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A GENERAL PROCEDURE FOR OBTAINING MAXIMUM 
LIKELIHOOD ESTIMATES IN GENERALIZED REGRESSION MODELS 

BY W. OBERHOFER AND J. KMFNTA' 

This paper describes an iterative procedure for obtaining mnaximum likelihood estimates 
of the parameters of a generalized regression model when direct maximization with respect 
to all parameters is difficult. A proof of convergence and some interesting applications are 
provided. 

1. INTRODUCTION 

CONSIDER THE PROBLEM of maximizing a function f with respect to two variables 
(or two sets of variables) a1 and a2 within some space S. Suppose it is difficult to 
maximizefas a function of a1 and a2, but relatively easy to maximizef as a function 
of a1 given a2 and as a function of a2 given a1. Such a case is frequently encountered 
in connection with maximum likelihood or quasi-maximum likelihood estimation 
of certain regression models.2 In this case it is advantageous to adopt a zig-zag 
iterative procedure which is described below. This procedure was used by Sargan 
[3] for the purpose of estimating regressions with autoregressive disturbances, but 
it is amenable to a much more general class of estimation problems. In particular, 
it can be advantageously used in all cases involving the application of iterative 
Aitken methods. 

The plan of the paper is as follows. In Section 2, we present the fundamental 
lemma and give a proof of convergence in the general case. In Section 3, we 
demonstrate the applicability of the lemma to the generalized regression model. 
The last section contains some specific applications that are of interest to econo- 
metricians. 

2. THE FUNDAMENTAL LEMMA3 

Let f(a) be a function which is to be maximized with respect to a, and a E U. 
Further, let a be partitioned as a = (a1, a2) with a1 E U1 and a2 E U2. The number 
of components in a1 and a2 is taken to be n and m respectively, i.e., U1 c R' and 
U2 C Rm. It is assumed that f(a) has the following properties: 

(i) There exists an s such that the set 

S = {alae U = U1 x U2,f(a) ) s} 

' The first draft of this paper was written while both authors were at the University of Bonn. Helpful 
comments were received from Werner Oettli and from an anonymous referee. 

2 An investigation of a similar problem in the context of general optimization procedures has been 
carried out by Warga [4,5]. 

3 This lemma is also given in Sargan [3]. 
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is nonempty and bounded; 
(ii) f(a) is continuous in S; and 
(iii) the parameter space U is closed, or U2 is closed and U1 = Rn. 

From these assumptions it follows that S is compact. Now we define the following 
iteration: 

(i) Let a(?) be a vector of initial values of a such that a(?) E U1 and such that 
there exists an a2 E U2 for which f(a(?), a2) > s. 

(ii) We maximize f(a(?), a2) in U2. Because of the compactness property, the 
maximum will be reached at a2= a2 E U2. 

(iii) We suppose inductively that we have obtained (a(V), a(2)) for all 0 j Is k. 
Now we maximize f(a(lk), a2) in U2. The maximum will be reached at a2 = a?2"+ '). 

Then we maximize f(a,, a (k+ 1)) in U1. The maximum will be attained at a1 = 
a(k + 1) 

In this way the iterative procedure is unequivocally defined. 

LEMMA 1: (i) The sequence {a(k) } has at least one accumulation point a* in S. (ii) If 
a* and a + are two accumulation points of the sequence, then f(a*) = f(a +). (iii) For 
every accumulation point a* = (al, a*) 

max f(a1, a*) = max f(a*, a2) = f(a*, a*) = f(a*). 
alEUi a2EU2 

PROOF: Since S is compact, the sequence {a(k)} has at least one accumulation 
point. This proves proposition (i) of the lemma. Let us now assume that there are 
two accumulation points a* and a + such that 

(1) f(a*) > f(a ). 

There must then be two sequences {a(k,)} and {a(,-)} such that 

(2) lim a(kv) = a* and lim a(v = a+. 
v -+00 v -- 00 

But f(a(k)) is monotonically growing with k by construction. Because of (1) and (2) 
there is, therefore, a v0 such that, for kV = kg 

(3) f (a(k)) >- f (a +) 

Then there is a v1 such that ev > k 0. Therefore we can assert that, for/v, = 

(4) f (a(t)) ->- f (a(k')) 

On the other hand, because of (3) we have 

(5) f(a ) > f(a(')) 
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From (3) and (5) it follows that 

(6) f (a(k)) > f (a(?). 
But (6) represents a contradiction of(4). Therefore (1) is not possible. Since a* and 
a+ are interchangeable, we must have 

(7) Jf(a*) = f(a+) 

for any two accumulation points a* and a+. Therefore f takes on the same value 
for all accumulation points. This proves proposition (ii) of the lemma. Finally, by 
construction a(',) has been determined so that 

(8) (a (k,, a(k") f f(a, , a(k,) for all a lE U1. 

If we let v -+ o, we obtain 

(9) f(a ,aa*) > f(a1,a) forall a1 E U 

Correspondingly to (8) we have 

(10) f (akv) a(k +) > f (a(k-) a 

If we choose an appropriate sequence {k,} of {k, + 1}, the compactness property 
leads to the convergence a(> v] a+ and a (k 1) aa+. In this way we obtain from (10) 

(11) f(a (kV< 1),a(k)) > f(a(kv), a2) 

for all a2 E U2. For v -* x this gives 

(12) J(al, a+) tf(a, a2) for alla2E U2. 

If in (8) we take the sequence {k,} instead of the sequence {k,'}, then instead of (9) 
we obtain 

(13) f(at,aa+) >f (a ,a ). 

From (12) and (13) it follows that for al = al 

(14) J(a ,a+) ) f(a*,a9. 

We note that, by (ii) of Lemma 1, f(at, a+) = f (a*, a*) and, therefore, (14) can be 
written as 

(15) f(a , a*) > f(a*, a2) for all a2 E U2. 

The inequalities (9) and (15) give the proof of proposition (iii) of the lemma. 

3. MAXIMUM LIKELIHOOD ESTIMATION OF THE GENERALIZED REGRESSION MODEL 

Consider a linear regression model 

(16) y = XB + u 

where y is a T x 1 vector of observations on the dependent variable, X is a T x K 
matrix of the values of the regressors, ,B is a K x 1 vector of the regression 
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coefficients, and u is a T x 1 disturbance vector. We make the following assumptions: 

ASSUMPTION 1: u is normally distributed.4 

AssUMPTION 2: E(u) = 0. 

AssUMPTION 3: E(uu') = Q, det Q # 0. 

AssUMPTION 4: X is afixed matrix of full rank and T > K. 

ASSUMPTION 5: The parameters in /3 are independent from those in Q. 

Except for the irrelevant constant, the logarithmic likelihood function then is: 

(17) L(,B, w) = 2 log det Q- -2_ y - X,B)'Q - (y - X,B) 

where w represents a vector of all parameters in 2. The elements of # and W in 
general are restricted by a priori restrictions: /3 E VI and wo E V2. We assume that 

V, and V2 are closed. In most cases we have # and o as functions of free parameters: 
/3 = f(a) and o = w(Q4 Our problem is to determine those values of / e V1 and 
wo E V2 which maximize L(/B, w). Now, when we maximize L(/3, w)) with respect to w) 
while considering /3 as given, we obtain c3(/). We assume that this function exists. 
When, on the other hand, we maximize L(,B, w)) with respect to # while considering 
wo as given, we obtain 3(wo). This function is obtained by minimizing the quadratic 
form (y - X,)'Q-? (y - X,B). When the parameters in /3 are unrestricted, /3(w) will 
be obtained as the solution of 

(18) [y - Xfl(w)]'Q- 1X = 0. 

By replacing wo by ZO(/), the system in (18) can be solved for the maximizing values 
of /3. This solution is, however, rather difficult to obtain, at least in general. There- 
fore we resort to an iterative procedure whose convergence can be demonstrated 
by reference to Lemma 1 of the preceding section. For this we need the following 
definitions: 

(19) U2 = {wdet Q > A > 0, w'w) < M, Q nonnegative definite} n V2 

where A and M are some arbitrarily chosen positive numbers. Further, 

(20) U1=R'R I 

and, therefore, U = U1 x U2. Finally, 

(21) S- {( )C IeU 1, WU2,L(3, ow)) > s} 

where s is arbitrary. 

4 Without the assumptions of normality the procedure described below leads to quasi-maximum 
likelihood estimates. 
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For the zig-zag iterative procedure we need to maximize L(/3, co) with respect to 
3 E U 1 for given w, and with respect to w E U2 for given /3. Our aim, however, is to 
determine 6(/3) by maximization of L(/B, w) with respect to co in V2 instead of 
maximization in U2. If we denote the latter result by b(,B), we have to provide a 
guarantee that (O3) = 3(/3). For this purpose we extend the five assumptions 
stated at the outset of this section by the following: 

ASSUMPTION 6: If for a given ,B* E U1 and cl)* E U2 we have L(/*, o*) > s, then 
0(/*) _U2. 

In this case it follows that 

L(/3*, (fl(/3*)) = max L(/3*, w) = max L(/3*, co) = L(/3*, o(*)) 
cOEU2 (0EV2 

That means (B*) = (*). 
Since S represents the space in which we search for the maximum of L(,B, w), 

we have to satisfy ourselves that at least one neighborhood of the true /3 and co lies 
in S. But this is guaranteed, because of the assumptions about (, whenever we 
choose A and s sufficiently small and M sufficiently large. The matrices ( have the 
additional property that there exist /1 > {2 > 0 such that all eigenvalues of every 
Q with co E U2 lie in the interval [p2, {/], that is, 

(22) I/ I ->- ' A() -> 2 > 0, 

where A(Q) stands for any eigenvalue of Q.5 The inequality in (22) can be demon- 
strated as follows. The eigenvalues of Q are always positive. The largest eigenvalue 
cannot be arbitrarily large because the trace of Q (which is equal to the sum of all 
eigenvalues of () is restricted by the condition that w'we < M. The smallest eigen- 
value also cannot be arbitrarily small because det ( >e A > 0, and det ( is equal 
to the product of all eigenvalues of Q. 

Now, the function to be maximized, L(,B, co), is continuous. Further, U2 is closed. 
The only thing to be shown, then, is that S is bounded. Let us assume the opposite, 
i.e., let there be a sequence 

in S such that 

(23) rim [(#(v)) (#(v)) + ()(V))I(-(V))] = 
v t 00 

Since co(v) C U2, it follows from (23) that 

(24) lim (/(V))'(/(V)) - 

v ) 00 

Further, since X'X is nonsingular by assumption, we also have 

(25) lim (/3(V)I(X'X)# (V)) = o 
v 00 

Thus U2 could also be defined as U2 = {olel > A(Q) > 42} ) V2. 
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and, because of (22), 

(26) lim (y - Xf(v))fQ l (y - xJJ(v)) = 
v-+ 00 

Therefore, since det Q ) A> 0, (26) together with (17) leads to the conclusion that 

(27) lim L(f3(v), W(V) - - 

But equation (27) contradicts the fact that 

l(A(v)\ 

I c(v)- ES. 

Therefore S must be bounded. Thus all suppositions for the application of Lemma 1 
are fulfilled. 

The iterative method proceeds as follows. We begin with some starting vector 

1:(O)A\ 

For instance, ,B(O) can represent the ordinary least square estimate of ,B, and co) is 
obtained from cO(O)). If we now choose s = L(P(0), Z) ), then it is guaranteed that 
for co() E U2 we have 

c14()J ES. 

Using () we construct /(1) - ,B(c(?)), which leads to -(), and so on. Because of 
Assumption 6 and the fact that, in the process of iteration, L(,B, co) gets always 
bigger, we are always confined to space S. 

Now we are in the position to formulate the following theorem. 

THEOREM 1: (i) The sequence 

(/:(v)\ 

has at least one accumulation point. 
(ii) If 

0j*\ 

is an accumulation point, then L(/B, w*) taken as a function of /B has its absolute 
maximum in S at /3 = /3*. Correspondingly, L(/3*, co) taken as a function of co has its 
absolute maximum in S at o = co*. If /3 e V1 is given by a differentiable function ,B(o) 
and w) E V2 by a differentiable function o(y), where a and y are free parameters, then 
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it follows that 

OL =0 and OL = 
___ ay 

providing only that 

a)*} 

is not a corner solution. 
(iii) In all accumulation points L(/3, w) takes on the same value. 

PROOF: The proof follows immediately from Lemma 1. 

The implication of Theorem 1 is that the iterative procedure always converges 
to a solution of the first-order maximizing conditions (which may or may not 
correspond to the absolute maximum of the likelihood function). 

4. APPLICATIONS 

In each of the applications it is supposed that Assumptions 1 through 5 of 
Section 3 are satisfied. 

Application 1: Autoregressive Disturbances 6 

Suppose the disturbance follows an autoregressive scheme of the form 

(28) u(t) = pu(t - 1) + v(t), t > 1. 

The following assumptions are made:' u(O) = 0, E[v(t)] = 0, E[v(t)]2 = a2, and 
E[v(t)v(s)] = 0 for all t : s. 

Equation (28) can be written in matrix notation as 

(29) v = Au, 

where 

1 0 0 ... 0 0 

-p 1 0 ... 0 0 

A= 0 -p 1 ... 0 0 

0 0 0 ... -p 1 

6 See Sargan [3]. 
7If p2 < 1, a corner solution is more likely to occur. 
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Let us define 

+?p2 -p 0 ... O 0 

-p ?+ p2 _p ... 0 0 

R = A'A = 0 - l?p2 
I ... 0 0 

O 0 0 ... -p 1 

so that Q- 1 = R/o2. Then 

T T 
(30) L(f3,w)) = - l0gq2 - 2 Z [v(t)] 

2 2 
= 

T T 
= log U2i_a- 2 E [u(t)-pu(t-1)1 

la _ pUt_12 2 2 = 

From (30) we obtain, at least in the absence of corner solutions, 
T T 

(3 1) p=E u(t)u(t 1)/ [u(t 1)] 
t= 1 t= 1 

and 

(32) a = [u(t) - pu(t- 1)]2 
T* = I 

for a given 3 and u = y - XJI. 
To satisfy Assumption 6, we need the following condition: 

(33) inf62 > 0. 
p 

Since det A = 1 and, consequently, det R = 1, it follows that detQ = a2T 

Therefore, because of (33), it is guaranteed that det Q >? A > 0 for a suitable value 
of . and all /3. By replacing p and a in (30) by p and a from (31) and (32), we obtain 

T 
logW)22T (34) L(fl, cb) = lg,2 a - 

Because L(f,, 5) > s, it follows from (34) that 62 is bounded. Further, by reference 
to (31), we know that by Schwarz' inequality 

T T 

(35) p . E [u(t)]2 E2u(t - )12. 
t=t t=1 

Now, let X* be a matrix obtained from X by deleting the last row (i.e., by deleting 
the Tth observation). Then it can be shown that the right-hand side of the in- 
equality in (35) is bounded as long as X* is of full rank. This is a sufficient condition 
for the boundedness of p. Therefore Assumption 6 is satisfied. 
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The iterative method then proceeds as follows. We start with an initial vector 
NO() (represented, e.g., by an ordinary least squares estimate of /3) and obtain p'() 

by (31). Using p(O) we construct the matrix kR0) and calculate the first-round values 
of /B by maximizing L(,B, 6(O)) in (30). The result is 

(36) 3(1) = (X'Rk?0X)- (X'R(0)y). 

Note that this is equivalent to the ordinary least squares estimate of /B of the 
transformed regression equation 

(37) y(t) - y(t -1) = /41[(t) - 1 x(t -1)] + /32[X2(t) - P'0X2(t - 1)] 

+ * + PKEXK(t) - p XK(t - 1)] + V(0)(t), 

where V(0)(t) u U(t) - p(?)u(t - 1). From (36) we obtain a new set of residuals 

(38) u(1) = y - 

and calculate a new value of p, pA(O), and so on. This procedure, long known to the 
profession as the Cochran-Orcutt iterative method, represents a convenient way 
of calculating the maximum likelihood estimates for the autoregressive model. 

Application 2: Heteroskedastic Disturbances 

Let us write the regression equation as 

(39) Yi(t) = /lxXil + /2Xi2 + . + fKXiK + ui(t), i = 1, 2, . . ., m 

m 

t=1,2,. Ti; E T= T. 

Suppose 

E[ui(t)uj(s)] = wi > 0 for i = j and t =s 

=0 fori : jor t#s. 

This means that Q is a diagonal matrix with the diagonal elements given by 

diag2Q =[Ia)1 I ...w1 a W)2W02...W )2. .)mn)m i...W.- 

T, T2 Tm 

Then 
lm 

(40) L(#,5w) E Tilog Wi 
i = I 

l m Ti2/ 
i 

- E E [yi(t) - lXil- fl2X2-... - #KXiK 
2i= t= 

and 

1 Ti 

(41) (ti(/) = T E [Yi(t) - x1 - /32xi2 -X... -KxK1. 
t 1= 
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Now we have to consider Assumption 6. To satisfy this assumption, we need 

(42) inf 6i(ft) > 0 for i = 1, 2,.. ..I m. 
p 

This condition will guarantee that 
m 

det~?(f) =( H [li(ft)]Ti > 2 > 0 
i= 1 

for a suitable value of A and for all ft. By substituting cZ(ft) for w in (40) we get 

(43) L[I, 6)(ft)] = - T2 log 2(#) - 

From (43) it follows that [6(ft)]'[6()] is bounded; otherwise, the condition that 
L[/3, 6(ft)] > s would be violated. Therefore Assumption 6 is satisfied. The pro- 
cedure then consists of first estimating ft by, say, the ordinary least squares method 
and then calculating 640) according to (41). In the next step we obtain fl(l) by 
minimizing 

m Ti 
Z Z [Yi(t) - f1Xi1 - ft2Xi2 - . #.K. -KXiK12/6i 
i= 1= I 

with respect to ft. Using #(l) we calculate 6:4), and so on. 
When m = T(i.e., when we have only one observation on the dependent variable 

for each set of values of the regressors), maximum likelihood estimation under 
heteroskedasticity is possible only when Q is subjected to further restrictions. For 
instance, it might be possible to assume that ci = f(xik)w, 1 < k < K, where f is a 
suitably defined function. In this case we may again invoke Lemma 1 and apply the 
zig-zag iterative procedure for calculating the maximum likelihood estimates of 
the unknown parameters. 

Application 3: Seemingly Unrelated Regressions 8 

Consider a set of seemingly unrelated regressions 

Yi X1 0 .... 1 ~ u1 

(4 Y2 0 X2 .... ? i 1 2 U2 

(44) .+ 

LYMi L O .0 XMJ fM UM 

or 

(45) y = Xft+ u 

8 For Monte Carlo results, see Kmenta and Gilbert [2]. Dhrymes [1] discusses the equivalence of 
the maximum likelihood and the iterative Aitken estimates but assumes convergence without proof. 
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where 

(a1 1IT U12lT . .. aTlMIT 

a21IT U22IT . 2MIT 

UM 1IIT CM2 IT * MMI T 

= & IT, 

where Z is nonsingular. 
The maximum likelihood estimates are given as9 

(46) 2-(cX) =(Q y) 

and 

(47) Q(f) = Z(4f) 0 IT, 

where the typical element of Z(), say aijl), is 

A1 
(48) aiJl = T(Yi- Xifi)(Yj - Xjflj). 

The concentrated log-likelihood function is 

T 
(49) L[Ef, 6(fl)] = - log det Q(fl) 2 

Since L[Ef, 6(,f)] > s for all 1l, it follows that det Q(ft) < C, where C is some 
arbitrarily chosen positive number. To satisfy Assumption 6 we need 

(50) inf 6ii A O > 0 

and 

(51) det R_ AI > O for all f,B 

where A is a M x M matrix with a typical element A = %/ (i6j, and Lo and 
A, are some arbitrarily chosen positive numbers. 

We have 
M T M 

(52) C > det Q = (f aii (det f) ATAT > , TjMT 

Now, from (52) it follows that for all /3, 
M 

(53) C/IAT > H , 
i= 1 

9 See Kmenta and Gilbert [2]. 



590 W. OBERHOFER AND J. KMENTA 

and 

(54) det Q> ,TAMT 

We note that, by (53), all vii and therefore all 'ij are bounded. Therefore, taking into 
account (53) and (54), Assumption 6 is satisfied. The iterative procedure here is 
the same as that described in Kmenta and Gilbert [2]. 

University of Regensburg 
and 

University of Michigan 

Manuscript received September, 1972; revision received February, 1973. 
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