
  

Investigating the Role of a Circadian Neuropeptide as a 
Prominent Neuroendocrine Signal in Drosophila melanogaster 

 

University of Michigan, Senior Honors Thesis 

By: Aaron Talsma, Shafer Lab, University of Michigan 



Abstract: 

In Drosophila melanogaster, circadian rhythms are governed by a network of pacemaker 

neurons that communicate largely with neuropeptides. One of the most important signaling 

peptides in this circuit is pigment dispersing factor (PDF) due to its vital role in synchronizing 

the cellular pacemakers of the network and coordinating behavioral output. The circadian 

functions of PDF are carried out by 16 of the 24 PDF expressing neurons located in the central 

nervous system of the fly. These circadian clock neurons are located in the central brain. The 

function of the remaining eight PDF neurons, which are located in the ventral nerve cord of the 

fly and do not have a circadian role, is still unknown. Interestingly, PDF has a functional 

homologue in the mammalian circadian network called vasoactive intestinal peptide (VIP). 

Along with its circadian role, VIP is also important in many signaling pathways in the 

mammalian viscera. Here, we show the function of PDF in its control of non-circadian functions 

in Drosophila melanogaster, including the regulations of body size and mass, intestinal and renal 

function, and reproduction. We also provide support for the hypothesis that the eight PDF 

neurons in the ventral nerve cord are the source of the PDF used in these visceral signaling 

functions. 

 

  



Introduction: 

Drosophila pigment dispersing factor (PDF) is a member of a large family of 

octadecapeptides which were originally found to affect pigment dispersal in the eyes of 

crustaceans (Rao et al, 1985). This family of neuropeptides is highly conserved between 

crustaceans and insects (Rao and Rhiem, 1993). PDF is most similar to the crustacean β-pigment 

dispersing hormone (β-PDH) (Rao and Rhiem, 1993), and was discovered due to the ability of β-

PDH antibodies to recognize PDF (Nässel et al, 1993). However, PDF has not been found to 

affect pigment dispersal in Drosophila. Instead, PDF is expressed in a set of 24 neurons in the 

Drosophila central nervous system (CNS), 16 of which were implicated in circadian time 

keeping (Helfrich-Förster, 1995). 

Nearly every organism experiences a daily cycle of light and darkness due to the rotation 

of the Earth. In order to better adapt to these cycles, nearly every organism, from bacteria to 

mammals, has developed a mechanism to keep time. In Drosophila, time is kept by a network of 

about 150 neurons in the brain, which rely on a cell autonomous time keeping mechanism as 

well as network connections to maintain a functional circadian clock. PDF has been shown to be 

an important signaling peptide in the circadian clock (Renn et al, 1999; Shafer and Taghert, 

2009). It is expressed in 16 neurons in the brain, eight per hemisphere: four small ventrolateral 

neurons (s-LNv) and four large ventrolateral neurons (l-LNv) (Nässel et al, 1993; Helfrich-

Förster, 1995). These LNv’s have been implicated as key pacemakers in the circadian network. 

When they are ablated (Renn et al, 1999),  or when the expression of PDF is knocked down 

using GAL4 driven RNAi in only these neurons (Shafer and Taghert, 2009), flies tend to have  

daily rhythms that cycle faster (a shorter period) than those of the wild-type flies in a light-dark 

cycle and cannot maintain strong circadian rhythms in constant darkness. The other eight PDF 

neurons in the CNS of the fly are located at the tip of the abdominal ganglia of the ventral nerve 

cord (VNC), which is essentially the spinal cord of Drosophila (Nässel et al, 1993). These 

neurons do not express the cellular circadian machinery, nor do they play any role in keeping 

time or the behavioral output of the clock in Drosophila (Shafer and Taghert, 2009; Nässel and 

Winther, 2010).  

The only known PDF receptor is a seven trans-membrane GPCR encoded by the 

CG13758 gene. There are two established lines of flies that have large deletions of the PDFR, 

known as PdfR5304 and PdfR3369 (Hyun et al, 2005). Both of these lines show behavioral 



phenotypes similar to that of PDF null flies: they have faster periods and cannot keep time in 

constant darkness. PDF binds selectively to PDFR and causes an intracellular increase in cAMP 

(Hyun et al 2005). Live imaging studies have shown that many neurons in the circadian network 

respond to PDF with an increase in cAMP. These studies have also shown that PDFR can be 

activated by another neuropeptide, DH31. However, the binding coefficient for DH31 is much 

lower than for PDF (Mertens et al 2005; Shafer et al. 2008).  

The extent of PDF’s role in signaling to various organ systems in Drosophila is not yet 

known due to difficulties in determining the expression of PDFR. When PDFR was discovered, 

three different labs attempted to map PDFR in the fly brain by creating their own antibodies for 

PDFR. However, all of the antibodies displayed different staining patterns (Hyun et al 2005; 

Mertens et al 2005; Lear et al 2005), each of which were found to persist in the PdfR5304 deletion 

mutant and thereby shown to be spurious (Shafer et al. 2008). Recently, a transgenic approach 

was taken to determine PDFR expression patterns. In this study, a large piece of genomic DNA, 

which theoretically containing all of the PdfR regulatory elements, was cloned and a myc tag was 

added to the end of the PdfR gene. This new gene construct was then inserted into the genome of 

PDFR null flies and antibodies for the myc tag were used to map expression. From this study, it 

has been determined that PDFR is expressed in many of the Drosophila clock neurons and in 

some other non-circadian neurons that may contribute to output for the circadian clock (Im and 

Taghert, 2010). However, despite these discoveries, there is still no easy way to determine the 

complete expression of PDFR throughout the body of Drosophila. 

The mammalian circadian clock bears many similarities to the fly circadian clock. Both 

clocks use many of the same proteins in the cellular clockwork and both also depend on network 

interactions among clock neurons (Vosko et al, 2007).  In the case of the mouse, this network 

consists of about 20,000 neurons located in the suprachiasmatic nuclei (SCN). Within the SCN, 

there are two major regions: the ventral (core) region and the dorsal (shell) region. The core 

region expresses a neuropeptide called vasoactive intestinal peptide (VIP) and sends VIP 

projections to the dorsal region and to other neurons within the ventral region (Vosko et al, 

2007). Though its sequence has no clear homology to PDF, VIP and PDF play remarkably 

similar timekeeping roles. VIP knockout mice have accelerated rhythms in a normal light-dark 

cycle and are arrhythmic in constant darkness, very much like PDF null flies (Colwell et al, 

2003). VIP is also believed to synchronize the cellular time keeping machinery in the neurons of 



the SCN, much like PDF (Aton et al, 2006). VIP has two receptors,  VPAC1R and VPAC2R, 

which both signal by increasing intracellular cAMP synthesis and which also have a high 

similarity to PdfR in the fly (for a review of VPAC/PACAP receptors see Vaudry et al, 2000). 

VPAC2R is highly expressed in the SCN and VPAC2R knockout mice show similar phenotypes 

to PDFR null flies (Harmar et al 2002). These findings illustrate the many similarities between 

the Drosophila and mammalian circadian clock. 

VIP is also involved in signaling in the periphery. In the urogenital tract of mice, VIP 

positive neurons make a small but distinct percentage of afferent neurons innervating the 

bladder, urethra, and penis (Keast and deGroat, 1992). It has also been demonstrated that VIP 

and pituitary adenylate cyclase-activating protein (PACAP) neurons send axonal projections 

throughout the bladder and to smooth muscles in the urethra. The effect of VIP on the bladder 

varies greatly among species. In some species, such as cat, rabbit pig, and human, it tends to 

inhibit bladder emptying while in other species, such as rat and guinea pig, it helps to facilitate it 

(Yoshiyama and de Groat, 2008). In the intestine, VIP positive neurons make up a significant 

portion of the enteric neurons. Many vagal efferent neurons, hypothesized to be “command 

neurons,” synapse specifically onto VIP positive neurons in the small and large intestines. These 

VIP neurons can be electrically stimulated to release VIP, which causes intestinal smooth 

muscles to relax and thus decreased intestinal motility (Fujimiya and Inui, 2000). These 

functions of VIP as well as the similarities between VIP and PDF in the circadian clock led us to 

investigate the effects of PDF on the digestive system, the renal system, and the reproductive 

viscera in Drosophila. 

The digestive system of Drosophila is generally divided into five parts. From anterior to 

posterior they are the esophagus, the cardia, the midgut (ventriculus), the hindgut (anterior 

intestine), and the rectal ampulla (rectum) (see Fig. 1C for a diagram). The renal organs of the 

fly, known as the malpighian tubules (MPT), connect to the gut at the midgut-hindgut junction 

through two muscular stalks, which we refer to as ureters, on opposite sides of the intestine. The 

midgut consists of an outer layer of longitudinal and circular smooth muscle and an inner layer 

of epithelia (Miller, 1994). The midgut is divided anatomically into two parts: the shorter straight 

section contained in the thorax and the longer coiled portion contained in the abdomen (Miller, 

1994). The hindgut is similar in diameter to the midgut but it is much shorter. It contains a thick 

layer of epithelia surrounded by a comparatively denser coating of circular muscles (Miller, 



1994). Due to the nature of our dissection, we examined only the portion of the viscera contained 

in the abdomen along with the MPT and hindgut. 

The renal system of the fly is separated into the anterior and posterior halves. Each half 

of the renal system consists of two long tubules, called the distal renal tubules, which meet and 

flow into one short muscular tube called the ureter, which then flows into the midgut as 

described above (Miller, 1994). The distal renal tubules consist of two cell types, which are the 

more prolific principal cells and the less common stellate cells (Denholm et al, 2003). These 

tubules are responsible for most of the filtration of the hemolymph (Dow and Romero, 2010). 

The tubules of the anterior MPT associate themselves with the anterior portion of the midgut 

while the renal tubules of the posterior MPT associate with the hindgut and the reproductive 

viscera (Miller, 1994). Like the renal tubules, the ureter also contains principal and stellate cells, 

but it has an additional layer of visceral muscle that contains both circular and longitudinal 

muscles which surround the epithelia (Denholm et al, 2003).  

All organisms must be able to extract nutrients from the environment in order to survive. 

Animals have progressively had to evolve and develop more complex mechanisms for these 

processes because the cells that are directly exposed to the environment are designed to protect 

the body from deleterious environmental factors and cannot absorb or process nutrients. The 

solution to the problem of maintaining metabolic balance, taking in nutrients, and processing 

them was the digestive system. Due to its crucial role in maintaining homeostasis, the digestive 

system is regulated by a multitude of pathways and in turn can also regulate the activity of many 

other systems in the body. One of the most important centers for the communication between the 

digestive system and the rest of the body is the enteric nervous system. In humans, it comprises a 

staggering 500 million neurons (Miguel-Aliaga, 2012). Despite the fact that the enteric nervous 

system plays a critical role in regulating metabolism and likely contributes to a multitude of 

metabolic disorders, it is still poorly understood.  

One of the biggest hurdles to understanding the function of the mammalian enteric 

nervous system is its sheer size and complexity. Drosophila, on the other hand, has a much 

simpler neuroanatomy by comparison. Furthermore, the genetic power of techniques used in 

Drosophila is remarkable. Despite the differences between Drosophila and mammals, there are 

still many similarities (VIP for example) which could allow discoveries in Drosophila to further 



our understanding of mammalian systems. Here, we investigate the novel role of a canonical 

circadian neuropeptide in signaling to the peripheral organs in Drosophila.   

 

 

Materials and Methods: 

Fly Stocks: Flies were reared on cornmeal and yeast food at 25 °C. The recipe for 1 L of 

food is as follows: 1 L water, 16.9 g Yeast, 71.2 g cornmeal, 12 g Agar, 75 mL corn syrup, and 

4.7 mL propionic acid. The transgenic stocks used were w33and w15 (Renn et al, 1999),  PdfR5304 

and PdfR3369(Hyun et al, 2005), w1118;; pdf+ (iso #2) and w1118;;pdf(01) (iso #8) (a generous gift 

from Ravi Allada), UAS-PdfR16L (Mertens et al, 2005), Mef2-Gal4 (Ranganayakulu et al, 1996), 

24B-Gal4 (Brand and Perrimon, 1993; Fyrberg et al, 1997), Myola-Gal4 (Jiang and Edgar, 

2009), UAS-Epac1camps(50A) (Shafer et al, 2008), and UAS-eGFP (Stevaux et al, 2002). 

Canton S (CS) and/or w1118 lines were used as wild-type controls. 

Fly Weight Assay: To control population density, a consistent number of eggs was 

gathered and placed into a vial of food by a process called purping (described below). For a 

given experiment, flies from different lines were always assayed in parallel and thus raised on 

the same batches of food, in the same environmental conditions, and were weighed on the same 

day. Between 10 and 11 days after purping the flies would eclose. Flies were anesthetized with 

CO2, sorted into groups of ten males or females, placed on ice, and weighed shortly thereafter 

(within an hour) on a microgram balance (Sartorius biotech, Göttingen, Germany). Generally, 

weighing occurred on day 14 or 15 after purping, by which time all the flies in a vial had 

emerged and mated. When flies were weighed earlier than 14 days after purping, newly eclosed 

flies, which are bloated and much heavier than slightly older flies, were not included in the 

assay. 

Purping: Between 100 and 200 flies were placed in a screened cage with a 135 mm 

grape juice agar plate for a bottom with a small amount of active yeast paste on the center of the 

plate. The flies were allowed to lay eggs for either eight or sixteen hours on the agar. After this 

period the agar plate was exchanged for a fresh plate. The eggs were collected by filling the agar 

plate with phosphate buffered saline (PBS) and gently loosening the eggs with a cotton tipped 

swab. The eggs were then moved into a 15 ml Falcon tube (Falcon, Franklin Lakes, NJ) by 



washing the agar plate with PBS and pouring it into the tube. The eggs were allowed to settle to 

the bottom of the tube and then ten microliters of eggs suspended in PBS were pipetted into each 

vial of cornmeal food where the flies then developed. This technique effectively controls 

population density in each vial. (Thank you to the Pletcher lab at the University of Michigan for 

the protocol.) 

Extraction of Viscera: Flies were anesthetized with either ice or CO2. Flies anesthetized 

on ice were then dissected in cold HL3(hemolymph-like saline 3) (70 mM NaCl, 5 mM KCl, 1.5 

mM CaCl2, 20 mM MgCl2, 10 mM NaHCO3, 5 mM D(+)-Trehalose, 115 mM Sucrose, 5 mM 

HEPES) whereas flies anesthetized with CO2 were dissected in room temperature HL3. The 

dissection was adapted from one used previously (Dow et al, 1994). Briefly, anesthetized flies 

were placed in saline and then abdomens were separated from heads and thoraxes with 

microscissors (Fine Science Tools, Foster City, CA). To remove the viscera, forceps were used 

to gently pry apart the abdominal cuticle. After the cuticle was partially removed, the MPT were 

dissociated from the gut by grabbing them as distally as possible and pulling them away from the 

midgut or hindgut gently. The gut was unraveled by first removing the trachea and other 

connective tissue and then pulling gently on both ends. After the viscera were removed they were 

placed in a new 35mm petri dish containing 1.8 mL of room temperature HL3. The midgut, 

hindgut and MPT were spread out and stuck gently to the bottom of the dish, to which they 

readily adhered.  

Contraction Recordings: After guts were placed in the 35 mm Petri dish (Falcon, 

Franklin Lakes, NJ) with 1.8 mL HL3, the dish was placed under an Olympus SZX7 stereoscope 

with an Olympus DP 21 CCD camera (Olympus, Center Valley, PA). A six minute and twelve 

second (the maximum recording time on our system) or a three-minute video of the basal 

contraction rate was taken. Next, 0.2 mL of a 10x treatment was added to the dish via a 

micropipette and the dish was allowed to sit for three minutes. Then another video was taken, 

again either six minutes and twelve seconds or three minutes. The videos were then scored 

blindly for the number of contractions in each of the ureters, the midgut and the hindgut. 

Extraction of reproductive viscera: Flies were anesthetized with ice and dissected in 

cold HL3. This dissection is very similar to the visceral dissection described above. The 

abdomen was cut from the fly with microscissors (Fine Science Tools, Foster City, CA) and the 

cuticle was peeled apart to expose the organs. The different pieces of the intestine were removed 



whenever possible to make access to the reproductive viscera easier. After most of the cuticle, all 

except for the portion around the genitals, and the intestine were removed, the trachea was gently 

pulled off of the reproductive viscera and the various sections were gently spread out. The 

reproductive viscera were then placed into a fresh 35 mm petri dish with 1.8 mL of room 

temperature HL3. The reproductive viscera were gently spread out attached to the bottom of the 

dish as described above so that all the parts could be seen clearly. They were then allowed to sit 

covered for one hour. The reason for this was that there was an extremely high rate of basal 

contraction after the reproductive viscera were placed in the fresh HL3, and this decreased 

somewhat after an hour. After the hour had passed, a three-minute video of basal contractions 

was taken with an Olympus SZX7 stereoscope and a DP 21 CCD camera. Then, 0.2 mL of a 10x 

treatment was added to the dish. The genitals were allowed to sit for another three minutes and 

then a second three-minute video was taken. The videos were scored blindly for contractions in 

each accessory gland and in the ejaculatory duct. 

FRET Imaging: The ratiometric cAMP sensor, Epac1camps, was expressed using a 

UAS promoter, driven by Mef2-Gal4, which is a muscle driver. Guts were imaged using an 

Olympus FV 1000 scanning laser confocal microscope, through a LUMPL 20x/0.50 water 

objective with immersion cone and correction collar (Olympus, Center Valley, PA). Flies were 

anesthetized on ice and dissected in cold Ringer’s saline (Cold Spring Harbor Protocols). After 

dissection they were placed immediately into a new 35 mm petri dish containing 1.8 mL room 

temperature HL3. The dish was then imaged with the confocal microscope by scanning the 

sample every five seconds with a 440nm laser using a DM405-440/151 dichroic mirror and 

CFP/YFP emission was separated with a SDM510 dichroic mirror. The treatment of peptide or 

vehicle was added between 40 and 45 seconds of the recording as described above for the 

contraction assay. Regions of interest were selected using Fluoview software to contain circular 

muscle in parts of the ureter that did not move significantly within the frame during the 

recording. This was done to minimize any changes in FRET due to contractions of the ureter. 

Confocal apertures for CFP and YFP were increased to increase the thickness of the optical 

section as another way to compensate for ureter contractions. The ratio of YFP/CFP was 

calculated using the formula:  

Spillover Corrected FRET =  
(YFP − (CFP ∗ 0.444))

CFP
 



to adjust for the bleed-through of CFP emission. Individual traces were then created using a 6 

value running average and normalized to the initial FRET ratio of each ROI. This data analysis 

was carried out in Microsoft Excel (Redmond, WA). Statistical calculations were made using 

Prism 5 (Graphpad, La Jolla, CA). 

 

 

Results: 

 Abdominal PDF neurons send anterior projections that synapse on the midgut at 

the midgut-hindgut junction. The VNC of drosophila is analogous to the spinal cord of 

mammals. Neurons located in the abdominal ganglia of the VNC send projections to the 

periphery, including the viscera (Cognigni, Bailey and Miguel-Aliaga 2011). To investigate the 

targets of the PDF neurons in the VNC, we removed and stained both the ventral nerve cord and 

the intestine for PDF. This work was done by our collaborators in the Miguel-Aliaga lab at 

Cambridge University and reproduced here with permission. Figure 1C shows a schematic of the 

connection between the abdominal ganglion and the viscera in both the larva and the adult. Both 

the larval and adult VNC have PDF neurons present, and the projections of these neurons can be 

seen leaving through the posterior tip of the VNC (Fig. 1 A, B). The confocal micrographs of the 

larval gut show PDF neurons growing anteriorly along the midgut but without any aborizations 

(Fig. 1 D). The micrographs of the adult gut show that the PDF projections are located on the 

midgut and hindgut almost entirely in the midgut-hindgut junction region, with a few projections 

going to the rectal ampulla (Fig. 1 E-I). This pattern of innervations led us to hypothesize that 

these PDF neurons would signal primarily to the midgut and hindgut. Surprisingly, this was not 

the case.  

PDF causes dose-dependent and PDFR dependent contractions in the ureters of the 

fly renal system, but does not cause contractions in the intestine. Drosophila guts, including 

the midgut, hindgut, rectal ampulla, and MPT, were explanted and placed in a dish. Upon bath 

application of various concentrations of PDF, muscle contraction rates were scored in the ureters, 

the midgut, and the hindgut. CS ureters showed a well defined dose response in both room 

temperature and cold saline. For males in cold saline there was a noticeable increase in 

contractions at 1 nM PDF and a significant increase in contractions at concentrations greater than 



10 nM PDF (10-8 p < 0.0001 vs. basal; 10-7 p = 0.0003 vs. basal; 10-6  p < 0.0001 vs. basal; with 

the student’s t-test) (Fig. 2A). This was also the case for females in warm saline (10-8 p = 0.0004 

vs. basal; 10-7 p = 0.0088 vs. basal; 10-6 p = 0.0055 vs. basal; with a paired t-test) (Fig. 2C). For 

females in cold saline, there was a detectable increase in contractions at 10 nM PDF and a 

significant increase in contractions at concentrations greater than 100 nM PDF (10-7 p < 0.0001 

 

Figure 1: The anatomy of PDF projections to the gut. This figure represents unpublished data collected by 
my collaborators in the Miguel-Aliaga lab at Cambridge University and is reproduced here with permission.  
A) and B) A confocal micrograph of the larval and adult VNC, oriented with the anterior portion toward 
the top of the figure. The PDF neurons are in green and neuropil is in blue. In A), 3-4 cell bodies are visible 
and when examined closely two projections running posterior out the end of the VNC can be seen. In B), 
3-4 cell bodies can be seen and the posterior projections of the neurons out of the end of the VNC can be 
seen. C) A schematic of the relative location of the CNS and the gut as well as a representation of the PDF 
projections to the gut. PDF neurons are in green, the intestine is in blue, and the CNS is in gray. D) through 
I) Confocal micrographs of the larval and adult midguts. The muscle is shown in blue and PDF projections 
are shown in green.  In all panels except E), guts are oriented so that the posterior aspect is to the right. D) 
The PDF neurons seem to synapse onto the posterior midgut and the hindgut and grow in the anterior 
direction. E) In the top left, complex aborizations of PDF neurons can be seen on the midgut in the midgut-
hindgut junction but not on the ureter (star). PDF projections can also be seen spanning the gap (arrow) 
between the junction and the rectal ampulla. F) through I) Close up views of the midgut in the junction 
region (F and G) and the hindgut near the rectal ampulla (H and I). Again there are extensive PDF 
aborizations on the midgut and the hindgut but not on the ureter (G, arrow). 



vs. basal; 10-6 p = 0.0027 vs. basal; with the student’s t-test)  (Fig. 2B). The EC50 is 2.406*10-9 

M for males in cold saline, 8.729*10-9 M for females in cold saline, and 2.709*10-10 M for 

females in warm saline. These results agree very well with the binding properties of PDFR in S2 

cells, which also showed an increase in cAMP at 1 nM PDF and had an EC50 of 1.81 nM (Hyun 

2005). The midgut (light gray line, Fig. 2 A,  B, C) never responded significantly or consistently 

to PDF and the hindgut (data not shown) did not respond to PDF at all. 

The response of ureters to PDF depends on PDFR. Two strains of flies lacking PDFR 

(PdfR5304 and PdfR3369) were examined to see if bath applied PDF increased the contraction rate 

of ureters significantly compared to their basal rate. Only wild-type flies (w1118) responded to 

PDF with a large increase in contraction rate, which was significantly higher than all other 

contraction rates (vs. w1118 basal, p < 0.0001 [paired t-test]; vs. PdfR5304 treated, p < 0.0001 

 
Figure 2: The ureters respond to PDF in a dose-dependent and PDFR dependent manner. A) through C) 
Dose response curves for wild-type flies under various conditions. Responses represent the actual 
contraction rate after PDF application. Significance was determined by comparing the response of each gut 
to its basal rate (data not shown) using a paired t-test (*** p < 0.001, ** p < 0.01, * p < 0.05). A) Males 
anesthetized on ice and dissected in cold saline.  B) Females anesthetized on ice and dissected in cold 
saline. C) Females anesthetized with CO2 and dissected in room temperature saline. D) Comparison of the 
PDF response of w1118 and PdfR null (PdfR5304 and PdfR3369) ureters in cold saline. w1118 ureters showed a 
significant increase in contraction rate relative to all other treatment groups while PDFR null flies did not 
respond. E) Comparison of the PDF response of w1118 and PdfR5304 ureters in warm saline. Again, w1118 
ureters showed a significant response to PDF but PDFR flies did not. F) w1118 and PdfR5304 ureters treated 
with FSK in warm saline to articificially increase intracellular cAMP. For all panels, error bars represent the 
mean plus or minus the standard error of the mean (SEM). 



[student’s t-test]; vs. PdfR3369 treated, p < 0.0001 [student’s t-test]) (Fig. 2D). This response was 

not significantly changed by the temperature of the saline, as flies treated in warm saline showed 

a similar PDF response (w1118 treated vs. w1118 basal, p = 0.0165 [paired t-test]; w1118 treated vs. 

PdfR5304 treated, p = 0.0230 [student’s t-test]) (Fig. 2E). Adding vehicle (0.1% DMSO in HL3) 

to the bath did not increase the contraction rate above basal for any of the lines (data not shown). 

To confirm that PDFR null flies did in fact fail to respond to PDF due to a lack of PDFR rather 

than damage sustained during dissection, guts were explanted and treated with forskolin (FSK). 

FSK is an activator of adenylyl cyclase and thus should activate the same pathway as PDFR. 

Indeed both wild-type and PDFR null responded to FSK with an increase in ureter contraction 

(w1118 basal vs. FSK, p = 0.0128 [paired t-test]; PdfR5304 basal vs. FSK, p = 0.0015 [paired t-

test]) (Fig. 2F). Both the basal (p = 0.0192) and FSK treated (p = 0.0145) contraction rates of 

PdfR5304 were significantly greater than w1118 contraction rates (with the student’s t-test). 

cAMP may increase midgut contractions but PDF does not. Midguts from wild-type 

and PDFR null flies were first explanted and treated with PDF in cold saline. Under these 

conditions, no significant response to PDF was seen (Fig. 3A). However, several labs that study 

the viscera of larger insects noted that cold temperatures inactivate the gut. Therefore, we 

examined the guts in warm saline as well and again observed no significant response to PDF 

(Fig. 3B). As a positive control, to ensure that the midgut could still respond in the explant assay, 

the midgut was also treated with FSK, which has been shown to elicit midgut contractions in 

larger insects (Blake et al, 1996). In wild-type flies, a significant increase in contraction rates 

 

Figure 3: Midgut contractions can be induced by forskolin driven cAMP increases but not by PDF. Midguts 
were assayed to determine if they could respond to a PDF or forskolin under various conditions. A) Wild-type 
and PDFR null midguts were assayed in cold HL3 for a response to PDF. B) Wild-type and PDFR null midguts 
were assayed in room temperature HL3 for a PDF response. C) Midguts were assayed in room temperature 
HL3 for a response to FSK and only wild-type guts were found to respond. For all panels, error bars indicate 
the mean ± SEM. Significance was determined with either a paired t-test (tests among a genotype) or a 
student’s t-test (tests between genotypes) and is represented by stars (*** p < 0.001, ** p < 0.01, * p < 0.05). 



was observed (p = 0.0151, paired t-test) and in PDFR null flies, there was a qualitative but not 

significant increase in contractions (p = 0.1138, paired t-test) (Fig. 3C). This indicates that PDF 

alone is not sufficient to cause midgut contractions under our experimental conditions, and that 

increases in cAMP likely stimulate midgut contraction.  Therefore, midgut muscle contraction is 

likely regulated by a different GPCR. 

PDF causes an increase in intracellular cAMP in the circular muscles of the ureters 

of flies with a wild-type background, but not in PDFR null flies. Either UAS-

Epac1camps(50A) or PdfR5304;UAS-Epac1camps(50A) virgin females were crossed to Mef2-

Gal4 males. The resulting flies expressed Epac1camps, a FRET based cAMP sensor, in the 

musculature of the MPT and the gut (see Fig. 5E for Mef2 expression), either with (Fig. 4, w1118) 

or without (Fig. 4, PdfR5304) PDFR. Wild-type flies showed a significant decrease in FRET in 

response to µM concentrations of PDF, which indicates an increase in cAMP (analyzed with a 2-

way ANOVA and Bonferroni post tests to compare every pair of means at each time point). The 

FRET decrease became significantly different from vehicle at 110 s (p < 0.05, Bonferroni post-

test) and remained significantly lower for the entire recording. Interestingly, a 0.1 µM 

concentration of PDF did not elicit a significant FRET response in wild-type despite the fact that 

 

Figure 4: PDF causes intracellular increases in cAMP in ureter circular muscles. A) C) E) G) w1118 flies 
expressing a cAMP sensor were treated with either a concentration of PDF or vehicle. A), C),  and E) 
show FRET traces for individual circular muscles. The FRET reported is normalized to the initial values 
and a decrease in FRET indicates an increase in cAMP. G) shows the mean percent of initial FRET along 
with SEM at each time point for all three treatments of w1118. B) D) F) H) PdfR5304 flies expressing a cAMP 
sensor were treated either with vehicle or a concentration of PDF. B), D), and F) are FRET traces of 
individual circular muscles and H) is the mean with SEM at each time point as described for G). For all 
graphs, measurements were taken every five seconds and the value reported is a six point running 
average normalized to the initial FRET value. The black arrowhead indicates the time of the PDF 
application. 



ureters always responded to this concentration with a significant increase in contraction rate. 

This likely is a due to the sensitivity of the Epac sensor. In fact, many of the individual traces do 

show a cAMP response. However, these responses were not as long lived or as great in 

magnitude as the responses to 10-6 M PDF. Flies lacking PDFR did not show any FRET response 

to PDF, indicating that PDF does indeed signal through the known PDFR and that this response 

is mediated by an increase in cAMP.  

The response of ureters to PDF is recued by driving a transgenic PDFR element in 

the circular muscles of the ureters. Both Mef2-Gal4 and 24B-Gal4 are expressed in the 

musculature of the ureter (Fig. 5 E and C, respectively), while Myola-Gal4 is expressed in a 

subset of the epithelial cells of the ureter (Fig. 5 A). All three of these lines were used to drive 

expression of PDFR under the control of the UAS promoter in the ureters in order to rescue the 

ureter PDF response. Rescue flies are the progeny of PdfR5304; UAS-PdfR and Gal4 males 

yielding PdfR5304; X-Gal4>PdfR males. The UAS and Gal4 controls are the progeny of PdfR5304; 

UAS-PdfR virgin females crossed with w1118 males, yielding PdfR5304; UAS-PdfR flies, and 

PdfR5304 virgin females crossed with Gal4 males, yielding PdfR5304; Gal4 flies, respectively. 

Again, in both cases only males were tested. 

As expected, Myola>PdfR flies showed no rescue of PDF activity on the ureters (Fig. 5 

B). There was no significant difference between the rescue and Gal4 control (p = 0.1608) or the 

rescue and UAS control (p = 0.0535). Mef2>PdfR flies showed a qualitative increase in PDF 

response that returned the contraction rate to near wild-type levels (indicated by the black 

arrowhead). The Mef2 rescue response was significantly increased compared to the UAS control 

(p = 0.0006) but not compared to the Gal4 control (p = 0.1012). We conclude that Mef2>PdfR 

gave a partial rescue of PDF signaling. 24B>PdfR showed an increase in contractions as well. 

The 24B rescue showed significantly more contractions than both the Gal4 control (p = 0.0061) 

and the UAS control (p = 0.0003). All statistical tests were unpaired t-tests in this analysis. These 

results support the hypothesis that PdfR is required in the ureter muscles for PDF signaling. 

PDF induces contractions in the accessory glands of the male reproductive viscera. 

Several labs that work with PDF null and PDFR null flies, including our own, have noted 

anecdotally that these flies seem to have trouble reproducing. To that end we examined the 

reproductive viscera of male flies. Male wild-type and PDFR null flies were dissected and the 

response of the reproductive viscera to PDF treatment was assessed. The accessory glands of 



wild-type flies showed a significant increase in contraction rate from basal (p = 0.0125, paired t-

test) while other organs in the genital tract did not respond (Fig. 6 A, B). PDFR null flies did not 

show any increases in contraction rate in response to PDF, suggesting that the PDF response is 

regulated by the known PDF receptor (Fig. 6 A, B). Interestingly, in wild-type flies, addition of 

PDF caused the rate of contractions in each accessory gland to double in nearly all cases (Fig. 6 

C).  

 
Figure 5: Driving expression of PDFR in the circular muscle of the ureter rescues the PDF induced 
contractions.  A rescue experiment was performed by crossing various Gal4 lines with PdfR5304; UAS-PdfR 
to drive PDFR expression in PDFR null flies.  The lines tested had the general genotypes of: “Rescue” is 
PdfR5304; X-Gal4>PDFR, “Gal4” is PdfR5304; X-Gal4, “UAS” is PdfR5304;  UAS-PdfR, where X-Gal4 is designated 
above the micrographs. On all charts displaying the contraction rates, the black arrowhead indicates the 
w1118 contraction rate. A) and B) Myola-Gal4. A) Micrographs of Myola>GFP ureters. The top left 
micrograph is phalloidin marking the circular muscles, the large micrograph is Myola>GFP, and the bottom 
left micrograph is a merge to show colocalization. Note that Myola does not drive expression in the 
muscles. B) Contraction rates of the three lines in response to 10-6 PDF. C) and D) 24B-Gal4 C) Micrographs 
of 24B>GFP ureters. Panels are laid out as in A). Note that in the merge view, there is colocalization 
indicating the 24B drive expression in the circular muscles. D) Quantification of PDF response as described 
in B) and above. The stars indicate a significant increase in contractions of the 24B rescue over both of the 
controls. E) and F) Mef2-Gal4 E) Micrographs of Mef2>GFP ureters. Panels are laid out as in A). Note that 
Mef2 also colocalizes strongly with phalloidin. F) Quantification of PDF response as described in B) and 
above. Note the significant increase in contractions of the Mef2 rescue over the UAS control but not in the 
Gal4 control. However, the Mef2 rescue did restore contraction rates almost back to wild-type levels. For 
all graphs, the stars represent significance values (*** p < 0.001, ** p < 0.01, * p < 0.05). 



Loss of PDF and PDFR has opposing effects on body weight. Due to the striking 

effects of PDF on the ureters and the accessory glands of Drosophila, we attempted to find a 

whole body effect of PDF loss. Several PDF null and PDFR null lines were tested to see if loss 

of PDF signaling caused a change in the weight of the flies. w15 are PDF null flies and w33 flies 

are their wild-type control. These lines were created by mobilizing a p-element that had 

previously inserted near the pdf locus and then screening for gene function that was lost during 

transposition (Renn et al, 1999). Lines iso #2 and iso #8 are isogenized lines that were made to 

decrease the genetic variability in the stocks. w15 and w33 flies showed significant differences in 

weight between both males and females throughout their life time (Fig. 7 A, B). In these lines, 

flies lacking PDF were always heavier than those with PDF. However, for w1118 flies versus 

PDFR null flies (PdfR5304 and PdfR3369), the wild-type flies were always significantly heavier 

(Fig. 7 C, D). This result seems to contradict the result in w15/w33 flies: in one set of flies, loss of 

PDF signaling increases weight while in the other set of flies, loss of PDF signaling decreases 

weight. It should also be noted that in PDFR null flies, PdfR5304 has a larger deletion of pdfr than 

PdfR3369 (Hyun et. al. 2005) suggesting that a larger deletion of pdfr caused a larger decrease in 

weight. The isogenized flies do not clarify the effects of PDF signaling on weight. Once again, 

loss of PDF causes a significant increase in weight, but this effect is only seen in females (Fig. 7 

E, F). 

 

Figure 6: PDF causes contractions in the accessory glands. The reproductive viscera of w1118 and 
PdfR5304 male flies were explanted and treated with PDF.  A) The accessory glands of wild-type flies 
showed a significant increase in contraction rate in response to PDF while PDFR flies showed no 
response. B) The ejaculatory ducts of both wild type and PDFR null flies did not respond to PDF 
treatment. C) Basal and treated rates of contraction were plotted for each individual fly and were 
normalized to the basal value. The basal and treated contraction rate of a fly is connected by a line. 
In nearly all cases, PDF caused a doubling of contraction rate. For all graphs, the stars represent 
significance values (*** p < 0.001, ** p < 0.01, * p < 0.05). 



 

 

 
Figure 7: Loss of PDF and loss of PDFR have different effects on the weight of Drosophila. Males and 
females of the genotypes indicated above were weighed and analyzed separately. Significance is 
indicated by stars (*** p < 0.001, ** p < 0.01, * p < 0.05) A) Week long time course of w33 and w15 male 
weights starting from one day after eclosion (Day 12). All comparisons were done between males of the 
same age and significance was determined with a student’s t-test. B) Week long time course of w33 and 
w15 females as described in A). C) Comparison of w1118 and PdFR null males on Day 14 (3 days after 
eclosion). Significance was determined as in A). D) Comparison of w1118 and PdFR null females on Day 14 
(3 days after eclosion). Significance was determined as in A). E) Comparison of pdf+ and pdf(01) 
isogenized males on Day 12 and Day 15. Significance was determined as in A). F) Comparison of pdf+ and 
pdf(01) isogenized females on Day 12 and Day 15. Significance was determined as in A). 



Discussion: 

The intestinal, renal, hepatic, and nervous systems all work together to maintain 

metabolic homeostasis in mammals. In order to keep this balance, these systems must 

communicate with each other. In vertebrates, the enteric, sympathetic, and parasympathetic 

nervous systems play an important role in communication among these systems. As the 

prevalence of metabolic disorders grows, so does the need to understand the interplay between 

the nervous, intestinal, renal, and hepatic systems (Miguel-Aliaga, 2012). However, due to the 

complexity of these systems, they remain poorly understood.  

Drosophila shares many functional and genetic similarities with mammals. In addition, it 

has the advantage of being a much simpler and more genetically tractable model for studying 

physiological phenomena. Many of the general organizational principles of mammalian systems 

are also present in Drosophila intestines (Cognigni et al, 2011). The study of the visceral 

regulation in Drosophila, however, is still a relatively young field. Our study makes new 

contributions to understanding the interplay between the nervous system and the viscera in the 

fly. 

PDF extends the understanding of the Drosophila renal system and provides another 

similarity between Drosophila and mammals. The MPT of Drosophila have been studied 

extensively for their role in maintaining salt and water balance as well as for filtering toxins 

(O’Donnell and Rheault, 2005; Bijelic and O’Donnell, 2005; see Dow et al, 2010 for review). 

These studies focused largely on the distal renal tubules in Drosophila renal function. Due to 

these studies, the mechanisms through which Drosophila exchanges ions and water with the 

lumen of the renal tubules are well understood and several peptides that increase or reduce 

secretion rates have been discovered (Dow et al, 1994). However, the role and function of the 

ureters in renal processes have not been studied. We explored the function of PDF in control of 

the ureters. Our anatomical data in Figure 1 show that the PDF projections from the ventral nerve 

cord terminate on the midgut-hindgut junction. We show that bath applied PDF is sufficient to 

cause an increase in contractions in the ureters, with no apparent effects on gut motility. 

Furthermore we show this PDF response is mediated by the canonical G-protein coupled PDF 

receptor pathway and that PDFR is both necessary and sufficient for a PDF response in the 

ureters. This is the first described peptide in Drosophila that signals to the ureter and it may 

function as an excretory signal for the renal system.  



These data also extend the similarities between mammalian VIP and Drosophila PDF. 

Both peptides are required for normal circadian rhythms (Colwell et al, 2003; Renn et al, 1999) 

and play a critical role in synchronizing the cellular oscillators of the neurons circadian clock 

network in mice (Aton et al, 2005) and Drosophila (Nitabach et al, 2006). VIP was also shown to 

have species dependent myotropic effects on the sphincter muscles in the bladder and urethra 

(Yoshiyama and de Groat, 2008). Our data show that PDF also has a myotropic effect on the 

ureters of Drosophila, which is the last segment of the renal organ and thus may be analogous to 

the mammalian urinary tract. These data also suggest a selective pressure in both mammals and 

insects by which the same peptide was co-opted as both a circadian neuropeptide and an enteric 

hormone. The fact that VIP and PDF share no obvious sequence similarities indicates that this 

pressure likely occurred in parallel and not on the same peptide in a common ancestor. Further 

study of the evolution of these peptides and their receptors may provide some insight into the 

origin of the enteroendocrine system and enteric nervous system. 

The PDF neurons are also unique in the way that they signal with PDF. Our anatomical 

data show that the PDF projections are tightly associated with the midgut and not the ureters. 

However, it seems that only the ureters respond to PDF myotropically. This indicates that PDF 

must diffuse a substantial distance to reach its target, and therefore, the neurons must maintain 

relatively high concentrations of PDF in the local hemolymph. This implies a novel signaling 

mechanism in which a neuropeptide is released in high concentrations onto the midgut and then 

diffuses long distances through the hemolymph to its targets. Thus, our data indicate that PDF 

may act as a circulating hormone (long range signaling) in addition to its role as a 

neurotransmitter (short range signaling) in the circadian network. 

PDF and its receptor may signal in multiple pathways to regulate the size and 

weight of Drosophila. Our data show that PDF null flies tend to weigh more than their wild-type 

controls and that this phenomenon is most consistently observed in females. We also show that 

PDFR null flies tend to weigh less than wild-type flies (Figure 7). These results seem to be 

contradictory because in both PDFR null and PDF null flies, PDF signaling is lost, and yet the 

flies have opposite phenotypes. However, PDFR is not receptive only to PDF; it also can respond 

somewhat potently to DH31 (Shafer et al, 2008). This suggests that PDFR may be important in 

two separate signaling pathways that affect weight: one that communicates via PDF and one that 

communicates with DH31. A recent study has suggested that there is a subset of larval midgut 



endothelial cells that express DH31 and that these cells release DH31 to control gut motility 

(LaJeunesse et al, 2010). This study did not investigate how this signal is transduced, and PDFR 

may in fact be responsible for this function of DH31. In this model, a loss of PDFR would cause 

a dysregulation of gut motility which may decrease weight by several mechanisms, including a 

decrease in feeding or a decrease in nutrient absorption.  

It is also possible that DH31 can compensate for loss of PDF in some, but not all, of the 

PDF signaling pathways in a PDF null mutant. In this model, the non-compensated PDF 

pathways signal to prevent an increase in weight in one body system, while the compensated 

pathways signal to promote an increase in weight in another body system. In PDF null flies, only 

the non-compensated pathways would become dysregulated and thus the average weight of the 

flies increases. However, in PDFR null flies, signaling in both pathways would be lost and thus 

both pathways would be dysregulated, causing a new set point for weight depending on the 

magnitude of the effect of each pathway on weight. The fact that we see a decrease in weight 

rather than an increase would indicate that the compensated pathway has a greater effect on 

weight than the non-compensated pathway. This is what we would expect in general because 

pathways that have more redundancies tend to have larger effects on physiology. 

Loss of PDF signaling to the male accessory glands may be responsible for the increase 

in weight seen in the PDF null females. The accessory glands are responsible for making a set of 

peptides that become components of the semen. These seminal peptides are responsible for 

changing the physiology of females to promote sperm storage, decrease mating receptivity (Kalb, 

DiBenedetto, and Wolfner, 1993), increase egg laying (Herndon and Wolfner, 1995), and modify 

digestive function (Cognigni, Bailey, and Miguel-Aliaga, 2011). Our data suggest that PDF 

causes the accessory glands to contract, which may be responsible for moving the signaling 

peptides into the seminal fluid. Without PDF signaling in their mates, the female flies do not 

receive the sex peptides, and thus would still behave like unmated flies, which lay fewer eggs. 

We suspect that this egg retention is responsible for the increase in weight seen in PDF null 

females. Based on this idea and the suggestion that DH31 may signal to regulate gut motility 

(LaJeunesse et al, 2010), it would seem that in either of the models proposed above, signaling to 

the midgut through PDFR works to increase fly weight and signaling to the reproductive viscera 

works to decrease weight.  



In conclusion, we have shown that PDF has a myotropic effect on both the ureter and the 

male accessory gland. In the ureter, this effect is mediated by PDFR and causes an increase in 

intracellular cAMP in the circular muscles. The PDF neurons in the abdominal ganglia project to 

the midgut and likely release PDF into the hemolymph to signal to the ureters and possibly the 

accessory glands. Our data on the weight of PDF and PDFR flies shows that the physiological 

role of PDF and PDFR are complex and suggest that both are important in several signaling 

pathways that may regulate functions as diverse as nutrient uptake, content of seminal fluid, and 

water balance. Taken together, these data show that PDF is an important signaling peptide in the 

viscera as well as the circadian clock. 

 
 

References: 

1. Aton S.J., Colwell C.S., Harmar A.J., Waschek J., Herzog E.D. (2005). Vasoactive 
intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock 
neurons. Nature Neuroscience, 8, 476–483. 

2. Bijelic G. and O’Donnell M. J. (2005)  Diuretic factors and second messengers stimulate 
secretion of the organic cation TEA by the Malpighian tubules of Drosophila 
melanogaster. Journal of Insect Physiology, 51, 267-275. 

3. Blake P. D., Kay I., and Coast G. M. (1996) Myotropic activity of Acheta diuretic peptide 
of the foregut of the House Cricket, Acheta domesticus (L.). Journal of Insect Physiology, 
42(11-12), 1053-1059. 

4. Brand A. H. and Perrimon N. (1993)  Targeted gene expression as a means of altering 
cell fates and generating dominant phenotypes. Development, 118(2), 401-415. 

5. Chapman T., Liddle L. F., Kalb J. M., Wolfner M. F., and Partridge L.  (1995). Cost of 
mating in Drosophila melanogaster females is mediated by male accessory gland 
products.  Nature, 373, 241-4. 

6. Cognigni P., Bailey A. P., and Miguel-Aliaga I.  (2011).  Enteric Neurons and Systemic 
Signals Couple Nutritional and Reproductive Status with Intestinal Homeostasis.  Cell 
Metabolism, 13, 92-104. 

7. Colwell C. S., Michel S., Itri J., Rodriguez W., Tam J., Lelievre V., Hu Z., Liu X., and 
Waschek J. A.  (2003).  Disrupted circadian rhythms in VIP- and PHI- deficient mice.  
Am J Physiol Regul Integr Comp Physiol, 285, R939-49. 

 



8. Denholm B., Sudarsan V., Pasalodos-Sanchez S., Artero R., Lawrence P., Maddrell S., 
Baylies M., and Skaer H.  (2003).  Dual Origin of the Renal Tubules in Drosophila: 
Mesodermal Cells Integrate and Polarize to Establish Secretory Function.  Current 
Biology, 13, 1052-7. 

9. Dow J. A. T. and Romero M. F.  (2010).  Drosophila provides rapid modeling of renal 
development, function, and disease.  Am J Physiol Renal Phsyiol, 299, F1237-44. 

10. Dow J. A. T., Maddrell S. H. P., Gortz A., Skaer N. J. V., Brogan S., Kaiser K. (1994). 
The malpighian tubules of Drosophila melanogaster: a novel phenotype for studies of 
fluid secretion and its control. Journal of Experimental biology, 197, 421-428. 

11. Duffy, J. B.  (2002). GAL4 System in Drosophila: A Fly Geneticist’s Swiss Army Knife.  
Genesis, 34, 1-15. 

12. Fujiyama M. and Inui A.  (2000).  Peptidergic regulation of gastrointestinal motility in 
rodents.  Peptides, 21, 1565-82.  

13. Fyrberg C., Becker J., Barthmaier P., Mahaffey J. and Fyrberg E. (1997) A Drosophila 
muscle-specific gene related to mouse quaking locus. Gene, 197(1-2), 315-323. 

14. Harmar A. J., Marston H. M., Shen S., Spratt C., West K. M., Sheward W. J., Morrison 
C. F., Dorin J. R., Piggins H. D., Reubi J-C., Kelly J. S., Maywood E. S., and Hastings 
M. H.  (2002).  The VPAC Receptor Is Essential for Circadian Function in the Mouse 
Suprachiasmatic Nuclei.  Cell, 109, 497-508. 

15. Heifetz Y., Lung O., Frongillo Jr. E. A., and Wolfner M. F.  (2000).  The Drosophila 
seminal fluid protein Acp26Aa stimulates release of oocytes by the ovary.  Current 
Biology, 10(2), 99-102. 

16. Helfrich-Forster C.  (1995).  The period clock gene is expressed in central nervous 
system neurons which also produce a neuropeptide that reveals the projections of 
circadian pacemaker cells within the brain of Drosophila melanogaster.  Proc. Natl. 
Acad. Sci. USA, 92, 612-6. 

17. Herndon L. A. and Wolfner M. F.  (1995). A Drosophila seminal fluid protein, Acp26Aa, 
stimulates egg laying in females for 1 day after mating.  Proc. Natl. Acad. Sci. USA, 92, 
10114-8.  

18. Hyun S., Lee, Y., Hon S-T., Bang S., Paik D., Kang J., Shin J., Lee J., Jeon K., Hwang 
S., Bae E., and Kim J.  (2005).  Drosophila GPCR Han Is a Receptor for the Circadian 
Clock Neuropeptide PDF.  Neuron, 48, 267-78. 

19. Im S. H. and Taghert P.  (2010). PDF Receptor Expression Reveals Direct Interactions 
Between Circadian Oscillators in Drosophila.  The Journal of Comparative Neurology, 
518, 1925-45. 

20. Jiang H. and Edgar B. A. (2009)  EGFR signaling regulates the proliferation of 
Drosophila adult midgut progenitors. Development, 136(3), 483-493 



21. Kalb J. M., DiBenedetto A. J., and Wolfner M. F.  (1993) Probing the function of 
Drosophila melanogaster accessory glands by direct cell ablation. Procedings of the 
National Academy of Sciences, 90, 8093-97. 

22. Keast J. R. and De Groat W. C.  (1992).  Segmental Distribution and Peptide Content of 
Primary Afferent Neurons Innervating the Urogenital Organs and Colon of Male Rats.  
The Journal of Comparative Neurology, 319, 615-23. 

23. LaJeunesse D.R., Johnson B., Presnell J. S., Catignas K. K.,  and Zapotoczny G.  (2010).  
Peristalsis in the junction region of the Drosophila larval midgut is modulated by DH31 
expressing enteroendocrine cells.  BMC Physiology, 10(14). 

24. Lear B. C., Merrill E., Lin J-M., Schroeder A., Zhang L., and Allada R.  (2005).  A G 
Protein-Coupled Receptor, groom of PDF, Is Required for PDF Neuron Action in 
Circadian Behavior.  Neuron, 48, 221-227. 

25. Mertens I., Vandingenen A., Johnson E. C., Shafer O. T., Li W., Trigg J. S., De Loof A., 
Schoofs L., and Taghert P. H.  (2005).  PDF Receptor Signaling in Drosophila 
Contributes to Both Circadian and Geotactic Behaviors.  Neuron, 48, 213-219. 

26. Miguel-Aliaga I.  (2012).  Nerveless and gutsy: intestinal nutrient sensing from 
invertebrates to humans.  Semin Cell Dev Biol, doi:10.1016/j.semcdb.2012.01.002. 

27. Miller A. (1994) The internal anatomy and histology of the imago of Drosophila 
melanogaster. in Demerec M., ed., Biology of Drosophila, Cold Spring Harbor 
Laboratory Press, New York, 420-534. 

28. Nassel D. R., Shiga S., Mohrherr C. J., and Rao K. R. (1993) Pigment-dispersing 
hormone-like peptide in the nervous system of the flies Phormia and Drosophila: 
immunocytochemistry and partial characterization. Journal of Comparative Neurology, 
331(2), 183-198.  

29. Nassel D. R. and Winther A. M. E. (2010) Drosophila neuropeptides in regulation of 
physiology and behavior. Progress in Neurobiology, 92(1), 42-104. 

30. Nitabach M. N., Wu Y., Sheeba V., Lemon W. C., Strumbos J., Zelensky P. K., White B. 
H. and Holmes T. C. (2006). Electrical hyperexcitation of lateral ventral pacemaker 
neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and 
induces multiple behavioral periods. The Journal of Neuroscience, 26(2), 479-489. 

31. O’Donnell M. J. and Rheault M. R. (2005)  Ion-selective microelectrode analysis of 
salicylate transport by the Malpighian tubules of Drosophila melanogaster. The Journal 
of Experimental Biology, 208, 93-104. 

32. Ranganayakulu G., Schulz R. A., and Olsen E. N. (1996) Wingless signaling induces 
nautilus expression in the ventral mesoderm of the Drosophila embryo. Developmental 
Biology, 176(1), 143-148. 

33. Shafer O. T., Kim D. J., Dunbar-Yaffe R., Nikolaev V. O., Lohse M. J., and Taghert P. 
H.  (2008).  Widespread Receptivity to Neuropeptide PDF throughout the Neuronal 



Circadian Clock Network of Drosophila Revealed by Real-Time Cyclic AMP Imaging.  
Neuron, 58, 223-37. 

34. Stevaux O., Dimova D., Frolov M. V., Taylor-Harding B., Morris E. and Dyson N. 
(2002)  Distinct mechanisms of E2F regulation by Drosophila RBF1 and RBF2. EMBO 
J, 21(18), 4927-4937. 

35. Shafer O. T. and Taghert P. H.  (2009).  RNA-Interference Knockdown of Drosophila 
Pigment Dispersing Factor in Neuronal Subsets: The Anatomical Basis of a 
Neuropeptide’s Circadian Functions.  PLoS ONE, 4(12), e8298. 

36. Siviter R. J., Coast G. M., Winther A. M. E., Nachman R. J., Taylor C. A. M., Shirras A. 
D., Coates D., Isaac R. E., and Nassel, D. R.  (2000).  Expression and Functional 
Characterization of a Drosophila Neuropeptide Precursor with Homology to Mammalian 
Prepprotachykinin A.  The Journal of Biological Chemistry, 275(30), 23273-80. 

37. Rao K. R., and Riehm J. P.  (1993).  Pigment-Dispersing Hormones.  Annals New York 
Academy of Sciences, p 78-88. 

38. Rao K. R., Riehm J. P., Zahnow C. A., Kleinholz L. H., Tarr G. E., Johnson L., Norton 
S., Landau M., Semmes O. J., Sattelberg R. M., Jorenby W. H., and Hintz M. F.  (1985).  
Characterization of a pigment-dispersing hormone in eyestalks of the fiddler crab Uca 
pugilator.  Proc. Natl. Acad. Sci. USA, 82, 5319-22. 

39. Renn S. C. P., Park J. H., Rosbash M., Hall J. C., and Taghert P. H.  (1999).  A pdf 
Neuropeptide Gene Mutilation and Ablation of PDF Neurons Each Cause Severe 
Abnormalities of Behavioral Circadian Rhythms in Drosophila.  Cell, 99, 791-802. 

40. Vaudry D., Gonzalez B. J., Basille M., Yon L., Fournier A., and Vaudry H.  (2000).  Pituitary 
Adenylate Cyclase-Activating Polypeptide and Its Receptors: From Structure to Functions.  
Pharmacological Reviews, 52(2), 269-324. 

41. Vosko A. M., Schroeder A., Loh D. H., Colwell C. S.  (2007).  Vasoactive intestinal peptide and 
the mammalian circadian system.  General and Comparative Endocrinology, 152, 165-75. 

42. Yoshiyama M., and De Groat W. C.  (2008).  The Role of Vasoactive Intestinal Polypeptide and 
Pituitary Adenylate Cyclase-Activating Polypeptide in the Neural Pathways Controlling the 
Lower Urinary Tract.  J Mol Neurosci, 36, 227-40. 

 
 


