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I. Introduction 

T HE introduction by Hoerl and Kennard 
(1970) of a ridge regression estimator to deal 

with the problem of multicollinearity in regres- 
sion has been followed by a large number of 
papers in the statistical literature. In the area of 
econometrics, though, the method of ridge re- 
gression has received little attention. I One of the 
reasons for the lack of interest in ridge regression 
on the part of the econometricians may be the 
fact that Hoerl and Kennard have justified their 
method on pragmatic grounds without providing 
any interpretation. Other reasons for the reluc- 
tant reception of ridge regression by econome- 
tricians are likely to include the difficulty in 
selecting a suitable value of the shrinking factor, 
which is important in securing a dominance over 
least squares, and the restrictive nature of the 
mean square error criterion, on which the claim 
of this dominance rests. In this paper we address 
all of these issues. 

The basic problem is that of estimating the 
coefficients of the standard linear regression 
model 

y = X+ + e (1) 

where y is an n x 1 vector of observed values of 
the dependent variable, X is an n x p matrix of 
the nonstochastic values of the explanatory vari- 
ables, /8 is a p x 1 vector of the coefficients to be 
estimated, and E an n x 1 vector of stochastic 
disturbances assumed to be distributed 
N(O, (-2In). 

The ordinary ridge regression estimator (ORR) 

introduced by Hoerl and Kennard (1970) is de- 
fined as 

[3(k) = (X'X+ kI)-'X'y 
= (X'X + kI)-'X'X/3 
- [I+ k(X'X)-']-l'3 (2) 

where k is a positive scalar and /3 is an ordinary 
least squares (OLS) estimator of /. Note that 
/3(k) shrinks ,B in the sense that /3(k)'/3(k) < /3'/3. 
For a given k, 3(k) is biased but consistent pro- 
vided that plim(X'X)/n exists. The main attrac- 
tive feature of the ORR estimator2 is that if k is 
such that 

0 < k < 2oX2/ /*'/3* (3) 

where ,B* is the coefficient vector in (1) with each 
of the explanatory variables normalized so that 
its sample sum of squares is unity, then ORR 
dominates OLS in the sense that 

tr MSE[/3(k)] < tr MSE(,B). (4) 

II. Interpretation of ORR 

When k isfixed (nonstochastic), its role can be 
interpreted as that of conveying prior informa- 
tion about /8. The nature of this information can 
be assessed in several ways. One of the earliest 
interpretations of ORR from the Bayesian view- 
point was provided by Lindley and Smith (1972) 
who noted that if the prior distribution of / is 
specified as,B / N(O, ,w2Ip), then,/ has the follow- 
ing posterior distribution: 

,/ - N{[X'X + ((J2/Cw2)I]' X'y, 

0j2[X'X + (j_2/W2)I]-1}. (5) 

Thus the ORR estimator with k = o-2/W2 can be 
represented as the mean of the posterior distribu- 
tion of,/ given that the mean of the prior distribu- 
tion of / is zero. If W2 is relatively large, i.e., if 
the prior distribution of / is relatively flat, then 
ORR and OLS are relatively close to each other. 
A tight prior distribution of/3, on the other hand, 
leads to a more substantial departure of ORR 
from OLS. 

Another interpretation of ORR has been of- 
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fered by Newhouse and Oman (1971) who found 
that [3(k) can be obtained by minimizing (y - 

X,) '(y - X,B) subject to the restriction that ,B',B = 
r, where r is positive and given. The constant k is 
then identified as the Lagrange multiplier which 
is related to r by the constraint /3(k)'/3(k) = r. A 
small value of r results in a large value of k and 
lice v,ersa. 

Yet another interpretation of ORR can be pro- 
vided by reference to the mixed estimation 
method of Theil and Goldberger (1961).3 Note 
that the ORR estimator of / can be obtained by 
application of the least squares method to the 
following: 

LoI = [1 /3 + [Vj (6) 

where 0 is a p x 1 vector of zeros. Let us com- 
pare this with the mixed estimator of /8 of the 
model in (1) estimated with the restriction that 
very likely 

a - , -< b (j = 1, 2,. .p) (7) 

where a and b are constants to be determined in 
such a way that the application of OLS to (6) 
yields /3(k). Following Theil and Goldberger 
(1961) we write 

/3j = (a + b)/2 + uj (8) 

where u, - N[O, (b - a)2/ 16]. The p-pieces of 
information about each of the p-regressors can 
then be represented as 

(a + b)/2 =/1 x 0+ 2x0+ .. .+ 3 
x I + ,Bj+1 x O + ...+ ,BP 
x 0 + (-uj). (9) 

But since Var(uj) = (b - a)2/ 16 whereas Var(E1) 
= 02 (i = 1, 2, . . , n), we remove the resulting 
heteroskedasticity by re-writing (9) as 

[(a + b)/2][4o-/(b - a)] = /31 x 0 
+ * * * + A 
x 4o/(b - a) 
+ . . . + 8P x O 
+ vj (10) 

where vj = [-4o-/(b - a)]uj. Comparing (10) with 
(6) we have 

[(a + b)/2][4o-/(b - a)] = 0 (11) 

4ojI(b - a) = VkX (12) 

which, for b > a, gives 

a = -b 

b= 2f/ VT 

Thus ORR can be viewed as a mixed estimator 
with the prior restriction that very likely 

-2cr/VXk 1<3 j + 2,r/VT (13) 

forj = 1, 2, . . . , p. Note that if the value of k is 
very small relative to o-, the restriction is not 
very binding and ORR is close to OLS. If, on the 
other hand, the value of k is large relative to o-, 
the interval in (13) becomes rather tight and the 
difference between ORR and OLS becomes 
larger. 

III. Sample-based Selection of k 

If we have prior information that enables us to 
determine k, and if the value of k falls within the 
limits specified in (3)-which is always uncertain 
since these limits involve unknown parameters- 
then ORR dominates OLS in the mean square 
error (MSE) sense. In most cases, however, the 
value of k is not given a priori but is determined 
on the basis of available sample observations. 
Under these circumstances the ORR estimator is 
no longer linear in observations and its properties 
are unknown. It incorporates no prior informa- 
tion but provides a convenient way for trading 
bias for a reduction in variance. In our study we 
consider several rules for calculating k suggested 
by various authors and supported by a reason- 
able rationalization. Our aim is to compare these 
estimators with each other and with the OLS 
estimator under alternative loss structures by 
means of a Monte Carlo experiment. 

Since most of the rules are developed by refer- 
ence to a principal component form of (1), we 
precede the discussion of the rules for selecting k 
by a description of the preferred transformation. 
The regression model in (1) can be re-written as 
follows: 

y = X:3 + E 

=XPP'f3+E (14) 
= X*a + E 

where X* = XP, a = P',3, and P is an orthonor- 
mal matrix whose columns are normalized eigen- 
vectors of X'X, that is, 

PP' = I (15) 
I This interpretation was also suggested-in a general 

way-by Smith (1976). 
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O A2 . . . ? 

P'X'XP= (16) 

and X1 ?'-A2 ' . . X. . The OLS estimator of a 
then is 

a = (P'X'XP)-'P'X'y 
= (P'X'XP)-'P'X'Xj8 
= (P'X'XP)-'P'X'XPP'f, (17) 
= PI,3. 

It is now possible to define an ORR estimator 
of a in two different ways. Firstly, in analogy 
with a = P',3 we can set 

a(k) = P'/3(k). (18) 

Alternatively, following (2) we can write 

a(k) = [I + k(X*'X*)-l]-la& (19 
= [I + k(P'X'XP)-']-l& 1) 

which, with the use of (2) and (17), becomes 

a(k) = [I + k(P'X'XP)-']-'P' 
x [I + k(X'X)-'],j(k). (20) 

It is not difficult to show that the right-hand sides 
of (18) and (20) are equal, that is, that the two 
definitions of o(k) are equivalent. Further, from 
(19) and from the diagonality of (P'X'XP) it fol- 
lows that 

aj(k) = [Xj/(Xj + k)]a&j; (21) 

We considered the following rules for selecting 
k.k4 

HKB-rule: Hoerl, Kennard and Baldwin 
(1975) suggested that the value of k be deter- 
mined as 

kHKB = por /8 '8 (22) 

where 62 = (y - X8)'(y - X3)/(n - p). This 
suggestion is justified on the grounds that when 
X'X = I, the value of k that minimizes the sum of 
the mean square errors is equal to po-2/f373. 

HKBM-rule: Thisted (1976) found that the 
HKB estimator seems to overshrink towards 
zero and suggested modifying it by using 

kHKBM = (p - 2)6r2/13 3. (23) 

Wermuth-rule: Wermuth (1972) noted that the 
necessary condition for minimizing tr MSE[a&(k)] 
with respect to k is that 

P P 

c2 
Z 

\/(XA + k)3 = k > 
a, 2/(X, + k)3 (24) 

i=l i=l 

and suggested replacing c2 by 6r2 and ao2 by ai2 
and solving for k. 

Dempster-rule: Dempster (1973) developed an 
empirical Bayes estimator for a prior distribution 
of a given as a - N(O, w)2j) from which it follows 
that 

p 

ai i2/of2[(1/k) + (1/X1)] - 
X 2 (25) 

i=l1 

where k = 0-2/wj2. Dempster suggests replacing cr2 

by 62 and, using the fact that E(Xy2) = p, setting 
p 

ai o2/ Il2[(1/k) + (I/Xi)] = p. (26) 
i=l1 

The suggested value of k is then obtained by 
solving (26). 

Sclove-rule: Another empirical Bayesian es- 
timator proposed by Sclove (1973) is based on 
the idea that the left-hand side of (25) and (n - 

p are independent and are distributed as 
and o-2Xn-p2, respectively, so that their ratio is 
distributed as Fp,n-p By noting that E(Fp,n,p) = 

p/(n - p - 2), Sclove suggests calculating k by 
solving the following equation: 

p > ai2/[(I/k) + (I/Xi)] 
i=l 

=p 2[(n - p)/ (n-p- 2)] 

(27) 

To compare the above estimators we use a 
general measure of loss, the p'-norm, of which 
the MSE criterion is a special case. The p'-norm 
is defined as 

LOP' = {Yjl,8j(k) - 
f3jlP'}lIP'. (28) 

We take p = 1,2, and x so that the loss functions 
considered are 

L = Yfjj3j(k) -Al (p' = 1) 

L= {YjMSE[,3j(k)]}'12 (p'= 2) 

L = maxfl1,31(k) - B34 , . , 13P(k) - 8P11 

(p' = x). 4These rules are presented in Dempster et al. (1977). 
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IV. Design of the Monte Carlo Experiment 

The performance of a ridge regression es- 
timator based on a given value of k depends on (i) 
the number and the values of the regression 
coefficients, (ii) the degree of multicollinearity, 
and (iii) the value of the variance of the distur- 
bances, o-2. It can be expected that the same 
factors would also be relevant for the ORR esti- 
mation with unknown k. In the Monte Carlo ex- 
periment at hand we take the factors (i) and (ii) 
into consideration but, following Thisted (1976), 
leave the value of o-2 constant (equal to unity) 
throughout the experiment in order to keep the 
computer costs down. 

In constructing the data sets and in determin- 
ing the values of the regression coefficients we 
followed, with some modifications, the approach 
of Dempster et al. (1977). Two models, one with 
4 explanatory variables and 20 observations and 
one with 8 explanatory variables and 40 observa- 
tions, were used in this study. The values of the 
explanatory variables have been generated from 
a standard normal distribution, modified to re- 
flect a low, a medium, and a high degree of mul- 
ticollinearity, and standardized to be used in a 
correlation matrix form.5 For the 4-variable 
model the values of the determinants of this cor- 
relation matrix were 0.394, 0.016, and 0.005. The 
corresponding values of the highest R2 obtained 
by regressing each explanatory variable on the 
remaining explanatory variables were 0.597, 
0.980, and 0.994.6 

The selection of the values of the regression 
coefficients was based on the consideration of 
two factors, shape (pattern of similarity and dis- 
similarity) and noncentrality (relative distance 
from the origin). A measure of noncentrality, 6, 
is defined as 

6= ,=',f/tr(X'X). (29) 

In the experiment we used two shapes of 
coefficients (all coefficients equal, and all 
coefficients but one equal to zero) and three val- 
ues of the noncentrality measure 6 (5, 20 and 35). 
The values of the regression coefficients for the 
4-variable model were 

B11 = (2.2361, 2.2361, 2.2361, 2.2361) 
B12 = (0 , 0 , 4.4721,0 ) 
B21 = (4.4721, 4.4721, 4.4721, 4.4721) 
B22 = (O , 0 , 8.9443,0 ) 
B31 = (5.9161, 5.9161, 5.9161, 5.9161) 
B32 = (0 ,0 , 11.8332,0 ). 

These values correspond to the standardized 
values of the explanatory variables to avoid prob- 
lems of units of measurement.7 

The performance of the estimators considered 
in this study is to be judged by the size of the 
average loss. Since the properties of the distribu- 
tion of the losses of the ORR estimators are not 
known, the number of replications was based on 
the distribution of square error loss of OLS. If 
accuracy is measured by the coefficient of varia- 
tion of the average square error loss of the least 
squares estimator, then with 500 replications we 
achieve at worst 6.3% accuracy in the 4-variable 
model and 5.5% accuracy in the 8-variable 
model. 

V. Evaluation of Results 

In our experiment we considered three differ- 
ent degrees of multicollinearity and six different 
sets of values of the regression coefficients, giv- 
ing rise to 18 different designs for each of the two 
models (the 4-variable and the 8-variable model). 
The following statistics based on the 500 replica- 
tions have been computed for all the estimators 
for each of the three different loss structures: 

(i) the average loss; 
(ii) the standard deviation of loss; 

(iii) the number of times that the ORR loss 
exceeded the OLS loss (in 500 samples); 

(iv) the ratio of ORR average loss to OLS 
average loss. 

The above statistics were recorded in 36 tables 
which are not presented here to save space but 
are available on request from the authors. In- 
stead, we present a condensation of the results 
by showing-for the 4-variable model only-the 
average ratio of ORR loss to OLS loss 

(i) for different degrees of multicollinearity 
over all shapes and all noncentralities of 
the coefficients (table 1); 

I The details of the construction of the data sets and the 
values of the variables are available on request. 

6 For a discussion of this measure see Kmenta (1971, p. 
390). 

7 The values of the explanatory variables and of the regres- 
sion coefficients for the 8-variable model are similar to those 
for the 4-variable model. 
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(ii) for different shapes of the coefficients 
over all degrees of multicollinearity and 
all noncentralities (table 2); 

(iii) for different noncentralities of the 
coefficients over all degrees of multicol- 
linearity and all shapes of the coefficients 
(table 3). 

We also present the average ratio of ORR loss to 
OLS loss for different numbers of explanatory 
variables over all degrees of multicollinearity and 
all shapes and all noncentralities of the 
coefficients (table 4). 

Regardless of the loss structure used in the 
experiment the following results are apparent: 

(a) The ORR estimators never perform sig- 
nificantly worse than OLS, and they per- 
form very much better in many regres- 
sions. 

(b) The advantage of the ORR estimators over 
OLS is the greater 

(i) the higher the degree of multicol- 
linearity; 

(ii) the lower the value of the noncentral- 
ity parameter; 

(iii) the higher the number of explanatory 
variables. 

(c) The shape of the regression coefficients 
affects the performance of the ridge es- 
timators. In both models, other things un- 
changed, the improvement the ridge es- 

timators can achieve is smaller when all 
the coefficients are equal (shape 1) than 
when all coefficients but one are equal to 
zero (shape 2). 

(d) With a very few exceptions, the HKBM 
estimator is dominated by the HKB es- 
timator. 

To assess the relative performance of the five 
ORR estimators considered in our study, we ob- 
tained the sums of the simple ranks for each loss 
structure over the 36 regressions used in the ex- 
periment. The results are as follows: 

TABLE 2.-EFFECT OF THE SHAPE OF COEFFICIENTS 

(4-VARIABLE MODEL) 

Average ORR 
Loss/OLS Loss 

Loss Shape 
Estimator Structure 1 2 

HKB p' = 2 .49789 .46734 
p = x .67808 .64457 
p = 1 .67405 .63586 

HKBM p = 2 .58506 .56788 
p = < .73742 .71295 
p = 1 .73181 .70728 

Dempster p = 2 .44479 .40002 
p = x .63018 .58556 
p = 1 .63536 .56936 

Wermuth pt = 2 .51281 .44927 
p = x .69222 .66708 
p = 1 .72732 .59429 

Sclove p/ = 2 .44371 .39285 
p = < .62830 .58160 
p = 1 .63707 .56157 

Note: Shape 1: All coefficients are equal. 
Shape 2: All coefficients but one are zero. 

TABLE 1.-EFFECT OF MULTICOLLINEARITY 

(4-VARIABLE MODEL) 

Average ORR Loss/OLS Loss 

Loss Multicollinearity 
Estimator Structure Low Medium High 

HKB p' = 2 0.90259 0.32480 0.22044 
p = X 0.96306 0.57984 0.44109 
p'= 1 0.95599 0.57172 0.43715 

HKBM p' = 2 0.91613 0.45630 0.35699 
p = x 0.96558 0.66449 0.54548 
p = 1 0.95981 0.65696 0.54188 

Dempster p' = 2 0.91959 0.24270 0.10493 
p = x 0.97354 0.51950 0.33057 
p'= 1 0.96684 0.51299 0.32726 

Wermuth p' = 2 0.98730 0.33727 0.11867 
p = 1.00091 0.64712 0.39094 
p'= 1 0.99865 0.61619 0.36757 

Sclove p' = 2 0.92989 0.23056 0.09349 
p = 0.97982 0.51335 0.32167 
p'= 1 0.97241 0.50697 0.31858 

TABLE 3.-EFFECT OF THE NONCENTRALITY OF 

COEFFICIENTS (4-VARIABLE MODEL) 

Average ORR Loss/OLS Loss 

Loss Noncentrality 
Estimator Structure Low Medium High 

HKB p' = 2 .39732 .50157 .54895 
p = < .58575 .67604 .72220 
p = 1 .57275 .67192 .72019 

HKBM p' = 2 .50265 .59129 .63547 
p = < .66022 .73769 .77764 
p'= 1 .65038 .73342 .77484 

Dempster p' = 2 .33083 .43953 .49687 
p = < .51421 .62548 .68392 
p'= 1 .50286 .62186 .68237 

Wermuth p' = 2 .32702 .50291 .61322 
p = x .51994 .70731 .81171 
p'= 1 .49970 .68927 .79344 

Sclove p' = 2 .32951 .43463 .49070 
p = x .51305 .62139 .68041 
p = 1 .50079 .61810 .67907 
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TABLE 4.-EFFECT OF THE NUMBER OF VARIABLES 

Average ORR 
Loss/OLS Loss 

Loss Number of Variables 
Estimator Structure 4 8 

HKB p' = 2 .48261 .40687 
p = < .66132 .61586 
p'= 1 .65455 .59579 

HKBM p' = 2 .57647 .43209 
p = .72518 .63551 
pI= 1 .71954 .61709 

Dempster p = 2 .42240 .37195 
p = .60787 .58228 
p 1 .60236 .55753 

Wermuth p= 2 .48108 .47739 
p = .73957 .67965 
p 1 .66080 .66013 

Sclove p= 2 .41828 .37284 
p DC .60495 .58394 
p 1 .59932 .55801 

Mean Square Error Loss 
Sclove 74 
Dempster 78 
HKB 108 
Wermuth 138 
HKBM 142 

Mean Absolute Error Loss 
Sclove 75 
Dempster 84 
HKB 109 
Wermuth 132 
HKBM 140 

Maximum Absolute Error Loss 
Dempster 76 
Sclove 77 
HKB 101 
HKBM 135 
Wermuth 151 

Although approximately the same results were 
obtained regardless of the loss structure used, 
the magnitude of the improvement of ORR over 
OLS is notably smaller when the absolute error 
(average or maximum) rather than the mean 
square error criterion is used. This is, of course, 
to be expected since the ORR estimators are 
especially designed to reduce the mean square 
error relative to OLS. 

VI. Conclusion 

The ORR estimator with a given k is a linear 
estimator which is biased but which, for values of 
k in a certain interval, has a smaller mean square 

error than the OLS estimator. Since the interval 
of dominance of ORR over OLS depends on the 
true values of the regression parameters, the ad- 
vantage of ORR (of this type) over OLS is, for 
practical purposes, illusory. The various in- 
terpretations of the ORR estimator offered in 
section II above, however, indicate that if we do 
have some prior knowledge about the parameter 
space of f, and if this knowledge is sufficiently 
sharp, the ORR estimation provides a convenient 
and simple way of incorporating such knowledge 
in estimation and of reducing the size of the mean 
square error. 

When the value of k is not given a priori and 
has to be determined from sample observations, 
the resulting ORR estimators are no longer linear 
and can compete with OLS on equal terms of 
the same prior information. The results of our 
Monte Carlo experiment indicate that, in general, 
the ORR estimators do out-perform the OLS es- 
timator very substantially when the degree of 
multicollinearity is medium or high, even when a 
loss criterion other than that of mean square 
error is used. 

In examining the performance of the various 
ORR estimators considered in this study, it is 
apparent that the empirical Bayes estimators 
(i.e., those proposed by Dempster and by 
Sclove) lead the pack. The disadvantage of these 
estimators, though, is the difficulty and the mess- 
iness of computation. It may thus be reasonable 
in practical applications to use the estimator pro- 
posed by Hoerl, Kennard, and Baldwin (1975), 
which is simple to calculate and which also per- 
forms very well relative to OLS. The modifica- 
tion of this estimator proposed by Thisted (1976) 
has not worked out too well, and neither has the 
estimator of Wermuth (1972) which, in addition, 
is hard to compute. On the basis of our experi- 
ment neither of the two last-mentioned es- 
timators can be recommended. 

In drawing our conclusions we should be re- 
minded of the fact that the assessment of the 
ORR and OLS estimators is based entirely on the 
loss in estimation. Since the small sample proper- 
ties of the (nonlinear) ORR estimators are not 
known, the ORR procedure is not suited for test- 
ing hypotheses. This makes ORR uninteresting 
for many econometric problems. It would seem, 
though, that ORR may well become a powerful 
tool in forecasting, particularly in situations 
where a high degree of multicollinearity makes 
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the OLS forecasts unstable. We hope that this 
paper might convince economic researchers to 
pay more attention to ridge regression than has 
so far been the case. 
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