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1 Abstract

Over the past few decades, glaciers worldwide have been retreating, re-
sulting in changes in water resources with direct socio-environmental impacts.
The flow of glaciers is intrinsically linked to the morphology and dynamics
of sub-glacial water. However, these sub-glacial processes remain largely
mysterious, and current techniques of modeling the glacial flow based on
these sub-glacial structures is limited to theoretical models with few direct
observations of these structures. Current techniques of observing sub-glacial
water systems, including satellite altimetry, boreholes, and active source geo-
physics, are limited either spatially or temporally. In this study, we present
the plausibility of using passive magnetic methods, including magnetic induc-
tion and magneto-tellurics, using natural external magnetic fields to detect
sub-glacial water morphology and dynamics. Magnetic induction alone was
found useful in detecting the presence of smaller bodies of water, but only the
variability of large lake-like bodies of sub-glacial water. Magnetotellurics was
proven more useful in detecting the presence of smaller bodies of water. We
constructed several forward models using these techniques, and calculations
of both novel potential measurements and notes on the limitations of these
techniques have been made.
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2 Introduction

A wealth of research over the past several decades has reliably shown that
glaciers are retreating worldwide (Kaser et al. 2006). As a result, global sea
levels are rising, and assuming the change in global climate trends continue,
levels are predicted to continue rising over the years (Arendt et al., 2002).
Thus, it is imperative to predict the extent of worldwide glacial retreating,
thereby predicting the extent of this sea level rise over the centuries.

The morphology and dynamics of sub-glacial water systems have been
convincingly shown to be linked with the dynamics of glacial movement
(Kamb, 1970; Iken, 1981; Kamb, 1987; Iken and Bindschadler, 1986; Zwally
et al., 2002; Stearns et al., 2008; Das et al., 2008). Numerous researchers
have posited to predict these glacial dynamics using models based on a wide
range of spacial and temporal sub-glacial water dynamics. For example, the
sub-glacial water systems may transition from an evenly distributed thin
sheet of water to a channelized water system over the course of a season
(e.g. Gordon et al., 1998; Stearns et al., 2008), thus influencing the glacial
movement. However, as a result of the temporal and spacial variability of
these water systems and the depth of these systems beneath glaciers, it is
difficult to directly observe the dynamics of sub-glacial water systems. Thus,
the actual nature of these systems have eluded scientists. Since many of
these systems are a kilometer or more below the surface of glaciers, direct
measurements are few, and predictions of the exact influence of sub-glacial
water systems on glacial movement is largely limited to theoretical models
(e.g. Fowler, 1979; Fowler, 1986), as the scarcity of actual data greatly limits
experimental models.

The existing methods of observing sub-glacial water systems are limited
in scope, unable to resolve both spatial and temporal variability of these
networks. Satellite altimetry may be employed to take snap-shots of glaciers
over large spatial coordinates. Given the active nature of these measure-
ments and the infrequency of the snap-shots taken, these images cannot be
resolved over short time frames. Active source geophysics, in which a signal
is artificially injected into the Earth to infer a seismic profile, is costly and
may be damaging to the glacial structure. Thus, it is also unrealistic as a
tool for temporal resolution, although it may be spatially effective. Boreholes
are field-based measurements that are practical for resolving the dynamics
of these water systems over time, but they are very limited spatially, as the
expense of drilling boreholes across large swaths of glacier is large. In this
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study, we explore two techniques, magnetic induction and magneto-tellurics,
that may be used to resolve the dynamics of sub-glacial water systems both
spatially and temporally.

The first of these techniques is the use of passive magnetic induction
alone. The use of magnetics has potential in detecting the amount of water
below the surface of a glacier since water is far more conductive than ice
and oftentimes more conductive than bedrock as well. By using the mag-
netic fields naturally produced from Earth’s ionosphere, we may be able to
study the evolution of sub-glacial water systems. Furthermore, since the
measurements are made passively, using common magnetometers, the tech-
nique may be very cost effective. Although promising, this technique has
not been widely used to detect underground water or any other conductive
underground source in a sub-glacial environment. This technique has been
used, however, as strong evidence that a planet-wide ocean exists beneath
the surface of Europa, an icy moon that orbits Jupiter (Zimmer et al. 2000),
and its use in detecting the dynamics of sub-glacial water is, therefore, worth
exploring.

The second method is the use of magneto-tellurics, which may be useful
in detecting the dynamics of sub-glacial water. This technique involves the
detection of not only the natural magnetic field but also the natural elec-
tric field at the surface of the Earth, and is thus more costly, albeit more
informative, than the above technique of measuring the magnetic induction
alone. However, since these detections are also done passively, this tech-
nique is still potentially more cost effective than currently used techniques.
Since magneto-tellurics is widely used in hydrocarbon and mining explo-
ration, geothermal investigation, and groundwater monitoring (Orange, 1989;
Farquharson and Craven, 2009; Volpi et al., 2003; Pedersen et al., 2005), it
is promising in detecting sub-glacial water.

3 Theory and Models

Here we introduce the basic theory of both magnetic induction and
magneto-tellurics, each of which are promising techniques, which have po-
tential in detecting the presence and variability of sub-glacial water systems.
Figure 1 illustrates the general structure of the glacier, sub-glacial water,
and bedrock system we visualize for the following results. The water layer
will not necessarily be completely flat. Its morphology is variable. We use
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forward models to calculate how various water system structures will affect
the data in both magnetic induction and magneto-telluric calculations. The
theory, models, and significant results are presented below.

Figure 1: This figure illustrates the general structure of the glacier, sub-glacial water, and bedrock
system we visualize for the following results. The water layer will not necessarily be completely flat. Its
morphology is variable.

3.1 Magnetic Induction Theory

Unlike traditional magnetic surveys which rely on measuring the static
magnetic fields based on the internal magnetization of sub-glacial water sys-
tems to infer their structure, magnetic induction relies on the time and space
varying magnetic fields that result from a known external magnetic field.
This technique may be implemented passively because these external mag-
netic fields may be natural fields produced by the Earth’s ionosphere. The
costs associated with such an undertaking result from the deployment of
magnetometers along the glacial surface for an extensive period of time (from
days to decades) in order to gather enough magnetic data to infer sub-glacial
structure and variability. Since most magnetometers can detect changes in
the magnetic field on the order of 1 nT or higher, the sources used would need
to exhibit variations on this order or higher. Natural variations in Earth’s
magnetic field include variations occurring each second on the order of 1 - 10
nT, diurnal variations on the order of 10 - 100 nT, and the large magnetic
storms that vary on the order of 100 - 1000 nT (Stepisnik, 2006).

It is well known that water, particularly water containing dissolved salts,
is much more conductive than ice. Typical freshwater has a conductivity on
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the order of 10−3−10−2 S/m. Seawater, on the other hand, has a conductivity
around 1− 6 S/m (Cox et al., 1970). It was found that the sub-glacial water
beneath an alpine glacier had a conductivity on the order of 10−3−10−2 S/m
throughout the year (Stone et al., 1993), and is thus fresh. Since the sub-
glacial water beneath these glaciers flows over much shorter distances than
antarctic glaciers, this sub-glacial water cannot dissolve as much salt as sub-
glacial water below antarctic glaciers, and thus we assume the conductivity of
the water beneath antarctic glaciers may reach up to an order of magnitude
larger. However, ice has a conductivity on the order of 10−6 − 10−5 S/m
(Kulessa, 2007). Thus, there is a large contrast between the conductivities
of water and ice. The conductivity of bedrock is typically on the order
of 10−4 − 10−3 S/m (Seaton and Dean, 2004). The contrast between the
conductivities of bedrock and water is often large, although not always, and
is thus sometimes an important limit in measurements.

Conceptually, an external time-varying magnetic field will induce an
electromotive force in a closed circuit. This is a statement of the well-known
Faraday’s law, which relates the electric field with the external magnetic field
as such:

∇× E = −∂B
∂t

(1)

where we note that the bold-face means these are vectors. In the water, this
electric field is in the form of eddy currents. Due to water’s high conductivity,
the eddy currents in water are far more significant than the eddy currents in
ice or bedrock. These eddy currents, in turn, induce a magnetic field that
acts opposite the change in the external magnetic field, partially canceling the
external field. Extricating this induced field from the external field contains
the information about the sub-glacial environment.

The best way to find out the potential use of this method is to calcu-
late the ratio of the induced magnetic field over the external magnetic field.
Any measurement taken over a period on the order of seconds may only be
detected if this ratio is between 0.1 - 1 since, as stated earlier, the Earth’s
magnetic field varies with periods on the order of seconds with an amplitude
on the order of 1 - 10 nT, and magnetometers can changes on the order of 1
nT. Likewise, day-long periods can detect changes with a ratio as low as 10−2,
and magnetic storms, which are periods on the order of hours, can measure
changes with a ratio as low as 10−3. We use forward models to calculate
what effects certain water structures would have on the ratio of the induced
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magnetic field over the external magnetic field.

3.2 Magnetic Induction Results

We can mathematically represent various water system structures by
first assuming the structure is a conducting sheet lying in a plane, similar
to the structure shown in Figure 1, say at z = 0 in Cartesian coordinates,
where we use the convention presented below:

Price (1949) originally derived the general equation for a non-uniform con-
ducting plane sheet as follows:

−ρ
(
∂2Ω(i)

∂z2

)
+∇ρ∇Ω(i) +

∂

∂t

(
∂Ω(i)

∂z

)
= − ∂

∂t

(
∂Ω(e)

∂z

)
(2)

where ρ is a dimensionless resistance explained below, Ω(i) is induced mag-
netic potential, Ω(e) is external magnetic potential, and z is the axis normal
to the ground and is, thus, the axis measuring the depth of the water. We
note that ρ, the dimensionless resistance of the following form:

ρ =
1

µ0σd(x)
(3)

where µ0 is the vacuum permeability, σ is the conductivity of water, and d(x)
is the depth of the water layer, which we note may depend on the distance
of the water layer along the x-axis. The relationship between the magnetic
potential (scalar) and the magnetic field is:

B = −∇Ω (4)

where B is the vector magnetic field. Finally, we note that we can represent
the induced and external magnetic potentials as:
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Ω(i) = beiωtf(x, y)e−kz (5)

Ω(e) = Feiωtg(x, y)ekz (6)

where b and F are the amplitudes of the induced and external magnetic fields
respectively, ω is the frequency of the field, f(x, y) and g(x, y) are functions
dependent on x and y, but not z, and k is the inverse of wavelength, λ−1.

With equation (2) in mind, we are now able to illustrate the possibility
of detecting sub-glacial water by modeling various morphologies of the sub-
glacial water structure. Below, we illustrate three different structures. We
begin by modeling the simple flat water layer model, in which the water has
a constant depth throughout the entire x-y coordinate plane to see what
combinations of depths and conductivities may be measured. Second, we
model a water layer with a depth that varies sinusoidally along the x-axis,
representing a more channeled water layer to gauge our ability to measure
this variation. Finally, we model an individual Gaussian channel to evaluate
the possibility of detecting individual channels. In all models, we treat the ice
and bedrock as complete insulators, a reasonable assumption only when the
bedrock is at least three orders of magnitude more conductive than water.
There is, however, an important limitation to this assumption. Since the
bedrock is assumed to have infinite depth, the induced magnetic field should
completely cancel with the external magnetic field even if the bedrock slightly
conducts. In practice, this is solved by using multiple magnetometers on the
surface of the Earth to detect horizontal variability in the induced magnetic
fields. Due to the curvature of the Earth and the variability in the sub-surface
structure, the use of multiple magnetometers to detect horizontal change may
be used to create a profile of the sub-surface structure. However, we make
the above approximations to find the baseline parameters of sub-glacial water
systems to detect their presence and variability.

3.2.1 Flat Water Layer Model

The flat water layer model is the simplest model which we use to derive
an initial order of magnitude estimate of the effect of sub-glacial water that
we could expect to see at the surface of an ice sheet. It is a model that treats
the ice and bedrock as perfect insulators, whereas the water is treated as a
flat, infinite sheet of constant depth and conductance across the whole x-y
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plane. In this model, since we treat the depth as a constant, the dimensionless
resistance ρ is also constant:

ρ =
1

µ0σd
(7)

where d is a constant independent of x. Inserting (5), (6), and (7) into (2),
we find:

(ρk2 + iωk)Ω(i) = iωkΩ(e) (8)

Rearranging, we obtain the ratio of Ω(i) to Ω(e):

Ω(i)

Ω(e)
=

iωµσdλ

1 + iωµσdλ
(9)

By examining (5), (6), and (9), we note that:∣∣∣∣ bF
∣∣∣∣ =

∣∣∣∣ iωµσdλ

1 + iωµσdλ

∣∣∣∣ (10)

where b is the amplitude of the induced magnetic field and F is the amplitude
of the external magnetic field.

Figure 2: The graph on the left shows the magnitude of the ratio of the induced magnetic field to
the external magnetic field as a function of the external wavelength for a total water conductivity of 0.1 S
given a range of periods. The external wavelength is typically on the order of an Earth radius, or around
106 − 107 m. It can also be on the order of 105 m. The graph on the right shows the magnitude of
the ratio of the induced magnetic field to the external magnetic field as a function of water depth for a
conductivity of 0.1 S/m and external wavelength of 107 m.

8



Figure 2 above shows some basic results using equation (10). The graph
on the left shows the magnitude of the ratio of the induced magnetic field
to the external magnetic field as a function of the external wavelength for a
total water conductivity of 0.1 S given a range of periods. The orange region
on the right shows the range of wavelengths naturally produced by Earth’s
ionosphere. The purple region on the left shows the wavelengths that would
have to be artificially produced. The graph on the right shows the magnitude
of the ratio of the induced magnetic field to the external magnetic field as a
function of water depth for a conductivity of 0.1 S/m and external wavelength
of 107 m. Recalling that we like the ratio of b to F to be on the order of
10−1, we note shorter period external fields are more sensitive to shallower
water layers. The above table presents promising results. We note that water
layers on the order of a centimeter can realistically be detected by periods on
the order of seconds. Deeper water layers can be detected using naturally-
varying external fields of longer periods. Magnetometers can easily detect
variations on the order of seconds or more. Thus, when it comes to detecting
the presence of water itself, passive techniques are sufficient when detecting
thin water layers of a centimeter or more.

3.2.2 Sinusoidal Layer Model

The sine-varying layer model is the simplest model we use in order to
quantify the potential to detect variabilities in water layer structure. It is a
model that again treats the ice and bedrock as perfect insulators. However,
the water layer now has a depth varying periodically. In this model, the
dimensionless resistance ρ is:

ρ (x) = ρ0 (1− ε cos px) (11)

where ρ0 = (µ0σdmax)
−1 and p is the inverse wavelength of the variability in

the water layer. Using this periodic model, Price (1949) showed that given
an external magnetic potential where:

g(x, y) = cos ky (12)

and specifying a new form of (6) such that:

Ω(e) = Feiωt cos ky ekz (13)

the induced magnetic potential from (5) can be written:
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Ω(i) = cos ky
∞∑
m=0

Ime
iωt cosmpx e−z

√
k2+m2p2 (14)

where Im are the coefficients in a Fourier series. We must solve for the
recurrence relationships among the coefficients. We start by solving for the
first coefficient, I0 and ignoring the rest. We insert (11), (13), and (14) into
(2) to get:

ρ0(1−ε cos px) cos ky eiωtk2I0e
−kz+iω cos ky eiωtkI0e

−kz = iω cos kyeiωtkFekz

(15)
which, when simplified and rearranging to find the ratio of the first coefficient
of the Fourier series of the induced magnetic potential to the magnitude of
the external magnetic potential, we get:∣∣∣∣I0

F

∣∣∣∣ =

∣∣∣∣ iω

kρ0(1− ε cos px) + iω

∣∣∣∣ (16)

To check that the above is correct, we note that when ε = 0, (16) reduces to
(10). Next, we find the relationship between I1 and I0 by applying (14) with
only these first two coefficients, ignoring all higher order terms, to (2) to get:

k2ρ0I0 + iωkI0 +
(
−εk2ρ0I0 + ζ2I1 + iωζI1

)
cos px

−εζ2ρ0I1 cos2 px+ εp2ρ0I1 sin2 px = iωkF (17)

where ζ2 = k2 + p2. In order to find the relationship between I0, I1 and F ,
we take those terms that are independent of x in the complex form of (17)
and rearrange, obtaining:

ε

2
I1 = (1 +D)I0 −DF (18)

where D = iω
ρ0k

. Using a similar approach, we may return to (14) and add

in I2 (while neglecting all higher order terms) such that we may find the
relationship between I0, I1, and I2. Once we use this form of (14) up to
m = 2 in (2), we may once again take those terms independent of x and
rearrange to get back (18). By taking those terms dependent on eipx and
e−ipx, we attain the following relationship between I0, I1, and I2:
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ε

(
s+

1

2

)
I2 = (s+ 1)[1 + (s+ 1)−

1
2D]I1 − εI0 (19)

As we subsequently add terms to the sum in (14), then solve for the terms
independent of x, we get back (18). By solving for those terms dependent on
eipx and e−ipx, we get back (19). By solving for terms dependent on higher
order terms, eimpx and e−impx, we find the following generalized recurrence
relationship:

ε

2

(m+ 1)ms+ 1

m(m− 1)s+ 1
Im+1 =

m2 + 1

m(m− 1)s+ 1

[
1 +

D√
m2s+ 1

]
Im −

ε

2
Im−1 (20)

thus giving us a series of linear equations which may easily be solved.
Figure 3 shows the ratio of the magnitude of the first and second Fourier

series coefficients (labeled b) to the magnitude of the external magnetic field,
F , in this sinusoidal model. The blue curves represent a 1 km wide “wave-
length” of the sinusoidal water depth. The green curves represent a 10 km
wide variability and the red curves represent a 100 km wide variability. The
above graphs assume 105 m wavelength of the external magnetic field and 0.1
S conductivity. The rationale for using this conductivity is that it is com-
mon for freshwater systems on the order of 1 m deep, and sometimes even
10 cm deep. The first coefficient is useful for informing us of the presence of
water. The second coefficient is useful for informing us of the variability in
the water. As can be seen from Figure 2, the more macroscopic variabilities
covering larger swaths of land give larger magnitudes for the ratio of the sec-
ond Fourier series coefficient to the amplitude of the external magnetic field.
Although in all cases, it is relatively straightforward to detect the presence
of the water, detecting the actual variability in the water is more difficult.
Recalling that we like the ratio of b to F to be on the order of 10−1, we
note only when we have a water layer with the huge 100 km wavelength in
variability are we able to easily detect this variability. One order of magni-
tude less and might need the variability in a magnetic storm to detect this
variability.

With (18), (19), and (20) available to us, we investigate the possibility
of using artificial generated external magnetic fields to detect the presence
and variability of sub-glacial water systems. Figure 4 shows the ratio of the
magnitude of the first and second Fourier series coefficients (labeled b) to
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Figure 3: The above graphs show the ratio of the magnitude of the first and second Fourier series
coefficients (labeled b) to the magnitude of the external magnetic field, F , in the sinusoidal model. The
blue curves represent a 1 km wide ”wavelength” of the sinusoidal water depth. The green curves represent
a 10 km wide variability and the red curves represent a 100 km wide variability. The above graphs assume
105 m wavelength of the external magnetic field and 0.1 S water conductivity.

the magnitude of the external magnetic field, F, in the sinusoidal model.
The blue curves represent a 10 m wide “wavelength” of the sinusoidal water
depth. The green curves represent a 100 m wide variability and the red
curves represent a 1 km wide variability. The above graphs assume 100 m
wavelength of the artificially generated external magnetic field and 0.1 S
water conductivity. When the artificially generated external magnetic field
is at much shorter wavelengths than those of the natural magnetic fields in
Earth’s ionosphere, and when these fields are produced at very short periods,
much smaller variabilities in the sub-glacial water may be detected. Such an
undertaking would be significantly more costly than using passive techniques.
However, if it turns out there is a feasible, affordable way to generate this
artificial field, then detecting the variability in sub-glacial water systems will
be straightforward with magnetic methods alone.

3.2.3 Gaussian Channel Model

The Gaussian model is the simplest model we use in order to quantify
the potential to detect the size of an individual water channel. It is, once
again, a model that treats the ice and bedrock as perfect insulators, whereas
the resistivity of the water is treated as a single channel in the shape of a
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Figure 4: The above graphs show the ratio of the magnitude of the first and second fourier series
coefficients (labeled b) to the magnitude of the external magnetic field in the sine-varying layer model. The
blue curves represent a 10 m wide ”wavelength” of the sinusoidal water depth. The green curves represent
a 100 m wide variability and the red curves represent a 1 km wide variability. The above graphs assume
102 m wavelength of the artificially generated external magnetic field and 0.1 S water conductivity.

Gaussian with a very thin resistivity extending infinitely far. In this model,
we treat the dimensionless resistance ρ as:

ρ(x) = ρ0

(
1−

∞∑
n=1

εn cosnpx

)
(21)

where ρ0 is the same as in the previous model, ε1 ≤ ρ0 and all subsequent
values of εn satisfy the following relationship with ε1:

εn = ε1e
−2π(kα(n−1))2 (22)

where α is a measure of the channel’s thickness. It can be thought of as
the standard deviation of the Gaussian shape, or the standard deviation of
water resistivity from the center-point. We notice that if we attempt to plug
(13), (14), and (21) into (2), we must end up with a recurrence within a
recurrence since there are two infinite sums. Instead of attempting to solve
for this double recurrence, we analytically solve for the induced magnetic
potential (14) for the first 5 terms, dropping off all remaining terms, and the
first 4 terms in the dimensionless resistance (21) such that we end up with
the following approximations:
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Ω(i) ≈ cos ky
4∑

m=0

Ime
iωt cosmpx e−z

√
k2+m2p2 (23)

ρ(x) ≈ ρ0

(
1−

4∑
n=1

εn cosnpx

)
(24)

By explicitly plugging (13), (23), and (24) into (2), we obtain a series of
terms, some of which are independent of x, and some of which are dependent
on cos px, cos 2px, cos 3px, or cos 4px. By extracting the appropriate depen-
dencies, we may find the relationships among all the terms in (23) and (24).
By finding all of these relationships, we come up with the following 5 linear
equations, for which we may solve:

(1 +D)I0 −
ε1
2
I1 −

ε2
2
I2 −

ε3
2
I3 −

ε4
2
I4 = DF (25)

−ε1I0 +
(

1 + s+D
√

1 + s− ε2
2

(1− s)
)
I1

−
(ε1

2
(1 + 2s) +

ε3
2

(1− 2s)
)
I2

−
(ε2

2
(1 + 3s) +

ε4
2

(1− 3s)
)
I3 −

(ε3
2

(1 + 4s)
)
I4 = 0 (26)

−ε2I0 −
(ε1

2
(1 + 2s) +

ε3
2

(1− 2s)
)
I1

+
(

1 + 4s+D
√

1 + 4s− ε4
2

(1− 4s)
)
I2

−
(ε1

2
(1 + 6s)

)
I3 −

(ε2
2

(1 + 8s)
)
I4 = 0 (27)

−ε3I0 −
(ε2

2
(1 + 3s) +

ε4
2

(1− 3s)
)
I1 −

(ε1
2

(1 + 2s)
)
I2

+
(

1 + 9s+D
√

1 + 9s
)
I3 −

(ε1
2

(1 + 12s)
)
I4 = 0 (28)

−ε4I0 −
(ε3

2

)
I1 −

(ε2
2

(1 + 8s)
)
I2 −

(ε1
2

(1 + 12s)
)

+
(

1 + 16s+D
√

1 + 16s
)
I4 = 0 (29)
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We solve for (25) - (29) under varying conditions of water depth, conductivity,
and width of channel.

Figure 5: The above graphs show the ratio of the magnitude of the first and second Fourier series
coefficients (labeled b) to the magnitude of the external magnetic field, F , in the Gaussian single channel
model. The blue curve represents a 10 km wide wide channel. The above graphs assume 105 m wavelength
of the external magnetic field and 0.1 S water conductivity.

Figure 5 shows the ratio of the magnitude of the first and second Fourier
series coefficients (labeled b) to the magnitude of the external magnetic field,
F , in the Gaussian single channel model. The blue curve represents a 10
km wide wide channel. The above graphs assume 105 m wavelength of the
external magnetic field and 0.1 S water conductivity. Gaussian channels that
are even an order of magnitude smaller have a second Fourier coefficient that
are too small to detect. Similar to the sinusoidal curve, although detecting
the presence of the water itself is straightforward, detecting the variability in
the water to find that it is a channel is very difficult. Even with a 10 km wide
channel, this ratio between the induced and external magnetic potential is less
than the desire 10−1. Thus, we would something passive with a magnitude
on the order of a magnetic storm to accurately detect this variability.

3.3 Magneto-tellurics Theory

Unlike the magnetic induction method, which detects natural changes
in the magnetic field, the magneto-telluric method relies on the detection of
the magnetic and electric components of static telluric currents at Earth’s
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surface. These telluric currents are naturally present at a range of frequencies
in Earth’s crust, and may be detected at the surface. We can use these
currents to measure apparent resistivities, which are weighted averages of the
resistivities of the various layers of material below the surface. By measuring
the ratio of the amplitudes of the electric field to the magnetic field, we may
obtain a profile of the apparent resistivity on the subsurface structure of the
Earth. By measuring this ratio at a range of frequencies, we can determine
a profile of the structure below the surface. By also measuring the phase
shift between the electric and magnetic fields at various frequencies, we can
determine a more accurate profile for verification purposes, although phase
shifts will not be discussed here (for extensive discussion of phase shifts, see
Cagniard 1953). Because there are large differences in the resistivities of ice,
bedrock, and water, this technique is promising as a method for finding out
the relative structures and depths of these layers below the surface.

Combining both the magnetic and electric data, we can obtain more
information about the sub-glacial water system. As originally proposed by
Louis Cagniard in the early 1950s, we illustrate the mathematics needed to
understand the theory behind magneto-tellurics. For the following, we will
use the following convention for axes:

where z is positive down. Let us suppose we have a layer lying along the plane
z = 0 with infinite depth and constant conductivity σ. Let us also suppose
there is an electric wave propagating along the z-axis with an amplitude
along the x-axis. Thus, the magnetic field is moving along the z-axis with
its amplitude running along the y-axis. We will first consider the current
density of the electric field:

J = σE (30)

where E is the electric field. On the surface at z = 0, the current density is:
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Jx = cosωt Jy = Jz = 0 (31)

where J = (Jx, Jy, Jz) and ω is the frequency. The electric field will have the
following form at depth z:

Jx(z) = e−z
√

2πσω cos (ωt− z
√

2πσω) Jy = Jz = 0 (32)

It is important to note that with (32), as the depth increases, the ex-
ponential decreases while the phase retardation increases. It is thus useful
to describe the distance known as the “skin depth”, often represented as δ.
This is the depth at which the amplitude of the electric field at the surface
has decreased to the fraction e−1. It is defined as:

δ =
1√

2πσω
(33)

We may also note that for every distance δ below the surface, the phase is
retarded by one radian.

Now let us consider the magnetic field. Since the electric field dies off
as z approaches infinity, the magnetic field must do the same. Recalling
Ampère’s Circuital Law:

∇×H = J (34)

where, H is the magnetic H-field, let us consider a path to integrate, a
rectangle with a side a distance z below the surface of the Earth, parallel to
the surface, and a side infinitely below the surface, both connected by sides
orthogonal to the surface:
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The sides parallel to the surface must run along the y-axis, since we
specified above that the amplitude of the magnetic field runs along this side.
When applying Ampère’s Circuital Law, (34), to this loop, we calculate H:

Hy(z) = 4π

∫ ∞
z

Jxdz = 2

√
π

σω
e−z
√

2πσω cos
(
ωt− z

√
2πσω − π

4

)
Hx = 0 (35)

Combining (30), (32), and (35), we note that the ratio between the
amplitudes of the electric and magnetic field is:

Ex
Hy

=
1

2

√
ω

πσ
(36)

while the phase retardation of the magnetic field relative to the electric field
is π

4
. Note that the resistivity is an inverse of conductivity, σ = ρ−1. We

may rearrange (36) to note how best to infer the resistivity of this assumed
uniform Earth:

ρ =
2π

ω

(
Ex
Hy

)2

(37)

This crucial result is the basis for the subsequent calculations. The
Earth is not usually a uniform layer beneath the surface. In the case of
sub-glacial water systems, the Earth consists of 3 layers: ice, sub-glacial
water, and bedrock, as illustrated in Figure 1. Thus, the above ρ is more of
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an apparent resistivity, which we will call ρa for the remainder of this paper,
since it measures a weighted average of the resistivities of the multiple layers.
We can already begin to imagine how the above will be useful in inferring
the structure of multiple layer of the Earth by considering the skin depth.
As frequencies become lower (hence, the periods get higher), the skin depth
increases. As the layers in the Earth change, lower frequencies begin to
detect these changes. Since resistivity influences the skin depth and is part
of this quotient between the amplitude of the electric and magnetic fields,
layers of different resistivities will affect the amplitude. By taking this ratio
of electric and magnetic fields, we receive information of the Earth below the
surface’s resistivity, primarily dictated by the distance between the surface of
the Earth and the skin depth. By taking this ratio at various frequencies, we
attain this information at various depths, and can create a profile of apparent
resistivities, thus extracting the whole profile on the structure of the Earth
below the surface and its layers.

3.4 Magneto-telluric Results

This technique has been widely used for hydrocarbon and mining explo-
ration in the past decades, yet its usefulness in detecting sub-glacial water
has yet to be investigated. We continue our investigation below by calculat-
ing various forward models for potential structures of the sub-glacial water
system. We begin by presenting a relatively straightforward 2-layer model,
primarily to present the math and intuition behind the use of this technique,
and show how the profile of apparent resistivities can lead us to extract a
profile of the structure below the surface of the Earth in terms of resistivi-
ties. Then, we extend this to a 3-layer model incorporating the real model of
ice, water, and bedrock, showing a practical, although mathematically more
complex, profile. We then explain how to turn the field data into a profile of
the underground structure.

3.4.1 The Two Layer Model

In this model, we consider two layers of material with resistivities ρ1

and ρ2 below the surface of the Earth, where the top of the first layer is a
flat surface along the z = 0 plane. The point where the first surface meets
the second surface is also flat, running along z = h. The following figure
illustrates this model:
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Using the above model, we can create a profile of this structure using
the electric and magnetic fields at the surface. Let us say the electric and
magnetic fields within the second layer of the Earth are as follows:

Ex = eiωte−α
√
σ2z

Hy = 2

√
πσ2

ω
ei

π
4
ωte−α

√
σ2z (38)

where α is:

α = 2
√
πωe−i

π
4 (39)

Since in the top layer of this model these electric and magnetic fields will
contain both upwelling and downwelling contributions, the form of these
fields in the top layer is:

Ex = eiωt(Aeα
√
σ1z +Be−α

√
σ1z)

Hy = 2

√
πσ1

ω
ei

π
4
ωt(−Aeα

√
σ1z +Be−α

√
σ1z) (40)

We may solve for A and B by applying the necessary boundary conditions
at z = h that assure continuity of the electric and magnetic fields:

Aeα
√
σ1h +Be−α

√
σ1h = e−α

√
σ2h

−A
√
σ1e

α
√
σ1h +B

√
σ1e
−α√σ1h =

√
σ2e
−α√σ2h (41)
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leading us to conclude that:

A =

√
σ1 −

√
σ2

2
√
σ1

e−αh(
√
σ1+
√
σ2)

B =

√
σ1 +

√
σ2

2
√
σ1

eαh(
√
σ1−
√
σ2) (42)

Recalling (37), we can find an expression for the ratio of the electric to
magnetic fields more easily by rewriting them as follows:

Ex = Ceiωte−iφ

Hy = 2

√
πσ1

ω
Deiωtei(π/4−ψ) (43)

where upon comparison of (43) with (38) through (42) and the use of some
algebraic manipulation, we obtain the following relationships:

C cosφ =

(
1

δ1

cosh
h

δ1

+
1

δ2

sinh
h

δ1

)
cos

h

δ1

C sinφ =

(
1

δ1

sinh
h

δ1

+
1

δ2

cosh
h

δ1

)
sin

h

δ1

(44)

D cosψ =

(
1

δ1

sinh
h

δ1

+
1

δ2

cosh
h

δ1

)
cos

h

δ1

D cosψ =

(
1

δ1

cosh
h

δ1

+
1

δ2

sinh
h

δ1

)
sin

h

δ1

(45)

where we recall from (33) that δ is the skin depth, and note that δ1 and δ2

are the skin depths of the top and bottom layer respectively. We can now
obtain the ratio of the electric to magnetic fields for the two-layer model:

Ex
Hy

=
1

2

√
ω

πσ1

C

D
e−i(π/4+φ−ψ) (46)

Ignoring the phase, observing the magnitude of (46), and comparing it with
(36), where we recall that for an arbitrary sub-surface structure within the
Earth σ is actually σa the apparent conductivity, which is related to the
apparent resistivity as σa = ρ−1

a , we note that:
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ρa = ρ1

(
C

D

)2

(47)

Thus, to find the apparent resistivity, all we need to measure are the am-
plitudes of the electric and magnetic fields over a range of frequencies, and
to directly measure the resistivity of the top layer of the Earth right at the
surface. This means that we would have to measure the resistivity of the ice
directly at the surface when we actually implement this technique. Since the
skin depth is dependent on frequency, it is useful to note the following effects
on ρa as the skin depth approaches 0 and ∞:

as δ → 0 ρa → ρ1

as δ →∞ ρa → ρ2 (48)

which are relationships easily attained by solving for C and D from (44) and
(45) and then plugging in to (47).

Figure 6 shows the apparent resistivity of of the two-layer model as a
function of period. In this model, we assume the top layer has a resistivity
of 1 Ωm. The blue curve shows a model with a bottom layer of resistivity
0.1 Ωm, whereas the green and red have resistivities 0.02 Ωm and 0.01 Ωm
respectively. The depth of the top layer is 1 km. Since at low enough periods,
the skin depth is so small, we simply measure the resistivity of the top layer.
And at high enough periods, the skin depth is large, thus we measure the
resistivity of the bottom layer. Since we have modeled each of these layers to
have different resistivities, we notice a difference in the curves. The curve for
the one layer model is simply a straight line in which the apparent resistivity
is always equal to the actual resistivity of the layer. In order to get a glimpse
of the profile one might actually see in the field, however, we must calculate
the apparent resistivity as a function of period for the three-layer model.
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Figure 6: The above graphs show the apparent resistivity of of a two-layer model as a function of
period. In this model, we assume the top layer has a resistivity of 1 Ωm. The blue curve shows a model
with a bottom layer of resistivity 0.1 Ωm, whereas the green and red have resistivities 0.02 Ωm and 0.01
Ωm respectively. The depth of the top layer is 1 km

3.4.2 The Three Layer Model

In this model, we consider three layers of material with resistivities ρ1,
ρ2, and ρ3 below the surface of the Earth, where the top of the first layer is
a flat surface along the z = 0 plane. The point where the first surface meets
the second surface is also flat, running along z = h1. Finally, where the
second surface meets the third surface, z = h2. The figure below illustrates
this model:
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Solving for C and D in (46) for the three-layer model is more complex
than that of the two-layer model. However, the approach is the same. Fol-
lowing the previous method, we obtain the following relationships between
C, D, their respective phases, and the skin depths and heights of the layers:

C cosφ =

(
1

δ1

− 1

δ2

)(
1

δ2

coshu− 1

δ3

sinhu

)
cosu

+

(
1

δ1

+
1

δ2

)(
1

δ2

cosh v +
1

δ3

sinh v

)
cos v (49)

C sinφ =

(
1

δ1

− 1

δ2

)(
1

δ2

sinhu− 1

δ3

coshu

)
sinu

+

(
1

δ1

+
1

δ2

)(
1

δ2

sinh v +
1

δ3

cosh v

)
sin v (50)

D cosψ =

(
1

δ1

− 1

δ2

)(
1

δ2

sinhu− 1

δ3

coshu

)
cosu

+

(
1

δ1

+
1

δ2

)(
1

δ2

sinh v +
1

δ3

cosh v

)
cos v (51)
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D sinψ =

(
1

δ1

− 1

δ2

)(
1

δ2

coshu− 1

δ3

sinhu

)
sinu

+

(
1

δ1

+
1

δ2

)(
1

δ2

cosh v +
1

δ3

sinh v

)
sin v (52)

where we note that:

u = h1

(
1

δ1

+
1

δ2

)
− h2

δ2

(53)

v = h1

(
1

δ1

− 1

δ2

)
+
h2

δ2

(54)

Figure 7: The above graphs show the apparent resistivity of of a three-layer model as a function of
period. In this model, we assume the top (ice) layer has a conductivity of 10−7 S/m. The blue curve on
the graph on the right shows a model with the middle (water) layer of conductivity 0.005 S/m, whereas
the green and red have conductivities 0.01 S/m and 0.05 S/m respectively. The depth of the top layer is
1 km and the depth of the water layer is 100 m. In the graph on the left, however, we assume no water
to show what we would detect if the ice were laying directly atop rock.

Figure 7 above shows the apparent resistivity of of a three-layer model
as a function of period. In this model, we assume the top (ice) layer has a
conductivity of 10−7 S/m. The blue curve on the graph on the right shows
a model with the middle (water) layer of conductivity 0.005 S/m, whereas
the green and red have conductivities 0.01 S/m and 0.05 S/m respectively.
The depth of the top layer is 1 km and the depth of the water layer is 100

25



Figure 8: The above graphs show the apparent resistivity of of a three-layer model as a function of
period, where we have zoomed in on the area of interest. In this model, we assume the first (ice) layer
has a conductivity of 10−7 S/m. The blue curve on both graphs show a model with a middle (water)
layer of conductivity 0.005 S/m, whereas the green and red have conductivities 0.01 S/m and 0.05 S/m
respectively. The bottom (bedrock) layer has conductivity 10−4 S/m. The depth of the top layer is 1 km
and the depth of the water layer is 100 m for the figure on the left and 10 m for the figure on the right.

m. In the graph on the left, however, we assume no water to show what we
would detect if the ice were laying directly atop rock. When there is water
present, we notice a distinct difference in our measured apparent resistivity,
alerting us to this presence. Thus, using this technique of magneto-tellurics,
we can easily detect large bodies of water between the ice and bedrock. In
fact, even with water layers on the order of a meter or 10s of centimeters, we
still notice distinct differences between the curves.

Figure 8 below shows the apparent resistivity of of a three-layer model
as a function of period, where we have zoomed in on the area of interest. In
this model, we assume the first (ice) layer has a conductivity of 10−7 S/m.
The blue curve on both graphs show a model with a middle (water) layer of
conductivity 0.005 S/m, whereas the green and red have conductivities 0.01
S/m and 0.05 S/m respectively. The bottom (bedrock) layer has conductivity
10−4 S/m. The depth of the top layer is 1 km and the depth of the water
layer is 100 m for the figure on the left and 10 m for the figure on the right.
We notice from this model that at smaller depths, it becomes more difficult to
detect the water, as we would expect. However, even when the conductivity
of this water is low, we can detect slight differences. Thus, even smaller
depths of water might be realistically detectable, assuming a high enough
conductivity. So long as the water is more conductive than the bedrock

26



below, we are immediately alerted of its presence by the large bending of the
curve below that resistivity of the rock at these intermediate frequencies.

4 Conclusions

Thin sheet-like water layers on the order of a centimeter can realistically
be detected by 1 s periods using the magnetic induction method. The typi-
cal ratio of the internal to external magnetic fields are on the order of 10−1,
which is an order magnetometers can detect given the amplitude of natu-
rally occurring magnetic fields in the ionosphere. Deeper water layers can
be detected using naturally-varying external fields of longer periods. Mag-
netometers can detect variations of the order of seconds or more. Thus, the
deeper the water layer, the easier to detect. However, when we attempted
to measure the variability in the water layers in the sinusoidal and Gaussian
channel models, the technique is not feasible given modern magnetometers
and the naturally occurring magnetic fields in Earth’s ionosphere. We noted
that we like the ratio of b to F to be on the order of 10−1, and we noted
that only when we have a water layer with the huge 100 km wide channel
are we able to easily detect this variability. One order of magnitude less and
we need the magnetic strength of a magnetic storm to detect this variability.
Thus, detecting the variability we look for on the order of 1 m is not feasible
using this technique.

The technique of magneto-tellurics proved useful in detecting the pres-
ence of even small depths of water on the order of centimeters. We noted
that we can easily detect large bodies of water between the ice and bedrock.
In fact, even with water layers on the order of a meter or centimeters, we
still notice distinct differences between the curves we create of the apparent
resistivity of the ground while measuring the naturally occurring magnetic
and electric fields within the surface of the Earth. One disadvantage of the
magneto-telluric technique is that we need the presence of both magnetome-
ters and electrodes to detect both the electric and magnetic fields. However,
the naturally occurring currents are very straightforward to detect, and de-
tecting them over a range of periods gives more certainty to the shape of
the curve and thus the exact nature of the depth and conductivity of the
water beneath, whereas the magnetic induction technique can only measure
the product of the depth and conductivity.

We have established that using the magnetic induction technique is not
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feasible for detecting the variability in most sub-glacial water systems. How-
ever, using the results of the Gaussian channel model, it should be feasible
to detect the presence of sub-glacial lakes. It would be useful to attain some
magnetic data from the Antarctic region to find out whether or not the ac-
tual implementation of this method was able to detect not only the presence
of Lake Vostok by finding the product of its depth and conductivity, but also
its approximate size.

The model used for magneto-tellurics was limited only to detecting the
presence of water, which we already established as possible with magnetic
induction. However, no investigation was conducted on whether or not it
would be feasible to detect the variability in the water. We predict it would be
more feasible since we are gathering data from not merely the magnetic field,
but also the electric field. However, an actual calculation of this theoretical
model must be conducted before we can verify this assumption. Should this
prove to be a feasible way of detecting the variability, then investigation must
be conducted on how to actually implement the technique in the field.
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