION

Our results are somewhat disappointing; it transpire that the techniques used within this study require considerably
large signals before detection at 3¢ is possible. However, it is still useful to examine the topic. This work will assist
us in refining search techniques for future study. It is also useful to know how to test the sensitivity of one’s search
techniques. Though this study consists mostly of negative results, it could at the least be useful in alerting others of
which venues of study not to pursue.
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