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Summary. Large observational databases derived from disease registries and retrospective cohort studies have proven very
useful for the study of health services utilization. However, the use of large databases may introduce computational difficulties,
particularly when the event of interest is recurrent. In such settings, grouping the recurrent event data into prespecified
intervals leads to a flexible event rate model and a data reduction that remedies the computational issues. We propose a
possibly stratified marginal proportional rates model with a piecewise-constant baseline event rate for recurrent event data.
Both the absence and the presence of a terminal event are considered. Large-sample distributions are derived for the proposed
estimators. Simulation studies are conducted under various data configurations, including settings in which the model is
misspecified. Guidelines for interval selection are provided and assessed using numerical studies. We then show that the
proposed procedures can be carried out using standard statistical software (e.g., SAS, R). An application based on national
hospitalization data for end-stage renal disease patients is provided.

Key words: Clustered recurrent event data; Interval-grouped data; Large database; Marginal models; Piecewise constant;
Proportional rates.

1. Introduction
Hospitalizations are generally very costly events. For exam-
ple, hospital stays represent over one third of total Medicare
expenditures for dialysis patients (U.S. Renal Data System,
2006). Quantifying the impact of patient characteristics on
the frequency and duration of hospitalization is an essential
step toward the controlling of escalating medical costs, and
can play an important role in providing cost-effective health
care. In addition, assessment of dialysis facility outcomes in
terms of hospitalization and comparison with outcomes at the
national level can help to enhance a facility’s understanding
of its quality of care and how it relates to other facilities.
Therefore, statistical modeling of hospitalization is needed to
estimate and compare hospitalization rates. Because dialysis
patients may have multiple hospital admissions, both hospital
admissions (reflecting incidence) and hospital days (reflecting
prevalence) can be considered as recurrent event data. More-
over, clustering is introduced both through the dependence
among patients in the same facility and the correlation of
outcomes over time for a given patient.

Many statistical methods have been proposed for recur-
rent event data (e.g., Andersen and Gill, 1982; Lawless and
Nadeau, 1995; Lin et al., 2000). The semiparametric propor-
tional rates model of Lin et al. (2000) is widely used due to
the ease of its implementation with standard statistical soft-
ware such as SAS and R. The method has been extended to
accommodate clustered recurrent event data. For example,
Schaubel and Cai (2005) proposed two extensions applicable
to clustered recurrent event data. The first assumes a cluster-

specific baseline rate function, while the second assumes a
common baseline rate function. It should be noted that each
of the aforementioned methods requires the observation of
each event occurrence time. Each is rank based and, as such,
uses the exact event times to order the failure and censor-
ing time to construct the risk sets (and related summations)
appropriately.

The analysis that motivated our current work considers
the hospitalization experience among U.S. dialysis patients
using both national end-stage renal disease (ESRD) registry
data and that obtained from the Centers for Medicare and
Medicaid Services (CMS). The pertinent analysis file is ex-
tremely large because there are over 5000 dialysis facilities
in the United States and more than 500,000 ESRD patients
receiving dialysis treatment each year. Each dialysis patient
may have multiple hospital admissions every year; on average,
patients have 1.25 admissions with an average stay of 8 days
for each admission. It has been known for some time that stan-
dard Cox regression software (e.g., R’s coxph(·), SAS’s PROC

PHREG) can be used to fit the proportional rates model of Lin
et al. (2000). Specifically, each patient’s follow-up is repre-
sented by a set of records, one per recurrent event (plus one
for the final censoring event). For example, the experience of
a patient with events at 4, 7, 9, and censored at time 12 would
be represented by four records: (0,4], (4,7], (7,9], and (9,12];
the event indicator would equal 1 for the first three records
and 0 for the last record. This has come to be known as the
‘counting process’ style data structure; e.g., as described in
Allison (2010). In our motivating example, the number of days
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hospitalized is of interest, as opposed to hospital admissions.
If one uses the left-truncated data structure just described,
it is clear that even moderate-sized data sets can become un-
duly large if subjects are hospitalized frequently or tend to
have long stays. For example, a hospitalization at time 7 with
duration 8 days would result in nine separate records: (6,7],
(7,8], . . . , (13,14]; the event indicator set to 1 for each. There-
fore, our use of the U.S. national ESRD and CMS databases
will introduce computational difficulties. In settings such as
these, the use of a piecewise-constant recurrent event rate
model allows for the grouping of the recurrent event data,
which leads to a flexible event rate model and a resulting
data reduction that ameliorates the computational burden.

The proposed methods involve grouping recurrent events
into intervals corresponding to the ‘pieces’ implied by the
assumed piecewise-constant baseline rate function. With re-
spect to interval-grouped event data, several authors have
investigated nonparametric methods in estimating the mean
and rate functions (e.g., Thall and Lachin, 1988; Sun and
Kalbfleisch, 1995; Wellner and Zhang, 2000). However, such
methods do not consider covariate effects. Lawless and Zhan
(1998) proposed a proportional rates model with a piecewise-
constant baseline rate for interval-grouped recurrent event
data. The authors developed robust estimation techniques
based on generalized estimating equations, without assump-
tions on the event process. However, such methods assume
a common baseline rate function and may not be easily ex-
tended to the situation where the baseline is cluster specific,
especially when the number of clusters is relatively large.
Sun and Wei (2000) proposed semiparametric methods for
the analysis of panel count data under informative observa-
tion and censoring times. Such methods are also applicable
to a proportional rates model with cluster-specific baseline
rates. However, when the censoring time and the recurrent
event times are conditional independent given covariates,
their methods require modeling the censoring times under the
proportional hazards assumption. Most of the existing meth-
ods dealing with interval-grouped recurrent event data cannot
be easily carried out using standard software. Cook and Law-
less (2007) described a Poisson model with piecewise-constant
rate functions for recurrent event data and illustrated the use
of Poisson log-linear regression software for parameter esti-
mation. This method assumes independent counting process
increments given the covariates and, similar to Lawless and
Zhan (1998), is not applicable to cluster-specific baseline rate
function settings with relatively large number of clusters.

Another characteristic of the hospitalization data, common
to many other recurrent event data settings, is the presence of
a terminal event, i.e., an event that stops the recurrent event
process (e.g., death). Models for the rate function of recurrent
event data in the presence of a terminal event can generally
be categorized as (1) marginal models (e.g., Ghosh and Lin,
2002; Schaubel and Zhang, 2010), which can be interpreted
as the occurrence rate averaging over mortality experience, or
(2) partial marginal models (e.g., Cook and Lawless, 1997; Ye,
Kalbfleisch, and Schaubel, 2007), which consider the rate of
the recurrent events among survivors. In this article, we con-
sider a partial marginal model for the rate function of the re-
current event with unspecified dependence structure between
the recurrent events and the terminal event.

The remainder of this article is organized as follows. In
Section 2, we first propose a proportional rates model with
piecewise-constant baseline rate function for clustered recur-
rent event data, in the absence of a terminal event. The depen-
dence structure for within-patient events are left completely
unspecified. The extension to the setting with a terminat-
ing event then follows, under a partial-marginal model. The
essential parts of the estimation procedure are quite similar,
although the interpretation of the covariate effects is different.
The proposed estimation procedure requires only the interval-
specific event and person–time totals, instead of the exact
recurrent event times, which leads to considerable data re-
duction and hence reduced computing time. In Section 3, we
compare the proposed estimation method to a joint estimat-
ing equation method (JM) based on pseudo likelihood. We
derive the large-sample properties of the proposed estimators
in Section 4 and assess their finite-sample performance in Sec-
tion 5 under various data configurations, including settings in
which the model is misspecified. In Section 6, we apply the
proposed the model to the study of days hospitalized among
U.S. dialysis patients. The article then concludes with some
discussion in Section 7.

2. Model Specification and Estimation
2.1 In the Absence of a Terminal Event
As the name implies, the proposed model assumes that the
baseline rate is constant over prespecified intervals and is ap-
plied to recurrent event data in the absence of terminal event.
Denote the largest observation time by τ . Let a0 < a1 < . . .
< aL denote the cut points for the L intervals on [0, τ ], where
a0 = 0, aL = τ and Ω� = (a�−1, a� ] for � = 1, . . . , L. Let k
index cluster, with cluster sizes n1, . . . , nK and let i index the
subject (i = 1, . . . , n) with n =

∑
K
k=1nk . For subject i, let Gi

denote cluster and let Ci denote the right censoring time. Be-
cause data are often left truncated, we explicitly allow for left
truncation in the formulation of the proposed methods, with
left-truncation time represented by Bi . We then define the
at-risk process by Ỹi (t) = I(Bi ≤ t ≤ Ci ) with I(·) being the
indicator function. Let Ñ ∗

i (t) denote the cumulative number
of events up to time t and let Ñi (t) =

∫ t

0 Ỹi (s)dÑ
∗
i (s) denote

the observed number of events. We then specify the rate func-
tion for subject i from cluster k as

E{dÑ ∗
i (t) |Z i (t), Gi = k} = ρk � e

γT
0 Z i � dt,

where, for � = 1, . . . , L, ρk� is the baseline rate function for
the kth cluster, γ0 is a p-vector parameter, Z i� = Z i (t), t ∈
Ω� is a p-vector possibly time-varying covariates for subject i.
Note that any time-dependent covariates are assumed to be
external (Kalbfleisch and Prentice, 2002) and constant within
each interval Ω� . Define Gik = I(Gi = k), Ỹik (t) = Gik Ỹi (t),
dÑ ∗

ik (t) = Gik dÑ
∗
i (t) and dÑik (t) = Gik dÑi (t). Under the as-

sumption of independent left truncation and censoring, which
can be specified as

E{dÑ ∗
ik (t) |Z i (t), Gi = k, Ỹi (t) = 1}

= E{dÑ ∗
ik (t) |Z i (t), Gi = k},

we have

E{dÑik (t) |Z i (t), Ỹik (t)} = Ỹik (t)ρk � eγT
0 Z i � dt. (1)
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2.2 Piecewise-Constant Baseline Rates Model in the Presence
of a Terminating Event

When the recurrent event is potentially stopped by a terminal
event (e.g., death), we can similarly specify a partial marginal
model with piecewise-constant baseline rates. Let Di denote
the death time for subject i. Define the follow-up time Xi = Ci

∧ Di , with a ∧ b = min (a, b) and the at-risk process Yi (t) =
I(Bi � t � Xi ). Then the counting process for the recurrent
events N∗

i (t) = N∗
i (t∧Di ), which acknowledges the fact that

death stops the further occurrence of recurrent events, such
that N∗

i (t) is a constant after Di . Similar to the model in the
absence of terminal event, the occurrence rate function for
subject i from cluster k conditional on being alive is given as

E{dN ∗
i (t) |Z i (t), Di ≥ t, Gi = k} = αk�e

βT
0 Z i � dt,

where, for � = 1, . . . , L, αk� is the baseline rate function for
the kth cluster and β0 is a p-vector parameter. Define Yik (t) =
GikYi (t), dN∗

ik (t) = GikdN∗
i (t) and dNik (t) = GikdNi (t). Under

the assumption of independent left truncation and censoring,
which is written as

E{dN ∗
ik (t) |Z i (t), Yi (t) = 1, Gi = k}

= E{dN ∗
ik (t) |Z i (t), Di ≥ t, Gi = k},

we have

E{dNik (t) |Z i (t), Yik (t)} = Yik (t)αk�eβT
0 Z i � dt. (2)

2.3 Estimation
Next, we describe the estimation method for the model in the
presence of a terminal event. Similar estimating procedure can
be applied to the model in the absence of terminating event
by setting Di = τ . We first define some notation. For subject
i (from cluster k), let tik� =

∫
a�
a�−1Yik (t)dt denote the time at

risk (exposure time) and dik� =
∫

a�
a�−1dNik (t) be the observed

number of events experienced in Ω� . In addition, for r = 0, 1,
2, k = 1, . . . , K and � = 1, . . . , L, we define

S
(r )
k � (β) = n−1

n∑
i=1

Z⊗r
i� tik � e

βT Z i � ,

Zk � (β) = S
(1)
k � (β)/S(0)

k � (β),

V k � (β) = S
(2)
k � (β)/S(0)

k � (β) − Zk � (β)⊗2,

where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT . We next define the
compensated counting process,

dMik (t) = dNik (t) − Yik (t)αk�eβT
0 Z i � dt, t ∈ Ω� ,

for � = 1, . . . , L. By the specification of the model (2) and un-
der the corresponding independent left truncation and censor-
ing assumption, E{dMik (t) |Z i� , Yik (t)} = 0 for t ∈ Ω� . Thus,
it follows that

ξik � (β0) =
∫ a �

a �−1

dMik (t) = dik � − αk� tik � e
βT

0 Z i � ,

has mean zero because

E

{∫ a �

a �−1

dMik (t)

}
= E

[∫ a �

a �−1

E {dMik (t) |Z i� , Yik (t)}
]

= 0.

We consider the estimating function,

U (β) =
n∑
i=1

K∑
k=1

L∑
�=1

{Z i� − Zk � (β)}ξik � (β),

motivated by the fact that U (β0) can be shown to have mean
0 asymptotically, which can be proved by replacing Zk � (β)
with the corresponding limiting values in U (β). We can sim-
plify U (β) to

U (β) =
n∑
i=1

L∑
�=1

K∑
k=1

{Z i� − Zk � (β)}dik � , (3)

such that an estimator for β0, β̂, can be obtained by solving
U (β) = 0. A Breslow–Aalen type estimator for αk� is then
given as

α̂k � (β̂) =
d•k �

nS
(0)
k � (β̂)

, (4)

where • denotes the summation over the corresponding sub-
script. Therefore, the corresponding Breslow–Aalen type es-
timator for the cumulative baseline rate function μ0k (t) =∑

L
�=1αk� (a� ∧ t − a�−1 ∧ t) is given as

μ̂0k (t; β̂) =
L∑
�=1

d•k �

nS
(0)
k � (β̂)

(a� ∧ t− a�−1 ∧ t), (5)

One may notice that (3) is similar to the partial score equa-
tion for recurrent event data except for an offset term, and
a weight term. Therefore, the proposed estimation method is
easy to implement with SAS (PROC PHREG) or R (coxph) with
the censoring variable dik� , the weight term wik� = max (dik� ,
1), and the offset term log (tik� ) − log (wik� ). It should also be
noted that, unlike the conventional partial score equation in
which statistics are computed at each distinct recurrent event
time, the proposed estimating equation is calculated only for
each interval, which greatly speeds up the calculation, espe-
cially when the number of event occurrences is large.

A few additional notes are in order. First, although the
models for the recurrent event data are different in the ab-
sence and the presence of a terminal event, the estimation
methods are essentially the same upon redefinition of the at-
risk indicators. The main difference lies in the interpretation
of the covariate effect. Second, if the data are not left trun-
cated, the proposed methods can be applied by setting Bi = 0
for all i = 1, . . . , n. Third, in the absence of terminating event
the unbiasedness of U (β0) can be proved based on condi-
tional expectation arguments (e.g., Appendix 7.1 in Schaubel
and Cai, 2005). Finally, we emphasize cluster-specific base-
line rates model in this article. When the baseline rate func-
tion is common to all clusters, an analogous estimation proce-
dure can be carried out with S

(r )
k � and d•k� (k = 1, . . . , K, � =

1, . . . , L) replaced by the corresponding quantities summing
over all the clusters in (3) and (4).

3. Comparison with Joint Estimating Equation
Approach

An alternative estimation approach is based on pseudo-
likelihood that ignores within-subject and within-cluster
dependence. Let α = (α11, . . . , α1L , . . . , αK 1, . . . , αK L )′ and
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θ = (α′,β′)′. The pseudo-likelihood function is then L(θ) =∏n

i=1

∏K

k=1

∏L

�=1 Lik � (θ), where Lik � (θ) is given as Lik � (θ) =

(αk�eβT Z i � )d i k � e−α k � t i k � e
βT Zi � . The resulting log likelihood is

then

�(θ) =
n∑
i=1

K∑
k=1

L∑
�=1

{
dik � (logαk� + βT Z i� ) − αk� tik � e

βT Z i �
}
.

The score vector U J(θ) = {U T
α(θ),U T

β (θ)}T , with Uα =
(Uα 11 , . . . , UαK L

)T , can be obtained by taking the partial
derivative of �(θ) with respect to θ as

Uαk � (θ) =
d•k �
αk �

− nS
(0)
k � (β), k = 1, . . . , K, � = 1, . . . , L, (6)

Uβ(θ) =
n∑
i=1

L∑
�=1

K∑
k=1

Z i� ξik � (β). (7)

The solution of the joint estimating equation U J (θ) = 0, θ̂,
is then an estimator for θ. It can be easily seen that this JM
gives the same estimator as the proposed method (PM). A
profile estimator α̃(β) for α can be obtained from (6) given
β, which equals the Breslow–Aalen estimator from PM. Re-
placing α with α̃(β) in (7) then gives the same estimating
function (3) for β in PM. Moreover, unlike PM that calcu-
lates the estimated covariance matrix for α̂ and β̂ separately,
JM estimates the joint covariance matrix for α̂ and β̂, which
involves inverting the observed information matrix IJ . As the
minus second partial derivative of �(θ), IJ is of dimension (KL
+ p) with the upper left square submatrix corresponding to
α being a diagonal matrix with the {k(L − 1) + �}th diago-
nal element equal to d•k�/α2

k� . When d•k� = 0, which is quite
possible for clusters with small cluster size or less frequent
recurrent events in interval Ω� , IJ is not positive definite. As
a result, JM cannot give an estimator for the joint covariance
matrix.

4. Asymptotic Properties
The asymptotic properties are derived for the model in the
presence of a terminal event. As illustrated in Section 2.3, in
the absence of terminal event, one can obtain similar results
by letting Di = τ .

For i = 1, . . . , n, we impose the following regularity condi-
tions:

(a) {Ni (t), Yi (t),Z i (t), Gi}ni=1 are independent and identi-
cally distributed;

(b) P{Gik = 1} ∈ (0, 1].
(c) E{Yi (t)} > 0, for all t ∈ (0, τ ].
(d) Ni (t), are bounded by a constant.
(e) Z i� , � = 1, . . . , L are bounded by a constant.
(f) Let B be a neighborhood of β0. For d = 0, 1, 2, s

(d )
k � (β) are

continuous functions of β ∈ B, where s
(d )
k � (β) is the lim-

iting values of S
(d )
k � (β); s

(1)
k � (β) and s

(2)
k � (β) are bounded

and s
(0)
k � (β) is bounded away from 0 on B with

s
(1)
k � (β) =

∂

∂β
s

(0)
k � (β), s

(2)
k � (β) =

∂2

∂β∂βT
s

(0)
k � (β).

(g) Positive definiteness of the matrix

A = lim
n→∞

n−1
K∑
k=1

L∑
�=1

αk�vk � (β0)s
(0)
k � (β0),

where vk � (β) = s
(2)
k � (β)/s(0)

k � (β) − z̄k � (β)⊗2 and z̄k � (β) =
s

(1)
k � (β)/s(0)

k � (β).

Assumption (a) specifies that the independent units in the
proposed method are subjects. Assumption (b) states that
the probability of a randomly selected subject being assigned
to a cluster is nonzero for any cluster. Both conditions are
necessary so that parameter estimators for the cluster-specific
baseline rate functions are estimable for all clusters.

We next summarize the theoretical results for β̂ by the
following theorem.

Theorem 1. Under regularity conditions (a) − (g), β̂ con-
verges almost surely to β0 as n → ∞, while n1/2(β̂ − β0) con-
verges to ap-variate normal vector with mean 0 and covariance
matrix Σ = A−1ΞA−1, where Ξ = E{U 1(β0)⊗2}, with

U i (β) =
K∑
k=1

L∑
�=1

{Z i� − z̄k � (β)}ξik � (β).

A consistent estimator for Σ can be obtained by replacing
A and Σ with their empirical counterparts.

Theorem (1) can be proved by combining the uniform
strong law of large numbers and the central limit theorem,
as is shown in the Appendix. We next present the essential
asymptotic properties for μ̂0k (t; β̂).

Theorem 2. Under regularity conditions (a) − (f), for k =
1, . . . , K, μ̂0k (t; β̂) converges almost surely to μ0k (t) uniformly
in t ∈ [0, τ ]; the processn1/2{μ̂0k (t; β̂) − μ0k (t)} converges to a
zero-mean Gaussian process with covariance function Ψk (s, t)
= E{ψ1k (s)ψ1k (t)}, where

ψik (t) =
L∑
�=1

ψik � (β0)(a� ∧ t− a�−1 ∧ t),

ψik � (β) =
ξik � (β)

s
(0)
k � (β)

− αk� z̄k � (β)A−1U i (β0).

We show in Appendix that n1/2{μ̂0k (t; β̂) − μ0k (t)} is
asymptotically equivalent to n−1/2

∑
n
i=1ψik (t). A consistent

estimator for Ψk (s, t) is then n−1
∑n

i=1 ψ̂ik (s)ψ̂ik (t), where
ψ̂ik (t) is the empirical measure of ψik (t).

5. Simulation Study
In this section, we conduct simulation studies to assess the
finite sample performance of the proposed estimators. First,
we consider L = 3, 6, 12 intervals for the baseline rate func-
tion with one set of prespecified cut points. Lawless and Zhan
(1998) suggested that ‘In most practical situations, it is satis-
factory to use piecewise-constant intensities with 4–10 pieces.’
In this stage, we aim to verify this statement by comparing
the proposed estimators using different numbers of intervals
under both the true and a misspecified model. Next, we choose
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another set of cut points and redo the simulation in the first
stage. By comparing the results between the two stages, we
seek appropriate guidelines for the location of cut points.

5.1 Finite Sample Performance of the Estimators with
Different Number of Intervals

Simulation studies were conducted to assess the performance
of the estimation method in the presence of a terminal event.
The same settings could be used to evaluate the finite sample
performance of the estimators in the absence of terminal event
by defining a new censoring time C̃ = min(D,C).

In the first simulation study, for subject (i, k), we generate
recurrent event times from

E{dN ∗
ik (t) |Z i ,Wi ,Di ≥ t} = Wie

βT
0 Z i dμ0k (t),

where the subject-level random effect Wi follows gamma dis-
tribution with unit mean and variance σ2 = 1, and the cluster-
specific cumulative baseline rate function μ0k (t) = t, Z i =
{Zi1, Zi2} are two-vector covariates with Zi1 ∼ Bernoulli(0.5)
and Zi2 ∼ N(0, 0.25), β1 = 0.5 and β2 = 0.25, 0.5, 0.75, 1. In
addition, we let Di ∼ Exp(0.1 + 0.1Zi1) and Ci ∼ U(5, 10).
The average number of recurrent events ranged from six to
eight. We set K = 50, 100 and nk = 20, 50, 100. For each sim-
ulated data set, we estimated β0 under model (2) with three
settings for the piecewise-constant baseline rate function: the
first setting is with L = 3 pieces defined by 0, 2, 4, 10; the sec-
ond setting is with L = 6 pieces defined by 0, 1, . . . , 5, 10; the
third setting is with L = 12 pieces resulting from adding six

midpoints of the intervals in the second setting. The results
are shown in Table 1 for β̂1 based on 1000 simulations.

For the first simulation study where the true model is ac-
tually piecewise constant, we do not present the results based
on L = 3 because they are similar to results for L = 6 and L =
12. For all of the data configurations in Table 1, the estimator
for β1 corresponding to the binary covariate, β̂1, is approxi-
mately unbiased with the bias reduced with increasing cluster
size. The mean of the asymptotic standard error (ASE) of β̂1

is generally close to the empirical standard deviation (ESD)
of β̂1, and the coverage probabilities (CP) are fairly close to
the nominal value. Adding more cut points does not seem to
improve the performance of the estimator. Results for β̂2 are
similar to β̂1 and thus are not provided. By comparing the re-
sults with different combinations of K and nk , we also notice
that the performance of the estimators with the same total
sample size (K = 50, nk = 100; K = 100, nk = 50) are sim-
ilar regardless of the specific configuration of the number of
centers and center size.

In the second simulation study, we let μ0k (t) = 0.5t2 and left
other settings unchanged. The average number of recurrent
events per subject ranged from 18 to 20. For each setting,
1000 data sets are simulated. The results for β̂1 are shown in
Table 2, again based on 1000 replicates.

Under misspecification of the baseline rate function, the
estimator β̂1 is biased based on the percentage of bias (%
BIAS) with the bias reduced by adding more pieces to
the baseline rate function. Although the mean square error
(MSE) does not seem to be improved, the CP gets closer

Table 1
Results of β̂1 in the first simulation study with β1 = 0.5, μ0k (t) = t, and 1000 replicates

L = 6 L = 12

K nk β2 BIAS ASE ESD CP BIAS ASE ESD CP

50 20 1 −0.005 0.081 0.082 95.2 0.005 0.081 0.082 95.2
0.75 0.004 0.079 0.079 94.9 0.005 0.079 0.079 94.9
0.5 0.004 0.078 0.078 94.5 0.005 0.077 0.078 94.2
0.25 0.003 0.077 0.075 95.0 0.004 0.077 0.075 94.8

50 50 1 0.006 0.053 0.051 96.4 0.006 0.053 0.051 96.2
0.75 0.004 0.052 0.050 96.1 0.004 0.052 0.050 96.2
0.5 0.004 0.051 0.049 95.9 0.004 0.050 0.049 95.9
0.25 0.010 0.045 0.042 96.2 0.010 0.045 0.042 96.0

50 100 1 0.010 0.037 0.037 94.9 0.010 0.037 0.037 94.8
0.75 0.009 0.036 0.035 95.2 0.010 0.036 0.035 95.0
0.5 0.009 0.035 0.033 95.3 0.009 0.035 0.033 95.4
0.25 0.010 0.034 0.033 94.4 0.010 0.034 0.033 94.6

100 20 1 −0.009 0.058 0.056 95.6 −0.009 0.058 0.056 95.5
0.75 −0.010 0.056 0.056 96.0 −0.010 0.056 0.056 95.6
0.5 −0.010 0.055 0.055 95.0 −0.010 0.055 0.054 95.1
0.25 −0.010 0.055 0.053 95.4 −0.010 0.055 0.053 95.6

100 50 1 0.009 0.038 0.038 95.3 0.009 0.038 0.038 95.4
0.75 0.008 0.035 0.037 94.9 0.009 0.037 0.037 94.7
0.5 0.008 0.036 0.035 94.8 0.008 0.036 0.034 95.0
0.25 0.009 0.035 0.033 95.2 0.009 0.035 0.034 95.3

100 100 1 −0.002 0.027 0.027 95.8 0.002 0.027 0.027 95.6
0.75 0.001 0.026 0.025 96.4 0.001 0.026 0.025 96.1
0.5 0.001 0.026 0.024 96.0 0.001 0.026 0.024 96.0
0.25 0.002 0.025 0.024 96.4 0.002 0.025 0.024 96.4
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Table 2
Results of the second simulation study for β̂1 with β1 = 0.5, μ0k (t) = 0.5t2, and 1000 replicates

L = 3 L = 6 L = 12

K nk β2 % BIAS MSE CP % BIAS MSE CP % BIAS MSE CP

50 20 1 −7.7 0.125 91.4 −4.5 0.130 92.6 −2.3 0.129 93.1
0.75 −7.6 0.125 91.4 −4.3 0.125 92.9 −2.2 0.124 94.4
0.5 −7.5 0.122 91.6 −4.2 0.122 93.1 −2.1 0.121 92.9
0.25 −7.7 0.121 91.8 −4.4 0.120 93.4 −2.3 0.119 94.6

50 50 1 −5.8 0.084 92.9 −2.8 0.084 95.6 −1.2 0.083 96.0
0.75 −5.9 0.081 93.4 −2.9 0.081 96.0 −1.2 0.080 96.3
0.5 −5.7 0.079 92.8 −2.7 0.079 95.9 −1.1 0.078 96.2
0.25 −5.9 0.077 92.4 −2.9 0.077 95.8 −1.2 0.077 95.1

50 100 1 −5.1 0.061 90.6 −2.1 0.061 95.0 −0.5 0.061 96.2
0.75 −5.0 0.058 91.6 −2.0 0.058 95.2 −0.4 0.058 96.3
0.5 −5.1 0.056 90.6 −2.0 0.056 94.6 −0.4 0.056 95.7
0.25 −5.1 0.055 91.0 −2.0 0.055 95.7 −0.4 0.055 96.6

100 20 1 −9.7 0.092 87.0 −6.7 0.091 90.9 −5.0 0.090 93.3
0.75 −9.7 0.089 86.8 −6.6 0.088 91.1 −5.0 0.088 93.0
0.5 −9.6 0.087 87.4 −6.5 0.086 91.5 −4.9 0.086 93.4
0.25 −9.8 0.086 87.6 −6.7 0.086 91.3 −5.0 0.085 93.0

100 50 1 −5.3 0.061 88.9 −2.3 0.060 94.4 −0.6 0.060 95.5
0.75 −5.2 0.058 89.9 −2.2 0.058 94.1 −0.5 0.058 94.5
0.5 −5.3 0.056 90.2 −2.2 0.056 93.9 −0.6 0.056 94.3
0.25 −5.3 0.055 89.9 −2.2 0.055 95.0 −0.6 0.054 95.6

100 100 1 −5.3 0.044 86.4 −2.4 0.044 93.1 −0.6 0.043 94.9
0.75 −5.3 0.041 86.9 −2.4 0.041 93.7 −0.5 0.041 95.4
0.5 −5.3 0.040 85.8 −2.4 0.040 93.6 −0.5 0.040 96.0
0.25 −5.3 0.039 85.0 −2.4 0.039 93.9 −0.5 0.039 96.0

to the nominal level as the number of pieces in the as-
sumed baseline rate function increases. The improvement
is more obvious comparing L = 3 and L = 12. Results
for β̂2 are very similar to those for β̂1 and, hence, are not
presented.

Simulation studies with a variety of center sizes (including
one that resembles the motivating example) are also consid-
ered for the evaluation of the regression parameter estimators.
For example, we conduct numerical studies with K = 50 and
center sizes of 5, 10, 20, 50, and 100 each for 10 centers. The
results are similar to those for the equal-center-size settings
and are presented in Table S.1 of the Supplementary Web
Materials.

In the third simulation study, we assess the asymptotic
properties for μ̂0k (t) with β0 = (0.5, 1) and K = 50 under
two scenarios; one in which μ0k (t) = t and a second in which
μ0k (t) = 0.5 t2. Remaining characteristics are as described pre-
viously. We let n1 = 20, n2 = 50, n3 = 100, and nk = 50 for k =
4, . . . , 50. In both cases, the rates are assumed to be piecewise
constant. Specifically, we estimated μ0k (t) under model (2)
with two settings for the cut points of the piecewise-constant
baseline rate function: (i) with L = 6 and a� = 0, 1, . . . , 5, 10
(ii) with L = 12 and a� = 0, 0.5, 1, 1.5, . . . , 5, 7.5, 10. Thus,
in the second setting, we double the number of cut points
by including the midpoints of all the intervals from the first
setting. We then evaluate the performance of the estimator
for μ(t) under each scenario at four selected time points 1.51,

3.56, 5.56, 7.23, which result in 80%, 60%, 40%, and 20% of
the subjects at risk, respectively. For each setting, 1000 data
sets are simulated.

Results for the third simulation study are shown in Table 3.
From Table 3a, the estimator for μ(t) is approximately unbi-
ased under the piecewise-constant baseline rates model. The
ASE is generally similar to the ESD, and the CP is close to
95%. In addition, the piecewise-constant baseline rates model
with L = 12 does not seem to produce a better estimator
than the model with L = 6 for μ0k (t) at the four selected
time points, in terms of unbiasedness and efficiency. The per-
formance of the estimators get worse as time increases. The
results from the linear baseline rates model are presented in
Table 3b. In general, there is some bias in μ̂0k (t) and the %
BIAS increases with time, which is not surprising because the
expected number of subjects at risk Rk (t) = nkE{Y(t)} also
decreases with time. In addition, the bias is reduced by adding
more pieces in the assumed baseline rate function, although
the MSE and CP do not seem to be improved. Overall, the
bias is reduced and the efficiency is improved with increasing
center size.

In summary, the proposed method seems to work well for
the proportional rates model even when the underling base-
line rate function is not piecewise constant. In addition, using
L = 3 pieces does not seem to provide a good estimates for
the regression parameters. The performance of the estimators
under the model with six pieces for the baseline rate function
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Table 3
Results of μ̂0k (t) in the third simulation study with β1 = 0.5, β2 = 1, and 1000 replicates

(a) μ0k (t) = t

L = 6 L = 12

k nk t Rk (t) μ0k (t) BIAS ASE ESD CP BIAS ASE ESD CP

1 20 1.51 16 1.51 0.017 0.414 0.485 88.9 0.016 0.424 0.493 89.9
3.56 12 3.56 0.042 0.939 1.112 89.0 0.045 0.945 1.125 89.1
5.56 8 5.56 0.037 1.479 1.820 86.4 0.039 1.483 1.816 86.3
7.23 4 7.23 0.034 1.953 2.556 84.0 0.034 1.972 2.528 84.8

2 50 1.51 40 1.51 −0.004 0.272 0.297 91.0 −0.003 0.278 0.305 91.7
3.56 30 3.56 0.026 0.623 0.694 91.2 0.025 0.627 0.701 91.3
5.56 20 5.56 0.032 1.011 1.127 91.6 0.033 1.014 1.131 91.9
7.23 10 7.23 0.025 1.373 1.514 91.3 0.039 1.381 1.522 91.6

3 100 1.51 80 1.51 0.004 0.198 0.208 93.9 0.003 0.203 0.209 93.9
3.56 60 3.56 0.001 0.454 0.483 93.4 −0.001 0.457 0.486 93.7
5.56 40 5.56 0.020 0.735 0.792 92.6 0.024 0.736 0.791 92.6
7.23 20 7.23 0.020 0.996 1.099 91.7 0.024 0.997 1.089 92.1

(b) μ0k (t) = 0.5t2

L = 6 L = 12

k nk t Rk (t) μ0k (t) % BIAS MSE CP % BIAS MSE CP

1 20 1.51 16 1.14 5.4 0.539 89.6 1.8 0.530 89.9
3.56 12 6.16 3.4 2.647 89.1 1.4 2.622 88.5
5.56 8 15.46 4.4 7.126 85.6 2.9 6.961 86.0
7.23 4 26.11 3.1 13.035 82.8 −1.2 12.205 82.6

2 50 1.51 40 1.14 5.3 0.344 90.5 0.1 0.329 92.5
3.56 30 6.16 2.9 1.699 91.8 1.0 1.675 91.4
5.56 20 15.46 5.4 4.601 91.8 3.8 4.524 92.2
7.23 10 26.11 2.6 8.352 90.2 0.1 7.880 90.7

3 100 1.51 80 1.14 4.6 0.247 90.3 0.7 0.236 93.1
3.56 60 6.16 3.4 1.211 92.4 1.5 1.199 92.5
5.56 40 15.46 5.4 3.338 91.6 3.9 3.269 91.4
7.23 20 26.11 1.1 6.185 91.7 0.2 5.791 92.0

seems to be fairly good. The % BIAS is generally below 5%
for both the regression parameter estimators and the cumu-
lative baseline rates estimators. Although adding more pieces
does seem to reduce the bias, it does not seem to improve
the MSE and the CP. In conclusion, we think Lawless and
Zhan’s (1998) suggestion on using 4–10 pieces is reasonable,
and we suggest using at least six pieces for the % BIAS to be
controlled under a reasonable threshold.

5.2 Location of Cut Points
Based on the previous simulation studies, we suggest includ-
ing at least six pieces in the assumed baseline rate function.
The next question is then how to decide the location of the
cut points. If the trend of the recurrence rate is known based
on previous literature, the location of the cut points could be
specified such that the main trends in the rate function are
captured. For example, if it is known that recurrent events
occur more frequently in the early stage of follow-up, mak-
ing finer intervals at earlier follow-up times is recommended.
Alternatively, without previous knowledge of the nature of
the rate function, we suggest choosing cut points based on
the observed-data cumulative rate functions, which results in
approximately equal number of recurrent events across inter-

vals. Such a strategy helps ensure that there are sufficient
data within each interval.

We repeated the first and the second simulation studies
described in the previous subsection with a new set of cut
points a� : E{N (a� )} = �

L
E{N (τ )}, � = 1, . . . , L. Under the

piecewise-constant model with μ0k (t) = t as well as exponen-
tially distributed terminating event time and uniformly dis-
tributed censoring time, the new cut points with L = 6 are
0.77, 1.66, 2.68, 3.91, 5.54, 10. On the other hand, when the
true underlying model has linear baseline rates with μ0k (t)
= 0.5t2, the new set of cut points with L = 6 are 2.40, 3.60,
4.64, 5.65, 6.92, 10. The results of the new estimators β̂new

1 and
μ̂new

0k (t) are presented in Table S.2 and Table S.3 of the Supple-
mentary Materials. For the underlying model with piecewise-
constant baseline rates, using the new cut points does im-
prove the CPs for the estimators, although the bias and the
efficiency are relatively the same as using the old cut points.
Under the misspecified model with linear baseline rates, the
recommended selection method greatly reduces the bias. The
% BIAS with L = 6 using the new set of cut points is compa-
rable to that with L = 12 using the old set. This is because
using the recommended selection method helps to balance the
data used in each interval.
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5.3 Computational Advantages
Because the motivation of the proposed method is to handle
recurrent event data with large event occurrence rate, it is
also of interest to evaluate the computational advantage of
the proposed method relative to the common semiparamet-
ric proportional rates model. We conduct a simulation study
using the same setting as in the first simulation study with
β1 = 0.5, β2 = 1 and μ0k (t) = 0.5t, t, 1.5t, 2t. The average
number of observed recurrent events for each subject is 4, 8,
12, and 16, respectively. We consider K = 200 centers with
center size of nk = 100 subjects resulting a total of 20,000
subjects. In Table S.4, we summarize the computation time
using the common semiparametric method (CM) and the PM
on a DELL Optiplex 780 PC based on 100 replicates. The
computation time using the PM is quite stable around 1.2
minutes regardless of the average number of recurrent events.
On the other hand, the computation time using the CM keeps
increasing from 17 minutes to about 2 hours. The PM is 13
times faster than the CM even with an average of four events
per subject and the ratio for the computation time between
the two methods increases to 87 with an average of 16 recur-
rent events per subject. In practice, it takes the PM about
2–3 hours to fit the piecewise-constant baseline rates model
to the motivating example with an average of 22 days in hos-
pital. By extension, it would take the CM several weeks to
run one fit for the motivating example. Note that, although
we contrast computing times using a desktop computer, it is
clear that the computational issues associated with the CM
would be substantial with any computer platform.

6. Application
We applied the proposed marginal models with piecewise-
constant baseline rates to the study of hospitalization days
among Medicare dialysis patients. Between 2006 and 2008,
there were 542,417 Medicare dialysis patients from 5650 dial-
ysis facilities being hospitalized in the United States with fa-
cility sizes varying from 1 to 768 dialysis patients. The average
hospitalization days per patient ranged from 1 to 788 with an
average of 23 days during the 3 year period. In this study,
hospital days are viewed as recurrent event data, with time of
follow-up defined as time from 90 days after the initiation of
ESRD therapy. We use the 90-day period to assure that most
patients are eligible for Medicare insurance either as their pri-
mary or secondary insurer. Patients who died during the first
90 days of ESRD are excluded from the analysis. Patients
are subject to left truncation at the start of the observation
period, January 1, 2006. Subjects are followed until the ear-
liest of death and right censoring, with the latter defined as
the earliest of December 31, 2008, 3 days prior to transplant
and loss to follow-up. Because a patient’s hospitalization rate
may be influenced by the facility at which (s)he receives dial-
ysis, we fitted a facility-stratified model to adjust for facility
effects.

Patient characteristics of interest include age, race, gender,
diabetes, ethnicity, nursing home status and body mass index
(BMI). All covariates except for BMI are coded as categorical
variables through binary indicators. We include logarithm of
BMI as a continuous covariate. According to the proposed
methods, we summarize patient hospital days as intermittent
counts and exposure times in six time-since-ESRD intervals

Table 4
Analysis of hospitalization days for Medicare dialysis patients

in the United States

Covariates Estimates SE p-value

Age (in years)
0–24 0.057 0.007 <0.0001
25–44 −0.172 0.003 <0.0001
45–59 −0.217 0.001 <0.0001
60–74 0 . .
75+ 0.093 0.001 <0.0001

Race
Native −0.089 0.003 <0.0001
Asian −0.350 0.002 <0.0001
African-American −0.064 0.001 <0.0001
Other −0.024 0.003 <0.0001
Caucasian 0 . .

Gender
Female 0.111 0.001 <0.0001
Male 0 . .

Diagnoses
Diabetes 0.233 0.001 <0.0001
Nondiabetes 0 . .

Ethnicity
Hispanic 0.171 0.001 <0.0001
Non-Hispanic 0 . .

Nursing home status
Yes 1.405 0.001 <0.0001
No 0 . .

Log-BMI −0.070 0.001 <0.0001

with cut points 90 days (time 0), 6 months, 1 year, 2 years,
3 years, and 5 years. These cut points are selected based on
previous knowledge that more frequent hospitalization could
be observed at the early stages of ESRD therapy. Patient age
is recorded at the beginning of each interval. Nursing home
status is recorded as whether a patient was in nursing home in
the previous calendar year. All the rest variables are measured
at the beginning of the study, thus are time independent.
Results of the covariate effects from the proposed method are
summarized in Table 4 below.

All the included covariates significantly influence the re-
current rate of hospitalization days. When comparing within
the same cluster, patients at the ages 45–59 have the low-
est hospitalization rates among survivors with all the other
patient mix held the same. Asian dialysis patients are less
frequently hospitalized among survivors than the correspond-
ing comparable groups. According to the model, on any given
day, female patients are 1.12 times more likely to be in hos-
pital than male patients. Similarly, diabetic patients are 1.26
times more likely to be in hospital than nondiabetic patients
and Hispanic patients are 0.84 times less likely to be hospital-
ized than non-Hispanic patients. Conditional on being alive,
dialysis patients who were in a nursing home in the previous
calendar year are 4.01 times more likely to be hospitalized
than patients who did not reside in a nursing home. For each
unit increase in the logarithm of BMI, the log hazard of hos-
pitalization decreases by 0.933.

Using the stratified model, we are also interested in the
trend of facility-specific baseline rate functions. Because the
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Figure 1. The cumulative baseline rates estimators for five facilities with more than 500 dialysis patients. The slopes within
each interval represent the piecewise-constant baseline rates.

performance of the baseline rates estimators are improved
with increasing center size, we choose the five largest facil-
ities with more than 500 dialysis patients and estimate their
baseline rates. The corresponding estimators are plotted in
Figure 1. For all five facilities, the hospitalization baseline
rates decrease with time on dialysis and this tendency is more
obvious in the first year of dialysis treatment. After 1 year of
ESRD therapy, the hospitalization rates are quite flat. This
finding is coincident with our previous knowledge that dialy-
sis patients are more likely to be hospitalized in early stage
of ESRD therapy.

7. Discussion
In this article, we propose a proportional rates model with
cluster-specific piecewise-constant baseline rate function for
recurrent event data, which applies to the settings with and
without a terminal event. With the parametric setting for
the baseline rate function, we are able to estimate the re-
gression parameter and cumulative baseline rates based on
intermittent counts and exposure times within each prespec-
ified interval, which is defined according to the pieces in

the baseline rate function. The proposed method reduces
data storage volume and speeds up the computation. The
Cox format of the estimating equation enables the feasibil-
ity of stratification, which is difficult to implement under
the joint estimating equation approach when the number of
clusters is relatively large, as in the illustrating example in
Section 6.

The proposed model is still a proportional rates model.
General method for the checking of goodness of fit for the com-
mon Cox model can be applied directly. For example, to check
for nonproportionality, one may consider including a nonlin-
ear term for time and test the corresponding coefficients.

The proposed model in the presence of terminal event does
not specify the dependence between the terminal event and
the recurrent event times. As long as the true partial marginal
model is a proportional rates model, the proposed method
gives reasonable estimates as was shown in the simulation
study. In the simulation studies, the terminal event time D
is independent of the frailty W capturing the dependence for
within-subject events. Therefore, the dependence between D
and the recurrent event process N∗(t) is completely through
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the covariate Z. If we assume D also depends on W, the partial
marginal model would become

E{dN ∗
ik (t) |Z i , Di ≥ t} = fW (t; Z i )eβT

0 Z i dμ0k (t).

Hence the estimators for the covariates influencing the dis-
tribution of D (β̂1 in the simulation study) would be biased.
Therefore the proposed method applies to the situation that
the dependence between D and N∗(t) is completely through
either W or Z , but not both. This conclusion is also verified
based on some simulation studies.

The proposed method is applicable to both recurrent event
and failure time data from large registry study or large ob-
servational study such as claims data in insurance or hospi-
talization data. When the number of distinct event times is
large, we can fold the data by recording the counts and ex-
posure time in prespecified intervals and analyze the folded
data using the proposed method.

8. Supplementary Materials
Tables referenced in Sections 5 are available under
the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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Appendix

Proof of Theorem 1
Define

Pn (β) = n−1
n∑
i=1

K∑
k=1

L∑
�=1

{βT Z i� − log S(0)
k � (β)}dik � ,

and let Wn (β) = Pn (β) − Pn (β0), which can be written as

Wn (β) = n−1
n∑
i=1

K∑
k=1

L∑
�=1

{
(βT − βT

0 )Z i� − log
S

(0)
k � (β)

S
(0)
k � (β0)

}
dik � .

With condition (a) to (e) in Section 4, the strong law of large
number and the fact that dik� and S(0)

k � (β) have bounded vari-
ation, we can show that Wn (β) converges almost surely to

W(β) = lim
n→∞

n−1
n∑
i=1

K∑
k=1

L∑
�=1

×
{(

βT − βT
0

)
Z i� − log

s
(0)
k � (β)

s
(0)
k � (β0)

}
αk� tik � e

βT
0 Z i � ,

for every β. Obviously,

∂2Wn (β)
∂β∂βT

= −n−1
n∑
i=1

K∑
k=1

L∑
�=1

V k � (β)dik � ,

= −n−1
n∑
i=1

K∑
k=1

L∑
�=1

{Z i� − Zk � (β)}⊗2

× d•k � /S
(0)
k � (β)tik � eβT Z i � ,

is negative semidefinite. Therefore,Wn (β) is concave. By The-
orem 10.8 of Rockafellar (1970), the convergence of Wn (β) to
W(β) is uniform on any compact set of β. Specifically, defin-
ing a compact set of β, Br = β : ‖β − β0‖ ≤ r, we have

supβ∈Br ‖Wn (β) −W(β)‖ → 0. (A1)
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In addition, ∂W(β0)/∂β = 0 and ∂2W(β0)/∂β∂βT = −A,
which is assumed to be negative semidefinite through
condition (g). Hence, W(β) has a unique maximizer at
β0. In particular, supβ∈∂Br {W(β)} < W(β0), where ∂Br =
β : ‖β − β0‖ = r is the boundary of Br . This fact, together
with expression (A1), implies that Wn (β) < Wn (β0) for all
β ∈ ∂Br and large n. Therefore, there must exists a maxi-
mizer of Wn (β), i.e. the solution to ∂Wn (β) ∂β = 0, say β̂,
in the interior of Br , and the argument in Jacobsen (1989) can
be used to show the uniqueness of this maximizer. Because r
can be arbitrarily small, letting r → 0 yields that β̂

a .s .→ β0 as
n → ∞.

The weak convergence of β̂ can be shown through the first-
order Taylor’s series expansion about β = β0 on U (β̂) as

U (β̂) = U (β0) + ∂U (β∗)
∂β

(β̂ − β0),

where β∗ is on the line segment joining β̂ and β0. It follows
that

n1/2(β̂ − β0) = Â
−1

(β∗)n−1/2U (β0).

The almost sure convergence of β̂ to β0 and the fact that
ξik � (β0) is zero mean implies that Â(β∗) a .s .→ A as n → ∞.

Next, we derive the distribution of n−1/2U (β0) beginning
by the following decomposition

U (β0) =
n∑
i=1

K∑
k=1

�∑
�=1

{Z i� − z̄k � (β0)}ξik � (β0)

−
K∑
k=1

�∑
�=1

{Zk � (β0) − z̄k � (β0)}ξ•k � (β0).

(A2)

The first term on the right-hand side of equation (A2) is
a sum of n independent and identically distributed ran-
dom vectors with zero mean and finite variance. The second
term on the right-hand side of equation (A2) is op(n1/2) be-
cause Zk � (β0) − z̄k � (β0)

p→ 0 and ‖n−1/2ξ•k � (β0)‖ = O(1) by
the boundness conditions (d) and (e).

Thus n−1/2U (β0) converges weakly to a p-variate normal
vector with mean 0 and covariance matrix Ξ(β0) by the mul-
tivariate central limit theorem. From Slutsky’s theorem and
the consistency of Â(β∗) to A, n1/2(β̂ − β0) converges to a
p-variate normal vector with mean 0 and covariance matrix
Σ.

Proof of Theorem 2
We now derive the asymptotic properties for α̂k � (β̂). The
asymptotic results of μ̂0k (t; β̂) then directly applies by com-
bining the results of α̂k � (β̂) over t.

We first consider the following decomposition

α̂k � (β̂) − αk� = φ1 + φ2, (A2)

where φ1 = α̂k � (β0) − αk� , and φ2 = α̂k � (β̂) − α̂k � (β0). We
can write φ1 = n−1ξ•k � (β0)/S

(0)
k � (β0). The strong law of large

number and condition (f) implies that φ1
a .s .→ 0. By Taylor’s

series expansion,

φ2 = −n−1 d•k �Zk � (β0)

S
(0)
k � (β0)

(β̂ − β0) + op (n−1/2).

By the boundness conditions (d) and (f), and the almost sure
convergence of β̂ to β0, φ2

a .s .→ 0. The almost sure convergence
of α̂k � (β̂) to αk� then follows. This result, together with (5)
implies that μ̂0k (t; β̂) converges almost surely to μ0k (t) uni-
formly in t.

Next, we prove the weak convergence of n1/2{α̂k � (β̂) −
αk�}. With the previously derived arguments and condition
(f),

n1/2φ1 = n−1/2
n∑
i=1

ξik � (β0)

s
(0)
k � (β0)

+ op (1), (A3)

n1/2φ2 = −n−1/2
n∑
i=1

αk� z̄k � (β0)A−1(β0)U i (β0) + op (1).

(A4)

It then follows that

n1/2{α̂k � (β̂) − αk�} = n−1/2
n∑
i=1

ψik � (β0) + op (1).

This result, together with (5) implies that

n1/2{μ̂0k (t; β̂) − μ0k (t)}

= n−1/2
n∑
i=1

L∑
�=1

ψik � (β0)(a� ∧ t− a�−1 ∧ t) + op (1),

which converges to a zero-mean Gaussian process with covari-
ance function ψk (s, t).


