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ESTIMATION OF STANDARD ERRORS OF THE CHARACTERISTIC 
ROOTS OF A DYNAMIC ECONOMETRIC MODEL 

BY W. OBERHOFER AND J. KMENTA1 

1. INTRODUCTION 

CONSIDER A LINEAR dynamic system 
m 

(1) E A,y(t- T) + Bx(t) = u(t) (t = 1, 2, . .., T); 
-r=O0 

where y(t) represents the vector of endogenous variables, x(t) the vector of exogenous variables, 
u(t) the vector of stochastic disturbances, and t the tth period of observation. The matrices 
A, (T = 0, 1, . . . , m) of the structural coefficients are square matrices of order G. It is assumed 
that the conditions justifying the theorems in [3, Ch. 10] are satisfied, and that there are no 
nonlinear restrictions on the elements of A.. The stability of the system is determined by 
reference to the dominant root of the polynomial equation 

(2) det E Atmt) =0. 
t=O 

This equation is the characteristic equation of system (1). The system is stable if the absolute 
value of the dominant root is less than one. We assume that there are no multiple roots, and 
that the dominant root is different from zero. If the structural coefficients At in (2) are replaced 
by their statistical estimates, the roots of the characteristic equation are subject to sampling 
errors. This was noted by Theil and Boot [4] who derived the asymptotic standard error of 
the dominant root of Klein's Model I, and by Neudecker and van de Panne [1] who developed 
a procedure which could be applied to larger systems as well. The authors of both papers 
rely upon the availability of an estimated covariance matrix of the derived reduced form 
coefficients. This matrix is generally not available as a part of simultaneous equation estimation 
programs but has to be obtained in the form of a first-order approximation from the estimated 
covariance matrix of the structural coefficients. The purpose of this note is to derive the 
asymptotic standard errors of the characteristic roots in terms of the asymptotic covariance 
matrix of the structural coefficients.2 An estimate of this matrix is available for any system 
method of estimation such as 3SLS or FIML. We propose a computational procedure which 
is relatively simple and which can be used for quite large linear models without much difficulty.3 

2. DETERMINATION OF THE ASYMPTOTIC VARIANCE OF AN ESTIMATED CHARACTERISTIC ROOT 

Consider the following implicit function, 

(3) det( E CrAm ) = 0, 

in the neighborhood of). = Al and C, = Ar, where Al is the relevant characteristic root and 
the elements of C (but not A) are restricted to real numbers. Note that we can write 

m M 

(4) det E C,Am- E oc p,& 
r=O P=0 

1 This paper was written while J. Kmenta was on leave from Michigan State University. Both 
authors wish to thank Manfred Deistler for his helpful comments. 

2 It should be noted that this result is not obtainable by directly generalizing the results of l l,eil 
and Boot or of Neudecker and van de Panne. See also Wymer [5]. 

3 A program written for IBM 360 is available on request. 
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where a, are real and M = G(m- 1). Let us set 

(5) A = p(cos 4 + i sin 4). 
Note that JAI p. Our aim is to determine the asymptotic variance of an estimate of p, say p, 
and of an estimate of 4, say 4. The Taylor expansion of p as a function of the parameters in 
C. at the point A ).A and C, = A? gives 

(6) p - Pi = 

K 
ap 

(Ck- ak) + terms of higher order in Ck, 
k = 1 aCk ck =ak 

where Ck and ak represent the respective elements of C, and A, and P, corresponds to Al. 
Further, let a be a vector of all 3SLS or FIML estimates of the structural coefficients. Because 
of (6) we can apply the convergence theorem given in [2, p. 319] from which it directly follows 
that the asymptotic distribution of V/T(P - Pi) is normal with 

(7) var / (p- p aa( a= c-a) 

where Maa is the asymptotic covariance matrix of the estimated structural coefficients a, and 
c and a are column vectors of the elements of Cr and Ar (z = 0, 1, . . .I m). A consistent estimator 
of (7) is obtained by replacing a by a and Maa by Maa.4 As for the argument 4, the asymptotic 
distribution of /T(4 - 41) is also normal with 

(8) var T/ (o - 01) = (c c=a)"aa 
'd 

c=a 

If the vector a is subject to the following restriction 
(9) a=Rb + e, 
where the matrix R and the vector e are fixed and given, and b is a vector of the free parameters, 
then (7) will be replaced by 

(10) var (P- p1) = (1C a)'RMbbR' (3C 

Our problem now is to determine ap/ac and a4)/1c. Substituting for ) from (5) into (4) and 
denoting the matrix rm O e `CT by M(C, A), we obtain 

M 

(11) det M(C, A) = E oapV(cosu4 + i sin u4). 
A=o 

Further, we define 

M M 

(12) u = E CipVcosps4, v= E CpH sin ,u. 

By reference to (3), we note that in the neighborhood of). = Al and C, = A, we have to solve 
the following system: 

(13) u=0, v=0. 

Since =A A is not a multiple root by assumption, it follows that 

(14) adet M(C, A) 0, 

4 It may be worth emphasizing that this estimator pertains to the limiting distribution and not to 
the actual distribution of ,8 (whose variance may not even exist). 
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or, because of (11), 

M 

(15) Cx#A1U 0, E 
=O 

which, for AI # 0, is equivalent to 
M 

(16) E ,,,uAM 0 O. E 
=o 

Let us now set 2A = p1(cos /1 + i sin 41) and rewrite (16) as 

M 

(17) E acup (cos ugo + i sin 41) # 0. 

Now consider the equations in (12). By taking the first derivatives we obtain 

au M au 
dU = % MYp 

1 cos go, '= -=-E Lxpp" sin yo, 

av -M 
av (1) ,8v E La,pp8 sin po, ?,= L O/ctpp Cos tap, 

from which it follows that 

au au 

(19) det P ~)iav av E (XppH cos /)t + -E oe,ypH sin po 

ap ao 
The right-hand side of (19) for A- = 2 is different from zero because of (17). Therefore the 
system (13) has a unique solution for p and 4 in the neighborhood of C, = A, By the implicit 
function theorem we have 

ap\ I au au 
(20) la4j av av ,avJ| 

aCk \ P j \ack 

where, as before, Ck is an element of C,. To obtain aP/aCk we need to solve (20). Let chj be an 
element of Cr which appears in the hth row and the jth column. Then from (11) we have 

(21) + i a = a det M(C, A), 
acrh acrh acrh 

= Am 
- 

DhJ[M(C, A)], 

where Dhj[M(C, A)] is the cofactor of the element in the hth row and the jth column of M(C, A). 
Correspondingly we obtain 

+ i, = <3 det M(C, A), ap ap a 
(22) m 

= E>YZDhj[M(C, i)] E (M - z)2m?rc?hJ(cos4 + iTsinqO, 
h1 j =O 
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and 

Du+ i = det M(C, A), 

(23) ? ?ZDhj[M(C, A)] E (m - T))inMrcthJi)- 
h j r=O 

Define 

(24) ?>Dhj[M(C, 2)] E (m - z)2'M C,hj = DR + iDI, 
h j r=O 

where DR and DI are real numbers. Then (22) and (23) can be written as 

au .av 
(25) a~- + i = (DR + iD)(cos 4 + i sin 4?), 

= DR cos 4? - D sin 4 + i(DR sin 4 + DI cos 4), 
au .av 

(26) ?, + i,(, = (DR + iD,)ip(cos 4? + i sin ), 

=-pDR sin -pD, cos 4 + ip(DR cos -DI sin 4?. 

This leads to 

au au 

(27) det 'v av p p(DR + DI), 

~_ 

and therefore 

au au (av au 
ap ao ao ao 
av av p(D +D) 2v au , 

(28) \ aap4/ 
1 pDR COS (-pDI sin 4 pDR sin 4 + pD, cos4? 

p(D 2+ D2) -DR sin -DI cos 4 DR cos 4-DI sin J 
Further we define 

(29) im -tDhj[M(C, il)] DR,rhj + iD,,rhj. 

Then, using (20), (21), and (28) we obtain 

DP 1 
acP = DZ + DZ {(DR COS 4? - DI sin O)DR ,hj + (DR sin 0 + DI cos 4)DI,,hj}, 

(30) 1 

=plDR + iD 12 real part of [A(DR + iDI)(DR,rhj - iDI,rhj)]. 

Let us now replace the triple subscript (Thj) by a single subscript k. Note that h, j = 1, 2,. . ., G 
and T = 0, 1,. . , m. Further, we note that 1 < k < K, where K is the number of parameters 
in A, (T = 0, 1, . . . , m). Then we can write equation (30) as 

(31) a- D 
1 
+ D [DR COS 4 - DI sin 4?)DRk + (DR sin 4 + DI cos 4)DIk]J 
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Similarly, from (20), (21), and (28) we get 

(32) a0k 1 
1 
+ D2)[ - (DR sin 1k + DI cos O)DRk + (DR COS 4 - DI sin O)D,J. 

-p(D 
2 

+DI 

These are the desired results.5 
The numerical difficulty lies in the calculation of the matrices DRk and DIk. To this end we 

need, according to (29), to determine the matrix Dhj[M(C, A)]. However, a simple eigenvalue 
of M(C, A) is, by definition, equal to zero. For such matrices the following relation holds. 
Let M be a matrix with simple eigenvalue equal to zero. Further, let the corresponding 
eigenvector be t1 (i.e., MtI = 0), and the eigenvector corresponding to M' be sI (i.e., M's1 0). 
Then the adjoint D[M], determined up to the normalization factor ,u, is given by 

(33) D[M] = ptisl. 

The result in (33) is obtained from the presentation of M in the Jordanian form 

(34) M= TAT-', 

where A = (Aij) is a lower triangular matrix with A, = 0. We then define A(?) as a matrix 
which is the same as A except for the first element which is given in 2A l(?) = ?, ? > 0. Corres- 
pondingly, we define 

(35) Me = TA(E)T-' 

and note that M. is not singular. Then we use the formula 

(36) D[Me] = (det ME)MT 1 

and let e approach zero. This leads to (33). By substitution into (31) the normalization factor ,u 
will cancel out. 

In the case where A is real, equation (31) will specialize to 

(37) Op = DRk 

aCk DR 

where, according to (24), (29), and (33), 

DRk = 2m (t1sl)hj and DR = Z (tlS'1)hj 
h J 

3. AN OUTLINE OF A FLOW CHART 

To illuminate the computational procedure involved in estimating the standard errors of 
the characteristic roots, we present an outline of the flow chart that was used as the basis for 
the program which we have developed. 

(i) Read in the matrices A0, Al,..., Am and the covariance matrix 

lad = {COV (arhj, a,h'J')}. 

(ii) Select the relevant root, say Al, of the polynomial equation 

det (I Am -tA) = 0. 

Some caution should be exercised in using the estimated standard error of j5 for testing the hypothe- 
sis of stability since a good deal of the distribution theory for simultaneous equation estimators depends 
on the assumption of stability in the first place. Strictly speaking, the hypothesis of stability can be 
rejected when 5 is significantly greater than one, but it is not confirmed when p is smaller than one. 
(We are grateful to Franklin Fisher for drawing our attention to this point.) 
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(iii) Construct the matrix 
m 

M = Z 4ThA T 
T=0 

This matrix will be, in general, complex. 
(iv) Calculate the cofactors of all elements of Mt and set up the adjoint of A, denoted by D. 

Note that the procedure here is as follows. We wish to solve the linear homogeneous system 
Mt1 = 0; t1 is a G x 1 vector defined in connection with equation (33). Without a loss of 
generality, the last component of t1 is normalized to 1. Let AM1 be a nonsingular matrix 
obtained from M by deleting the last row and the last column. Further, let 71 be a (G - 1) x 1 
vector obtained from t1 by deleting the last component. Then instead of 

Mtt = 0 

we have the system 

M1tl = -rn-G, 

where MrG represents the last column of MA without the last component. In the same way we 
solve the system 

M'sl = 0, 

where s, is a vector defined in connection with equation (33). Finally, we obtain the matrix D 
as the product 

D = t1sl. 

(v) Calculate the sum 

??Dhj(M) I (m - T)A aThj= DR + iD., h j T=0 

where DhJ(M) stands for the element in the jth row and hth column of D. 
(vi) Calculate, for all - = 0, 1, . . ., m, and all h, j = 1, 2,. .., G, 

i 1 Dhj(M) 

and write it as 

DRk + iDIk, 

where k represents the triple subscript (Thj). 
(vii) For all k calculate 

aP 1 
2 2[(DR cos (k - D, sin 4>, )DRk + (DR sin &, + D, cos &>,)DIkJ. aCk ck~= ak -DR + Di 

(viii) Finally, obtain the estimated variance 

est. var (51) = E ack ak)a( k Ck' ak) 

Universitat Bonn 
and 

Michigan State University 

Manuscript received June, 1972; revision received September, 1972. 
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